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Abstract

Drought-stressed plants display reduced stomatal conductance, which results in increased leaf temperature by 
limiting transpiration. In this study, thermal imaging was used to quantify the differences in canopy temperature under 
drought in a rice diversity panel consisting of 293 indica accessions. The population was grown under paddy field con-
ditions and drought stress was imposed for 2 weeks at flowering. The canopy temperature of the accessions during 
stress negatively correlated with grain yield (r= –0.48) and positively with plant height (r=0.56). Temperature values 
were used to perform a genome-wide association (GWA) analysis using a 45K single nucleotide polynmorphism (SNP) 
map. A quantitative trait locus (QTL) for canopy temperature under drought was detected on chromosome 3 and 
fine-mapped using a high-density imputed SNP map. The candidate genes underlying the QTL point towards differ-
ences in the regulation of guard cell solute intake for stomatal opening as the possible source of temperature vari-
ation. Genetic variation for the significant markers of the QTL was present only within the tall, low-yielding landraces 
adapted to drought-prone environments. The absence of variation in the shorter genotypes, which showed lower leaf 
temperature and higher grain yield, suggests that breeding for high grain yield in rice under paddy conditions has re-
duced genetic variation for stomatal response under drought.

Keywords:  Canopy temperature, drought, genome-wide association studies (GWAS), haplotype analysis, Oryza sativa, thermal 
imaging.
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Introduction

The increasing variation in temperature, precipitation, and 
their interaction, resulting from global climate change is pre-
dicted to increase the variability in global crop yield by >30% 
(Ray et al., 2015). Among the cereals, rice is especially sensi-
tive to water limitation and heat stress, particularly during the 
reproductive stage (Jagadish et al., 2007; Sandhu et al., 2014). 
Climate change and the increasing probability of both pro-
longed and intermittent periods of drought are therefore likely 
to seriously affect rice production, particularly in rain-fed low-
land farmlands which account for >30% of the world’s total 
rice cultivation area (Bailey-Serres et  al., 2010). Thus, plant 
breeders aim to develop varieties with improved yield per-
formance under both favourable and water-limited conditions 
(Kumar et al., 2014).

Crop germplasm collections stored in gene banks world-
wide represent a large and potentially valuable reservoir of 
favourable alleles that can be used to develop new crop var-
ieties that provide yield stability under both favourable and 
stressful environments (Tester and Langridge, 2010; Huang 
and Han, 2014). Over the last 10–20  years, rapid improve-
ments in the throughput and cost-effectiveness of sequencing 
and genotyping have made it possible to generate extensive 
information about plant genetic variation at the genome level. 
This genomic information can be combined with phenotypic 
data for genetic analyses. The development of phenotyping 
tools has not progressed as rapidly, resulting in a ‘phenotyping 
bottleneck’ (Furbank and Tester, 2011; Cobb et  al., 2013) 
which limits the genetic dissection of complex traits such as 
tolerance to drought stress. However, new, non-destructive, 
non-invasive, image-based approaches to phenotyping in both 
the field and controlled environments are increasingly available, 
greatly enhancing the potential to phenotype large populations 
(Furbank and Tester, 2011; White et al., 2012; Cobb et al., 2013; 
Reynolds et  al., 2016). The use of indirect ‘proxy’ indicators 
for stress can be particularly useful and a powerful resource for 
field-based phenotyping (Jones, 2014). Among them, canopy 
temperature, measured by thermal imaging, has already proven 
to be a good indicator of drought stress in the field, as it in-
directly measures stomatal conductance (Leinonen et al., 2006; 
Munns et  al., 2010), one of the main physiological traits in-
volved in the regulation of water loss (Schroeder et al., 2001).

Several recent field studies successfully utilized infrared therm-
ography to measure genotypic variation in stomatal conduct-
ance in a large number of genotypes (Jones et al., 2009; Rebetzke 
et al., 2012; Zia et al., 2013; Prashar et al., 2013; Rutkoski et al., 
2016). Critical to the success of such studies was the use of ap-
propriate normalization techniques to overcome the environ-
mental fluctuations (air temperature, humidity, wind speed, and 
incident radiation) that induce variation in canopy temperature 
during the process of imaging. The same studies also suggest that 
thermal image analysis of crop canopies is maximally effective 
in water-limited environments, as the genotypic differences in 
stomatal conductance are maximized under these conditions. 
As a consequence, thermal imaging provides a potentially useful 
phenotyping strategy for the selection of drought-tolerant geno-
types (Jones et al., 2009; Prashar et al., 2013).

In the present study, we assessed the effectiveness of thermal 
imaging to quantify genetic variation in canopy temperature/
stomatal conductance in tropical rice, using a population of 293 
indica accessions grown in the field under control and drought 
conditions at the International Rice Research Institute (IRRI) 
in the Philippines. Statistical analyses revealed a relationship 
between canopy temperature during flowering, plant height, 
and grain yield. We also report what is, to our knowledge, the 
first genome-wide association (GWA) analysis of leaf tem-
perature in rice, demonstrating that there is genetic variation 
for this trait, and pinpoint genomic loci and a priori candidate 
genes that underlie this variation.

Materials and methods

Description of the field experiment
A population consisting of 293 accessions of Oryza sativa subsp. indica 
was used in a field trial experiment at the IRRI, Los Baños, Philippines 
(14°11'N, 121°15'E; elevation 21 m above sea level) during the 2014 
dry season. The field trial was located at the IRRI upland farm where 
the soil profile does not represent a constraint for deep penetration of 
the roots. The accessions are largely the same as those in the PRAY 
indica panel (http://ricephenonetwork.irri.org) which includes trad-
itional and improved indica rice lines originating from rice-growing 
countries in tropical and subtropical regions around the world. The same 
panel was recently used in studies where a number of diverse traits were 
phenotyped as the basis for genome-wide association studies (GWAS) 
(Qiu et al., 2015; Al-Tamimi et al., 2016; Rebolledo et al., 2016; Kadam 
et al., 2017, 2018; Kikuchi et al., 2017). The field trial was carried out 
in two separate fields, one that served as control and the other for the 
drought stress treatment. Each field comprised three replicates of the 
population (A, B, C for control and D, E, F for drought) arranged in a 
serpentine design (see Supplementary Fig. S1 at JXB online). Each rep-
licated accession consisted of 48 plants covering a 2.5×0.8m area and 
arranged as four rows of 12 plants each. To manage the differences in 
flowering phenology, the accessions were sown at 7 d intervals and trans-
planted to create subgroups that allowed us to synchronize flowering. 
Eight subgroups were created according to the number of days required 
to reach 50% flowering. Each group was progressively sown and trans-
planted into the field with an interval of 7 d between each group. Inside 
each subgroup, accessions were transplanted from the shortest to the 
tallest to minimize the positioning of short and tall genotypes next to 
each other (plant height data collected during the dry season 2013). 
The imposed drought stress treatment consisted of 14 consecutive days 
of water withholding applied only to the stress field at the reproductive 
stage (targeting 50% flowering). Weather data were collected during the 
entire experiment by a weather station located in the middle of the 
two fields. Twenty-six tensiometers were randomly distributed over the 
stress field to record soil water potential. At the end of the stress period, 
the stress field was re-watered until all accessions reached the maturity 
stage for harvest. The control field was constantly kept in a flooded con-
dition (paddy field). At harvest (on average 30 d after re-watering), the 
following traits were scored for all replicates: plant height (cm), grain 
yield (g m–2), shoot biomass (g m–2), and harvest index (the ratio be-
tween grain yield and total biomass). The dates of initial flowering, 50% 
flowering, and 100% flowering were also recorded for replicated trials of 
each accession under both treatments. A more detailed description of the 
experiment, including the description of the same field trial conducted 
during the 2013 dry season, can be found in Kadam et al. (2018).

