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ABSTRACT
A novel approach to simulate simple protein–ligand systems at large time and length scales is to couple Markov state models (MSMs) of
molecular kinetics with particle-based reaction-diffusion (RD) simulations, MSM/RD. Currently, MSM/RD lacks a mathematical framework
to derive coupling schemes, is limited to isotropic ligands in a single conformational state, and lacks multiparticle extensions. In this work,
we address these needs by developing a general MSM/RD framework by coarse-graining molecular dynamics into hybrid switching diffusion
processes. Given enough data to parameterize the model, it is capable of modeling protein–protein interactions over large time and length
scales, and it can be extended to handle multiple molecules. We derive the MSM/RD framework, and we implement and verify it for two
protein–protein benchmark systems and one multiparticle implementation to model the formation of pentameric ring molecules. To enable
reproducibility, we have published our code in the MSM/RD software package.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0060314

I. INTRODUCTION
Molecular dynamics (MD) simulations have allowed the study

of a broad range of biological systems from small molecules, such
as anesthetics or small peptides, to large protein complexes, such
as ribosomes or even virus capsids.1 One of the main challenges
faced by MD simulations is their high computational cost, which can
lead to inadequate sampling of conformational states. While there
is a large body of research focused on sampling of long-time-scale
dynamics of individual macromolecules, there has been less atten-
tion to sampling and simulating the interactions of many macro-
molecules on larger length scales. This is a more complex prob-
lem since it not only involves the long-time dynamics but can also
involve several orders of magnitude in length scale. One landmark
example is cellular signaling, where relevant processes happen across
6 orders of magnitude in length scales (0.1 nm to 100 μm) and 18
orders of magnitude in time scales (femtoseconds to hours).2–4 Two

of the most successful approaches to model biomolecular processes
at larger time or length scales are the following:

● Markov state models (MSMs) of molecular kinetics are
one of the most well-known techniques to mitigate the
MD sampling problem.5–10 They approximate the long-time
dynamics of MD systems by Markov chains on discrete
partitions of configuration space. This allows us to extract
the long-time kinetics from short MD trajectories and to
calculate molecular observables. State-of-the-art develop-
ments have pipelined the MSM approach into deep learning
frameworks.11,12 However, larger and more complex systems
require sampling an exponentially growing number of states,
constraining its applicability to small domains with one or a
few macromolecules.

● Particle-based reaction-diffusion (RD) simulations are
orders of magnitude more efficient than MD since they
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model each molecule as one particle undergoing Brownian
diffusion. The solvent effects are implicitly modeled through
the Brownian noise term,13–15 and the reactions are regu-
lated by reaction rates. For reactions involving two or more
particles, if a pair of reactive particles is close enough to each
other, they can react with a certain reaction rate. They are
ideal to model multiparticle processes at large length scales
but lack atomic detail. There is a large amount of particle-
based RD literature,16–26 as well as several software packages
and simulation schemes.27–36

By coupling MSMs of molecular kinetics with particle-based RD we
can combine the best of both worlds and perform multiscale molec-
ular simulations across large time and length scales; we call this
coupling MSM/reaction-diffusion (MSM/RD). However, this cou-
pling is not trivial. The existing implementation of MSM/RD in Ref.
37 suffered from several limitations: there was no underlying math-
ematical theory to justify and derive the coupling scheme, it was
limited to simple ligand–protein systems, the protein was assumed
fixed in the frame of reference, the ligand orientation and possible
conformation switching was not taken into account, and multiparti-
cle extensions were not implemented. However, the aim of MSM/RD
remains the same, to produce efficient multiscale simulations that
reproduce the essential statistical behavior of a practically unafford-
able large-scale MD simulation by employing only statistics obtained
from simulations of the constituent molecules in small solvent
boxes.

In this work, we develop a general framework for MSM/RD
that overcomes the previous shortcomings. It is derived by coarse-
graining molecular kinetics into hybrid switching diffusion pro-
cesses,38,39 also known as diffusion processes with Markovian
switching. These correspond to a class of stochastic hybrid systems,
called “hybrid” due to the coexistence of continuous dynamics and
discrete events in the same process. The diffusion of molecules cor-
responds to the continuous part, while their conformation switching
corresponds to the discrete part. By discretizing the framework, we
derive MSM/RD schemes; we implement and validate them for two
protein–protein benchmark systems and one multiparticle imple-
mentation to model the formation of pentameric ring molecules.
Implementations in more realistic systems are left for future work.
However, given enough data to parameterize the model, the frame-
work is ideal for applications on protein–ligand and protein–protein
dynamics, as well as self-assembly of structures composed of several
copies of the same or a small set of molecules, such as virus capsids.

Previous relevant works40–42 introduced spatially dependent
reaction rates, a fundamental concept in our framework, and43–47

have modeled fluctuations on the reactivity of the species using
Markovian gates, a special case of our framework. A related mul-
tiscale method34,35 couples MD with Green’s function reaction
dynamics, including anisotropic interactions. Although still con-
strained by MD computations, this method could potentially be
combined with our approach to accelerate both MD and particle-
based RD simulations. The work48 provides an excellent review on
several multiscale methods for protein–ligand binding, including
Refs. 49 and 50 where multiscale simulations are used to estimate
kinetic rates. The ideas presented in this work could help enhance
these methods. Moreover, Refs. 51–55 have focused on implement-
ing several stochastic hybrid models in different fields in biology,

which emphasizes the relevance of stochastic hybrid models in bio-
logical settings. Note that hybrid switching diffusions are a gen-
eral coarse-grained model of MD, and they can thus be applied to
many other applications beyond MSM/RD, such as the diffusion
and conformation switching of molecules under a concentration or
temperature gradient.

