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GENERAL INTRODUCTION 

Adaptation of reproductive activity to environmental changes is essential for breeding 

success and offspring survival. In mammals, the reproductive system displays regular cycles 

of activation and inactivation, which are synchronized with seasonal and/or daily rhythms 

in environmental factors, notably light intensity and duration. Thus, most species adapt 

their breeding activity along the year to ensure that birth and weaning of the offspring occur 

at a time when resources are optimal. Additionally, female reproductive activity and the 

period of full oocyte maturation is highest at the beginning of the active phase, in order to 

improve breeding success. In reproductive physiology, it is therefore fundamental to 

delineate how geophysical signals are integrated in the hypothalamo-pituitary-gonadal axis, 

notably by the neurons expressing gonadotropin releasing hormone (GnRH). Several 

neurotransmitters have been reported to regulate GnRH neuronal activity, but recently two 

hypothalamic neuropeptides belonging to the superfamily of (Arg)(Phe)-amide peptides, 

RFRP-3 and kisspeptin (Kp), have emerged as critical for the integration of environmental 

cues within the reproductive axis. The goal of this thesis is to explore the temporal 

regulation of RFRP-3, and consider how it might combine with Kp to improve the 

synchronization of reproduction at different stages of the adult life. 

 

1. Circadian rhythms are driven by the Suprachiasmatic nucleus  

The rotation of the earth around its axis exposes all living organisms to 24-hour light-dark 

and temperature cycles. Through the course of evolution, most organisms; from bacteria to 

mammals; developed internal timekeeping systems in order to anticipate predictable daily 

changes in the environment. Thus, even in the absence of external cues (constant conditions 

of light, temperature, food, etc.) organisms exhibit behavioral and physiological cycles with 

a period close to, but usually not exactly 24 hours. In mammals, these cycles are driven by 

molecular oscillators in the suprachiasmatic nucleus (SCN) of the hypothalamus, the 

primary circadian pacemaker (Bollinger and Schibler, 2014). The SCN receives photic 

information from intrinsically photoreceptive retinal ganglion cells (ipRGCs) in the eyes, 
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which convert electrical signals into chemical ones, through the retinal hypothalamic tract 

in order to reset its molecular oscillators and synchronize the endogenous circadian clocks 

with the environment (Bollinger and Schibler, 2014; Hattar et al., 2002).  

A plethora of studies established the SCN as the seat of the master clock. While SCN lesions 

render animals arrhythmic (Moore and Eichler, 1972; Stephan and Zucker, 1972), 

transplantation of fetal SCN can restore circadian rhythmicity (Ralph et al., 1990; Sawaki et 

al., 1984; Sollars et al., 1995; Sujino et al., 2003). Clock gene expression, firing activity, 

intracellular calcium concentration ([Ca2+]i) and glucose consumption change rhythmically 

in the SCN according to time of day (Green and Gillette, 1982; Inouye and Kawamura, 1979; 

Noguchi et al., 2017; Schwartz and Gainer, 1977). Dispersed SCN neurons maintain cell 

autonomous circadian rhythms of clock gene expression and [Ca2+]i levels, even though 

these rhythms are stronger in intact SCN slices (Noguchi et al., 2017). Importantly, SCN 

tissue in organotypic cultures can maintain structural coherence and circadian rhythms in 

gene expression and neuronal activity for months (Brancaccio et al., 2014; Patton et al., 

2016; Yamaguchi et al., 2003). 

A network of self-sustaining transcriptional and translational feedback loops (TTFLs) 

underlies the operating molecular mechanism for circadian oscillation within the SCN 

neurons (Figure 1). At circadian time 0 (CT0), corresponding to dawn, the positive regulators 

of the loop, CLOCK and BMAL1 form heterodimers that drive the transcription of the clock 

genes encoding the Period proteins; PER1 and PER2; and the Cryptochrome proteins; CRY1 

and CRY2; via enhancer box (E-box) regulatory sequences. PER-CRY proteins form 

complexes that accumulate in the cytoplasm and enter the nucleus when they reach a 

threshold to attenuate transcriptional activity, at the end of the circadian day (CT12). During 

the circadian night (CT12-CT24), Per and Cry mRNA levels decrease and PER-CRY complexes 

degrade, therefore allowing the transcriptional cycle to reinitiate itself again after 

approximately 24 hours. The CLOCK-BMAL1 dimer also drives a complementary feedback 

loop that involves the transcription of nuclear receptor genes encoding REV-ERBα and REV-

ERBβ, which suppress, and RORα and RORβ, which activate the CLOCK and BMAL1 

transcription (Hastings et al., 2018). Through the intertwined TTFLs of clock genes, the SCN 
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can generate robust circadian rhythms and achieve precise circadian timing. Brain regions 

outside the SCN and peripheral organs also contain such autonomous circadian oscillators, 

however, they lack strong intercellular coupling and direct signaling from the retina, so they 

depend on the SCN output in order to sustain circadian rhythmicity and entrain to the 

day/night cycle (Abe et al., 2002; Amir et al., 2004; Granados-Fuentes et al., 2004). 

The circadian oscillation of clock genes in the SCN has been associated with circadian 

changes in SCN firing activity and neuropeptide synthesis. Multiple studies have 

demonstrated that the firing rate of SCN neurons increases during daytime and decrease at 

night, both in nocturnal and diurnal rodents, even under constant darkness (Green and 

Gillette, 1982; Inouye and Kawamura, 1979; Meijer et al., 1998; Sato and Kawamura, 1984; 

Welsh et al., 1995). Alterations in the molecular clock components change the circadian 

rhythms in behavior and in the SCN electrical activity, by changing clock gene-dependent 

molecular feedback loops (Liu et al., 1997; Meng et al., 2008) and clock gene deficient mice 

that are arrhythmic, lack circadian oscillations in the SCN firing activity (Albus et al., 2002). 

Altogether, these findings suggest that an intact molecular clock is necessary for the 

generation of circadian rhythms in the SCN electrical activity. 

The vast majority of SCN neurons are GABAergic and co-express one or more neuropeptides 

(Buijs et al., 1995; Romijn et al., 1997). Based on anatomical connections and peptide 

expression, the SCN can be divided in two subregions: the core, receiving direct input from 

the retinal ipRGCs and mainly expressing vasoactive intestinal peptide (VIP) and gastrin-

releasing peptide (GRP); and the shell, receiving input from limbic, hypothalamic and 

brainstem nuclei, and mainly expressing arginine vasopressin (AVP) (Abrahamson and 

Moore, 2001). VIP mRNA and protein expression display daily variations in the SCN, peaking 

during the middle of the dark period and decreasing during the light period (Dardente et al., 

2004; Shinohara et al., 1999, 1993). Similarly, AVP mRNA and peptide release in the SCN 

exhibit daily variations, peaking around the middle of the light period and decreasing during 

the dark period (Dardente et al., 2004; Kalsbeek et al., 1995). Within the SCN, VIP acts 

primarily on VPAC2 receptors, the expression of which peaks during the subjective morning 
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(An et al., 2012), while AVP acts primarily on V1a receptors, the expression of which peaks 

during the dark period (Li et al., 2009). 

The output of the SCN is organized in three major pathways: 1) one pathway runs dorsally 

and rostrally into the medial preoptic area (POA) and continues into the paraventricular 

nucleus of the thalamus, 2) a second pathway runs caudally to the retrochiasmatic area and 

the capsule of the ventromedial nucleus, 3) a third pathway that travels in an arc dorsally 

and caudally, giving off terminals along the course through the regions above the SCN such 

as the subparaventricular area and the paraventricular hypothalamic nucleus (PVN). A small 

part of these fibers continues dorsocaudally into the dorsomedial nucleus of the 

hypothalamus (DMH) where they terminate along its length (Saper et al., 2005). Via these 

output pathways the SCN drives numerous behavioral and physiological functions, among 

which is the reproductive activity (Williams and Kriegsfeld, 2012). 
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Figure 1: Schematic representation of the molecular clock mechanism in SCN neurons. Transcriptional factors Clock 

and Bmal1 form heterodimers and bind to E-box sequences in the promoters of the Cry, Per and Rev–Erbα genes to 

activate transcription at the beginning of the circadian day. The Clock-Bmal1 heterodimer can also inhibit Bmal1 

transcription. After transcription and translation, the Rev–Erbα protein enters the nucleus to suppress the 

transcription of Bmal1 and Cry genes. While Per proteins accumulate in the cytoplasm, they become 

phosphorylated (P) by casein kinase I ε (CKIε) and then degraded by ubiquitylation. Late in the subjective day, 

however, Cry accumulates in the cytoplasm, promoting the formation of CKIε/Per/Cry complexes, which enter the 

nucleus at the beginning of the subjective night. Once in the nucleus, Cry disrupts the Clock/Bmal1 transcriptional 

complex, resulting in the inhibition of Cry, Per and Rev–Erbα transcription, and the stimulation of Bmal1 

transcription. The interacting positive and negative feedback loops of circadian genes ensure low levels of Per and 

Cry, and a high level of Bmal1 at the beginning of the new circadian day. Solid lines indicate direct regulation, and 

dashed lines indicate indirect regulation. Image from Fu and Lee (2003). 
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2. Role of RFRP-3 in the central control of female reproduction 

2.1 Functional organization of the Hypothalamo-Pituitary-Ovarian (HPO) axis 

Mammalian reproduction is tightly controlled by a small set of neurons producing the 

neuropeptide GnRH. The GnRH cell bodies are concentrated in specific hypothalamic areas 

[the preoptic area, the vascular organ of the lamina terminalis and, in non-rodent species, 

the mediobasal hypothalamus] and project principally to the median eminence where they 

release GnRH in a pulsatile manner in the portal blood supply of the anterior pituitary 

(Marques et al., 2000). Within the anterior pituitary GnRH stimulates the secretion of the 

gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). FSH and 

LH are released from the anterior pituitary into the general circulation to regulate gonadal 

gameto- and steroidogenesis respectively (Figure 2). 

