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Structural Information Theory
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Abstract. Analogies are common part of human life; our ability to han-
dle them is critical in problem solving, humor, metaphors and argumen-
tation. This paper introduces a method to solve string-based (symbolic)
analogies based on hybrid inferential process integrating Structural Infor-
mation Theory—a framework used to predict phenomena of perceptual
organization—with some metric-based processing. Results are discussed
against two empirical experiments, one of which conducted along this
work, together with the development of a Python version of the SIT
encoding algorithm PISA.

Keywords: Analogical reasoning · Symbolic analogies · Compression ·
Structural information theory · Complexity

1 Introduction

Analogies are common part of human life; our ability to handle them is critical in
problem solving, humor, metaphors and argumentation [8]. In psychology, anal-
ogy is seen as the process of understanding new information by means of structural
similarities with previously acquired information [10], and analogical reasoning is
one of the predominantly measured abilities on IQ tests. Because of their impor-
tance to cognition, analogies have interested researchers in the field of artificial
intelligence. Systems for the computation of analogies have been created since
the ’60s for many different purposes such as solving puzzles based on objects in
images [3], obtaining information by inference [9], understanding the development
in analogical reasoning in children [16], or even as support in suggesting special-
ized care for patients with dementia [21]. Recent contributions in natural language
processing [14] have suggested that analogical inference can be directly performed
as vector operations on word vectors (e.g., Paris≈ France+ Berlin− Germany).
However, even if some machine learning methods have proven to be unexpectedly
good at reproducing some of these inferences, the overall results are not yet con-
clusive [18]. The centrality of analogies in human reasoning motivates to continue
the effort to find a better understanding of their underlying mechanisms.

The aim of this paper is to offer an alternative solution to string-based (or
symbolic) analogies as those proposed by Hofstadter [8]. The contribution is
a hybrid inferential process integrating Structural Information Theory (SIT),
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introduced to predict phenomena of perceptual organization, with some metric-
based processing depending on the atomic components of the input. Thanks
to an anonymous reviewer we discovered that such an application of SIT has
been explored before [1], with a investigation on the algebraic properties of SIT
extended with domain-dependent operators (e.g., succ to produce consecutive
symbols). However, that work was presented before the creation of the minimal
encoding algorithm PISA used in the present research to conduct our exper-
iments. Even if preliminary, the results of the method we propose go beyond
the state of art both in terms of the types of analogy it can deal with and its
speed. Additionally, we report on the development of a Python version of the
SIT encoding algorithm PISA, modified to consider various methods to compute
(descriptive) complexity. The code used for this work is publicly available.1

The paper proceeds as follows: in the remainder of this section, Hofstadter’s
analogies and Structural Information Theory are briefly introduced. Section 2
outlines the analogy solving algorithm, and presents in detail the different com-
ponents. Section 3 briefly discusses the Python implementation of PISA. In
Sect. 4, the algorithm is evaluated on two datasets, and its performance is com-
pared to that of Metacat. The paper ends with a discussion and a conclusion.

1.1 Hofstadter’s Analogies

Schematically, an analogy can often be expressed as “A is to B what C is to
D” (also known as proportional analogy). In order to model and perform simple
but relevant experiments on analogical reasoning, Douglas Hofstadter proposed
a micro-world for analogy-making at the end of the ’80s [15]. In this microworld,
the objects used for the analogies are strings of letters. An example of such an
analogy is:

ABC:ABD::BCD:?

which should be read as: “ABC is to ABD like BCD is to?”. The answer
commonly given by respondents to this test is BCE.

In order to predict human answers, Hofstadter created a computer program
called Copycat [15]. To complete a given analogy, the program works with
“agents”, which gradually build up structures representing the understanding
of the problem, eventually reaching a solution. Later the Copycat program was
improved to Metacat [13], which adds a memory, allowing the program to pre-
vent itself from performing actions it has previously tried. Metacat, which was
last updated in 20162, represents plausibly the state of the art of algorithms
available for this problem.

1.2 Structural Information Theory

Structural Information Theory, or SIT, is a theory about perception with roots
in Gestalt psychology. Central to SIT is the simplicity principle, in practice a
1 http://github.com/GeertenRijsdijk/SIT analogies.
2 http://science.slc.edu/∼jmarshall/metacat/.

http://github.com/GeertenRijsdijk/SIT_analogies
http://science.slc.edu/~jmarshall/metacat/
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Fig. 1. Outline of the process used to answer an analogy of the form A:B::C:?.

formalization of Occam’s razor: the simplest explanation for data is likely to
be the correct one [11]. SIT has been empirically validated in several cognitive
experiments with human participants [6,11].