Thermal imaging
A FLIR B660 (FLIR systems, USA) infrared camera was used for taking 
both infrared and visual images. The thermal camera is assembled with 
a focal plane array (FPA) uncooled microbolometer that operates in the 
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spectral range of 7.5–13 μm with a resolution of 640×480 pixels. The 
thermal camera is also equipped with a digital camera with a resolution 
of 3.2 Megapixels. All pictures were taken from 3.5 m height (Jones et al., 
2009) with each image covering ~50 m2 (Fig. 1; Supplementary Fig. S1). 
The distance between the camera and the centre point of the field in the 
image was kept constant, resulting in a camera angle of ~20° from the 
ground. Thermal pictures were taken, during the morning, 8, 9, and 10 d 
after the stress was applied (from 2 to 4 April 2014). We collected images 
to fully cover ‘Rep B’ (control), ‘Rep E’, and ‘Rep F’ (drought). For each 
replicate, we collected images on two consecutive days at two different 
times during the morning period. To image an entire replicate, it took 
on average 45 min. ‘Rep B&E’ were covered by 18 pictures and ‘Rep F’ 
by 27–28 (Supplementary Fig. S1; Supplementary Table S1A, B). Camera 
settings were kept constant during the entire process of imaging with at-
mospheric temperature set to 30 °C and emissivity set at 0.95 according 
to Jones et al. (2003) and Prashar and Jones (2014, 2016).

Plot identification and picture analysis
Plot identification was achieved following the experimental design and 
by the use of three T-boards placed at known positions in each image 
(Fig. 1). In addition, every plot in the field trial was marked by a stick 
placed between two consecutive plots. The stick was characterized by 
a relatively higher temperature than the plant canopies and it was vis-
ible in the thermal images (Fig. 1B, C). Temperature quantification was 
performed by loading the images into the ThermaCAM Researcher 
Professional 2.10 software (FLIR systems), selecting a rectangular area 
for each plot canopy, and using the mean temperature of the pixels 
in the enclosed rectangular area as representative for the specific plot 
(Fig. 1C, D). The temperature of each T-board reference surface (black 
and white) was determined in the same way.

Plot image normalization
We considered three methods to normalize plot temperatures. In the first 
method (‘image mean’), plot temperatures in each image were multiplied 
by the ratio between the mean temperature of all the plots in the replicate 
and the mean temperature of all the plots in the image. The normalized 
temperature of plots occurring in two consecutive images was calculated 
as the mean of the two resulting values (Prashar et al., 2013). The second 
and third methods are based on the same procedure but using the mean 
temperature of the reference surfaces (‘white reference’ and ‘black refer-
ence’) to calculate the ratios. Correlation analysis between normalized 
data was performed to evaluate which normalization method produced 
the highest degree of reproducibility for the same replicate imaged over 
two consecutive days.

Statistical analysis
Statistical analysis of the data was conducted by using R statistical software 
(version 3.4.3; The R Foundation for Statistical Computing). Correlation 
analysis and graphical matrices were produced using a modified func-
tion of the ‘corrplot’ R package. Box-Cox transformation of traits that 
were not normally distributed (Shapiro-Wilk’s P-value <0.05) (replicates 
B03, E02, and F04) was calculated using the ‘forecast’ R package. Single 
nucleotide polymorphism (SNP)-based principal component analysis 
(PCA) was performed using the prcomp function in the ‘stats’ R package.

GWA analysis with the 45K SNP map
GWAS of normalized trait values (Supplementary Fig. S2) were per-
formed using a linear-mixed model in EMMAX (Kang et  al., 2010), 
which corrects for population structure by including a kinship matrix 
(IBS matrix) as covariate. EMMAX also provides an estimate of the 
phenotypic variance (heritability estimated by markers, h2) explained 

Fig. 1. Plot identification and picture analysis. Example of a digital picture with the corresponding thermal picture area as indicated by a rectangle (A). 
Thermal picture used for plot identification (B). Selection of specific polygonal areas for the quantification of the genotypes’ temperature (C). Temperature 
of the polygonal areas selected in (C) (D).
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by the IBS matrix. Of the 293 accessions in the field experiment, 271 
matched the original panel (indica PRAY panel of 339 accessions) that 
was used to generate a 47K SNP map using genotyping by sequencing 
(GBS). The 47K SNP GBS map displayed 8.75% missing data that were 
imputed by Fast Phase Hidden Markov Model (Scheet and Stephens, 
2006) as reported by Kadam et al. (2017, 2018), thus reducing the missing 
rate to 0%. The reduced number of accessions (271) altered the minor 
allele frequency (MAF) threshold of the 339 accessions panel, originally 
set at 0.05. To exclude rare alleles from the present study (n=271 acces-
sions), the 47K SNP map was re-filtered for MAF >0.05, resulting in 
45 505 SNPs available for GWAS. PCA based on the 45 505 SNPs was 
conducted to quantify subpopulation structure (Fig. S3). The main com-
ponent (PC1) explained only 8.72% of the genetic variation, and a com-
bination of the first three components failed to clearly separate groups of 
accessions. Therefore, no PC covariates were added to the linear-mixed 
model to correct for subpopulation structure, following the approach 
used in McCouch et al. (2016). GWAS results are presented as Manhattan 
and Quantile–Quantile plots using the ‘qqman’ R package.

To avoid Type 1 errors (false positives), the significance threshold 
used to identify marker–trait associations was set at P<0.00001 (i.e. –
log10 P>5.0). This significance threshold was higher than –log10 P>4.0, 
commonly adopted in other GWAS on rice using SNP maps of similar 
density (Zhao et al., 2011; Dimkpa et al., 2016; Kadam et al., 2017, 2018), 
but lower than the Bonferroni threshold (–log10 P>6.0, for α=0.05), 
which was considered too stringent because of the increasing occurrence 
of Type 2 errors (false negatives). Using a threshold of –log10 P>5.0 for 
individual analyses, discovery of the same marker–trait associations across 
experiments provided additional support for the associations.

GWA analysis using a high-density imputed SNP map
Imputation of the 47K SNP map was conducted using the Rice 
Imputation Server (RIS) following Wang et al. (2018). The map of the 
47K SNPs (.hmp format) was first converted to Plink format (.ped/.
map) and then to Oxford format (.gen/.sample) before being uploaded 
as a compressed folder (.tar.gz) in the RIS (http://rice-impute.biotech.
cornell.edu). The RIS-imputed map was downloaded as a single Plink 
file (.bed/.bim./.fam format) and divided into 12 individual chromo-
somes. Focusing only on chromosome 3, missing SNPs were imputed 
with Beagle version 4.1 (Browning and Browning, 2007). Finally, the 
Beagle-imputed map of chromosome 3 was filtered at MAF >0.05, re-
sulting in a set of 186 012 SNPs available for mapping on this chromo-
some (4039 SNPs with MAF >0.05 were present on chromosome 3 in 
the 45K SNP map). GWA analysis using the chromosome 3 imputed map 
was conducted as described above for the 45K SNP map. The IBS matrix 
of kinship used as a model covariate was calculated based on the 45K 
GBS SNP map (Wang et al., 2018).