Mechanisms regulating the activity of GnRH neurons are thought to involve different 

upstream neuronal inputs. Glutamate and γ-aminobutyric acid fibers, located close to GnRH 

perikarya and axons, have been shown to stimulate and/or inhibit GnRH release (Morello 

et al., 1992; Ottem et al., 2002; Piet et al., 2018). Neuropeptide Y-containing fibers also 

contact a majority of GnRH neurons and predominantly exert an inhibitory effect on GnRH 

release (Klenke et al., 2010; Roa and Herbison, 2012). Recent studies, however, have 

highlighted an important role of two other hypothalamic neuropeptides, kisspeptin and 

RFRP-3, in the regulation of GnRH neuronal activity. Kisspeptin expressing neurons are 

located in two hypothalamic areas: the preoptic area, where they project to GnRH cell 

bodies to drive the GnRH surge in female mammals, and in the arcuate nucleus, where they 

project principally to GnRH fiber terminals in the median eminence to drive pulsatile GnRH 

release (Pinilla et al., 2012). RFRP-3 expressing neurons are mostly located in the DMH and 

project to various neuronal populations including GnRH and kisspeptin neurons, yet the 

effects of RFRP-3 on reproduction seem to vary according to species, sex, and 

environmental conditions (Henningsen et al., 2016a; Kriegsfeld et al., 2018; Leon and Tena-

Sempere, 2015). 
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To maintain the reproductive axis within proper functioning limits, sex steroids produced 

by the gonads feed back to the pituitary and hypothalamus. In males, testosterone acts to 

suppress GnRH and the gonadotropins through negative feedback, whereas in females the 

feedback is more complex with estradiol (E2) having either positive or negative feedback 

effects depending on the stage of the ovarian cycle and its circulating concentration. 

Specifically, during the follicular phase of the ovulatory cycle, low concentrations of E2 exert 

negative feedback, whereas upon oocyte maturation, higher concentrations of E2 exert 

positive feedback, triggering a large release of GnRH in the anterior pituitary portal blood 

supply which, in turn, induces a surge of LH that initiates ovulation (Christian and Moenter, 

2010). Contrary to early expectations, GnRH neurons do not appear to be directly 

responsive to E2 feedback as these cells do not express E2 receptors (ER)α and only express 

low levels of ERβ (Christian and Moenter, 2010; Leon and Tena-Sempere, 2015). Likewise, 

mice with a GnRH neuron-specific deletion of ERβ do not exhibit any gross reproductive 

dysfunction (Cheong et al., 2014). Therefore, the central structures integrating sex steroid 

feedback have to be upstream of GnRH neurons and evidence now indicates that kisspeptin 

neurons and, to a less and unclear extent, RFRP-3 neurons are relaying gonadal hormone 

feedback to the reproductive system (Kriegsfeld et al., 2006; Poling et al., 2012; Smith et al., 

2005a, 2005b; Tumurbaatar et al., 2018). 

Because reproduction is particularly energetically demanding, it is critical that intrinsic and 

extrinsic factors contribute to optimizing breeding success and offspring survival as much 

as possible. Therefore, the reproductive axis is sensitive to various signals such as metabolic 

activity, stress level, development stage, hormonal milieu, and geophysical cues. Thus, in 

female mammals, timing of the preovulatory LH surge is driven by daily signals in addition 

to positive E2 feedback. Additionally, in seasonal breeders, annual changes in daily light 

duration (photoperiod) synchronize reproduction with the time of the year (Henningsen et 

al., 2016a). Recent studies have highlighted the pivotal role of RFRP-3 neurons, as well as 

kisspeptin neurons, in relaying both daily and seasonal cues to the HPG axis, particularly to 

GnRH neurons.  
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Figure 2: Rhythmic hormone secretion during the rodent estrous cycle. In mice, ovulation occurs every 4–5 days. 

Metestrus and diestrus are characterized by low, but slowly increasing levels of estradiol. During the late afternoon 

of proestrus, elevated estradiol levels induce a burst of GnRH release from the hypothalamus, which triggers the 

preovulatory LH surge at approximately the start of the active (dark) period. Image from (Miller and Takahashi, 

2014). 

 

2.2 The RFRP-3 system 

The ortholog of RFRP-3 was originally discovered in birds, with Tsutsui et al. identifying a 

novel (Arg)(Phe) hypothalamic peptide that inhibited pituitary gonadotropin secretion from 

cultured quail pituitary (Tsutsui et al., 2000). Because this peptide selectively inhibited the 

gonadotropins, without altering other pituitary hormones, the authors named it 

gonadotropin-inhibitory hormone (GnIH). Subsequent findings indicated the GnIH receptor 

to be expressed in quail pituitary (Ubuka et al., 2012; Yin et al., 2005) and that in vivo GnIH 

administration decreases common α, LHβ, and FSHβ subunit expression (Ubuka et al., 2006; 

Yin et al., 2005). In birds, the GnIH precursor cDNA encodes one GnIH and two GnIH-related 

peptides (GnIH-RP1 and GnIH-RP2) (Molnár et al., 2011; Tsutsui et al., 2000). In mammals, 

the homologous gene encodes three peptides [RFamide-related peptides (RFRP)], with 

RFRP-1 and −3 both being RFamide peptides, while RFRP-2 is not (Tsutsui and Osugi, 2009). 

Since the initial discovery of these RFamide-related peptides in mammals, most findings in 
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reproductive biology have focused on RFRP-3 as the mammalian ortholog of GnIH. As 

described further below, studies across different mammalian species indicate a pronounced 

role for this neuropeptide in regulating reproductive function. 

The receptor for GnIH/RFRP-3 is a G-protein coupled receptor (GPR), originally named 

OT7T022 (Hinuma et al., 2000), but now more commonly referred to by the name of the 

receptor for which it was found to be identical, the formerly-orphaned GPR147. Around the 

same time as this discovery, two receptors for another RFamide-peptide, neuropeptide FF, 

were identified and called NPFFR1 and NPFFR2 (Bonini et al., 2000). NPFFR1 was found to 

be identical to GPR147, whereas NPFFR2 was identical to another GPR, GPR74. GPR147 has 

a high affinity for GnIH/RFRP-3, whereas NPFF exhibits potent agonistic activity at GPR74 

(Bonini et al., 2000; Liu et al., 2001; Yin et al., 2005; Yoshida et al., 2003). Together, these 

findings revealed GPR147/NPFFR1 as the GnIH/RFRP-3 receptor. GPR147 most-commonly 

couples to an inhibitory G protein (Gαi), with GnIH/RFRP-3 suppressing cAMP activity 

(Hinuma et al., 2000; Shimizu and Bédécarrats, 2010). However, in some instances, GPR147 

is coupled to Gαs or Gαq proteins (Gouardères et al., 2007) and this differential coupling 

may account for the reported disparity in the effects of RFRP-3. 

As indicated above, in most rodents, RFRP-3 perikarya are restricted to the DMH 

(Henningsen et al., 2016a; Kriegsfeld et al., 2018; Tsutsui and Ubuka, 2018), although, in 

rats, a significant number of cells are also observed in the region between the DMH and the 

ventromedial nucleus of the hypothalamus (VMH) (Hinuma et al., 2000; Legagneux et al., 

2009) (Figure 3). In mammals, RFRP-3-immunoreactive (-ir) fiber projections are extensively 

scattered throughout the diencephalon, mesencephalon and limbic structures (Henningsen 

et al., 2016b; Kriegsfeld et al., 2006; Smith et al., 2008; Yano et al., 2003), providing 

divergent neural pathways to broadly influence neurophysiology and behavior. 
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Figure 3: GnIH/RFRP-3 cell bodies are tightly clustered in the dorsal and ventral regions of the DMH in Syrian 

hamsters (Scale bar: 200 μm). The box in the top image outlines the cells bodies shown at high power. Image from 

(Kriegsfeld et al., 2006). 

 

2.3 Evidence for a role of RFRP-3 in the central control reproduction 

RFRP-3 acts both directly and indirectly to influence GnRH cell function. For example, RFRP-

3 cell fibers form close contacts with GnRH cells (Figure 4) and about a third of GnRH cells 

express GPR147, pointing to direct actions of RFRP-3 on the GnRH system (Rizwan et al., 

2012; Ubuka et al., 2012, 2009a, 2009b). Likewise, RFRP-3 inhibits cellular activity in about 

40% of GnRH cells in vitro (Ducret et al., 2009; Wu et al., 2009). RFRP-3 may also act to 

suppress GnRH cellular activity via kisspeptin cells, as RFRP-3 cell projections form close 

connections with kisspeptin neurons in mice, sheep and monkeys (Poling et al., 2013; Qi et 

al., 2009; Ubuka et al., 2009a), with a small percentage of kisspeptin cells in the 

anteroventral periventricular nucleus (AVPV) and ~25% of kisspeptin cells in the arcuate 

nucleus, expressing GPR147 in mice (Poling et al., 2013; Rizwan et al., 2012).  