II. MOLECULAR KINETICS AS HYBRID SWITCHING
DIFFUSIONS
A. One molecule

Consider a molecule A. If we fix the position and orientation of
the molecule, the position of its atoms only changes due to confor-
mational changes. We can then coarse-grain the all-atom dynamics
in configuration space into an MSM.8,10,56 Let us assume that our
molecule A can be described by switching between two MSM states
A1 ÐÐ⇀↽ÐÐ A2.

If molecule A is now diffusing instead of being fixed in space, we
would expect different diffusion coefficients in different conforma-
tions. The diffusion and the conformation switching can be modeled
together,

∂

∂t

⎡⎢⎢⎢⎢⎢⎣

p1

p2

⎤⎥⎥⎥⎥⎥⎦
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where p(x, t) is the vector of probability densities (p1, p2)T of being
in conformation A1 or A2 at position x, and rij are the transition
rates from conformation Ai to Aj that form the corresponding tran-
sition rate matrix. Note that the first term of the right-hand side
corresponds to the Fokker–Planck equations of the diffusion pro-
cesses, while the second term corresponds to a continuous-time
MSM or Master-equation model.56 We would like to incorporate
rotational diffusion and generalize it to N different conformations.
The resulting generalization yields

∂p(x, t)
∂t

= Dp(x, t)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

Diffusion

+Qp(x, t)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

MSM

, (1)

where p(x, t) = (p1, . . . , pN)T is the vector of probability densities
of being in the corresponding conformations at x and time t, with
x = (r, θ) denoting the position and orientation coordinates of the
molecule. The operator D describes the translational and rotational
diffusion of the molecule in each of its conformations. The matrix
Q is a N ×N transition rate matrix describing the conformation
switching; its diagonal entries are all negative and its non-diagonal
ones positive; its columns sum to zero. In this way, the equation
models simultaneously the molecule’s diffusion and the switching
of conformation. Equation (1) is an example of a hybrid switching
diffusion process, and one could also write a stochastic differential
equation (SDE) for the individual stochastic trajectories. A detailed
derivation of this theory is presented in the supplementary material,
Appendix A. The diffusion operator and the transition rate matrix
can be a function of x, D(x), and Q(x), which provides a robust
framework for several interesting applications. In this work, we are
interested in the interaction between two molecules, so we generalize
this result for two interacting molecules.
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B. Two interacting molecules
Consider two molecules A and B. If they are far enough from

each other, they will not interact. Each molecule has a state vec-
tor assigned, pA and pB, with sizes NA and NB corresponding to
their respective number of conformations. The conformations are
denoted by Ai and Bj, with i = 1, . . . , NA and j = 1, . . . , NB. The dif-
fusion operators DA and DB encode the rotational and translational
diffusion, which in the simplest case will correspond to Laplacian
operators with diffusion coefficients for the different conformations,
DAi and DBj . The rate matrices QA and QB encode the rates at which
they switch conformation. Each molecule will satisfy its own version
of Eq. (1),

∂pA

∂t
= DApA +QApA,

∂pB

∂t
= DBpB +QBpB; (2)

see Fig. 1(a) for a graphical reference. The state of the system pAB is
given by all the possible combinations of states of A and states of B.
This corresponds to the tensor product of all the states of A with all
the states of B, i.e., pAB = pA ⊗ pB.57 For instance, if A and B have two
states each, A1, A2 and B1, B2, respectively, the full system given by
the tensor product has four possible states: A1B1, A1B2, A2B1, and
A2B2. Taking the time derivative of pA ⊗ pB and using Eq. (2), we
obtain

∂pAB(x)
∂t

= DpAB(x) + (QA ⊕QB)pAB(x), (3)

where the diffusion operator is applied independently before tak-
ing the tensor product DpAB = DApA ⊗ pB + pA ⊗DBpB and QA
⊕QB = (QA ⊗ INB) + (INA ⊗QB) is the Kronecker sum with IK the
identity matrix of order K. The appearance of the Kronecker sum
results evident when computing the solution of the full system
as the tensor product of the individual solutions of Eq. (2),

pAB(x, t) = etDA ⊗ etDB ⊗ et(QA⊕QB)pAB(x, 0).57 This means that the
rate matrix of the full system is given by the transition rate matrix
QA ⊕QB [Fig. 1(b)]. Note that if we were using a discrete-time
MSM, the transition probability matrix of the full system would sim-
ply be the tensor product of the independent transition probability
matrices.

Let us assume now that molecules A and B are close to each
other and are interacting such that they can be considered as a com-
plex C that diffuses as a single entity. The state vector is pC with
dimension NC, corresponding to the bound conformations, Ck, with
k = 1, . . . , NC. We can thus write it in the form of Eq. (2),

∂pC

∂t
= DCpC +QcpC. (4)

We would like to switch smoothly between the non-interacting
regime [Eq. (3)] and the bound regime [Eq. (4)], so we introduce
a transition regime, where the molecules are still dissociated but
interacting, and the transition rates strongly depend on the relative
position and orientation between the molecules. The dynamics of
the system in the three regimes can be written in terms of the prob-
ability of being in any of the dissociated states (AB) [Eq. (3)] and
any of the bound states (C) (4), namely, p(x, t) = (pAB, pC)T , and a
transition rate matrix Q(x) that depends on the phase space coor-
dinates x, more specifically on the relative position and orientation
between the molecules. We can write the dynamics of p(x, t) as a
hybrid switching diffusion process

(5)
The matrix QAB→C contains the transition rates from dissociated
states (AB) to bound states (C) and vice versa for the matrix QC→AB.

