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Selecting Data Augmentation for Simulating Interventions

Maximilian Ilse 1 Jakub M. Tomczak 2 Patrick Forré 1

Abstract
Machine learning models trained with purely ob-
servational data and the principle of empirical risk
minimization (Vapnik, 1992) can fail to generalize
to unseen domains. In this paper, we focus on the
case where the problem arises through spurious
correlation between the observed domains and
the actual task labels. We find that many domain
generalization methods do not explicitly take this
spurious correlation into account. Instead, espe-
cially in more application-oriented research areas
like medical imaging or robotics, data augmen-
tation techniques that are based on heuristics are
used to learn domain invariant features. To bridge
the gap between theory and practice, we develop
a causal perspective on the problem of domain
generalization. We argue that causal concepts
can be used to explain the success of data aug-
mentation by describing how they can weaken
the spurious correlation between the observed do-
mains and the task labels. We demonstrate that
data augmentation can serve as a tool for simulat-
ing interventional data. We use these theoretical
insights to derive a simple algorithm that is able
to select data augmentation techniques that will
lead to better domain generalization.

1. Introduction
Despite recent advancements in machine learning fueled
by deep learning, studies like Azulay & Weiss (2019)
have shown that deep learning methods may not general-
ize to inputs from outside of their training distribution. In
safety-critical fields like medical imaging, robotics and, self-
driving cars, however, it is essential that machine learning
models are robust to changes in the environment. Without
the ability to generalize, machine learning models cannot
be safely deployed in the real world.
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Universiteit Amsterdam. Correspondence to: Maximilian Ilse
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In the field of domain generalization, one tries to find a rep-
resentation that generalizes across different environments,
called domains, each with a different shift of the input. This
problem is especially challenging when changes in the do-
main are spuriously associated with changes in the actual
task labels. This can, for instance, happen when the data
gathering process is biased. An example is given by Ar-
jovsky et al. (2019): If we consider a dataset of images
of cows and camels in their natural habitat, then there is a
strong correlation between the type of animal and the land-
scape in the image, e.g., a camel standing in a desert. If we
now train a machine learning model to predict the animal
in a given image, the model is prone to exploit the spurious
correlation between the type of animal and the type of land-
scape. As a result, the model can fail to recognize a camel
standing in a green pasture or a cow standing in a desert.

In recent years, a large corpus of methods designed to learn
representations that will generalize across domains has been
formulated. While the proposed methods are able to achieve
good results on a variety of domain generalization bench-
marks, the majority of them lack a theoretical foundation.
In the worst-case scenario, these methods enforce the wrong
type of invariance, as proven in Appendix A.6.1 . Interest-
ingly, we find that especially in more applied fields, like
medical imaging and robotics, researchers have found a prac-
tical way of dealing with the spurious correlation between
domains and the actual task. Data augmentation in combi-
nation with Empirical Risk Minimization (ERM) (Vapnik,
1992) is used to enforce invariance of the machine learning
model with respect to changes in the domain. Hereby, prior
knowledge is used to guide the selection of appropriate data
augmentation. In Appendix A.7.1, we give a detailed sum-
mary of two successful applications of data augmentation
in the context of domain generalization.

However, the success of data augmentation is often de-
scribed in vague terms like ’artificially expanding la-
beled training datasets’ (Li, 2020) and ’reduce overfitting’
(Krizhevsky et al., 2012). In this paper, we present a causal
perspective on data augmentation in the context of domain
generalization and contribute to the field in the following
manner:

• First, we introduce the concept of intervention-
augmentation equivariance that formalizes the rela-
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tionship between data augmentation and interventions
on features caused by the domain. We show that if
intervention-augmentation equivariance holds we can
use data augmentation to successfully simulate inter-
ventions using only observational data.

• Second, we derive a simple algorithm that is able to
select data augmentation techniques from a given list of
transformations. We compare our approach to a variety
of domain generalization methods on three domain
generalization benchmarks. We demonstrate that we
are able to consistently outperform all other methods.