Generally, RFRP-3 inhibits gonadotrophin synthesis and/or secretion across mammals, 

including humans (Clarke et al., 2008; George et al., 2017; Henningsen et al., 2017; Johnson 

et al., 2007; Kriegsfeld et al., 2006; Tsutsui and Ubuka, 2018). In some cases, however, RFRP-

3 stimulates gonadotropin secretion, with differences observed based on sex, season or 

reproductive status (Table 1) (Figure 5 and 6). For example, in male Syrian hamsters 

(Mesocricetus auratus), RFRP-3 increases GnRH neuronal activity (i.e., increases c-Fos 

expression) and increases gonadotropin and testosterone release (Ancel et al., 2012). This 
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pattern differs from that observed in female Syrian hamsters, where RFRP-3 suppresses LH 

if administered around the time of the LH surge (Henningsen et al., 2017; Kriegsfeld et al., 

2006). Similarly, in male mice (Mus musculus), RFRP-3 stimulates LH secretion, at least in 

part via actions on kisspeptin as the stimulatory effect of RFRP-3 is diminished in kisspeptin 

receptor knockout mice (Ancel et al., 2017). In female mice, as in Syrian hamsters, RFRP-3 

inhibits LH when estradiol concentrations are high around the time of the LH surge, but is 

without effect during diestrus or in ovariectomized females with low estradiol 

concentrations when provided exogenously (Ancel et al., 2017). Finally, in male Siberian 

hamsters (Phodopus sungorus), RFRP-3 stimulates LH secretion in short-day, reproductively-

inhibited hamsters, but inhibits LH secretion in long-day, reproductively-competent animals 

(Ubuka et al., 2012). Together, these findings confirm a role of RFRP-3 in the central control 

of reproduction, but its effects are dependent on species, sex, reproductive status and 

hormone concentrations, most likely due to the specific G-protein to which GPR147 is 

coupled. Surprisingly, however, GPR147/NPFFR1 female null mice exhibit moderate 

reproductive phenotypes with larger litter, and increased arcuate kisspeptin synthesis, 

higher serum FSH concentrations, and augmented LH responses to GnRH (León et al., 2014). 

The disparate results in the effects of GPR147/NPFFR1 inactivation and exogenous 

administration of RFRP-3 probably are explained by compensatory mechanisms by other 

RF-amide systems. 
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Figure 4: GnIH fibers contact GnRH neurons in rats and mice. Images are shown as GnRH (red) alone and GnIH 

fibers (green) alone, followed by their respective overlays, taken at ×1,000 at the light level. Image from Kriegsfeld 

et al. (2006). 

 

Figure 5: Effects of intracerebroventricular RFRP-3 administration at different times of the day and estrous stages 

in long day-adapted female Syrian hamsters. In female hamsters, an injection of vehicle (4 µL Ringer’s solution) or 

RFRP-3 (1500 ng in 4 µL Ringer’s solution) was given in diestrus (14:30), as well as at 3 different time points on the 

day of proestrus (morning, 10:30; midday, 12:30; and just before the surge in LH, 14:30). Circulating LH was 

measured at 15:00 in diestrus and proestrus (time of the putative LH surge); data represent the mean level of LH ± 

standard error of mean (n = 7 in proestrus, n = 6 in diestrus); *P < 0.05 indicates a statistically significant effect of 

RFRP-3 when compared with vehicle. Image from (Henningsen et al., 2017). 

 

Figure 6: Intracerebroventricular injection of RFRP-3 stimulates LH secretion in the male Syrian hamster. Centrally 

administered hamster RFRP-3 (150–5000 ng, icv) dose dependently increased LH secretion after 30 min. Data 

represent the mean ± SEM (n = 6/group). Bars with differing letters differ significantly (P < 0.05 by one way ANOVA 

followed by Tukey's analysis). Image from (Ancel et al., 2012).  



 

16 
 

Table 1: Overview of the in vivo and in vitro effects of RFRP-3 on gonadotropin secretion in 
different species. 

In vivo: 

Species Sex and status 
Effect of GnIH/RFRP-3 

administration 
Reference 

Human 

 

Female - 

post-menopause 

 

iv infusion: 

Inhibits LH secretion 

 

(George et al., 2017) 

Mouse 

 

Female - Proestrus 

Female - Diestrus 

Female - OVX 

Female - OVX+E2 

icv administration: 

Inhibits LH secretion 

No effect 

Inhibits LH secretion 

No effect 

(Ancel et al., 2017) 

Mouse Male - intact/CAST 
icv administration: 

Stimulates LH secretion 
(Ancel et al., 2017) 

Rat 
Female - intact/OVX 

 

icv and ip administration: 

Inhibits LH secretion 

(Kriegsfeld et al., 2006; 

Pineda et al., 2010) 

Rat 
Male - intact/CAST 

 

icv and ip administration: 

Inhibits LH secretion 

(Johnson et al., 2007; 

Pineda et al., 2010) 

Syrian 

Hamster 
Female - OVX 

icv and ip administration: 

Inhibits LH secretion 

(Henningsen et al., 2017; 

Kriegsfeld et al., 2006) 

Syrian 

Hamster 
Male 

icv administration: 

Stimulates LH secretion 
(Ancel et al., 2012) 

Siberian 

hamster 

Male in LP 

Male in SP 

icv administration: 

Inhibits LH secretion 

Stimulates LH secretion 

(Ubuka et al., 2012) 

Sheep Female - OVX 

iv administration: 

Inhibits LH secretion 

or no effect 

(Clarke et al., 2008) 

(Decourt et al., 2016) 

Goldfish  
ip administration: 

Inhibits LH secretion 
(Zhang et al., 2010) 
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In vitro: 

Species Culture 
Effect of incubation with 

GnIH/RFRP-3 
Reference 

Bird 

 

Quail anterior 

pituitary 
Inhibits LH and FSH secretion (Tsutsui et al., 2000) 

Cow 

 

Bovine anterior 

pituitary cells 
Suppresses LH secretion (Kadokawa et al., 2009) 

Sheep 

(OVX) 

Ovine pituitary 

cells 
Inhibits LH and FSH secretion 

(Clarke et al., 2008; 

Sari et al., 2009) 

 

2.4 Evidence for a role of RFRP-3 in seasonal rhythms of reproduction  

The marked changes in environmental factors throughout the year require species to 

display adaptation of their behavior and physiology to these predictive seasonal changes in 

order to survive. Notably, many mammalian species synchronize their reproductive activity 

with one particular time of the year so that depending on the duration of female gestation, 

offspring are born at the most favorable period of the year, usually in spring when 

temperature, humidity and food availability are optimal (Bronson, 1988). Thus, two 

categories of breeders are described depending on the mating period: long-day (LD) 

breeders like rodents with a few weeks of gestation and short-day (SD) breeders like sheep, 

goats, or deer, with a few month of gestation (Goldman, 2001). 

Since the 60’s, it has been known that the pineal hormone melatonin is a major signal for 

the synchronization of reproduction with the seasons. Indeed, melatonin synthesis and 

release occurs only during the night and, therefore, the nocturnal production of melatonin 

is longer in the short days (SD) in autumn/winter as compared to long days (LD) in 

spring/summer (Hastings et al., 1985). Hoffman and Reiter were the first to demonstrate 

that the elimination of this neuroendocrine calendar by pinealectomy abolishes the 

reproductive response of Syrian hamsters to the photoperiod signal (Hoffman and Reiter, 

1965). It was later established through timed melatonin infusion experiments that the 

duration of circulating melatonin, and not its concentration or phase, is the crucial variable 

triggering photoperiodic adaptations in all seasonal species (Bartness et al., 1993; Goldman, 
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2001). Intriguingly, although the mechanism is unknown, the same photoperiodic melatonin 

signal has an opposite reproductive effect on LD and SD breeders. 

In early studies, it was shown in seasonal quail and rodents that GnIH and RFRP-3 (Kriegsfeld 

et al., 2006; Tsutsui et al., 2000), respectively, are synthesized in hypothalamic neurons and 

are able to alter LH release, altogether indicating that this peptide may be involved in the 

seasonal regulation of reproduction. The first studies on quail and sparrow reported 

seasonal variation in GnIH synthesis that correlated with seasonal changes in reproduction 

(Bentley et al., 2003; Ubuka et al., 2005). Additionally, melatonin administration, in 

pinealectomized and enucleated (pineal gland and eyes removed to eliminate all sources of 

melatonin) quail, was shown to act directly on GnIH neurons to inhibit GnIH synthesis in a 

dose-dependent manner (Ubuka et al., 2006).  

Subsequently, it was found that, in seasonal rodents, the number of RFRP-3 neurons in the 

dorso/ventromedial part of the DMH displayed marked photoperiodic changes (Revel et al., 

2008). Indeed RFRP-3 synthesis was higher in LD-adapted, sexually active animals as 

compared to SD-adapted sexually inactive male Syrian and Siberian hamsters (Mason et al., 

2010; Revel et al., 2008). Like in birds, although in an opposite manner, seasonal variation 

in RFRP-3 synthesis depends on melatonin, since pinealectomy increases and injection of 

melatonin decreases, the number of RFRP-3 expressing neurons in hamsters (Revel et al., 

2008; Ubuka et al., 2012). Additionally, expression of GPR147 in various hypothalamic areas 

(Henningsen et al., 2016b) and the number of GnRH cell bodies receiving RFRP-3 fiber 

contacts (Smith et al., 2008; Ubuka et al., 2012) were increased in LD hamsters. 