SIT proposes to map the application of the simplicity principle to the Minimal
Encoding Problem using the SIT language: given a string, use regularities to find
an encoding with as little complexity as possible [11]. Such encoding can also
be seen as a compression, since it may greatly decrease the amount of memory
needed to store strings. There are three regularities/operators considered in the
SIT coding language: iteration (I-form), symmetry (S-form) and alternation (A-
form). They are defined in the following way:

I-form: n ∗ (y) ⇒ yyy...y (n times, n ≥ 2)
S-form: S[(x0)(x1)...(xn), (p)] ⇒ x0x1...xnpxn...x1x0

S-form: S[(x0)(x1)...(xn)] ⇒ x0x1...xnxn...x1x0

A-form: <(y)>/<(x0)(x1)...(xn)> ⇒ yx0yx1...yxn

A-form: <(x0)(x1)...(xn)>/<(y)> ⇒ x0yx1...yxny

(The p in a S-form is an optional element, called pivot.) These regularities have
been proven to be the only ones which are holographic and transparent [5]. Holo-
graphic means invariant under growth, e.g., a repetition of n symbols can have
that same symbol added to it forever, and will remain a repetition. Transparent
means that the arguments of a regularity occur linearly in the original string
it encodes. With alternations, while the arguments can occur non-consecutively,
they still occur in the same linear order.

2 Analogy Solving

Analogies rely on a perceived underlying structures (see e.g., Structural Mapping
Theory [4]). Both Copycat [15] and Metacat [13] are based on the idea that
there are structures on one side of the analogy that need to be replicated on the
other side. Their “agents” are functionally meant to identify the structures to
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be mapped. At functional level, however, what these agents do is nothing else
than compressing the symbolic input, and this means that other compressors
may work as well.

Figure 1 outlines the higher-level process that was followed to produce an
analogical inference. In an analogy of form A:B::C:?, it is expected that there
exists a certain structure in the left-hand side A:B, which can be extracted
by means of some compression method. By applying this same structure to
the partially available right-hand side C, decompressing the resulting code and
taking away the part C, a possible answer to the analogy can be found.

2.1 Structural Compression

The SIT encoding defines a way—empirically validated on perceptual
experiments—to compress strings and is therefore a plausible candidate for
describing regularities emerging from the input. Indeed, handling strings—here
seen as ordered lists of characters, not as words from some language—seems to
be based primarily on perceptual mechanisms rather than on semantics.

Applying SIT on analogical inference, we decided to extract the structure
of A:B focusing on the concatenated string A+B. The idea of compressing A
and B together, rather than separately, is inspired by the technique used in the
famous paper by Li and Vitanji on the Similarity Metric [12], in which con-
catenations a.o. of DNA-sequences of two species were compressed to find a
measure of their similarity. In our case, we used for compression the PISA algo-
rithm (Parameter load plus ISA-rules) [7], a minimal coding algorithm proposed
specifically for SIT [7]. For example, in the problem ABC:ABD::IJK:?, the min-
imal code (or compression) of the concatenated left-hand side ABC:ABD would
be S[(AB), (C)]D or <(AB)><(C)(D)>. PISA is currently the most optimized
algorithm for performing this task, being only weakly exponential. Along with
this work, a Python implementation of this algorithm is presented.

2.2 Generating Symbols from Symbols

To apply the structure extracted from the left-hand side of the analogy (namely
from A+B) to the right-hand side (C+?), this structure needs to be defined
only as a function of symbols in A, as only the first part of the right hand is
known. The symbols in B need to be generated from the symbols in A, and
for this some invertible function capturing an adequate relationship between
the atomic symbols is needed. The SIT coding language cannot do this; the
only relationship this language considers is the identity relationship: denoting
an atomic component of perception with a or z is completely arbitrary; the only
assumption is that all a or z map to the same type of atomic component.