2. Method
2.1. Domain generalization

We first formalize the problem of domain generalization
following the notations used in Muandet et al. (2013). We
assume that during training we have access to samples S
from N different domains, where S = {Sd=i}Ni=1. From
each domain ni samples Sd=i = {(xd=ik , yd=ik )}ni

k=1 are in-
cluded in the training set. The training data is represented as
tuples of the form (x, y, d) sampled from the observational
distribution p(x, y, d). The goal of domain generalization is
to develop machine learning methods that generalize well
to unseen domains. In order to test the ability of a machine
learning model to generalize, we use samples Sd=N+1 from
a previously unseen test domain d = N + 1.

In this paper, we are interested in the general case where the
observed domains d and targets y are spuriously correlated
in the training dataset, i.e., where we might have p(y|d =
i) 6= p(y|d = j), i, j ∈ {1, . . . , N}. Since the correlation
between d and y is assumed to be spurious, it does not
necessarily hold for the test domain d = N + 1.

2.2. Domain generalization and data augmentation
from a causal perspective

For readers unfamiliar with the concepts of causality, a brief
introduction of the causal concepts that are used throughout
this paper can be found in Appendix A.5. For an in-depth
introduction please see Pearl (2009) or Peters et al. (2017).

First, we introduce a Structural Causal Model (SCM) in
order to describe what we believe in many cases reflects
the underlying causal structure of domain generalization
problems. The SCM is shown in Figure 1 (right) where
c is a hidden confounder (and a exogenous variable), d
the domain, y the target, hd high-level features, e.g., color
and orientation, caused by d, hy high level-features, e.g.,
shape and texture, caused by y, and x the input. We omit
including noise variables for clarity. The corresponding
Directed Acyclic Graph (DAG) is shown in Figure 1 (left),
where a grey node means the variable is observed and a

c

d

hd

y

hy

x

d := fD(c)

y := fY (c)

hd := fHd
(d)

hy := fHy
(y)

x := fX(hd, hy), (1)

Figure 1. DAG and SCM with a hidden confounder.

white node corresponds to a latent (unobserved) variable.
The presented DAG is similar to the ones constructed in
Subbaswamy & Saria (2019) and Castro et al. (2019). In
Figure 1, the node c is a hidden confounder. The hidden
confounder c opens up a backdoor path (a non-causal path)
d ←− c −→ y (Pearl, 2009). This path allows d to enter y
trough the back door.

As a result, the domain d and the target y are in general
no longer independent, p(y, d) 6= p(y)p(d). Since the high-
level features, hd are children of d, they are spuriously
correlated with y as well, i.e., hd becomes predictive of
y. We now assume that we train a machine learning model
using ERM (Vapnik, 1992) and observational data generated
from the DAG in Figure 1. The task is to predict y from
x, which itself is anti-causal. Since d and y are correlated,
it is likely that the machine learning model will rely on all
high-level features hd and hy to predict y. Furthermore, we
assume that the correlation of d and y is spurious. Therefore,
it will not hold in general and will break under intervention.
A machine learning model relying on high-level features hd
that are caused by d is thus likely to generalize poorly to
unseen domains. Returning to our introductory example of
classifying animals in images, the hidden confounder can be
used to model the fact that there is a common cause for the
type of animal and the landscape in an image. For example,
the confounder could be the country in which a particular
image was taken, e.g., in Switzerland we are more likely
to see a cow standing in a green pasture than a camel or a
desert.

2.3. Simulating interventions

One possible approach to deal with the spurious correla-
tions between d and y is to perform an intervention on d.
Such an intervention would render d and y independent,
i.e., p(y|do(d)) = p(y). In Figure 2 (left), we see the same
DAG as in Figure 1 but after we intervened on d. We find
that in Figure 2 (left) there is no more arrow connecting the
hidden confounder c and the domain d. The backdoor path
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d←− c −→ y has vanished. In the examples of animals and
landscapes, to intervene on the domain d (the landscape),
we would have to physically move a cow to a desert. It
becomes apparent that the interventions have to happen in
the real world and are not operations on the already gathered
observational data. In the majority of domain generalization
problems, it will not be feasible to collect new data with
specific interventions.

In Figure 2 (center) we present a second way of addressing
the problem of correlated variables d and y. In theory one
could perform an intervention on all high-level features hd,
i.e., do(hd), since d affects x only indirectly via hd, in our
example hd could represent the colors and textures of the
landscapes. Again, an intervention like this would need to
happen during the data collection process in the real world,
e.g., by moving sand to a pasture.