In male LD-adapted Syrian hamsters, an acute injection of RFRP-3 was found to increase LH, 

FSH and testosterone secretion. Furthermore, a chronic central infusion of RFRP-3 in SD-

adapted, sexually inhibited male Syrian hamsters restored gonadal activity to that of 

hamsters kept in LD conditions (Ancel et al., 2012). Intriguingly, despite an acute inhibitory 

effect of RFRP-3 on the preovulatory LH surge in LD-adapted female Syrian hamsters, a 

chronic central infusion in sexually inactive SD-adapted females fully restored reproductive 

activity, as observed in male hamsters (Henningsen et al., 2017). Even more complexity was 

revealed following studies in closely-related male Siberian hamsters, where the effect of 
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RFRP3 on LH secretion depended on photoperiod, with RFRP-3 being stimulatory in SD-

adapted and inhibitory in LD-adapted animals (Ubuka et al., 2012). However, administration 

of different doses of RFRP-3 had no effect on the reproductive status of photo-inhibited 

Djungarian hamsters of either sex (Cázarez‐Márquez et al., 2019). In ewes, initial studies 

reported RFRP-3 to inhibit gonadotropin secretion (Clarke et al., 2008; Sari et al., 2009). 

However, a more recent study using different protocols of RFRP-3 administration could not 

find any effect on LH secretion in ewes (Decourt et al., 2016).  

Therefore, although the melatonin-dependent photoperiodic regulation of RFRP-3 neurons 

is well conserved among seasonal species, the role of RFRP-3 in the seasonal regulation of 

reproduction is not straightforward and appears to be species dependent. Data so far, 

however, are insufficient to conclude whether RFRP-3 is responsible for the LD or SD 

breeding activity in seasonal species. 
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Figure 7: RFRP-3 synthesis in the medial hypothalamus exhibits a conserved seasonal pattern. RFRP-3 expression, 

attested by the number of neurons or the level of Rfrp mRNA, is higher in the long-day (LD) condition as compared 

to the short-day condition (SD). Data are shown for LD breeders (European hamster, Syrian hamster, Siberian 

hamster, Jerboa, Turkish hasmter, and MSM mouse) as well as for SD breeders (sheep, dromadary). Image from: 
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(Angelopoulou et al., 2019) and adapted from (Sáenz de Miera et al., 2014) (European hamster), (Revel et al., 2008) 

(Syrian hamster), (Talbi et al., 2016a) (Jerboa),(Piekarski et al., 2014) (Turkish hamster), (Miera et al., 2020) (MSM 

mouse), (Lomet et al., 2018)(sheep), (Ainani et al., 2020) (Dromedary), with appropriate permissions obtained from 

the copyright holders. 

 

2.5 Potential roles of RFRP-3 in the pituitary and gonads 

In addition to its actions on GnRH neurons, RFRP-3 may alter gonadotropin synthesis and 

secretion also via the pituitary, although findings are disparate across studies and species. 

For example, RFRP-3 projections have been shown to project to the outer layer of the 

median eminence [hamsters (Gibson et al., 2008), sheep (Clarke et al., 2008), macaque 

(Ubuka et al., 2009a), and humans (Ubuka et al., 2009b)]. In contrast, using peripheral 

injections of fluorogold to label hypophysiotropic cells, RFRP-3 cells were not labeled in rats 

(Rizwan et al., 2009). In other studies, RFRP-3 terminal fibers in the median eminence are 

sparse or absent [mice (Ukena and Tsutsui, 2001); brushtail possum (Harbid et al., 2013); 

macaque (Smith et al., 2010)]. Although results are thus equivocal regarding projections to 

the median eminence across species, GPR147 is expressed in the pituitary of hamsters 

(Gibson et al., 2008) and humans (Ubuka et al., 2009b) and RFRP-3 has been shown to inhibit 

gonadotropin release in cultured pituitaries from sheep (Sari et al., 2009), cattle (Kadokawa 

et al., 2009), and rat (Pineda et al., 2010). In ewes, RFRP-3 is detected in hypophyseal portal 

blood and exogenous RFRP-3 has been reported to significantly reduce the GnRH-induced 

LH response (Smith et al., 2012). In another study, however, peripheral administration of 

RFRP-3 in ewes was unable to inhibit pulsatile LH secretion or the E2-induced LH surge 

(Decourt et al., 2016), raising the question of whether or not RFRP-3 acts on pituitary 

gonadotropes despite being detectable in portal blood. 

In addition to potential actions at the level of the pituitary, RFRP-3 also appears to be 

produced and act locally at other places, to regulate gonadal function. Early work 

discovered that GnIH is synthesized in ovarian granulosa cells and in the testicular 

interstitial layer and seminiferous tubules of birds (Bentley et al., 2008). Moreover, in birds, 

GnIH application decreases testosterone release from gonadotropin-stimulated testes in 
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vitro, pointing to a functional role for gonadal GnIH (McGuire et al., 2011). Later, it was 

shown that RFRP-3 is synthesized in the gonads of all mammals studied to date (Bentley et 

al., 2017), including humans (Oishi et al., 2012), non-human primates (McGuire and Bentley, 

2010), Syrian hamsters (Zhao et al., 2010), mice (Oishi et al., 2012; Singh et al., 2011), rats 

(T et al., 2015), ewe (Li et al., 2014), and pigs (Fang et al., 2014). Across species, the gonads 

synthesize RFRP-3 and GPR147 (Bentley et al., 2017, 2008; McGuire and Bentley, 2010; Oishi 

et al., 2012; Singh et al., 2011). In mice, testicular RFRP-3 synthesis increases during 

reproductive senescence, possibly contributing to aging-related decrements in testicular 

functioning (Anjum et al., 2012). In human granulosa cell cultures, RFRP-3 inhibits 

gonadotropin-induced intracellular cAMP accumulation and progesterone secretion (Oishi 

et al., 2012). Finally, RFRP-3 and GPR147 are synthesized in ovarian granulosa cells and 

antral follicles during proestrus and estrus and in luteal cells during diestrus in mice (Singh 

et al., 2011), suggesting participation in follicular development and atresia. Together, these 

findings suggest that GnIH/RFRP-3 is commonly synthesized in the gonads across species 

and may act locally to fine-tune gonadotropin-regulated gonadal functioning. 

 

2.6 Potential role of RFRP-3 in reproduction through metabolic activity and 

stress regulation 

Although RFRP-3 is consistently reported to regulate reproductive axis function, the effect 

on GnRH neuronal activity and gonadotropin secretion is highly dependent on species, sex 

and environmental conditions (Ancel et al., 2017; Henningsen et al., 2016b). Determining 

the exact mechanism of RFRP-3 action is further complicated by increasing evidence 

indicating that RFRP-3 is a pleiotropic peptide involved in functions other than 

reproduction, notably metabolic activity and the stress response (Kriegsfeld et al., 2018; 

Schneider et al., 2017; Takayanagi and Onaka, 2010). Because reproduction is modulated 

by energy state and stress conditions, it is possible that RFRP-3, at least in part, indirectly 

regulates reproduction via metabolic- and stress-regulated mechanisms. Food intake and 

metabolic activity, for example, display major circadian and seasonal changes in mammals, 

which may interfere with reproductive cycles. Indeed, metabolic alterations such as food 
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restriction or obesity are known to impair reproduction. As RFRP-3 increases food intake in 

various species, possibly through actions on orexigenic NPY neurons (Cázarez-Márquez et 

al., 2020; Johnson et al., 2007; Talbi et al., 2016b), and food restriction decreases RFRP-3 

synthesis in rats and sheep (Li et al., 2014; M et al., 2014), it is possible that RFRP-3 may also 

impact reproductive activity indirectly via metabolic pathways (Wahab et al., 2015). 

Likewise, a number of studies report that acute or chronic stress increases RFRP-3 synthesis 

via increased levels of glucocorticoids (Clarke et al., 2016; Kirby et al., 2009; Yang et al., 

2017) and this stress-induced increase in RFRP-3 is associated with an inhibition of LH 

secretion (Kirby et al., 2009). Finally, Rfrp gene silencing completely rescues stress-induced 

infertility in female rats (Geraghty et al., 2015), strengthening the implication that stress 

can influence reproductive function via the RFRP system. In summary, although there is 

much more to learn, findings to date provided clear evidence for a role for RFRP-3 in the 

daily and seasonal regulation of reproduction. Whether RFRP-3 effectuates its influence 

through direct actions on the reproductive axis, and/or indirectly via actions on 

intermediate systems (e.g., stress or metabolic systems), requires further examination. The 

advent and application of new experimental tools and animal models to more precisely 

dissect the roles of this neuropeptide will help to further clarify the specific role of RFRP-3 

in the LH surge/ovulation and the neural pathways by which melatonin inevitably influences 

RFRP3 cell activity. 
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3. RFRP-3 contributes to the daily rhythm of reproduction in female rodents 

3.1 Daily and ovarian rhythms in female reproduction 

Successful female reproduction requires the activation of specific neuronal and hormonal 

pathways in order to synchronize ovulation with maximal locomotor activity and an optimal 

arousal state. Female mammals display rhythms of different, recurrent time scales that 

range from minutes (pulsatile GnRH release) to hours/days (LH surge), days/weeks (ovarian 

cycle) or even months (seasonal reproduction). 

Ovarian activity displays regular cycles (~28 days in women and 4–5 days in rodents) driven 

by changes in circulating levels of the pituitary gonadotropins LH and FSH. During the first 

stage of the ovulatory cycle (follicular phase in humans, metestrus-diestrus in rodents), FSH 

secretion gradually increases, promoting ovarian follicular development. In turn, maturing 

follicles secrete increasing concentrations of E2. The second stage of the reproductive cycle 

(luteal phase in women; proestrus-estrous in rodents) is immediately preceded by a 

pronounced and transient rise in LH secretion (surge) that initiates the release of mature 

oocyte(s) from ovarian follicles (Figure 8). The generation of the LH surge requires high 

circulating levels of E2, indicative of follicle maturation, as well as a daily signal, ensuring 

that ovulation occurs at the right arousal time to optimize breeding success. Indeed, the LH 

surge occurs at a specific time of day, corresponding to the end of the inactive phase, thus 

in late afternoon in nocturnal rodents (e.g., mice, rats, hamsters) and early morning in 

diurnal species (e.g., Nile grass rat, humans) (Kerdelhué et al., 2002; Simonneaux and 

Bahougne, 2015). 

