
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Resampling with neural networks for stochastic parameterization in multiscale
systems

Crommelin, D. ; Edeling, W.
DOI
10.1016/j.physd.2021.132894
Publication date
2021
Document Version
Final published version
Published in
Physica D
License
CC BY

Link to publication

Citation for published version (APA):
Crommelin, D., & Edeling, W. (2021). Resampling with neural networks for stochastic
parameterization in multiscale systems. Physica D, 422, [132894].
https://doi.org/10.1016/j.physd.2021.132894

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://doi.org/10.1016/j.physd.2021.132894
https://dare.uva.nl/personal/pure/en/publications/resampling-with-neural-networks-for-stochastic-parameterization-in-multiscale-systems(e14f59ac-c953-4b64-933c-7354b9e302d1).html
https://doi.org/10.1016/j.physd.2021.132894

Physica D 422 (2021) 132894

a

b

p
a
i
i
o
e
o
n
r
u
v
m

p
m
d
p
r
d
c
t
o
a

h
0

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Resamplingwith neural networks for stochastic parameterization in
multiscale systems
Daan Crommelin a,b,∗, Wouter Edeling a

Centrum Wiskunde & Informatica, Scientific Computing Group, Science Park 123, 1098 XG Amsterdam, The Netherlands
Korteweg–de Vries Institute for Mathematics, University of Amsterdam, Science Park 105-107, 1098 XG Amsterdam, The Netherlands

a r t i c l e i n f o

Article history:
Received 31 March 2020
Received in revised form 15 January 2021
Accepted 6 March 2021
Available online 22 March 2021
Communicated by V.M. Perez-Garcia

Keywords:
Machine learning
Multiscale dynamical systems
Stochastic parameterization
Conditional resampling

a b s t r a c t

In simulations of multiscale dynamical systems, not all relevant processes can be resolved explicitly.
Taking the effect of the unresolved processes into account is important, which introduces the need
for parameterizations. We present a machine-learning method, used for the conditional resampling
of observations or reference data from a fully resolved simulation. It is based on the probabilistic
classification of subsets of reference data, conditioned on macroscopic variables. This method is used
to formulate a parameterization that is stochastic, taking the uncertainty of the unresolved scales into
account. We validate our approach on the Lorenz 96 system, using two different parameter settings
which are challenging for parameterization methods.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

For modeling and simulation of multiscale systems, a central
roblem is how to represent processes with small spatial scales
nd/or fast timescales. Simulations that include all relevant scales
n an explicit way are often computationally too expensive, pos-
ng major challenges to the use of numerical models in a variety
f disciplines (e.g. physics, chemistry, climate science, biology,
ngineering). However, for many problems, the model output
f interest involves only large-scale model variables, therefore a
atural approach to make simulations less expensive is to derive
educed models for the large-scale variables only. The effect of
nresolved (small-scale) degrees of freedom on the large-scale
ariables must be parameterized, in order to obtain a reduced
odel that forms a closed system.
Constructing a parameterization (or model closure) can be ap-

roached in different ways, using e.g. analytical or computational
ethods [1–4]. Here we focus on data-driven approaches, where
ata of (the effect of) small-scale processes is used to infer a
arameterization (e.g. [5–13]). These data can stem from e.g. fully
esolved (high resolution) simulations on a limited space/time
omain, or from physical measurements. Data-driven methods
an be particularly useful when there is no clear separation be-
ween small/fast scales and large/slow scales, so that analytical
r computational approaches that rely on such a scale gap do not
pply.

∗ Corresponding author at: Centrum Wiskunde & Informatica, Scientific Co-
mputing Group, Science Park 123, 1098 XG Amsterdam, The Netherlands.

E-mail address: daan.crommelin@cwi.nl (D. Crommelin).
ttps://doi.org/10.1016/j.physd.2021.132894
167-2789/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a
The last few years have seen a surge of interest in data-driven
approaches, due to the rapid developments in machine learning
(ML). In e.g. [14–18] (and many more studies), ML techniques
are proposed for parameterizing unresolved processes based on
data. Although the specific ML techniques vary, in nearly all pro-
posed methods the parameterization is effectively deterministic.
However, uncertainties in subgrid-scale responses are important,
and these can be accounted for by formulating parameteriza-
tions that are stochastic rather than deterministic [7,19–22]. The
relevance of stochastic formulations for reduced models can be
understood theoretically from the Mori–Zwanzig formalism for
model reduction of dynamical systems [13,23,24].

Using ML methods for stochastic parameterization has hardly
been explored yet. A recent exception is [25], where an ap-
proach using generative adversarial networks (GANs) is proposed.
Here we follow another approach to ML-based stochastic pa-
rameterization, by combining neural network-based probabilistic
classification with resampling/bootstrapping, building on recent
work on parameterization with resampling [11,26,27].

2. Preliminaries

In this study we consider multiscale dynamical systems, rep-
resented by a set of coupled nonlinear ordinary differential equa-
tions (ODEs) for the time-dependent variables x(t) and y(t):
d
dt x = f (x, σ) (1a)
d
dt y = g(x, y) (1b)

σ = σ (y) (1c)
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.physd.2021.132894
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2021.132894&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:daan.crommelin@cwi.nl
https://doi.org/10.1016/j.physd.2021.132894
http://creativecommons.org/licenses/by/4.0/

D. Crommelin and W. Edeling Physica D 422 (2021) 132894

w
ith t ∈ R+

0 , x ∈ RN , y ∈ RK and σ : RK
↦→ RN . The initial

conditions are denoted x(0) = x0 and y(0) = y0.
This coupled system can be the result of e.g. spatial dis-

cretization of a partial differential equation. In (1), x denotes
‘‘macroscopic’’ variables, representing phenomena with large spa-
tial scales and/or long timescales. The y denotes ‘‘microscopic’’
variables, typically with small or fast scales. Despite these short-
hand names, we do not assume strong scale separation between
x and y, neither in space nor in time. Often, dim(x) =: N ≪

K := dim(y). The coupling from ‘‘micro’’ to ‘‘macro’’, represented
by σ (y), can be as simple as σ (y) = y, however there are many
cases where coupling effectively takes place via a quantity (e.g. a
discretized spatial field) with the dimension of x rather than of y.
We note that σ is implicitly dependent on x, because y is coupled
to x via equation (1b).

As already discussed in the introduction, even though the
interest is often only in the behavior of x, one needs to simulate
both x and y as they are coupled. This can make numerical simula-
tions very expensive. We aim to reduce the computational cost by
replacing σ by a data-inferred approximation or surrogate σ̃ surr(x)
in (1a) so that a closed, reduced system is obtained involving
only x. In this study, we discuss a data-driven approach in which
the surrogate is not only x-dependent but it is also stochastic
and has memory. The stochasticity and memory-dependence of
the surrogates both follow from the Mori–Zwanzig theory, see
e.g. [23,24] for more details.

