UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

Operator preconditioning and space-time methods for parabolic evolution
equations

van Venetig, R.

Publication date
2021

Document Version
Final published version

Link to publication

Citation for published version (APA):
van Venetié, R. (2021). Operator preconditioning and space-time methods for parabolic
evolution equations. [Thesis, fully internal, Universiteit van Amsterdam].

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:10 Mar 2023


https://dare.uva.nl/personal/pure/en/publications/operator-preconditioning-and-spacetime-methods-for-parabolic-evolution-equations(45b7aa79-49c8-4196-8023-81c353e8e681).html

Operator prec:['uditioning

and §pace-tim methods

for ﬂarabolic e\}olution

equations

Raymond
van

Venetié







OPERATOR PRECONDITIONING
AND
SPACE-TIME METHODS FOR PARABOLIC EVOLUTION EQUATIONS

RaymMoND vaN VENETIE



About the cover: the displayed mesh is found by running the adaptive method
from Chapter 9 on the ‘boundary’ of this book. The solution is strongly sin-
gular for t = 0, which explains the refinements towards the bottom of the cover.

This research was funded by the Netherlands Organization for Scientific Re-
search (NWO) under contract. no. 613.001.652.

Printed by GVO drukkers & vormgevers
ISBN: 978-94-6332-788-6
© 2021 Raymond van Venetié



OPERATOR PRECONDITIONING
AND
SPACE-TIME METHODS FOR PARABOLIC EVOLUTION EQUATIONS

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof. dr. ir. K.I]. Maex

ten overstaan van een door het College voor Promoties
ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel
op dinsdag 28 september 2021, te 15.00 uur

door

Raymond van Venetié

geboren te Zoetermeer



Promotiecommissie
Promotor: prof. dr. R.P. Stevenson
Copromotor:  dr. J.H. Brandts

Overige leden:  prof. dr. H. Peters
prof. dr. A.J. Homburg
dr. C.C. Stolk
dr. G. Gantner
prof. dr. U. Langer
dr. C.A. Urzaa-Torres

Universiteit van Amsterdam
Universiteit van Amsterdam

Universiteit van Amsterdam
Universiteit van Amsterdam
Universiteit van Amsterdam
Universiteit van Amsterdam
Johannes Kepler University Linz
Technische Universiteit Delft

Faculteit der Natuurwetenschappen, Wiskunde en Informatica



Contents

Introduction

1.1 Numerical methods for operator equations . . .. ... ...
1.2 About Part I: Operator preconditioning . . . ... ... ...
1.3 About Part II: Parabolic evolution equations . . . . . ... ..

Operator preconditioning

Problems of negative order

21 Introduction . .................. ... ... ...
2.2 Operator preconditioning . . . .. ... ............
2.3 Piecewise constant discretizationspace . ... ... ... ..
2.4 Continuous piecewise linear discretization space . . . . . . .
2.5 Higherordercase . . .. ... ..................
2.6 Numerical experiments . . . . ... ...............
27 Conclusion . . .. ... ... Lo

Problems of negative order: preconditioning at linear cost

3.1 Introduction . . ... ... .. ... ... ... .. ...
3.2 Operator preconditioning . . . .. ...............
3.3 Anoperator BY of multi-level type . . . .. ... ... ....
34 Manifoldcase . .. ... ... ... . L.
3.5 Numerical experiments . . . . ... ...............

Problems of positive order

4.1 Introduction . . ... ... .. .. ...
42 Operator preconditioning . . . ... ..............
4.3 Continuous piecewise linear discretization space . . . . . . .
4.4 Construction of By € Lisc(W7r, W7) . . ... ... ...
45 Extensions . . . .. . ... ...
4.6 Numerical experiments . . . . ... .. ... ... .......
47 Conclusion . . . . ... L e

The simplest case

51 Introduction . .. ... ... . ... ... . ... .. ...,
5.2 Construction of D in the domaincase. . . . ... ... ...
5.3 Manifoldcase . ... ... ... .. ... . ... . ...,
5.4 Numerical experiments . . . . .. ... .. .. ... ... ...

iii



CONTENTS

55 Conclusion . . . ... ... ... o 97
II Space-time methods for parabolic evolution equations 99
6 An adaptive method 101
6.1 Introduction . ... ........ ... .. ... ... .. .. ... 101
6.2 Space-time formulations of a parabolic evolution problem . . . 106
6.3 Discretizations . . . . .. ... ... . Lo oo 108
6.4 Convergent adaptive solutionmethod . . . ... ... ... ... 111
6.5 Wavelets-in-time tensorized with finite-elements-in-space . . . . 122
6.6 A concreterealization. . . . .. ... ... .. ... ... ... 131
6.7 Numerical experiments . . . . . ... .. .. ... ......... 140
6.8 Conclusion . . ... ... .. ... ... . 147
7 Adaptivity: an efficient implementation 149
71 Introduction . ... ......... .. .. .. .. .. 149
7.2 Space-time adaptivity for a parabolic model problem . . .. .. 151
7.3 The application of linear operators in linear complexity . . . . . 157
74 The heat equation and practical realization . ... .. ... ... 165
7.5 Implementation . ... ... ... ... .. ... .. ....... 171
7.6 Numerical experiments . . . . ... ... .............. 176
77 Conclusion . . .. ... ... o 181
7.A Proofs of Theoremsin§7.3 . . . ... .. ... ... ... ..... 181
8 A parallel algorithm 185
81 Introduction . ... ......... .. .. ... .. ... ... 185
8.2 Quasi-optimal approximations to the parabolic problem . . . . . 187
8.3 Solving efficiently on tensor-product discretizations . . . . . . . 189
8.4 A concrete setting: the reaction-diffusion equation . . . . . . .. 192
8.5 Numerical experiments . . . .. ... .. .............. 196
86 Conclusion . . . ....... ... ... .. .. .. 198
9 Adaptive BEM for the heat equation 201
91 Introduction . ................ .. ... . ... . ... 201
9.2 Preliminaries. . . . . .. .. ... . ... 203
9.3 A posteriori error estimation. . . ... ... ... L 207
9.4 Numerical experiments . . . . ... ... .............. 212
Summary 219
Samenvatting 221
Dankwoord 223
Bibliography 225

iv



1 Introduction

Partial differential equations are used for the modeling of a wide variety of
(natural) phenomena appearing in biology, physics, chemistry, engineering,
finance and many more fields. Typically, closed-form solutions to these dif-
ferential equations are unknown or do not exist, despite their importance in
practice. A remedy is provided by numerical methods that construct approxi-
mations of the solutions to these differential equations. Ideally, these numerical
methods provide good approximations at a small computational cost. This is
the main topic of investigation in this thesis, where we will focus on linear
partial differential equations of elliptic or parabolic type.

The contents of this thesis can be roughly divided into two parts. In the
first part we study preconditioning, a technique that is used to accelerate solvers
for systems of linear equations arising in our approximation schemes. In the
second part, we focus on (adaptive) numerical methods for parabolic evolution
equations in a simultaneous space-time approach.

1.1 Numerical methods for operator equations

We start with a brief description of the general setting that we study in this
thesis. For a thorough introduction, we refer the reader to the literature,
e.g. [Bra0l, EG04, Ste0O8a].

1.1.1 Operator equations

We consider linear operator equations of the following type. For some Hilbert
space ¥, a linear map A: ¥ — ¥’ and data f € ¥/, we seek u € ¥ that solves

(1.1) Au= f orequivalently (Au)(v)=f(v) (ve¥).

We require the problem (1.1) to be well-posed, meaning that there is a unique
solution that depends continuously on the given data. Typically, # is a Sobolev
space of functions on some bounded domain, and the operator A corresponds
to the variational formulation of some partial differential equation, but we also
encounter situations where A is a boundary integral operator.

1



1. INTRODUCTION

Let us restrict ourselves to A being a bounded and coercive operator, meaning

that for all v € ¥ we have ||Av||y+ < C|jv||y and (Av)(v) > a||v||%, for some
C < oo and « > 0. In this setting, the Lax-Milgram theorem asserts that the
problem (1.1) is well-posed with |[A™! ||z 4) < 1/a.
Example 1.1.1. As a model problem for (elliptic) partial differential equations,
one may look at Poisson’s equation with homogeneous Dirichlet boundary
conditions. For some bounded Lipschitz domain © C R, this is the problem
of finding u that solves

—Au=f on{, u=0 ond,

for given forcing data f.
In variational formulation this problem reads as finding « from the Sobolev
space H} () := {v € H(Q) : v|sq = 0} that satisfies

(1.2) (Au)(v) == (Vu, Vo)1, (0) = (f0)1,(0) (v € Ho(92)).

The operator A is a bounded linear map Hj(Q2) — Hj(Q)'. Moreover, the
Poincaré inequality shows that A is coercive. We conclude that (1.2) is a well-
posed operator equation for forcing data f € H}(f2)’, and falls in the abstract
setting of (1.1).

Example 1.1.2. Another model problem of interest is Laplace’s equation with
inhomogeneous Dirichlet boundary conditions. For some bounded Lipschitz
domain Q C RY, this is the problem of finding u that solves

(1.3) Au=0 onf{, u=g¢g onod,

for given Dirichlet boundary data g. This problem admits an (alternative)
weak formulation in terms of boundary integral operators.
This requires some notation. Set I' := 0, and consider the fractional

Sobolev space H 2 (T), which can be seen as the trace space of H'(Q), with its
dual that we denote by H~2(T'). Let G be the fundamental solution to the
Laplace equation (1.3), e.g., for d = 2 we have G(+) := — 3= log | - |. We can now

introduce the Single Layer integral operator A: H=3 (') — Hz (T') by
(Aa) (v / / Gz —y)u(y)dyde (@,5 € H 3(D)).
The Single Layer operator A is bounded and coercive, so for g € H=(T') we
may consider the well-posed problem of finding @ € H~ (T') that solves
At =g.

It turns out that this problem is equivalent to the original problem (1.3), in that
we can recover the weak solution u € H'(Q) via the representation formula

fr (y) dy.



1.1. Numerical methods for operator equations

Finally, we note that solving the Laplace problem with Neumann boundary
data—so replacing the boundary condition by % = g in (1.3)—allows for a
similar weak formulation in terms of boundary integral operators. Here one
solves Bu = g, with the Hypersingular integral operator B: H 3(I') — H™z(D).
This operator maps in the ‘opposite direction’ of A, which will be important
later in this introduction.

1.1.2 Numerical approximation

For the numerical approximation of the operator equation (1.1) we can use the
Ritz—Galerkin method. For some finite-dimensional subspace #7 C ¥, also
called the trial space, we consider the discretized operator Ay : 77 — 77 given
by (A7u)(v) := (Au)(v) (u,v € V) and the naturally embedded right hand
side f € #7. The Galerkin approximation of (1.1) is then the function uy € 77
that solves

(14) ATUT = f

Since #7 is a closed subspace of ¥, the operator At is again coercive, and hence

the Lax-Milgram theorem asserts that this discretized problem is well-posed.
The advantage of the Galerkin method is that it provides us with a concrete

and tight error bound. Indeed, Céa’s lemma shows that the error satisfies

lu—urlly <[ Allzer, 90 [A oerr vy inf |lu—wvl|y,
vEVT

which tells us that wr is a quasi-best approximation to u from #7.

To design a convergent numerical method, we actually have to construct
a family of trial spaces (¥7)7cr. Here we wish to achieve two things simul-
taneously. On the one hand, we want our method to have a good approx-
imation rate, that is, we want the approximations to satisfy |u — url|ly <
C(dim ¥7) 7 ||ul|y for all T € T with some large v > 0 (and some constant
C > 0). On the other hand, we want the number of operations required to
calculate u7 from (1.4) to be small, so ideally of order O(dim ¥7). Both these
motives play a central role in this thesis.

In the finite element method, the trial spaces ¥7 are constructed as spaces of
(dis)continuous piecewise polynomials of fixed degree with respect to meshes
T of the underlying domain. If the solution u is smooth, i.e., its derivatives
of sufficiently high order are bounded in a suitable norm, then optimal ap-
proximation rates are often obtained by simply considering a family of trial
spaces with respect to quasi-uniform meshes T, i.e., meshes having a uniform
mesh width. The situation changes drastically when the (unknown) solu-
tion u contains singularities, which may be induced by the geometry or the
data. In such cases, the approximation rate offered by trial spaces with respect
to quasi-uniform meshes can drop significantly, making the numerical scheme

3



1. INTRODUCTION

converge slowly. Luckily, in many situations the approximation rate can be
improved significantly by considering trial spaces with respect to meshes that
are locally refined at these singularities.

Throughout this thesis we will focus on this latter situation, where the
solution u contains singularities. Clearly, in terms of accuracy, using trial
spaces adapted to the singularities is preferable. This comes at a price however,
as the mathematics and implementation of such adaptive numerical methods
is often more difficult than for the quasi-uniform case.

1.1.3 Solving the discretized system

An imported question is how to efficiently solve (1.4). To analyze this, we first
reformulate the problem in coordinates. With ®1 := {¢1,...,¢,} being a
basis for #7, one infers that solving (1.4) for ur = u' &, is equivalent to
finding u € R™ that solves

(1.5) Aru=f,
with the system matrix Ar € R"*™ and right hand side f € R" given by
A7 = (Ar®r)(O7) = (A7) (0)lij,  F = f(@7) = [f(i)]:-

The computational complexity of solving the above matrix-vector system
using a direct method, e.g. using LU-factorization, is O(n?). This is pro-
hibitively expensive, as we are interested in constructing methods that run
in optimal (linear) time. Another problem is that direct methods require the
matrix A7 to be available, which is not the case for matrix-free methods, where
one has access to only the application of A7. An example of such a matrix-free
method will be given in this thesis, where we devise an algorithm to apply
a system matrix A7 in linear complexity, even though the matrix itself is not
sparsely populated.

A first efficiency gain can be obtained by solving (1.5) approximately yield-
ing some R™ 5 4 ~ u. For 47 := @' ®7 we have

lu—dr|ly < |lu—urlly +llur—drly,

discretization error algebraic error

so as long as the algebraic error is dominated by the discretization error, our
approximation @7 is still quasi-optimal. Such approximate solutions to (1.5)
are given by iterative solvers, being methods that produce a sequence of vectors
(w1, u2,...) converging to the solution u.

If the matrix Ay is symmetric and positive definite, as when the operator
A is self-adjoint (A = A’) and coercive, then of particular interest is the Con-
jugate Gradient (CG) method. This iterative solver has favourable convergence
properties and has minimal computation costs, i.e., the cost of a single iter-
ation is dominated by the cost of a single application of A7. Write p(-) for

4



1.2. About Part I: Operator preconditioning

the spectral radius of an operator, and denote the spectral condition number
by ks(A7) = p(A7)p(AF"). Starting from an initial guess, the number of
iterations required by CG to reduce the initial algebraic error by a factor € is
bounded by +/ks(A) log(1/e).

Unfortunately, for standard finite (or boundary) element bases, the system
matrices A7 are (generally) ill-conditioned, in the sense that the condition
number kg(A7) increases for decreasing mesh width. This implies that the
number of iterations required by CG to reach a certain accuracy increases upon
mesh refinement.

One way of fixing this conditioning issue, is to make use of precondition-
ing: instead of solving (1.5), one considers GrAru = Gr1f where Gt is
some preconditioner, i.e., an approximation of A7" that can be applied effi-
ciently. The number of iterations required by CG applied to this precondi-
tioned system to reduce the initial algebraic error by a factor ¢, is bounded by

VEs(GrAT)log(1/e).

1.2 About Part I: Operator preconditioning

In the first part of this thesis we focus on constructing uniformly optimal pre-
conditioners G'7 for the family 7" € T. This means that we want the condition
number of the preconditioned matrix ks(G7At), and therefore also the num-
ber of iterations required by CG, to be bounded independently of the trial
space ¥7.

One technique for constructing such preconditioners is so-called operator
preconditioning ([Hip06]). This approach hinges on the availability of an opposite
order operator B, being a bounded and coercive linear map from ¥’ to 7. On
a continuous level we have that BA is a boundedly invertible map * — ¥,
suggesting that B may be used to construct a preconditioner for A : 77 — 7.

Let #7 C # := ¥’ be some finite dimensional subspace, and consider the
discretized operator By : #7 — W givenby (Byu)(v) := (Bu)(v) (u,v € #7).
If one additionally has a boundedly invertible operator Dy : #7 — #7, then
the composition D' By (D%)~': ¥} — ¥7 is a bounded and coercive map-
ping, and therefore serves as a preconditioner for Ar. See also the diagram:

— i}
(16) o7 |-

/

The typical example to keep in mind is where A: H~%(T'") — H?=(T) is the
Single Layer operator and B: Hz(I') — H~2(T") the Hypersingular operator
from Example 1.1.2.



1. INTRODUCTION

Now, for the construction of a suitable D, we assume .7 to be some Hilbert
space (we take Ly (I") in the above example) for which we have a Gelfand triple

W s H =~ H W
If the trial spaces satisfy ¥~ C ., we can consider the operator D7 : Y7 — #7

defined by (Dyv)(w) := (v,w)z (v € ¥r,w € #7). This is a uniformly
boundedly invertible operator if the subspaces #7 satisfy

(1.7) dim #7 = dim %7
and
(1.8) inf inf sup M > 0.

TET 0verT ozwewy |0y |[wllw

Assume these constraints to be satisfied. By equipping 77 and #7 with
bases ®7 and ¥, respectively, the matrix representation of the preconditioned
system reads as

(1.9) D:'BrD;" Ar,

with system matrices Ay := (A7®7)(®7) and By = (B7r¥71)(¥7), and
‘generalized mass matrix” Dy := (&7, ¥1) . The spectral condition number
of this preconditioned matrix system equals that of D' By (D/-) "' A7, and is
thus uniformly bounded.

The real challenge is constructing suitable subspaces #7 C # that sat-
isfy (1.7) and (1.8). Moreover, we require a basis ¥ for #7 that allows the
preconditioner (1.9) to be applied efficiently.

Special attention has to be paid to the inverse matrix D" appearing in
the preconditioner. If the matrix Dy is not diagonal, its inverse has to be
approximated, and it can generally be expected that, in order to obtain a
uniform preconditioner, the accuracy with which D" has to be approximated
increases with a decreasing minimal mesh-size. As a result, an application of
D" cannot be expected to execute in linear time.

In this thesis, we will propose suitable spaces #7 C #, and circumvent this
latter issue by constructing bases W that are -orthogonal to ®;, making
D7 a diagonal matrix whose inverse can be exactly evaluated.

1

1.2.1 Contributions and Outline of Part I
The contents of Chapters 2-5 is essentially that of the following papers:

[SvV20a] R.P. Stevenson and R. van Venetié. Uniform preconditioners for
problems of negative order. Mathematics of Computation, 89(322):645—
674, 2020.



1.2. About Part I: Operator preconditioning

[SvV2la] R.P. Stevenson and R. van Venetié. Uniform preconditioners of
linear complexity for problems of negative order. Computational Methods
in Applied Mathematics, 21(2):469-478, 2021.

[SvV20b] R.P. Stevenson and R. van Venetié. Uniform preconditioners for
problems of positive order. Computers & Mathematics with Applications,
79(12):3516-3530, 2020.

[SvV21b] R.P. Stevenson and R. van Venetié. Operator preconditioning: the
simplest case. Submitted to Applied Numerical Mathematics, 2021.

On average, the authors contributed equally to these works.

Chapter 2 ([SvV20a)])

For some domain (or manifold) 2 and s € [0,1], we consider the fractional
Sobolev space H?(12) (possibly with homogeneous Dirichlet boundary condi-
tions incorporated) and its dual that we denote here by H~*(12).

