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Abstract
An action of a group on a vector space partitions the latter into a set of orbits. We consider three
natural and useful algorithmic “isomorphism” or “classification” problems, namely, orbit equality,
orbit closure intersection, and orbit closure containment. These capture and relate to a variety of
problems within mathematics, physics and computer science, optimization and statistics. These
orbit problems extend the more basic null cone problem, whose algorithmic complexity has seen
significant progress in recent years.

In this paper, we initiate a study of these problems by focusing on the actions of commutative
groups (namely, tori). We explain how this setting is motivated from questions in algebraic
complexity, and is still rich enough to capture interesting combinatorial algorithmic problems. While
the structural theory of commutative actions is well understood, no general efficient algorithms were
known for the aforementioned problems. Our main results are polynomial time algorithms for all
three problems. We also show how to efficiently find separating invariants for orbits, and how to
compute systems of generating rational invariants for these actions (in contrast, for polynomial
invariants the latter is known to be hard). Our techniques are based on a combination of fundamental
results in invariant theory, linear programming, and algorithmic lattice theory.

2012 ACM Subject Classification Computing methodologies → Algebraic algorithms; Theory of
computation → Algebraic complexity theory

Keywords and phrases computational invariant theory, geometric complexity theory, orbit closure
intersection problem

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.32

Related Version Full Version: https://arxiv.org/abs/2102.07727

Funding Peter Bürgisser : ERC under the European Union’s Horizon 2020 Research and Innovation
Programme (grant agreement no. 787840).
M. Levent Doğan: ERC under the European Union’s Horizon 2020 Research and Innovation
Programme (grant agreement no. 787840).
Visu Makam: University of Melbourne and NSF grant CCF-1900460.
Michael Walter : NWO Veni grant no. 680-47-459 and NWO grant OCENW.KLEIN.267.
Avi Wigderson: NSF Grant CCF-1900460.

© Peter Bürgisser, M. Levent Doğan, Visu Makam, Michael Walter, and
Avi Wigderson;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 32; pp. 32:1–32:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pbuerg@math.tu-berlin.de
mailto:dogan@math.tu-berlin.de
mailto:visu@umich.edu
mailto:m.walter@uva.nl
mailto:avi@ias.edu
https://doi.org/10.4230/LIPIcs.CCC.2021.32
https://arxiv.org/abs/2102.07727
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


32:2 Polynomial Time Algorithms in Invariant Theory for Torus Actions

1 Introduction

Consider the following two problems, which on the face of it have nothing to do with each
other:
1. Will the cue ball’s trajectory on a billiards table ever end up in a pocket?
2. Given a bipartite graph G, and two functions w, w′ assigning weights to edges, is it the

case that they assign the same weight to every perfect matching M of G?
Both turn out to be orbit problems for torus actions, and exemplify the class of problems we
study in this paper.

As our introduction is somewhat long, we break it up as follows. We start with general
background to algorithmic invariant theory in §1.1 and discuss general orbit problems in §1.2.
In §1.3 we define torus actions, discuss our main results, and explain their motivation from
the perspective of algebraic complexity. In §1.4, we give examples of how these orbit problems
for torus actions arise in and capture natural problems in physics and optimization. In §1.5,
we discuss the organization of the paper and logical structure of our results.

1.1 Algorithms in invariant theory
Computational invariant theory is a subject whose origins can be traced back to “masters
of computation” in the 19th century such as Boole, Gordan, Sylvester and Cayley among
others. The second half of the 20th century injected a major impetus to both structural and
computational aspects of these mathematical areas. On the one hand, the advent of digital
computers allowed mathematicians means to study much larger such algebraic structures
than could be accessed by hand. On the other, the parallel development of computational
complexity provided a mathematical theory with precise computational models for algorithms
and their efficiency analysis. This combination has injected many new ideas and questions
into invariant theory and related fields, leading to the development of algorithmic techniques
such as Gröbner bases and many others, which supported faster and faster algorithms. Texts
on this large body of work can be found, for example, in the books [17, 60, 14]. While
the computational complexity put focus on polynomial time as the staple of efficiency, it
also provided means to argue the likely impossibility of such fast algorithms for certain
tasks, through the Cook-Karp-Levin theory [13, 44, 48] of NP-completeness (for Boolean
computation) and Valiant’s theory of VNP-completeness.

More recently, a further surge in collaboration between algebraists and complexity theorists
on these algorithmic questions in invariant theory and representation theory arose from two
(related) sources starting in the turn of this century. Both imply that these very algorithmic
questions in algebra are deeply entwined with the core complexity questions of P vs. NP
and VP vs. VNP. Not surprisingly, new enriching connections between these two research
directions are newly found as they develop, providing an exciting collaboration.

The first source is Mulmuley and Sohoni’s Geometric Complexity Theory (GCT) [53],
which highlights the inherent symmetries of complete problems of these complexity classes,
and through these suggests concrete invariant theoretic and representation theoretic attacks
on the questions above. This has lead to many new questions, techniques, and much faster
algorithms (see, for example, [52, 26, 7, 51]).

The second source is the work of Impagliazzo and Kabanets [42], using Valiant’s com-
pleteness theory for VP and VNP to again attack these major complexity problems directly
through the development of efficient deterministic algorithms for the basic PIT (Polynomial
Identity Testing) problem. This problem, which (again, thanks to Valiant’s completeness) has
natural symmetries, is very similar to basic invariant theory problems. Major progress was
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recently made on resolving such related algorithmic problems, starting with [33, 27, 40, 41, 19].
Many others continue to follow, see, for example, [21, 1, 28, 10, 9, 11, 8]. We refer to [8] for
a recent description of the state-of-art.

1.2 Orbit problems
We now briefly describe the basic setting and problems of interest, postponing some of
the technical details to later sections for the sake of brevity. A group homomorphism
ρ : G → GL(V ), where V is a vector space (always complex and finite-dimensional) is called
a representation of G. One can think of this as a (linear) action of G on V , i.e., a map
G × V → V where (g, v) 7→ ρ(g)v satisfies the usual axioms of a group action. For us, groups
will always be algebraic and representations rational, that is, morphisms of algebraic groups.
We will denote ρ(g)v by gv or g · v.

For v ∈ V , we define its orbit Ov := {gv | g ∈ G} (denoted OG,v if the group is not
clear from context) to be the subset of points that can be reached from v by applying a
group element. We denote by Ov the topological closure of Ov. These notions are extremely
basic and in many concrete instances very familiar. One simple example is the action of
GLn × GLn on n×n matrices by left and right multiplication: clearly, the orbit of a matrix A

consists of the matrices having the same rank as A; moreover, the orbit closure of A is the set
of matrices whose rank is at most the rank of A. Another example is the conjugation action
of GLn on n × n matrices, where the orbits are characterized by Jordan normal forms.1

Understanding the space of orbits of a given group action is perhaps the most basic task
of invariant theory. The following three basic algorithmic problems will be the focus of this
paper.

▶ Problem 1.1. Let ρ : G → GL(V ) be a representation of a group G. Given v, w ∈ V :
1. Orbit equality: Decide if Ov = Ow;
2. Orbit closure intersection: Decide if Ov ∩ Ow ̸= ∅;
3. Orbit closure containment: Decide if w ∈ Ov.2

As we will discuss the computational complexity of algorithms for these problems, one
needs to specify how inputs are given and how we measure their size. We will discuss this,
but for now it suffices to think of n = dim(V ), the degree of ρ (assuming it is a polynomial
function), and the bit-length of the input vectors v, w as the key size parameters.

The aforementioned problems capture and are related to a natural class of “isomorphism”
or “classification” problems across many domains in mathematics, physics and computer
science. Examples include the graph isomorphism problem [16], non-commutative rational
identity testing [27, 41], equivalence problems on quiver representations [18, 20], matrix
and tensor scaling [10, 9], classification of quantum states [4] and module isomorphism
problems [6].

To briefly hint at the role of invariant theory, let us take a closer look at problem (2),
that is, the problem of orbit closure intersection. We denote by C[V ] the ring of polynomial
functions on V . A polynomial function f on V is called invariant if it is constant along

1 The orbit closures of two matrices intersect if and only if the matrices have the same eigenvalues (counted
with multiplicity).

2 The special case of w = 0 is called the null cone membership problem. In fact, many of the recent
algorithmic advances mentioned above efficiently solve the null cone problem for specific group actions,
see [8] and references therein. The motivation of this paper is to extend that understanding to these
more general problems.

CCC 2021
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orbits, i.e., f(gv) = f(v) for all g ∈ G and v ∈ V . The collection of all invariant polynomials
forms a subring C[V ]G, called the invariant ring. Since polynomials are continuous, invariant
polynomials are constant along orbit closures. In particular, two points v and w are
indistinguishable by invariant polynomials when their orbit closures intersect. Amazingly,
the converse is also true for a large class of group actions thanks to a result due to Mumford:
if the orbit closures of v and w do not intersect, then they can always be distinguished by an
invariant polynomial. See Theorem 2.1 for a precise statement.

Mumford’s theorem suggests an approach to orbit closure intersection – test if f(v) = f(w)
for all invariant polynomials f . For this strategy to be effective, one needs a computational
handle on invariant polynomials. Naively there are infinitely many polynomials, but a
foundational result of Hilbert helps tackle this issue. A system of generating polynomial
invariants is a collection of invariant polynomials {f1, . . . , fr} such that any other invariant
polynomial can be written as a polynomial in the fi’s. In particular, to test for orbit closure
intersection it suffices to test whether each of the fi take the same value on both points.
Hilbert showed the existence of a finite system of generating polynomial invariants and also
gave an algorithm to produce them [36]. Since then, many improvements on the complexity
of such algorithms were developed, but even today this task is, in general, infeasible. One
basic obstacle is the very description of such a system of generating invariants, coming both
from the size of this set and the degree of each polynomial in it.

Nearly a century later, a (singly) exponential bound (in n) on the degrees of a system of
generating polynomial invariants was achieved for a very general class of group actions [15],
which is unfortunately the best possible in this generality, see [22]. A singly exponential
bound is necessary to capture a polynomial with a poly-sized (in n) arithmetic circuit, but is
by no means sufficient.3 Another issue that one has to deal with is the number of invariants
in a system of generating polynomial invariants, and it is often the case that there are
exponentially many in any system.4 This led Mulmuley [52] to suggest the notion of a
succinct circuit as a way to capture a system of generating polynomial invariants with a
view towards using them for orbit closure intersection. Unfortunately, this approach does
not seem to be computationally feasible either. See [29] where Mulmuley’s conjecture [52,
Conjecture 5.3] on the existence of succinct circuits was disproved under natural complexity
assumptions. What is perhaps most surprising is that this already happens for a commutative
group action, namely when G is a torus. Further, an example of a group action was given
where any system of generating polynomial invariants must contain a VNP-hard polynomial.