In contrast, Hofstadter’s analogies seem to rely on some metrical information.
For instance, d is the most natural answer to the analogy a:b::c:?, obtained by
contrasting the b and a (as objects in an alphabet) and applying the output
of this operation on c. The role of contrast in concept construction, similarity
and description generation is indeed central [2,20]. For alphabetic characters as
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in Hofstadter’s analogies, contrast between symbols can be simply defined as a
directional distance between the positions of those symbols in the alphabet. So,
for example, the distance between b and a is 1, and the distance between a and
e is −4. This allow us to rewrite symbols in B as one of the symbol in A and a
directional distance. A challenge that arises with this approach is which symbol
the distance should be calculated from. We attempted multiple approaches to this
problem, some of which were more useful in different situations than others.

Previous Symbol Strategy. The simplest way of deciding which symbol to calcu-
late distance from is to choose the previous symbol. For example, in the analogy
a:bcd::i:?, the left part abcd can be described as a($ + 1)($ + 1)($ + 1), where
$ refers here to the last symbol used in the code. This same structure can be
applied to obtain the plausible (see Sect. 4) right-hand side i:jkl.

Last New Symbol Strategy. There are however analogies where this approach
fails. Take the analogy aba:aca::ada:?, in which abaaca gets encoded as S[(a), (b)]
S[(a), (c)]. When distances are applied, the code becomes S[(a), (b)] S[(a), (($ +
2))]. Now, when the symbol b is substituted by the symbol d, the decompressed
code becomes adaaca, resulting in solution aca, whereas aea is a much more
plausible answer. An approach solving this issue is choosing the last new symbol
in the organization extracted using SIT. In the previous example, the last new
symbol is b, the mapping would then result in S[(a), (b)] S[(a), (($$+1))], where
$$ is the last new symbol used in the organization. Substituting b with d would
result in S[(a), (d)] S[(a), (($$ + 1))], decompressing into the expected adaaea.

Same Position Strategy. These approaches do not use the actual position of
symbols in the input string, but this does seem to play a role at times. Consider
for instance ae:bd::cc:?. Here, a plausible answer would be db, where the change
applied to the string is an increase by 1 for the first element, and a decrease by
1 for the second. In a case like this, a position-based approach would be useful,
resulting in code ae(a+1)(e−1) or ae($$$+1)($$$−1), where $$$ is the object
in A in the same position of the object in B. However, this approach cannot be
used when parts A, B and C of the analogy have different lengths.

2.3 Symbol Substitution

Once the compression of A+B has been defined using only symbols present in
A, a substitution (or replacement) of the symbols in A with the symbols in C
can be performed. In order to do so, A and C need to be represented in ways
that allow the mapping of their components. Here too, different strategies have
been tried, selecting the best depending on the case.

Representation as Strings. The simplest way to represent A and C is in their
input form: strings, i.e., ordered lists of characters, in which each symbol counts
as one element. However, there are cases in which this method is not applicable,
as for instance when A and C do not share the same length.
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Representation by Compression. The number of elements in the representation
can be reduced by compressing the string and seeing it as a list of symbols and
highest level operators. For example, ijjkkk can be compressed into i2∗(j)3∗(k),
which is then split into i, 2 ∗ (j) and 3 ∗ (k). When a highest level operator has
been used to replace a symbol, this operator itself will count as one symbol
for the purposes of calculating new symbols from distances. If a distance was
calculated from a symbol that has since been replaced by an operator, the entire
operator will be carried over as the new element, and each individual symbol in
this operator is increased by the distance. Consider the analogy abc:abd::ijjkkk:?:

– structure of A+B: <(ab)>/<(c)(($ +1))>
– structure of C: i 2 ∗ (j) 3 ∗ (k)
– substitution: (a → i), (b → 2 ∗ (j)), (c → 3 ∗ (k))
– structure of C+D: <(i2 ∗ (j))>/<(3 ∗ (k))(($ +1))>
– distances removed: <(i2 ∗ (j))>/<(3 ∗ (k))(3 ∗ (l))>
– decompression: ijjkkkijjlll
– result D: ijjlll

Representation by Chunking. Alternatively, A and C can be represented in terms
of chunkings, meaning divisions of the concatenated input symbol strings into
chunks. These chunks can then be replaced as if they concerned one element.
For example, abcd could be chunked into [ab, cd], [a, bc, d], [a, b, c, d], and so on.
For A, the chunkings are derived from the compression of A+B, e.g.,:

– [a, b, c] is a chunking of abc in the compression S[(a)(b), (c)]c.
– [ab, c] is a chunking of abc in the compression ab2 ∗ (c)($ +1)($ +1).
– [ab, c] is a chunking of abc in the compression <(ab)>/<(c)(($ +1))>.
– [abc] is a chunking of abc in the compression 2 ∗ (abc).