However, we argue that in certain cases we can simulate data
from the interventional distribution p(x, y|do(hd)) using
data augmentation in combination with observational data.
For example, we could randomly perturb the colors in the
animal images. This type of augmentation simulates a noise
intervention on hd, i.e., do(hd = ξ), where ξ is sampled
from a noise distribution Nξ (Peters et al., 2016).

In theory, we could intervene on hd by setting hd to a fixed
value, instead of performing a noise intervention. However,
in order to simulate data from such an interventional dis-
tribution using data augmentation, we would require hd to
be observed, which we argue is generally not the case. In
Appendix A.7.1, we describe that there exist data augmenta-
tion methods that try to infer hd for each sample x before
setting hd to a fixed value for all samples, yet these aug-
mentations seem to perform worse than randomly sampled
augmentations.

By augmenting only high-level features hd that are caused
by d we guarantee that the target y and features hy are un-
changed. After data augmentation the pairs (xaug, y) should
closely resemble samples from the interventional distribu-
tion p(x, y|do(hd)). In Figure 2 (right) we see that we only
require observational data from the DAG without any inter-
ventions. While each augmented sample xaug individually
can be seen as a counterfactual, we argue that we effectively
marginalize over the counterfactual distribution by gener-
ating a multitude of augmented samples xaug from each x.
We argue that for correctly chosen data augmentation we
cannot distinguish the data generated by any of the three
models in Figure 2.

If we want to choose data augmentation xaug = aug(x), as
a transformation aug(·) applied to observed data x, such
that it simulates an intervention on the high-level features
hd caused by d, one needs to make assumption about the
causal data generating process. Formally, we require that

augmenting the data x to xaug = aug(x) commutes with
an intervention do(hd) prior to the data generation. We
call this intervention-augmentation equivariance. In more
formal detail, assume that we have the causal process from
Equation 1: x := fX(hd, hy). Then augmenting x via
aug(·) does:

xaug = aug(x)

= aug(fX(hd, hy)). (2)

We then say that the causal process fX : Hd ×Hy 7→ X , is
intervention-augmentation equivariant if for every consid-
ered stochastic data augmentation transformation aug(·) on
x ∈ X we have a corresponding noise intervention do(·) on
hd ∈ Hd such that:

aug(fX(hd, hy)) = fX(do(hd), hy). (3)

The intervention-augmentation equivariance is expressed
as a commutative diagram in Figure 3. We argue that by
making strong assumptions about the true causal process
we need to first identify the high-level features hd caused
by d. Second, we have to choose data augmentation aug(x)
that commutes with a corresponding intervention do(hd)
under the causal process fX(hd, hy). A special case of
intervention-augmentation equivariance occurs in the classi-
cal case of an G-equivariant map fX , where G can be any
(semi-)group. For this to hold, we need G to act on the
spaces Hy, Hd, X , and we need to make sure that G acts
trivially on Hy. So any element g ∈ G can transform ele-
ments x ∈ X into g ·x ∈ X , which we will interpret as data
augmentation, as demonstrated in Section 4. The elements
g ∈ G also transform hd ∈ Hd into g · hd ∈ Hd, which
we consider as a special type of intervention. Furthermore,
hy ∈ Hy are assumed to be kept fixed g · hy = hy for all
g ∈ G. So we put:

do(hd) := g · hd, (4)
aug(x) := g · x, (5)

where we assume that the elements g ∈ G are randomly
sampled from some distribution p(g) on G. In this set-
ting, any G-equivariant map fX is then automatically also
intervention-augmentation equivariant, as can be seen from:

aug(x) = g · fX(hd, hy) (6)
= fX(g · hd, g · hy) (7)
= fX(do(hd), hy), (8)

a linear example of intervention-augmentation equivariance
can be found in the Appendix.

In general, we find that the majority of frequently used data
augmentations can be expressed as simple group actions.
For example, randomly rotating the input image x can be
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Figure 2. Left: DAG with hidden confounder after intervention on d. Center: DAG with hidden confounder after intervention on hd.
Interventional nodes are squared. Right: DAG with hidden confounder plus data augmentation. Note that in the latter case we do not have
to intervene on the system that generates the data. Data augmentation should be chosen in a way such that the augmented data simulates
data from the center or left DAG.