In this chapter we consider operator preconditioning for a bounded and
coercive operator A: H~*(Q) — H*(1), so of negative order —2s, discretized by
a family of trial spaces ¥7 C H~*(Q) being discontinuous piecewise constants
w.rt. 7. We consider a family T of uniformly shape regular, possibly locally
refined, meshes of 2. In order to apply the aforementioned framework, we
assume availability of a suitable opposite order operator B: H*(Q2) — H~*().

We propose a family of subspaces #7 = spanW¥y C H*(Q) satisfying
both (1.7) and (1.8). We achieve this by constructing ¥ as a collection that
is Lo (£2)-biorthogonal to @, the (canonical) piecewise constant basis for #7.
As a consequence, the matrix Dy := (@7, V7)1, ) is diagonal, and thus its
inverse, which appears in the preconditioner (1.9), can be evaluated exactly.

The functions V7 are constructed in 7 ® %1, where 77 is the space
of continuous piecewise linears w.r.t. 7, and %7 is a space containing bub-
ble functions. This allows us to construct a bounded and coercive operator
Br: W5 — W} asthesumof BY : 1 — ¥, being the opposite order opera-
tor B discretized on . C H*(2), and an invertible diagonal scaling operator
on the bubble space. Besides the cost of the discretized operator B, the cost
of the resulting preconditioner scales linearly in dim 77

Our approach has a few advantages over earlier proposals: it does not
require the inverse of a non-diagonal matrix; it applies without any mildly
grading assumption on the mesh; and it does not require a barycentric refine-
ment of the mesh underlying the trial space. Furthermore, we will show that
our approach extends to the general case where #7 is chosen as a space of
(dis)continuous piecewise polynomials of any order.
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Chapter 3 ([SvV21al)

We continue with the setting from the previous chapter. In this chapter we
construct a multi-level type operator that both fulfills the role of the opposite
order operator B and can be applied in optimal linear complexity. For this
construction, we require T to be a family of conforming partitions created by
newest vertex bisection. Together with the results from the previous chapter,
this provides uniformly optimal preconditioners for negative order operators
A discretized on a family of possibly locally refined meshes, that can be applied
in linear complexity.

Chapter 4 ([SvV20b])

In this chapter consider the operator preconditioning framework for positive
order operators, that is, we switch the roles of A and B.

More precisely, we construct preconditioners for a bounded and coercive
operator A: H*(Q) — H*(2), being of positive order 2s, discretized by
Y7 C H*(Q) being continuous piecewise linears w.r.t 7. Again, the mesh
family T is supposed to be uniformly shape regular, which allows for lo-
cally refined meshes. Assuming the availability of an opposite order operator
B: H %(Q) — H*(Q2), we explore the operator preconditioning framework,
and aim to get results similar to the setting studied in Chapter 2.

We introduce a family of subspaces #7 C H~*(Q2) satisfying both (1.7)
and (1.8). Similarly as before, we do this by constructing #7 as the span of
a collection W that is Ly(£2)-biorthogonal to ®, the Lagrange basis for 77
Besides an easy proof of the inf-sup condition (1.8), this biorthogonality has
the advantage that the matrix Dy := (®7, V)1, (q) is diagonal, and thus its
inverse, which appears in the preconditioner (1.9), can be evaluated exactly.

Since #7 is a non-standard discretization space, we wish to simplify the
implementation of an operator By : #7 — #7, similarly as the construction
given in Chapter 2. We achieve this by constructing #7 as a subspace of
Ur & B, where %+ C H*(Q) is the space of discontinuous piecewise con-
stants w.r.t. 7, and %t is some bubble space for which the H~*(Q2)-norm is
equivalent to a weighted L ({2)-norm. This allows us to construct a suitable
Br: #r — W] as the sum of B¥ : %/ — %4, being our opposite order op-
erator discretized on %7, and an invertible diagonal scaling operator on the
bubble space. Besides the cost of the discretized operator B, the cost of the
resulting preconditioner scales linearly in dim 77

This construction has the same advantages as that of Chapter 2: it avoids
the inverse of a non-diagonal matrix, it circumvents the need for a barycentric
refinement of the mesh, it applies without any mildly grading assumption on
the mesh, and it can be extended to higher order trial spaces.

8



1.3. About Part II: Parabolic evolution equations

Chapter 5 ([SvV21b])

By restricting the setting from the previous chapters, we are able to construct
uniform preconditioners with an even simpler implementation. Consider
some closed manifold (or domain) 2 and trial spaces ¥7 that are continuous
piecewise polynomials of some fixed degree w.rt. 7. Let some bounded
and coercive operators A: H*(?) — H*(Q) and B: H*(?) — H *°(Q2) be
given, and consider their corresponding discretizations A7: #7 — 77 and
Br: 7/7- — 7/7/-

In this chapter we introduce a uniformly boundedly invertible operator
Dr: V7 — V7, allowing us to take #7 equal to #7 in the operator precondi-
tioning framework (1.6). The resulting preconditioned system D7_-1 Br(Dy)~tAr
and (D’) "' A7DZ' B are uniformly boundedly invertible. Moreover, the ma-
trix representation of D with respect to the Lagrange basis of 7 is diagonal,
making the implementation of this preconditioner surprisingly simple.

1.3 About Part II: Parabolic evolution equations

The second topic that will be discussed in this thesis is the (adaptive) numerical
solution of parabolic evolution equations written in a simultaneous space-time
variational formulation.

As an illustrative example, let us introduce the model problem of the heat
equation with homogeneous Dirichlet boundary conditions. For some time
interval I := (0,7 and some spatial domain 2 C R?, the heat equation reads
as finding u : I x 2 — R that solves

Ou—Azu=g onlxQ,
(1.10) u=0 onl x0Q,
u=wug on{0} x €,

for some forcing function g: I x {2 — R and initial data uo: 2 — R.

In order to apply our approximation scheme we first need to derive a weak
formulation of the above differential equation. We multiply the first equation
by a test function v that vanishes on I x 02, integrate over I x , and apply
integration by parts in space to find

(Bu)(v) := / (Opu)v + Vgu - Vyvde dt = / gvdxdt.
IxQ IxQ2

To enforce the initial condition, we introduce the trace map ~o: v — u(0,-),
and test it against some additional test function w to find that

/('you)wdw:/uowdm.
Q Q



1. INTRODUCTION

Clearly, we must yet find suitable function spaces for u, v and w. Define
X = Ly(HYQ) N HYI; H1(Q)), Y = Ly(I; HY(Q)), and H = Ly(Q),
assume that g € Y’ and ug € H, and denote B := [B yof. Finding u € X
that solves

g
(1.11) Bu = [uo}
is then a well-posed variational formulation of (1.10), meaning that the opera-
tor B is a boundedly invertible map X — Y’ x H ([SS09]).

A difficulty of the operator equation (1.11) appears when we consider dis-
cretizations. As the function space on the trial side does not coincide with
that of the test side, we cannot simply apply the Galerkin method like we
did in (1.4). Suppose that we have a family of trial spaces (X°)sea C X,
the question is how to construct a family of test spaces (Z 5)56 A C YxH for
which the discretized operator B°: X% — Z%', given by (B%u)(v) := (Bu)(v)
((u,v) € X° x Z°), is uniformly boundedly invertible. For the latter to
hold, it turns out that the pairs (X, Z%) must satisfy dim X = dim Z° and

infsea inforyexs SUPgLyezs % > 0; cf. (1.7)—(1.8). The construction

of such a test space Z° is hard, and we do not proceed this way.
Instead, we note that an equivalent problem to (1.11) is to compute
u = argmin | Bw — g|[3 + [lvow — uol,
weX

suggesting an approximation approach by restricting the minimization to some
finite dimensional trial space X° C X. Unfortunately this is not feasible
in practice, because the Y'-norm cannot be computed. To resolve this, we
consider some finite dimensional test space Y° C Y and replace the Y’'-norm
by the (computable) Y% -norm, yielding the approximation

(1.12) u = argmin || Bw — g||§,5, + |lvow — UOH%{-
weX?I

In [And13] it is shown that, if the family of pairs (X?,Y?)sca satisfy

(1.13)
Xé g YE (5 c A) and YA = inf inf sup M > 0,
SEA 0£WEX? g xpcys |0y |v]ly

then the approximation u? satisfies |[u—u’||x <~yx'inf,exs [[u—w|x, making
it is a quasi-best approximation to u from X?°. The advantage of this approach
is that Y can be chosen larger in relation to X°, making it easier to satisfy the
inf-sup condition.

1.3.1 Contributions and Outline of Part II
The contents of Chapters 6-9 is essentially that of the following papers:
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1.3. About Part II: Parabolic evolution equations

[SvVW21] R.P. Stevenson, R. van Venetié, and ]J. Westerdiep. A wavelet-in-
time, finite element-in-space adaptive method for parabolic evolution
equations. Submitted to Advances in Computational Mathematics, 2021.

[vVW21b] R. van Venetié and J. Westerdiep. Efficient space-time adaptivity
for parabolic evolution equations using wavelets in time and finite ele-
ments in space. Submitted to Numerical Linear Algebra with Applications,
2021.

[vVW21a] R. van Venetié and J. Westerdiep. A parallel algorithm for solving
linear parabolic evolution equations. Accepted in 9th Parallel-in-Time
Workshop, 2021.

[GvV21] G. Gantner and R. van Venetié. Adaptive space-time BEM for the
heat equation. Submitted to Computers & Mathematics with Applications,
2021.

On average, the authors contributed equally to these works.

Chapter 6 ([SvVW21])

For trial spaces X° that are full (or sparse) tensor products of finite element
spaces in time and space, in [And13] it was shown how to construct corre-
sponding test spaces Y C Y such that (1.13) holds. Unfortunately, neither
family allows for adaptive refinements both locally in time and space.

In this chapter we solve this issue by equipping X with a tensor product
basis of a wavelet basis in time and a hierarchical finite element basis in space.
We then construct X° as the span of a (finite) subset of this tensor product basis,
and construct Y of a similar type such that (1.13) holds, with the dimension
of Y being proportional to that of X°.

Using properties of the wavelets in time and applying multigrid precon-
ditioners in space, we construct optimal preconditioners K% : X %" X and
K{:Y? 'Y, allowing to solve the discrete problem (1.12) efficiently.

We propose an adaptive algorithm using a standard solve-estimate-mark-
refine loop. Let X° be the current trial space. In the solve step we find
its corresponding approximation u’ from (1.12). In the estimate step, we
introduce a neighborhood X¢ > X° and evaluate the residual on a basis of
X%\ X°. In the mark step, we select the basis functions for which the residual is

large. Finally, in the refine step, we build a new trial space X 5 X0 containing
all the marked basis functions. Under a saturation assumption, we prove that
the adaptive loop produces an r-linearly converging sequence to the solution.

Chapter 7 ([vVW21b])

In this chapter we discuss an implementation of the aforementioned adaptive
method in which every step is of linear complexity.

11



1. INTRODUCTION

The downside of having bases for X° and Y of wavelet-type is that the
system matrices appearing in the implementation of (1.12) are not sparsely
populated. By imposing a double-tree constraint on the index sets of X° and
Y?, we are able to derive a matrix-free algorithm that can apply the system
matrices in linear complexity.

In order to build an actual linear complexity implementation, we based
our implementation on tree- and double-tree traversals. We conclude this
chapter with extensive results that demonstrate the linear runtime of our code
in practice.

Chapter 8 ([vVW21a))

One of the advantages of a simultaneous space-time solver over classical time-
stepping approaches is that they are much better suited for a massively parallel
implementation. In this chapter we investigate such a parallel algorithm.

We consider trial spaces X° being the tensor product of finite element
spaces in time and space, and show how this tensor product assumption
simplifies the implementation of (1.12). After introducing suitable precondi-
tioners, we investigate the parallel complexity of the resulting algorithm. We
illustrate our theoretical findings with massively time-parallel computations
done in practice.

Chapter 9 ([GvV21])

Deviating from the previous setting, here we construct an adaptive space-time
boundary element method for the heat equation. We consider the heat equation
with homogeneous forcing data and prescribed Dirichlet data: for given initial
condition ug: 2 — R and Dirichletdata up: I x 090 — R, we seek u that solves

Ou — Agu =20 onl x Q,
u=up onl x oS,
u=wug on{0}x .

Since the fundamental solution for the heat equation is known, we can proceed
similarly as in Example 1.1.2 to find an equivalent formulation of the problem
by solving an integral equation on the lateral space-time boundary I x d2, see
e.g. [AN87, Cos90]. In contrast to (1.11), this formulation is coercive.

In this chapter, we propose an a posteriori error estimator for the Galerkin
approximation to this integral equation. We show that the estimator is a lower
bound for the approximation error, and up to weighted L,-terms, also an upper
bound. In the numerical results, we let this error estimator drive an adaptive
loop that allows for anisotropic refinement. We observe that this loop is able
to effectively resolve singularities in time and space, and that it recovers the
optimal error decay rate in all of our examples.
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Part 1

Operator preconditioning
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2 Problems of negative order

2.1 Introduction

This chapter is about the construction of preconditioners for discretized bound-
edly invertible linear operators of negative order using the concept of ‘operator
preconditioning’ ([Hip06]). The idea is to precondition the discretized opera-
tor by a discretized operator of opposite order. This is an appealing idea, but
it turns out that in order to get a uniformly well-conditioned system, as well as
a preconditioner that can be implemented efficiently, the second discretization
has to be carefully chosen dependent on the first one.

For a Hilbert space .7, and a densely embedded reflexive Banach space
W — H, consider the Gelfand triple

W s H o~ — W

For A being a boundedly invertible coercive linear operator %' — #/, and
Y7 C S being a finite dimensional subspace of #”, let (A7v)(?) := (Av)(?)
(v,2 € 7). For B being a boundedly invertible coercive linear operator
W — W', and #7 being a finite dimensional subspace of #/, let (Byw)(w) :=
(Buw)(@) (w, % € #7).

A typical example is given by the case that for the boundary I' of some
domain, # = Ly(T), # = H=(T'), A is the single layer integral operator
arising from the Laplacian, B is the corresponding hypersingular integral
operator, 7 is a partition from an infinite collection of partitions T, #7 is a trial
space of discontinuous piecewise polynomials w.r.t. 7, and #7 is a suitable
subspace of #, which thus cannot be equal to ¥7-. Besides asboundary integral
equations, coercive linear operators of order —1 also appear in various domain
decomposition type methods in the equations for normal fluxes on interfaces.

Although less frequently, coercive linear operators of order —2 also appear
in the literature (e.g. see [FH19]).

In order to precondition Ay : ¥7 — ¥ with By : #7 — W, we need to
be able to ‘identify” ¥ with #7, similar to the identification of #" with 7.
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2. PROBLEMS OF NEGATIVE ORDER

Let dim #7 = dim #7 and

(2.1) inf inf sup M>O.

TEeT0AveYVT 0AweHN T HUHW/ HU}“W

Then Dt defined by (Dyv)(w) := (v,w)z (v € ¥, w € #7) is a uniformly
boundedly invertible linear map ¥7 — #7, and so its ad]omt D’-is such amap
¥ — #7. We conclude that the preconditioned system D~ BT(DT) A7 is
uniformly boundedly invertible ¥ — 77

Equipping 77 and #7 with bases =1 and ¥, respectively, the matrix rep-
resentation of the preconditioned system reads as D" BTD}TAT, with ‘stiff-
ness matrices’ Ay := (A7E7)(E7) and By := (B7U7)(¥7), and ‘generalized
mass matrix’ Dy := (E7, ¥r) . Regardless of the choice of the bases, the
spectral condition number of this matrix is equal to that of D' By (D%}) A,
and thus uniformly bounded.

After an earlier proposal from [Ste02], the currently commonly followed
construction of a suitable pair (¥7, #7) is the one from [BC07]. Here ¥7 is the
space of piecewise constants w.r.t. a partition 7 of a two-dimensional domain
or manifold equipped with the usual basis Z7, and #7, defined as the span
of a collection ¥, is a subspace of the space of continuous piecewise linears
w.r.t. a barycentric refinement of 7 constructed by subdividing each triangle
into 6 subtriangles by connecting its vertices and midpoints with its barycenter.
In [HUT16] the inf-inf-sup condition (2.1) was demonstrated for families of
partitions including locally refined ones that satisfy a certain mildly-grading
condition from [Ste03a].

A problem with the constructions from both [Ste02, BC07] is that the matrix
Dy is not diagonal, so that its inverse has to be approximated. Knowing
that D}lBTD}T is not well-conditioned, because A+ is not whereas their
product is uniformly well-conditioned, the accuracy with which D;' has to
be approximated such that it gives rise to a uniform preconditioner increases
with an increasing (minimal) mesh-size.

2.1.1 Contributions

For the aforementioned ¥+ and Zr, in this chapter a space #7, given as
the span of a collection ¥, will be constructed such that (2.1) is valid, and
Dy = (E7, V7)) is diagonal. ie., Ey and U are biorthogonal. Thanks to
both =7 and ¥ being ‘locally supported’, the corresponding biorthogonal
projector onto #7 is local, which allows to demonstrate the inf-inf-sup stability
without any mildly grading assumption on the partitions.

Each function in ¥ equals a function from the space .7 0 of continu-
ous piecewise linears! w.r.t. 7, plus a linear combination of ‘bubble func-

IThe subscript 0 in the notation eY’T’ o refers to possible boundary conditions that are incor-
porated.
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2.1. Introduction

tions” from a space denoted as %7. Since the decomposition of :5’%% ® BT

into Y%(l) and %7 is stable w.r.t. the #-norm, instead of simply defining
(Brw)(w) = (Bw)(w) (w,w € #7), a suitable boundedly invertible lin-
ear operator By: #7 — W7 will be constructed from an invertible diago-
nal scaling on the bubble space and a boundedly invertible linear operator
B : f%é — (5”%%))’, e.g. (Bf w)(w) := (Bw)(w) with B the hypersingular
operator. Other than in [Ste02, BC07], by this use of the stable decomposition
there is no need to discretize the hypersingular operator on a refinement of 7.
The whole approach relies on existence of bubble functions with certain prop-
erties, whereas these functions themselves do not enter the implementation.

The total cost of the resulting preconditioner is the sum of the cost of the
application of B plus cost that scales linearly in #7. For T being a uniform
refinement of some initial coarse partition, a BY of multi-level type can be
found whose cost scales linearly in #7 ([BPV00]). Such B that also apply on
locally refined partitions will be discussed in Chapter 3.

The construction of the biorthogonal collection W7, and with that of the
preconditioner, is based on a general principle. It applies in any space di-
mension, and, as we will see, it applies equally well when 77 is the space
of continuous piecewise linears. Higher order discretizations will be covered as
well.

The construction applies equally well on manifolds. The coefficients of the
functions from ¥ in terms of functions from 5”%5 and the bubble functions

are given as inner products between functions of 7 and 5”70-%) Since in the
manifold case, however, generally these inner products cannot be evaluated
exactly, we present an alternative slightly modified construction in which the
true Lo-inner productis replaced by a mesh-dependent one by an element-wise
freezing of the Jacobian. It still yields a uniform preconditioner on general,
possibly locally refined partitions, while the same explicit formula for the
expansion coefficients of the functions of U7 that was derived in the domain
case, now also applies in the manifold case.