Exploring the pathways by which the circadian clock synchronizes GnRH neuronal activity 

and upstream modulatory systems is essential to fully understand the mechanisms of 

female reproduction. Indeed, circadian disruption has been associated with various 

abnormalities in fertility and reproduction. Early studies in the 50's demonstrated that 

chemical blocking of neural clock output alters the LH surge in female rats (Everett and 

Sawyer, 1950, 1949) and hamsters (Stetson and Watson-Whitmyre, 1977). Furthermore, 

SCN lesions cause anovulation in female rats, presumably resulting from the loss of diurnal 
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variation in the sensitivity of the reproductive axis to E2 positive feedback (Brown-Grant 

and Raisman, 1977) and stimulatory input from the SCN (Palm et al., 1999). Indeed, female 

mice deficient for the clock gene, Clock, exhibit abnormal estrous cycles, do not have a 

detectable LH surge on the day of proestrus, and generally fail to carry pregnancies to term 

(Miller et al., 2004). Similarly, women with single-nucleotide polymorphisms in the circadian 

clock gene ARNTL exhibit more miscarriages than those without such mutation (Kovanen et 

al., 2010). 

It appears that the circadian signal is sent to the reproductive system each day, but its 

impact is masked by low circulating E2. Thus, in female rodents provided with chronic, 

proestrus-like concentrations of E2, daily LH surges are observed for several consecutive 

days, revealing the circadian mechanism underlying surge generation (Christian et al., 2005; 

Legan and Karsch, 1975; Norman et al., 1973) (Figure 5). Altogether, these findings, largely 

obtained in female rodents, indicate that the timing of the preovulatory LH surge is strictly 

time-gated by a combination of daily and ovarian signals. Although the daily signal is 

communicated each day by the SCN to the GnRH/LH pathway, E2 secretion from mature 

oocytes needs to reach a certain threshold in order to exert positive feedback on the HPG 

axis and allow the generation of the LH surge. 

 

 

Figure 8: Induction of daily LH surges by estradiol in mice. (A) Bars represent serum LH concentrations (mean ± 

SEM)  with open bars showing samples obtained at 7 a.m., and filled bars showing samples obtained at 4 p.m., 

from 2 to 12 days after mice were ovariectomized with an estradiol implant (OVX+E). (B) Serum LH levels (mean ± 

SEM) sampled in OVX+E mice at various times on day 2 after OVX+E. Gray shading indicates time during which 

lights were off. LH surge reliably begins ≈1.5 h before lights off (4:30 p.m.). (C) Serum LH levels show no diurnal 
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difference in OVX mice, and estradiol induces negative feedback in the a.m. and positive feedback in the p.m. A, 

a.m. same-day control; B, 7 a.m. control; C, OVX control. *, P < 0.05; ***, P < 0.001; #, P < 0.01 vs. day 2 p.m. Image 

from: (Christian et al., 2005). 

 

3.2 Mechanisms regulating the circadian-estrogen sensitive preovulatory LH 

surge 

Both two principal SCN neurotransmitters, VIP and AVP, are thought to be implicated in 

relaying daily cues to GnRH neurons and therefore controlling the timing of the 

preovulatory LH surge. VIP content in the rat SCN displays daily variation, decreasing during 

the light period and increasing during the dark period. This daily variation  is abolished under 

constant darkness, suggesting that VIP is implicated in the transmission of photic 

information (Shinohara et al., 1993). Furthermore, the daily rhythm of VIP in the SCN 

appears sex-dependent since VIP mRNA levels peak during the light phase in female rats, 

but during the dark phase in male rats (Krajnak et al., 1998a). The observation that a central 

blockade of VIP signaling decreases the LH surge in female rats indicates a role of this 

peptide in female reproduction (Harney et al., 1996; van der Beek et al., 1999). Indeed, 

~45% of the GnRH cells are innervated by VIP-containing fiber terminals and unilateral 

thermal lesions of the majority of VIP cells in the SCN results in a 50% decrease of VIP nerve 

contacts on GnRH cell bodies on the lesioned side, compared to the intact side of the brain 

(van der Beek et al., 1993). Furthermore, the use of anterograde tracing demonstrated a 

direct connection between the SCN and GnRH neurons (Van der Beek et al., 1997). 

Interestingly, there is a sex-dependent difference in the VIP-GnRH pathway, with the 

number of VIP terminals onto GnRH neurons, and the percentage of GnRH neurons 

contacted by VIP fibers, being higher in females compared to males (Horvath et al., 1998). 

About 40% of GnRH neurons express the VIP2 receptor (Smith et al., 2000) and exogenous 

VIP application to brain slices increases GnRH neuron action potential firing and intracellular 

calcium (Christian and Moenter, 2008; Piet et al., 2016), supporting the idea that VIP may 

provide a direct excitatory signal from the SCN to the GnRH system. 
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AVP expression exhibits both daily and circadian variation in the SCN, peaking during the 

latter part of the light period and dropping during the dark period (Cagampang et al., 1994). 

AVP release in the SCN vicinity has been found to peak during midday, while minimum 

release occurs at midnight (Kalsbeek et al., 1995). Unlike VIP, no sex-dependent differences 

in AVP gene expression are found in the SCN (Krajnak et al., 1998a). Increasing evidence 

indicates that the rhythm in SCN AVP release is critical for the daily timing of the 

preovulatory LH surge. Indeed, central administration of AVP in OVX, E2-treated rats, 

bearing complete SCN lesions, is sufficient to trigger a LH surge (Palm et al., 1999). However, 

the ability of AVP to trigger the surge is time-dependent, with administration during the 

latter half of the light period, but not the first half, being effective (Palm et al., 2001). 

Moreover, central administration of a V1a receptor antagonist decreases LH surge 

amplitude in rats (Funabashi et al., 1999). Finally, in Clock mutant female mice, central 

injections of AVP can restore a preovulatory-like LH surge (Miller et al., 2006). Unlike VIP, 

SCN AVP neurons appear to regulate the GnRH/LH surge indirectly via kisspeptin neurons 

located in the preoptic area (AVPV in rodents), a highly sex-dimorphic brain area (Adachi et 

al., 2007; Smith et al., 2006). Thus, in female rodents, AVPV kisspeptin neurons receive 

direct SCN-derived AVP inputs and express the V1a receptors (Vida et al., 2010; Williams et 

al., 2011), and direct application of AVP to brain slices increases neuronal firing and 

intracellular calcium concentrations in AVPV kisspeptin cells (Piet et al., 2015). Importantly, 

AVPV kisspeptin neurons display ERα, and E2 not only potently stimulates kisspeptin 

synthesis (Adachi et al., 2007; Smith et al., 2006, 2005a), but is also required for the AVP-

induced activation of kisspeptin cells (Piet et al., 2015). Finally, activation of AVPV kisspeptin 

neurons coincides with the time of LH surge, during the sleep/wake transition in proestrus 

or in OVX E2-treated female rodents, but does not display daily rhythms during diestrus or 

in OVX animals (Chassard et al., 2015; Henningsen et al., 2017; Robertson et al., 2009; 

Williams et al., 2011). 

Therefore, data primarily obtained in female rodents indicate that both SCN-derived VIP 

fibers acting directly on GnRH neurons, and AVP fibers acting indirectly via preoptic 

kisspeptin neurons, are involved in the timing of the preovulatory LH surge. In addition to 
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this mechanism of surge control, RFRP-3 neurons may also be part of the pathway relaying 

daily time cues from the SCN to GnRH neurons in order to time the preovulatory LH surge, 

as described further below. 

 

3.3 Evidence for a role of RFRP-3 neurons in the daily timing of the LH surge 

The hypothesis for a role of RFRP-3 neurons in the daily timing of the LH surge begins with 

the observation of a daily rhythm in RFRP-3 neuronal activity, with a lower number of RFRP-

3 neurons expressing c-FOS coincident with the timing of the LH surge in female Syrian 

hamsters (Gibson et al., 2008; Henningsen et al., 2017) and mice (Poling et al., 2017). 

Equivocal findings are reported regarding the association between the RFRP-3 cell 

activation state and the number of Rfrp expressing neurons, with daily variation in RFRP-3 

neuronal activity being associated (Gibson et al., 2008) or not (Henningsen et al., 2017; 

Poling et al., 2017), with corresponding changes in the number of Rfrp expressing cells. In 

ewes, Rfrp expression is decreased during the preovulatory period, but no activation data 

were reported (Clarke et al., 2012). The role of RFRP-3 neurons in relaying circadian 

information to GnRH neurons is further supported by an experimental protocol where 

female hamsters kept under constant light conditions split their locomotor activity and 

exhibit two daily LH surges. In these conditions, the left and right SCN oscillate in antiphase 

and RFRP-3 neurons are active asymmetrically in opposition to GnRH neuron activation 

(Gibson et al., 2008). 

A recent study in female Syrian hamster demonstrated that AVP- and VIP-ergic fibers from 

the SCN form close appositions with RFRP-3 neurons and that a central injection of VIP 

decreases RFRP-3 neuronal activity in a time-dependent manner, being effective in the 

afternoon, but not in the morning, while central AVP had no significant effect (Russo et al., 

2015). It is yet unclear, however, whether the action of VIP on RFRP-3 neurons is direct or 

indirect, since <10% of RFRP-3 neurons appear to express the VPAC1 or VPAC2 receptors 

(Russo et al., 2015). Altogether, these findings suggest a SCN-derived VIP daily regulation of 

RFRP-3 neuronal activity, at least in Syrian hamsters. Additionally, there is evidence in 
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female rodents that RFRP-3 neurons, similar to kisspeptin neurons (Chassard et al., 2015), 

are able to keep track of time intrinsically, expressing the clock protein PER1 with a peak at 

ZT12 (Russo et al., 2015). 