We focus here on the case where σ enters as an additive
term for x, i.e. dx/dt = f (x) + σ (we note that the methodology
presented here can in principle also be used when σ enters as
a multiplicative term, however we do not perform tests on such
cases here). Furthermore, we consider the discrete-time version
of this system, resulting from using an (explicit) numerical time
integration scheme for (1) with time step ∆t . We define xj := x(tj)
and yj := y(tj). For simplicity we assume a constant time step so
that tj = j∆t and thus x0 and y0 as defined here coincide with
the initial conditions defined earlier. We denote the discrete-time
system by

xj+1 = F (xj) + rj (2a)

yj+1 = G(xj, yj) (2b)

rj := r(yj) (2c)

Clearly, j ∈ N is the time index here. The precise form of F and
G depends on the time integration scheme used. For instance, a
simple forward Euler scheme would result in F (xj) = xj+∆t f (xj),
G(xj, yj) = yj + ∆t g(xj, yj) and r(yj) = ∆t σ (yj).

The model structure in (2) reflects a modular computational
set-up that can be encountered in various applications (see e.g.
[28,29]), where different submodels (or model components) are
used for macroscopic and microscopic processes. For example, a
single macromodel can be coupled to multiple micromodels that
each cover a different physical process, or a different part of the
spatial domain. At every ∆t timestep of the macromodel for x, the
micromodel(s) is called to propagate yj to yj+1 given xj (possibly
using multiple smaller‘‘micro’’ time steps in order to cover one
‘‘macro’’ time step ∆t) so that rj can be updated to rj+1.

In terms of the discrete-time system (2), the aim of reduced
multiscale modeling with a surrogate is to construct a computa-
tionally cheap approximation for updating rj to rj+1, so that the
expensive micromodel is no longer needed to simulate x.

3. A stochastic surrogate model from data

We assume that we have observation data available in the
form of time series of (xj, rj) generated by the full multiscale
model (2). We denote these observations by (xo, ro), j = 0, 1, . . . ,
j j

2

T (note that the data include r but not y). The case we have in
mind here is where these data come from numerical simulation
of the full multiscale model, e.g. simulation on a limited spatial
domain or over a limited time interval. However they can also
come from physical experiments or measurements. If only obser-
vations of x are available, we can easily construct ‘‘observations’’
of r using roj = xoj+1 − F (x0j), from (2a). We assume that there is
no significant observational error.

Key to our approach is that we aim to build a surrogate model
for the time evolution of r by sampling from the distribution of
rj+1 conditional on the past states of x and r , i.e. sampling from
the conditional distribution

rj+1 | rj, rj−1, . . . , xj, xj−1, . . . (3)

It is usually not known how to obtain this distribution in a
systematic way from the model (1) or (2). Therefore we make use
of the observations (xoj , r

o
j) to build a surrogate.

We note that we do not need to have an explicit expression for
the conditional distribution of rj+1 (or an approximation of it), we
merely need to be able to sample from it. This can be achieved by
resampling from the observations in an appropriate way. Because
we use resampling, we do not have to assume specific structural
properties of the conditional distribution of r for constructing the
surrogate.

Thus, we construct a ‘‘stochastic surrogate’’ for r by random
sampling from roj+1 | roj , r

o
j−1, . . . , x

o
j , x

o
j−1, To make this practi-

cal, we assume finite memory (i.e., roj+1 does not dependent on roj′
if j − j′ is large enough), and we define the feature vectors

d̃j := (r̃j, r̃j−1, . . . , r̃j−J , x̃j, x̃j−1, . . . , x̃j−J) (4a)

doj := (roj , r
o
j−1, . . . , r

o
j−J , x

o
j , x

o
j−1, . . . , x

o
j−J) (4b)

for some finite memory depth J . The feature vectors take values
in the feature space, which in this case has dimension 2N(J + 1)
since dim(x̃) = dim(r̃) = N . It is straightforward to change
the definition of the feature vectors, for example using different
memory depth (history) for x̃ and r̃ (in (4) it is J for both),
or including only every nth time step (subsampling), or using
functions of r̃ or x̃, or leaving out either r̃ or x̃ entirely. For ease
of exposition, we stick to the definitions in (4).

We sample r̃j+1 randomly from the set Sj+1 consisting of all
observations roi+1 whose associated feature vector doi is close to
d̃j. Our reduced model then is

x̃j+1 = F (x̃j) + r̃j (5a)

r̃j+1 : random sample from Sj+1 :=

{
∀ roi+1

⏐⏐⏐ d̃j close to doi
}

(5b)

The resampling step to update r̃j is very similar in philosophy
to the local bootstrap for Markov processes proposed by [30]
and the nearest neighbor (k-NN) resampling scheme by [31].
By the local bootstrap procedure, ‘‘pseudo-time series’’ can be
generated that reproduce the temporal dependence properties
of observations from a stationary Markov process of order p,
see [30].

However, an important difference with the situation consid-
ered in [30,31] is that here, we resample a quantity (r) that is
(two-way) coupled with another quantity (x) which is not resam-
pled. We update r̃j by resampling from roi+1 | roi , x

o
i , r

o
i−1, x

o
i−1, . . .

but we update x̃j by using the model (5a). In [30,31] there is no
such coupling to another model involved.

Note that we do not use the expectation (sample average) of
Sj+1 to update r̃j in (5b). Using the expectation may be well-suited
for a one-step ahead prediction of x̃j+1, however it misses the
inherent uncertainty of rj+1 given its current and past states (as
summarized in the feature vector). Another aspect of sampling

versus averaging is that the expectation may be ‘‘unphysical’’

D. Crommelin and W. Edeling Physica D 422 (2021) 132894

(
t
t

l
‘
b
i
m
o
r

d
l
e
N

a
d
o
T
2
p
T
p
m
H
n

4

b
W
o
d
h

p
b
t
t
d
t
f
M
a

ρ

Fig. 1. Diagram of a feed-forward QSN with two hidden layers. Here, h(i)
out is the output of the ith neuron in the output layer, to which a softmax layer is attached.
O
a

m
{

f
g
w

o

t
s
t

4

c
v
T
t
d
h

i
T
(

ρ

i.e., yield a value not consistent with the full model (2)) whereas
he individual samples were generated by the full model and are
hus entirely consistent with it.

In previous studies [11,26] we used resampling (albeit formu-
ated somewhat differently) with an implementation relying on
‘binning’’: the feature space was divided into non-overlapping
ins (or cells), and d̃j was considered close to doi when both were
n the same bin. At any time during simulation with the reduced
odel, the feature vector d̃j fell within a single bin. From the set
f observation feature vectors doi that fell in the same bin, we
andomly selected one and used the associated roi+1 as r̃j+1.