The negative result above seem to suggest that the algorithmic tasks at hand are infeasible,
even for torus actions, i.e., groups of the form (C×)d. The main results of our paper show
the opposite: all of them are efficiently solvable for torus actions!

The main novelty on our approach is using rational invariants instead of polynomial
invariants. A rational invariant is a quotient of polynomials that is invariant, see Section 1.3
for a precise definition. This is a bit unexpected since Mumford’s theorem simply does not
extend to rational invariants: it is easy to construct examples where two points whose orbit
closures intersect are distinguished by a rational invariant. Yet, for representations of tori, we
show that (a certain special collection of) rational invariants can be used (in a delicate way)
to capture not just orbit closure intersection, but orbit closure containment and orbit equality
as well. Moreover, we show that rational invariants are computationally easy in this case, in
stark contrast with the aforementioned hardness results for polynomial invariants [29].

3 For example, the permanent of an n × n matrix, which has degree n, is believed to require exponential
circuit size. This is essentially the content of Valiant’s proof that the permanent is complete for the
class VNP, combined with the hypothesis that VNP ̸= VP.

4 This is already the case for the matrix scaling action discussed in Section 1.4.
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Inspired by the connections to the P vs. NP problem, the GCT program makes several
predictions in invariant theory. The setting in which most of the predictions and conjectures
are formulated is the setting of rational representations of connected reductive groups (which
we will define later). Here, we want to point out that among connected reductive groups,
the class of commutative groups happen to be precisely tori. Thus, our main results should
be viewed as conclusively verifying several predictions of GCT in the commutative case.
Moreover, the barrier result on the computational efficiency of polynomial invariants [29]
along with our results on rational invariants suggest that a more thorough investigation of
rational invariants is needed in the case where the acting group is non-commutative, e.g., SLn.

1.3 Torus actions and main results
We now discuss the main contributions of our paper in more detail and precision. Our results
concern torus actions, so we specialize the discussion of the preceding section and consider
a d-dimensional complex torus T = (C×)d as the acting group G. The group law is just
pointwise multiplication, i.e., (t1, . . . , td) · (s1, . . . , sd) = (t1s1, . . . , tdsd).

Any linear action of a torus can be described by an integer matrix M ∈ Matd,n(Z) called
the weight matrix (where Matd,n(Z) denotes the space of d × n integer matrices). The
representation ρM : T → GLn(C) corresponding to a weight matrix M = (mij) looks as
follows:

ρM (t) =


∏d

i=1 tmi1
i

. . . ∏d
i=1 tmin

i

 (1)

Thus any torus action can be viewed as a scaling action, where each coordinate is scaled
separately according to a Laurent monomial.5 The weight matrix (up to reordering of
columns) determines the representation. Despite the simple description of commutative torus
actions, they as well capture fundamental notions, and the associated orbits can be quite
complex. One example is the matrix scaling problem, where the orbits capture weights of
perfect matchings (see Problem 1.7).

In this paper, we will assume that a torus action is given by specifying the weight matrix.
Thus the bit-length of the entries of the weight matrix are included in the input size of the
problems. Moreover, we will allow complex number inputs. These can be described up to
finite precision by elements in the field of Gaussian rationals Q(i) = {s + it | s, t ∈ Q}, which
will be encoded in the standard way; see, e.g., [52].6 The following theorem captures the
main results of our paper.

▶ Theorem 1.2. Given as input a weight matrix M ∈ Matd,n(Z) as well as vectors v, w ∈
Q(i)n, denote by b the maximal bit-length of the entries of v, w, and M . Then we can in
time poly(d, n, b):
1. decide whether Ov = Ow;
2. decide whether Ov ∩ Ow ̸= ∅;
3. decide whether w ∈ Ov.
In other words, for rational representations of tori, there are polynomial time algorithms for
orbit equality, orbit closure intersection, and orbit closure containment.

5 We can also describe this action as follows: Identify v ∈ Cn with a Laurent polynomial∑n

j=1 vj z
m1j

1 · · · z
mdj

d ; then the action of T corresponds precisely to rescaling the variables z1, . . . , zd [34].
6 In fact, our results hold more generally when the elements in Q(i) are given in a “floating point” format,

namely in the form (s + it)2p, with s, t ∈ Q and p ∈ Z encoded in binary in the standard way. The
same is true for input of the form 2p, with p ∈ Q encoded in binary. See Remark 5.5.

CCC 2021



32:6 Polynomial Time Algorithms in Invariant Theory for Torus Actions

We note that the null cone membership problem mentioned earlier, namely Prob-
lems 1.1 (2)/(3) when the input vector w is the 0 vector, was known to have a polynomial
time algorithm by a simple reduction to linear programming.7 There is no known way
of doing the same for the orbit problems above, and indeed our theorem above takes an
alternative route.

While one might hope for efficient algorithms for Problems 1.1 (1) and (2) in much more
general situations than for tori (for general reductive group actions), our efficient algorithm
for orbit closure containment is in stark contrast to the known NP-hardness of the general
orbit closure containment problem [5]. Our work points to a key difference: namely, for torus
group actions, one can use one-parameter subgroups combined with linear programming
techniques to reduce orbit closure containment to orbit equality, while this is impossible in
this form for general actions. See Section 7 for more details.

A common core underlying all our results is an efficient algorithm for computing invariant
Laurent polynomials for torus actions. The key idea is the following. Invariant polynomials
for torus actions can be quite complicated. However, suppose that we restrict to vectors of
some fixed support, i.e., “nonzero pattern” of the coordinates. This restriction is without loss
of generality, since two vectors can only be in the same orbit when their supports coincide.
However, it allows us to study a richer class of functions, namely Laurent polynomials instead
of ordinary polynomials. Allowing for negative exponents makes an important difference:
while polynomial invariants naturally form a semigroup, invariant Laurent polynomials form
a lattice, isomorphic to the integral vectors in the kernel of the weight matrix. Lattices are
much better behaved than semigroups, for example they have small bases which can be found
efficiently.

Before describing our results, let us define invariant Laurent polynomials more precisely.
For a representation ρ : G → GL(V ) of a group G, we have an action of G on the polynomial
ring C[V ] defined by (g · f)(v) := f(ρ(g)−1v). When V = Cn, we can identify C[V ] =
C[x1, . . . , xn] with the polynomial ring in n variables. Now consider the set of vectors with
nonzero coordinates in S ⊆ [n]:

XS = {v ∈ Cn | vj ̸= 0 if and only if j ∈ S}.

The Laurent polynomials in the variables xj for j ∈ S form the natural class of functions
on XS (since we can always divide by the nonzero coordinates). Accordingly, we will denote
their collection by C[XS ].8 Now, for a torus action of the form (1), the group T acts on
any monomial xc = xc1

1 · · · xcn
n by a simple rescaling. Accordingly, we also have an action

of T on the algebra of Laurent polynomials C[XS ]. A Laurent polynomial f is called
invariant if g · f = f for all g ∈ G. Clearly, if f is invariant, then so are all the Laurent
monomials occurring in f . The collection of all invariant Laurent polynomials forms the
subalgebra C[XS ]G of invariant Laurent polynomials. A collection of invariant Laurent
polynomials f1, . . . , fr is called a system of generating invariant Laurent polynomials in
the variables {xj}j∈S if they generate C[XS ]G as an algebra. For torus actions, these can
always be taken to be Laurent monomials, in which case we call them a system of generating
invariant Laurent monomials. We can then state our key result:

7 Namely, a vector v is in the null cone if and only if the convex hull of the weights corresponding to the
nonzero coordinates of v does not contain the origin.

8 In the language of algebraic geometry, these are the “regular” functions on XS .
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▶ Theorem 1.3. Let M ∈ Matd,n(Z) define an n-dimensional representation of T = (C×)d,
and let S ⊆ [n]. Assume that the bit-lengths of the entries of M are bounded by b. Then,
in poly(d, n, b)-time, we can construct an arithmetic circuit with division C whose output
gates compute a system of generating invariant Laurent monomials f1, . . . , fr in the variables
{xj}j∈S, where r ≤ n.

Here we recall the notion of an arithmetic circuit with division, which is a directed acyclic
graph as follows. Every node of indegree zero is called an input gate and is labeled by either
a variable or a rational (complex) number. Nodes of indegree one and outdegree one are
labeled by −1 and are called division gates. Nodes of indegree two and outdegree one and is
labeled either + or ×; in the first case it is a sum gate and in the second a product gate.
The only other nodes allowed are output gates which have indegree one and outdegree zero.
Given an arithmetic circuit with division, it computes a rational function at each output
node in the obvious way. The bit size of such an arithmetic circuit is the total number of
nodes plus the total bit-length of the specification of all rational numbers computed in all of
its gates. The notion of (division free) arithmetic circuits is obtained by disallowing division
gates. They compute polynomials in the obvious way.

We emphasize that the number of generators produced by Theorem 1.3 is at most n (in
particular, independent of the bit-length b), in stark contrast to the situation for monomial
invariants. Moreover, the bit-length of C is polynomially bounded.

As a consequence of Theorem 1.3, we are also able to construct arithmetic circuits that
compute a generating set of rational invariants. For a representation ρ : G → GL(V ), the
action of G on the polynomial ring C[V ] always extends to an action on its field of rational
functions, the rational functions C(V ). A rational function f ∈ C(V ) is called invariant if
g · f = f for all g ∈ G. The collection of all rational invariants forms the sub-field C(V )G of
rational invariants. A collection of rational invariants f1, . . . , fr ∈ C(V ) is called a system of
generating rational invariants if they generate C(V )G as a field extension of C. Note that
any invariant Laurent polynomial is a rational invariant, but the converse is not necessarily
true. Nevertheless:

▶ Corollary 1.4. Let M ∈ Matd,n(Z) define an n-dimensional representation of T = (C×)d.
Assume that the bit-lengths of the entries of M are bounded by b. Then, in poly(d, n, b)-time,
we can construct an arithmetic circuit with division C whose output gates compute a system
of generating rational invariants f1, . . . , fr ∈ C(x1, . . . , xn)T , where r ≤ n.

This result is in distinct contrast to the impossibility of finding succinct circuits for
generating polynomial invariants under natural complexity assumptions [29].