FIG. 1. Diagrams to illustrate MSM/RD theory and general rotations. (a) Diagram of the binding and unbinding of two reactive molecules, A + BÐ⇀↽Ð C, when modeling

their kinetics as hybrid switching diffusions. Molecules are represented by particles with position and orientation (black pointer). The three molecules have a conformation-
dependent diffusion, and the conformations are denoted by a subindex. If molecules A and B are close enough to each other, they transition to a bound compound C with a
configuration-dependent rate given by QAB→C. The compound C can also unbind into molecules A and B with a configuration-dependent rate given by QC→AB. (b) Diagram
showing the individual Markov models for C, A, and B and the Markov model for the joint system of molecules A and B when not interacting. (c) Orientation of a pentameric
ring molecule using the axis-angle representation with the molecule’s center as reference. The direction of the ϕ vector,ϕ̂, represents the axis of rotation, and its magnitude
∥ϕ∥ = α represents the radians to be rotated. We can translate this to its quaternion representation.
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If the initial relative distance between the molecules is large enough,
the molecules are in the non-interacting regime; QAB→C is zero; the
system can only reach the states accessible by QA ⊕QB—so QAB
= QA ⊕QB—and the dynamics given by Eq. (3) are recovered. How-
ever, diffusion can bring the molecules together into the transition
regime, making QAB→C nonzero and allowing the system to transi-
tion to the bound regime. The system can then transition to other
bound states through QC, and it can transition out of the bound
regime into the transition regime (dissociated) through QC→AB.
Note that columns of Q(x) should sum to zero for any given x, and
QC on Eq. (5) is a renormalized version of Qc in Eq. (4).

Equation (5) constitutes the general MSM/RD framework, and
its dynamics are represented in Figs. 1(a) and 1(b). Appendix A
of the supplementary material shows a more detailed derivation
of this theory. Discretizations of this model are used to generate
MSM/RD schemes. In Sec. III, we derive the MSM/RD schemes used
throughout this work by doing a piecewise constant discretization of
Q(x). Their parameterization and explicit algorithms are given in
the supplementary material, Appendices B and C.

C. Quaternions
The MSM/RD framework requires a representation for the ori-

entation or rotation θ of a rigid body, such as Euler angles, rotation
matrices, or unit quaternions among others. Some of these have
severe disadvantages, such as the gimbal lock in Euler angles, while
unit quaternions have proved to be the most simple, robust, and
numerically efficient.35,58–60 A quaternion, θ = {s, p}, consists of a
real part s and a three-dimensional vector part p. If normalized to
one, s2 + p ⋅ p = 1, it can be used to represent a three-dimensional
rotation. Let us consider first a more physically intuitive represen-
tation of rotations, the axis-angle representation, where an arbitrary
rotation is represented by a three-dimensional vector ϕ [Fig. 1(c)].
Its direction ϕ̂ = ϕ/∥ϕ∥ corresponds to the axis of rotation following
the right-hand rule, and the length of the vector ∥ϕ∥ corresponds to
the magnitude of rotation [Fig. 1(c)]. The corresponding quaternion
associated with this rotation is

θ = {cos(∥ϕ∥/2), sin(∥ϕ∥/2)ϕ̂}. (6)

Similar to complex numbers, quaternions are further endowed
with an algebraic structure such that the resulting rotation of consec-
utive rotations, θ1 and θ2, is obtained by an algebraic multiplication,
θ = θ2θ1,

θ = {s2s1 − p2p1, s2p1 + s2p1 + p2 × p1},

where the cross product makes the multiplication non-commutative,
as expected for rotations. The unit quaternion θ−1 = {s,−p} is the
inverse quaternion of θ representing the inverse rotation, such that
θθ−1 = I is the identity rotation. Note the quaternion−θ corresponds
to the same rotation as θ; therefore, it is enough to use half of the
surface of the four-dimensional unit sphere to describe all possi-
ble rotations in three-dimensional space. If a one-to-one relation
is desired, the simplest choice is to restrict to s ≥ 0. More detailed
accounts of quaternions can be found in the literature.35,58,60

III. METHODS
A. A general MSM/RD scheme

The general MSM/RD framework for two interacting molecules
is condensed in Eq. (5). In most cases, we will not know the rate
functions constituting Eq. (5). However, we can discretize the equa-
tion and obtain a specific MSM/RD coupling scheme, which can
be parameterized with MD trajectories. Equation (5) thus pro-
vides a robust theoretical foundation from which different MSM/RD
schemes can be derived by applying different discretizations; it
serves as a guideline to derive different and better suited schemes
for the situation at hand.

The MSM/RD schemes used throughout this work origi-
nate from piecewise constant discretizations of the transition rate
matrix Q(x) from Eq. (5). We first divide the phase space into
the three main regions/regimes: non-interacting, transition, and
bound regimes [Fig. 2(a)]. The definition of these regimes will
be system dependent and based on the relative position between
the two molecules. As a rule of thumb, the interaction between
molecules must be weak in the transition regime and effectively zero
in the non-interacting regime. MSM/RD requires parameterizing
two MSMs, one for the non-interacting regime, QA ⊕QB, and the
other for the transition and bound regimes together. In Secs. III B,
III C, and III D we will cover how the MSM/RD dynamics are con-
structed in each of these regions. In the supplementary material,
Appendices C and B, we further show the corresponding MSM/RD
algorithm and how to discretize the MD trajectories to parameterize
the MSM/RD scheme.