For C, there is no pre-existing structure present that determines how it should
be chunked. However, we considered sound to chunk C in such a way that it
best corresponds to the chunking of A.

We call the process of creating a chunking of C as similar as possible to a
chunking of A chunking-element matching, and works as follows: a list is cre-
ated for the number of symbols in each element in the chunking of A. (e.g.,
[a, bc, def ] results in [1, 2, 3]). Next, if the sum of the numbers does not equal
the number of symbols in C, as a simple heuristic, the largest number in this
list is increased/decreased. Now, this list of numbers can be used to split C into
chunks, which can be used to substitute the original elements of the chunking
of A. The following example shows how this chunking matching is used to solve
an analogy abc:abd::ijklm:?

– structure of A+B: <(ab)>/<(c)(($ +1))>
– chunking of A in A+B: [ab, c]
– lengths of chunking elements of A: [2, 1]
– matching chunking lengths of C: [4, 1]
– chunking of C: [ijkl,m]
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– substitution: (ab → ijkl), (c → m)
– structure of C+D: <(ijkl)>/<(m)(($ +1))>
– distances removed: <(ijkl)>/<(m)(n)>
– decompression: ijklmijkln
– result D: ijkln

Representation by Consecutive Chunking. A special type of chunking is a consec-
utive chunking. A chunking is consecutive if all elements of the chunking contain
exactly one symbol; the elements of the chunking together form all arguments
of a single operator. For instance, [a, b, c] is a consecutive chunking of abc in
the code <(a)(b)(c)>/<(d)>, and [a, b, c] is a consecutive chunking of abc in the
code S[(a)(b), (c)]. Consecutive chunkings can be substituted in a special way:
instead of replacing individual symbols or elements, the entire chunking can be
replaced by a new chunking. The new chunking has one element for every sym-
bol in C. When this consecutive chunking is applied, the entire argument string
forming A is replaced with this new chunking (with the corresponding number
of parentheses per element). For instance in abc:cba::ijklm:?:

– structure of A+B: S[(a)(b)(c)]
– consecutive chunking of A in A+B: [a, b, c]
– consecutive chunking of C: [i, j, k, l,m]
– substitution: ([(a), (b), (c)] → [(i), (j), (k), (l), (m)])
– structure of C+D: S[(i)(j)(k)(l)(m)]
– decompression: ijklmmlkji
– result D: mlkji

2.4 Structure in Parameters

Consider the analogy aaabb:aabbb::eeeeef:?. One way to look at it is that the
analogy simply swaps the number of times the first symbol occurs with the
number of times the second symbol occurs. However, PISA assigns to A+B the
structure 3 ∗ (a)S[2 ∗ ((b))(a)]b, which does not seem to capture this intuition,
as there is no symbol substitution that results in the expected answer efffff .
The core of this analogy problem does not lie in the structure of the symbols,
but in the structure of the structure. By looking at the structure as a series
of iterations, this becomes clear; in 3 ∗ (a)2 ∗ (b)2 ∗ (a)3 ∗ (b), the parameters
of the iterations form a symmetry, namely S[(3)(2)]. It is this symmetry that
forms a plausible basis for solving this analogy. The function written to apply
this strategy is separated from the rest of the algorithm. It encodes A+B as a
sequence of iterations. Next, the parameters of these iterations are compressed,
distances are added and symbol substitution is performed in essentially the same
way as described before. This results in new parameters which, combined with
symbol substitution on the actual symbols, can produce an answer to the analogy.

However, problems of this type can easily become more complex. When the
parameters of a structure can have a structure, the parameters of that struc-
ture could also have a structure, which could again have parameters with some
structure. With larger codes, this ‘parameter depth’ could become very high.
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Algorithm 1: PISA-based compressor
1 Function compress pisa(graph)
2 new hyperstrings = []
3 for hyperstring h in graph do
4 Q = QUIS(h)
5 Create and encode S-graphs of h using Q
6 for w in h.nodes[1 ... N] do
7 Create and encode A-graphs of h using Q, up to node w
8 for v in h.nodes[w ... 0] do
9 find best possible code for v → w