The results with this implementation were positive, but a
rawback is that one quickly runs into curse of dimension prob-
ems when binning the feature space. If we use Nbins bins in
ach dimension of the feature space, the total number of bins is
2N(J+1)
bins . This number grows exponentially with both N and J .
However, instead of binning the input features (doi), we can

lso bin the output data (roi+1). The advantage is that the curse of
imensionality is strongly reduced in this way, since it involves
nly one variable and no time-lagged quantities are included.
hus, the space to be binned has dimensions N , rather than
N(J + 1). If N is large, the curse of dimensionality will still pose
roblems. We discuss in Section 4.2 how this can be dealt with.
he disadvantage of binning the output data is that, unlike in the
revious approach (where the features were binned), no simple
ap from d̃j to the output bin (from which to sample r̃j+1) exists.
owever, we can learn this mapping from the data using a neural
etwork. This is discussed in the next section.

. Resampling by neural network classification

We introduce here an approach for resampling by combining
inning and probabilistic classification using a neural network.
ith this approach we can generate r̃j+1 by resampling from the
bservation data, as in (5), without being hampered by curse of
imension problems that occur if the input feature vector is of
igh dimension.
The basic idea is the following. As mentioned briefly in the

revious section, we discretize the space of the observation {roj }
y defining a set of M non-overlapping subsets {Bm}

M
m=1 (referred

o as ‘‘bins’’ here) so that roj ∈ B1 ∪B2 ∪ · · · ∪BM for all j. Then we
rain a neural net to map the feature vector doj to a probability
istribution over the bins {Bm}. This distribution corresponds to
he probabilities that roj+1 sits in the various bins Bm, given the
eature vector doj . Denoting the probability distribution as the
-dimensional vector ρ := (ρ1, . . . , ρM)T , we thus want to train
neural net ρNN such that
NN(do) ≈ P(ro ∈ B | do) . (6)
m j j+1 m j t

3

bviously, ρNN
m (d) ∈ [0, 1] for all m, and

∑M
m=1 ρNN

m (d) = 1 for
ny feature vector d.
In the reduced model (5), given d̃j, we generate r̃j+1 by (i) co-

puting ρ = ρNN(d̃j), (ii) random sampling of a bin index m ∈

1, 2, . . . ,M} in accordance with ρ, (iii) random sampling of r̃j+1
rom all roi in the mth bin, Bm. Steps (ii) and (iii) can be combined:
iven ρ, we sample r̃j+1 randomly from all roi , with weights
i =

∑
m |Bm|

−1 ρm 1(roi ∈ Bm). Here |Bm| denotes the number
f training points roi in Bm, and 1(.) is the indicator function.
Training ρNN can be seen as a task of probabilistic classifica-

ion, with the bins Bm as classes (M in total). In the next two
ubsections we discuss classification by a neural network, first for
he case with N = 1, then for N > 1.

.1. Scalar-valued r and x

In case r and x are scalar (N = 1), a neural network for the
lassification task has 2J + 2 inputs (the dimension of the feature
ector when N = 1) and a M-dimensional softmax output layer.
his is denoted a quantized softmax network (QSN). Note that
his approach has been generalized to predict conditional kernel-
ensity estimates for continuous variables, see [32]. However,
ere we stick to the discrete version.
We use a feed-forward architecture (see Fig. 1), noting that

t can easily be replaced by other architectures in our set-up.
he softmax layer computes the output probability mass function
pmf) as

NN
m (doj) =

exp
(
h(m)
out

)
∑M

i=1 exp
(
h(i)
out

) . (7)

Here, h(i)
out is the output of the ith neuron in the output layer.

Finally, a cross-entropy loss function [33] is used for training the
network:

L = −
1

T − J − 1

T−1∑
j=J

M∑
m=1

[log ρNN
m (doj)] 1(r

o
j+1 ∈ Bm). (8)

For a given j index, the gradient of (8) with respect the output
neurons (required to initialized a back propagation step), is given
by ∂L/∂h(m)

out = ρNN
m − 1(roj+1 ∈ Bm) [33].

We emphasize that the method proposed here is fundamen-
tally different from the approach of using a neural net to predict
r̃j+1 directly from d̃j as in e.g. [16–18]. In the latter approach, r̃j+1

is modeled as a function of d̃j, with the neural net embodying
the function as a deterministic mapping from the space of d̃j to
he space of r̃ . By contrast, in our approach r̃ is resampled
j+1 j+1

D. Crommelin and W. Edeling Physica D 422 (2021) 132894

i
d

r
T
t
∂

5

p
c
u
e
r
t
m
i
p
m
t

5

t
w
N

nstead of modeled. Moreover, the mapping from the space of
˜ j to the space of r̃j+1 in our approach is stochastic, not deter-
ministic. Note that even if the neural net performs poorly, the
r̃j+1 that are generated remain consistent with the full model (as
they are resampled from the full model), albeit possibly not well-
matched with the feature vectors d̃j. Consistency in the case of
vector-valued r (i.e., N > 1) is discussed next.

4.2. Vector-valued r and x

For the situation where r and x are vector-valued (N > 1),
generalization of the approach discussed in the previous section
for the scalar case is possible, however it can quickly run into the
curse of dimension when done naively. The N > 1 case arises
for example when the vectors r and x represent spatial fields
discretized on a grid, so that the different elements of the vectors
are associated with different gridpoints.

There are several possibilities for generalization. On the input
side, the most straightforward approach is to enlarge the input
layer from 2J + 2 to 2N(J + 1) inputs. This simply reflects the
increased dimension of the feature vector. With large N , different
network architectures than fully connected feed-forward may
well be more effective, in particular convolutional neural net-
works for when r and x are gridded spatial fields. We leave further
exploration of this for future study, here we stick to the feed-
forward architecture discussed earlier. Besides different network
architecture, a form of spatial localization can be used; this is
discussed later in this section.

On the output side, if we bin the space in which the vector
r lives, we quickly run into curse of dimension problems again.
Instead, we bin all individual elements of the vector r separately.
This scales linearly with dimension (N): with Nbins bins for each
vector element, we have N×Nbins bins in total. As a consequence,
the output layer is no longer fully connected to a single softmax
layer, see Fig. 2 for a diagram involving N = 2 probabilistic
outputs. While each element of r has its own independent soft-
max layer, all elements share the same feature vector and hidden
layers. If there are dependencies between different elements of
r in the full model (2), they must be learned from the data {roj }.
Such dependencies can be due to e.g. spatial correlations (with
different vector elements representing different locations on a
spatial grid). The separate elements of the vector r̃j generated
this way are consistent with the full model, however their com-
bination (i.e., the vector as a whole) may not be consistent if the
network is poorly trained (in which case dependencies may be
misrepresented).