B. Non-interacting regime
We consider two molecules A and B as rigid bodies with relative

position rAB = rB − rA and relative orientation θAB = θBθ−1
A , where θA

and θB are quaternions representing orientations. Following Eq. (2),
if the two molecules are far enough apart, ∥rAB∥ ≥ R, they diffuse and
change conformation independently. Thus, the rates of the transi-
tion matrix Q(x) do not depend on rAB or θAB, and the dynamics of
the individual molecules are discretized into individual MSMs using
standard methods,10 yielding QAB = QA ⊕QB. For the sake of sim-
plicity and without loss of generality, we assume that the particles are
modeled with overdamped Langevin dynamics. The corresponding
SDE is (see the supplementary material, Appendix A 1)

dXk(ηk, t)
dt

=
√

2kBTM
1
2

k (ηk)ξ(t), (7)

where k denotes the molecule A or B; dXk = [drk, dΦk], with drk
being the change in position of molecule k and dΦk its change
of orientation in the axis-angle representation; Mk is the mobil-
ity matrix of molecule k, which depends on its conformation ηk;
and ξ(t) corresponds to six-dimensional Gaussian white noise. The
conformation ηk of each molecule changes following a discrete- or
continuous-time MSM with the constant rates from the transition
matrix QA ⊕QB. Thus, ηk can be propagated by simply sampling
transition probabilities in the discrete case or by using a Gillespie-
type algorithm61,62 in the continuous case. This description cor-
responds to the trajectory representation of the stochastic process
described by Eq. (2). If the translational and rotational motions
are weakly coupled and both are isotropic, we can approximate
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FIG. 2. Discretization diagrams for the MSM/RD scheme. (a) Diagram of the three different regimes in the MSM/RD scheme defined by σ < ∥rAB∥ < R. The bound regime
is shaded in red, the transition regime is shaded in blue, and the non-interacting regime is in white. To define these regions, we fix the frame of reference to molecule A.
In the non-interacting regime, they both diffuse and change conformation freely. In the transition regime, they can transition to a bound compound state. From the bound
state, they can unbind and switch to a specific configuration in the transition regime. From the transition regime, they can diffuse away into the non-interacting regime. Note
the orientation is specified by a small black pointer attached to each particle. (b) Definition of transition states (or unbound transition states) within the transition regime.
To define the transition states, we perform two discretizations: one for the relative position rAB and the other for the relative orientation θAB. In this illustration, the relative
position is simply a two dimensional vector, so we simply partition the blue shaded ring (σ < ∥rAB∥ < R) from 0 to 2π into eight parts. For each discrete value of the relative
position, the molecules can still have an arbitrary relative orientation, so, we also need to discretize the relative orientation. The relative orientation is represented with one
degree of freedom, so we discretize it by partitioning the circle into eight parts. If α is the discretization state of rAB and β the one of θAB, the transition state number is
given by (α − 1)8 + β. This discretization yields a total of 8 × 8 = 64 transition states. In each transition state, the rates are approximated by a constant value, yielding a
piecewise constant approximation of the rates in Q. In our MSM/RD implementation, an analogous discretization is done in three dimensions (six degrees of freedom).

Eq. (7) by

drk(ηk, t)
dt

=
√

2Dk(ηk)ξ(t),

dΦk(ηk, t)
dt

=
√

2Drot
k (ηk)ξrot(t),

(8)

where Dk and Drot
k are the translation and rotational diffusion coef-

ficients of molecule k, and in these equations, ξ(t) and ξrot(t) each
correspond to three-dimensional Gaussian white noise. Note that in
this region, the C states are not accessible, so only QAB is relevant.
The numerical discretization of this equation has the same form as
Eq. (11) but with zero force and torque terms. The diffusion coeffi-
cients (or matrices in the general case) should also be estimated from
MD trajectories. There are several works focused on this topic;59,63,64

we also added a small section about it in the supplementary material,
Appendix D.

C. Transition regime
The transition regime is defined by the region between the non-

interacting and the bound regime, σ < ∥rAB∥ < R. In this regime,
the transition rates depend continuously on the relative position
and orientation of the molecules. As we plan to infer these rates
from MD simulations, it is convenient to discretize Q(x) into
a relatively small number of transition regions/states where the
rates are approximated by constant values, yielding a piecewise
constant approximation of Q(x) that is easier to infer from MD
data.

Figure 2 shows an illustration of the different regions/states
and the discretization of the transition regime for a simplified lower

dimensional case. For each transition state, given by the combina-
tion of a discrete value of the relative position and of the relative
orientation, we approximate the rates in Q(x) by a constant value,
yielding a piecewise constant approximation of QAB and QAB→C
in the transition regime. In this regime, the particles are always
dissociated, so QC→AB and QC are not relevant.

In general, the relative position and the relative orientation
account for a total of six degrees of freedom, so the discretization
of the transition regime is much more complex than in Fig. 2, but it
still follows the same principle. The first step is to provide an equal
area partition of the surface of the sphere following Ref. 65, yield-
ing a discretization of the relative position in the transition region.
Then, we need to discretize the relative orientation, which is given
in terms of a unit quaternion. As unit quaternions can be projected
into the top half three-dimensional unit sphere, we use the same
equal area partition sphere with a few additional cuts along the radial
direction, yielding an effective discretization of all the possible rela-
tive orientations. It is important to keep the number of divisions in
these partitions as small as possible to avoid an exploding number of
transition states.