10 add best code to h as edge v → w
11 for u in h.nodes[0 ... v] do
12 if c(u, w) > c(u,v) + c(v,w) then
13 new code = u → v + v → w
14 add new code to h as edge u → w

15 add h to new hyperstrings;

16 return combine(new hyperstrings);

Furthermore, relationships between parameters at different ‘depths’ are also
possible. Take for instance the analogy abc:aaabbbccc::abcd:. The structure of the
parameters could be written as 3∗(1)3∗(3) (neglecting the internal relationships
between symbols). To get to a plausible answer aaaabbbbccccdddd, there would
need to be a relationship between the two 3 s out of brackets, and the 3 inside
the brackets, which are at different parameter depths. In short, structure in
parameters can be very complex. In this work, it has only been explored at a
surface level. Other configurations are left to future work.

2.5 Inversion Trick

When A:B::C:? does not have a structure that is easily worked with, it is also
possible to rearrange the analogy to hopefully obtain better answers. This rear-
rangement is analogous to this numeric equivalence: a

b = c
d ⇔ a

c = b
d . In our

case, while the two forms of analogies might often result in the same answers,
one of the two forms might be more solvable using the approach proposed here.
An example of this is the analogy abac:adae::baca:?. A+B has a structure of
form <(a)>/<(.)>, while the left side has a structure of form <(.)>/<(a)>.
This change in structure is a problem for our algorithm, since it tries to apply
the same structure to C+D. Changing the analogy to abac:baca::adae:? results
in the structure S[(a)(bac)], which is a structure the solver can deal with more
easily.

3 Python Implementation of PISA

A string of length N can be represented by up to a superexponential O(2Nlog(N))
number of codes [7]. To find the one with the lowest complexity, one could
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generate each possible code and compare all of these. For long strings this can
be very time consuming. The PISA (Parameter load plus ISA-rules) algorithm
was designed to efficiently find the minimal coding of a string in the SIT coding
language [7]. PISA is significantly faster than a method which generates all
possible encodings, being only weakly exponential. A dissection of the PISA
algorithm can be found in Chapter 5 of Simplicity in Vision [6]. Here, we will
briefly discuss our re-implementation in Python.

The PISA-based compressor created for this research is written in an object-
oriented fashion (the original version3, being in C, does not support classes),
with a central hyperstring class. The general outline of the algorithm written for
this research can be seen in Algorithm 1. The algorithm processes each hyper-
string in the input graph separately (line 3). In line 4, the QUIS algorithm [6] is
called for each hyperstring to create an intermediate structure to more efficient
representations. The output matrix is indeed used in line 5 and 7 to create S-
and A-graphs, representing symmetries and alternations present in the hyper-
string. These graphs are themselves also encoded using this function. Lines 6
and 8 loop over every combination of two nodes (v, w) in the hyperstring. For
each pair, lines 9 looks for the best possible code for the substring between these
two nodes. Using the complexity metric, this best code is chosen from: the cur-
rent code; the best possible iteration, if any; the best possible symmetry, if any,
calculated using the S-graph that has a pivot halfway in between the two nodes;
the best possible alternation, if any, calculated for every A-graph. Once the best
code has been selected, line 10 adds an edge representing the code to the hyper-
string. Next, line 11 iterates over every node that comes before node v. Line 12
looks at the complexities of the codes between u, v and w. If the complexity
of the edge u → w can be reduced by creating a combination of the codes in
edges u → v and v → w, this is done. At the end of the algorithm, all encoded
hyperstrings are recombined into a new graph. This graph is then returned.

Given a hyperstring that represents a mere string, the same hyperstring is
returned with added edges that represent the best code for each substring, and
the code of the edge connecting the first and last node of the hyperstring will be
the best encoding of the entire string.

3.1 Configurable Complexity Metric

Besides reproducibility, a major reason why we reimplemented PISA was to
gain control over its components, in particular the way in which complexity
is measured. The original PISA relies only on one metric, the Inew load [7].
We considered instead as basis the more general principles of Kolmogorov com-
plexity [19]. At a more fundamental level, SIT has been conceived for structural
information, but analogies require also to look at some metrical information. The
complexity metric considered here calculates complexity by taking the number
of symbols used for the code and adding, for each operator in the code, a certain
value. This value might differ across operators, and can be adjusted later with

3 https://ppw.kuleuven.be/apps/petervanderhelm/doc/pisa.html.

https://ppw.kuleuven.be/apps/petervanderhelm/doc/pisa.html
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empirical data to find the values for optimal performance of the analogy solving
algorithm. Indeed, the Inew load does not allow for adjusting of parameters for
aligning to human answers and seems somewhat unintuitive, assigning e.g., the
same complexity to the codes a and 9 ∗ (a).