Unlike kisspeptin cells, it is likely that high circulating levels of E2 are not required for the 

daily rhythm in RFRP-3 neurons as daily rhythms in RFRP-3/c-FOS are similar during diestrus 

and proestrus in Syrian hamsters (Henningsen et al., 2017). Although another report 

indicates that daily variation is abolished in OVX hamsters and restored in OXV+E2 animals 

(Gibson et al., 2008), in this study different time points were investigated and a different 

protocol was used, which might account for the disparity between both findings. 

A number of studies are consistent with an inhibitory action of RFRP-3 on LH secretion in 

female mammals (Anderson et al., 2009; Kriegsfeld et al., 2006). In Syrian hamsters 

(Henningsen et al., 2017) and mice (Ancel et al., 2017), central RFRP administration 

decreases LH secretion when given around the time of the preovulatory LH surge, whereas 

it has no effect when given at other time points when LH secretion is low (early day of 

proestrus or diestrus). Therefore, decreased activity of RFRP-3 neurons in late afternoon, 

possibly mediated by an SCN VIP-ergic signal, associated with the inhibitory effect of RFRP-

3 on LH secretion, indicates that tonic RFRP-3 inhibitory input is lifted at the time of the 

preovulatory LH surge (Figure 9). 
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Figure 9: Working model illustrating the contribution of RFRP-3 neurons in the central control of the daily gating of 

the preovulatory LH surge in female rodents. Neurons of the suprachiasmatic nuclei (SCN) synthesizing vasopressin 

(AVP) and vasoactive intestinal peptide (VIP) exhibit daily variation controlled by an intrinsic circadian clock and 

the daily change in light input. The SCN VIP output times the activity of GnRH neurons either directly and/or 

indirectly via the RFRP3 neurons located in the dorsomedial hypothalamus (DMH), which further inhibit GnRH 

neurons at the light/dark transition. The SCN AVP output activates GnRH neurons through the stimulation of 

neurons located in the anteroventral periventricular nuclei (AVPV) and releasing the potent stimulatory peptide 

kisspeptin. Additionally, kisspeptin neurons receive a positive estradiol (E2) feedback on the day of proestrus while 

the effect of E2 on RFRP3 neurons is still unclear. This coordinated pathway is proposed to trigger a preovulatory 

GnRH/LH surge at the light/dark transition of the proestrus stage. Image from (Angelopoulou et al., 2019). 
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3.4 The controversy of E2 feedback on RFRP-3 neurons 

The possibility that RFRP-3 neurons, similar to kisspeptin neurons (Simonneaux, 2020), may 

be a central site for the E2 feedback has been widely studied. However, the results obtained 

in different species, sex and conditions are conflicting. 

ERα are found in 40% and 25% of RFRP-3 neurons in female Syrian hamsters (Kriegsfeld et 

al., 2006) and mice (Molnár et al., 2011; Poling et al., 2012), respectively. Studies have 

reported that E2 treatment in OVX Syrian hamsters increases c-FOS expression in RFRP-3 

neurons (Kriegsfeld et al., 2006) while others, in contrast, show that E2 treatment decreases 

the amount of Rfrp mRNA per cell and the total amount of Rfrp mRNA in both male and 

female mice (Poling et al., 2012). In female rats, RFRP-3 neuronal activity is reported to be 

higher during diestrus compared to proestrus and estrous (Jørgensen et al., 2014), 

suggesting a role for E2 in the activational state of RFRP-3 cells across the ovulatory cycle in 

this species. Finally, in female rats (Quennell et al., 2010), male (Revel et al., 2008) and 

female Syrian hamsters (Henningsen et al., 2017), and male Djungarian hamsters (Rasri-

Klosen et al., 2017), gonadectomy with/without sex steroid replacement does not have a 

significant effect on RFRP-3 synthesis. 

On the other hand, other experimental paradigms do (indirectly) suggest a possible 

influence of E2 on RFRP-3 neurons. For example, E2 treatment increases RFRP-3 synthesis 

in the hypothalamic mHypoA-55 rat cell line (Tumurbaatar et al., 2018). In Syrian hamsters, 

food-restriction increases the percentage of RFRP-3 cells expressing c-Fos, with increased 

ovarian steroids at the time of estrus abolishing the impact of food restriction on RFRP-3 

cellular activation (Benton et al., 2018). Finally, in female rats, RFRP-3 synthesis varies 

according to reproductive stage, with increased levels at the time of puberty when the 

endogenous sex steroid levels are highest (Quennell et al., 2010). 
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3.5 Concluding remarks on the role of RFRP-3 in the daily timing of the LH surge 

in females 

Female reproduction is cyclic and in female mammals, possibly including women although 

this is still controversial, daily time cues are integrated within the reproductive system to 

coordinate the LH surge and consequential ovulation with the best period of the day. The 

hypothalamic SCN clock plays a key role in conveying daily information to the reproductive 

system, and increasing evidence indicates that RFRP-3 neurons, in addition to kisspeptin 

neurons, are a key relay between the SCN clock and GnRH neurons. Recent data indicate 

that the SCN-derived VIP output drives RFRP-3 neuronal activity, but the mechanisms 

involved are still unclear. Furthermore, while numerous studies now agree on the critical 

role of kisspeptin in the timing of LH surge, the specific significance of RFRP-3 on the 

occurrence of the LH surge requires further investigation. 
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4. The issue of altered reproduction in circadian disruption 

4.1 Concept of shiftwork 

The modern 24 h-functioning society requires an increasing number of employees to work 

outside of the natural active period. According to the International Labor Organization (ILO; 

1990), working in shifts is “a method of organization of working time in which workers 

succeed one another at the workplace so that the establishment can operate longer than 

the hours of work of individual workers”. Shift work and night work cover a multitude of 

realities: different time systems called 2 × 9, 3 × 8, 4 × 8, 5 × 8, 2 × 12 h, with variability 

resulting from different choices made by the employer's company. 

In industrial countries, 20–30% men and 15–20% women experience shift work or work at 

night (Pati et al., 2001), and this is an expanding phenomenon with a particularly significant 

increase among women under 30 years. One difficulty to classify when work is done in 

shifted conditions comes from variable definitions of shift/night work, even within the 

European Union. Thus, in France, night work is defined as any work between 9 pm and 6 

am; in Germany it is 2 h of the daily work between 11 pm and 6 am; in Italy it is a minimum 

of 7 consecutive hours including the timeframe between 0 am and 5 am; in Belgium it is 

work performed between 8 pm and 6 am; and in the United Kingdom, it is 3 h of the daily 

work between 11 pm and 6 am. Moreover, shift work can be defined by a number of 

periods, duration of the periods, shift structure (continuous or not), start and end time of 

work, and time between shifts. 

 

4.2 Impact of shift work on health  

An increasing number of studies report that shift work or night work is associated with 

increased risks of developing cardiovascular/metabolic/gastro-intestinal disorders, some 

types of cancer, and mental disorders including depression and anxiety (Boivin et al., 2007; 

Chen et al., 2010; Matheson et al., 2014). In 2007 shiftwork was reclassified from a possible 

to a probable human carcinogen (class 2A) by the International Agency for Research on 

Cancer. 
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Bøggild and Knutsson, 1999, who analyzed 17 studies (between 1949 and 1998), evaluated 

the excess risk at 40% for ischemic heart disease in shift/night workers compared to day 

workers (relative risk was ranging from 0.4 to 3.6, with a majority between 1 and 2). Ten 

years later, Frost et al. published a new review (from 16 epidemiological studies done 

between 1972 and 2008), which reported limited epidemiological evidence for a correlation 

between shift/night work and ischemic heart disease (Frost et al., 2009). More recently, a 

large meta-analysis (34 studies published between 1983 and 2011, including more than two 

million people) indicated that shift/night work is associated with a significant increase in 

myocardial infarction and coronary events with or without adjustment for other risk factors 

(Vyas et al., 2012). Since then, four other epidemiological studies have indicated an 

increased risk of coronary events and cardiovascular disease mortality after 5 years of 

shift/night work (Carreón et al., 2014; Gu et al., 2015; Hermansson et al., 2015; Park et al., 

2015). Also, a causal link between shift/night work and weight gain/high body mass index is 

often reported, notably after 5 years, suggesting that shift/night work is a risk for type 2 

diabetes (Pan et al., 2011). Indeed, a retrospective study on 6413 male shift/night workers 

showed an increased risk of impaired glucose tolerance (even for workers with normal and 

stable body weight) compared to day workers (Kubo et al., 2010). Similarly, a recent meta-

analysis reported an increased risk of 1.09 between shift/night work and type 2 diabetes 

(Gan et al., 2015). Shift/night work is also often associated with chronic stress and a 

significant impact on cortisol (in humans) or corticosterone (in rodents) is well documented 

(Goichot et al., 1998; Gumenyuk et al., 2014; Kiessling et al., 2010; Manenschijn et al., 2011; 

Ulhôa et al., 2015; Weibel and Brandenberger, 2002). This is important because 

glucocorticoids play a major role in the circadian resynchronization of the central and 

peripheral clocks in a chronic jet-lag context (Kiessling et al., 2010).  