Note that conformation switching within the transition regime
is naturally incorporated in the framework. The transition matrix
Q(x) acts on p(x, t) = (pAB, pC)T , where pAB includes one entry
for every possible conformation combination between the two
molecules. Thus, the discretization of Q(x) includes the rates
corresponding to conformation changes within the transition
regime. Alternatively, by collapsing all conformations into one
state in the parameterization, one can obtain averaged rates over
all conformations for all the transitions within the transition
regime.
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In the transition regime, the diffusion of the
particles—approximated by Eq. (7)—and the propagation of
the MSM—following QAB and QAB→C—are run in parallel. If ∥rAB∥
becomes larger than R due to diffusion, the MSM is ignored and
the dynamics switch to the non-interacting regime. If a binding
event occurs, the diffusion of the binding particle is ignored and the
dynamics switch to the bound regime.

D. Bound regime
If molecules A and B are close enough to each other, ∥rAB∥ ≤ σ,

they are strongly interacting and can be considered as a bound com-
pound C with several metastable configurations. In this case, their
diffusion and conformation switching are no longer independent,
and the transition rates do not depend on rAB and θAB, so they
are assumed constant. The transitions in the bound regime can be
between metastable states (following QC) or toward an unbound
state in the transition regime (following QC→AB). Analogously to
the previous example, we assume without loss of generality that the
dynamics of the compound follow overdamped Langevin dynamics,

dXC(ηC, t)
dt

=
√

2kBTM
1
2

C (ηC)ξ(t), (9)

with dXC = [drC, dΦC]. The conformation ηC is propagated using
the rates from QC and QC→AB. The dynamics are propagated in the
same way as Eq. (7). If the translational and rotational motion are
weakly coupled and isotropic, we can obtain analogous results to
that of Eq. (8) with k = C and with analogous numerical discretiza-
tion and diffusion coefficient estimation. If a transition toward a
dissociated state in the transition regime happens, the dynamics
switch to the transition regime. In the bound regime, particles are
always bound, so QAB→C and QAB are not relevant. Note that when
parameterizing Q(x) from MD data, we obtain one MSM at once
for both the transition and bound regimes (see the supplementary
material, Appendix B), which describes all states in which A and B
are interacting, including strongly and weakly bound states, inter-
mediates between unbound and bound states, and even dissociated
states in which A and B are sufficiently close to induce a force
upon each other. Such MSMs have, for example, been computed
for protein–ligand and protein–protein association in the past few
years.66–69

E. Benchmark MD model: Patchy particles
To validate MSM/RD schemes, we require an inexpensive

model of molecules capable of representing complex behavior
observed in realistic MD systems, such as translational and rota-
tional diffusion, position and orientation-dependent pair interac-
tions, orientation-dependent binding, multiple binding sites, and
conformation switching. We can construct such a model based on
patchy particles.70–72 We model molecules as diffusive spherical par-
ticles with an isotropic repulsive potential U isotropic to avoid overlap-
ping; an attractive isotropic part can also be incorporated. Patches
are then placed on the surface of the particles, and each patch pro-
duces a short-range attractive potential with patches from other par-
ticles, generating translational and rotational motion.35 The poten-
tial energy between patch i of particle A and patch j of particle B
can be decomposed into two parts. The first part U ij

r depends only

on the relative distance between the patches, rij, and the types of
the patches. It corresponds to an attractive force that pulls patches
together. The second part U ij

θ depends on the relative orientation,
θAB, of the particles, and it is activated if two patches are close
enough to each other. This will favor specific relative orientations
for the different bindings between patches. In all the models used
for this work, the overall interaction potential between two particles,
A and B, can be written in the following form:

UAB = Uisotropic(rAB) +
NA ,NB

∑
i,j=1
(U ij

r (rij) +U ij
θ (rij, θAB)),

where i runs over the patches of particle A and j runs over the patches
of particle B. NA and NB are the total number of patches of A and
B, respectively. In general, particles A and B can both have confor-
mational changes; each combination of conformations is allowed to
have a completely different potential energy. In this work, conforma-
tion changes will correspond to turning on and off specific patches.
Figure 3 shows the potential between a pair of patchy particles with
one patch, as well as examples of orientation-dependent potentials.

The position of the particles is simply given by the coordinates
of the center of the sphere r(t), and their orientation θ(t) is given
in terms of quaternions. In order to model the translational and ori-
entational diffusion of one particle, we use overdamped Langevin
dynamics. We assume that the translational and rotational diffusions
are independent and both isotropic, so we obtain

dr(t, η)
dt

= 1
γ

F(r, η) +
√

2D(η)ξ(t),

dΦ(η, t)
dt

= 1
γrot

T(θ, η) +
√

2Drot(η)ξrot(t),
(10)

where Φ is the orientation in the axis-angle representation, γ and
γrot are the translational and rotational damping coefficients, F and
T the force and torque due to pair interactions and external fields,
η is the conformation of the particle, and ξ(t) and ξrot(t) each cor-
respond to three-dimensional Gaussian white noise. The force can
be rewritten in terms of the potential as F = −∇U; the torque is con-
venient to leave explicitly since it is not trivial to write a potential
in terms of axis-angle variables or quaternions. These two equations
can be discretized using the Euler–Maruyama scheme73 using a time
step δt,

r(t + δt, η) = r(t, η) − δt
γ
∇U(r, η) +

√
2D(η)δtN(0, 1),

dΦ(t, η) = δt
γrot

T(θ, η) +
√

2Drot(η)δtN(0, 1).
(11)