Furthermore, we can complement Theorem 1.2 in the following way: if two orbit closures
do not intersect, Ov ∩ Ow ̸= ∅, then we can construct in polynomial time an arithmetic
circuit computing a separating invariant monomial that can serve as a “witness” of the
non-intersection.

▶ Corollary 1.5. Let M ∈ Matd,n(Z) define an n-dimensional representation of T = (C×)d.
Let v, w ∈ Q(i) be such that Ov ∩ Ow = ∅. Assume the bit-lengths of the entries of v, w and
M are bounded by b. Then, in poly(d, n, b)-time, we can construct an arithmetic circuit of
bit-length poly(d, n, b), which computes an invariant monomial f such that f(v) ̸= f(w).

So far, we have discussed orbit problems for complex tori T = (C×)d. It is interesting to ask
to which extent our results hold for “compact” tori, which are groups of the form K = (S1)d,
where S1 = {z ∈ C× | |z| = 1}.9 Besides the fundamental algorithmic interest in this

9 Note that K is indeed compact, and a subgroup of T . Moreover, any commutative compact connected

CCC 2021



32:8 Polynomial Time Algorithms in Invariant Theory for Torus Actions

setting, such group actions are important in several areas. For example, the time evolution of
periodic systems in Hamiltonian mechanics are naturally given by S1-actions, and important
symmetries in classical and quantum physics are given by compact group actions.

In fact, the results discussed so far can also be used to give an efficient solution for
orbit problems for compact tori. Any (continuous) finite-dimensional representation of (S1)d

extends to a representation of (C×)d, so representations are specified as before by a weight
matrix M ∈ Matd,n(Z). Moreover, the compactness implies that orbits OK,v = {kv | k ∈ K}
are closed and so all three problems mentioned in Problem 1.1 coincide. Therefore, the
following corollary solves all three problems for compact tori:

▶ Corollary 1.6. Let the weight matrix M ∈ Matd,n(Z) define an n-dimensional representation
of T = (C×)d and put K = (S1)d. Further, let v, w ∈ Q(i)n and assume that the bit-lengths
of the entries of v, w and M are bounded by b. Then, in poly(d, n, b)-time, we can decide if
OK,v = OK,w.

To give additional context to this result, we briefly mention some recent results achieving
polynomial time algorithms for orbit closure intersection of specific group actions. For the
left-right action (of SLn × SLn on m-tuples of n × n matrices), one approach to solving
the orbit closure intersection problem is to (approximately) reduce to the orbit equality
problem for the maximal compact subgroup (which happens to be SU(n) × SU(n), where
SU(n) denotes the group of n × n unitary matrices with determinant 1), see[1]. This was
achieved by using a geodesic convex optimization algorithm. Given the recent advances
in this area (see, e.g., [8] and references therein), it is natural to ask if a similar approach
could be useful for general reductive group actions. For torus actions, interestingly, we can
also go in the other direction. Namely, our result for the orbit equality problem for the
maximal compact subgroup, Corollary 1.6, is derived from our main result for complex tori,
i.e., Theorem 1.2. More generally, we observe that for arbitrary reductive group actions,
the orbit equality problem for the maximal compact subgroup is always equivalent to an
orbit closure intersection (or equality) problem for a related action of the larger group, see
Theorem 8.2 for a precise statement.

The results in this paper warrant the investigation of several interesting directions that
we leave for future work, some of which we will discuss in Section 9.

1.4 Further motivation and algorithmic applications
As we saw above, orbit problems are related to a great number of applications. Despite
significant progress, for general reductive group actions it is still an open problem to design
fast algorithms for these problems. Our results fully resolve the situation in the case of
torus actions and also show how to overcome barriers that had previously been pointed
out in the literature [39, 29]. Apart from its fundamental complexity theoretic interest,
there are also several algorithmic applications where torus actions arise naturally. One
particular application in [37] shows how one can use torus invariants to simplify a system of
differential equations with scaling symmetries. We provide and discuss in more detail some
other concrete applications to combinatorial optimization and to dynamical systems, which
were already mentioned briefly at the beginning of the introduction.

We first explain a link to combinatorial optimization. Consider edge weights w for the
complete bipartite graph on 2n labeled vertices (n on each side): the weight w(e) of an
edge e is assumed to be a rational number, encoded in binary. We define the weight w(M)
of a perfect matching M of G as the sum of the weights of the edges occurring in M .

Lie group is of this form.
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▶ Problem 1.7. Given edge weights w and w′ as above, decide whether they assign the same
weight to every perfect matching M of G.

Perhaps surprisingly, this problem can be reformulated as an orbit intersection problem
for a torus action (see below). Therefore, Theorem 1.2 implies that Problem 1.7 can be
solved in polynomial time. This insight seems far from being obvious!

The relevant torus action here results from from matrix scaling, which has been widely
studied and has many applications; see [58] and [12] for more recent developments. Consider
STn := {(t1, . . . , tn) ∈ C× | t1 · · · tn = 1}, which is isomorphic to the algebraic torus (C×)n−1.
We let STn × STn act on Matn(C) by left-right multiplication as follows:

((t1, . . . , tn), (s1, . . . , sn)) · (vij) := (tivijsj)ij . (2)

Moreover, we shall identify the edge weights wij , where i, j ∈ [n], with the matrix vw =
(2wij ) ∈ Matn(C).10 Then one can show that the answer to Problem 1.7 is affirmative if and
only if the orbit closures of vw and vw′ in Matn(C) intersect. This follows from Mumford’s
theorem mentioned earlier, along with the fact that the invariant polynomials for this action
are generated by the perfect matchings, namely the monomials fπ = x1,π(1) · · · xn,π(n) where
π ∈ Sn ranges over the permutations [47, Theorem 3]. Indeed, multiplying entries of vw is
the same as summing the corresponding edge weights in the exponent, hence fπ(vw) = 2w(M),
where M is the perfect matching defined by the permutation π.

We briefly comment on the 3-dimensional generalization of this action. STn × STn × STn

acts on 3-tensors in Cn ⊗ Cn ⊗ Cn in the natural way:

((t1, . . . , tn), (s1, . . . , sn), (u1, . . . , un)) · (vijk) = (tisjukvijk)ijk.

In this case, any system of generating polynomial invariants must include the (maximum)
3-dimensional matching monomials fπ,τ = x1,π(1),τ(1) · · · x1,π(n),τ(n) for π, τ ∈ Sn, which led
to the barrier result for torus actions in [29]. Of course, in this case there are additional
generating invariants, see, e.g., [49]. Our results show that the corresponding orbit problems
can nevertheless be solved in polynomial time! Moreover, it is possible to efficiently exhibit
separating polynomial invariants (whenever they exists) as well as to construct systems of
generating invariant Laurent polynomial or rational invariants.

Our second example concerns a connection to dynamical systems. Consider a (massless)
cue ball on a billiard table (assumed to be square to simplify the discussion). We can ask:

▶ Problem 1.8. If we hit the cue ball at a given angle, will its trajectory end up in a pocket?

It is well-known, and easy to see, that one can map trajectories on an ordinary billiard with
reflecting boundaries to a billiard of twice the size with periodic boundaries, say (R/2πZ)2.
The trajectory of the ball depends fundamentally on the angle or slope. If the slope is
irrational, then the trajectory will be dense, so the answer to Problem 1.8 is trivially yes.
Otherwise, the trajectory will be periodic and the problem is nontrivial. We can model it as
an orbit problem as follows. Let the compact torus S1 act on C2 by

t · (x, y) := (tpx, tqy),

where s = q
p is the slope by which we hit the ball. We can identify points (θ, ν) on the

periodic billiard with points (eiθ, eiν) ∈ C2. In this way, Problem 1.8 reduces to a constant
number of orbit equality problems for this action (one for each pocket). While the problem is

10 As explained in footnote 6, our results also hold for input of this form, where the wij are specified in
binary.
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certainly easy to solve by a variety of methods, one can ask analogous questions for billiards
in n > 2 dimensions and by allowing a d-dimensional hyperplane worth of allowed cue
directions. Such generalizations similarly correspond to orbit problems for compact tori (S1)d

on some Cn, and they can all be solved in polynomial time by using Corollary 1.6.

1.5 Organization of the paper
In Section 2, we give an introduction to basic results in invariant theory that we will need to
establish our results. In Section 3, we focus on tori, their representations, and their invariants.
In particular, we will show that the faces of a natural convex polyhedral “Newton cone” are
in one-to-one correspondence with the orbits in an orbit closure, which will be an important
ingredient later on.

In Section 4, we discuss the definition and computation of suitable rational invariants. As
mentioned above, our key result is that for fixed support, a small generating set of invariant
Laurent monomials can be computed efficiently. This result, which is Theorem 1.3, is at
the heart of our algorithms, and also of independent interest. We achieve this using Smith
normal forms. As an easy consequence, this also implies that we can efficiently compute a
small generating set of rational invariants for a given representation, that is, Corollary 1.4.

In Section 5, we explain how to use the results of the preceding section to solve the
orbit equality problem in polynomial time. This establishes part (1) of Theorem 1.2. Here
we rely on known results for testing if a given Laurent monomial (of possibly exponential
degree) evaluates to the same value on two given vectors, and we present a brief sketch for
completeness.

In Sections 6 and 7, we show how to solve the orbit closure intersection and containment
problems by reducing them to orbit equality. This establishes parts (2) and (3) of Theorem 1.2.
Here we use the polyhedral description of the structure of orbit closures as furnished by
the Newton cone. Furthermore, we show that given two points whose orbit closures do not
intersect, we can efficiently construct a separating monomial invariant as a “witness”. This
proves Corollary 1.5.

In Section 8, we show how to solve the orbit equality problem for compact tori. This
establishes Corollary 1.6. We also give, for general reductive groups G, a reduction from
orbit equality for a maximally compact subgroup K ⊆ G to orbit equality and orbit closure
intersection for G.

In Section 9, we summarize our results and discuss some important open problems and
future directions.

Conventions

In this paper, sometimes we work with monomials and sometimes with Laurent monomials.
Unless we use the prefix “Laurent”, by a monomial, we mean

∏
j x

cj

j where cj ∈ Z≥0, i.e.,
all exponents are non-negative. Whenever exponents are allowed to be negative, we will be
careful to specify that it is a Laurent monomial.