2.1.2 Notations

In this work, by A < ;1 we will mean that A can be bounded by a multi-
ple of 4, independently of parameters which A and ¢ may depend on, with
the sole exception of the space dimension d, or in the manifold case, on the
parametrization of the manifold that is used to define the finite element spaces
on it. Obviously, A 2 pisdefinedas p S A, and A=< pas A Spand A 2 p.
For normed linear spaces % and %, in this work for convenience over R,
L(%, Z) will denote the space of bounded linear mappings # — 2 endowed
with the operator norm || - ||z #). The subset of invertible operators in
L(¥, Z)withinversesin £(Z, %) will be denoted as Lis(#, &). The condition
numberofa C € Lis(#%, Z)is defined as ko (C) := ||C|| (2, 2)|C 2 (2, 2)-
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2. PROBLEMS OF NEGATIVE ORDER

For & a reflexive Banach space and C' € L(%, %) being coercive, i.e.,

(Cy)(y)

inf 5
oty |yll3,

both C' and R(C):=3(C + C’) are in Lis(#, %) with

1ROz, 2) < NCllew 27,

IC™ e oy < IRC) e o) = (

(Cy)(y)>‘1.

inf 5
o£ye? |yl

The subset of coercive operators in Lis(%,%") is denoted as Lis.(%,%").
If C € Lisc(#,%'), then C~' € Lisc(#', %) and |R(C) Y ga,oy <
IICH%@,@/)H%(C)’lllc(@ﬂ,ay)-

Two countable collections T = (v;); and T = (0;); in a Hilbert space will
be called biorthogonal when (Y, T) = [(v;, ¥;)];; is an invertible diagonal matrix,
and biorthonormal when it is the identity matrix.

2.1.3 Organization

In Sect. 2.2 the general principles of operator preconditioning are recalled. In
Sect. 2.3, itis applied to operators of negative order discretized with discontinu-
ous piecewise constants, first in the domain- and then in the manifold-case. In
Sect. 2.4, the same program is followed for trial spaces of continuous piecewise
linears. In Sect. 2.5 the results from Sect. 2.3-2.4 will be extended to higher
order finite element spaces. This will be done by both applying the operator
preconditioning framework directly to the higher order spaces, and by using
the preconditioner found for the lowest order case in a subspace correction
approach. Finally, in Sect. 2.6 we report on some numerical results obtained
with the new preconditioners, and compare them with those obtained with
the preconditioner from [BC07, HUT16].

2.2 Operator preconditioning

The exposition in this section largely follows [Hip06, Sect. 2] closely. Let
¥, # be reflexive Banach spaces. We will search a ‘preconditioner’ G for
an A € Lis(¥,7’), i.e. an operator G € Lis(¥',?) (whose application is
‘easy’ compared to that of A~'). It is often useful, e.g. for the application
of Conjugate Gradients, when the preconditioner is coercive, i.e., being an
operator in Lis.(¥”, 7). The following result is easily verified.

Proposition 2.2.1. If B € Lis(#', %) and D € Lis(¥V', #"), then
G:=D'B(D) e Lis(V,7),

18



2.2. Operator preconditioning

and

Gl ecr vy <UDz |1 Blleow wry,s

IG Ny S IDNZey wn B Hleows my-

If additionally B € Lis (W, #"), then G € Lis.(¥', V), and

IRG) eer vy S IPNZew wn IRB) Hlcow wy-

Remark 2.2.2. We recall that by an application of the closed range theorem, D €
LV, #")isin Lis(¥,#") if and only if for all w € #  there exists a v € ¥ with
(Dv)(w) # 0, and

~ (Do)(w) o
0< inf sup ————t— (: D , )
0£veY ozwew |[0]lv[lwlw (Lo VRS

In particular we are interested in finding a preconditioner for an operator
A7 € Lis(Y7,V7) of the form G = D7_-1B7—(D’7—)*1, where 77 is some finite
dimensional (finite- or boundary element) space. In view of Proposition 2.2.1,
for that goal we search some finite dimensional space #7 with

2.2) dim #4 = dim ¥,

and operators By € Lis(#7, #7) and Dy € Lis(V7, #7).

A typical setting is that, for some reflexive Banach spaces ¥ and %, and
operators A € Lis.(¥,¥"') and B € Lis.(#,#'), we have ¥ C ¥ (thus
equipped with || ||v), (A7u)(v) := (Au)(v) (u,v € ¥7) and, for a suitable #7 C
W (thus equipped with || || ), take (Brw)(z) := (Bw)(z) (w,z € #7). In this
case At € Lis.(¥r, V}) and By € Lis.(#7, #7) with

VAT 2o vy <Al ey s IRAT) oo,y < IIRA) 29,

IBT | cowrwzy <\ Blleew wys IRBT) ™ oy vy < IRB) e )

An obvious construction of a suitable D is discussed in the next proposition.

Proposition 2.2.3 (Fortin projector ([For77])). For some D € Lis(¥,#"), let
Dy € L(Y7, #7) be defined by (Dyv)(w) := (Dv)(w). Then

D7\l oy < Dy wry-
Assuming (2.2), additionally one has Dy < Lis(¥7,#7) if, and for W being
a Hilbert space, only if there exists a projector Pr € L(W , W) onto W¢ with
(DY7)((Id — Pr)#') = 0, in which case

(2.3) IDF N\ cenr vy SN Prlleow m)ID " leow »)-
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2. PROBLEMS OF NEGATIVE ORDER

Proof. The first statement is obvious. Now let us assume existence of a (Fortin)
projector Pr. Then for vy € ¥7,

C1y- Dur)(w) (Dvr)(Prw)

D Y7L, o lvrlly < sup Dur)(w) = sup —5 "2

|| ||L',(/V “I/)H || Owe Hw”W OSwe Hw”W
(D) (w7)

<||Prllzow,») sup
0Fwr W HwTHW

which together with Remark 2.2.2 and (2.2) shows that D € Lis(¥7, #7), in
particular (2.3).

Conversely (cf. [Bra0l, Remark 4.9]), assume Dy € Lis(¥7,#7), and let
# be a Hilbert space. Then given w € #/, let wy be the first component of the
solution (wr,v7) € #7 x Y7 of the well-posed saddle point problem

(wr,2r)w + (Dror)(27) =(w, 21)w (27 € #7),
(D7ur)(wr) =(Drur)(w) (ur € ¥7).
Then Py := w — w7 is a valid Fortin projector. O

In applications, one usually has a family of spaces ¥ and aims at a uni-
form preconditioner Gr. In the setting of Proposition 2.2.3 it means that one
searches a Fortin projector Py such that || Pr||z(y ¥ is uniformly bounded.
2.21 Implementation

Given a finite collection T = {v} in a linear space, we set the synthesis operator

Fr:R#¥T S spanYT:c—c' Y= Z CyU.
veY

Equipping R#T with the Euclidean scalar product (, ), and identifying (R#Y)’
with R#Y using the corresponding Riesz map, we infer that the adjoint of F,
known as the analysis operator, satisfies

Fy : (spanX)" = R¥Y: f s f(T) == [f(v)]ver-
A collection Y is a basis for its span when Fy € Lis(R*Y,spanT) (and so
Fi € Lis((spanT)’,R#T).)
Now let 27 = {{} and U7 = {¢} be bases for ¥7 and #7, respectively.
Then in coordinates the preconditioned system reads as
nglGTAT]:ET =GrAT = D;—lBTD;—TAT,
where

A7 :=TFz, ArFz,, Br:=Fy, BrFu,, Dr:=7Fy DrFz,.
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2.3. Piecewise constant discretization space

By identifying amap in £L(R#=7, R#*=T) with a #Z1 x #Z1 matrix by equip-
ping R#=7 with the canonical basis {e;}, and by enumerating the elements of
Z7 one has

(A7)ij = (F&, AT F=rej,e) = (ArF=,e;)(Ferei) = (AT€;) (&),
and similarly,

(B7)ij = (Br;) (i),  (D71)ij = (D7) (i)

Preferably D7 is such that its inverse can be applied in linear complexity, as is
the case when D is diagonal.

Remark 2.2.4. Using o( ) and p( ) to denote the spectrum and spectral radius
of an operator, clearly o(G1rA7) = o(G7A7). So for the spectral condition
number we have

rks(GTAT) == p(GTAT)p((GTAT)™") < Ky 9 (GT AT),

which thus holds true independently of the choice of the basis = for 7.
Furthermore, in view of an application of Conjugate Gradients, if A7 and
B are coercive and self-adjoint, then A7 and G1 are positive definite and
symmetric. Equipping R 77 with ||| := [[(G7) ™= - || or |- := [|(A7)2 - ||,
in that case we have

figaim 7 ) Reim o ) (GTAT) = his(GT AT).

2.3 Piecewise constant discretization space

For abounded polytopal domain 2 C R?, a measurable, closed, possibly empty
v C 092, and an s € [0, 1], we take

W= [La(Q), Hy ,(V)]s2, V=W,

where Hj () is the closure in H'(Q) of the C>(Q) N H'(Q) functions that
vanish at 7.2 The role of D € Lis(¥,#”) in Proposition 2.2.3 is going to be
played by the unique extension to #" x #  of the duality pairing

(Dv)(w) 1= (v, W) L,()>

which satisfies | D||z¢y ) = D" zowr,v) = 1.

Let (7)7et be a family of conforming partitions of § into (open) uniformly
shape reqular d-simplices, where we assume that + is the (possibly empty) union
of (d — 1)-faces of T' € 7. Thanks to the conformity and the uniform shape

%In the domain case, it is easy to generalize the results to Sobolev spaces with smoothness
1

index s € [0, %), orevento s € (75,% .
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2. PROBLEMS OF NEGATIVE ORDER

regularity, for d > 1 we know that neighbouring T, 7" € T, i.e. T NT" # 0,
have uniformly comparable sizes. For d = 1, we impose this uniform ‘K -mesh
property’ explicitly.?

For T € T, we define N as the set of vertices of 7 that are not on v, and
for v € N§ we set its valence

dr, =#{T € T:veT}

ForT € T,and with Nr denoting the set of its vertices, we set N%T = Ng-ﬂNT,
and define hy = |T|Y/.
We take

Vo =S = {ue Ly(Q): ulr Py (T €T} CV,

and, as a first ingredient in the forthcoming construction of a suitable #7,
define the space of continuous piecewise linears, zero on v, by

FPo={ueH} (Q): ulp € P (T eT)}
equipped with the usual bases
(2.4) Er={&:TeT}, Or={¢7,:veN}}
respectively, defined by

1 onT,
(2.5) §r = { 0 on® \ T, ¢T,V(Vl) = 61/,1/’ (Vv s N’?’)

2.3.1 Construction of #7 and D7.

Aiming at the construction of a (uniform) preconditioner G € Lis.(¥7, ¥7)
using the framework of operator preconditioning, we are going to construct
a collection W C Hgy () that is biorthogonal to Z7, whose elements are
‘locally supported’, and for which

W =spanVWr CH

has an “approximation property’. These three properties of ¥+ will allow us
to construct a suitable Fortin projector, and they will give rise to a matrix D7
that is diagonal.

The construction of ¥ builds on two collections ©1 and X7 of ‘locally
supported’ functions in Hy ., (€2) whose cardinalities are equal to that of =7,

3For our convenience, throughout this chapter we consider trial spaces w.r.t. conforming
partitions into uniformly shape regular d-simplices. It will however become clear that families
of non-conforming partitions into uniformly shape regular d-simplices or hyperrectangles that
satisfy a uniform K-mesh property can be dealt with as well.
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2.3. Piecewise constant discretization space

the first being biorthogonal to =7, and the second whose span has an “approx-
imation property’ and is inside Ygé
Let ©7 = {07: T € T} C Hj (Q) be such that 67 > 0, suppbr C T,

(2.6) (07, &1) Lo = o1 07| Loy 67 I Lo (02), (T, T €T,

and, for convenience only, that is scaled such that

(2.7) (O, é7) o) = |T).

One obvious possible construction of such ©7 is to take 67 to be the ‘bubble
function’ defined by 0 (z) = w Hf:ll Ai(z) for x € T, and zero elsewhere,
where (A1(x),--- , Agy1(x)) are the barycentric coordinates of « w.r.t. T (see
e.g. [V518] for (2.7)). Two forthcoming (harmless) conditions (2.26) and (2.27)
on O will be satisfied as well by the above specification of 6r.

Another, equally suited construction is, after making a uniform barycentric
refinement of 7, to take O as a the continuous piecewise linear hat function
associated to the barycenter of 7', multiplied by a factor d + 1.

We emphasize that the resulting preconditioner will not depend on the
actual construction of O, but that only existence of a collection with the afore-
mentioned properties is relevant.

Defining X7 ={orr: T €T} C yg(l) by

. -1
O'T,T = Z d7‘7u¢7-7y7

veNS .

we have

Y orr= > ¢ruw

TeT IJEN%’—

being equal to the constant function 1 on @\ Uyrer. 71, ﬂ)}f which yields
the aforementioned “approximation property’ (cf. footnote 4).
We now define

Uy = {¢rr: T €T} C S @ spanOr,
by

(L —o7,7,87) 100 op — Z (or1,817) La(0) 0
(O7,67) Lo () (077, &) Lo ()

28) Yrr=o0orr+

’y

T'eT\{T}

The third term at the right-hand side corrects o7 1 such that it becomes or-
thogonal to {7+ for T # T, whereas the second term ensures that the 1
sum up to 1, possibly except on a strip along the Dirichlet boundary:
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2. PROBLEMS OF NEGATIVE ORDER

Lemma 2.3.1. It holds that

(2.9) Z Yo = Z orr+ Z — Y e OT, 1 6T) Lo(0) o,

TET TET TET (Or,87) 12()

and
(2.10) (E7,V7) L) = dlag{(1,ér) ) T € T

Proof. Writing 1 — o071 = Y giem 1y oT,1 + (1 = YXoqver o7.17), (2.9) follows
from (2.8) by using that

DS wg Y Y Wgﬂfwg/_o
TeT T'eT\{T} (Or, &r) s TET T'eT\{T} (07, &) 1a(0)

The biorthonormality of 27 and {07/(07,{r)1,o): T € T} shows (2.10). O

By expanding o in terms of the nodal basis, and by using [ ¢7, dz =

d@ and the normalization (2.7), we arrive at the explicit expression
2.11)

,7 -1 1 -1 1 -1
brri= ) dr,oret (- gr ) drl)0r— ) (@ ). dr.)er

VEN/(;—_’T VENE}’T T'eT\{T} L/ENE}’TON;{‘T,
see Figure 2.1 for an illustration.

2

N\ SN
/ \
QT// K \ Or /, \‘OT’
P / \ 1
v \ . N

Yr,T

\
\
oT,T "

FiGUREe 2.1. ¢ p in one dimension (with bubbles constructed using a barycen-
tric refinement).

Asaconsequence of (Z7, ¥'r) 1, (o) being invertible, the biorthogonal ‘Fortin’

projector Py : Ly(Q) — Hj () with ran Pr = #7 and ran(Ild — Pr) =
”1/7} £2(% exists, and is, thanks to (2.10), given by

Pru = Z M¢7T

i (Léne
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2.3. Piecewise constant discretization space

To prepare for the proof of (uniform) boundedness of Pr, we list a few

properties of the collections =7, O and 7. For T € T, we set w(o)( T):=T,
and for i =0, 1, ..., define the ‘rings’

R = {T" e T T nwP (1) £ 0}, wi (1) = Uy o ) T
It holds that
(212) (a) supp&r CwiP(T), (b) supporr CwiP (1), () supp by C (1),
@13)  orlmmo ShE*™" (ke {0,1}),
(2.14) ||9THH1(Q) < ho' 107l L)
whilst moreover =7 is such that
215) (L&) 1,i0) = Wy Pl L)

From (2.12)(b,c), we obtain that

(2.16) supp 1,7 C w(Tl)(T).

By using (2.6), (2.14), (2.13) and (2.12)(a) we infer that for k € {0, 1}

(o — 0L, 81 ) Ly _ d/2—k
H 2 )GT’ H S/ th||UT,T_5TT’1||L2(supp£T/) S hT/2 )

(077,617 ) Lo () HF(Q)

which, by again using (2.13) and (2.14), shows that

(2.17) b7zl ey S hY 2 (k€ {0,1}).

Theorem 2.3.2. It holds that supyct | Prllzop w) < oo.

Proof. From (2.16), (2.17), and (2.15), we have

lull Loy 1677 | Lo ()
(1, &) Ly (o)l

| Prull gery < Z V7,7 || 1% ()
T'eRYP(T)

(2-18) S h;k“u||L2(w§})(T)) (k € {Oa 1]’);
which in particular shows that

(2.19) sup || Prl (2, (9),5 () < oo
TET

To continue, we revisit the construction of #7 and its basis W7 by tem-
porarily including in N also vertices of 7 that lie on the Dirichlet boundary
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2. PROBLEMS OF NEGATIVE ORDER

7. Denoting the extended set of vertices by N1, consequently for the ‘new’
Y11, (2.9) shows that

(2.20) > dbrr= Y ér,=1onQ

TeT vENT

For any v € Ny, weselecta (d — 1)-faceeofaT € T withv € eand e C
if v € 7, and define the functional

g7 p(u) == ][uds.

By the trace theorem and homogeneity arguments (see e.g [SZ90, (3.6)]), one
infers that

-1 -5 —g+1
lg7 0 (W] < el ullL, e) S by ® lullpy ey + Ry ® " lulm ().
For T € T,we selecta v € Ny withv € vif T N~ # ), and define
97,17 ‘= 9T )

and a Scott-Zhang ([SZ90]) type quasi-interpolator Il : H'(Q2) — #74 by

Oru= Y grr(uirr.

TeT

It satisfies
||HTU||Hk(T) 5 h;kHuHLz(wg?)(T)) + h%:klu|Hl(w(T2)(T)) (k € {Oa 1})
Invoking (2.20) and using that g7 (1) = 1, we infer that for & € {0,1}

|(Id — O )ull gery = inf ||(Id — TI7)(u — p)[| g1y
pEPo

IN

. —k 1—k
pl€n7£o ||U - pHH’C(T)+hT ||U - p||L2(w(72)(T))+hT |U|H1(UJ,(7?)(T))

(2.21)

2

. —k 1-k

pl€H7£0 hT Hu - pHLg(w%g)(T)) + hT |u|H1(w$)(T))
_ —k

~ hr*lul g o o))

by an application of the Bramble-Hilbert lemma (cf. [SZ90, (4.2)]).

Noting that the ‘new’ o7 r differs only from the ‘old’, original one when
T N~ # (), and that for those T and u € H; () it holds that g7 r(u) = 0, we
conclude that ran IT| HY (@) is included in the original space #7, which we

4The existence of such a IT7 which satisfies an estimate of type (2.21) for k = 0 can be used
as a definition of a (lowest order) approximation property of #7.
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2.3. Piecewise constant discretization space

consider again from here on. Using that Py is a projector onto this #7, for
u € H&W(Q) writing Pru = II7u + Pr(Id — II7)u, using (2.18) and (2.21) for
k € {0,1} we arrive at

|Prullircry S ITrullmry + bt |0 = T ull, o

5 HUHHl(wg)(T))
5 Hu”Hl(w%'f)(T))a
and consequently,

;‘%I% ||PT||L(H3W(Q),H&W(Q))) < oo.

In combination with (2.19), the proof is completed by an application of the
Riesz-Thorin interpolation theorem. O

From Proposition 2.2.3 and Theorem 2.3.2 we conclude the following;:

Corollary 2.3.3. For Dy: V7 — W defined by (D7v)(w) := (Dv)(w) = (v, w) 1,(q),
it holds that D € Lis(V7, 7/7/—) with HDTHL(‘I/T,W{—) < land SUDT¢cT ||D7_—1 HC(W’ ) <
suprer [|1Prlleows w) < 00

This resultis thus valid without any additional assumptions on the mesh grading.
The latter is a consequence of the fact that we were able to equip ¥ and #7
with local biorthogonal bases. (Compare [Ste03a, eq. (2.30)] for conditions on

the mesh grading without having local biorthogonal bases). Additionally, the
biorthogonality has the important advantage of the matrix

Dy = <E7‘, \I’T>L2(Q) = d1ag{|T| T e T}

being diagonal.

Before we discuss in §2.3.3 the construction of By € Lis.(#7, #7), being
the last ingredient of our preconditioner, in the following subsection §2.3.2 we
revisit the construction of #7 and D+ in the manifold case.