Linkage disequilibrium (LD) analysis and a priori candidate gene 
selection
The local pairwise LD pattern near the significant SNPs was calculated 
and graphically represented by the ‘snp.plotter’ R package (Luna and 
Nicodemus, 2007). The annotations of genes located within LD blocks 
were obtained from the MSUv7 rice genome database (http://rice.
plantbiology.msu.edu/). The exact localization and functional annotation 
of significant SNPs was conducted using SNPEff version 2.05 (Cingolani 
et al., 2012) with MSUv7 as the reference genome.

Results

Thermal imaging and data normalization

Fluctuations in environmental conditions are the main obstacle 
to the use of thermal imaging to reliably analyse plant canopy 
temperature. Supplementary Table S1B shows the changes in 
air temperature, humidity, wind speed, and solar irradiance 

measured on the days and in the time windows during which 
the thermal imaging was performed. To reduce the overall ef-
fect of these factors on the analysis of canopy temperature, we 
imaged the field replicates only during the mornings on three 
consecutive days. Mornings were selected for imaging due to 
the sharp increase in wind speed experienced every afternoon 
in the field location, and previous reports describing wind as 
a major factor strongly impacting stomatal conductance values 
(Jones, 1999; Maes and Steppe, 2012). Nevertheless, our data 
documented variation caused by environmental fluctuations 
between images (Supplementary Fig. S4) and therefore normal-
ization was needed (Prashar and Jones, 2014). We applied three 
different procedures to reduce the variation caused by environ-
mental fluctuations (‘image mean’, ‘white reference’, and ‘black 
reference’) (see the Materials and methods). By comparing 
the same field replicate imaged over two consecutive days, we 
found that ‘image mean’ normalization produced higher cor-
relation values (B03–B04, from 0.075 to 0.37; E02–E03, from 
0.23 to 0.69; F03–F04, from 0.25 to 0.65) than normalization 
based on white and black references (Supplementary Fig. S5). 
Hence, ‘image mean’ normalization was used in all subsequent 
analyses.

Canopy temperature

Drought stress induced a strong increase in canopy temperature. 
The mean value of the normalized stressed replicates E and F 
(EF mean) was 2.27 °C higher than that of the control B rep-
licate (B mean) (Fig. 2). Together with the treatment, the time 
of day strongly impacted leaf temperature. Control replicate 
B03, which was imaged in the early morning, showed a lower 
canopy temperature range (mean difference –0.90  °C) than 
B04 which was imaged in the late morning (~2 h later) the 
following day. As with the control replicates, drought replicate 
E02 showed a lower temperature (mean difference –1.85 °C) 
than E03. The temperature difference between the two E rep-
licates was due to the combined effect of time of day (E02 was 
measured earlier in the morning than E03) and an additional 
day of drought stress. Tensiometer readings showed that the soil 
water potential of the drought field decreased sharply during 
the days of imaging, moving from an average of –34 kPa on 2 
April to –53 kPa on 4 April (Supplementary Fig. S6). Of the 
two F replicates, F03 was imaged half an hour earlier than F04 
but the latter was exposed to one more day of stress, resulting 
in a higher temperature for F04 (mean difference 0.33  °C) 
than for F03 (Fig. 2).

Relationships between canopy temperature and 
agronomic traits

Canopy temperature was measured in the second of two years 
(2013 and 2014 dry seasons) in which a field experiment was 
conducted to collect information on phenotypic trait per-
formance of all 293 rice accessions evaluated under well-
watered and drought stress conditions (Kadam et  al., 2018). 
Plant height (PHT), grain yield (GY), shoot biomass (Shoot 
bio.), and harvest index (HI) were among the agronomic traits 
recorded at the time of harvest in both years. A  ‘flowering’ 
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variable (FLW) was calculated during the stress period of the 
2014 field trial only, by subtracting the date of 50% flowering 
for every genotype in each replicate from the date of thermal 
imaging. Drought stress similarly affected all traits in both years 
(Supplementary Fig. S7) and particularly reduced GY and HI, 
but minimally affected Shoot bio. and FLW (2014 only). To 
investigate the relationship between canopy temperature at the 
time of stress exposure and plant traits at harvest time, we con-
ducted a Spearman correlation analysis between normalized 
temperature and agronomic trait values (Fig. 3). Canopy tem-
perature showed significant (P<0.001) and negative correl-
ations with GY and HI, and positive correlations with PHT, 
Shoot bio., and FLW, under both conditions, but with higher 
correlation coefficients under stress than control; FLW was not 
significantly (P>0.001) correlated with canopy temperature 
under drought (Fig. 3A, B). Remarkably, almost identical cor-
relations were found between canopy temperature measured 
in the 2014 dry season and the agronomic traits scored during 
the field trial conducted in the 2013 dry season (Fig. 3C, D). In 
both years, the highest correlation coefficients were found be-
tween the mean values of canopy temperature under drought 
stress and PHT (r=0.56 in 2014; r=0.58 in 2013), GY (r= –0.48 
in 2014; r= –0.38 in 2013), and HI (r= -0.53 in 2014; r= –0.54 
in 2013). For these three traits, the percentage of variance ex-
plained by the linear models (R2) associating temperature and 
trait was equal to 34% for PHT in both years, and 25% and 
16% for GY, and 30% and 28% for HI in 2014 and 2013, re-
spectively (Supplementary Fig. S8). Overall, these results show 
that, under drought stress, thermal imaging of rice canopies 
at flowering time can detect canopy temperature differences 
that correlate with plant performance at the time of harvest. 
Furthermore, the almost identical correlations between the 
agronomic traits scored during the 2013 field trial and canopy 
temperature measured in 2014 indirectly validate the robust-
ness of the temperature results across two seasons of field trials.

GWAS and LD analysis using the 45K SNP map

The results described above demonstrate the effectiveness 
of thermal imaging in detecting quantitative differences 
in canopy temperature. Hence, we decided to try to use 

canopy temperature as a trait for association mapping analysis. 
Considering the strong influence of time of day and the day 
itself on canopy temperature (Fig. 2), the values of the sep-
arate field replicates were analysed, in addition to the mean 
temperature values of control and drought replicates. GWA 
mapping was conducted using a 45K SNP map and a strin-
gent threshold of genome-wide significance (–log10 P>5.0) 
to detect only highly significant marker–trait associations. 

Fig. 2. Canopy temperature of the different field replicates. Boxplots representing the mean temperatures of control (B mean) and drought (EF mean) 
replicates (on the left), and of the six single replicates (on the right), together with the information on the days and time windows of picture taking (in the 
middle). White and grey boxplots represent control and stress values, respectively.