2 Preliminaries of invariant theory

We will briefly recall the main results in invariant theory that are relevant for us (see [46,
23, 17, 55] for details). We will take our ground field to be C, the field of complex numbers,
for simplicity. However, much of this theory works for any algebraically closed field. For
a (finite-dimensional) vector space V , we denote by C[V ] the ring of polynomial functions
on V . For our purposes, if V is the standard vector space Cn, then C[V ] = C[x1, . . . , xn], the
polynomial ring in n variables, where xi is to be interpreted as the ith coordinate function.
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Let G be an algebraic group, i.e., it has the structure of an algebraic variety (not
necessarily irreducible) such that the multiplication map m : G × G → G and the inverse
map ι : G → G are morphisms of varieties.11 A morphism of algebraic groups ρ : G → GL(V )
is called a rational representation of G.12 We write gv or g · v for ρ(g)v. For a point v ∈ V ,
its orbit Ov (or OG,v when the group is not clear from context) is the set of all points that
can be reached from v by the action of an element of the group, i.e.,

Ov := {gv | g ∈ G}.

We denote by Ov the closure of the orbit Ov. The closure is to be taken either with respect
to the Euclidean topology or the Zariski topology. Indeed, the closures in both topologies
coincide, a well-known fact that relies on a fundamental result in algebraic geometry due
to Chevalley (see [54, I.§10]). A polynomial function f ∈ C[V ] is called invariant if it is
oblivious to the group action, i.e., f(gv) = f(v) for all g ∈ G, v ∈ V . The collection of all
invariant polynomials forms a subring

C[V ]G := {f ∈ C[V ] | ∀ g ∈ G, v ∈ V f(gv) = f(v)}.

One key observation is that invariant functions are constant along orbits and hence constant
along orbit closures as well. Hence, if the orbit closures of two points intersect, then they
cannot be distinguished by an invariant function. The converse was proved by Mumford
for a special class of groups called reductive groups [55] (see also [17, Corollary 2.3.8]).
An algebraic group G is called reductive if every rational representation is a direct sum
of irreducible representations, wherein a representation is called irreducible if it has no
non-trivial subrepresentations. Examples of reductive groups include SLn, GLn, Spn, On,
finite groups, and most importantly for us, tori (which we define formally in the next section),
as well as direct products thereof.13 Reductive groups have played a central role for a number
of mathematical fields for over a century. A particularly important result in the invariant
theory of reductive groups is that invariant rings are finitely generated [36, 35, 62].

To state Mumford’s result in the generality we need, we will define rational actions on
varieties (a notion that naturally generalizes rational representations). Let X be an algebraic
variety and let C[X] denote the ring of regular functions on X. A rational action of an
algebraic group G on X is a morphism of varieties G × X → X, (g, x) 7→ g · x satisfying
g · (g′ · x) = (gg′) · x and e · x = x for all x ∈ X, g, g′ ∈ G. As in the vector space case, we
denote the orbit of a vector v ∈ X by Ov.

▶ Theorem 2.1 (Mumford, [55]). Let G be a reductive group. Let X be an algebraic variety
and suppose we have a rational action of G on X. For v, w ∈ X we have Ov ∩ Ow = ∅ if
and only if there exists f ∈ C[X]G such that f(v) ̸= f(w).

Another well-known important structural result states that every orbit closure Ov contains
a unique closed orbit.

11 A morphism of varieties simply means that in local coordinates the map is given by ratios of polynomials.
For concreteness, the reader may simply think of an algebraic group as a matrix group, i.e., a subgroup
of GLn(C) that is described as the zero locus of a collection of polynomials.

12 One can interpret this action as the action of the subgroup ρ(G) ⊆ GL(V ) on V by matrix-vector
multiplication, where ρ(G) is parametrized algebraically by an algebraic group G.

13 The group Bn of upper triangular n × n invertible matrices is a typical example of a group that is not
reductive.
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▶ Theorem 2.2. Let ρ : G → GL(V ) be a rational representation of a reductive group G.
Then:
1. For any v ∈ V , the orbit closure Ov contains a unique closed orbit, that we denote by O

ṽ
.

2. If v, w ∈ V , then

Ov ∩ Ow ̸= ∅ ⇐⇒ O
ṽ

= O
w̃

.

Proof. (1) The first assertion is [17, Theorem 2.3.6].
(2) For the second assertion, if the orbit closures Ov and Ow are disjoint, then so are

the orbits O
ṽ

and O
w̃

, which therefore must be different. Conversely, suppose O
ṽ

̸= O
w̃

.
Since these orbits are closed, by Theorem 2.1, there is an invariant f ∈ C[V ]G such that
f(ṽ) ̸= f(w̃). By continuity, f(v) = f(ṽ) ̸= f(w̃) = f(w), which implies Ov ∩ Ow = ∅ by
another application of Theorem 2.1. ◀

Part(2) of this theorem shows that the orbit closure intersection problem can be reduced
to the orbit equality problem, provided we can compute the unique closed orbit O

ṽ
contained

in Ov. We will see in Section 6 that if the group G is a torus, this can be achieved in
polynomial time.

Another key result in understanding orbit closures is the Hilbert–Mumford criterion.
A one-parameter subgroup of G is a morphism of algebraic groups σ : C× → G. For a
representation of G on a vector space V , we say that a subset S ⊆ V is G-stable if g · s ∈ S

for all g ∈ G, s ∈ S.

▶ Theorem 2.3 (Hilbert–Mumford criterion, [35, 55]). Let ρ : G → GL(V ) be a rational
representation of a reductive group G. Suppose S ⊆ V is a G-stable closed subvariety of V

and let v ∈ V such that Ov ∩ S ̸= ∅. Then there exists a one-parameter subgroup σ : C× → G

such that limϵ→0 σ(ϵ) · v ∈ S.

A particular use of the above theorem is to take S = {0} or S = Oṽ. When G is a torus,
the set of one-parameter subgroups has the structure of a Z-lattice. We will discuss this
further in the next section.

We end this section by introducing a key notion in invariant theory called the null cone,
whose significance will become clear in later sections. For a collection F of polynomials in
C[V ], we denote by V(F ) their common zero locus in V .

▶ Definition 2.4 (Null cone). Let ρ : G → GL(V ) be a rational representation of a reductive
group G. Then the null cone is defined as

NG(V ) := N (ρ) := {v ∈ V | 0 ∈ Ov}.

It can also be defined as the common zero locus of all invariant polynomials without constant
part:

NG(V ) := N (ρ) := V(
⋃
d>0

C[V ]Gd ),

where C[V ]Gd denotes the space of invariant polynomials that are homogeneous of degree d.
The equivalence of the two definitions of the null cone follows from Theorem 2.1.
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3 Invariants and orbit closures of torus actions

Invariant theory for general reductive groups can get very complicated. However, for
representations of tori, that is, commutative connected reductive groups, a lot of the theory
can be viewed as a combination of linear algebra and the study of convex polytopes. We will
collect important results regarding torus actions in this section and refer the reader to [61, 17]
for more details. All the results in this section are already known or can be deduced from
the existing literature, and we provide proof sketches for completeness. Note that tori are
reductive groups, so the results of the previous section hold in this setting.

We will first briefly recall torus actions and the notions of characters/weights, one-
parameter subgroups and how weight matrices define a representation. Then, we give a linear
algebraic description of invariant rings by determining the monomials that are invariant.
Then, we describe a polyhedral perspective on orbits. In particular given a point v in the
vector space of the representation, we define a polyhedral cone, called the Newton cone. The
Newton cone can be used to determine whether v is in the null cone and moreover we give
a correspondence between the faces of the Newton cone to orbits in the orbit closure of v,
which is crucial in understanding the orbit closure containment problem.

For this entire section, fix a torus T = (C×)d.14

3.1 Representations and invariants

As described in Section 1.3, any representation of a torus T is a “scaling” action (after
identifying V with Cn by an appropriate choice of basis). Namely, each coordinate of
v ∈ Cn is multiplied by some (Laurent) monomial

∏d
i=1 tλi

i for integers λi ∈ Z. These
monomials (succinctly described by the so-called weight matrix, see below) together specify
the representation. We now make this more precise.

A 1-dimensional (rational) representation is called a character or a weight. Let X (T )
denote the set of weights of T , which forms a group where the binary operation is (pointwise)
multiplication of functions. To each λ = (λ1, . . . , λd) ∈ Zd, we associate a weight, also
denoted λ by slight abuse of notation, namely

λ : T → C×, λ(t) =
d∏

i=1
tλi
i ,

which gives an identification of abelian groups Zd ∼= X (T ).
Let ρ : T → GL(V ) be a (rational) representation of T where V is an n-dimensional vector

space. We can choose a basis of V consisting of weight vectors, wherein a vector v ∈ V

is called a weight vector of weight λ ∈ X (T ) if t · v = λ(t)v for all t ∈ T . Once we have
chosen a weight basis, using the identification X (T ) ∼= Zd, the corresponding n weights can
be collected into a d × n matrix with integer entries, which we call the weight matrix of
the representation. Up to permutation of the columns, it is independent of the choice of
weight basis, and it classifies the representation up to isomorphism. Concretely, a matrix
M = (mij) ∈ Matd,n(Z) describes the representation ρM : T → GLn(C) defined in (1). That
is, for t = (t1, . . . , td) and v = (v1, . . . , vn) ∈ Cn, we have

14 Any commutative connected reductive group is isomorphic to some (C×)d. Important examples include
Td, the group of diagonal d × d invertible matrices and its subgroup STd consisting of diagonal matrices
with determinant 1.
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t · v = ρM (t)v =
((

d∏
i=1

tmi1
i

)
v1,

(
d∏

i=1
tmi2
i

)
v2, . . . ,

(
d∏

i=1
tmin
i

)
vn

)
.

The matrix M is the weight matrix for this action. The jth standard basis vector ej is a
weight vector of weight m(j) = (m1j , m2j , . . . , mdj) ∈ Zd = X (T ). Note that m(j) is the jth

column vector of M .
For the rest of this section, we fix an n-dimensional representation ρM : T → GLn(C)

of the torus T = (C×)d given by a weight matrix M ∈ Matd,n(Z) with columns m(j) for
j ∈ [n]. The following well-known result describes the invariant ring of this action (see, e.g.,
[22, Section 3]):

▶ Proposition 3.1.
1. Let c ∈ Zn

≥0. A monomial xc =
∏

j x
cj

j is invariant if and only if
∑

j cjm(j) = 0;
2. The invariant ring C[x1, . . . , xn]T is spanned as a vector space by the invariant monomials.