Given the importance of the circadian system in the regulation of female reproduction, and 

given the fetal exposure to the maternal daily rhythms in temperature, hormones and 

metabolic cues, female shift workers may display reproductive dysregulations. Indeed a few 

studies have reported increased risk of irregular menstrual cycles, endometriosis, 

miscarriage, low birth weight or pre-term delivery in women in shift/night work conditions 

https://www.sciencedirect.com/topics/medicine-and-dentistry/meta-analysis
https://www.sciencedirect.com/topics/medicine-and-dentistry/myocardial-infarction
https://www.sciencedirect.com/topics/medicine-and-dentistry/body-mass-index
https://www.sciencedirect.com/topics/medicine-and-dentistry/impaired-glucose-tolerance
https://www.sciencedirect.com/topics/medicine-and-dentistry/hydrocortisone
https://www.sciencedirect.com/topics/medicine-and-dentistry/corticosterone
https://www.sciencedirect.com/topics/medicine-and-dentistry/jet-lag
https://www.sciencedirect.com/topics/medicine-and-dentistry/menstrual-cycle
https://www.sciencedirect.com/topics/medicine-and-dentistry/endometriosis
https://www.sciencedirect.com/topics/medicine-and-dentistry/premature-labor
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(Gamble et al., 2013; Lawson et al., 2011; Rocheleau et al., 2012). Notably, an animal study 

showed that maternal circadian disruption during pregnancy may lead to fetal SCN clock 

desynchronization (Nováková et al., 2010), in accordance with the well-known fact that the 

functioning of fetal clocks depends on maternal hormones (Serón-Ferré et al., 2012; Torres-

Farfan et al., 2011). 

 

4.3 Modeling shift work in rodents 

In order to better understand the mechanisms underlying the negative impact of shift/night 

work on health, it is necessary to develop a relevant animal model of circadian disruption.  

However, shift work is a very complex situation and therefore it is difficult to design animal 

model conditions that truly mimic human shift work, which is often associated with 

potential confounding factors (diet, social stress, sleep disturbance, use of 

psychostimulants). Furthermore, most studies are carried out on nocturnal animals (rats, 

mice, hamsters), while humans are diurnal. Apart from melatonin, whose secretion is 

always highest during the dark period, other hormones (cortisol/corticosterone, glucose, 

leptin, gonadotropins) and many biological functions (food intake, sleep/wake, cardiac 

functions, vigilance) have opposite rhythms between diurnal and nocturnal species. 

Moreover, for most of these studies only males are used to avoid an effect of the female 

reproductive cycles in the measurement of the circadian disturbances. Yet, animal studies 

are essential for understanding the cellular and molecular mechanisms underlying circadian 

perturbations. A recent review listed four relevant models that use altered timing of either 

food intake, activity, sleep or light exposure, or a combination of these (Opperhuizen et al., 

2015). 

Regarding female reproduction, very few animal studies have investigated alterations in 

fertility or LH surge timing after a shift in the light/dark cycle or photoperiod. One study in 

female Syrian hamsters reported that after a 3 h phase advance, the LH surge is not fully 

resynchronized to the new dark onset even after 3 days, but when they are submitted to a 

3 h phase delay, the LH surge is synchronized more rapidly (Moline and Albers, 1988). 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/nocturnal-animal
https://www.sciencedirect.com/topics/medicine-and-dentistry/melatonin
https://www.sciencedirect.com/topics/medicine-and-dentistry/leptin
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/nocturnal-species
https://www.sciencedirect.com/topics/medicine-and-dentistry/ovary-cycle
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/light-dark-cycle
https://www.sciencedirect.com/topics/medicine-and-dentistry/photoperiodicity
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/syrian-hamster
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Furthermore, photoperiod lengthening was associated with similar shifts in locomotor 

activity and the LH surge in female hamsters (Moline et al., 1981). In mice, exposure to 

either regular phase advances or delays at the beginning and throughout pregnancy 

resulted in a significant decrease in pregnancy success (Summa et al., 2012) . Finally, an in 

vitro study reported that the ovarian clock was not fully resynchronized 6 days after a 6 h 

phase advance in PER2:LUCIFERASE mice (Yamazaki et al., 2000). Thus, despite the extensive 

research on the impact of circadian disruptions, the negative effects on the reproductive 

system have not been fully explored yet. 

 

4.4 Concluding remarks on the effect of circadian disruption on reproduction 

The female reproductive system displays changes in hormone secretion and ovulation in a 

cyclical and circadian manner. Although only few studies have been performed, both 

epidemiological investigations and animal studies indicate that circadian disruption, 

observed when the light/dark cycle is acutely (jet-lag) or chronically (shift work) shifted, 

may impair the timing of the reproductive cycles. Clearly, more investigations are required 

in order to determine whether and, if yes, how disruptions in the endogenous circadian 

timing system underlie reproductive deficiency. 

 

  

https://www.sciencedirect.com/topics/medicine-and-dentistry/locomotion
https://www.sciencedirect.com/topics/medicine-and-dentistry/locomotion
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/per2
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/light-dark-cycle
https://www.sciencedirect.com/topics/medicine-and-dentistry/ovary-cycle
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5. Neuroendocrine control of reproductive senescence 

5.1 Reproductive aging in females 

In female mammals, reproductive activity encompasses three defined periods throughout 

development, the pre-pubertal period, the fertile period, and the post-menopausal 

unfertile period. In healthy women, puberty starts around 11 and 13 years, and menopause 

occurs between 45 and 53 years (Barros et al., 2019; Gold, 2011). Postponing childbirth until 

after the age of 35 has become a complex socio-economic phenomenon, which is 

increasingly evident in the last decades (Lampinen et al., 2009). Advanced maternal age is 

associated with a higher risk of miscarriage, preterm birth and genetic disorders of the 

foetus (Newburn-Cook and Onyskiw, 2005; Schmidt et al., 2012). Therefore, identifying the 

sequence of events preceding menopause and the mechanisms coordinating these events 

is of outmost importance. 

In women, reproductive senescence is associated with exhaustion of primary follicles and 

loss of fecundity. Menopausal transition is characterized by menstrual cycle variability, wide 

fluctuations in reproductive hormones and eventually permanent loss of menstruation at 

the average age of 51 years (Santoro, 2005). In contrast, female rodents do not undergo 

exhaustion of the follicular pool (Mandl and Shelton, 1959), although they do demonstrate 

progressively irregular ovarian cycles. Reproductive aging in female rodents is marked by 

the onset of longer irregular estrous cycles (> 4-6 days) at the age of 8-12 months, followed 

by a period of constant estrous (CE) or persistent vaginal cornification at the age of 10-16 

months. CE period is followed by a prolonged diestrus phase with intermittent ovulation 

known as repetitive pseudo-pregnancy (RPP), before reaching the anestrous stage at the 

age of 22-25 months (Cruz et al., 2017). 

Female mammals exhibit age-dependent changes in the neuroendocrine mechanisms that 

control reproduction. In humans, menopausal transition is characterized by huge swings in 

estradiol and gonadotropin levels before reaching post menopause (Hall, 2004). The aging 

ovary stops responding to normal FSH signals and ceases to produce adequate levels of 

estrogen and progesterone, which serve as down-regulatory signals to the hypothalamus 
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and the pituitary. Thus, perimenopausal women exhibit increased FSH production followed 

by increased LH secretion, both of which are markers of reduced fertility (Fitzgerald et al., 

1998). Similar to women, rodents display increased gonadotropin secretion at advanced 

ages (Belisle et al., 1990), even though they do not undergo depletion of the follicular pool 

and therefore maintain high estrogen levels (Chakraborty and Gore, 2004; Mandl and 

Shelton, 1959). While rodent ovarian activity progressively deteriorates (Cruz et al., 2017), 

the timing of the preovulatory LH surge is delayed and exhibits reduced amplitude during 

middle age (Nelson et al., 1982)). Despite the differences in the circulating levels of estrogen 

between women and female rodents during aging, the use of non-human animal models 

offers certain advantages in deciphering the mechanisms of reproductive decline; since the 

rodent HPG axis is highly conserved and estropause closely assimilates perimenopausal 

transition (Kermath and Gore, 2012). 

 

5.2 Primary role of the aging hypothalamus in the induction of reproductive 

decline 

Although for many years menopause has been attributed to ovarian failure due to the 

exhaustion of primary follicles, an alternative perspective is that menopausal transition is 

initiated by age-related alterations in the central nervous system; notably in the 

hypothalamus and the pituitary. However, given the extent of interactions and feedback 

loops between the different levels of the HPG axis, determining their relative contributions 

to the induction of reproductive senescence is complicated (Rubin, 2000).  

Age-related alterations in pituitary physiology have been associated with reproductive 

decline. Epidemiological studies demonstrated that the pituitary volume decreases with age 

(Grams et al., 2010; Lurie et al., 1990), while the amount of unoccupied space in the pituitary 

fossa increases (Pecina et al., 2017). Middle-aged rodents that exhibit attenuated LH surges 

show decreased pituitary LH responsiveness to GnRH stimulation (Brito et al., 1994; Krieg 

et al., 1995). Pituitary gene expression of the gonadotropin subunits and GnRH receptors 
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also decreases in middle-aged rodents, with no significant difference in the gene expression 

of the ER and PR steroid hormone receptors (Zheng et al., 2007). 

Despite the well-characterized changes in the aging ovary and pituitary, multiple studies 

suggest that age-related alterations in the hypothalamus precede the onset of reproductive 

decline. A recent epigenome-wide study demonstrated that global hypothalamic DNA 

methylation decreases during aging and identified changes in DNA methylation in genes 

encoding hormone signaling, glutamate signaling, melatonin and circadian pathways (Bacon 

et al., 2019). Transplantation studies showed that old rodent ovaries exhibit cyclic activity 

when transplanted in young females. However, young ovaries transplanted in old anestrous 

rodents cannot maintain regular cyclic activity (Peng and Huang, 1972). Interestingly, 

electrical stimulation of the hypothalamus successfully induces ovulation in old acyclic 

rodents (Clemens et al., 1969). A pharmacological study showed that drug administration 

that corrects hypothalamic deficiencies, temporarily restores estrous cyclicity in middle-

aged rodents (Quadri et al., 1973). 