(hd, hy) x

(do(hd), hy) xaug

fX

augdo

fX

Figure 3. Intervention-augmentation equivariance expressed in a
commutative diagram.

understood as randomly sampling and applying elements g
from the two-dimensional rotation group SO(2) on the two
dimensional pixel grid. Randomly changing the hue of an
image x corresponds to randomly sampling and applying
elements g from the two-dimensional rotation group SO(2),
since hue can be represented as an angle in color space.
Applying random permutations to the color channels of an
image x is equivalent to randomly sampling and applying
elements g from permutation group S3, in the case of three
separate color channels.

2.4. Selecting data augmentations for domain
generalization

In Figure 2 (center), we see that if we successfully simulate
an intervention on hd using data augmentation the arrow
from d to hd vanishes. Based on this theoretical insight,
we propose an algorithm that is able to select data augmen-

tation techniques that will improve domain generalization,
instead of manually choosing them. In the following we
will refer to the algorithm as Select Data Augmentation
(SDA). Similar to Cubuk et al. (2019), we start with a list
of data augmentation techniques including: ’brightness’,
’contrast’, ’saturation’, ’hue’, ’rotation’, ’translate’, ’scale’,
’shear’, ’vertical flip’, and ’horizontal flip’. Since these trans-
formations do not influence each other, they can be tested
separately. The hyperparameter for each augmentation can
be found in the Appendix. The proposed SDA algorithm
consists of three steps:

1. We divide all samples from the training domains into a
training and validation set.

2. We train a classifier to predict the domain d from input
x. During training, we apply the first data augmenta-
tion in our list to the samples of the training set. We
save the domain accuracy on the validation set after
training. We repeat this step with all data augmenta-
tions in the list.

3. We select the data augmentation with the lowest do-
main accuracy averaged over five seeds. If multiple
data augmentations lie within the standard error of the
selected one they are selected as well, i.e., there is no
statistically significant difference between the augmen-
tations.

Intuitively, SDA will select data augmentation techniques
that destroy information about d in x. From a causal point
of view, this is equivalent to weaken the arrow from d to hd.
In Appendix A.1.1, we perform an ablation study showing
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that SDA also reliably selects the most suitable data aug-
mentation if the list contains the same augmentation with
different hyperparameters.

There is one caveat though. Throughout this entire section,
we assume that we are successfully augmenting all high-
level features hd caused by d. In a real-world application,
we usually have no means to validate this assumption, i.e.,
we might only augment a subset of hd. Furthermore, we
might even augment high-level features hy that are caused
by the target node y. Nonetheless, we argue there are cases
where we still obtain better generalization performance than
a machine learning model trained without data augmen-
tation. This may happen in cases where weakening the
spurious confounding influence of hd on y recovers more
of the anti-causal signal for y than the data augmentation
on the features hy destroys. We evaluate this hypothesis
empirically in Section 4.

3. Related work
3.1. Learning symmetries from data

In the previous section, we argue that choosing the right
symmetry group for data augmentation relies on prior knowl-
edge, e.g., preselecting a list of transformations to test.
While this is a clear practical limitation of our approach,
to the best of our knowledge there exist no approaches
that are able to learn symmetries from purely observational
data. Contemporary approaches like Lagrangian neural net-
works (Cranmer et al., 2020), graph neural networks (Kipf
& Welling, 2017), and group equivariant neural networks
(Cohen & Welling, 2016) are enforcing apriori chosen sym-
metries instead of learning them.

3.2. Understanding data augmentation

Recently, Gontijo-Lopes et al. (2020) develop two measures:
affinity and diversity. The measures are used to quantify
the effectiveness of existing data augmentation methods.
They find that augmentations that have high affinity and
diversity scores lead to better generalization performance.
While affinity and diversity rely on the iid assumption, we
provide an alternative for non-iid datasets. Lyle et al. (2020)
investigate how data augmentation can be used to incorpo-
rate invariance into machine learning models. They show
that while data augmentation can lead to tighter PAC-Bayes
bounds, data augmentation is not guaranteed to lead to in-
variance. In Equation, 3 we formalize under which condi-
tion (namely intervention-augmentation equivariance) data
augmentation will lead to invariance.