2.3.2 Construction of #7 and D7 in the manifold case

Let T be a compact d-dimensional Lipschitz, piecewise smooth manifold in R%
for some d’ > d with or without boundary OI'. For some closed measurable
v C Il and s € [0, 1], let

W= [Lo(D), Hy ,(D)]s2, V=W

We assume that I is given as the essentially disjoint union of UY_, ;(€2;), with,
for1 <i<p, xi: R* = R being some smooth regular parametrization, and
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2. PROBLEMS OF NEGATIVE ORDER

Q; C R? an open polytope. W.l.o.g. assuming that for i # j, Q; N Q; = 0, we
define
x: Q= UleQi — Uﬁj:lxi(Qi) by X

Q; = Xi-

Let T be a family of conforming partitions 7 of I" into “panels’ such that,
for1 <i<p x Y T)Nisa uniformly shape regular conforming partition
of §2; into d-simplices (that for d = 1 satisfies a uniform K-mesh property). We
assume that v is a (possibly empty) union of ‘faces” of T' € T (i.e., sets of type
xi(e), where e is a (d — 1)-dimensional face of x; *(T)).

Asin Sect. 2.3, for T € T, we define Ng- as the set of vertices of 7 that are
noton v, setdr, = #{T € T:v € T}, and for T € T, define hr := |T|'/4
and N%T := N% N N, with Ny being the set of the vertices of 7.

We set

Vr =S50 = {u€ Lay(T): wo x|y-1(r) €Po (T €T)}C Y,
5@9’75 = {u S H&,Y(F)I u o X|x*1(T) € Py (T S T)},
equipped with 27 = {&{r: T € T} and &7 = {¢7,: v € N}, respectively,
defined by {7 := 1 on T, {1 := 0 elsewhere, and ¢7, (V') = 0,/ (v,V' € N%).
Furthermore, we define X7 = {orr: T € T} C Yﬁb and O = {0r: T €
T} - Holﬂ(F) by oT, T ‘= ZVENQ—T d;—}yqu,l,, 9T = HX—1(T) o X_l on T and
O := 0 elsewhere. Thanks to our assumption of 6,17y > 0, it holds that
(01, 61) Lo(r) = (Ox—1(7)5 Ex-1(1)) La(x-2(1)) = 107 o () 1€ | 22 (1) (cE. (2.6)).
Now defining ¥ := {¢p7r: T € T} and #7 :=span U1 C # by
1- /
(L—orr,ér),m) o — Z (o7,1:&17) Ly(T) O,

222 =orrt
(222) Y=o (07, €1) La(r) (077, €17) La(r)

T ET\{T}

and D7: Y7 — Wi by (Dyv)(w) = (Dv)(w) = (v,w)r,r), the analysis
from Sect. 2.3 applies verbatim by only changing (, ).,) into (, )r,q). It
yields that ||DT||£("1/T,'W’) < 1, supyer ||D77—1H£(7y7/_77/T) < oo, and Dy =
diag{(1,&r)r,r): T € T}

A hidden problem, however, is that the computation of D, and that of
the scalar products in (2.22) involve integrals over I' that generally have to
be approximated using numerical quadrature. Recalling that, for s > 0, the
preconditioner Gy = D' BTD;—T is not a uniformly well-conditioned matrix,
it is a priorily not clear which quadrature errors are allowable, in particular
when 7 is far from being quasi-uniform. For this reason, in the following
§2.3.2 we propose a slightly modified construction of #7 and D that does
not require the evaluation of integrals over I'.

Asa preparation, in the following lemma we present a non-standard inverse
inequality on the family (¥7)7et. Proofs of this inequality for d < 3 can be
found in [DFG*04, GHS05]. It turns out that our construction of a ‘local’
collection U+ C Hj () that is biorthogonal to Z7 allows for a very simple
proof.
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2.3. Piecewise constant discretization space

Lemma 2.3.4 (inverse inequality). With hy|pr := hy, it holds that
IhrorllLaw) S lorlle @)y (o1 € 7).

Proof. For Py : Ly(T') — H; ., (T') defined by

Pru= Y Wi,

oy (L&r),my

we have ran(Id — Py) = ”//TLL“’(F) , and as follows from (2.18),

1Prull ) S Ih7 ullrymy  (u € La(T)).

The proof is completed by

||1)7‘|| 1 = sup <UT’ w>L2(F) <UTv PTh%’UT>L2(1") > <h7’v7’, hTUT>L2(1")
1o o pveny o Ty = TPrgorlmey > Throriic,e

O

Modified construction for manifolds

Given 7 € T, on Ly(I') we define an additional, ‘mesh-dependent’ scalar
product

|T‘ /
U, V)T 1= —_— u(x(x))v(x(x))dz.
oy = 32 iy [ gy WD)
It is constructed from

(109} oy = /Q u(x(@))o(x(2))|x ()| dz

by replacing on each y~!(7T'), the Jacobian |dx| by its average % over

-1
x (1)
We now redefine Uy := {¢rr: T € T}, W7 :=span ¥ C # by

(1- UT,T7§T>T9T . <UT,T7§T’>T9T/7

Yrri=orrd (O, &) T O, 1) T

T eT\{T}

and Dr: Y7 — W7 by (Drvr)(wr) := (vr,wr)7. Then, as in the domain
case, we get the explicit formulas

Dy = E7r,Yy)r =diag{(1,&r)7: T € T} = diag{|T|: T € T},

|T|
[x= ()]
to |0x| on Lo (x~(T))-distance < by —1 7y, for example |9x(z)| for some z € x~Y(T). Then in

5Tt will be clear from the following that

can be read as any constant approximation

the following, the volumes |T| in the expression for D7 should be read as |x ! (T")||0x ()|, with
which also the computation of |T'| is avoided.
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2. PROBLEMS OF NEGATIVE ORDER

and
(2.23)

'(/JT,T = Zd;’}y(bT,u + (1 - ﬁ Z d;’lu)eT o Z (ﬁ Z d;xll’)eT/'

veENY 1 veNY . T'eT\{T} veNg ;NN .,

thus with coefficients that are independent of .

What remains is to prove the uniform boundedness of || D7 ||z (4, #;), and
that of | D' c(w,vr)- Because of the definition of D7 in terms of the mesh-
dependent scalar product, for doing so we cannot simply rely on the ‘Fortin
criterion’ from Proposition 2.2.3.

Lemma 2.3.5. It holds that suprcr || D7 || (97 wy) < 0.

Proof. If s = 0, i.e,, when # = Lyo(T') ~ Lo(T')’ = ¥, then the uniform
boundedness of || D7 || z(y;, ;) follows directly from (-,-)7 = || - ||i2m.

By an interpolation argument, in the following it suffices to consider the
case s = 1,i.e, # = Hy_(T')and ¥ = H; ,(T')’. By definition of (, )7, it holds
that

(2.24) (v, u)r — (v, W, | S hrollmllull,e (v, € Lao(T)).
By writing (Drur)(wr) = (vr,wr)p,r) + (v, wr)7T — (v, WT)Ly(1), the
uniform boundedness of || D || c(vr,wy (for s = 1) now follows by combining

(2.24) and Lemma 2.3 .4. O

The (, )7-biorthogonal projector Pr : Ly () — Hj ., (€2) with ran Pr =%
and ran(Id—Pr) = "//7-L<’>T existsand is given by Pru = >rer T Hu, &) 97 7.

Since (, )7 gives rise to a norm that is uniformly equivalent to || ||z, r), the
proof of Theorem 2.3.2 again applies, and shows that

s IPTlle(za(r).Lary) < 00, Sup 1Prll ey r),my ) < 00,

as well as
(2.25) 1Prull ey S h7 ull oy (u € Lo(T)).

These properties of Pr will be the key to prove the uniform boundedness
of | D' | c(wz v7)- Indeed, for s = 0 uniform boundedness of | D! ey
follows from

(Drvr)(Pror) = (vr, o) = o7 lli,m 2 107 Lo 1Pror |l L)
To conclude, by an interpolation argument, uniform boundedness of | D! | L7y

for any s € [0, 1], it is sufficient to verify the case s = 1, which will be done
using the following modified inverse inequality.
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2.3. Piecewise constant discretization space

Lemma 2.3.6. It holds that

T, W)T
Ihrorloam S sup TUT ey,
0FweH  (T) l[wllm ()

Proof. Similar to proof of Lemma 2.3.4, using (2.25) for v € ¥7 we estimate

sup (o7, w)r (o, Prhior)T _ (hrvr, hror)T

> = Z ~ [[hrvr |l L, @)- O
orwerty @ 0llm@ = 1 Brizorilme, ™ Throrlm a

Corollary 2.3.7. It holds that

_ (v, wr)T
||UT||H§ (ry ~ Sup
¥ o#wrewyr Wl e ()

(vr € 77),

(with “<’ being the statement sup-ct ||D7i1 HL(W},“VT) < oo for s =1).

Proof. The inequality ‘>’ is the statement of Lemma 2.3.5 for s = 1.
To prove the other direction, for v € Ly(T"), (2.24) shows that

<U7w>T
”UHH&W(F)/ - sup T

< 7ol L),
orwery .ty wllm ) 20

Taking v = vy € #7, from Lemma 2.3.6 we conclude that

< (v, w)r _ (v, Prw)T
lorlm oy S sup o= = sup S
' 0£weHE (T) ||w\|H1(F) 0£weH} (T ||wHH1(F)
- (v, wr)T (vr,wr)T
<Pl oymy @y SUp g S sup g

ozwrer Wl )y ~ ozwrews lWTllm (D)

by suprer |1 Prllecm ry.my (ry) < 00 O

2.3.3 Construction of By € Lis.(#7, #7).

Having established sup;ct max (HDTHL(V/T}W%% | D! ||£(W7/':7/7’)) < oo, inboth
domain and manifold case, for the construction of uniform preconditioners it
remains to find By € Lis.(#7,#7) with suprer || Bl ey wg) < oo and

SUPTeT ||§R(BT)_1H£(W7L7WT) < 0.
We add the following two assumptions on the collection ©7 of ‘bubbles’
and their span %7 := span O7. For k € {0, 1} it holds that

226) || Y erbrliny = > b FlerPllorll7, ) ((er)rer CR),
TeT TeT
(2.27) o+l 0y 2 ullZng) + I0l3nq)  (u€ S50, v e Zr).
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2. PROBLEMS OF NEGATIVE ORDER

(Here and in the following, Q2 should be read as I' in the manifold case).
Both properties are easily verified by a standard homogeneity argument for
both our earlier specifications of possible ©1. From (2.27) it follows that
S7o N B = {0}. Let I7 be the linear projector defined on .#%! & %7 by
ranIf = 7 and ran I = %7, where IZ :=1d — I7.

Below we give a construction of suitable By that is independent of the
particular bubbles O being chosen. Like #7, we equip 5”%5, By, and

SP6® By with || |-
Proposition 2.3.8. Given B € £isc(<5”70-”é, (Yﬁé)’) and BZ € Lis.(B7, B}),
let BY % 700 & By — (S50 ® Br)' be defined by

(B ®#w)(@):=(BF IF w)(If ©) + (B IFw)(IF @).

Then thanks to (2.27), one has B % ¢ Eisc(y%é ® B, (5”%5 ® Br)), and

|‘§R(B7‘?®%)71H/;((y%g@g&—)/,y%}]ea&%—)
< 2max(|\§R(B‘72))71||£((y¥,})),,y%h), ||m(B7g’3)71 H[:(.%’T,%T)%
HBf@ggH[;(y%})ea@%(tsﬂgvy}]@@ﬂ/) S maX(llB?ﬂ||c(yg1g,(yg,g)f)» ||B7%“£(@T»<@% )-
Proof. One has
(B *Fw)w)| 2min(IRBF) 7 0 oty IREBA) iy 7))
x ([1F w3y + 11Fwlly ),
and

|(BF ©%w)(w)| <max([|BF |01

x 12wl + 112wl /I 013, + |12l

B
700y BT |l e(87,1))

From the triangle inequality and (2.27), one has |w|2, < |I£w|? +
[IZw|?, < ||lw||2,, which completes the proof.

By equipping #7, Y%(l) and %7 by V1, &7, and O, respectively, the appli-
cations of I | 4, and I |, can easily determined in linear complexity. There-
fore a suitable definition of By: #7 — #7 is givenby (Brw)(w) ::(Bf@ggw) ().
Clearly,

S DB
IBT | cowwyy < |1BF© le(s210my (701 @mr)):

- SoB\ -1
IR(BT) ™ N eowz wry < IR(BEE7) leqoeiomry, 22t 0m,):
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2.3. Piecewise constant discretization space

An obvious choice for B¥ € Lis (%7, (%)) such that

max(;lg; ||B70“§H[;(@T,@'T), ||%(B§é)_1||£(38’7,%r)) < 00,

.. . 26) (or, 2.7 _
is, in view of (2.26) and || L,) ~ ‘e D T|jer| Lo = w2,

e Ly ()
given by
(2.28) (B> erbr)( > dror) =8> hi *erdr.
TeT TeT TeT

for some constant £.
Possible choices for BY € Lis.(.#7q, (/45)") with
ilg (IIB?”||[;(yg;g,<.¢gzgy)v ||3?(B’5rp)71||z:((.¢$’,t)/,5ﬂ%)) <%0
include (B u)(v) := (Bu)(v) (u,v € .#3¢) for some B € Lis.(#, #").

For d € {2.3} and # = Hg,(T) == [La(T), H}(I)]; ,, for this B one may
take the hypersingular integral operator, whereas for OI' # ), and # =
Hz(T) = [Ly(T), H 1(11)]%72 the recently introduced modified hypersingular
integral operator can be applied (see [HJHUT18]). (Note that H}(I') = H'(T")
when aT" = (.)

For a family of quasi-uniform partitions generated by a repeated applica-
tion of uniform refinements starting from some given initial partition, a compu-
tationally attractive alternative choice for B¥ is provided by the multi-level
operator from [BPV00], whose application can be performed in linear complex-
ity. In Chapter 3, such operators will be discussed that also apply on locally
refined meshes.

For W = H&W(Q), i.e.,, when A is an operator of order —2 (cf. [FH19]), one
obviously takes (B u)(v) = [, Vu - Vvdz, or (B u)(v) = [, Vu- Vvdz +
Jo uvdz when meas(y) = 0, whose application can be performed in linear
complexity.

2.3.4 Implementation

For both the domain case and the construction in the manifold case in §2.3.2,
the matrix representation G = nglGT(Fé )" of our preconditioner G
reads as G = D}IBTD;-—r with

Dy = diag{|T|: T € T},
and
By :=Fy,BrFu,
Ry (oY BEIE by + (1) B2 ) o

= prBY pr +arBfar,
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2. PROBLEMS OF NEGATIVE ORDER

where
BY = Fy,Bf For, pr=Foll¥ |y Fur,
BY =74, BfFo,, qr:=F5 Iy Fu,.

By substituting the definition of BZ from (2.28), the definition of the basis
U = {¢7.1}reT fOr #7 from (2.11) and (2.23), and that of the bases &1 =

{d70} e no and O = {01 }reT for Yﬁb and %, respectively, we find that

RPN .-T B d}}y if v e Ny 1,
= /BDT I (pT)l/T - { O lfl/ € N/9*7T,

(qr)rr =0rr — 25 Y a7,

0 0
”ENT,TQNT,T/

whereas B depends on BY € L‘isp(YT 0r (L7 0,1 o)") being chosen. The cost of

the application of G is the cost of the apphcatlon of B plus cost that scales
linearly in #7.

2.4 Continuous piecewise linear discretization space

Letabounded polytopaldomain 2 C R%, v C 99, s € [0, 1] W = [Ly(2), Hy ,(Q)]s,2,
Vi=w',DeLis(V, W), (T)rer, NT/ dr ., Ny, and NT o beallasin Sect. 2.3.
In addition, for 7 € T let N7 be the set of all vertices of T, so including those
on a possibly non-empty v, and for v € N7 let wr(v) := Usrer: ven T
We take

Vo= i={uc HY(Q):ulr e PL (T €T} C ¥,
and, as in Sect. 2.3,
Sy ={ue H) (Q):ulr € PL(T €T)},

equipped with nodal bases Er = {¢{7,,: v € Ny} and &7 = {¢7,: v € NV},
respectively, defined by

gT,V(VI) - 611,1/’ (V7 V/ S NT)7

and ¢7, = &7, forv e NY.

Analogously to the case of discontinuous piecewise constant trial spaces
in ¥ studied in Sect. 2.3, using the framework of operator preconditioning
outlined in Sect. 2.2 we are going to construct a family of preconditioners G €
Lisc(77, V) of type D}lBT(D’T)_1 with uniformly bounded ||G7—||£(«,/+,«,/T)
and [|R(G7) " | vy v)-

The roles played in Sect. 2.3 by |T| (= |supp ¢7|) and by = |T'|*/¢, are in this
section going to be played by |wr(v)| (= |supp&7,.]) and by, == |oJT( )|
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2.4. Continuous piecewise linear discretization space

24.1 Construction of 77 and Dt

To construct a collection U = {7 ,: v € Ny} C H; () thatis biorthogonal
to =7, consists of locally supported functions, and for which

Wi =spanVr C W

has an ‘approximation property’, as in Sect. 2.3 we need two collections
X7 C Y%é and ©7 C Hj_,(Q) of locally supported functions with #X7 =
#0O7 = #=7, where ©7 is biorthogonal to =7, and ¥+ has an ‘approximation
property’.

We define ©7 = {o7,: v € N7} by o7, := ¢7, when v € NI, and
o7,y = 0 when v € Ny \ NY. Then, obviously, }_, . N, 0T, equals 1 on
Q \ U{TET: Tﬂv#@}T'

For constructing ©, on a reference d-simplex 7" for ¢ > 0 we consider a
smooth 1. € [0,1], symmetric in the barycentric coordinates, with 7.(z) = 0
when d(z,8T) < ¢, and n.(z) = 1 when d(x,dT) > 2. Then for some fixed
€ > 0 small enough, it holds that

(P:me@) 1, (1)

inf sup
0£peP1(T) 02 Py (T) ||p|‘L2(T) ||ﬂsQ|‘L2(T)

>0,

meaning that the biorthogonal projector P. € £(Ls(T), Lo(T)) with ran P.
neP1(T) and ran(Id — P.) = Py (1) 2™ exists. Consequently, with @
{¢4,: v € N;} being the nodal basis for P, (T), we have that

{070, v € Np}i= (07, @7) ! o Py C Hy(T)

is Ly(T")-biorthonormal to {¢4,:v e N}
Now for T € T, let Fpp T — T be an affine bijection. Then {gzNST,E’,,: v e
Nr} defined by
(2.29) bre, = Llg.
Te.v IT[¥T.e,Fz 1 (v)

is Lo (T)-biorthonormal to the nodal basis for P; (T').
By selecting for v € N1, a T'(v) € T with v € Np, and defining ©7 =
{07, v e Nr}y C Hy () by
GT,U = |wT(V)|(£T(l/),E,V?
where the specific scaling is chosen for convenience, we have for v, v/ € N,
5uu/|wT(V)| = <9T,u7 57-,1/’>L2(Q) ~ 51/1/ ||9T,U||L2(Q)H£T,l// HLQ(Q)?

(2.30) _ “
supp 1, CT(v), |07 lmr (@) S hy 1070l L),
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2. PROBLEMS OF NEGATIVE ORDER

i.e., properties analogous to (2.6), (2.12)(c), and (2.14).
Since furthermore ¥7 and =7 satisfy properties analogous to (2.12)(a,b),
(2.13) and (2.15), defining similarly to (2.8)

(2.31)
e e I R O oo o
’ ’ v'eENT\{v}
i v e Nr\ N2,
07w+ @@ty — O @ity v € Ny,

v'ENT\{v}

weinferthat ) .y 17, equals 1 possibly except onastrip along the Dirichlet
boundary, and similarly to Theorem 2.3.2, that the biorthogonal projector

232) I

Jon (L&)

satisfies suprc1 ||Prlcow,w) < oo. With (Drv)(w) = (Dv)(w) ((v,w) €
Y+ X #7), we have HDT”L(”VT,W{—) <1land SUpreT ||D7_‘1||L(W+,WT) < 00, and

Dy = Fy DrFe, =diag{(1,{7 )1, v € N7} = dlag{d+1 lwr(W)|: v e NT}.