3.2 Other Differences with PISA

This implementation relies heavily on the theoretical concepts of hyperstrings, S-
graphs and A-graphs as PISA does. However, in some points we found the exact
working of PISA to be unclear, and that meant that we had to fill in the blanks.
The following list outlines the major differences between the two algorithms.

– The explanation of PISA in [6] mentions ‘updating its database of S- and
A-graphs’ at the end of the first for loop. It is however not clear how this
update is done. In the proposed compressor the graphs are not updated, but
recreated each time.

– PISA updates the A-graphs at the end of the first for loop, while this compres-
sor recreates the A-graphs at the start of the first for loop. A small exception
to this is present in the code; at the end of each v loop, the algorithm does
update the repeats of right a-graphs with the encodings of the v → w edge.
This is not necessary for left a-graphs due to the algorithm encoding the
string left to right.

– PISA updates the S-graphs at the end of the first for loop, while this com-
pressor creates the S-graphs before the first for loop.

– PISA always returns the one code with the lowest complexity, while this com-
pressor returns a Graph object. In this object, the edge connecting the first
and last nodes also represents the edge with the lowest complexity, but other
paths represent other codes, which consist of optimally encoded substrings
which together form the whole string. This enables us to consider sub-optimal
codes as well.

4 Results

To evaluate the proposed analogy solving algorithm, the answers generated by
it will be compared against two sets of human answers obtained in distinct
experiments. Furthermore, the answers generated by the proposed solver will
also be compared to the answers generated by Metacat [13].

4.1 Murena’s Dataset

Table 1 reports data published by Murena et al. [17] on human answers for analogy
tests. In their experiment, 68 participants were asked to solve analogies following
the template ABC:ABD::X:?. The left-hand side of the analogy remained the same
during the experiment, but the X changed in every test. For each X, the data shows
the two most common answers given by participants, as well as the percentage of
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Table 1. Human answers to analogies of form ABC:ABD::X:? from the Murena
dataset 1, along with at which position the same answers were given by the solving
algorithm proposed in this project (Ps) and Metacat (PM ).

Given X Solutions Selected by Ps PM Given X Solutions Selected by Ps PM

IJK IJL 93% 1 1 BCD BCE 81% 2 1

IJD 2.9% – – BDE 5.9% 1 –

BCA BCB 49% 3 2 IJJKKK IJJLLL 40% 1 2

BDA 43% 1 1 IJJKKL 25% 2 1

AABABC AABABD 74% 1 1 XYZ XYA 85% 1 –

AACABD 12% – – IJD 4.4% – –

IJKLM IJKLN 62% 1 1 RSSTTT RSSUUU 41% 1 1

IJLLM 15% – – RSSTTU 31% 2 –

KJI KJJ 37% 1 1 MRRJJJ MRRJJK 28% 2 1

LJI 32% – 2 MRRKKK 19% 1 2

ACE ACF 63% 1 1

ACG 8.9% – –

participants that chose that answer.4 The last two columns in the Table 1 show
the performances of the analogy solving algorithm proposed in this project (Ps)
and Metacat (PM ) ins terms of the position in which that answer was generated
(e.g., a 1 means it was the best answer, 2 means it was the second best, etc.). A
dash indicates that the answer was not generated at all. As for speed, the lack of
a built-in way to measure the time Metacat uses for compression made it difficult
to perform an empirical speed comparison. However, when working with Metacat,
it was clear that this method is much slower than the solver implemented here,
sometimes taking more than 10 min to generate a single answer. For this reason,
only two answers per question were generated using Metacat.

The table shows that, for this dataset, the most common answer to the prob-
lem is always generated by our solver. Furthermore, the top answer generated
by the solver is always one of the two most common answers by the participants.
Both of these observations are also true for Metacat, with the exception of the
problem XY Z, for which it produced none of the answers given by participants.
However, there are also answers given by human participants that the solvers did
not generate. Overall, the most common human answer matched the top answer
8/11 times (72.7%), both for our solver and Metacat. The most common partic-
ipant answer was in the top 2 generated answers 10/11 times (90.9%) for both
algorithms. Answers given by participants were generated 16/22 times (72.7%)
for our solver and 14/22 times (63.7%) for Metacat.