While the scaling is linear with N , the number of output neu-
rons can still become very large, especially for problems in two or
three spatial dimensions (where N can be e.g. O(106)). To tackle
cases with large N due to gridded spatial fields, one can formulate
‘‘local’’ parameterizations. Let us denote x at time tj at gridpoint n
by (xj)n, and similarly for (rj)n. Also, Ωn denotes a (to be specified)
neighborhood of gridpoints centered on (and including) n. A local
parameterization to generate (r̃j+1)n takes only (x̃j)n′ and (r̃j)n′

with n′
∈ Ωn (and possibly their histories) as its inputs. Thus, it

ignores (x̃j)n′ and (r̃j)n′ at other gridpoints n′ /∈ Ωn. If we assume
conditional spatial homogeneity (given all (x̃j)n′ and (r̃j)n′ with
n′

∈ Ωn, the distribution of (r̃j+1)n is independent of n), only
one neural network for (r̃j+1)n is needed which can be used for
all gridpoints. Moreover, data from different gridpoints can be
pooled for training. Note that with such a local parameterization,
the neural network is used to produce a scalar quantity, therefore
it has only one softmax layer.

Two limiting cases for the neighborhood are Ωn = {1, . . . ,N}

(i.e., Ωn consists of all gridpoints) and Ωn = {n} (only grid-
point n itself). The latter, a completely localized parameterization
4

(Ωn = {n}) is standard practice in e.g. atmosphere-ocean science.
However, it may fail to capture spatial correlations.

Returning to our approach with N softmax layers, the loss
function is also slightly modified, as it now includes summation
over the N layers:

L = −
1

T − J − 1

T−1∑
j=J

N∑
n=1

M∑
m=1

[log ρNN
m,n(d

o
j)] 1(r

o
j+1, n ∈ Bm, n). (9)

Here, ρNN
m,n is the QSN predicted probability for the mth bin of the

nth softmax layer, and the indicator function 1(roj+1,n ∈ Bm,n) rep-
esents the one-hot encoded data per softmax layer (see Fig. 2).
he gradient of (9) with respect to the output neurons retains
he same expression as in the case of a single softmax layer, i.e.
L/∂h(m,n)

out = ρNN
m,n − 1(roj+1, n ∈ Bm ,n).

. Numerical experiments

In this section we present several examples to test the ap-
roach proposed in the previous section: model reduction ac-
ording to (5) with the resampling step in (5b) implemented
sing QSNs. In these tests, it is not our aim to recreate the
xact trajectories of the original coupled model (2) with the
educed model. The loss of information due to model reduction,
he stochastic nature of our surrogates, and the nonlinearity of
ultiscale problems, makes this impossible after a certain time

ntegration length. Instead, our goal for the setup (5) is to re-
roduce the time-averaged statistical properties of the original
acroscopic variables x, e.g.,. the probability density function or

he auto-correlation function.

.1. Model equations Lorenz 96

As a proof of concept, we test our setup on the well-known
wo-layer Lorenz 96 (L96) system, originally proposed by [34],
hich is a toy model for the atmosphere. It consists of a set of
ODEs describing the evolution of the macroscopic variables Xn,

of which each ODE is coupled to L microscopic variables Yl,n (note
that n and l are spatial grid indices here):

dXn

dt
= Xn−1 (Xn+1 − Xn−2) − Xn − F + rn

rn :=
hx

L

L∑
l=1

Yl,n

dYl,n

dt
=

1
ϵ

[
Yl+1,n

(
Yl−1,n − Yl+2,n

)
− Yl,n + hyXn

]
. (10)

The macroscopic and microscopic variables Xn and Yl,n are consid-
ered variables on a circle of constant latitude (see Fig. 3), where
the indices n = 1, . . . ,N and l = 1, . . . , L denote the spatial
location. Note that there are L microscopic solutions Yl,n for every
n, such that Y = (Y1,1, Y1,2, . . . , YL,N) ∈ RK , where K = NL.
The circular shape of the domain is imposed through periodic
boundary conditions:

Xn = Xn+N , Yl,n = Yl, n+N , Yl+L, n = Yl, n+1. (11)

The two-step Adams–Bashforth method is chosen as the numer-
ical time-discretization procedure, and we set ∆t = 0.01 as the
time step. Note that (10) is only used to generate the training
data. In line with (5), we only solve the Xn equation with a QSN
surrogate for rn when predicting.

The behavior of the system is governed by the parameter
settings of {N, L, F , hx, hy, ϵ}. Commonly, ϵ is chosen such that
ϵ ≪ 1, in which case a clear time-scale separation between
the macroscopic and microscopic variables is imposed. We will

follow [7] and use ϵ = 0.5, such that no clear temporal gap exists,

D. Crommelin and W. Edeling Physica D 422 (2021) 132894

m
B

d

w
c
d

t
b
O
(
s
s
b
t
p

l

c

c
t
s
c
i
g
n

5

1

Fig. 2. Diagram of the final layers of a feed-forward QSN with two probabilistic
outputs with 4 bins each (N = 2, M = 4). Here, h(m,n)

out is the output of the
th neuron in the output layer attached to the nth softmax layer. Here, 1(roj+1,n ∈

m,n) displays an example one-hot encoded data vector, for both softmax layers.

Fig. 3. A snapshot of the solution of the two-layer L96 system (10). Here X
enotes the vector of all Xn solutions and Y is the vector containing all Yl,n .

hich is more realistic for turbulent geophysical flows, and more
hallenging for parameterizations. Specifically, we will use two
ifferent parameter settings:

1. The unimodal setting: {N, L, F , hx, hy, ϵ} = {18, 20, 10, −1,
1, 0.5},

2. The bimodal setting: {N, L, F , hx, hy, ϵ} = {18, 20, 10, −2,
1, 0.5}.

The naming convention stems from the number of modes in
he probability density functions (pdfs) of the Xk variables. The
imodal setting intensifies the feedback from the microscopic
DEs to the macroscopic ODE, by modifying the hx parameter (see
10)). Specifically, we decrease hx from −1 to −2. In the unimodal
etting, both the Xn and rn pdfs are unimodal and nearly Gaussian,
ee Fig. 7. This is no longer the case for hx = −2, when the pdfs
ecome non-symmetric and bimodal. The difference between the
wo parameter settings can also clearly be seen from a scatter
lot of Xn vs rn, see Fig. 4.
Other authors have used L96 as a benchmark for machine

earning methods. For instance in [35], three separate methods
 i

5

are used to predict the full X (j+1)
= (X1(tj+1), . . . , XN (tj+1)) vector.