Hypothalamic GnRH neurons, the driving force of the reproductive axis, undergo changes 

during senescence as well. Middle-aged rodents display a decreased number of  GnRH cells 

and GnRH neuronal activity during the preovulatory GnRH/LH surge (Funabashi and Kimura, 

1995; Lloyd et al., 1994; Miller et al., 1990; Yin et al., 2009). Whether these changes in the 

GnRH system are intrinsic or due to age-dependent alterations in the neural circuits that 

regulate GnRH activity, has not been deciphered yet.  

Kisspeptin (Kp), one of the main stimulators of the GnRH system, also undergoes age-

dependent changes. Postmenopausal women display an increased number and size of Kp 

neurons and expression of the Kp encoding gene, Kiss1, in the infundibular nucleus (Rometo 

et al., 2007). Interestingly, these phenotypes resemble the ones observed in ovariectomized  

primates  (Eghlidi et al., 2010; Kim et al., 2009; Rometo et al., 2007). In middle-aged rodents 

by contrast, a decreased number of Kp cells and reduced levels of Kiss1 mRNA expression 

in the AVPV during the preovulatory LH surge are observed (Lederman et al., 2010; Neal-

Perry et al., 2009). Central administration of Kp in the POA restores the attenuated 

amplitude of the LH surge in middle-aged rodents (Neal-Perry et al., 2009). Therefore, age-
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related alterations in the GnRH system may be driven in part by altered Kp signaling, along 

with changes in other regulatory systems extrinsic to GnRH neurons. Notably, given the 

reported action of RFRP-3 on the GnRH system, it is worth examining whether ageing has 

an impact on the RFRP-3 system. 

 

5.3 Age-dependent alterations in the circadian system  

During aging, the circadian regulation of many physiological and behavioral processes is 

progressively disturbed. Age-dependent alterations in circadian rhythms include decreased 

amplitude and period length, increased fragmentation and tendency to desynchronization 

(Carskadon et al., 1982; Martin et al., 1986; Rs et al., 1991; Shibata et al., 1994; van Gool et 

al., 1987). Earlier studies demonstrated that transplantation of fetal SCN tissue can restore 

age-related deficits in the circadian system (Cai and Wise, 1996; Van Reeth et al., 1994). 

Therefore, circadian disruptions during senescence have been associated with impairment 

in SCN function. Numerous studies examined the components of the SCN that could be 

affected by aging; including the input pathways to the SCN, the SCN molecular clock, the 

electrical properties of SCN neurons and the output pathways of the SCN towards the 

periphery (Buijink and Michel, 2020). 

During aging the ability of the SCN to be entrained by light is compromised, due to major 

changes in the light transduction pathway towards the SCN (Lupi et al., 2012; Sutin et al., 

1993). Notably, advanced age is associated with a loss in the number, density and dendritic 

arborization of the ipRGCs (Esquiva et al., 2017; Lax et al., 2019). Despite the well-

characterized deficits in the light input pathway towards the SCN, multiple studies 

demonstrated that the SCN molecular clockwork is preserved during aging (Asai et al., 2001; 

Nakamura et al., 2011; Polidarová et al., 2017; Yamazaki et al., 2002). However, findings in 

the molecular clock components are not always consistent. Of note, circadian expression 

profiles of Per1 and Cry1 mRNA are maintained in the senescent SCN (Asai et al., 2001; 

Weinert et al., 2001), contrary to the expression of Bmal1 that decreases with aging (Chang 

and Guarente, 2013; Kolker et al., 2003), while expression of Clock is reported to either 
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decrease or show no variation with age (Kolker et al., 2003; Weinert et al., 2001). 

Interestingly, while the expression of Per2 remains rhythmic during senescence under 

normal lighting conditions, this rhythmicity is abolished under constant light or constant 

darkness (Nakamura et al., 2015; Polidarová et al., 2017). Electrophysiological studies in 

rodents revealed age-related changes in the SCN neuronal activity, including decreased 

amplitude of the SCN electrical activity rhythm, desynchronization of SCN neurons and 

aberrant SCN firing patterns (Watanabe et al., 1995; Satinoff et al., 1993; Farajnia et al., 

2015, 2012; Nakamura et al., 2011). Interestingly, the activity rhythms in one of the main 

circadian outputs of the SCN, the subparaventricular zone (SPZ), are also decreased at 

advanced ages (Nakamura et al., 2011). Aging may also affect the synthesis of 

neuropeptides that act as synchronizers within the SCN and/or as output signals of the SCN. 

In humans, the SCN volume and total number of AVP cells decreases at advanced ages 

(Swaab et al., 1985). The daily rhythm of AVP synthesis in the human SCN is disrupted during 

senescence, showing loss of diurnal oscillations, reduced amplitude and reversed diurnal 

pattern (Hofman and Swaab, 1994). Senescent rodents exhibit no changes in the SCN 

volume and in the total SCN cell number (Roozendaal et al., 1987). However, the number of 

AVP (-31%) and VIP (-36%) neurons also decreases in the rodent SCN during aging 

(Roozendaal et al., 1987; Chee et al., 1988), and in  middle-aged rodents rhythmicity of VIP 

mRNA levels, but not of AVP mRNA levels, is attenuated (Krajnak et al., 1998b). 

In conclusion, while the molecular clock remains functional during aging, the amplitude of 

the SCN electrical rhythm and the circadian expression of neuropeptides are both impaired, 

probably resulting in a compromised SCN output signal. Altogether these findings suggest 

an age-related uncoupling between the molecular and the electrical clock components of 

the SCN. Therefore, other brain areas and organs might exhibit age‐dependent deficits in 

their own endogenous clocks as well as receive a weaker systemic timing signal (Buijink and 

Michel, 2020).  
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5.4 Concluding remarks on the neuroendocrine control of reproductive aging 

During aging both the reproductive and the circadian systems undergo changes. Age-related 

alterations in the SCN function could explain changes in behavioral and physiological 

functions during reproductive senescence, such as the altered sleep/wake cycles (Gómez-

Santos et al., 2016; Jehan et al., 2015) and the alterations in gonadotropin secretion 

(Fitzgerald et al., 1998; Nelson et al., 1982). While aging admittedly compromises the SCN 

output signal, more research must be done in order to unravel the exact mechanism 

through which circadian control of the GnRH/LH surge becomes impaired during 

senescence. 
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6. Outline and scope of thesis 

The aim of the present thesis is to investigate the effects of time of day, estrous stage and 

aging on RFRP-3 neurons and LH secretion in female mice, using neuroanatomical, 

electrophysiological and endocrine approaches. First, we examined whether mouse RFRP-3 

neurons display daily rhythms of activity and whether there are daily- and/or estral-

dependent changes in the density of AVP- and VIP-ergic fiber innervation on RFRP-3 

neurons. In addition, we aimed to characterize the firing properties of RFRP-3 neurons 

during different time points of the day and estrous stages, and the effect of the circadian 

peptides, AVP and VIP, on RFRP-3 electrical activity during various time points of the day in 

proestrus and diestrus (Part II, chapters 2 & 3). Next, we tested the hypothesis that circadian 

disruptions in the light/dark cycle have a direct impact on fertility and breeding success 

given that ovulation and estrous cyclicity are under circadian control in female mammals. 

Therefore, we evaluated the effects of a single or chronic light/dark cycle phase shifts on 

the characteristics of the preovulatory LH surge, the estrous cyclicity and the gestational 

success (Part III, chapter 4). 

In the last part of our study (Part IV), we investigated some endocrine and neuronal aspects 

of the complex physiological process that occurs in female mammals during transition to 

reproductive senescence. First, we performed an individual longitudinal analysis of LH 

secretion, by examining the timing and amplitude of the preovulatory LH surge, in order to 

establish a longitudinal marker of female reproductive capacity in rodents and evaluate 

reproductive robustness throughout adult life (chapter 5). Then, because it is still unknown 

whether aging in the GnRH neurons is intrinsic or due to alterations in the input from the 

SCN and/or in the intermediate RF-amide modulatory systems, we investigated whether 

there are age-dependent alterations in the RFRP-3 neuronal system and in the daily pattern 

of AVP- and VIP-ergic fiber input on RFRP-3 neurons and whether they correlate to changes 

in the LH production (chapter 6). 
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Abbreviations 

ARC: arcuate nucleus 

AVP: arginine-vasopressin 

AVPV: anteroventral periventricular nucleus 

[Ca2+]i intracellular calcium concentration  

CRY: cryptochrome  

CT: circadian time 

DMH: dorsomedial hypothalamus 

E2: estradiol 

FSH: follicle-stimulating hormone  

GnIH: gonadotropin inhibitory hormone 

GnRH: gonadotropin releasing hormone 

HPG axis: hypothalamo-pituitary-gonadal axis 

HPO axis: hypothalamo-pituitary-ovarian axis 

ipRGCs: intrinsically photoreceptive retinal ganglion cells  

Kp: kisspeptin 

LH: luteinizing hormone 

ME: median eminence 

NPY: neuropeptide Y 

PER: period  

POA: preoptic area 

RFRP-3: (Arg)(Phe)-amide peptide 3  

SCN: suprachiasmatic nucleus 

TTFLs: transcriptional-translational feedback loops 

VIP: vasoactive intestinal peptide 

VMH: ventromedial hypothalamus 
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