Fig. 3. Correlation analysis between mean values of canopy temperature 
and agronomic traits. Mean canopy temperature values selected under 
control (CON) and drought stress (DRO) conditions were determined in 
the 2013 dry season, while agronomic traits were determined in both field 
trials conducted during the 2013 and 2014 dry seasons. Correlation values 
were determined by Spearman’s correlation analysis. All the correlations 
coloured in blue and red are significant at P<0.001. Correlations coloured 
in white have P>0.001. PHT, plant height; GY, grain yield; Shoot bio., shoot 
biomass; HI, harvest index; FLW, flowering; ‘B mean’, mean temperature 
of control field replicates; ‘EF mean’, mean temperature of drought field 
replicates.
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Quantile–Quantile plots relative to the GWA analyses are re-
ported in Supplementary Fig. S9.

Mean temperature variation of control replicates (B mean) 
as well as the temperature of separate control replicates (B03 
and B04) was characterized by a low fraction of heritability es-
timated by markers (h2=0.17–0.24) (Supplementary Table S2) 
and, indeed, GWA analysis did not find marker–trait associ-
ations above the threshold of significance (Supplementary Fig. 
S10). Low heritability levels and absence of significant marker–
trait associations suggest that no major genetic determinants 
are responsible for canopy temperature variation under control 
conditions in this panel.

Mean canopy temperature values under drought (EF mean) 
showed higher marker heritability (h2=0.5) than under con-
trol conditions (Supplementary Table S2). Marker herit-
ability was also higher for canopy temperature evaluated on 
separate drought replicates compared with control replicates 
(Supplementary Table S2). GWA analysis identified two sig-
nificant markers associated with ‘EF mean’ (Fig. 4A). The 
markers (SNP_12262251 and SNP_12529189) were located 
267 kbp apart on chromosome 3, showed a similar level of 
significance (–log10 P>5.0), and minor alleles at both loci were 
associated with higher canopy temperature than the major 
alleles (Supplementary Table S3). GWA analysis for F03, the 
field replicate with the highest heritability (h2=0.45), iden-
tified five markers significantly associated with canopy tem-
perature (Fig. 4B). Both SNP_12262251 and SNP_12529189 
were significantly associated with canopy temperature for both 
‘EF mean’ and F03 (Fig. 4A, B), and minor alleles at all the 

five markers associated with F03 were associated with higher 
canopy temperature (Supplementary Table S3).

To exclude the possibility that the significant marker–trait 
associations detected under drought might have been influ-
enced by genome-wide subpopulation structure among the 
271 indica accessions, we re-conducted GWA mapping, adding 
the main marker-based PC (PC1, which explains 8.72% of the 
total genetic variation) as a covariate in the linear-mixed model 
(Supplementary Fig. S3). The addition of the covariate did not 
affect the outcome of the GWAS (Supplementary Fig.  S11). 
These results suggest that genome-wide subpopulation structure 
among the accessions has a negligible influence on the chromo-
some 3 marker–trait association detected for ‘EF mean’ and F03. 
We therefore report results for the model run without covariates.

The higher heritability of canopy temperature under 
drought suggests a stronger genetic control for the trait under 
this stress condition. Mapping results indicate that the marker–
trait associations detected on chromosome 3 are robust, with 
an estimated mean allele effect on ‘EF mean’ canopy tem-
perature of +0.61 °C for SNP_12529189 and +0.57 °C for 
SNP_12262251 (Supplementary Table S3). The effect of these 
two alleles is consistent across all the individual drought field 
replicates (Supplementary Fig. S4).

Local LD was examined across an ~1.2 Mbp region 
encompassing ~500 kbp upstream and downstream of the two 
significant markers (SNP_12262251 and SNP_12529189). 
The pairwise LD estimates (r2) of the 102 SNPs in this re-
gion revealed that the two significant markers map to dif-
ferent LD blocks (r2>0.6–0.7) (Supplementary Fig. S12A). It 
is noteworthy that, using the 45K SNP map, SNP_12262251 
maps to its own LD block, with the closest upstream marker 
(SNP_11994173) located ~270 kbp away; these two markers 
show a very low value of pairwise LD (Supplementary 
Fig.  S12B). A  low density of GBS markers around the two 
significant SNPs does not allow a precise determination of the 
LD configuration, and leads to a likely underestimation of the 
size of the LD block containing SNP_12262251.

Fine mapping of chromosome 3 using a high-density 
imputed SNP map

To improve the mapping resolution, GWA mapping of ‘EF 
mean’ canopy temperature values was performed again only 
for chromosome 3 using a high-density SNP map gener-
ated by haplotype-based genetic imputation using the RIS 
(Wang et al., 2018). Following imputation, the number of SNP 
markers available for mapping of chromosome 3 increased 
46×, from 4039 (on the 45K SNP map) to 186 012 on the 
high-density imputed map, and the imputed map drastically 
improved the mapping resolution. The number of significant 
SNPs (–log10 P>5.0) associated with the ‘EF mean’ canopy 
temperature increased from 2 (45K map) to 65 (Fig.  5A; 
Supplementary Table S5). All newly imputed markers local-
ized in the same region as the original significant markers 
(SNP_12262251 and SNP_12529189) identified using the 
GBS map (Supplementary Table S5).

Zooming into the region of significance (12.1–12.7 Mbp) 
on the high-density map showed two distinct quantitative 

Fig. 4. Manhattan plots of the significant GWA mapping results using the 
45K SNP map. Manhattan plots of the GWA mapping results using the 
45K SNP map for mean canopy temperature under drought (EF mean) 
and for the single field replicate F03. The red dashed line indicates the 
genome-wide threshold for significant associated markers (–log10 P>5.0). 
SNPs above the red line are highlighted in red.
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trait loci (QTLs), qCT1 and qCT2 (Fig. 5B). Previously, qCT2 
could not be clearly detected due to the lack of markers around 
SNP_12262251 (Supplementary Fig. S12B). The significant 
SNPs of both QTLs were characterized by minor alleles asso-
ciated with higher canopy temperature values (Supplementary 
Table S5). In the imputed high-density map, the top SNP as-
sociated with qCT1, SNP_12523765 (–log10 P=6.26), was 
5.4 kbp away from the top SNP identified using the GBS 
map (SNP_12529189, –log10 P=5.19). In qCT2, a series of 
15 SNPs showed the same significance (–log10 P=5.57), and 
SNP_12267148 was closest (4.9 kbp away) to the top SNP 
on the GBS map, SNP_12262251 (–log10 P=5.10) (Fig. 5B; 
Supplementary Table S5). Thus, the imputed map supports the 
location of the QTL identified on chromosome 3 using the 45K 
SNP map, but provides improved resolution, making it possible 
to differentiate two, closely linked genomic associations.

To determine if the two QTLs were independently asso-
ciated with canopy temperature, we again performed GWA 
mapping, but this time we fitted the most significant SNP 
of qCT1, and subsequently of qCT2, as covariates in the 
linear-mixed model. Fixing either SNP_12523765 (qCT1) or 
SNP_12267148 (qCT2) as a model covariate yielded a similar 
loss of signal from all markers in the region (–log10 P<3), 
causing both QTLs to disappear (Supplementary Fig. S13). 
This suggests that a lack of recombination between the two 
QTLs in our panel of indica varieties may limit our ability to 
genetically dissect this complex QTL region.