The rotation represented by the change in axis-angle dΦ(t) can
be rewritten as a quaternion dθ(t) using Eq. (6). The new orientation
is simply given by the quaternion product θ(t + δt) = dθ(t)θ(t).
In each case, N(0, 1) represents an independent three-dimensional
vector with each entry a normal random variable with mean zero and
variance 1. As the diffusion coefficients depend on the conforma-
tion, it is convenient to assume that the switching of conformation
η is modeled with an MSM using a fixed lag-time τ that is a mul-
tiple of τ = nδt, with n being a positive integer. This is not strictly
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FIG. 3. Illustration of the patchy particle potential. (a) This plot shows the patchy particle potential between two particles with a diameter of one, each with one patch. The
potential is plotted as a function of the relative distance between the two particles for orientations corresponding to aligned or misaligned patches. If aligned, we observe a
stable minimum in the potential corresponding to particles binding. If misaligned, there is no stable minimum, and the isotropic repulsion prevents overlapping. See Ref. 35
for the specific form of the potential. (b) Two examples of angular potentials used in this work, corresponding to one and two metastable orientations. As the bindings
between patches already fix two orientational degrees of freedom, we only require a one dimensional angular potential to completely fix the orientation. (c) Examples of
patchy particles with two and six patches. The patches can also be of different types corresponding to different interaction potentials, and they can be turned on and off
depending on the current conformation.

required, but it simplifies the implementation since the conforma-
tion change occurs always at the end of a time step. The forces and
torques are calculated directly from potential energies like the ones
shown in Fig. 3.

This model satisfies all the requirements we established at the
beginning of this section. It can be generalized to non-isotropic and
coupled rotational and translational dynamics,58,72 and molecules
can even be modeled by multiple overlapping beads with reaction
patches.72

IV. RESULTS
To test and verify MSM/RD, we construct an MD benchmark

model of molecules that is simple enough such that we can pro-
duce a large amount of data but complex enough so it models
complex behavior observed in realistic MD systems. This model
is based on patchy particles;70–72 we model molecules as spherical
particles with isotropic diffusion and an isotropic repulsive poten-
tial to avoid overlapping. Patches are then placed on the surface of
the particles, and each patch produces a short-range configuration-
dependent attractive potential with patches from other particles,
generating translational and rotational motion, see Sec. III E for
details. This model is the basis for all the benchmark models in this
section.

In the following examples, it is not necessary to parameterize
the diffusion operator since it is the same for both the benchmark
and the MSM/RD simulation. This serves to isolate the dynam-
ics of Q(x) and validate the coupling mechanism. For general
protein–protein systems, one needs to extract the diffusion coef-
ficients/matrices from the MD data using well documented meth-
ods59,63 (see the supplementary material, Appendix D).

A. MSM/RD for protein–protein systems
The benchmark model consists of two molecules, A and B

[Fig. 4(a)], represented by different patchy particles. Particle A has

only one conformation and six binding patches: five of them have the
same attraction potential (yellow) and the other one has a stronger
attraction potential (red). Particle B has two conformations. In one
conformation (B), it has one binding patch (red), and in the other
one (B∗), the patch is turned off and it cannot bind. Each binding
allows only one metastable relative orientation, yielding a total of
six possible bound states. The diffusion of B depends on its con-
formation, and it is visualized as a three-dimensional asterisk to
distinguish its orientation. We illustrate an MSM/RD trajectory of
the system on Fig. 4(a).

To parameterize the MSM/RD scheme, we simulate the bench-
mark MD model with specific settings to mimic a common MD
simulation. We assume that both molecules have a diameter of
5 nm, which is a typical size for a real protein. We simulate using
periodic boundary conditions and a cube with an edge length of
25 nm as the unit cell. Each simulation runs for 6 × 106 time steps
of 1 × 10−5 μs each, yielding a total simulation time of 60 μs. We run
600 of these simulations independently, and we use them to param-
eterize the MSM/RD scheme following the steps illustrated in the
supplementary material, Appendix B.

In Fig. 4, we compare the MSM/RD results against the MD
benchmark. We calculate the first passage times (FPTs) of a given
transition by running the benchmark and the MSM/RD simula-
tions in equal conditions, and we run the same number of FPT
samples for each model. Figure 4(b) compares the FPT distri-
bution from the unbound state to any bound states and vice
versa. The left panel of Fig. 4(c) compares the FPT distributions
for all the possible transitions between bound states. Note that
these transitions include pathways that start at a bound state,
unbind completely, and end in another bound state, so it is ideal
to evaluate if the MSM/RD produces an accurate coupling. The
right panel of Fig. 4(c) shows the MSM/RD scheme percent error
for the transition rates between bound states. Overall, MSM/RD
can reproduce the dynamics of the MD benchmark with good
accuracy.
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FIG. 4. Illustrations and results of the MSM/RD scheme for the protein–protein system. (a) MSM/RD sample trajectory. Particle A diffuses with coefficient DA and particle B
with coefficient DB or D∗B depending on its conformation. If the relative distance satisfies ∥rAB∥ < R, we switch from the non-interacting to the transition regime. Here, the
particles can transition to one of the six bound states with rate kAB,n that depends on their relative configuration xAB = (rAB, θAB) and the final bound state n = 1, . . . , 6.
From a bound state n, the compound can transition to another bound state m with rate κn,m, or it can unbind to another relative configuration x′AB with rate kn,AB′ . MSM/RD
provides a piecewise constant approximation of all the configuration-dependent rates. (b) Comparisons of first passage time (FPT) distributions between the benchmark
and MSM/RD from an unbound state to any bound state and vice versa. Each distribution was calculated with 5000 simulations. (c) Comparison of FPT distributions for all
transitions between the six possible bound states, each calculated over 1000 simulations. The blue grid shows the relative error of the corresponding rates, κn,m, calculated
as the inverse mean first passage time (MFPT). The average percentage error is of 5%, while the maximum is of 16%.