Proof. For the action ρ of G on V , there is a natural induced action of G on the ring of
polynomial functions C[V ] defined by the formula g · f(v) := f(ρ(g)−1v). Applying this
for the action ρM , we get an induced action of T on C[x1, . . . , xn]. It is easy to compute
this action: for a monomial xc and t ∈ T , we have t · xc = λ(t)−1 xc, where λ ∈ X (T ) is
the character corresponding to

∑
j cjm(j) ∈ Zd. It follows that the monomials which are

invariant are precisely the ones for which
∑

j cjm(j) = 0, the trivial character, proving the
first part. The second part follows from the observation that a polynomial is invariant if and
only if each monomial that occurs in it is invariant. ◀

Part (1) of Proposition 3.1 shows that the invariant monomials are in one-to-one corres-
pondence with the nonnegative integer vectors in the kernel of the weight matrix. Accordingly,
they form a semigroup. In general, such semigroups can have a large number of generators,
which explains the difficulty of using polynomial invariants [24]. Our key idea to obtain
efficient algorithms will be to instead consider invariant Laurent monomials, which form a
lattice rather than a semigroup. We will return to this in Section 4.

In turns out that the weights lead to a strong link to convex polyhedral geometry, which
in turn characterizes the orbits in an orbit closure. For this, we make the following definitions.
The support of a vector v ∈ Cn is defined as

supp(v) := {j ∈ [n] | vj ̸= 0}.

Let us record some of the properties of the support. By dimension (of an orbit, orbit closure,
algebraic group, etc), we mean the dimension of the underlying variety.

▶ Lemma 3.2. For v, w ∈ Cn we have:
1. If Ov = Ow, then supp(v) = supp(w).
2. If supp(v) = supp(w), then dim Ov = dim Ow.
3. If w ∈ Ov, then supp(w) ⊆ supp(v). This inclusion is strict if and only if w ∈ Ov \ Ov.

Proof. (1) is clear, since each coordinate simply gets rescaled by a nonzero number by the
group action. For (2) we note that the stabilizer group stab(v) of v only depends on supp(v).
The claim follows using dim Ov = d − dim stab(v). For (3), the inclusion of supports holds
since taking limits can never increase the support. Finally, it is known [38, §8.3] that Ov \ Ov

is a Zariski closed subset of dimension strictly less than dim Ov. Hence w ∈ Ov \ Ov implies
dim Ow < dim Ov and therefore supp(w) ⊊ supp(v) by part (2). ◀
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3.2 Newton cone and orbit closures
We define the Newton cone C(v) of a vector v ∈ Cn to be the rational polyhedral cone
generated by the weights corresponding to the indices in the support, that is,

C(v) :=
{ ∑

j∈supp(v)

cjm(j) | cj ≥ 0
}

⊆ Rd.

The lineality space of the cone C(v) is defined as L(v) := C(v) ∩ (−C(v)). Clearly, it is
the largest linear subspace contained in C(v). The cone C(v) is called pointed iff L(v) = 0.
(Compare [57] for the structure of polyhedral cones.)

These notions are standard in geometric programming, which essentially studies optimiz-
ation problems associated with torus actions, albeit often with a different representation and
motivation; see, e.g., [11] and references therein. The connection is particularly apparent and
useful in the study of polynomial capacities which have important applications to approximate
counting [50, 34].

We will see that the Newton cone contains all the information about the orbits contained
in an orbit closure. To start, we show that membership in the null cone can be characterized
as follows. Define the essential support of a vector v ∈ V as

e-supp(v) := {j ∈ supp(v) | m(j) ∈ L(v)}. (3)

▶ Lemma 3.3. Let k ∈ supp(v). We have k ∈ e-supp(v) if and only if there exists an
invariant monomial

∏
j∈supp(v) x

cj

j with cj ∈ Z≥0 such that ck > 0.

Proof. It is easy to see that m(k) ∈ L(v) if and only if there is a non-negative integral linear
combination

∑
j∈supp(v) cjm(j) = 0 with ck > 0. By Proposition 3.1, this is equivalent to the

existence of an invariant monomial
∏

j∈supp(v) x
cj

j with cj ∈ Z≥0 such that ck > 0. ◀

▶ Corollary 3.4. We have that v is in the null cone N (ρM ) if and only if e-supp(v) = ∅.

Equivalently, v is in the null cone if and only if C(v) is pointed and m(j) ≠ 0 for all
j ∈ supp(v).

In fact, much more can be said. Let us first recall the notion of faces of polyhedral cones.
If C(v) is contained in a closed halfspace H+ of Rd bounded by a linear hyperplane H, then
we call the intersection F = H ∩ C(v) a face of C(v) when it is non-empty. The cone itself
is also considered a face of C(v): by definition, it is the largest face of C(v). On the other
hand, each face of C(v) must contain the lineality space L(v), which is therefore the smallest
face of C(v).

We will see shortly that the faces of C(v) are in bijective correspondence with the
orbits contained in Ov. For this, we need to introduce some more notation. For a subset
J ⊆ supp(v), we define the restriction v|J to be the vector with entries

(v|J)j =
{

vj if j ∈ J,

0 otherwise,

as its j-th coordinate. Let now F be a face of C(v) defined by a closed half-space H+ = {y ∈
Rd | ν · y ≥ 0} for some ν ∈ Rd, that is,

F = {y ∈ C(V ) | ν · y = 0}.
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Since C(v) is rational, we may assume that ν has integer components. We assign to F the
subset of indices

SF := {j ∈ supp(v) | m(j) ∈ F}

and define vF := v|SF
. Let us check that the orbit OvF

of vF is contained in Ov. The
one-parameter subgroup σ : C× → T given by σ(ϵ) = (ϵν1 , . . . , ϵνd) satisfies

σ(ϵ) · v = ρM (σ(ϵ))v = (ϵν·m(1)
v1, . . . , ϵν·m(n)

vn). (4)

It follows that limϵ→0 σ(ϵ) · v = vF and hence vF ∈ Ov. The same reasoning shows that
vF ∈ OvF ′ if F is a face contained in the face F ′.

The following result is well known, see e.g., [56, Example 1.3], but we sketch a proof for
completeness.

▶ Proposition 3.5. The map F 7→ OvF
is a bijection between the set of faces of C(v) and

the set of orbits contained in Ov. Moreover, we have

F ⊆ F ′ ⇐⇒ OvF
⊆ OvF ′ .

The proof of surjectivity relies on a strengthening of the Hilbert–Mumford criterion
(Theorem 2.3). Recall this states that if we consider a closed subset S that is stable under the
group action and intersects the orbit closure of some point v, then there is a one-parameter
subgroup that will drive v to a point in S in the limit. However, a subtle point is that this
requires S to be closed. In general, orbits are not closed, so a point w could be in the orbit
closure of a point v, but the orbit of w may not be closed. In this case, Theorem 2.3 does
not apply to S = Ow, and indeed the orbit of w need not be reachable from v by a limit
of a one-parameter subgroup. The following theorem shows that for torus actions such a
phenomenon does not happen. This crucial fact will also prove useful for us algorithmically
in Section 7.

▶ Theorem 3.6 ([46], Kapitel III.2.2). Let ρ : T → GL(V ) be a rational representation.
Suppose v, w ∈ V are such that w ∈ Ov. Then there exists a one-parameter subgroup
σ : C× → T such that

lim
ϵ→0

σ(ϵ) · v ∈ Ow.

Before we prove Proposition 3.5, we discuss a bit about the structure of one-parameter
subgroups. For each ν ∈ Zd, we define a one-parameter subgroup of T , namely σ : C× → T

defined by σ(ϵ) = (ϵν1 , . . . , ϵνd). Any one-parameter subgroup of T is of this form. This
gives an identification of abelian groups Zd ∼= Y(T ), where Y(T ) denotes the collection of all
one-parameter subgroups of T .

We leave the proof of the following well known lemma to the reader.

▶ Lemma 3.7. Let σ : C× → T be a one-parameter subgroup, so σ(ϵ) = (ϵν1 , . . . , ϵνd) for
some ν ∈ Zd, and let v ∈ Cn.
1. The limit limt→0 σ(t) · v exists if and only if m(j) · σ ≥ 0 for all j ∈ supp(v).
2. If the limit exists, then limt→0 σ(t) · v = v|S, where S = {j ∈ supp(v) | m(j) · σ = 0}.

Proof of Proposition 3.5. We have already verified that OvF
is an orbit contained in Ov,

hence F 7→ OvF
is well-defined as a map from the set of faces of C(v) to the set of

orbits contained in Ov. To see that it is injective, note that F is the cone generated by
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supp(vF ) = SF . For surjectivity, let Ow be an orbit contained in Ov and σ : C× → T be a
one-parameter subgroup as in Theorem 3.6. There is ν ∈ Zd such that σ(ϵ) = (ϵν1 , . . . , ϵνd).
By Lemma 3.7, the existence of limϵ→0 σ(ϵ) · v means that ν · m(j) ≥ 0 for all j ∈ supp(v).
In other words, C(v) is contained in the halfspace {y ∈ Rd | ν · y ≥ 0}. Moreover, the limit
equals vF , where F is the face F := {y ∈ C(v) | ν · y = 0} of C(v). Therefore, vF ∈ Ow,
hence OvF

= Ow, and we have shown surjectivity.
In order to show the remaining equivalence, recall that we argued below (4) that if F ⊆ F ′

then vF ∈ OvF ′ . The preceding argument also implies the converse. ◀

As an immediate consequence of Proposition 3.5, we get the following result, which not
only reproves Lemma 3.3 but also characterizes the closed orbit in an orbit closure. For this,
define

ṽ := v|L(v) = v|e-supp(v).

▶ Corollary 3.8. The orbit Oṽ corresponding to the lineality space L(v) is contained in every
orbit closure contained in Ov. Therefore, it is the unique closed orbit contained in Ov.

In particular, the orbit Ov is closed if and only if C(v) = L(v), i.e., C(v) equals its linear
span. Moreover, v is in the null cone if and only if e-supp(v) = ∅.

4 Generating Laurent polynomials and rational invariants

In this section, we discuss the computation of suitable rational invariants, which is the heart
of our algorithms, and the main novelty of this paper. As explained in the introduction, the
starting point is the simple observation that two orbits can only be equal when they have
the same support (Lemma 3.2). But once we restrict to vectors of fixed support, it is natural
to consider a larger class of invariants, namely Laurent polynomials, which are polynomials
that can also have negative exponents. In Section 4.1 we will see that the invariant Laurent
polynomials for a given support naturally form a lattice that can be computed from the
weight matrix. This allows us to give an efficient algorithm for computing small sets of
generators. As a consequence, we can also efficiently compute a system of generating rational
invariants.

For the rest of this section, we fix an n-dimensional representation ρM : T → GLn(C) of
the torus T = (C×)d given by a weight matrix M ∈ Matd,n(Z) with columns m(j) for j ∈ [n].