3.3. Advanced data augmentation techniques

Zhang et al. (2018) introduced a method called mixup that
constructs new training examples by linearly interpolating
between two existing examples (xi, yi) and (xj , yj). In
Gowal et al. (2019) and Perez & Wang (2017) a Generative
Adversarial Network (GAN) is used to perform so-called
’adversarial mixing’. The GAN is able to generate new
training examples that belong to the same class y but have
different styles. Furthermore, Perez & Wang (2017) propose
a novel method called ’neural augmentation’ where they
train the first part of their model to generate an augmented
image from two training examples with the same class y.

3.4. Causality

In Peters et al. (2016) a method for Invariant Causal Pre-
diction (ICP) is developed. It is built on the assumption
that causal features are stable given different experimental
settings. Given the complete set of causal features, the con-
ditional distribution of the target variable y must remain
the same under interventions, e.g., change of the domain.
Whereas, predictions made by a machine learning model re-
lying on non-causal features are in general not stable under
interventions. Recently, Arjovsky et al. (2019) proposed a
framework called Invariant Risk Minimization (IRM), that
shares the same goal as ICP. In IRM a soft penalty in combi-
nation with an ERM term is used to balance the invariance
and predictive power of the learned machine learning model.
In contrast to ICP, IRM can be used for tasks on unstruc-
tured data, e.g., images. However, while both methods (ICP
and IRM) try to learn features that are parents of y, we argue
that for the majority of domain generalization problems the
task of predicting y from x is anti-causal. Therefore we are
interested in augmenting only features caused by d, i.e., the
descendants of d, assuming that the remaining features are
caused by y. In Arjovsky et al. (2019), they argue that there
exists a discrepancy between the true label (part of the true
causal mechanism) that caused x and the annotation pro-
duced by human labelers. Learning this ’labeler function’
will lead to a good generalization performance, even though
it might rely on patterns that are anti-causal or non-causal.
In this situation, the IRM objective becomes ineffective.

Heinze-Deml & Meinshausen (2019) introduced the Condi-
tional variance Regularization (CoRe). CoRe uses grouped
observations (e.g., training samples with the same class y
but different styles) to learn invariant representations. Sam-
ples are grouped by an additional ID variable, which is
different from the label y. We find that in most cases it is
difficult to obtain an additional ID variable, e.g., none of the
datasets in Section 4 features such a variable. If no such ID
variable exists, CoRe can use pairs of original images and
augmented images to learn invariant representations.

While we are focusing on the DAG in Figure 1, Bareinboim
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& Pearl (2016) and Mooij et al. (2019) have developed gen-
eral graphical representations for relating data generating
processes across domains. If the confounder c was observed
methods that find stable feature sets such as those in Rojas-
Carulla et al. (2018) and Magliacane et al. (2018), could be
used. Furthermore, Subbaswamy et al. (2019) shows that
instead of intervening in some cases, it is possible to fit an in-
terventional distribution from observational data. However,
imaging data poses a challenge that existing causal-based
methods are not equipped to deal with thus motivating the
use of data augmentation.

4. Experiments
We evaluate the performance of data augmentation in com-
bination with Empirical Risk Minimization (ERM) (Vapnik,
1992) on four datasets. While the first is a synthetic dataset,
the other three are domain generalization benchmark image
datasets (rotated MNIST, colored MNIST, and PACS) where
the domain d and target y are confounded. The synthetic
dataset is used to study the effect of data augmentation on
a model’s performance when high level-features caused by
domain as well as high level-features caused by the label
are augmented. For the benchmark image datasets, we first
use SDA to select the best data augmentation techniques.
The results for this first step can be found in Table 5 in the
Appendix. Afterwards, we apply the selected data augmen-
tations and train the respective model using ERM. Finally,
we perform an ablation study where we apply all data aug-
mentations to all three image datasets instead of the selected
ones.

Code to replicate all experiments can be found
under https://github.com/AMLab-Amsterdam/
DataAugmentationInterventions.