Haplotype analysis of qCT1–qCT2 and their 
relationships to agronomic traits

To test this hypothesis, we analysed haplotype variation across 
the qCT1–qCT2 region on chromosome 3 to determine 
whether we could identify recombinant genotypes, and, if so, 
whether the recombinants were significantly associated with 
canopy temperature. We were also interested to determine 
whether recombinants were significantly associated with two 
agronomic traits, PHT and GY, that were, themselves, signifi-
cantly correlated with canopy temperature (Fig. 3).

To conduct the haplotype analysis, we selected SNPs from 
the high-density map that showed the most significant as-
sociation with canopy temperature for ‘EF mean’ (3 SNPs 
for qCT1 and 15 SNPs for qCT2) plus the two most sig-
nificant GBS SNPs (SNP_12529189 and SNP_12262251, in 
qCT1 and qCT2, respectively). Among the 271 accessions in 
the panel, we identified three major recombinant haplotype 
groups (present in >5% of accessions) (Fig. 6A; Supplementary 
Table S6). The most common haplotype, Haplotype I, was 
found in 206 accessions (~76% of the panel) and carried 
major alleles at all 20 SNPs across the two QTLs. These ac-
cessions displayed a mean canopy temperature under drought 
of 34.24 °C (Fig. 6A). Haplotypes II and III were found in 22 
(~8%) and 18 (~7%) accessions, respectively. Haplotype III was 
the mirror image of Haplotype I; it carried minor alleles at all 
20 SNPs, and accessions carrying this haplotype displayed a 
mean canopy temperature under drought of 35.05  °C (Fig. 
6A). Haplotype II was a recombinant between Haplotype I and 
Haplotype III; it carried minor alleles for the SNPs in qCT1 
(like Haplotype III) and major alleles for the SNPs in qCT2 
(like Haplotype I). Accessions carrying Haplotype II displayed 
an intermediate mean canopy temperature under drought of 
34.85 °C (Fig. 6A).

We next compared the phenotypic performance of accessions 
carrying Haplotype II with the performance of those carrying 
Haplotype I and Haplotype III for canopy temperature, PHT, and 
GY (Fig. 6B, C, D). These comparisons were performed using 
Welch’s t-tests to accommodate the unbalanced sample sizes of 
the haplotype groups. A  highly significant (P<0.001) canopy 
temperature difference under drought (EF mean) was detected 
between accessions carrying Haplotype I and accessions carrying 
Haplotype II (mean difference 0.61 °C) and Haplotype III (mean 
difference 0.81 °C), while no significant difference was detected 
between accessions carrying Haplotype II and Haplotype III (mean 
difference 0.20 °C) (Fig. 6B). Given that Haplotype I accessions 

Fig. 5. Manhattan plots of the GWA mapping results for chromosome 
3 using the imputed map. Manhattan plot of GWA mapping results for 
chromosome 3 using 186K SNPs for ‘EF mean’ canopy temperature. 
SNPs above the red line are highlighted in red (A). Zoom in on the region 
of the significant SNPs. The red arrows indicate the two QTLs (qCT1 and 
qCT2). SNPs of the GBS map are highlighted in light blue (B). In both 
figures, the red dashed line indicates the genome-wide threshold for 
significant associated markers (–log10 P>5.0).
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differ from Haplotype II and Haplotype III accessions at qCT1, but 
not at qCT2, this suggests that the difference in canopy tempera-
ture is driven by gene(s) underlying qCT1. Similar results, but less 
significant (P<0.01), were found for canopy temperature under 
control conditions (B mean) (Fig. 6B). Under control conditions, 
the three haplotype groups displayed lower temperature differ-
ences (mean of Haplotype I=32.02 °C, Haplotype II=32.39 °C, 
and Haplotype III=32.29 °C) than under drought stress (Fig. 6A). 
We detected an almost identical pattern of significant differences 
between the three haplotype groups for PHT under both treat-
ments and GY under drought (Fig. 6C, D). To further explore 
the relationship between haplotype groups, PHT, and GY under 
drought, we examined the mean PHT of accessions carrying 
different haplotypes and observed that those carrying Haplotype 
I were ~20 cm shorter than accessions carrying Haplotype II and 
Haplotype III (Fig. 6A).

Among the 48 accessions shorter than 100 cm (based on 
PHT in control conditions), 47 carried Haplotype I and only 

a single accession carried Haplotype II (cv Binulawan from 
Philippines); while none carried Haplotype III (Supplementary 
Table S6). The short, semi-dwarf accessions were essentially 
fixed for Haplotype I and thus carried only major alleles at 
qCT1 (associated with lower canopy temperature), while tall 
accessions carried all three haplotypes. Finally, we considered 
the differences in GY for accessions carrying different haplo-
types (Fig. 6D). Under control conditions, GY for acces-
sions carrying Haplotype I (mean 475 g m–2) was marginally 
greater than for those carrying Haplotype II (mean 382 g m–2; 
P<0.05) but was not significantly different from accessions 
carrying Haplotype III (mean 417  g m–2) (Fig. 6D). Under 
drought stress, GY differences between Haplotype I (mean 
296  g m–2) and the other two groups (Haplotype II mean 
169 g m–2 and Haplotype III mean 187 g m–2) became highly 
significant (P<0.001) (Fig. 6D). This suggests a negative effect 
of minor alleles at qCT1 for GY under stress in our experi-
mental conditions.

Fig. 6. Haplotype variation across the qCT1–qCT2 region and relationship with agronomic traits. Haplotypes for qCT1 and qCT2 identified among the 
accessions of the panel. (A) The 20 most significant SNPs for the two QTLs are listed together with the information relative to the minor and major allele 
(min./maj.), physical position (bp), and significance (–log10 P). Minor alleles are coloured in green and major alleles in brown. For each haplotype (I, II, and 
III) are reported the number of lines carrying the haplotype and their mean value of canopy temperature (‘B mean’ and ‘EF mean’), plant height (PHT), 
and grain yield (GY) under control and drought stress conditions. Boxplots representing the range of variation of mean canopy temperature (A), plant 
height (B), and grain yield (C) for the accessions of the three haplotypes (I, II, and III) under control and drought stress conditions. White and grey boxplots 
represent control and stress values, respectively. *, **, *** indicate the level of significant difference (P<0.05, P<0.01, P<0.001) between the groups.
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LD analysis of qCT1 and a priori candidate gene 
identification

To identify candidate genes underlying qCT1, we first explored 
the extent of LD surrounding the most significant SNPs as-
sociated with ‘EF mean’ canopy temperature (despite the fact 
that we determined that the difference in canopy temperature 
is driven by qCT1 we provide the same LD analysis for qCT2 
in Supplementary Fig. S14).