B. MSM/RD for dimer of two-patch particle

The benchmark model consists of two identical molecules, each
with two equally strong binding patches. The molecules can bind
together through any of their two binding sites. Unlike the previ-
ous example, we allow for two metastable relative orientations per
patch binding, allowing for a conformation change in the bound
configuration.

As the molecules have two patches each, they can bind in
four different ways; each of these has two stable relative orienta-
tions, so this system has a total of eight metastable bound states.
However, as they are all identical, many of these eight states are
indistinguishable from each other and can all be collapsed into two
functional states, A and B. This is depicted graphically in Fig. 5(a).

Nonetheless, note that each of these metastable states corresponds to
a different relative position and orientation between the molecules.
We parameterize the MSM/RD scheme with the same setup as in the
protein–protein system example (see the supplementary material,
Appendix B).

In Fig. 5, we compare MSM/RD results against the MD bench-
mark. We calculate FPTs for both the MD benchmark and the
MSM/RD simulations in equal conditions. In Fig. 5(b), we show the
binding rates as a function of concentration, where each binding rate
is calculated as the inverse of the mean first passage time (MFPT).
The concentration is adjusted by changing the edge length of the
simulation box, starting at 30 nm and increasing 5 nm for each point.
In Fig. 5(c), we compare the FPT distributions for several relevant
transitions. Even when the original simulations to parameterize the
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FIG. 5. Illustrations and results of the MSM/RD implementation for two identical interacting molecules with two interacting patches each and two stable angular configurations.
(a) The two molecules can bind in eight different ways (eight bound states). For illustration purposes, particle one is shown in dark blue and particle two in light blue; the first
patch is shown in orange and the second one in yellow. All these states collapse into two bound states: A and B. (b) Comparison of the on-rate, transition from unbound
to either A or B state, for different molar concentrations. Each point was calculated as the inverse of the MFPT obtained from 5000 simulations; the error bars represent
the standard deviation over 2000 bootstrapped samples. Note that in the generation of the MSM faster time scales are neglected; therefore, it is expected that MSM/RD
produces slightly slower results than the benchmark. (c) Comparisons of the FPT distributions obtained with MSM/RD and the benchmark for six cases: from the unbound
state to the two bound states and vice versa and between the bound states. Each distribution was computed using 5000 simulations. These are shown next to each graph
and they are all in μs. Note that in the last two histograms, there is a time-scale separation. This corresponds to the difference between direct transitions between the bound
states and transitions that first unbound and later rebound in a different bound state.

scheme ran for only 30 μs, the MSM/RD scheme produces excellent
results for transitions with higher MFPTs.

C. Multiparticle MSM/RD: Formation of pentameric
ring

We develop and implement the first multiparticle MSM/RD
scheme to study the formation of pentameric ring molecules
(inspired by Ref. 70). The benchmark MD model is a modi-
fied version of the two-patch dimer model. It consists again of
two identical molecules, each with two equally strong binding
sites. Unlike the previous example, we only allow one metastable
relative orientation per patch binding. We further increase the
binding strength such that unbinding events are very rare and
not observed in the time scales of interest. The particles can
bind with each other forming chains, which eventually can
close forming trimeric, tetrameric, or pentameric ring structures
[Fig. 6(a)].

We parameterize the MSM/RD scheme with the same setup
as in the protein–protein system example (see the supplementary
material, Appendix B). The multiparticle MSM/RD scheme requires
modifications to the two-particle MSM/RD algorithm. These modi-
fications are shown in the supplementary material, Appendix C. We

further need to estimate the diffusion coefficients of the multiparti-
cle chains. We employ standard methods to estimate them (see the
supplementary material, Appendix D).

In Fig. 6(b), we compare MSM/RD results against the MD
benchmark. We calculate FPTs for the formation of all the three ring
molecules, using both the MD benchmark and the MSM/RD simu-
lations in equal conditions: five particles with random positions and
orientations placed in a simulation box of edge length of 30 nm with
periodic boundaries. In Fig. 5(c), we show the rate of formation of
pentameric rings for different concentrations by changing the sim-
ulation box size. In Table I, we show the exact values and relative
errors of the rates plotted in Fig. 6(c).