4.1. Synthetic data

For the first experiment we simulate data from the linear
Gaussian SCM in Figure 4 (right), where the corresponding
DAG can be seen in Figure 4 (left).

c

d y

hd hy

c := N (0, σ2
c )

d := c ·Wc−→d +N (0, σ2)

y := c ·Wc−→y +N (0, σ2)

hd := d ·Wd−→hd
+N (0, σ2)

hy := y ·Wy−→hy
+N (0, σ2),

(9)

Figure 4. DAG and linear Gaussian SCM for synthetic data.

We choose c, d, y, hd and hy to be five dimensional vectors.

Furthermore, we sample the elements of the square matrices
Wc−→d, Wc−→y, Wd−→hd

and Wy−→hy from N (0, I). In all
of our experiments σc = I and σ = 0.1 · I . The task is to
regress

∑5
i yi from x, where x = [hd, hy], a 10 dimensional

feature vector. During training the data is generated using
the DAG in Figure 4 (left), where due the confounder c the
features hd and y are spuriously correlated. During testing
we set d := N (0, I), keeping Wc−→d, Wc−→y , Wd−→hd

and
Wy−→hy the same as during training. As a result, features hd
and y are no longer correlated. A model relying on features
hd will not be able to generalize well to the test data. In
all experiments, we use linear regression to minimize the
empirical risk. We choose to add noise sampled from a
uniform distribution U [−10, 10] as our data augmentation
technique. We vary the number of dimensions of hd as well
as of hy that are augmented. Each experiment is repeated
50 times, in Figure 5 we plot the mean of the mean square
error (MSE) together with the standard error.

Figure 5. Results on synthetic data.

In Figure 5, we see that ERM using only features hy (pink
line) achieves the lowest MSE. Next, we apply data aug-
mentation to one, two, three, four, and five dimensions of
hd while keeping hy unchanged (orange line). We find that
if data augmentation is applied to all five dimensions of
hd we can match the MSE of ERM with only features hy.
In this case, we are satisfying the condition in Equation
3. Furthermore, we find that unsurprisingly the MSE of
models trained with data augmentation applied to features
hy increases (green, red, purple, and brown line). However,
we can see that as long as we apply data augmentation to
at least three dimensions of hd the resulting MSE is lower
than ERM using all features hd and hy (blue line). Perhaps
the most surprising result of this experiment is that there
exist conditions under which applying data augmentation to
features caused by d and features caused by y will result in

https://github.com/AMLab-Amsterdam/DataAugmentationInterventions
https://github.com/AMLab-Amsterdam/DataAugmentationInterventions
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better generalization performance compared to ERM using
all features.

4.2. Rotated MNIST

We construct the rotated MNIST dataset following Li et al.
(2018). This dataset consists of four different domains d
and ten different classes y, each domain corresponds to a
different rotation angle: d = {0◦, 30◦, 60◦, 90◦}. We first
randomly select a subset of images x from the MNIST train-
ing dataset and afterward apply the rotation to each image
of the subset. For the next domain, we randomly select a
new subset. To guarantee the variance of p(y) among the do-
mains, the number of training examples for each digit class y
is randomly chosen from a uniform distribution U [80, 160].

For each experiment three of the domains are selected for
training and one domain is selected for testing. For the test
domain, the corresponding rotation is applied to the 10000
examples of the MNIST testset. In Table 2, we compare
data augmentation in combination with ERM to ERM, a
Domain Adversarial Neural Network (DANN) (Ganin et al.,
2016) and a Conditional Domain Adversarial Neural Net-
work (CDANN) (Li et al., 2018). All methods use a LeNet
(LeCun et al., 1998) type architecture and we repeat each
experiment 10 times. First, we use SDA to find the best
data augmentation technique, where we use the same LeNet
model and training procedure for the domain classifier and
only samples from the training domains. The data augmen-
tation with the lowest domain accuracy in all four cases,
where we leave out one of the domains for testing, is ’rota-
tion’. In addition, we perform an ablation study showing
that SDA reliably picks the most suitable hyperparameters,
the results can be found in Table 4 in the Appendix. Sec-
ond, we apply random rotations between 0◦ and 359◦ to the
images x during training, denoted by DA. If we assume hd
to be equal to the rotation angle of the MNIST digit in a
given image x, applying random rotations to x is equal to a
noise intervention on hd, see Equation 3. As described in
Section 2, applying random rotations to x can be understood
as randomly sampling elements g from the two-dimensional
rotation group SO(2). Note that elements g ∈ SO(2) act
trivially on hy: Rotations do not change the digit shapes.
The result is a training dataset where d and y are indepen-
dent. In Table 2, we see that the results of DA are similar
for all four test domains. Furthermore, we find that DA
outperforms ERM, DANN, and CDANN, where CDANN is
specially designed for the case where d and y are spuriously
correlated.