Using the high-density map, we first identified SNPs 
showing values of association of –log10 P>2 located 125 
kbp upstream and downstream of the qCT1 most significant 
marker, SNP_12523765 (Fig. 7A). Pairwise LD estimates (r2) 
of the 418 SNPs in this region showed that all the SNPs in 
qCT1 form a single, large LD block characterized by r2≥0.5 
(Fig. 7A). While there are many markers in the region that do 
not meet the significance threshold (–log10 P>5) for associ-
ation with ‘EF mean’, all map within a sub-block characterized 
by high pairwise LD (r2>0.8). Notably, the 20 most significant 
SNPs with ‘EF mean’ (shown in red in Fig. 7A) are localized 
between two highly significant markers, SNP_12523765 and 
SNP_12460502. Thus, we considered the region delimited by 
these two markers (~42 kbp; indicated by the dashed black line 
in Fig. 7A) as the most interesting target for the identification 
of a priori candidate genes.

Seven genes are included in this region (Fig. 7B; 
Supplementary Table S7). Among these seven, two were con-
sidered interesting candidate genes for their possible role in 
physiological processes regulating stomatal function. One gene 
is known to be responsive to abiotic stress (GOSlim terms) and 
encodes a putative mitochondrial fumarate hydratase (LOC_
Os03g21950). This gene is located between SNP_12545362 
and SNP_12560502, two of the three most significant markers 
in qCT1 (Fig. 7B). Fumarate hydratase (fumarase) is responsible 

for the conversion of fumarate to malate, a solute involved 
in the mechanism of stomatal opening/closure. The other 
interesting gene in this region (LOC_Os03g21890) encodes 
a plasma membrane high-affinity potassium (HAK) trans-
porter (Bañuelos et al., 2002) and is located in close proximity 
to the most significant marker (SNP_12523765) within qCT1 
(Fig. 7B). HAK transporters are involved in guard cell K+ flux 
that controls stomatal opening/closure (Jezek and Blatt, 2017). 
Finally, we considered the predicted function of each of the 
20 significant SNPs (–log10 P>5) in this region to determine 
whether any of them could result in an amino acid change or 
a putative regulatory change affecting a specific gene candidate 
(Supplementary Table S8). None of the SNPs was associated 
with predicted non-synonymous mutations that could point 
towards a particular candidate, but many are located upstream 
of the gene coding region and thus potentially associated with 
changes in regulation of gene expression, including the most 
significant one, SNP_12523765, which is located 711 bp up-
stream of the HAK transporter.

Discussion

Normalization and physiological implication of canopy 
temperature results

The main determinants of canopy temperature in plants in-
clude genetic components affecting stomatal aperture and 
canopy structure (which may also affect aerodynamic resist-
ance and radiation interception) and a range of environmental 
factors. The ability to reduce environmental fluctuations in 
humidity, irradiance, and wind speed is key to screening for 
true genetic variation in stomatal conductance (Prashar et al., 
2013). Jones et al. (2009) demonstrated that the variation in 
canopy temperature between different rice genotypes can be 

Fig. 7. Localized linkage disequilibrium analysis of qCT1. Manhattan plots displaying the level of significance (y-axis) over genomic positions (x-axis) in 
a window of 125 kbp upstream and downstream of the marker (12523765) most significantly associated with canopy temperature of ‘EF mean’ and 
located on chromosome 3 in qCT1 (A). Localized region (zoom in, black dashed triangle in A) showing the genes (black arrows) underlying the most 
significantly associated (–log10 P-value >5.0) markers’ loci (B). Different colours are used to represent the pairwise LD estimates (r2) for each genomic 
location. Genomic locations of the most significant markers are projected on the LD matrix and on gene positions (only in B) by red lines. SNPs of the 
GBS map are highlighted in dark blue.
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detected in field experiments by thermal imaging with the 
use of appropriate normalization techniques. In this study we 
took this approach to the next level by screening a diver-
sity panel consisting of 293 indica accessions. To date, only a 
few studies have followed a similar extensive approach using 
thermal imaging of plant canopies under field conditions 
(Prashar et  al., 2013; Zia et  al., 2013; Rutkoski et  al., 2016). 
Normalization of the raw canopy temperature data by ‘image 
mean’ reduced the influence of environmental factors. This 
is clearly shown by the increased correlation between the 
normalized canopy temperature data of the same field meas-
ured over two consecutive days (Supplementary Fig. S5A, B). 
Our results show that drought stress strongly increased canopy 
temperature. Other factors that may significantly affect canopy 
temperature are the time window and day of imaging and, for 
the stressed replicates only, the drought exposure time (Fig. 2). 
These results confirm that canopy temperature determined by 
thermal imaging is a reliable field proxy for stomatal conduct-
ance (Jones, 2014; Prashar and Jones, 2014), and that this trait 
is characterized by a very dynamic response to changing en-
vironmental conditions (Vico et al., 2011; Drake et al., 2013). 
The results of this study also suggest that water limitation 
reduced this dynamic response, as evidenced by the higher 
correlation coefficients under drought between the temperat-
ures for the same field replicate imaged at different moments 
(Supplementary Fig. S5B).

Canopy temperature and agronomic traits at 
harvest time

Genotypic variation in stomatal conductance in rice may be 
responsible for differences in photosynthesis, even under op-
timal growing conditions (Ohsumi et al., 2007; Ouyang et al., 
2017). Reduction of stomatal conductance is a well described 
physiological response to drought stress in rice (Centritto et al., 
2009; Ji et al., 2012). The resulting limitation in leaf CO2 dif-
fusion has been shown to cause grain yield reduction in rice 
genotypes grown under water-limited conditions with the 
stress imposed at the flowering stage in the field (Centritto 
et al., 2009; Lauteri et al., 2014). There is evidence—obtained 
with a limited number of genotypes—that canopy stomatal 
conductance monitoring by thermal remote sensing at the 
flowering stage could be an effective criterion for the selec-
tion of high-yielding rice genotypes (Horie et al., 2006). In the 
present study, canopy temperature measurements were used to 
screen 293 rice accessions for stomatal conductance differences 
at anthesis and to explore correlations between the genotypic 
variation in canopy temperature and several plant agronomic 
traits.

Canopy temperature was strongly and positively correlated 
with plant height, and an equally strong negative correlation 
was found with grain yield and harvest index, particularly 
under stress conditions (Fig. 3; Supplementary Fig. S8). It is 
interesting to note that very similar correlations were docu-
mented between canopy temperature and agronomic traits 
scored in both years of field trials (Fig. 3), though canopy tem-
perature was measured in only one year. The consistency of 
these correlations indirectly reinforces the effectiveness of our 

normalization procedure in reducing the influence of envir-
onmental factors on canopy temperature results. It can there-
fore be assumed that the effective detection of true genotypic 
differences in canopy temperature in one year could be simi-
larly correlated with the performance of the accessions for 
agronomic traits, such as plant height and grain yield, over the 
2 years of field trials.

The fact that the correlations between canopy temperature 
and agronomic traits under drought were stronger than under 
control conditions supports the idea that stomatal conduct-
ance is more important for plant performance under stress than 
under optimal conditions. Similar results have been reported in 
previous large field studies in other C3 and C4 cereals. For ex-
ample, a similar negative correlation between canopy tempera-
ture in the reproductive stage and grain yield was described for 
segregating bi-parental wheat populations (Saint Pierre et al., 
2010). Zia et al. (2013) also found a negative correlation be-
tween canopy temperatures at anthesis, and grain yield in 150 
maize single cross-hybrids under water-limited conditions.