2.4.2 Construction of By € Lis.(#7, /7).
Since O additionally satisfies, for k € {0, 1},

1> cuﬁTyHHk(Q) > h 0Tl lenls

veENT vENT

(2.30) _ 1
where (|07, L,0) = lwr W)L, ) = lwr()]2, and
0,1 .
lu+ ol Fey 2 ullFm) + [0llFe @) (u € S70, v € Br = spanO7).

(cf. (2.26)-(2.27)), we construct By analogously as in §2.3.3: Assuming that we
havea BY € Eisc(f%é, (,54?%)) ) available with sup 1 || B Hﬁ(yo L (r2ly) <

oo and supy¢t H%(Bf)*lﬂﬁ((y,gl) g01y < 00, for some constant 5 > 0 we
“ ,07 0 ,0

take
(B;J’g Z CVGTV Z d HTV —ﬁ Z |w7_ 77501/ ua
vENT vENT vENT
and
Br = ( 7 )/BT 7 + (17@‘7”7)/37@]7@‘7/77
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2.4. Continuous piecewise linear discretization space

where I/ is the linear projector defined on .y & %7 by ran I = .7 and

ran I = By, where I := 1d — I . Then one has supyct || Br || cow y) < 00
and suprer [|R(B7) "l eong,wr) < o0
Substituting the definition of 7 ,, one infers that G = D}lBTD}T,
where
Br =prB7 pr+arBfar.

and
6 !
e v € Ny \ N,
(ar)vw = { @@ veNp v =v.  Bf i=TFy Bf Fo,
lwr (V) Nwr ()] 0
—@@rerwy Y ENT Y #F v,

(pT)u’u =0y (V/ € N'(7)’a vE NT)7 B7@ = diag{ﬁ‘wT(V”li%s: ve NT}

2.4.3 Manifold case.

From Sect. 2.3.2 recall the definitions of T', v, #/, ¥, x: @ — UY_, x:(;), and
that of the family of conforming partitions T of I".

As in the domain case discussed in Sect. 2.4.1, for 7 € T let N be the set
of vertices of T, and Ng- its subset of vertices not on «, for T' € T let Nt be the
vertices of T, Ny := N N Ny, and for v € Ny let wr(v) := Ugrer: vensyT-

We take

V= Yﬁ’l ={ue H'T): uox|y-1r) EPL(TET)}CV,
Sy = {u e Hy (D) wo x|y € PL(T €T},

equipped with nodal bases 5 = {¢{7,,: v € Ny} and &7 = {¢7,: v € NI},
respectively, defined by

gT,V(V/) = 51/,1/’ (V7 Ve NT)7

and ¢7, = &7, forv € NY.

Actually exclusively for the deriving an inverse inequality analogous to
Lemma 2.3.4, first we construct a collection U7 = {¢)1,: v € Ny} C Holﬁ(f‘)
that has an “approximation property” and that is biorthogonal to 1 w.r.t. the
true Lo(I')-scalar product: We define X7 = {07 ,: v € Ny} by o7, = o1,
whenv € N%, and o7, := 0whenv € N7\ N¥. Then, obviously, > vens, OT v
equals 1 onI'\ Ugrer, 7, 203 1

Given a d-simplex T' C R, by means of an affine bijection we transport the
function 7, defined in Sect. 2.3.2 on a reference d-simplex T, to a function on
T and denote it by 1y .. Then for any panel T € T € T, for some ¢ > 0 small
enough it holds that

(pox™, (nreq) o X M) yem

inf sup — — >0
0#£pEP1L(Xx"1(T)) 02qe Py (x— (1)) 1P © X Loy | (17,@) © XMl Lo (1)
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2. PROBLEMS OF NEGATIVE ORDER

Moreover, since the panels T' get increasingly flat when diam 7T — 0, there
exists an € > 0 such that above inf-sup condition is satisfied uniformly over all
TeTeT.

By selecting for each v € Ny a T'(v) € T with v € Np, as in Sect. 2.4.1
we obtain a collection O = {07,: v € Ny} with 67, C HJ(T(v)) that is
biorthogonal to Z7, in particular that satisfies (2.30), after which we define the
1, by means of formula (2.31). Having constructed the biorthogonal collec-
tions 27 and ¥, we set the biorthogonal projector Py : Ly(T') — Hy ., (T): u —

(u,E7,0) Lo (1)
ZVENT (L&7,0)Lo(m)
aid of this projector, as in Lemma 2.3.4 one infers that

dJT,u which satisfies ||P7‘u||H1(]j) 5 Hh7_’1UHL2(F) With the

(2.33) Ihrvrllamy S lorlla )y (o1 € 77).

Having established this inverse inequality, to arrive at a construction of ¥
that does not require the evaluation of integrals over I', as in Sect. 2.3.2 we
replace (, )., by (, )7. We redefine © = {07, : v € Ny} by

XD 5

07 = |wr(v)[= T Ox1(T)ex 1) © X

with the ¢’s defined in (2.29), and following (2.31) set Uy = {¢)1,: v € Nt}
and #7 := span ¥ by

oy o v e N\ NY,
w= y jwr ()7 ()] 0
0T+ @@ 0Tr ~ Lvenr\) @@ Dler o 0T V€N

As in Sect. 2.3.2, we set (DT’UT)(U}T) = <’UT,’LUT>7* (vr € Y7, wr € W7),
and as in Sect. 2.3.2, using (2.33) one shows that supycr [ D7 || (v, w) < 0.
Similarly as in Lemma 2.3.6, one proves that

UT, WT )T
[hrvrllL,my S sup (o, wr)T ;
0£weHE  (T) ”wHHl(F)

and with that sup¢r | D7 | eoweg 97y < 00

Constructing By € Lis.(#7, #7) as in Sect. 2.4.2, one arrives at the same
expressions for D7, Gr, Br, g7, BY, pr, and BZ as in Sect. 2.4.1-2.4.2 in the
domain case.

2.5 Higher order case

In this section, we discuss the construction of an uniform preconditioner for
Y7 being either the space .7/ Y of discontinuous piecewise polynomials of
degree ¢ > 0 w.r.t. T, or the space 5”7(1’5 of continuous piecewise polynomials
of degree ¢ > 1wurt. 7.
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2.5. Higher order case

We write the spaces ¥7, %7, #7, and their bases 27, ©1, U7 from Sect. 2.3
or2.4as VP, B, #2,and %, ©%, ¥Y, respectively. The biorthogonal projector
formerly denoted as Pr will now be denoted as PY, and the matrices B and
D7 as BY and DY-.

Although we consider the domain case, the results extend to the manifold
case following the approach outlined in §2.3.2 or §2.4.3.

In order to construct an uniform preconditioner, obvious possibilities are
to apply the framework of operator preconditioning directly to the higher
order polynomial space 77, or to use the preconditioner developed for the
lowest order case within a subspace correction framework. We investigate
both possibilities.

2.5.1 Application of the operator preconditioning framework
Discontinuous piecewise polynomials

Given ¢ > 0, for T € T, let ¥+ = 7" With m = m(f) := (*[%) -1,
we equip Y7 with 27 = {&7,: T € T, 0 < i < m}, where for each T € T,
{&r,i: 0 < i < m} is constructed by the common affine lifting approach from
a basis for the polynomials of degree ¢ on a reference d-simplex, such that
{ET’O: T e T} = Eg—, Suppr_,i c T,and HgT,i”Lz(Q) ~ ‘T|%6

A straightforward generalization of the construction in the first paragraphs
of §2.4.1 of a collection in H} (T') that is biorthogonal to the nodal basis of P; (T')
shows the following: There exists a set of ‘bubbles’ ©7 = {0r,;: T € 7,0 <
i <m} C Hg(Q) such that for T, 7" € 7,0 < i,i’ <m, k € {0,1},

(2.34) 07,0y, (1| T1 = 074,617 i) Lo () = O¢T,4), (77 i 10T il Lo () 1677 i | Lo (02 5
235) 0r,illm(a) S by 107l 0,
(2.36) supfr; C T,
2 _

237) | Z cT,ieT,iHHk-(Q) ~ Z hT2k|CT,i‘2||0T,7?||%2(Q)7

{TeT 0<i<m} (TeT 0<i<m}
238) lu+vll5e(oy 2 lulliey + 10lHe @) (ue SF 0, v € By = spanO7),
(239) {070:T €T} =65

Writing U5 = {¢} .: T € T}, we define Uy := {¢pr1;: T € T,0 <i <
m}, #7 = span ¥ by

0
0 _ (wT‘T7§T’,i/>L2(Q) ) .
B~ Sirer sz SEEEBD 07, i

YT = _
9T,i 1 S (3 S m.

6For i > 1, it is allowed that &1,; is (nearly) orthogonal to 1|7, i.e., (2.15) is not required for
these &7 ;.
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2. PROBLEMS OF NEGATIVE ORDER

Knowing that \IIOT and Eg-, and ©7 and Z7 are biorthogonal, the correction
made to the ¢ ;- ensures that U and 2 are biorthogonal, in particular that

(V118,81 ,80) = S8y, i) | T
For use later, notice that #,2 C #7, and that by definition of wg—,T and o7 1,

foriv >0,

(R ) i 7 = _<¢OT7T»§T/,¢/>L2(Q) T e -
T (O i1, &1 i7) Ly () T ST/ La(9)
=T > A7 (DT s €10 i) La()-

0 0
VENT,TQNT,T/

(2.40)

The biorthogonal projector Pr: Ly() — Hj (Q) with ran Pr = #7 and
ran(Id — Pr) = %7 %> is given by

U, 1
Pru= Z < )L V7T

(TeT 02i<m) (71,0, 670) Lo ()

Theorem 2.5.1. It holds that supyct || Prl| 2w wy < o0.

Proof. ForT" € T, k € {0,1}, from supp ér,; C T and supp ¢7.7; C wgp(T”)
we have

b7 il mx () 1672

|07 16, 67,6) Lo ()]

L2(Q)

(2.41) || Prullgrpry < Z lull Lo ()
{TeRrP(T"),0<i<m}

To bound the right-hand side we distinguish between terms with 7 = 0 and
those with ¢ > 0.
From ||w»(7)-$T||Hk(Q) < h;/sz (217)),and for T € 7,1 <4 <m,

(WS 1o i) Lo () ) WS 2l Ly lér irllLa@) 1 —k ) < pd/2—k
H (Opr 31€17 31) Loy () HT/”/HH’“(Q)N 1077 il o) 177 i | Lo () hT' HGT/’Z, Lo(Q) ~ hT )
we infer that .

2
17 mollzre (@ S Ry > 7",
while, thanks to (2.15),
€70l Lo (02) ol llérollzae) _ 2

(110610 L)) [0S i érora| (L o) oy "
Forl <i<m,
[ rillar @ lérilla@ _ 10rillar@llérillia@ _ 10rillarey) o)

(U776, €7,0) Lo ()| 07,5, €7,0) Lo ()| 107l o) ~ T
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2.5. Higher order case

Combining the above inequality with (2.41) shows that
(242) |Pruli o S ¥l gy

which is the analogue of estimate (2.18) that was proven for P{. Since #7 C
#7, by making use of the same Scott-Zhang type quasi-interpolator I+ as has
been used in the proof of Theorem 2.3.2, copying the remainder of that proof
yields the claim. O

Thanks this theorem, D7: ¥7 — #7 defined by (D7v)(w) = (v,w)1,(q)
satisfies suprct max (|| D7l vy w2, |1DF7 | cws, 7)) < oo. By enumerating
all é7; and 7 1,; with index ¢ = 0 before those with index ¢ > 0, its matrix

D7 0 where DY := diag{|T'|Id 1T e
O D:lr ’ T mXm

representation reads as D1 = [
T}
Thanks to (2.37)-(2.38), a suitable By € Lis.(#7, #7) can be defined sim-
ilarly as in §2.3.3: With I being the linear projector defined on 5”%%) ® Br
by ranI¥ = 5”70—’7%) and ranI# = %7, where I# := 1d — I, we define

B9 ¢ Lis (L34 ® Br, (S0 ® Br)') by

(BL®%w) (@) = (BL I w)(I£ @) + (BEIFw)(12%),

where
(BZ Z cr,if1)( Z dribr;:) =0 Z he%5ep dr 4,
{TeT,0<i<m} {TeT,0<i<m} {TeT,0<i<m}

and B is as in §2.3.3, and define By € Lis.(#7, %) by (Brw)(®) =
(B %% w)(w).

Using that with Ry as defined in (2.40), [ 0

Ry Id
mation from ¥ to \Ilg— U{br.: T € T,1 < i < m}, one infers that the
representation of the resulting uniform preconditioner reads as

(2.43)
-1
BY 0 [l o][Df o0
0 BMOW-%||Rr 1d/| 0 DL

} is the basis transfor-

DS 0] '[ld RF
GT_{O DlT] [0 Id

which is thus independent of the particular bubbles ©7 being chosen.

Continuous piecewise polynomials

Given ¢ > 1, for T € T, let ¥3 = y7o_,z. We equip ¥7 with a basis = =
2% U(E7\EY%), where for each T’ € T, the set of restrictions to 7" of those basis
functions that do notidentically vanish on T'is a lifted version of a fixed basis for
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2. PROBLEMS OF NEGATIVE ORDER

the polynomials of degree ¢ on a reference d-simplex under an affine bijection;
the support of each basis function £ € Z7 is connected and extends to a
uniformly bounded number of 7' € T and finally, [|{]|, ) =~ | supp |2 ~ [Tz
for some T € T with supp£NT # 0.

Similar to the previous §2.5.1, a biorthogonal collection O = {0(¢): £ €
71} of ‘bubbles’ exists that has properties analogous to (2.34)-(2.39), reading
IT| as |supp&|, and hr as |supp&|Y/9. Writing the collection ¥9- as found in
§2.4 as {¢°(¢): € € 2%}, we define U = {4(¢): £ € E7}, biorthogonal to =7,
and #7 := span ¥ by

P(E) = VO ~ Leezrizy Wﬂe(g') ==

& Ly()

0(¢) £ €=\ EY.

Theorem 2.5.1 extends to the current setting and shows that the correspond-
ing biorthogonal projector is uniformly bounded. The representation of
resulting uniform preconditioner reads as (2.43), obviously now with D%
and BY as found in the continuous piecewise linear case, and the matrix

Dy := diag{|supp¢|: £ € E7\E%}, and (R )¢, = —[supp&| b7, ) 1a(0)
for ((,v) € (Er \E%) x N¥, and (RY)e, = 0 for v € Ny \ N$ (recall
#EF = #N71).

2.5.2 Application of a subspace correction framework

For 7 = 5”7? l’f, in §2.5.1 we have demonstrated existence of a biorthogonal
projector that satisfies (2.42). In §2.5.1 we have shown that a similar result

holds true for ¥ = yﬂ?’z. From the proof of Lemma 2.3.4 we learn that this
implies that for either choice of ¥7,

(2.44) Ihrorlizaey S lorlla (o7 € %),
Using this inverse inequality, we are going to decompose ¥7 in a uniformly sta-
ble way into 72 and a complement space on which the || || -norm is equivalent

to a scaled Ly (§2)-norm.

Proposition 2.5.2. Let QOT € L(L2(£2), L2(K2)) be a projector with ran Qg_ = “//79,
supret |QF | £(L2(0). La()) < 00, and

sup 1h7(Ad = Q)M (s (). Loy < 00

Then SUPreT HQ%""VTHC(“VTV/T) < oo, and
@45) I ey =]y on ¥ = ran(id — Q).
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2.5. Higher order case

Proof. For u € ¥7, thanks to (2.44) we have

(u, (Id = (Q@F)*)v)
I(Id — Q%)UHH(}_W(Q)' = sup -
' veHy () vl & (o)

Lo(Q2
2@ <\l hrul Ly

S HUHH&W(Q)/,
so that the first statement follows by interpolation.

Again by interpolation, the second statement needs only to be proven for
s = 1. For that case it follows from the above equation and (2.44). O

Next we use the decomposition ¥7 = ¥ @ ¥ from Proposition 2.5.2 to
build a preconditioner on #7 from preconditioners on the subspaces.

Proposition 2.5.3. In the situation of Proposition 2.5.2, for i = 0,1, let Ii- de-
note the embedding of ¥ into ¥, and let Gir € Lis.((V4), V4). Then Gr =
Yo PG (I5)' € Lisc((#7)', ¥7) with

IGTlleevr, vy < 2max ||GiT||c((7/Ti)/,~z/;),
‘|§R(GT)71|‘£(‘1/T7‘1/%) < 2||Qg'|7/7'||2£("1/7—,"1/7—) miax ||§R(G9)*1\|£(%%7(y%),)
Proof. The result follows as an easy case from the general theory of (additive)

subspace correction methods (e.g. [Osw94] + references cited there), together
with the inequalities

1
SI 13 < 195 13+ 10d = Q%) - 13 < 21@%lecsy vl - 1B on ¥,

where we used that [|(Id — Q%)|v |l c(vr, 90 = Q%% |l 2%y, 7). because
Q%] is a projector unequal to both the zero map and the identity ([Kat60,
XZ03]) O

On 77 we already have our uniform preconditioner GY- available, so it
remains to construct such a preconditioner on the complement space ¥}. In
the situation of Proposition 2.5.2, let 27 = 2% U (27 \ £%) be a basis for ¥7
such that 2% := E7 \ 2% is a basis for ¥ for which

(2.46) 185 > celllip = Y leelIh5€l7 -
EeEL geEl

Then
(HE S o) (Y dee) = > cede| ), o)

EeEL EeEL EeEL
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2. PROBLEMS OF NEGATIVE ORDER

satisfies sup ¢ max(||H7—||£ v,y IRCHF) "l 2wy v)) < 00 thanks to
(2.45), and so G} := (H¥) 'isa su1table choice. The implementation of the
resulting uniform preconditioner G reads as

(2.47) Gr = Gy 0
0 diag{|h5&l %0 € € ZHH -

What remains is, for both options for 7, to specify a QY- that satisfies the
conditions from Proposition 2.5.2, and to equip #7 with a basis = that is the
union of the basis Z% for ¥, and a basis = for ¥} = ran(Id — Q%)|y,, the
latter being uniformly stable w.r.t. |5 - ||, (q), i-e., one that satisfies (2.46).

Discontinuous piecewise polynomials

For V1 = 14, the conditions of Proposition 2.5.2 are fulfilled by taking Q%
to be the Ly (Q2)-orthogonal projector onto ¥ = .7~ 1o 7

By taking =7 = {&r,i}reT,0<i<m to be an Ly(Q2)-orthogonal basis for ¥
such that &7 = &r and supp &7 ; C T, (2.46) is valid.

Remarkably, with these specifications and by scaling [|£7il|z,) = Tz,
the resulting G is given by (2.43) with R reading as the zero map (Rt from
(2.40) is non-zero).

Continuous piecewise polynomials

Let ¥ = yg,z for ¢ > 1. Itis no option to take QY to be the L, (£2)-orthogonal
projector onto ¥2 = 73" because in that case we will not be able to equip
ran(Id — Q%)|y, with a locally supported basis.