4.2 Our Dataset

The Murena testset is quite small and the analogies it presents follow all the
same template. For this reason, a second testset was constructed on purpose for
4 In the original experiments some questions were repeated to see the influence of having
previously faced similar problems. Since the solving algorithm in this project runs
independently of previous answers, repeated questions were omitted here.
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Table 2. Human answers to analogies collected in this project experiment, along with
at which position the same answers were given by the solving algorithm proposed in
this project and Metacat.

Given problem Solutions Selected by Ps PM

ABA:ACA::ADA:? AEA 97.1% 1 1

AFA 2.9% – –

ABAC:ADAE::BACA:? DAEA 60% 2 –

BCCC 28.6% 21 –

AE:BD::CC:? DB 68.5% 3 1

CC 17.1% – 2

ABBB:AAAB::IIIJJ:? IIJJJ 57.1% 1 –

JJIII 14,3% – –

ABC:CBA::MLKJI:? IJKLM 88.6% 1 1

– – – –

ABCB:ABCB::Q:? Q 100.0% 1 –

– – – –

ABC:BAC::IJKL:? JIKL 54.3% – –

KIJL 14.3% 2 –

ABACA:BC::BACAD:? AA 57.1% 1 –

BCD 31.4% – –

AB:ABC::IJKL:? IJKLM 85.7% 1 1

IJKLMN 11.4% – –

ABC:ABBACCC::FED:? FEEFDDD 91.4% 2 1

– – – –

ABC:BBC::IKM:? JKM 57.1% 7 –

KKM 37.1% 2 –

ABAC:ACAB::DEFG:? DGFE 68.6% 2 –

FGDE 14.3% 1 –

ABC:ABD::CBA:? DBA 51.4% 1 2

CBB 45.7% 2 1

ABAC:ADAE::FBFC:? FDFE 94.3% 1 –

FDFA 2.9% – –

ABCD:CDAB::IJKLMN:? LMNIJK 80.0% – –

– – – –

ABC:AAABBBCCC::ABCD:? AAABBBCCCDDD 74.3% 1 1

AAAABBBBCCCCDDDD 17.1% – –

ABC:ABBCCC::ABCD:? ABBCCCDDDD 85.7% – –

ABBCCCDDD 8.6% 1 –

ABBCCC:DDDEEF::AAABBC:? DEEFFF 77.1% 1 –

DCCDDF 8.6% – –

A:AA::AAA:? AAAAAA 62.8% 1 –

AAAA 25.7% 2 1

ABBA:BAAB::IJKL:? JILK 71.4% – –

JIJM 11.4% 5 –
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this work, consisting of 20 more complex analogies. 35 participants (18 male,
17 female, average age 26.8) were asked to solve the analogies in the testset,
the results of which can be seen in Table 2. As before, the table shows the top
two answers given by participants, as well as the percentage of participants that
gave each answer. In some cases, only the top answer is given. This is done
when either all participants gave the same answer, or when there were multiple
answers tied for second which all had only one participant.

In this testset, the most common answer given by participants was generated
by the solver 16/20 times (80%), whereas it was generated by Metacat only 7/20
times (35%). The top answer given by the solver was in the top two participant
answers 13/20 times (65%), whereas the top answer generated by Metacat was in
the top two participant answers 8/20 times (40%). The most common participant
answer matched the top generated 10/20 times (50%) for the solver, and 6/20
times (30%) for Metacat.

4.3 Complexity Values

The complexity values or weights of iteration, symmetry and alternation opera-
tors were chosen to optimize the results of the solver on the two testsets. These
variables were tested with values ranging from 0.8 to 1.2, with steps of 0.1. Each
possible combination of those values was tested on how highly they ranked the
participant-given answers amongst all answers. Overall, it was found that small
differences in the values often did not change much about the rankings, suggest-
ing that there was not really a risk of overfitting. On a larger scale, the following
requirements seem to yield the best results: the weight of iterations should be less
than 1; of symmetries less than 1; of alternation more than 1. The final weights
chosen were 0.85 for iterations, 0.9 for symmetries and 1.1 for alternation.