4.1 Invariant Laurent polynomials
For S ⊆ [n], consider the set of vectors with support S, that is, the variety

XS = {v ∈ Cn | supp(v) = S} = {v ∈ Cn | vj ̸= 0 if and only if j ∈ S}. (5)

The ring of regular functions on XS , denoted C[XS ], is naturally identified with the ring of
Laurent polynomials in variables {xj}j∈S . That is,

C[XS ] = C[xj , x−1
j | j ∈ S].

We observe that ρM restricts to an action of T on XS , and induces an action on C[XS ]. The
proposition below shows that the algebra C[XS ]T of invariant Laurent polynomials can be
succinctly described in terms of the lattice

LS =
{

c ∈ ZS |
∑
j∈S

cjm(j) = 0
}

= ker(MS) ∩ Z|S|, (6)

where ZS := {c ∈ Rn | cj = 0 for all j ̸∈ S} ∼= Z|S|, and MS denotes the submatrix of the
weight matrix M , obtained by removing all columns except those labeled by S.
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▶ Proposition 4.1.
1. Let c ∈ ZS. A Laurent monomial xc =

∏
j∈S x

cj

j is invariant if and only if c ∈ LS.
2. The algebra of invariant Laurent polynomials C[XS ]T is spanned as a vector space by the

invariant Laurent monomials.
3. If {c(1), c(2), . . . , c(r)} is a lattice basis of LS, then C[XS ]T is generated as an algebra by

the invariant Laurent monomials {xc(1)
, . . . , xc(r)}.

Proof. The first two parts are shown using an argument similar to the proof of Proposition 3.1.
The third statement is an immediate consequence. ◀

It is instructive to compare this with the discussion below Proposition 3.1, where we
saw that the invariant polynomials are similarly described by the semigroup of nonnegative
vectors in the kernel of the weight matrix. By working with vectors of fixed support, we
instead obtain a natural lattice structure, which simplifies the situation considerably. For
example, the lattice LS and hence the algebra of invariant Laurent polynomials C[XS ]T have
at most |S| ≤ n generators – in stark contrast to the situation for invariant polynomials.

We now discuss how to compute lattice bases as in Proposition 4.1. It is well known
that every integer matrix M can be diagonalized by multiplying from left and right with
unimodular matrices. This is known as the Smith normal form [59]. The Smith normal form
can be computed in polynomial time [43]. We record these facts in the following theorem.

▶ Theorem 4.2 (Smith normal form). Let M ∈ Matd,n(Z). Then, there exist unimodular
matrices U ∈ Matd,d(Z), W ∈ Matn,n(Z) such that

UMW =



α1 0 0 . . . 0
0 α2 0 . . . 0

0 0
. . . 0

αr

...
...

... 0
. . .

0 0 0 . . . 0


and the diagonal elements satisfy αi | αi+1 for i = 1, 2, . . . , r − 1, where r equals the rank of
M . The matrix UMW is unique and called the Smith normal form of M .

Moreover, if the bit-lengths of the entries of M are bounded by b, then the matrices U ,
W , and UMW can be computed in poly(d, n, b)-time.

Using the Smith normal form it is easy to compute a basis of the lattice LS . We state
this in the following algorithm and corollary.

Algorithm 1 Computation of a basis of the lattice of invariant Laurent monomials.

Input M ∈ Matd,n(Z) and S ⊆ [n].
Step 1 Compute the submatrix MS of M obtained by deleting all columns except those

in S.
Step 2 Compute the Smith normal form UMSW of MS (as in Theorem 4.2).
Step 3 Return {w(r+1), w(r+2), . . . , w(n)}, where w(j) denotes the jth column of W .
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▶ Corollary 4.3. Let M ∈ Matd,n(Z) and S ⊆ [n], and suppose the bit-lengths of the entries
of M are bounded by b. Then Algorithm 1 computes a basis for the lattice LS defined in (6)
in poly(d, n, b)-time. In particular, each w(j) has bit-length poly(d, n, b).

Alternatively, one can use lattice algorithms; we refer the interested reader to [31,
Corollary 5.4.10].
▶ Remark 4.4. It is easy to see that given an exponent vector c = (c1, . . . , cn) ∈ Zn

≥0,
where the bit-lengths of the cis are bounded by b, an arithmetic circuit computing the
monomial xc of size poly(n, b) can be constructed in poly(n, b)-time. Similarly, if c ∈ Zn, an
arithmetic circuit with division computing the Laurent monomial xc can be constructed in
poly(n, b)-time.

Proof of Theorem 1.3. This follows from Proposition 4.1, Corollary 4.3, and Remark 4.4.
◀

4.2 Rational invariants
In the remainder of this section we will discuss rational invariants. For V = Cn, recall that
C[V ] = C[x1, . . . , xn] is the polynomial ring in n variables. Let C(V ) = C(x1, . . . , xn) the
field of rational functions (its fraction field). In other words, any element in C(V ) is a ratio
of two polynomials. The action of T on C[V ] extends to C(V ). Then C(V )T is the field of
rational invariants. Clearly, any invariant Laurent polynomial is a rational invariant, but the
converse need not be the case.

Nevertheless, we can show that the invariant Laurent polynomials in all variables (that
is, for support S = [n]) generate the rational invariants as a field.

▶ Proposition 4.5. Let A := C[X[n]] = C[x1, x−1
1 , . . . , xn, x−1

n ]T denote the algebra of
invariant Laurent polynomials, and let F := C(x1, . . . , xn)T denote the field of rational
invariants. Then, A generates F as a field, i.e., the field of fractions of A is F .

Proof. Let f ∈ F × and write f = p
q , where p, q ∈ C[x1, . . . , xn] have no common factors.

Since f is invariant, we have for any t ∈ T that

t · p

t · q
= t · f = f = p

q
.

Accordingly, t · p = α(t)p and t · q = α(t)q for some α(t) ∈ C×. Thus, p and q span
one-dimensional representations. This in turn implies that α : T → C× is a character, as
discussed in Section 3.1, and further that p (and also q) is a sum of monomials with the
same weight, i.e., p =

∑
e pexe such that t · xe = α(t)xe for pe ̸= 0. In particular, fe = q

xe is
a Laurent polynomial invariant if pe ̸= 0, and we can write

f = p

q
=
∑

e

pe
xe

q
=
∑

e

pe
1
fe

,

which concludes the proof. ◀

As a direct consequence, any system of generating invariant Laurent polynomials (as an
algebra) also serves as a system of generating rational invariants (as a field extension of C).
Thus we obtain:

Proof of Corollary 1.4. This follows from Theorem 1.3 (with S = [n]) and Proposition 4.5.
◀
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5 Orbit equality problem

In this section, we will give a polynomial time algorithm for the orbit equality problem. Given
two points, the strategy is to compute a small collection of invariant Laurent monomials
(using the result of Section 4) whose evaluations at the two given points will determine
whether the two points are in the same orbit. The efficient testing of whether two Laurent
monomials evaluate to the same value actually requires an idea: this has already been studied
in the literature and we briefly sketch in Section 5.1 how to do this.

We still assume an n-dimensional representation ρM : T → GLn(C) of the torus T = (C×)d

given by a weight matrix M ∈ Matd,n(Z) with columns m(j) for j ∈ [n].
In general, invariants can only decide orbit closure intersection, not orbit equality. However,

the crucial point is that in the varieties (5) consisting of vectors of fixed support any T -orbit
is closed.

▶ Proposition 5.1. Let S ∈ [n], XS be the variety defined in (5), and v ∈ XS. Then the
orbit Ov is a closed subset of XS.

Proof. By Lemma 3.2 (3) we have Ov = Ov ∩ XS which implies that the orbits are closed in
XS . ◀

Orbit equality in V can always be reduced to orbit equality in some XS , since equality of
supports is a necessary condition (Lemma 3.2 (1)). The importance of the above result is
that the latter orbit equality and orbit closure intersection are equivalent in XS . Together
with Theorem 2.1 we obtain the following result.

▶ Corollary 5.2. Suppose supp(v) = supp(w) = S. Then, Ov ̸= Ow if and only if there is an
invariant Laurent monomial f =

∏
j∈S x

cj

j such that f(v) ̸= f(w).

Thus, we obtain the following algorithm for the orbit equality problem.

Algorithm 2 Deciding orbit equality.

Input M ∈ Matd,n(Z) and v, w ∈ Q(i)n.
Step 1 Check if supp(v) = supp(w). If not, Ov ̸= Ow, so we can stop.
Step 2 Use Algorithm 1 to compute a lattice basis B for the lattice LS defined in (6).
Step 3 For each e ∈ B, we check if ve = we (as described in Section 5.1 below).

If they are all equal, then Ov = Ow. Else, Ov ̸= Ow.

Proof of Theorem 1.2, part (1). The correctness of Algorithm 2 follows from Proposi-
tion 4.1 and Corollary 5.2. We now analyze its runtime. Clearly, the first step can be
implemented efficiently. For the second step, we can appeal to Corollary 4.3. For step 3, we
first observe that, again by Corollary 4.3, the exponents e have bit-length poly(d, n, b). Then
Proposition 5.4 below shows that this step can also be implemented in time poly(d, n, b). ◀

5.1 Laurent monomial equivalence
We now discuss how to test if a Laurent monomial xe evaluates to the same value at two points
v and w. In our context, where each component ej of the exponent vector e = (e1, . . . , en)
has poly-sized bit-lengths, it is unreasonable to evaluate the Laurent monomials explicitly,
because the answer may very well require exponentially large bit-length. Yet, it is possible
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to check if ve = we efficiently. We describe a simple algorithm based on g.c.d.’s, which has
appeared before (see, for example, [25]) in the case where the entries of v and w are in Z
(or equivalently Q). The result is much older; for example, it follows from the results in [3],
as mentioned in [30], which gives a generalization to number fields.15 Here we present a
short self-contained proof and then follow up with the rather simple extension to Gaussian
rationals.

▶ Lemma 5.3. Suppose a1, . . . , ak, b1, . . . , br ∈ Q and e1, . . . , ek, f1, . . . , fr ∈ Z have bit-
lengths at most s. Then, in poly(k, r, s)-time, we can decide if

∏k
i=1 aei

i =
∏r

j=1 b
fj

j .

Proof. By clearing denominators, we may assume that a1, . . . , ak, b1, . . . , br are integers. By
moving terms to the other side, we can further assume w.l.o.g.that all ei, fj ≥ 0. Pick some
al and some bm that are not coprime. Then, consider d = gcd(al, bm) ≥ 2. W.l.o.g., we can
assume el ≥ fm. Then, test if del−fm(a′

l)el
∏

i ̸=l aei
i = (b′

m)fm
∏

j ̸=m b
fj

j , where a′
l = al/d

and b′
m = bm/d. This is an iterative procedure which stops when each ai is coprime to bj .