From (2.32) recall the biorthogonal projector P} onto # with ran(Id —
PY) = . Writing (Id—PY) = (Id—PY)(Id—I1%) with I1% being a Scott-Zhang
type interpolator, one shows that supycy |h' (Id — PY) |l c(m (@), La(9)) < OO
Since furthermore supscr [|PY| £(L,(9),1.(0)) < 00, the conditions of Proposi-

tion2.5.2 are satisfied by taking Q% := (P})* = u 3 cn. Wf%y.
Let us denote the weighted Ly(Q2)-norm A% - ||,y by || - . We need

to equip ¥} = ran(Id — Q% )|y, with a basis that is uniformly stable w.r.t.

Il - |l Since the supports of the basis functions will extend to multiple T € T,

this task is more complex than for the discontinuous piecewise polynomial

case. Let = Er = 2% U (E7 \ E%) be a basis for ¥7 such that for each T € T,

{&lr: € € E, {|r # 0} is a uniformly L, (T')-stable basis for its span. Common

affine equivalent constructions yield such a basis. Then Z7 is stable w.r.t.

| - Il, uniformly in 7 € T, and so in particular, with ¥} := spanZs \ 2%,

Y1 = Y2 @ ¥} is a uniformly stable decomposition w.r.t. || - ||.

Notice that for s > ; L 4//, v , SO taking its restriction to 7/'7’ is essential in Proposi-
- 2 T & P
tion 2.5.2.
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2.6. Numerical experiments

Corresponding to this decomposition, for v € ¥7 we write v = v° + ¥l
Taking v € ¥, it holds that 0 = Q%v = Q%° + Q%v' = v* + Q%v!, or
00 = —Q%v'ie. v = (Id—Q%)v', showing that Id—QY-: ¥} — ¥} issurjective.
Injectivity of this map follows from [Jv[| = [|Q%-v* ||+ [|v'|| > [|o*]|, and bounded
invertibility, uniformly in 7, will follow from QOT being uniformly bounded
w.rt. || - . The latter holds true because of ¢, 1, o) 15, | a(o) = “FEY,
the local supports of the ¢/, and &7, and the uniform K-mesh property of
T. We conclude that (Id — Q%)(E7 \ %) is a basis for ¥} that is uniformly
stable w.r.t. || - ||.

Since Z5-U(Id — Q%) (E7\ E%) is not the basis of choice to set up the stiffness
matrix, we give the implementation G of the uniform preconditioner G for
¥7 being equipped with E7, partitioned into £% = {{7,: v € N7} and
27\ Z%. It reads as

G._ | 1d ST G5 0 Id 0
T7lo 1 0 diag{||h5€] 20 € €27\ EY Sr Id |’
0
where for (v,£) € Ny x (E7 \ ET), (S7)ue = _(d+1)<|i’i(t))y|h2(m
in (2.47) we have replaced ||h3-(Id — Q% )¢ HZS(Q) by the equivalent ||h5-¢ ||£22(Q).

, and where

2.6 Numerical experiments

Let I' = 9[0,1]®> C R? be the two-dimensional manifold without boundary
given as the boundary of the unit cube, # := HY/?(T"), ¥ := H~'/*(T"), and
Ve =S .

The role of the opposite order operator B & ,Cisc(y%é, (5”7(1’,(1))’ ) from
Section 2.3.3 will be fulfilled by (B u)(v) := (Bu)(v) for an adapted hypersin-
gular operator B € Lis.(#,#"). The hypersingular operator B € L(#,#")
itself is only semi-coercive, but there are various options to change it into a
coercive operator ([SW98]). We consider B € Lis.(#',#") given by (Bu)(v) =
(Bu) (v)+afu, 1),y (v, 1) £, () for some a > 0. By comparing different values
numerically, we find « = 0.05 to give good results in our examples.

Withm := (2';6) —1,asin §2.5.2 we equip ¥4 with a usual L, (I')-orthogonal
basis {1|7: T € T}U {éri: T € T,1 < i < m} where suppér; C T,
7.l o) = IT|z, and denote the resulting stiffness matrix by A7. The
lowest order case ¢ = 0 corresponds to m = 0.

Equipping ﬂ;)-é with the nodal basis ®7 defined in (2.4)-(2.5), for £ = 0 the
matrix representation of the preconditioner reads as

Gr = D7 (p} B pr + fa} D;/*qr) D7,
with Dy = diag{|T|: T € T} and uniformly sparse p; and g7 as given in
Sect. 2.3.4.
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2. PROBLEMS OF NEGATIVE ORDER

Denoting above G by G%, by applying for ¢ > 0 the subspace correc-
tion method from §2.5.2, the matrix representation of the resulting uniform
preconditioner is given by

o _les 0
T= 10 pdiag{|T|™*2dpxm: T € T}

The (full) matrix representations of the discretized singular integral oper-
ators A7 and B are calculated using the BETL2 software package [HK12]
(alternatively, one may apply low rank approximations in a hierarchical for-
mat). Condition numbers are determined using Lanczos iteration with respect
to ||-]| := ||A% - ||. The constant /3 is approximately optimized by comparing
different choices numerically.

We will compare our preconditioner to the diagonal preconditioner diag(A )™,
and in the piecewise constant case, also to the related preconditioner G+ from
[HUT16], where G = f)}lE;Bf ErDZ" is defined as follows. With 7
being the barycentric refinement of 7, a collection U7 C Y%O’é is constructed
in [BCO7] such that the Fortin projector Pr with ran Pr = #4 := span Ur
and ran(ld — Py) = ”i/TL £2@ exists, and, under an additional sufficiently
mildly-grading condition on the partition, has a uniformly bounded norm
||PT||£(“/V,W) (cf. Theorem 2.3.2); D1 := (E7, V1), (r); E7 is the representa-
tion of the embedding #5 — 770% equipped with ¥ and the nodal basis of

0,1 . . % . 0,1 0,1\/y : ) i
ﬂﬁ,’ o Tespectively; and B € Elsc(jﬂ% , (7)) is an opposite order opera
tor that we take as (Bg] u)(v) = (Bu)(v), with B the adapted hypersingular
operator.

Compared to our G1 = GY%, the preconditioner G has the disadvantages
that, besides the aforementioned mildly grading condition, the matrix D,
although uniformly sparse, is not diagonal, so that the (sufficiently accurate)
application of its inverse cannot be performed in linear complexity; further-
more that it requires evaluating the adapted hypersingular operator on the

larger space 5”72’(1) D Y%é (#T = 6#T7); and finally that the non-standard

barycentric refinement 7 has to be generated.

2.6.1 Uniform refinements

Consider a conforming triangulation 7; of I" consisting of 2 triangles per side,
so 12 triangles in total. We let T be the sequence {7 }r>1 of uniform red-
refinements, where 7;, > 7;_1 is found by subdividing each triangle from
Tr—1 into 4 congruent subtriangles.

For 73 = S M, Tables 2.1 and 2.2 show the condition numbers of the
preconditioned system for £ = 0 and ¢ = 2, respectively. Aside from being uni-
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2.6. Numerical experiments

TabLE 2.1. Spectral condition numbers of the preconditioned single layer sys-
tem, using uniform refinements, discretized by piecewise constants .7 Lo,

Both matrices G and G are constructed using the adapted hypersingular
operator with oo = 0.05; and § = 1.25in Gt

dofs rg(diag(A7) ' A7) ks(GrAT) Ks(GrAT)

12 14.56 2.51 1.29

48 29.30 2.52 1.58

192 58.25 2.66 1.77

768 116.3 2.71 1.89

3072 230.0 2.74 1.94
12288 444.8 2.79

TaBLE 2.2. Spectral condition numbers of the preconditioned single layer
system, using uniform refinements, discretized by discontinuous piecewise
quadratics - 2. The matrix G is constructed using the adapted hypersin-
gular operator, with o = 0.05, and 3 = 1.25.

dofs rs(diag(A7r) "AT) rs(GTAT)

72 167.16 9.58
288 309.12 10.4
1152 616.03 11.1
4608 1211.3 11.3
18432 2337.2 114

formly bounded, the condition numbers of our preconditioner G't are of mod-
est size. In the constant case, ¢ = 0, Table 2.1 reveals that the preconditioner
G+ from [BC07, HUT16] gives better condition numbers. As described above,
this quantitative gain comes at a price. In the result of dim ./ 10— 3072, us-
ing full matrices for the discretized adapted hypersingular operator, we found
a setup and application time of 1816s and 0.0971s for G-, compared to 385s
and 0.00284s for G. These differences are due to numerical inversion of D

by LU factorization with partial pivoting, and the enlargement Yﬁé > 4770-’}),

also causing our test machine to go out of memory in calculating G- for the
last refinement. Although we expect them to be in any case significant, these
differences can be made smaller when the exact inversion of f)T is avoided,
and Bf and B are replaced by suitable low rank approximations.
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2. PROBLEMS OF NEGATIVE ORDER

TaBLE2.3. Spectral condition numbers of the preconditioned single layer system
discretized by piecewise constants . " using local refinements at each of
the eight cube corners. Both matrices G and G+ are constructed using the
adapted hypersingular operator with o = 0.05; and = 1.2in G7. The second
column is defined by ht ip := minper hr.

dofs hT,min Ks (diag(AT)’lAT) HS(GTAT) HS(GTAT)

12 7.0-1071 14.56 2.61 1.29
432 2.2-.1072 68.66 2.64 2.91
912 6.9-10~* 73.15 2.64 3.14

1872  6.7-1077 73.70 2.64 3.25
2352  2.1-1078 73.80 2.64 3.26
2976 2.3-1010 73.66 2.64

2.6.2 Local refinements

Here we take T to be the sequence {7 }x>1 of locally refined triangulations,
where 7, > Ti_1 is constructed using conforming newest vertex bisection to
refine all triangles in 7 _; that touch a corner of the cube.

As noted before, the preconditioner G provides uniformly bounded con-
dition numbers if the family T satisfies some sufficiently mildly-grading condi-
tion on the partition [Ste03a, HUT16]. It is not directly clear whether T satisfies
this condition, but we included the results nonetheless.

Table 2.3 gives the results for the preconditioned single layer operator
discretized by piecewise constants .- 9. The condition numbers s (Gr A7)
are nicely bounded under local refinements. In this case our preconditioner
gives condition numbers slightly smaller than the ones found with G'7. The
calculation of the LU decomposition with partial pivoting of D turns out to
break down in the last result (dim .7’ LY = 2976).

2.7 Conclusion

In this chapter, we have seen how a uniformly boundedly invertible opera-
tor B from the space of continuous piecewise linears w.r.t. any conforming
shape regular partition 7, equipped with the norm of H*(2) (or H*(T")) for
some s € [0,1], to its dual can be used to uniformly precondition a bound-
edly invertible operator of opposite order discretized by discontinuous or
continuous polynomials of any fixed degree w.r.t. 7. The cost of the resulting
preconditioner is the sum of a cost that scales linearly in #7 and the cost of
the application of BY. For T being member of a nested sequence of quasi-
uniform partitions, B7‘5f has been constructed so that it requires linear cost. In
the following chapter, we will realize this also for locally refined partitions.
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3  Problems of negative order:
preconditioning at linear cost

3.1 Introduction

In this chapter, we construct a multi-level type preconditioner for operators
of negative orders —2s € [—2,0] that can be applied in linear time and yields
uniformly bounded condition numbers. The preconditioner will be construct-
ing using the framework of ‘operator preconditioning” discussed in Chapter 2.
The role of the ‘opposite order operator” will be fulfilled by a multi-level type
operator, based on the work of Wu and Zheng in [WZ17].

For some d-dimensional domain (or manifold) €2, a measurable, closed,
possibly empty v C 02, and an s € [0, 1], we consider the Sobolev spaces

W = [La(Q), Hy o (Dlso, V=W

with Hj . (Q) being the closure in H'(£2) of the smooth functions on Q that
vanish at v. Let (¥7)7er C ¥ be a family of piecewise or continuous piece-
wise polynomials of some fixed degree w.r.t. uniformly shape regular, possibly
locally refined partitions. With, for 7 € T, Ar: #7 — 77 being some bound-
edly invertible linear operator, we are interested in constructing a preconditioner
G7: V7 — Y7 such that the preconditioned operator G A7 : ¥ — ¥7 is uni-
formly boundedly invertible, and an application of G can be evaluated in
O(dim #7) arithmetic operations.

In order to create such a preconditioner, we will use the framework de-
scribed in Chapter 2. Given #7, we constructed an auxiliary space #7 C #
with dim #7 = dim #7, such that for D7 defined by (D7v)(w) = (v,w),(q)
(v € ¥7,w € #7)and some suitable ‘opposite order” operator B;’—” W — W,
a preconditioner G of the form G := D7'BY (D/)~! is found. The space
W7 is equipped with a basis that, modulo a scaling, is biorthogonal to the
canonical basis for #7, so that the representation of D is an invertible diago-
nal matrix.

With Y%é C W being the space of continuous piecewise linears w.r.t. T,
zero on v, the above preconditioning approach hinges on the availability of
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3. PROBLEMS OF NEGATIVE ORDER: PRECONDITIONING AT LINEAR COST

a uniformly boundedly invertible operator B : yﬁé — (Yfr):é)’, which is

generally the most demanding requirement. For example, if s = 1 and v =
0, a viable option is to take B as the discretized hypersingular operator.
While this induces a uniform preconditioner, the application of B cannot be
evaluated in linear complexity.

In this chapter we construct a suitable multi-level type operator B that can
be applied inlinear complexity. For this construction we require T to be a family
of conforming partitions created by Newest Vertex Bisection ([Mau95, Tra97]).
In the aforementioned setting of having an arbitrary s € [0, 1], this multi-level
operator Bf induces a uniform preconditioner G, i.e., Gr At is uniformly
well-conditioned, where the cost of applying G scales linearly in dim #7.
We also show that the preconditioner extends to the more general manifold
case, where () is a d-dimensional (piecewise) smooth Lipschitz manifold, and
the trial space #7 is the parametric lift of a space of piecewise or continuous
piecewise polynomials.

Finally, we remark that common multi-level preconditioners based on over-
lapping subspace decompositions are known not to work well for operators of
negative order. A solution is provided by resorting to direct sum multi-level
subspace decompositions. Examples are given by wavelet preconditioners,
or closely related, the preconditioners from [BPV00], for the latter assuming
quasi-uniform partitions.

For —s = —1, an optimal multi-level preconditioner based on a non-
overlapping subspace decomposition for operators defined on the bound-
ary of a 2- or 3-dimensional Lipschitz polyhedron was recently introduced
in [FHPS19].

3.1.1 Outline

In Sect. 3.2 we summarize the (operator) preconditioning framework from
Chapter 2. In Sect. 3.3 we provide the multi-level type operator that can be
used as the ‘opposite order’ operator inside the preconditioner framework. In
Sect. 3.4 we comment on how to generalize the results to the case of piecewise
smooth manifolds. In Sect. 3.5 we conclude with numerical results.

3.1.2 Notation

In this work, by A < 1 we mean that A can be bounded by a multiple of 1, inde-
pendently of parameters which A and ¢ may depend on, with the sole exception
of the space dimension d, or in the manifold case, on the parametrization of
the manifold that is used to define the finite element spaces on it. Obviously,
A2 pisdefinedasp SN and A~ pas A S pand A 2 p.

For normed linear spaces %" and %, in this work for convenience over R,
L(% , Z) will denote the space of bounded linear mappings #" — 2 endowed
with the operator norm || - |[z(#,%). The subset of invertible operators in
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3.2. Operator preconditioning

L(%, %) withinversesin £(%, % ) willbe denoted as Lis(#, Z). The condition
numberofa C € Lis(#%, Z)is defined as ko (C) := ||C||z(w,2)|C I 2 (2, 2)-
For % a reflexive Banach space and C' € L(%', %) being coercive, i.e.,

(Cy)(y)
otver  |lyll3,

both C'and R(C):=3(C + ") are in Lis(#, %) with
1ROl e,z < NCll e 27,

1IC M @2y < IRC) Mooy = (

>0,

-1
nf (Cy)éy)) .
ozve |yll3,
The subset of coercive operators in Lis(#,%") is denoted as Lis.(%,%").
If C e EiSc(@, @I), then C~! € EiSC(@I,@> and ||§R(C_1)_1||£(@/7(@//) <
IC1Z2(2 27 IR(C)ler,2)-

Given a family of operators C; € Lis(%;, 25) (Lis.(%;, 23)), we will write
C; € Lis(%;, &) (Lis.(%;, Z;)) uniformly in 4, or simply ‘uniform’, when

sup max([|Cil| (o, 2., 1C; | o(2,.)) < 00,
1

or
sup max([|Cil £z, 20, IR(C) ™l 2(2.24)) < oo

3.2 Operator preconditioning

Let (T)7et be a family of conforming partitions of a domain  C R? into (open)
uniformly shape regular d-simplices, where we assume that v is the (possibly
empty) union of (d — 1)-faces of T' € 7. For d > 2, such partitions automat-
ically satisfy a uniform K-mesh property, and for d = 1 we impose this as
an additional condition. The discussion of the manifold case is postponed to
Sect. 3.4.

Recalling that ¥ C ¥ is a family of piecewise or continuous piecewise
polynomials of some fixed degree w.r.t. T, let Ay € Lis(#7, 77 ) uniformly in
T € T. A common setting is that (A7v)(?) := (Av)(?) (v,0 € ¥7) for some
A € Lis.(¥,7"). We are interested in finding optimal preconditioners G for
Az, ie., Gt € Lis(¥7,7) uniformly in 7 € T, whose application moreover
requires O(dim #7) arithmetic operations.

Recall the space

y%}) ={ue Hy (Q:ulrePL(TeT)CH

(thus equipped with || - |). In Chapter 2, using operator preconditioning,
we reduced the issue of constructing such preconditioners G to the issue
of constructing BY € £isc(5”7q’}), (Y%é)’ ) uniformly. In the next section we
summarize this reduction.
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3. PROBLEMS OF NEGATIVE ORDER: PRECONDITIONING AT LINEAR COST

3.2.1 Construction of optimal preconditioners

For the moment, consider the lowest order case of ¥7 being either the space
of piecewise constants or continuous piecewise linears. In Chapter 2 a space
W7 C W was constructed with dim #7 = dim ¥7 and

(3.1) inf inf sup <Uw>7Lz(Q)>O.

TErovery oty Tolr Twln
Moreover, #7 C W was equipped with a locally supported basis ¥ that,
modulo a scaling, is Ly (2)-biorthogonal to the canonical basis = of #7.

As a consequence of (3.1), Dy defined by (D7v)(w) := (v,w)r,0) (v €
Y, w € W) is in Lis(¥7, #7) uniformly. We infer that once we have con-
structed BY € Lis(#7, #4) uniformly, then by taking

62) Gr o= D BY (D),

we have G € Lis(¥7, 77) uniformly. Biorthogonality, modulo a scaling, of
the bases ¥+ and Z7 implies that the matrix representation of D is diagonal,
so that D' and its adjoint can be applied in linear complexity.

The aforementioned space #7 is a subspace of 5”7(1”(1) ® B C W, where
%’T is a ‘bubble space” with dim 937 O(#T), such that the projector I on
5” 69 P, defined by ran I+ = YT o and ran(Id — I'r) = %7, is ‘local’ and
unlformly bounded, and the canonical basis ©1 of ‘bubbles’ for Z; is, when
normalized in || - ||, a uniformly Riesz basis for #7. Because of the latter, B¥
defined by 7

(Bfc'O7)(d"O7) = S(Arc)'d
for some diagonal A7 < diag((©7,©7)» ) and constant § > Oisin Lis.(%7, B )
uniformly.

Given some ‘opposite order’ operator BY € Eisc(Y%é, (,V%é)’ ), by taking

(3.3) BY = IB Iy + (Id — I7) BZ(1d — I),

itholds that BY € Lis.(#7, #) uniformly ([SvV20b, Prop.5.1]), which makes
G a uniform preconditioner.