5 Discussion

The goal of this project was to use SIT compression as the basis for an analogy
solving algorithm. The analogy solving algorithm has shown promising results on
the test set created by Murena et al. [17]. However, this test set is very limited,
having only 11 questions, each following the same template. The lack of variety
and complexity motivated the creation of a second testset.

When compared to Metacat, our solving algorithm has shown to achieve
similar results on the first testset. This is likely because the questions in this
testset share a similar structure which both solvers seem to be able to deal with.
On the second testset, our solving algorithm achieves drastically better results.
It should, however, be noted that Metacat uses randomness in its procedure
to generate answers. Therefore, different runs of the algorithm on the problem
could result in different, and possibly better, answers. Furthermore, for this
comparison, only the first two answers generated by Metacat were used, but
Metacat can often generate more answers than that. The choice to only consider
the top two answers was made due to time constraints: generating a single answer
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using Metacat can, in some cases, take up to 10 min, against a few seconds for
our solver.

It is important also to note that problems in the second testset were created
after the implementation of the solving algorithm, and with the capabilities of
this solver in mind. Because of this, for many of the questions it was predictable
beforehand whether the solver would produce intuitive answers. Therefore, the
percentages of correct answers should not weigh heavily in the evaluation of
the algorithm. Instead, the set should be used as a showcase of what types of
analogies the algorithm can and cannot deal with.

Answers of the solver are ranked by the complexities of the codes they orig-
inate from, e.g., answers such as BCCC (28.6%) to ABAC:ADAE::BACA:?,
DB (68.5%) to AE:BD::CC:?, JKM (57.1%) to ABC:BBC::IKM:? and JIJM
(11.4%) to ABBA:BAAB::IJKL:?. Despite these answers being chosen by (fairly)
significant percentages of the participants, they do not rank highly amongst the
answers generated by the solver. This results hints that there exist better strate-
gies not adequately taken into account. The reasoning behind these answers
(most likely) relies on applying positional distances in the left-hand side of the
analogy to the right-hand side. The most significant case of this is the answer
BCCC to ABAC:ADAE::BACA:?, which the solver ranks lower than 20 other
solutions, despite being picked by over a quarter of the participants. Future work
on this project could look at alternate ways which could, either in combination
with complexity or on their own, rank answers generated by the solver in a way
that corresponds better to human answers.

The answer LMNIJK (80.0%) to ABCD:CDAB::IJKLMN:? might tell us
something the cognitive equivalent of what in this project is called chunking
(Sect. 2.3). It seems that the structure that best corresponds to participants’
interpretation of this problem is S[(ab)(cd)], which essentially represents a swap-
ping of ab and cd in part A to get part B. The same structure in the right-hand
side of the analogy that corresponds to the top answer is S[(ijk)(lmn)]. This way
of symbol substitution corresponds to chunking element matching, described in
Sect. 2.3; whereas the method used in this project tries to keep as many elements
of the chunking as possible at the same length (which results in structures like
S[(ij)(klmn)] or S[(ijkl)(mn)]), the 3-3 division suggests a preference to main-
tain the same ratio between the chunking elements.

Finally, other answers that cannot be solved by the algorithm are the ones
discussed in Sect. 2.4, where there are relationships between iteration parame-
ters at different levels. In the test, such relationships are (most likely) used for
answer AAAABBBBCCCCDDDD (17.1%) to problem ABC:AAABBBCCC::
ABCD:?, and answer ABBCCCDDDD (85.7%) to problem ABC:ABBCCC::
ABCD:?. These answers suggest that such relationships are indeed understood
and used by participants, although this begs the question of how complex these
relationships can be before participants will no longer base their answer on them.
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6 Future Developments

Structural Information Theory has shown itself to be a useful tool for analogy
solving, although it cannot do this on its own. The lack of metrical informa-
tion, or a way to define relationships between symbols, resulted in the need for
a way of defining symbols as distances from other symbols, as well as a way
of choosing which symbol to calculate from. Similarly, the necessity to apply
structure from one part of an analogy to another entailed the need for a method
for symbol substitution. In this work we introduced with some success different
intuitive heuristics/strategies for these two aspects, but a general, unifying the-
ory is needed. Additionally, test data confirms that, sometimes, the structure
of the symbols has structure itself (Sect. 2.4). A unifying theory based on Kol-
mogorov complexity might predict that further depth is considered only if yields
a reduction of complexity, and this is a required focus for future works.
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