At which point, unless all ai’s and bj ’s are equal to 1, both sides cannot be equal.
The question is how long does such an iterative procedure take. Consider the quantity

P := |a1 · · · akb1 · · · br|. After applying one step, the resulting quantity P ′ satisfies P ′ =
P/d2 ≤ P/4. Since initially, P is 2poly(k,r,s)-sized, there are at most a polynomial number of
iterative steps. Hence, the entire procedure takes poly(k, r, s)-time. ◀

An analogous result with the same proof holds for the ring Z[i] of Gaussian integers and
its quotient field Q(i) of Gaussian rationals, using that this ring has unique factorization
into irreducible elements. In the following proposition, we assume that a Gaussian rational
a = α + iβ ∈ Q(i) is described by giving the encodings of α and β in binary.

▶ Proposition 5.4. Suppose a1, . . . , ak, b1, . . . , br ∈ Q(i) and e1, . . . , ek, f1, . . . , fr ∈ Z all
have bit-lengths bounded by s. Then, in poly(k, r, s)-time, we can decide if

∏k
i=1 aei

i =∏r
j=1 b

fj

j .

▶ Remark 5.5. For computational purposes, in many instances, numbers are described by
their “floating point” representations. The floating point description of a Gaussian rational
a ∈ Q(i) is described by giving the binary encodings of α, β ∈ Q and p ∈ Z such that
a = (α + iβ)2p. If we assume that a1, . . . , ak, b1, . . . , br ∈ Q(i) in the proposition above
are given by their floating point descriptions, we can still decide monomial equivalence in
polynomial time. Indeed, if we write each aj = (αj + iβj)2pj and bj = (γj + iδj)2qj , then
deciding whether

∏k
j=1 a

ej

j =
∏r

j=1 b
fj

j simplifies to deciding if k∏
j=1

(αj + iβj)ej

 · 2
∑k

j=1
ejpj =

 r∏
j=1

(γj + iδj)fj

 · 2
∑r

j=1
fjqj ,

which can again be interpreted as an instance of Proposition 5.4 and hence can be checked
in polynomial time. Since all other computations in our algorithms only involve supports of
vectors, it follows that all results in this paper generalize to this input model, as claimed in
footnote 6.

An even easier special case arises for numbers of the form a = 2p, with p ∈ Q specified by
its binary encoding, as in the perfect matching application discussed in Section 1.4. Indeed,
if aj = 2pj and bj = 2qj for j ∈ [n], then deciding whether

∏k
j=1 a

ej

j =
∏r

j=1 b
fj

j simply
amounts to verifying whether

∑n
j=1 pjej =

∑n
j=1 qjfj , which is clearly possible in polynomial

time.

15 In particular Ge’s result [30] implies that Theorem 1.2 extends to the case where the entries of v and w
are taken from some algebraic number field.
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6 Orbit closure intersection and explicit separating invariants

In this section, we discuss how to solve the orbit closure intersection problem in polynomial
time by efficiently reducing it to the orbit equality problem. The problem of orbit closure
intersection has a manifestly analytic point of view, but also an algebraic point of view by
Mumford’s theorem, Theorem 2.1. In other words, when orbit closures of two points do not
intersect, there is an invariant polynomial that takes different values on both points, serving
as a “witness” to the fact that the orbit closures do not intersect. Accordingly, given two
vectors whose orbit closures do not intersect, we also explain how to efficiently construct an
arithmetic circuit which computes an invariant monomial separating the two vectors.

6.1 Reduction to orbit equality
The key idea is the following. Recall from Theorem 2.2 that any orbit closure Ov contains as
unique closed orbit Oṽ, and that two orbit closures intersect if and only if they contain the
same closed orbit. In Corollary 3.8, we showed that the unique closed orbit has a concrete
polyhedral characterization: we can take ṽ = v|e-supp(v), the restriction of the vector v

to its essential support. Accordingly, the map v 7→ ṽ provides a reduction of the orbit
closure intersection problem for ρM to the the orbit equality problem for ρM . The following
lemma shows that the essential support (and hence the reduction map) can be computed in
polynomial time by using linear programming.
▶ Lemma 6.1. Let M ∈ Matd,n(Z) define an n-dimensional representation of T = (C×)d,
and let v ∈ Cn. For k ∈ supp(v), we have k ∈ e-supp(v) if and only if there is a non-
negative linear combination

∑
j∈supp(v) cjm(j) = 0 such that ck > 0. If the bit-lengths of the

entries of M are bounded by b, the latter can be decided in poly(d, n, b)-time by using linear
programming.
Proof. The characterization follows from Proposition 3.1 and Lemma 3.3. It amounts to
a basic decisional problem of linear programming, which is well known to be solvable in
polynomial time, see [31]. ◀

The above proof also shows that a nonvanishing invariant monomial as in Lemma 6.1 can
be computed in polynomial time. As explained above, we arrive at the following algorithm
and results.

Algorithm 3 Reduction of orbit closure intersection to orbit equality.

Input M ∈ Matd,n(Z), v, w ∈ Q(i)n.
Step 1 Compute e-supp(v) in the following way: For each k ∈ supp(v), use linear program-

ming to determine if there is a non-negative linear combination
∑

j∈supp(v) cjm(j) = 0
with ck > 0. The set e-supp(v) consists of all k ∈ supp(v) for which this is the case.

Step 2 Compute e-supp(w) in the same way.
Step 3 Return ṽ = v|e-supp(v) and w̃ = w|e-supp(w).

▶ Corollary 6.2. Let M ∈ Matd,n(Z) describe an n-dimensional representation of T = (C×)d.
Further, let v, w ∈ Q(i)n and assume the bit-lengths of the entries of M, v, and w are
bounded by b. Then there is a poly(d, n, b)-time reduction that reduces the problem of deciding
Ov ∩ Ow ̸= ∅ to the problem of deciding if O

ṽ
= O

w̃
, where ṽ and w̃ have bit-lengths bounded

by b.
Proof of Theorem 1.2, part (2). This follows from part (1), combined with Corollary 6.2.

◀
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6.2 Explicit separating invariant
For torus actions, our reduction of orbit closure intersection to orbit equality will give us an
invariant Laurent monomial that takes different values on the two points. But a separating
invariant Laurent monomial itself does not serve as a witness (at least not naively, one needs
further properties about the support of the Laurent monomial for it to serve as a witness). We
now prove Corollary 1.5, which asserts that given two vectors we can nevertheless efficiently
construct an arithmetic circuit which computes an invariant monomial separating them.

Proof of Corollary 1.5. We already noted that, by linear programming, we can compute the
essential supports of v and w in poly(d, n, b)-time. We distinguish two cases.

Case 1: e-supp(v) ̸= e-supp(w)

Suppose k ∈ e-supp(v) \ e-supp(w) without loss of generality. By Lemma 3.3 there is an
invariant monomial f =

∏
j∈supp(v) x

cj

j such that ck > 0. Let us verify that f(v) ̸= f(w).
We clearly have f(v) ̸= 0. On the other hand, f(w) = f(w̃) = 0, since w̃ ∈ Ow, but k is not
contained in supp(w̃) = e-supp(w). So we indeed have f(v) ̸= f(w). In addition, we can find
(c1, . . . , cn) in poly(d, n, b)-time by linear programming (Lemma 6.1), so we can construct an
arithmetic circuit for f in poly(d, n, b)-time by Remark 4.4.

Case 2: e-supp(v) = e-supp(w)

Let S := e-supp(v) = e-supp(w). We assume that Ov∩Ow = ∅, which implies O
ṽ
∩O

w̃
= ∅.

Thus, by Corollary 5.2, there is an invariant Laurent monomial f = xe with the property
that f(ṽ) ̸= f(w̃), and hence f(v) ̸= f(w). Just like in Algorithm 2, we can in poly(d, n, b)-
time compute such an exponent vector e ∈ Zn, with bit-length of the ei bounded above by
poly(d, n, b).

Our goal is to produce an invariant monomial that separates v and w, so we need
to modify f so as to get rid of the negative exponents. In the process, we must ensure
that the bit-length of the circuit does not explode. By Lemma 3.3, for each k ∈ S, there
exists c(k) ∈ Zn

≥0 such that
∑

j∈supp(v) c
(k)
j m(j) = 0 and c

(k)
k > 0. We can compute c(k) in

poly(d, n, b)-time by linear programming. Let mk = xc(k) denote the corresponding invariant
monomial. Put S− := {j ∈ S | ej < 0}. If mj(v) ̸= mj(w) for some j ∈ S−, then mj is
an explicit separating invariant monomial and we are done by Remark 4.4. Assume now
mj(v) = mj(w) for all j ∈ S−. Then f̃ := xd := f ·

∏
j∈S−

m
−ej

j is a Laurent monomial that
separates v and w. We verify now that the exponent vector d has non-negative entries. By
construction, we have for k ∈ S−,

dk = ek + (−ek)c(k)
k +

∑
j∈S−,j ̸=k

(−ej) · c
(j)
k ≥ 0,

since ek < 0 and ej < 0 for all j ∈ S−, while c
(k)
k ≥ 1, and c

(j)
k ≥ 0. For k ∈ [n] \ S−, we have

dk = ek +
∑

j∈S−

(−ej) · c
(j)
k ≥ 0,

since ek ≥ 0 for k ∈ S \ S− and ek = 0 for k ̸∈ S, while ej < 0 for j ∈ S−. Altogether,
we have shown that indeed all components of d are non-negative. We finally note that d

can be computed in polynomial time, in particular, it has bit-length poly(d, n, b). So by
Remark 4.4, we can construct an arithmetic circuit of size poly(d, n, b) that computes f̃ in
poly(d, n, b)-time. ◀
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7 Orbit closure containment

In this section, we discuss how to solve the the orbit closure containment problem in
polynomial time by efficiently reducing it to the orbit equality problem.

The notion of orbit closure containment is in general quite tricky to capture. Polynomial
invariants do not suffice, since two orbit closures can intersect (hence all polynomial invariants
agree) with neither being contained in the other – this is precisely the difference between the
orbit closure intersection and the orbit closure containment problem. Instead, the key idea
for the reduction comes from one-parameter subgroups. We already discussed in Section 3
that if w ∈ Ov then Ow can be reached from v by a one-parameter subgroup. The following
proposition gives a concrete polyhedral description of the relevant one-parameter subgroups.