3.2.2 Implementation of G

Recalling the aforementioned bases =7, V7, and ©7 for ¥7, %+ and %,
respectively, equipping Yg ¢ with the nodal basis &, and equipping VW,
', and (Yﬁ o) with the dual bases =/, ¥/, ©/, and &/, respectively, the rep-
resentation of Ay € L(¥7, 7) is the stiffness matrix A1 := (A7E7)(E7) =

[(A71)(€)](¢,n)e=,, and the representation of G € L(¥F, 77) is the matrix
G7 = (GE})(EY). Itis given by

(3.4) Gr = D;' (pyBf pr +a;B¥qr)D; ",
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3.2. Operator preconditioning

where both
Dy = (DrE7)(¥7), B = (BFO7)(O7)
are diagonal, both
pr = I7Y7)(®7), qr:=((Id-I7)¥7)(OF)
are uniformly sparse, and
(3.5) B = (B &7)(®7).

Note that the cost of the application of G scales linearly in #7 as soon as this
holds true for the application of B .

The above preconditioning approach is summarized in the following the-
orem.

Theorem 3.2.1 (Sect. 2.3). Given a family B € Eisc(Y%é, (5”%5)’ ) uniformly
in T € T. Then for B;”-/ as described in (3.3), the operator G from (3.2) is a
uniform preconditioner. Furthermore, if the matrix representation B, cf. (3.5), can

be applied in O(#T) operations, then the matrix representation of the preconditioner
G, cf. (3.4), can be applied in O(#T) operations.

Because BY in (3.3) is given as the sum of two operators that ‘act’ on
different subspaces of #7, the condition number of the preconditioned system
depends on the relative scaling of both these operators which can be steered
by selecting the parameter 3. A suitable 5 will be selected experimentally.

Alternatively, Proposition 4.4.1 shows that a value of j is reasonable if it
is chosen such that the interval bounded by the coercivity and boundedness
constants of B is included in that interval corresponding to B or vice
versa. Also these coercivity and boundedness constants can be approximated
experimentally or by making some theoretical estimates.

Constructions of U7, ©7, and A7, and resulting explicit formulas for
matrices Dr, B?—g, pr1, qr are derived in Chapter 2. For ease of reading
we recall these formulas below for the case that 77 is the space of piecewise
constants. For the continuous piecewise linear case we refer to Sect. 2.4.2.

Piecewise constant trial space 77

For 7 € T, we define N7 as the set of vertices of 7, and NE} as the set of vertices
of T that are not on . For v € N1 we set its valence

dr, = #{TeT:veT)
ForT € T,and with Nt denoting the set of its vertices, we set N%T = NYNNy.
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3. PROBLEMS OF NEGATIVE ORDER: PRECONDITIONING AT LINEAR COST

If one considers #7 as the space of discontinuous piecewise constants, i.e.
Vo =S = {u € Ly(Q):ulr € P(T €T} C ¥,

equipped with the canonical basis =1 := {17: T € T}, then we find, for
arbitrary constant 5 > 0,

d;7' ifve N
o . _ ) Ty 7T
Dy = diag{|T|: T € T}, (P7)vr = { 0 ifvg N0,
g 1-2 1 =
BY =D 7, (ar)rr =0rr g7 Y, dr,

0 0
UGNT,TONT‘T’

3.2.3 Higher order case

For higher order discontinuous or continuous finite element spaces 77, suit-
able preconditioners G can be built either from the current preconditioner
G for the lowest order case by application of a subspace correction method
(most conveniently in the discontinuous case where on each element the space
of polynomials of some fixed degree is split into the space of constants and its
orthogonal complement), or by expanding #7 by enlarging the bubble space
Z%7. While referring to Chapter 2 for details, we recall that with either option
the construction of an optimal preconditioner G that can be applied in linear
complexity hinges on the availability of an operator B € Eisc(ﬁﬂ%é, (Yﬁé)’)
uniformly in 7 € T, that can be applied in linear complexity.

3.3 An operator BY of multi-level type

In this section we will introduce an operator BY € Lisc(,V%é, (1770-’7%))’ ) of
multi-level type. The operator B is based on a stable multi-level decom-
position of yﬁé given by Wu and Zheng [WZ17]. Usually such a stable
multi-level decomposition is used as a theoretical tool for proving optimality
of an additive (or multiplicative) Schwarz type preconditioner for an operator
in ,Cisc(y%(l), (5”70—5)’ ). In this work, however, we are going to use their results
for the construction of the operator B € Eisc(y%é, (Y%(l))’ ) for which it is
crucial that its application can be implemented in linear complexity.

3.3.1 Definition and analysis of B

For d > 2, let T be the family of all conforming partitions of (2 into d-simplices
that can be created by Newest Vertex Bisection starting from some given con-
forming initial partition 7, that satisfies a matching condition ([SteO8b]).

With € := Urer{T: T € T} and M := Uyt Ny, for T € ¥ let gen(T) be
the number of bisections needed to create T from its ancestor 77 € 7, and for
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3.3. An operator B of multi-level type

v € Nlet gen(v) := min{gen(T): T € T, v € Nr}. Notice that |T| = 2~ &),
For T € ¥, let Q7 denote the Ly (T')-orthogonal projector onto P (7).

The case d = 1 can be included by letting T be the family of a partitions of {2
that can be constructed by bisections from 7, = {2} such that the generations
of any two neighbouring subintervals in any 7 € T differ by not more than
one.

For T € T,set L = L(T) := maxye7 gen(T) and define

TL=To<=Th = <T=TCT

by constructing 7;_; from 7; by removing all v € N; :=N; from the latter for
which gen(v) = j. For v € N} :=Nj, we define w;(v) = U{T € T;: v € Nr}.

With this hierarchy of partitions, we define an averaging quasi-interpolator
11 € L(S7 0,77, 0) by

. T|(Qru)(v
G6) (Mu)(v) = 2 rery: veny) TIQru)() (we s2L veN?).
Z{TETJ: VvENT} |T| ’

Since 5”%’)10 is a space of continuous piecewise linears, it indeed suffices to
define IT;u at the vertices N¥. Recall that .7y C # := [L2(Q), H{ ., ()]s.2 for
some s € [0,1]. The next theorem shows that II; induces a stable multi-level
decomposition of 5”70-(1)

Theorem 3.3.1 ((WZ17, Lemma 3.7]). For the averaging quasi-interpolator II;
from (3.6), and T1_; := 0, it holds that

L
_ is 0,1
lallfy = > 471 —y)ullf, @) (ue S70).
j=0

Proof. In [WZ17], the inequality ‘>’ was proven for the case s = 1, d € {2,3},
and v = 99Q. The arguments, however, immediately extend to s € [0,1],d > 1,
and v C 09.

The proof of the other inequality ‘<’ follows from well-known arguments:
Forsome ¢ € (1, 3),let 7" := [Ly(Q), Hj ., () N H'(Q)],.2 for r € [0,1]. Then
H¢ = W by the reiteration theorem, and for r € [0,1], || - [|gre S 2779 - || 1,(0)
on Y% 710.

Letu € ,5”70—’j) be written as Z]L:o u; with u; € 5”%’,10. Then for € € (0, s),
e <t — s, we have

L L
ullZes ) S D0 Mugllseere @ ltill s
=0 i=j
L L L
SN e A= ) oy ill o) S D4 gl - O
j=0 i=j J=0
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<V

Ficure 3.1. For d = 3, a tetrahedron 7" € 7;_; and its bisection. The dots
indicate all vertices in N} \ M.

The relevance of the multi-level decomposition from Theorem 3.3.1 by Wu
and Zheng lies in the fact that (IT;u)(v) can only differ from (II;_;u)(v) in any
ve NJ\ Nj_, as well as in only two! of its neighbours in NY_, (the endpoints
of the edge on which v was inserted):

Proposition 3.3.2 (WZ17, Lemma 3.1]). With for j > 1,
M = {v e Nj_y: wj(v) = wj1(v)},
it holds that for v € MY, ((Il; — I1;_1)u)(v) = 0, see Figure 3.1.

Remark 3.3.3. The proof from [WZ17] given for d € {2,3} generalizes tod > 1.
Indeed the arguments that are used are based on the fact that the basis for
S1(T') that is dual to the nodal basis takes equal values in all but one nodal
point. This is a consequence of the fact that the mass matrix of the nodal basis
for S1(T'), and so its inverse, is invariant under permutations of the barycentric
coordinates, which holds true in any dimension.

As a consequence of Proposition 3.3.2, we have

I = Tyl ) = 277 D (L — I—)u)(v) 2.
vENI\MY

From Theorem 3.3.1, we conclude that BY = (B’ € Lis(:#4g, (#1)") de-
fined by

(3.7) (BLu)(v ZW—” ST (@ - I )u) () (I = Iy )v) (v)

vEN\M}

is uniform, i.e.
S Z\—1
g_tgmax (||B7— Hﬁ(y%%v(y%%)')’ I(B£) ||£<(=5’$:t>’»=?%>) < 0.

IAs pointed out in [WZ17], for d > 3 the number of such neighbours will be larger when
employing the Scott-Zhang quasi-interpolator. Moreover, this interpolator is not suited for s < %

56



3.3. An operator B of multi-level type

3.3.2 Implementation of B

Since the operator IT; is a weighted local L, (€2) projection, it allows for a natural
implementation by considering .7/ Y1, the space of discontinuous piecewise
linears w.r.t. 7. Recall the nodal basis ¢ for Y%é, and equip ./ U1 with the
element-wise nodal basis.

Denote E7 for the representation of the embedding 5’70-’7(1) into b

For 0 < j < L, let R; be the representation of the L,(2)-orthogonal
projector of 5”7_1’1 onto ijl’l, and let R_; := 0.

For 0 < j < L, let H; be the representation of the averaging operator
Hy: 1 — 7 defined by

S irer: venyy Tl ulr (@)
(3.8) (Hyu)(v) = =L (v e VD),
Z{TGsz vENT} | |

and let H_; := 0.
For 1 < j < L, let P; be the representation of the embedding Y%iho —

y% 710 (often called prolongation), and let Py := 0.
Then the representation B7‘5f of B? from (3.7) is given by

L
Bf = E;(Z(HJRJ‘ —PH; 1R; ) 2V (H,R; _Pjijle’l))ET'

=0

Applying E1 amounts to duplicating values at any internal node with a
number equal to the valence of that node.

By representing 7 as the leaves of a binary tree with roots being the sim-
plices of 71, computing for x € ran E7 the sequence (R;X)o<;j<; amounts
to computing, while traversing from the leaves to the root, for any parent
and both its children the orthogonal projection of a piecewise linear function
on the children to the space of linears on the parent. For d = 2, the matrix
representation of the latter projection is given in Figure 3.2.

Proposition 3.3.4. The application of B can be computed in O(4T ) operations.

Proof. Because the number of nodes in a binary tree is less than 2 times the
number of its leaves, for x € RY™ 770 the computation of the sequence
(RjErx)o< <1 takes O(#T) operations. From Proposition 3.3.2 recall that
any vector in ran H;R; — P;H; 1 R;_; vanishes at M, so that the num-
ber of its non-zero entries is bounded by #(NY \ M?) < 3#(N?\ NY_,).
Knowing already R;E7x and R;_; E7x, computing any non-zero entry of
(HjR; — P;H;_1R;_)Erx requires O(1) operations. O

We conclude that the operator B7=5f , with above matrix representation BZ,
satisfies the requirements of Theorem 3.2.1.
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Ficure 3.2. Numbering of the vertices of the parent and that of both children
for d = 2, and the resulting matrix representation of the orthogonal projection
of the space of piecewise linears on the children to the space of linears on the
parent.

3.4 Manifold case

Let I be a compact d-dimensional Lipschitz, piecewise smooth manifold in R%
for some d’ > d with or without boundary OI'. For some closed measurable
v C Il and s € [0, 1], let

W o= [Lo(D), Hy ,(D)]s2, V=W

We assume that I' is given as the essentially disjoint union of UY_, x;(€2;), with,
for1 <i<p, x;: RT = RY being some smooth regular parametrization, and
Q; C R? an open polytope. W.Lo.g. assuming that for i # j, Q; N Q; = 0, we
define

X: Q= U?:lgi — Ug):lXi(Qi) by X‘Qi = Xi-

Let T be a family of conforming partitions 7 of I into “panels” such that,
for 1 <i <p, x Y(T) N¢Y is a uniformly shape regular conforming partition
of €2, into d-simplices (that for d = 1 satisfies a uniform K-mesh property). We
assume that v is a (possibly empty) union of ‘faces’ of T' € T (i.e., sets of type
xi(e), where e is a (d — 1)-dimensional face of x; *(T)).

We set

Vri={ue Ly(l): uoxlyrmy €Po (TE€T)}C Y,
or
Y7 i={ueC(): uoxl1(ry €PL (TET)}C Y,

equipped with canonical basis Z7, and, for the construction of a precondi-
tioner,

,5”79:%) ={ue Hy (T):uox|y-1ry €P1 (T €T} CH,

equipped with canonical basis ®.
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3.4. Manifold case

As in the domain case, a space #7 C # can be constructed with dim #7 =

dim V- and inf et infozue vy SUPLypeys, m%
with alocally supported basis W7 that, modulo a scaling, is L (I")-biorthogonal
to Z7. Now assuming that a family of B € LiSC(Y%}y (L%?é)’ ) uniformly
is available, the construction of an optimal preconditioner G follows exactly
the same lines as outlined in Sect. 3.2 for the domain case.

For the case that I is not piecewise polytopal, a hidden problem is, however,
that above construction of ¥ requires exact integration of lifted polynomials
over the manifold. To circumvent this problem, in Sect. 2.3.2 we have relaxed
the condition of Lo (I')-biorthogonality of =1 and ¥ 7 to biorthogonality w.r.t. to
a mesh-dependent scalar product obtained from the Ly (I")-scalar product by
replacing the Jacobian on the pull back of each panel by its mean. It was shown
that the resulting preconditioner is still optimal, and that the expression for
its matrix representation (for the moment without the representation of B),
that was recalled in Sect. 3.2.2 for the piecewise constant case, applies verbatim
by only reading |T'| as the volume of the panel.?

> 0, which canbe equipped

It remains to discuss the construction of an operator By of multi-level type,
where it is now assumed that T is a family corresponding to newest vertex
bisection. An exact copy of the construction of B given in the domain case
would require the application of the panel-wise L, (T")-orthogonal projector
Qr, cf. (3.6), which generally poses a quadrature problem. Reconsidering the
domain case, the proof of [WZ17, Lemma 3.7] (which provides the proof of the
inequality ‘2’ in our Theorem 3.3.1) builds on the fact that for 7o < 7; < ---
being a sequence of uniformly refined partitions, the decomposition 5”%’1’0 =
Zf:() ,5”%}0 N (Y%_’L)O)“z(m, where 5”70{11)0 := {0}, is stable, uniformly in
L, w.r.t. the norm on #. This stability holds also true when the orthogonal
complements are taken w.r.t. a weighted L, (€2)-scalar product, for any weight
wwithw, 1/w € Lo (9).

This has the consequence that for the construction of the multi-level oper-
ator B in the manifold case, we may equip L»(I') with scalar product

;/QZU(Xz(IB))v(Xz(x))dx,

which is constructed from the canonical Lo (I")-scalar product by simply omit-
ting the Jacobians |0x;(x)|. With this modified scalar product, the panel-wise
orthogonal projector Q)7 is the same as in the domain case. We conclude that
the resulting B asin (3.7) is in LisC(Y%(l), (Y%é)’ ) uniformly, and that its ap-
plication can be performed in linear complexity. Indeed, its implementation is
equal as in the domain case as described in Sect. 3.3.2 when |T'| in (3.8) is read
as [x~ (7).

’In order to avoid the exact computation of this volume, actually it may read as
|x~1(T)||0x(2)| for arbitrary z € x~1(T).
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3. PROBLEMS OF NEGATIVE ORDER: PRECONDITIONING AT LINEAR COST

3.5 Numerical experiments

Let I' = 9[0,1]®> C R? be the two-dimensional manifold without boundary
given as the boundary of the unit cube, # = HY2(I'), ¥ := HY/2(I).
We consider the trial space #7 = 7" C ¥ of discontinuous piecewise
constants. We will evaluate preconditioning of the discretized single layer
operator Ay € Lis.(¥7, V7).

The role of the opposite order operator in ,Cisc(y%(l), (5”79’,%)’ ) from Sect.3.2.1

will be fulfilled by the multi-level operator B from (3.7). Equipping 5’%%)
with the nodal basis ¢, the matrix representation of the preconditioner G
from Sect. 3.2.1 reads as

Gr = D7 (prBf pr + BarDy/*ar) D7,

for Dy = diag{|T|: T € T}, uniformly sparse p and g7 as given in Sect. 3.2.1,
and with the representation of the multi-level operator B given by

L
B7‘5f = E';[(Z(HJRJ — Pjijlefl)Tz_j/Q(HjRj - Eijleil))ET7

=0

for the representations E, H;, R; and P; as provided in Sect. 3.3.2 (the minor
adaptations in the manifold case described in Sect. 3.4 to the matrix represen-
tations from Sections 3.2.1 and 3.3.2 vanish in the current simple case).

The BEM++ software package [SBAT15] is used to approximate the ma-
trix representation of the discretized single layer operator A7 by hierarchical
matrices based on adaptive cross approximation [Hac99, Beb00].

Equipping #7 and RY%™”7 with ‘energy-norms’ \/(A7-)(-) or ||A7%- -|I, re-
spectively, we calculated the (spectral) condition numbers k. (v v, ) (GTAT) =
K g (Rdim ¥ Rdlim ¥ (GrAT) = p(GTAT)p((GTAT)_l), where p(-) is the spec-
tral radius, using the Lanczos method.

As initial partition 7, = 7; of I we take a conforming partition consisting
of 2 triangles per side, so 12 triangles in total, with an assignment of the
newest vertices that satisfies the matching condition. We fixed 8 = 5.3, being
the value for which, for a relative small uniform refinement 7 of 7, , we found

p(D7'p} B prD7' A7) = p(D7' Baf DY qr D' A7).

3.5.1 Uniform refinements

Here we let T be the sequence {7 }r>1 of (conforming) uniform refinements,
that is, 7 > Ti—1 is found by bisecting each triangle from 7;_; into 2 subtri-
angles using Newest Vertex Bisection.

Table 3.1 shows the condition numbers of the preconditioned system in this
situation. The condition numbers are relatively small, and the timing results
show that the implementation of the preconditioner is indeed linear.
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3.5. Numerical experiments

TaBLE 3.1. Spectral condition numbers of the preconditioned single layer sys-
tem discretized by piecewise constants . "°, using uniform refinements.
Preconditioner G'7 is constructed using the multi-level operator with 8 = 5.3.
The last column indicates the number of seconds per degree of freedom per
application of G7.

dofs ks(A7) ks(GrAr) sec/ dof

12 14.5 2.6 2.6-10°

48 31.0 2.7 1.4-107°

192 59.9 2.8 4.9.10¢
768 118.7 3.3 1.4-1076
3072 234.6 3.8 6.3-10°7
12288 450.4 4.1 3.3-1076
49152 852.5 4.3 6.5-10~7
196608  1566.4 4.5 7.3-1077
786432  2730.5 4.6 7.8-1077

3.5.2 Local refinements

Here we take T as a sequence {7 } .>1 of (conforming) locally refined partitions,
where T;, > T;—1 is constructed by applying Newest Vertex Bisection to all
triangles in 7, _; that touch a corner of the cube.

Table 3.2 contains results for the preconditioned single layer operator dis-
cretized by piecewise constants .- 9. The preconditioned condition numbers
are nicely bounded, and the timing results confirm that our implementation
of the preconditioner is of linear complexity, also in the case of locally refined
partitions.