Also, the authors of [36] used a neural network to predict the
tendency ∆X = X (j+1)

− X (j) one time step ahead. Note that
these are deterministic approaches, and are not applied in the
context of parameterization (they are used to predict X (j+1) itself
rather than r (j+1)). Closer to our approach, the interesting recent
work of [25] uses conditional Generative Adversarial Networks
(GANs) for the purpose of stochastic parameterization of the L96
subgrid-scale term. GANs have a different architecture than our
QSNs, and unlike our approach, include a stochastic component in
the inputs. The approach from [25] does not involve resampling,
and was tested on the L96 model at a (single) different parameter
setting.

5.2. Learning procedure

To inform the weights of a QSN, we use back propagation with
Stochastic Gradient Descent with the RMSProp optimizer and a
learning rate of 0.001 [33]. The number of training iterations was
set to 10000. After experimenting with different networks, we se-
lected 3 hidden layers, each with 256 neurons and leaky Rectified
Linear Unit activation functions. The output layer, which feeds
into the softmax layers, is linear. Furthermore, the input features
doj are standardized to have zero mean and a standard deviation of
one, before being fed into the QSN. We create two local surrogates
(both trained on a single spatial location, one with neighborhood
Ωn = {n} and one with Ωn = {1, . . . ,N}), as well as a stochastic
surrogate for the full vector-valued r := [r1, . . . , rN]

T , in which
ase we have N softmax layers, see Section 4.2.
A common practice in machine learning is to leave out a part

of the data set (i.e. to not use it in training), to test the accuracy of
the final model. In our case however, the trained neural network
itself is not the final model, it is merely a source term in the final
model (the macroscopic ODE (5a)). To test the accuracy of the
neural network, we therefore have to perform a simulation with
two-way coupling between the ODE and the neural net. We leave
out the final 50% of the data and test the ability of this coupled
system to predict the macroscopic statistics of the test set.

5.3. Results: verification

To visualize the complexity of the bin classification and to
verify quality of a trained QSN, consider Fig. 5. Here we show a
scatter plot with a lagged Xn feature on both axes. The symbols
in the scatter plot are color coded for the corresponding r bin
index. We show both the exact results from the training data and
the QSN prediction, using the training doj as input features. Fig. 5
verifies that the QSN can learn a good bin index representation
in the space of lagged input variables. A typical misclassifica-
tion error for each softmax layer n = 1, . . . ,N (defined as
argmmax ρNN

m,n(d
o
j) ̸= argmmax 1(roj+1,n ∈ Bm,n)), is roughly 3%–4%.

To verify the random resampling software we plot the time
series of the data roj+1 and stochastic surrogate r̃j+1(doj) in Fig. 6. It
an be seen that the time series of the surrogate r̃j+1(doj) is noisier
han that of the data roj+1. This is due to the random sampling
tep summarized in (5b): r̃j(doj−1) and r̃j+1(doj) are not as strongly
orrelated as doj−1 and doj . However, the high-frequency variability
n r̃j+1 is much smaller than the low-frequency variability, and
ets filtered out by the time integration of x̃ as we will see in the
ext subsection.

.4. Results: validation

We simulate the reduced system (5) from t = 0 until t =

000, while the training data spanned t ∈ [0, 500]. The sampling

nterval of the training data is 0.01, same as the time step used

D. Crommelin and W. Edeling Physica D 422 (2021) 132894

o

a

f
i
f
i
d
t

Fig. 4. Scatter plot of Xn vs rn for {N, L, F , hx, hy, ϵ} = {18, 20, 10, −1, 1, 0.5} (left), and {N, L, F , hx, hy, ϵ} = {18, 20, 10, −2, 1, 0.5} (right).
Fig. 5. A twice time-lagged Xn conditioning feature is shown on both axes, and the color of the ‘‘+’’ symbols denotes the index of the bin with highest probability
f the corresponding rj+1 sample. The left plot shows the output bin indices of the training data, and the right plot shows the predicted indices corresponding to

QSN output pmf, when using the training features doj as input. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 6. At any given time tj , the QSN predicts a conditional pmf (left). The predicted bin index from this pmf feeds into our data resampling software, which outputs
random r̃j+1 . Its time series (for a single spatial point n), along with the subgrid-scale (SGS) data r are shown on the right.
or numerical integration, see Section 5.1. Subsampling the data
s possible (see also [7]), e.g. by adapting the definition of the
eature vector as mentioned in Section 3, however we do not use
t here. Our macroscopic statistics of interests are the probability
ensity function and auto-correlation function of Xn, as well as
he cross-correlation function of X and X . In addition, we
n n+1

6

compute the same statistics for rn. All statistics are averaged over
all n, and computed on the test set only, i.e. using data from
t ∈ [500, 1000].

Our main goal here is twofold: We investigate the importance
of the length of the history (memory depth) in the feature vector
(J in definition ((4))). Furthermore, we demonstrate the relevance

D. Crommelin and W. Edeling Physica D 422 (2021) 132894

Q

o
a
p
a

5

W
t
T
i
g
L

Fig. 7. Probability density functions of Xn (left) and rn (right). Dots denote the full two-layer solution and solid lines denote the reduced model with QSN surrogate.
Fig. 8. Auto-correlation function of Xn (left) and rn (right). Dots denote the full two-layer solution and solid lines denote the reduced model with QSN surrogate.
Fig. 9. Cross-correlation function of Xn and Xn+1 (left) and rn and rn+1 (right). Dots denote the full two-layer solution and solid lines denote the reduced model with
SN surrogate.
i
a

m
s
o
i
t
o

f a stochastic approach by comparing resampling with using
verages (as discussed in Section 3). In addition, we compare the
erformance of a surrogate that is trained and applied locally, and
surrogate which predicts the entire r̃j+1 ∈ RN vector at once.