On the other hand, the positive correlation between plant 
height and thermal data found in this study (Fig. 3) is contrary 
to what has been observed for other crops, including wheat 
(Giunta et al., 2008; Rebetzke et al., 2012) and potato (Prashar 
et  al., 2013). In those studies, a negative correlation was ob-
served between canopy temperature and plant height, and it 
was interpreted in terms of an atmospheric temperature pro-
file where an increased aerodynamic resistance in the shorter 
genotypes was responsible for their higher leaf temperature 
(Rebetzke et al., 2012). It is unclear why this does not apply 
in our rice trial, but it might be that the taller genotypes really 
do have more closed stomata than the shorter genotypes, with 
this effect over-riding any aerodynamic effect of height. This 
hypothesis would need to be tested using direct stomatal con-
ductance measurements (i.e. porometer measurements), but it 
is indirectly confirmed by the outcomes of the genetic ana-
lysis (discussed in detail below). The tendency for shorter rice 
genotypes to have more open stomata may be linked to the 
fact that the new, high-yielding semi-dwarf varieties of rice 
were selected under irrigated conditions (Pingali, 2012; Kumar 
et al., 2014) without considering water as a limiting factor. The 
presence of standing water in the rice paddy system differenti-
ates it from most wheat production environments.

Another aspect that may confound the interpretation of the 
thermal imaging data is the effect of flowering on the canopy 
temperature measurements. Our data set allowed the quantifi-
cation of the contribution of differences in flowering stage to 
canopy temperature results. The accessions of the panel were 
sown and transplanted to the field in a staggered way to syn-
chronize phenology with the aim of imposing stress at 50% 
flowering in all the varieties. Despite the good synchronization 
of flowering observed among genotypes (Kadam et al., 2018), a 
perfect synchronization is difficult to achieve with such a large 
and diverse panel, grown under varying conditions. Indeed, 
drought affects flowering time and in many cases accelerates 
it, a phenomenon referred to as drought escape (Zhang et al., 
2016). The significant correlation between canopy temperature 
and flowering stage in control plants (Fig. 3A) is in agreement 
with a 2 °C higher temperature in unstressed wheat canopies 
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with spikes, compared with unstressed canopies without spikes 
(Hatfield et al., 1984), and suggests that the quantification of 
plant canopy temperature can be significantly affected by dif-
ferences in flowering. However, flowering time differences in 
this study did not significantly affect the canopy temperature 
under drought (Fig. 3B). This result may be explained by the 
fact that under water-limited conditions the rise in leaf tem-
perature may be larger than the increase resulting from the 
presence of panicles.

Association mapping and QTL identification

In the present study we used the observed phenotypic vari-
ation for rice canopy temperature under control and drought 
conditions in a GWA mapping experiment to identify the 
genetic factors contributing to this variation. The genotypic 
differences observed in canopy temperature under the two 
treatments show that there is substantial genetic variation, 
which is especially visible under drought. The results indicate 
a low marker heritability under control conditions both for 
the single replicates and for their averaged canopy temperature 
(Supplementary Table S2). This may indicate either that the 
environmental noise masks the genetic factors under control 
conditions, or that the absence of stress did not trigger their 
expression. The absence of significant marker–trait associations 
for mean canopy temperature values under control conditions 
(Supplementary Fig. S10) indirectly confirms this.

In accordance with other reports (Jones et al., 2009), thermal 
data under drought stress showed good heritability, substan-
tially higher than under control conditions (Supplementary 
Table S2). This suggests that stress maximizes the genotypic 
differences in canopy temperature, which therefore can be 
more effectively detected by thermal imaging. A main marker–
trait association was identified on chromosome 3 using the 
mean temperature values of the single stress replicates and 
the 45K SNP (GBS) map (Fig. 4). Subsequent mapping of 
chromosome 3 using the imputed high-density SNP set in-
creased the signal strength of the marker–trait associations, and 
even more the mapping resolution (Fig. 5), supporting the idea 
that imputation is a quick and cost-effective tool for adding 
value to existing genotyped panels (Wang et  al., 2018). The 
increased resolution provided by the high-density map al-
lowed the identification of two distinct, neighbouring QTLs 
(Fig. 5B). This distinction could not be resolved using the GBS 
map because of the low density of markers across the region 
(Supplementary Fig. S12). Haplotype analysis of recombinant 
accessions carrying either major or minor SNP alleles across 
the two QTL regions revealed that qCT1 was primarily re-
sponsible for canopy temperature variation (Fig. 6A, B). This 
suggests that the detection of qCT2 was due to the extensive 
LD across the region, where a majority of genotypes carried 
haplotypes with blocks of major or minor alleles across the two 
QTLs (e.g. Haplotype I and Haplotype III in Fig. 6A). Minor al-
leles for the SNPs defining qCT1 were associated with higher 
canopy temperature and occurred almost exclusively in taller, 
low-yielding genotypes (Fig. 6A; Supplementary Tables S5, 
S6) whereas major alleles across qCT1 were widely distrib-
uted across the panel, found in ~75% of accessions, but notably 

were almost completely fixed in the shorter (plant height 
<100 cm), high-yielding genotypes (Supplementary Table S6). 
This finding may support the hypothesis that rice genetic vari-
ation for stomatal conductance (here indirectly determined 
by canopy temperature measurements) was reduced as a result 
of selection for short-statured, high-tillering, and productive 
genotypes in flooded environments. The taller accessions of 
the population are mostly low-tillering and low-yielding land-
races, many of which were selected for drought-prone, rain-fed 
environments (Kumar et  al., 2014) where alleles responsible 
for reduced transpiration are preferred, even if this negatively 
affects grain yield under non-stressed conditions (Passioura, 
2012). Fixation of the major alleles at qCT1 in short-statured 
genotypes suggests that, in rice breeding, selection for high 
grain yield under flooded conditions reduced the genetic vari-
ation available for traits related to more conservative water use.

The marker–trait association detected on chromosome 3 
using the mean temperature values of stress replicates was also 
identified using the temperature values of replicate F03 alone 
(Fig. 4B), but it fell below significance using F04 (Supplementary 
Fig. S10, the other drought replicate that shared the field loca-
tion with F03 (Supplementary Fig. S1). This difference may be 
explained by the different severity levels of the imposed stress 
between the two days of imaging, in combination with other 
environmental variation. F04 was imaged at almost the same 
time of day, but during a time window characterized by higher 
mean solar radiation and wind speed (Supplementary Table 
S1B). Furthermore, F04 was imaged 1 d later than F03, such 
that the water limitation further increased (Supplementary Fig. 
S6), resulting in higher canopy temperature values than ob-
served in F03 (Fig. 2). It is likely that, due to the increased se-
verity of the stress in F04 (Fig. 3), the stomata closed in a larger 
number of genotypes, thus reducing the variability and sensi-
tivity to detect genetic differences in stomatal closure that were 
still detectable the day before. This confirms the very dynamic 
response of stomata to changing environmental conditions 
(Vico et al., 2011; Drake et al., 2013) and suggests the need for 
reducing the time window during which the thermal imaging 
is performed to increase the number of replicates imaged per 
day. This target can be achieved by assembling thermal cameras 
on unmanned aerial vehicles (Shi et al., 2016).