Note that MSM/RD is not as good at approximating the
formation of trimeric and tetrameric rings [Fig. 6(b)]. This is due to
MSM/RD modeling the particle chains in steps 3 and 4 of Fig. 6(a)
as a fixed structure, while in the MD benchmark the chain is flexible,
allowing for patches to get closer together, which increases the rate
at which the ring is closed. This could be fixed by using a new MSM
to describe the dynamics between the three or four particle chains
and an additional particle. Nonetheless, note that the rates of for-
mation of pentameric rings are not affected by these problem since
they are conditioned on not having trimeric or tetrameric rings
forming beforehand. In its current formulation, MSM/RD
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FIG. 6. Illustrations and multiparticle MSM/RD results for the formation of ring molecules. (a) Diagram showing the formation of the trimeric, tetrameric, and pentameric ring
molecules. (b) Comparisons of the FPT distributions obtained with multiparticle MSM/RD and the benchmark for the formation of the trimeric, tetrameric, and pentameric
ring molecules. The results were obtained from 5000 simulations for each case. (c) Comparison of the rate at which a pentameric ring is generated for different molar
concentrations. Each point was calculated as the inverse of the MFPT obtained from 1000 simulations; the error bars represent the standard deviation over 500 bootstrapped
samples.

TABLE I. Comparison between the MD benchmark and MSM/RD of the rates of formation of pentameric rings for different
concentrations. The rates were calculated as the inverse of the MFPTs averaged over 1000 simulations; the uncertainties
represent the standard deviation over 100 bootstrapped samples.

Rate (ms−1) Concentration MD benchmark MSM/RD Error (%)

kon

3.08 ⋅ 10−4M 23.96 ± 0.44 22.67 ± 0.41 5.4
1.94 ⋅ 10−4M 16.16 ± 0.33 15.43 ± 0.31 4.5
1.30 ⋅ 10−4M 11.27 ± 0.23 11.72 ± 0.21 3.4
9.11 ⋅ 10−5M 8.42 ± 0.15 8.95 ± 0.16 6.3
6.64 ⋅ 10−5M 6.62 ± 0.13 6.99 ± 0.13 5.7
4.99 ⋅ 10−5M 5.50 ± 0.09 5.57 ± 0.08 3.6

multiparticle implementations are limited to non-crowded environ-
ments since only pair interactions are parameterized. It is important
to take these issues into account when implementing MSM/RD
applications.

V. DISCUSSION
We presented a coarse-grained model of molecular kinetics

based on hybrid switching diffusions. With this model, we devel-
oped a robust framework for coupling Markov models of molecular
kinetics with particle-based reaction diffusion (MSM/RD). Based
on this framework, we derived one possible MSM/RD scheme by

discretizing the underlying equation [Eq. (5)], generalizing previous
approaches.37 We implemented and verified it for three benchmark
systems: the first two involve two protein–protein systems, while the
third one is a multiparticle system to model the formation of pen-
tameric molecules. We obtained an excellent agreement between the
FPT distributions and reaction rates of relevant transitions.

The framework is well-suited to model protein–ligand bind-
ing in large domains and time scales as in the previous work.37

Given enough data for the parameterization, it is also suited to
model protein–protein dynamics since it incorporates arbitrary ori-
entations, conformation switching, and multiple binding sites. To
parameterize the MSM/RD scheme for protein–protein systems, we
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would need the MD data of the two proteins interacting and individ-
ually, both in small simulation boxes. The interacting proteins data
would serve to parameterize the scheme in the bound and transition
regime, similar to the works66–69 with the addition of the transi-
tion states, which might require a slightly larger box. The individual
molecules data would serve to parameterize the scheme in the non-
interacting regime. The resulting MSM/RD scheme could run simu-
lations at much larger time and length scales than those allowed by
MD.

The multiparticle implementation of MSM/RD has promis-
ing applications to the study of self-assembly of structures com-
posed of several copies of the same molecule (or a small
set of molecules), such as virus capsids74 or soft matter self-
assembly. This setting is ideal since we only need MD data
of one pair (or a few pairs) of molecules in a small simu-
lation box to parameterize an MSM/RD multiparticle simula-
tion, which could potentially model the formation of the full
capsid.

The main caveat of MSM/RD is that the parameterization
requires a large amount of MD data, which is not yet possi-
ble to obtain for most systems of interest. However, given the
increasing computational power, more and more systems will soon
be within reach of MSM/RD. The scheme might also become
less effective in the presence of long-ranged interactions, though
it might be possible to incorporate them into the dynamics
of the non-interacting-regime using coarse-grained potentials.75,76

Finally, in its current form, the MSM/RD multiparticle imple-
mentation only takes into account pair interactions, and thus
the scheme is not yet adequate for crowded multi-molecular
environments.

Although application-dependent, one can expect MSM/RD to
reduce computational cost by several orders of magnitude in com-
parison to MD. MD simulations propagate the position and velocity
of every atom, which corresponds to several thousands of degrees
of freedom in an average protein–protein simulation. MSM/RD
only propagates two independent Brownian bodies together with
an MSM. This corresponds to, at most, 14 degrees of freedom, six
for the position/orientation and one for the MSM (per molecule).
Finally, considering that MSM/RD can operate in larger domains
with larger time steps, equivalent MD simulations would need to
increase dramatically the number of solvent molecules yielding an
exploding number of degrees of freedom, while still limited to small
time steps.

A. Software
To enable reproducibility and implementation of this work,

we developed the MSM/RD software package, a C++/python
package. All the code and software developed for this work
are open source and available under an MIT license in
github.com/markovmodel/msmrd2 and Zenodo.77 The data
used in this work was produced using the MSM/RD software.

SUPPLEMENTARY MATERIAL

See the supplementary material for detailed derivations and
explanations of the theory and the parameterization of MSM/RD
schemes, as well as the specific algorithms that are referred to in the
main text.
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