.4.1. Short vs long memory
For our first test case we will the unimodal parameter values.
e first create a full-vector QSN with a short memory, e.g. with

wo time-lagged X := (X1, . . . , XN) vectors in doj . Let X
(j)

:= X(tj).
he statistical results, when using doj = (X (j), X (j−9)), are shown
n Figs. 7–9. Despite the short memory in doj , these display a
ood match between the statistics of the reduced and the full
96 system. Note that in this case do ∈ R2N , which would be
j

7

mpossible in the case of a surrogate that bins the input space,
s in [11].
Above, we used a parameter setting for the L96 model that

akes parameterization challenging because of the lack of scale
eparation (ϵ = 0.5 as discussed). Here, we put more strain
n the QSN by employing the bimodal parameter setting. This
s a harder test case, and more care needs to be taken with
he specification of the feature vector doj . In fact, the amount
f memory in doj becomes very important. If we use 10 X vec-

tors, i.e. doj = (X (j), X (j−1), . . . , X (j−9)), we obtain the results of
Figs. 10–12, which display a clear failure of capturing the refer-
ence statistics. Also note the bimodal nature of the reference pdfs.
We performed further tests with 25, 50 and 75 lagged X vectors,

D. Crommelin and W. Edeling Physica D 422 (2021) 132894
Fig. 10. Probability density functions of Xn (left) and rn (right), using doj = (X (j), X (j−1), . . . , X (j−9)). Plus symbols denote the full two-layer solution and solid lines
denote the reduced model with QSN surrogate.
Fig. 11. Auto-correlation function of Xn (left) and rn (right), using doj = (X (j), X (j−1), . . . , X (j−9)). Plus symbols denote the full two-layer solution and solid lines denote
the reduced model with QSN surrogate.
Fig. 12. Cross-correlation function of Xn and Xn+1 (left) and rn and rn+1 (right), using doj = (X (j), X (j−1), . . . , X (j−9)). Plus symbols denote the full two-layer solution
and solid lines denote the reduced model with QSN surrogate.
and only obtained good statistics with 75 vectors. These results
are shown in Figs. 13–15.

5.4.2. Local parameterization
In Section 4.2 we discussed the set-up of a local parameter-

ization, in which the QSN has only one softmax layer and the
prediction for gridpoint n depends on quantities at gridpoints in
the neighborhood Ω centered on n. Here we show results for the
n

8

bimodal case using Ωn = {1, . . . ,N} (results with Ωn = {n} are in
the next subsection). For memory depth we take J = 74, a value
that gave good results in the previous section.

The probability density functions are in Fig. 16, autocorrelation
functions in Fig. 17. As can be seen, the reduced system with this
surrogate succeeds in capturing the reference statistics, similar to
the results from the previous section where a full-vector QSN was
used with J = 74 (Figs. 13–15).

D. Crommelin and W. Edeling Physica D 422 (2021) 132894

t

Fig. 13. Probability density functions of Xn (left) and rn (right), using doj = (X (j), X (j−1), . . . , X (j−74)). Plus symbols denote the full two-layer solution and solid lines
denote the reduced model with QSN surrogate.
Fig. 14. Auto-correlation function of Xn (left) and rn (right), using doj = (X (j), X (j−1), . . . , X (j−74)). Plus symbols denote the full two-layer solution and solid lines denote
he reduced model with QSN surrogate.
Fig. 15. Cross-correlation function of Xn and Xn+1 (left) and rk and rk+1 (right), using doj = (X (j), X (j−1), . . . , X (j−74)). Plus symbols denote the full two-layer solution
and solid lines denote the reduced model with QSN surrogate.
u
T
c
s

5.4.3. Stochastic vs deterministic
We recall (5b) and the discussion in Section 3 about resam-

pling versus using bin averages. Here we compare sampling from
the set Sj+1 (i.e. the output bin in the case of a QSN), with using
the sample mean of Sj+1. If we also use argmmax ρNN (d̃j) as the
predicted output bin index, we obtain a completely deterministic
surrogate r̃j+1. We tested this approach on the full-vector sur-
rogates of the preceding section, and obtained similar results as
with resampling. However, when applying the surrogate locally,
we find a significant impact due to the stochastic nature of r̃j+1.
As mentioned, the local surrogate is trained on a single spatial
9

location (here with neighborhood Ωn = {n}), and during pre-
diction it is applied independently for each Xn equation. Such an
approach is not uncommon, see e.g. [7,25,37], and it matches the
local nature of traditional parameterization schemes.

As an example, consider the auto-correlation results of
Figs. 18–19, which show the results of the stochastic and de-
terministic surrogate respectively. Note that here, hx = −1 was
sed, i.e. the easier of the two parameter setting we consider.
he stochastic surrogate clearly outperforms its deterministic
ounterpart in this case. Other statistics (cross-correlation, pdf)
howed similar results.

D. Crommelin and W. Edeling Physica D 422 (2021) 132894

t

5

v
h
t
e
n
s
t
m
G

Fig. 16. Probability density functions of Xn (left) and rn (right), using the local parameterization with neighborhood Ωn = {1, . . . ,N} and doj = (X (j), X (j−1), . . . , X (j−74)).
Plus symbols denote the full two-layer solution and solid lines denote the reduced model with QSN surrogate.
Fig. 17. Auto-correlation function of Xn (left) and rn (right), using the local parameterization with neighborhood Ωn = {1, . . . ,N} and doj = (X (j), X (j−1), . . . , X (j−74)).
Plus symbols denote the full two-layer solution and solid lines denote the reduced model with QSN surrogate.
Fig. 18. Auto-correlation function of Xn (left) and rn (right), using doj = (X (j), X (j−1), . . . , X (j−74)). Plus symbols denote the full two-layer solution and solid lines denote
he reduced model with the local and stochastic QSN surrogate.
r
c

5

l

6

a

.4.4. X-only vs X − r conditioning
In Section 3 we outlined the general case in which the feature

ector consists of time-lagged x and r variables. Yet, thus far we
ave only shown X-only surrogates for the L96 system. We found
hat including rj in doj can contribute to obtain a small training
rror, especially in the case of local surrogates. However, we did
ot obtain robust statistical predictions when doing so. These re-
ults are in line with those from [25]. As mentioned in Section 5.1,
hese authors considered stochastic parameterizations for L96 by
eans of conditional GANs. For a variety of tests, their X-only
ANs clearly outperformed the GANs conditioned on both X and
10
. One possible cause may be overfitting, due to the very strong
orrelation between rj and rj+1 [25].

.5. Software

The source code used to generate the results can be down-
oaded from [38].

. Discussion and future challenges

The preceding results show that, for the L96 system, the
mount of memory (J) in do was not of major importance in the
j

D. Crommelin and W. Edeling Physica D 422 (2021) 132894

t

t
t
r
b
(
I
a
i
c
w
t

l
f
l
i
m

r
a
s
p
b
i
n
i

7

r
t
s
a
p
o
p
c
b
d
i
o
v
t
v

t

Fig. 19. Auto-correlation function of Xn (left) and rn (right), using doj = (X (j), X (j−1), . . . , X (j−74)). Plus symbols denote the full two-layer solution and solid lines denote
he reduced model with the local and deterministic QSN surrogate.
m
t
w
l

D

c
t

A

t
l
p
f
i
p

R

ests with the unimodal parameter settings (hx = −1). However,
he more challenging bimodal parameter settings (hx = −2,
ight subplot of Fig. 4) resulted in a problem for which memory
ecame crucial. In general, we expect that for more complicated
geophysical) flow problems, memory will play an important part.
t is clear however, that the ‘‘optimal’’ doj is problem dependent,
nd a systematic procedure for designing the best feature vector
s an interesting avenue for future research. This could involve
hanging the network architecture (e.g. combining resampling
ith Long Short-Term Memory networks [39]), or finding optimal
ime lags using approaches as described in [40].