Candidate genes

A region of ~42 kbp was identified inside the qCT1 LD block 
by considering the most significant SNPs associated with mean 
canopy temperature under drought (Fig. 7B). This region con-
tains seven genes (Supplementary Table S7), of which two were 
targeted as interesting a priori candidate genes, a mitochondrial 
fumarase (LOC_Os03g21950) and a plasma membrane HAK 
transporter (LOC_Os03g21890). Plant guard cells accumulate 
solutes such as K+, Cl–, and malate during stomatal opening 
and release/metabolize them during stomatal closure. During 
these processes, solute flux through the plasma membrane of 
guard cells is highly active, with K+ intake driving stomatal 
opening with the involvement of different types of transporters, 
including HAK-type transporters (Jezek and Blatt, 2017). 
Gago et  al. (2016) and Santelia and Lawson (2016) recently 
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reviewed the role of guard cell and adjacent mesophyll cell me-
tabolism in stomatal movement, highlighting the importance 
of malate (negatively charged) intake as a direct counter ion 
for K+ in the vacuole of guard cells or as a signalling molecule 
involved in the activation of guard cell vacuolar Cl– channels 
during stomatal opening. Fumarase is a mitochondrial enzyme 
involved in the production of malate, through the hydration 
of fumarate, in a critical step of the tricarboxylic acid (TCA) 
cycle (Sweetlove et al., 2010). In transgenic tomato plants, in-
hibition of fumarase resulted in a reduction in TCA cycle ac-
tivity. This reduction had little effect on leaf metabolism but 
markedly reduced plant biomass because of a deficiency in sto-
matal function that resulted in reduced stomatal conductance 
(Nunes-Nesi et al., 2007). The co-location of fumarase and of 
a HAK transporter, both important for the mechanism of sto-
matal opening, in the QTL region of highest interest associated 
with canopy temperature/stomatal conductance variation re-
inforces our mapping results.

Finally, our analysis of the predicted function of the SNPs 
within the ~42 kbp region of highest significance within 
qCT1 did not highlight specific variants responsible for amino 
acid changes (Supplementary Table S8) but identified many 
upstream gene variants, suggesting that changes in gene regu-
lation may explain the phenotypic variation associated with 
this region. This hypothesis should be further investigated by 
sequencing the candidate genes and their promoter regions in 
a subset of contrasting lines carrying the major and minor al-
leles at the significant markers within qCT1, and testing gene 
expression differences in response to stress. This would help 
to pinpoint the functional nucleotide polymorphisms and to 
assess how they impact stomatal conductance and response to 
water stress.

The significant SNPs across qCT1 may also be of interest to 
breeding programmes aiming to develop new varieties adapted 
to drought-prone agroecosystems. These SNPs represent a 
useful target for either marker-assisted selection or genome 
editing using CRISPR/Cas9. Additionally, this should help 
to determine whether introducing minor alleles at qCT1 into 
semi-dwarf high-yielding varieties equips them with new gen-
etic potential for a more conservative water use strategy under 
stress. This trait is currently not available in this germplasm. It 
will be of great interest to see whether improved water use ef-
ficiency in these high-yielding varieties can be accomplished 
without negatively impacting their productivity (in the pres-
ence of a non-pleiotropic effect of qCT1 on grain yield) when 
water is abundant.

Conclusions

Physiological profiling of plant traits combined with genetic 
analysis has the potential to greatly accelerate crop improve-
ment (Reynolds and Langridge, 2016). The present study 
shows that changes in stomatal conductance, an important 
physiological response to water limitation, can be indirectly 
measured by thermal imaging and that the latter technique can 
be used to quantitatively screen a large panel of rice accessions. 
Canopy temperature during stress is a good predictor of grain 
yield performance and, therefore, thermal imaging represents 

an effective tool that can be used to accelerate physiological 
selection in plant breeding. In addition, association mapping 
of thermal data revealed the presence of genetic variation con-
trolling canopy temperature under stress. The a priori candidate 
genes that were identified as underlying this genetic variation 
suggest that differences in the regulation of genes involved in 
guard cell solute intake affect stomatal behaviour, which we 
detected as canopy temperature differences. Finally, our analysis 
shows that the major donors of genetic variation for canopy 
temperature/stomatal conductance are the tall accessions of 
the panel. These old varieties and landraces present in crop 
germplasm collections represent a strategic reserve of genetic 
variation that can be tapped for developing new understanding 
of stress response and new varieties that are physiologically 
adapted to highly variable, water-limited environments.

Supplementary data

Supplementary data are available at JXB online.
Fig. S1. Field trial at the IRRI during the dry season 

2013–2014.
Fig. S2. Density of distribution of the standardized residuals 

for all the imaged field replicates.
Fig. S3. Principal component analysis plots for the 271 

indica rice accessions.
Fig. S4. Mean temperature of thermal pictures relative to 

the E03 drought field replicate.
Fig. S5. Correlation matrices of non-normalized and 

normalized field replicates.
Fig. S6. Soil water potential of the drought field.
Fig. S7. Boxplots representing the range of variation for the 

recorded agronomic traits.
Fig. S8. Scatterplots between drought stress mean tem-

perature values and plant height, grain yield, and harvest index 
scored during the 2013 and 2014 dry seasons.

Fig. S9. Quantile–Quantile plots of expected versus ob-
served P-values for the GWA mapping results.

Fig. S10. Manhattan plots of the GWA mapping results of 
control replicate B mean, B03, and B04 and of the separate 
drought replicates E02, E03, and F04.

Fig. S11. Comparison between Manhattan plots of the 
GWA mapping results using the 45K SNP map without the 
marker-based PC or including PC1 as a covariate in the linear-
mixed model for ‘EF mean’ and F03.

Fig. S12. Manhattan plots displaying the level of signifi-
cance over genomic positions of the chromosome 3 region 
of the two markers’ loci significantly associated with canopy 
temperature of ‘EF mean’.

Fig. S13. Manhattan plots of the GWA mapping results for 
the QTL region of chromosome 3 using the imputed map for 
‘EF mean’ canopy temperature.

Fig. S14. Localized linkage disequilibrium analysis of qCT2.
Table S1A. Detailed information on imaged field replicates.
Table S1B. Weather station data of the days of imaging.
Table S2. Heritability estimated by markers (h2) of tem-

perature results for all the field replicates.
Table S3. Significant SNPs identified by GWA mapping of 

canopy temperature under drought stress using the GBS SNP map.
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Table S4. Allelic effect on canopy temperature for markers 
of the most significant SNPs, located on chromosome 3, in the 
different drought field replicates and for their mean values.

Table S5. Significant SNPs identified by GWA mapping of 
‘EF mean’ canopy temperature using the imputed map.

Table S6. List of the 246 accessions carrying one of the 
three haplotype groups, identified considering the most sig-
nificant SNPs of qCT1 and qCT2, and their phenotypic 
performance.

Table S7. Genes included in the localized region delimited 
by the most significantly associated SNPs with canopy tem-
perature of ‘EF mean’ and located inside qCT1.

Table S8. Effect of the 20 SNPs present in the qCT1 region 
and significantly associated with ‘EF mean’ canopy temperature.
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