Table 1. Results on Colored MNIST. Average accuracy ± standard
deviation for ten seeds.

Acc ERM IRM REx SDA
Train 87.4 ± 0.2 70.8 ± 0.9 71.5 ± 1.0 72.1 ± 0.4
Test 17.1 ± 0.6 66.9 ± 2.5 68.7 ± 0.9 74.1 ± 0.9

Table 2. Results on Rotated MNIST results. Average accuracy for
ten seeds.

Target ERM DANN CDANN SDA
0◦ 75.4 77.1 78.5 96.1
30◦ 93.4 94.2 94.9 95.9
60◦ 94.5 95.2 95.6 95.7
90◦ 79.6 83.0 84.0 95.9
Ave 85.7 87.4 88.3 95.9

4.3. Colored MNIST

Following Arjovsky et al. (2019), we create a version of the
MNIST dataset where the color of each digit is spuriously
correlated with a binary label y. We construct two training
domains and one test domain where the digits of the original
MNIST classes ’0’ to ’4’ are labeled y = 0 and the digits of
the classes ’5’ to ’9’ are are labeled y = 1. Subsequently,
for 25% of the digits we flip the label y. We now color
digits which are labeled y = 0 red and digits which are
labeled y = 1 green. Last, we flip the color of a digit with
a probability of 0.2 for the first training domain and with
a probability of 0.1 for the second training domain. In the
case of the test domain, the color of a digit is flipped with
a probability of 0.9. By design, the original MNIST class
of each digit (’0’ to ’9’) is a direct cause of the new label y
whereas the color of each digit is a descendant of the new
label y.

The DAG of the colored MNIST, shown in Appendix Figure
6, deviates slightly from the DAG in Figure 1, nonetheless
the reasoning in Section 2 is still valid. In Table 1, we see
that while ERM is performing well on the training domains
it fails to generalize to the test domain since it is using the
color information to predict y. In contrast, IRM (Arjovsky
et al., 2019) and REx (Krueger et al., 2020) generalizes well
to the test domain. Again, we use SDA to find the appropri-
ate data augmentations. We use the same MLP and training
procedure as in Arjovsky et al. (2019) for the domain classi-
fier. We want to highlight that SDA only relies on samples
from the two training domains whereas the hyperparameters
of IRM and REx where fine-tuned on samples from the test
domain as described in Krueger et al. (2020). In case of the
colored MNIST dataset the selected data augmentations are
’hue’ and ’translate’, denoted by DA. As described in the
Section 2, applying random permutations to the hue value of
x is equivalent to randomly sampling and applying elements
g from permutation group SO(2). We argue that elements
g do not change hy: high-level features that contain infor-
mation about the shape of each digit. In our experiment, we
use the same network architecture and training procedure
as described in Arjovsky et al. (2019). Each experiment is
repeated 10 times. We find that DA can successfully weaken
the spurious confounding influence of the domain d on y,
see Table 1.
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Table 3. Results on PACS dataset. Average accuracy for five seeds.
Target ERM CDANN L2G GLCM SSN IRM REx MetaReg JigSaw SDA

A 63.3 62.7 66.2 66.8 64.1 67.1 67.0 69.8 67.6 70.45
C 63.1 69.7 66.9 69.7 66.8 68.5 68.0 70.4 71.7 68.49
P 87.7 78.7 88.0 87.9 90.2 89.4 89.7 91.1 89.0 88.35
S 54.1 64.5 59.0 56.3 60.1 57.8 59.8 59.3 65.2 72.24