Another clear avenue for future research is to apply machine
earning with resampling as proposed here to more complex
lows. In Section 4.2, we have discussed ways to deal with the
arge output dimension, including spatially localized parameter-
zation. An interesting test problem is a two-dimensional ocean
odel, as in e.g. [20,26,27].
Finally, as mentioned in Section 5.2, we train the QSN sepa-

ately on the data, and afterwards a validation procedure involves
two-way coupling between the ODEs and the QSN. This gave
atisfactory results for the L96 model, but for more complicated
roblems, such an ‘‘offline’’ training strategy could lead to insta-
ilities in the ‘‘online’’, two-way coupled simulation as discussed
n [37]. Developing new learning procedures, in which the neural
etwork is trained while it is part of the larger dynamical system
s of interest.

. Conclusion

We presented a machine-learning method for the conditional
esampling of subgrid-scale data of multiscale dynamical sys-
ems, resulting in a stochastic parameterization for the unre-
olved scales. The current model is comprised of a feed-forward
rchitecture with (multiple) softmax layers attached to the out-
ut. The output data is divided into a finite number of non-
verlapping intervals (denoted as ‘bins’), and the softmax layers
redict a discrete probability density function over these bins,
onditioned on time-lagged macroscopic input features. First a
in is sampled from this distribution, which is followed by ran-
omly selecting a reference subgrid-scale data point from the
dentified bin. This stochastic surrogate model then replaces the
riginal subgrid-scale term in the dynamical system, and we
alidate the method by examining the ability of this system
o capture the long-term statistics of the resolved, macroscopic
ariables.
In this initial study we considered the Lorenz 96 system at

wo different parameter settings. We were able to validate our
11
ethod on this problem, provided that a sufficient number of
ime-lagged variables were included in the feature vector. Finally,
e also found that overall, the stochastic nature of the surrogate

ed to more robust performance.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

We thank an anonymous reviewer whose comments helped
o improve the paper. This research is funded by the Nether-
ands Organization for Scientific Research (NWO) through the Vidi
roject ‘‘Stochastic models for unresolved scales in geophysical
lows’’, and from the European Union Horizon 2020 research and
nnovation programme under grant agreement #800925 (VECMA
roject).

eferences

[1] Weinan E, Bjorn Engquist, Xiantao Li, Weiqing Ren, Eric Vanden-Eijnden,
Heterogeneous multiscale methods: A review, Commun. Comput. Phys. 2
(3) (2007) 367–450.

[2] Grigoris Pavliotis, Andrew Stuart, Multiscale Methods: Averaging and
Homogenization, Springer, 2008.

[3] Ioannis G. Kevrekidis, Giovanni Samaey, Equation-free multiscale compu-
tation: Algorithms and applications, Annu. Rev. Phys. Chem. 60 (2009)
321–344.

[4] Weinan E, Principles of Multiscale Modeling, Cambridge University Press,
2011.

[5] F. Sarghini, G. De Felice, S. Santini, Neural networks based subgrid scale
modeling in large eddy simulations, Comput. & Fluids 32 (1) (2003)
97–108.

[6] Vladimir M. Krasnopolsky, Michael S. Fox-Rabinovitz, Complex hybrid
models combining deterministic and machine learning components for
numerical climate modeling and weather prediction, Neural Netw. 19 (2)
(2006) 122–134.

[7] Daan Crommelin, Eric Vanden-Eijnden, Subgrid-scale parameterization
with conditional Markov chains, J. Atmos. Sci. 65 (8) (2008) 2661–2675.

[8] K. Nimsaila, I. Timofeyev, Markov chain stochastic parametrizations of
essential variables, Multiscale Model. Simul. 8 (5) (2010) 2079–2096.

[9] Jesse Dorrestijn, Daan T. Crommelin, A. Pier Siebesma, Harm J.J. Jonker,
Stochastic parameterization of shallow cumulus convection estimated from
high-resolution model data, Theor. Comput. Fluid Dyn. 27 (1–2) (2013)
133–148.

[10] Ming Ma, Jiacai Lu, Gretar Tryggvason, Using statistical learning to close
two-fluid multiphase flow equations for a simple bubbly system, Phys.
Fluids 27 (9) (2015) 092101.

http://refhub.elsevier.com/S0167-2789(21)00052-X/sb1
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb1
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb1
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb1
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb1
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb2
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb2
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb2
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb3
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb3
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb3
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb3
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb3
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb4
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb4
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb4
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb5
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb5
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb5
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb5
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb5
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb6
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb6
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb6
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb6
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb6
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb6
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb6
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb7
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb7
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb7
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb8
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb8
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb8
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb9
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb9
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb9
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb9
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb9
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb9
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb9
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb10
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb10
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb10
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb10
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb10

D. Crommelin and W. Edeling Physica D 422 (2021) 132894
[11] Nick Verheul, Daan Crommelin, Data-driven stochastic representations of
unresolved features in multiscale models, Commun. Math. Sci. 14 (5)
(2016) 1213–1236.

[12] Huan Lei, Nathan A. Baker, Xiantao Li, Data-driven parameterization of
the generalized langevin equation, Proc. Natl. Acad. Sci. 113 (50) (2016)
14183–14188.

[13] Fei Lu, Kevin K. Lin, Alexandre J. Chorin, Data-based stochastic model
reduction for the Kuramoto–Sivashinsky equation, Physica D 340 (2017)
46–57.

[14] Jaideep Pathak, Alexander Wikner, Rebeckah Fussell, Sarthak Chandra,
Brian R. Hunt, Michelle Girvan, Edward Ott, Hybrid forecasting of chaotic
processes: Using machine learning in conjunction with a knowledge-based
model, Chaos 28 (4) (2018) 041101.

[15] Noah D. Brenowitz, Christopher S. Bretherton, Prognostic validation of a
neural network unified physics parameterization, Geophys. Res. Lett. 45
(12) (2018) 6289–6298.

[16] Stephan Rasp, Michael S. Pritchard, Pierre Gentine, Deep learning to
represent subgrid processes in climate models, Proc. Natl. Acad. Sci. 115
(39) (2018) 9684–9689.

[17] R. Maulik, O. San, A. Rasheed, P. Vedula, Subgrid modelling for two-
dimensional turbulence using neural networks, J. Fluid Mech. 858 (2019)
122–144.