▶ Lemma 7.1. Let M ∈ Matd,n(Z) define an n-dimensional representation of T = (C×)d,
and let v, w ∈ Cn. Then w ∈ Ov if and only if there exists a one-parameter subgroup
σ : C× → T , so σ(ϵ) = (ϵν1 , . . . , ϵνd) for some ν ∈ Zd, such that
1. {j ∈ supp(v) | m(j) · ν = 0} = supp(w) and m(k) · ν > 0 for all k ∈ supp(v) \ supp(w);
2. O(v|supp(w)) = Ow.

Proof. If w ∈ Ov, then by Theorem 3.6, we know that there is a one-parameter subgroup σ

such that limt→0 σ(t)v ∈ Ow. In particular this implies that limt→0 σ(t)v has the same
support as w and has the same orbit as w. Now, both (1) and (2) follow from Lemma 3.7.

For the converse, note that, again by Lemma 3.7, (1) implies that limt→0 σ(t)v =
v|supp(w) ∈ Ov, hence it follows that Ow = O(v|supp(w)) ⊆ Ov by (2). ◀

Now, we can give our algorithm to test if w is in the orbit closure of v.

Algorithm 4 Orbit closure containment.

Input M ∈ Matd,n(Z) and v, w ∈ Q(i)n.
Step 1 Check if supp(w) ⊆ supp(v). If not, w /∈ Ov, so we can stop.
Step 2 Using linear programming, determine whether there exists a solution y ∈ Rd to the

collection of linear equalities m(j) · ν = 0 for each j ∈ supp(w) and linear inequalities
m(k) · ν > 0 for all k ∈ supp(v) \ supp(w). If there is no solution, then w /∈ Ov, so we can
stop.

Step 3 Use Algorithm 2 check whether O(v|supp(w)) = Ow. If yes, then w ∈ Ov. Else, it is
not.

Proof of Theorem 1.2, part (3). The correctness of Algorithm 4 follows from Lemma 7.1.
Indeed, condition (1) in the lemma is satisfied if and only if the algorithm passes the first
two steps, and then condition (2) is tested in the last step.

We still need to argue about the efficiency of the algorithm. Clearly, Step 1 can be
done in linear time. Step 2 can be done in poly(d, n, b)-time by linear programming. Step 3
appeals to the orbit equality problem, which by part (1) of the theorem can be done in
poly(d, n, b)-time. ◀
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8 Orbit problems for compact tori

So far, we have studied orbit problems for algebraic tori, that is, groups of the form T = (C×)d.
In this section we consider the groups K = (S1)d, where S1 = {z ∈ C× | |z| = 1}. Such
groups are often called compact tori. Indeed, any commutative compact connected Lie
group is of this form. Besides the fundamental algorithmic interest in this setting, it is also
important in applications. For example, in physics, symmetries are often given by compact
group actions, such as compact tori [32, 2]. We give further complexity-theoretic motivation
below.

The compactness implies that orbits are closed and so the three problems in Problem 1.1
coincide. In this section, we show how to solve the orbit equality problem for a compact
torus by reducing it to orbit equality for the corresponding algebraic torus. Subsequently,
we give an alternative reduction that works not only for tori but in fact for any connected
reductive group such as SLn.

To start, we note that it is known that any (continuous) finite-dimensional representation
of K = (S1)d extends to a representation of T = (C×)d [62]. In particular, representations
can be specified as before by a weight matrix M ∈ Matd,n(Z). Then we have the following
result:

▶ Proposition 8.1. Let M ∈ Matd,n(Z) define an n-dimensional representation of T = (C×)d

and K = (S1)d. Let v, w ∈ Cn. Then, OK,v = OK,w if and only if OT,v = OT,w and
|vj | = |wj | for all j.

Proof. Since K ⊆ T , it is clear that if OK,v = OK,w, then OT,v = OT,w and |vj | = |wj | for
all j.

Conversely, suppose OT,v = OT,w and |vj | = |wj | for all j. Then, there is some t ∈ T

such that t · v = w. Write t = (t1, . . . , td) and write each ti = ri · eiθi , with ri > 0 and θi ∈ R.
Then, it is easy to see that we must have (eiθ1 , . . . , eiθd) · v = w. Thus v and w are in the
same K-orbit. ◀

Proof of Corollary 1.6. We are given M ∈ Matd,n(Z) and v, w ∈ Q(i)n. By the above
proposition, we need to check if OT,v = OT,w and if |vj | = |wj | for all j. The former can be
done in polynomial time by Theorem 1.2 and the latter can clearly be done in polynomial
time. ◀

Before proceeding we give some further context and motivation. Algorithms for the null
cone membership problem (given a rational representation ρ : G → GL(V ) of a reductive
group G and v ∈ V , decide if 0 ∈ Ov) based on optimization methods have emerged in recent
years. They take advantage of the fact that 0 ∈ Ov if and only if one can drive the norm
to 0 along the orbit Ov. This can be viewed as an optimization problem where one tries
to minimize (infimize) the norm along the orbit. While this is not a convex optimization
problem, it is geodesically convex by the Kempf-Ness theory [45], which allows for many
of the ideas to be modified appropriately. As far as the orbit closure intersection problem
is concerned, the natural extension of this idea is as follows: Given v, w ∈ V , first use an
optimization algorithm to approximately find a point in each orbit closure with minimal
norm; let us call these points v̌, w̌. Then, appealing to the Kempf-Ness theory again, we
have that Ov ∩ Ow ̸= ∅ if and only if v̌ and w̌ are in the same orbit for a maximal compact
subgroup K of G. In this way, the orbit closure intersection problem for G can be reduced to
the orbit equality problem for the maximal compact subgroup K. In fact, for the so-called
left-right action of SLn × SLn on matrix-tuples, this idea was carried out successfully to
obtain a polynomial-time algorithm for orbit closure intersection [1]. This further emphasizes
the importance of the orbit equality problem for compact Lie group actions.
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Here we report on an interesting phenomenon, which provides a kind of converse to the
strategy explained above. Namely, for any action of a connected reductive group G, the
orbit equality problem for the maximal compact subgroup K ⊆ G is equivalent to an orbit
intersection (or equality) problem for a related action of G! As this result is not crucial to
the rest of the paper and requires significantly different background, we will be brief in our
explanations. We denote by V ∗ the contragredient or dual representation of V .

▶ Theorem 8.2. Let ρ : G → GL(V ) be a finite-dimensional representation of a connected
reductive group G. Let K be a maximal compact subgroup of G, and ⟨·, ·⟩ be a K-invariant
Hermitian inner product on V . For v ∈ V , let v̂ ∈ V ∗ be defined by v̂(w) := ⟨v, w⟩. Then,
for v, w ∈ V , the following are equivalent:
1. OK,v = OK,w;
2. O

G,(v,̂v) = O
G,(w,ŵ) in V ⊕ V ∗;

3. The G-orbit closures of (v, v̂) and (w, ŵ) in V ⊕ V ∗ intersect.

Proof. Let Lie(G) ⊆ L(V ) denote the Lie algebra of G. For any linear action of G on a
vector space U , we get an induced action of Lie(G) on U . Given a K-invariant Hermitian
form ⟨·, ·⟩ on U , we define the so-called moment map µU : U → Lie(G)∗ by the formula
µU (u)(X) = ⟨u, X · u⟩ for u ∈ U and X ∈ Lie(G) (up to a scalar which is not relevant for
our purposes). The celebrated Kempf-Ness theorem says that if µU (u) = 0 then the G-orbit
of u is closed. Moreover, it asserts that if u′ ∈ U is another point such that µU (u′) = 0, then
OG,u = OG,u′ if and only if OK,u = OK,u′ .

Applying the preceding to (v, v̂) and (w, ŵ) in U = V ⊕ V ∗, a simple calculation shows
that the moment map vanishes at either point, so the two orbits are closed. This shows the
equivalence between (2) and (3). The equivalence between (1) and (2) follows immediately
from the second part of the Kempf-Ness theorem, using that kv̂ = k̂v for any k ∈ K, since
K acts unitarily. ◀

9 Concluding remarks, future directions, and open problems

To better understand the context of our results and their potential impact on future progress,
we briefly discuss some results in literature and then suggest further research directions.
In very high level, we feel that the following aspects are highlighted by this work: the
relative power and interplay between algebraic and analytical algorithms, the importance
of understanding commutative actions as a stepping stone towards understanding general
actions, the role of rational (as opposed to polynomial) invariants, and the subtlety of “no
go” results, which evidently can be surpassed.

There has been an explosion of interest over the last decade in understanding invariant
theory from a complexity theoretic perspective (we survey some of this literature in the
introduction). This rapidly developing field can be seen as an endeavour to classifying
computational problems in invariant theory according to their difficulty, finding efficient
algorithms whenever possible, as well as connecting to applications in mathematics, physics,
optimization, and statistics.

Invariant theory in the setting of a rational representation of a connected reductive group
is the most relevant for complexity theory. The commutative case of tori is an important
special case. Despite the well-understood structural simplicity of the corresponding invariant
theory, even basic algorithmic problems are non-trivial. Null cone membership, arguably the
most basic problem, has long been known to have an efficient algorithm, as it reduces to
linear programming, which non-trivially admits polynomial-time algorithms. The problems
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of orbit equality, orbit closure intersection, and orbit closure containment have polynomial
time algorithms, as shown in this paper. We stress that while efficient algorithms for linear
programming are “continuous” or “analytic” in nature, our algorithms use a combination
of both analytic and algebraic techniques. The more general problem of succinct circuits
for generating polynomial invariants, which is one of the basic challenges proposed in [52],
has recently shown to be impossible under natural complexity assumptions [29]. Yet, in this
paper, we bypass this negative result, and see that rational invariants for torus actions can
be captured in a computationally efficient way without the need for succinct circuits. It is an
interesting open problem to determine if there are succinct circuits for separating invariants
or null cone definers, see [29, Problems 1.14, 1.15].

The invariant theory of non-commutative groups has a different flavor from, and is
far more complex than, the commutative case, see, for example, [38]. Many interesting
problems in computational invariant theory remain open in the non-commutative case. We
list a few. First and foremost, the results in this paper motivate the investigation of the
computational efficiency of systems of generating rational invariants. Further, it is natural
to wonder if rational invariants can help capture orbit closure intersection and orbit equality
for non-commutative group actions. Another open problem is to give any polynomial time
algorithm for orbit closure intersection (and the subproblem of null cone membership). An
intermediate challenge is to ascertain whether null cone membership is in NP ∩ co-NP. Note
that in [5] it is shown that the general orbit closure containment problem is NP-hard.
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