Ave 67.1 68.9 70.0 70.2 70.3 70.7 71.1 72.6 73.4 74.9

4.4. PACS

The PACS dataset (Li et al., 2017a) was introduced as a
strong benchmark dataset for domain generalization meth-
ods that features large domain shifts. The dataset consists
of four domains: d = [’photo’ (P), ’art-painting’ (A), ’car-
toon’ (C), ’sketch’ (S)], i.e., each image style is viewed as a
domain. The numbers of images in each domain are 1670,
2048, 2344, 3929 respectively. There are seven classes: y
= [dog, elephant, giraffe, guitar, horse, house, person]. We
fine-tune an AlexNet-model (Krizhevsky et al., 2012), that
was pre-trained on ImageNet, using ERM in combination
with data augmentation. We apply SDA to select the data
augmentation for the following experiment. For the do-
main classifier we fine-tune an AlexNet-model as described
above. In addition, we use a cross-validation procedure
where we leave one domain out and use the three domains
for training. SDA determines four data augmentation tech-
niques to be usefull: ’brightness’, ’contrast’, ’saturation’,
and ’hue’. In combination these four augmentations are
commonly called color jitter or color perturbations. By ran-
domly applying color perturbations we are weakening the
spurious confounding influence of hd on y, as described in
Section 2. In Table 3, we compare DA to various domain
generalization methods: CDANN (Li et al., 2018), L2G (Li
et al., 2017b), GLCM (Wang et al., 2018), SSN (Mancini
et al., 2018), IRM (Arjovsky et al., 2019), REx (Krueger
et al., 2020), MetaReg (Balaji et al., 2018), JigSaw (Carlucci
et al., 2019), where all methods use the same pre-trained
AlexNet-model. We repeat each experiment 5 times and
report the average accuracy. We find that DA obtains the
highest average accuracy. The biggest performance gains of
DA compared to ERM are on the test domains ’art painting’
and ’sketch’. For example, the domain ’sketch’ consists of
black sketches of the seven object classes on white back-
ground, see Figure 7. Since the color of the object is not
correlated with the class, a model relying on color features
will generalize poorly to the ’sketch’ domain. However, by
randomly changing the colors of the images in the training
domains (’art painting’, ’cartoon’, ’photo’), we find that DA
is able to generalize much better.

Ablation study: Using all data augmentation techniques
We repeat the previous experiments on Rotated MNIST, Col-
ored MNIST, and PACS using all data augmentation tech-

niques listed in the Appendix. We compare the accuracy of a
classifier trained using all data augmentation techniques to a
classifier trained using SDA. We find that using all data aug-
mentation techniques together results in a significant drop
in performance for all three datasets: 25.4% for Rotated
MNIST, 8.7% for Colored MNIST, and 16.1% for PACS.
We observe that there exist combinations of datasets and
data augmentation techniques that lead to a drastic drop in
performance on their own, e.g the PACS dataset and random
rotations. We argue that a model trained without random
rotations exploits the fact that, e.g, the orientation of an
animal or person is usually upright. This example shows
that we cannot simply describe data augmentation as ’label-
preserving transformations’ since a rotated animal or person
will still have the same label.

5. Conclusion
In this paper, we present a causal perspective on the ef-
fectiveness of data augmentation in the context of domain
generalization. By using an SCM we address a core problem
of domain generalization: the spurious correlation of the
domain variable d and the target variable y. While in theory,
we could intervene on the domain variable d, this solution is
impractical since we assume that we only have access to ob-
servational data. However, we show that data augmentation
can serve as a surrogate tool for simulating interventions
on the domain variable d and its children. Hereby, prior
knowledge can be used to choose data augmentation tech-
niques that only act on the non-descendants of the target
variable y. Furthermore, we show that randomly applying
data augmentation can be understood as randomly sampling
elements from common symmetry groups. In addition, we
propose a simple algorithm to select suitable augmentation
techniques from a given list of transformations. We use a
domain classifier to measure how well each augmentation
is able to weaken the causal link between the domain d and
hd high-level features caused by d. We evaluated this ap-
proach on four different datasets and were able to show that
empirical risk minimization in combination with accurately
selected data augmentation results in good generalization
performance. The analysis in this paper could be further
used to design data augmentation to simulate interventional
datasets for domain generalization methods by exploiting
intervention-augmentation equivariance.