[18] T. Bolton, L. Zanna, Applications of deep learning to ocean data inference
and subgrid parameterization, J. Adv. Modelling Earth Syst. 11 (1) (2019)
376–399.

[19] Tim N. Palmer, A nonlinear dynamical perspective on model error: A
proposal for non-local stochastic-dynamic parametrization in weather
and climate prediction models, Q. J. R. Meteorol. Soc. 127 (572) (2001)
279–304.

[20] P.S. Berloff, Random-forcing model of the mesoscale oceanic eddies, J. Fluid
Mech. 529 (2005) 71–95.

[21] Judith Berner, Ulrich Achatz, Lauriane Batte, Lisa Bengtsson, Alvaro de la
Cámara, Hannah M. Christensen, Matteo Colangeli, Danielle R.B. Coleman,
Daan Crommelin, Stamen I. Dolaptchiev, et al., Stochastic parameterization:
Toward a new view of weather and climate models, Bull. Am. Meteorol.
Soc. 98 (3) (2017) 565–588.

[22] T.N. Palmer, Stochastic weather and climate models, Nature Rev. Phys. 1
(7) (2019) 463–471.

[23] Alexandre Joel Chorin, Ole H. Hald, Stochastic Tools in Mathematics and
Science, Springer, 2009.

[24] Kevin K. Lin, Fei Lu, Data-driven model reduction, Wiener projections, and
the Mori–Zwanzig formalism, 2019, arXiv preprint arXiv:1908.07725.
12
[25] D.J. Gagne, H.M. Christensen, A.C. Subramanian, A.H. Monahan, Machine
learning for stochastic parameterization: Generative adversarial networks
in the Lorenz’96 model, J. Adv. Modelling Earth Syst. 12 (3) (2020).

[26] Nick Verheul, Jan Viebahn, Daan Crommelin, Covariate-based stochastic
parameterization of baroclinic ocean eddies, Math. Clim. Weather Forecast.
3 (1) (2017) 90–117.

[27] Wouter Edeling, Daan Crommelin, Towards data-driven dynamic surrogate
models for ocean flow, in: Proceedings of the Platform for Advanced
Scientific Computing Conference, 2019, pp. 1–10.

[28] Alfons Hoekstra, Bastien Chopard, Peter Coveney, Multiscale modelling and
simulation: A position paper, Phil. Trans. R. Soc. A 372 (2021) (2014)
20130377.

[29] Fredrik Jansson, Gijs van den Oord, Inti Pelupessy, Johanna H. Grönqvist,
A. Pier Siebesma, Daan Crommelin, Regional superparameterization in a
global circulation model using large eddy simulations, J. Adv. Modelling
Earth Syst. 11 (9) (2019) 2958–2979.

[30] Efstathios Paparoditis, Dimitris N. Politis, The local bootstrap for Markov
processes, J. Statist. Plann. Inference 108 (1–2) (2002) 301–328.

[31] Upmanu Lall, Ashish Sharma, A nearest neighbor bootstrap for resampling
hydrologic time series, Water Resour. Res. 32 (3) (1996) 679–693.

[32] Luca Ambrogioni, Umut Güçlü, Marcel A.J. van Gerven, Eric Maris, The
kernel mixture network: A nonparametric method for conditional density
estimation of continuous random variables, 2017, arXiv preprint arXiv:
1705.07111.

[33] Charu C. Aggarwal, Neural networks and deep learning, Springer, 2018.
[34] Edward N. Lorenz, Predictability: A problem partly solved, in: Proc.

Seminar on Predictability, Vol. 1, 1996.
[35] Ashesh Chattopadhyay, Pedram Hassanzadeh, Krishna Palem, Devika Sub-

ramanian, Data-driven prediction of a multi-scale Lorenz 96 chaotic system
using a hierarchy of deep learning methods: Reservoir computing, ANN,
and RNN-LSTM, 2019, arXiv preprint arXiv:1906.08829.

[36] Peter D. Dueben, Peter Bauer, Challenges and design choices for global
weather and climate models based on machine learning, Geosci. Model
Dev. 11 (10) (2018) 3999–4009.

[37] Stephan Rasp, Online learning as a way to tackle instabilities and biases in
neural network parameterizations, 2019, arXiv preprint arXiv:1907.01351.

[38] W.N. Edeling, Easysurrogate - phys_D branch (github repository), 2020,
https://github.com/wedeling/EasySurrogate/tree/phys_D.

[39] Sepp Hochreiter, Jürgen Schmidhuber, Long short-term memory, Neural
Comput. 9 (8) (1997) 1735–1780.

[40] Ray J. Frank, Neil Davey, Stephen P. Hunt, Time series prediction and neural
networks, J. Intell. Robot. Syst. 31 (1–3) (2001) 91–103.

http://refhub.elsevier.com/S0167-2789(21)00052-X/sb11
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb11
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb11
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb11
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb11
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb12
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb12
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb12
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb12
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb12
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb13
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb13
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb13
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb13
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb13
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb14
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb14
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb14
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb14
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb14
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb14
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb14
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb15
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb15
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb15
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb15
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb15
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb16
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb16
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb16
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb16
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb16
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb17
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb17
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb17
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb17
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb17
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb18
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb18
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb18
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb18
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb18
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb19
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb19
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb19
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb19
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb19
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb19
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb19
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb20
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb20
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb20
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb21
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb21
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb21
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb21
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb21
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb21
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb21
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb21
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb21
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb22
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb22
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb22
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb23
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb23
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb23
http://arxiv.org/abs/1908.07725
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb25
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb25
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb25
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb25
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb25
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb26
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb26
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb26
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb26
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb26
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb28
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb28
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb28
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb28
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb28
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb29
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb29
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb29
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb29
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb29
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb29
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb29
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb30
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb30
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb30
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb31
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb31
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb31
http://arxiv.org/abs/1705.07111
http://arxiv.org/abs/1705.07111
http://arxiv.org/abs/1705.07111
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb33
http://arxiv.org/abs/1906.08829
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb36
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb36
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb36
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb36
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb36
http://arxiv.org/abs/1907.01351
https://github.com/wedeling/EasySurrogate/tree/phys_D
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb39
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb39
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb39
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb40
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb40
http://refhub.elsevier.com/S0167-2789(21)00052-X/sb40

	Resampling with neural networks for stochastic parameterization in multiscale systems
	Introduction
	Preliminaries
	A stochastic surrogate model from data
	Resampling by neural network classification
	Scalar-valued r and x
	Vector-valued r and x

	Numerical experiments
	Model equations Lorenz 96
	Learning procedure
	Results: verification
	Results: validation
	Short vs long memory
	Local parameterization
	Stochastic vs deterministic
	X-only vs X-r conditioning

	Software

	Discussion and future challenges
	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