61



3. PROBLEMS OF NEGATIVE ORDER: PRECONDITIONING AT LINEAR COST

TaBLE 3.2. Spectral condition numbers of the preconditioned single layer system
discretized by piecewise constants .- 19, using local refinements at each of
the eight cube corners. Operator G 7 is applied using the multi-level operator
with 8 = 5.3. The second column is defined by ht i, = minper /[T
The last column indicates the number of seconds per degree of freedom per
application of G'r.

dofs A7 .min ks(GTAT) sec/ dof

12 1.4-10° 2.63 2.5-107°
336 8.8-1072 2.73 2.4-10°6
720 5.5-1073 2.91 1.8-10°¢

1104 3.4-107% 2.96 1.8-10°
1488 2.1-107° 2.99 2.2-10°6
1872 1.3-10°6 2.98 2.0-10°6
2256 8.4-107% 3.00 2.3-1076
2640 5.2-107° 3.00 2.0-1076
3024 3.2-10719 3.01 2.3-1076
3408 2.0-10~1 3.01 2.5-10~6
3696 2.5-10"12 3.01 2.6-10°6
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4  Problems of positive order

4.1 Introduction

This chapter deals with the construction of uniform preconditioners for oper-
ators of positive order, using the framework of ‘operator preconditioning’ as
described in [Hip06], see e.g. [SW98, CNO0] for earlier work. It will build on
our experiences with this approach for problems of negative order developed
in Chapter 2.

For some d-dimensional domain (or manifold) €2, a measurable, closed,

possibly empty v C 92, and an s € [0, 1], we consider the Sobolev space

Vo= [LQ(Q%H&,W(Q)]&y

with Hg _ (€2) being the closure in H'(Q) of the smooth functions on € that
vanish at 7. For ¥ C ¥ a closed, e.g. finite dimensional subspace, and
A7: Y1 — V7 some boundedly invertible linear operator, we are interested
in constructing a preconditioner Gr: V7 — ¥7. More specifically, thinking of
a family of spaces ¥7 and operators Ay : Y7 — ¥, our aim is to construct
preconditioners G such that GrAr: 7 — ¥#7 is uniformly boundedly in-
vertible.

It is well-known that such preconditioners of multi-level type are available.
The advantage of operator preconditioning is, however, that it does not require
a hierarchy of trial spaces.

In order to apply the operator preconditioning framework, one needs to
construct families of closed subspaces #7- C # := ¥, uniformly boundedly
invertible By : #7 — #7, and uniformly boundedly invertible D7 : 73 — #7.
Then the resulting preconditioners G'1 are of the form

_ —1
Gr:=D;7'Br (D)) .

The canonical setting is that for A: ¥ — ¥, i.e., an operator of order 2s,
and an opposite order operator B: # — #’, both boundedly invertible and
coercive, it holds that (A7u)(v) := (Au)(v) (u,v € ¥7), (Bru)(v) := (Bu)(v)
(u,v € #7), and (D7u)(v) 1= (u,v) 1, ) (u € ¥7,v € #7). A typical example
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4. PROBLEMS OF POSITIVE ORDER

for s = 1/2 is that A is the Hypersingular Integral operator, and B is the Weakly
Singular Integral operator, see [SW98].

A careful selection of #7 has to be made to ensure that D: ¥7 — %
is uniformly boundedly invertible. A suitable family of (¥7, #7) pairs has
been introduced in [Ste02, BC07]. Here 7 is a triangular partition of a two-
dimensional domain or manifold, #7 is the space of continuous piecewise lin-
ears w.r.t. 7, and #7 is a subspace of the space of piecewise constants w.r.t. a
barycentric refinement of 7, constructed by subdividing each triangle into 6
subtriangles by connecting its vertices and midpoints with its barycenter. It
has been shown in [Ste02, HUT16] that the preconditioner arising from these
pairs (Y7, #7) is a uniform preconditioner for families of partitions that satisfy
a certain mildly-grading condition.

A problem with the constructions from [Ste02, BC07] appears when one
considers the matrix representation G7 in the standard bases, ie. G5 =
D}l BTD}T. Indeed, this matrix D is not diagonal, and its inverse is densely
populated so that it has to be approximated. Moreover, in order to get a
uniform preconditioner, since G7, being spectrally equivalent with A7, gets
increasingly ill-conditioned with a decreasing minimal mesh-size, the accuracy
with which D' has to be approximated increases with a decreasing minimal
mesh-size. As a result, an application of D' cannot be expected to execute in
linear time.

Another (practical) issue with these constructions is the need for the con-
struction of the non-standard barycentrical refinement of 7. This refinement
increases the number of elements by a factor 6, and therefore also increases
the cost of evaluating By : #7 — #7.

4.1.1 Contributions

With 77 being the space of continuous piecewise linears, the construction of
W7 presented in this chapter improves on the existing approach from [Ste02,
BC07] concerning the following aspects:

e The matrix representation D7 of Dy will be diagonal, allowing one to
(exactly) evaluate D" in linear time;

o The operator G+ will be a uniformly well-conditioned preconditioner
for families of uniformly shape regular partitions, without requiring a
mildly-grading assumption on the partitions;

e By using a stable decomposition of an enclosing space of #7 into a
standard finite element space %7 w.r.t. T (either being the space of
piecewise constants or %7 = #7) and some bubble space, our By will
be the sum of the corresponding Galerkin discretization operator of the
opposite order operator B, and an operator whose representation is a
diagonal, with which the undesired barycentrical refinement is avoided;
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4.1. Introduction

e The construction of #7 applies in any space dimension, and extends to
non piecewise planar manifolds.

We will extend the preconditioners to higher order finite element spaces
by applying a subspace correction framework.

Due to the interchanged roles of primal and dual spaces, compared to
our work in Chapter 2 on preconditioning operators of negative order, here
the stable construction of #7 is simpler, but, on the other hand, the stable
decomposition of an enclosing space of #7 is more delicate.

4.1.2 Outline

Sect. 4.1.3 recalls some notation that will be used throughout the article. In
Sect. 4.2 the general theory of operator preconditioning is summarized. In
Sect. 4.3, the framework is specialized to operators of positive order discretized
with continuous piecewise linears. Sect. 4.4 give two constructions of By €
Lis.(#7,#7) that avoid any refinement of the partition 7 that underlies the
trial space #7. In Sect. 4.5 the preconditioners are generalized to higher order
finite element spaces, and to spaces defined on manifolds. Finally, in Sect. 4.6
we report some numerical results obtained with the new preconditioners.

4.1.3 Notations

By A < pwe willmean that A can be bounded by a multiple of j1, independently
of parameters which A and p may depend on, with the sole exception of the
space dimension d, or in the manifold case, on the parametrization of the
manifold that is used to define the finite element spaces on it. Obviously,
A2 pisdefinedas pu S A and A< pas A S pand A 2 p.

For normed linear spaces % and %, in this work for convenience over R,
L(%, %) will denote the space of bounded linear mappings # — 2 endowed
with the operator norm || - ||z ). The subset of invertible operators in
L(%, Z)withinversesin L( %, %) willbe denoted as Lis(#', %). The condition
number of aC € Lis(%, Z)is defined as ko o (C) := ||C|| (2, ) |IC 22, 2)-

For % a reflexive Banach space and C' € L(%, %) being coercive, i.e.,

(Cy)(y)

inf 5
o£ve?  |yl|3

both C' and R(C):=3(C + ") are in Lis(#, %) with
ROl ez 2) < Cllew,2),

1IC @2y < IREC) Mg o) = (

(Cy)(y))‘l.

inf
o#ye? ||y

2
22
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4. PROBLEMS OF POSITIVE ORDER

The subset of coercive operators in Lis(%,%") is denoted as Lis.(%#,%").
If C € Lis,(%,%"), then C~' € Lis,(#",%) and |R(C™) .oy <
IC1 22 a7 IRC)le@r,2)-

Given a family of operators C; € Lis(%;, 27) (Lis.(%;, 27)), we will write
C; € Lis(%;, %) (Lis.(%;, Z;)) uniformly in 4, or simply “uniform’, when

supmax([|Cill .2, 1C; lo(z,2)) < o0,
1

or
sup max([|Cil| £z, 2,9, 1R(Co) "l o(2,.)) < 00

Given a finite collection T = {v} in a linear space, we set the synthesis
operator

Fr:R#¥T S spanYT:c—c' Y= Z CyU.
veY

Equipping R# T with the Euclidean scalar product (-, ), and identifying (R#T)’
with R#T using the corresponding Riesz map, we infer that the adjoint of Fr,
known as the analysis operator, satisfies

Fy: (spanT) — R¥Y: f o f(T) = [f(v)]ver-

A collection Y is a basis for its span when Fy € Lis(R#T spanT) (and so
Fi € Lis((spanT)',R#T).)

Two countable collections T = (v;); and T = (%;); in a Hilbert space will
be called biorthogonal when (Y, T) = [(v;, 0;)]; is an invertible diagonal matrix,
and biorthonormal when it is the identity matrix.

4.2 Operator preconditioning

We shortly recap the idea of opposite order preconditioning, which is based
on the following result, see [Hip06, Sect. 2].

Proposition 4.2.1. Let ¥, % be reflexive Banach spaces.
IfBe Lis(W,W')and D € Lis(¥V', #'), then

G:=D'B(D" e Lis(V, V),
and

Gl cvr vy < ID™ Mz ) IBllcow s
G eor oy S IDWZey pn 1B Hleows my-
If additionally B € Lis (W, W), then G € Lis.(¥', V), and
IR(G) Ml 2wy < IDNZ ey ) IRB) o)
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4.2. Operator preconditioning

Let be given families of finite dimensional spaces ¥7 for 7 € T, and oper-
ators Ay € Lis(¥7, #7) uniformly in 7 € T. Then in light of Proposition 4.2.1
we will seek preconditioners for Ay of the form

Gr = D7'Br(Dy)7,

where By € Lis(#7,#7) and Dy € Lis(¥7, #7) (both uniformly in 7 € T),
and

(4.1) dim #7 = dim 7.

A typical situation is that for some reflexive Banach space ¥ and A €
Lis.(¥,¥"), it holds that ¥ C ¥ (thus equipped with || - ||v) and (A7u)(v) :
(Au)(v) (u,v € #7), so that indeed A € Lis.(¥7,#77) uniformly in T €
Then for a suitable reflexive Banach space %/, an operator B € Lis.(#, W' ),
and a subspace #7 C # (thus equipped with || - || ), one can take (Brw)(z) :=
(Bw)(2) (w, z € #7), giving By € Lis.(#7, #7) uniformly. A possible con-
struction of Dy € Lis(#7, #7) uniformly is discussed in the next proposition.

Proposition 4.2.2 (Fortin projector ([For77])). For some D € Lis(¥,#"), let
Dy € L(Y7, #7) be defined by (Dv)(w) := (Dv)(w). Then

1D\ vy < N Dlley wy-

Assuming (4.1), additionally one has Dy € Lis(¥7,#]) if, and for W being
a Hilbert space, only if there exists a projector Pr € L(W , W) onto W¢ with
(DY7)((Id — Pr)#') = 0, in which case

IDF oz ey S NPTl cow mID ™ Hleow vy
In our applications, the choices for #" and D will be obvious, and the key
ingredient for the construction of a uniform preconditioner G5 will be the
selection of #7 that allows for a uniformly bounded Fortin projector Pr-.

421 Implementation

Let &1 = (¢;); and ¥ = (¢;); be bases for ¥7 and #7, respectively. Then in
coordinates the preconditioned system reads as

FolGrArFe, = GrAr := D7'BrD; ' AT,
where
A7 = ‘F</1>TAT‘F<I>T? Bt = f\/I/TBTf‘l!Ta D7y = ‘F\/I/TDT]:@T.

By identifying a map in L(R#®7 R#®7) with a #®7 x #®r matrix by
equipping R#*®7 with the canonical basis (e;); one has,

(A7)ij = (Fo, AT Ferej e) = (ArFo,e;)(Fore) = (Ard;)(¢i),
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4. PROBLEMS OF POSITIVE ORDER

and similarly,

(B1)ij = (Br;) (i), (D1)ij = (D16;) (i)

Preferably Dy is such that its inverse can be applied in linear complexity, as
is the case when D is diagonal. A goal of this work is to construct such a
diagonal D

Remark 4.2.3. Using o(-) and p(-) to denote the spectrum and spectral radius
of an operator, clearly o(G7 A1) = o(G1rA7). So for the spectral condition
number we have

ks(GTAT) == p(GTAT)p((GTAT)™") < Ky 9 (GT AT),

which thus holds true independently of the choice of the basis ®7 for 77.
Furthermore, in view of an application of Conjugate Gradients, if A7 and
Bt are coercive and self-adjoint, then A7 and G are positive definite and
symmetric. Equipping R 77 with [|-] := [(G7)~= - | or [|]| := [|(A7)= - |,
in that case we have

figaim 7 |4y, R o7 ) (GTAT) = s (GT AT).

4.3 Continuous piecewise linear discretization space

For abounded polytopal domain 2 C R¢, a measurable, closed, possibly empty
v C 09, and an s € [0, 1], we take

V= (La(9), HY (), W=,

5,27
which forms the Gelfand triple ¥ — Ly(Q2) ~ Lo(Q2)" — #'. We define the
operator D € Lis(¥,#"’) as the unique extension to ¥ x #  of the duality
pairing

(Dv)(w) := <v7w>L2(Q)7

which satisfies HDH[:("V,"/V’) = HD_lHE(’W’,"f/) =1.

Let (7T) et be a family of conforming partitions of € into closed uniformly
shape regular d-simplices. Thanks to the conformity and the uniform shape
regularity, for d > 1 we know that neighbouring T,7" € T, ie. TNT' # 0,
have uniformly comparable sizes. For d = 1, we impose this uniform ‘K -mesh
property’ explicitly.

Forsome 7 € T, denote V. 9— as the subset of vertices that are not on y, where
we assume that v is the (possibly empty) union of (d — 1)-faces of T' € T. For
T € T, write Ny for the set of its vertices, set N := N% N Ny, hy = ||/,
and the piecewise constant function hs by hy|r = hp (I’ € T). For any
vertex v € NY, define the patch wr,, :=|J (reTwery I’ and the local mesh size
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4.3. Continuous piecewise linear discretization space

hr., = |wr.,|*/?. We omit notational dependence on T if it is clear from the
context, and simply write w, and h,,.

Let the discretization space #7 be the space of continuous piecewise linears,
Zero on vy,

Vr=SP" ={ue H (Q):ulr e PL(TET)}CV,
equipped with the nodal bases
q)T:{qu:VeNg‘}

defined by ¢, (V') := d,,» (v,V' € N%). For future reference, define the space
of discontinuous piecewise constants by

I = {u e Ly(Q): ulr € Py (T €T)} CH,
equipped with the basis
4.2) Sr={1p:TeT}

where 1k is defined by, forany K C Q, 1k := 1on K, and 1x := 0 elsewhere.

4.3.1 The subspace #r
We will construct the preconditioning space #7 as
Wr =span VW C ¥, with dim #7 = dim ¥+

for a collection ¥ C Ly(Q2) that is biorthogonal to ®7, and for which the
biorthogonal projector Pr € L(#,#') onto #7 is uniformly bounded. We
require the collection W7 := {¢, € #': v € N$} to satisfy

43) b, ) La@)] = S [ bull o 190 o) (v,v" € Np),

’ supp?, Cw, (v € Ng—).

Existence of such collections will be shown later in Sect. 4.4.

4.3.2 Bounded Fortin projector

From (4.3) it follows that the biorthogonal Fortin projector Pr: Hg ()" —
Ly() onto #7 with ran(I — Pr) = "//7} L2 exists, and is given by

_ (U, du) Lo (02)
Pru= Z <¢V71/JV>L2(Q)¢U

veNS

Uniform boundedness of || Pr||z ¢y ») follows from uniform boundedness of
its adjoint PJ-, which can be shown similarly as in Theorem 2.5.1':

INote that the roles of # and # are interchanged compared to Chapter 2.
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4. PROBLEMS OF POSITIVE ORDER

Theorem 4.3.1. It holds that suprc1 | Prllcow w) = subret | Prllcev,v) < oc.

Proof Let 7 € T. Define w(o) =T forT € T, and for « = 1,..., denote
(l U{T,GT Tl 20 T'. The adjoint P7: Ly(€2) — Hy () onto #7 is
given by
< ¢V>L
P/ u = 2
T yg\;‘) <¢V7¢V>Lz (b

Properties of the nodal basis functions, H¢VH%2(Q) ~ h%and ||¢U||%11(Q) < hi-2,
in combination with (4.3), can be used to show that, for 7' € 7 and k € {0, 1},

HUHL su v kuHL Q
1PFull ey < Nowllaeery 2(supp 1) 2
@ e [(Pvs Vo) Lo

—k —k
< Z hy "l Ly supp ) S B ||UHL2(W(T1>)7
veND,

from which we may directly conclude that

sup || P, < 00.
sup 1P7 | £(La(9), L2 (92))

For proving boundedness in H . (Q2), we consider the Scott-Zhang ([SZ90])
interpolator I : H} ~(Q) = 77. From (4.4) and properties of the Tl [SZ90,
(3.8) and (4.3)], we deduce that

1Prull ) = [Wru+ Pr(d = Tr)ul g r)

+ hp'l|(1d — II7)

S HUHHl(w(Tl)(T)) uHLz(w(Tl)(T))

<
~ Hu”Hl(wg?) (7))’
and consequently
/
’S/}}:‘PI' ||PT||L(H(;w (Q),H] () < OO
An application of the Riesz-Thorin interpolation theorem yields the result. [

The basis ¥ has the crucial benefit that the matrix representation of D,
ie.
DT = <(I)Ta \IIT>L2(Q)7
is diagonal, and thus easily invertible, cf. Sect. 4.2.1.
Combining the theorem with Proposition 4.2.2 gives the following corollary
(without requiring additional assumptions on the family of partitions T).

Corollary 4.3.2. Supposewe have By € Lis.(#7, #7) uniformly. With D V5 —
W defined by (D7v)(w) = (v,w) 1,0, we find that Gy = D' By(Dly) ™"
Lisc(V7, V) is a uniform preconditioner of A € Lis.( V7, V7).
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4.4. Construction of By € Lis.(#7,77)

Given some B € Lis.(#,#"), a possible choice for By € Lis.(#7, 77 )
uniformly in 7 € T, is (Byu)(v) := (Bu)(v) (u,v € #7). Ford € {2,3} and
W' = ¥ = H3(Q), a suitable B is given by the Weakly Singular Integral
operator, whereas for #' = ¥ = HO%O(Q) = [LQ(Q),H(}(Q)}%Q, the recently
in [HJHUT18] introduced Modified Weakly Singular Integral operator can be
applied. Similar comments apply to screens.

4.4 Construction of By € Lis.(#7, #7)

We expectit tobe impossible to construct a basis ¥ in the (standard) spaces .- 1o
or fﬁ’l that is local and biorthogonal to ® as required in (4.3). One remedy
is to construct ¥ in a (finite element) space w.r.t. a refined partition 7. > 7.
However, this implies that some opposite order operator B € Lis.(# ', #') has
to be discretized on a space w.r.t. the refined partition 7.. This increases the cost
of the preconditioner, and moreover, increases implementational complexity
as one has to actually construct this refined partition.

To circumvent (explicit) dependence on the refined partition 7., we shall
apply the idea described in Sect. 2.3. That is, we will construct an operator
By € Lis.(#7, %) by decomposing an enclosing space of space #7 into a
a standard finite element space %, either ,5’;1’0 (in Sect. 4.4.2) or 5@?’1 (in
Sect. 4.4.3), and some bubble space 7. On % we will apply the Galerkin
discretization operator of the opposite order operator 3, whereas on the bubble
space #7 a diagonal scaling will suffice.

In the first subsection we present this construction of By for some abstract
#7. In the subsequent subsections, we will present two viable options for #7,
leading to two different preconditioners.

44.1 Stable decomposition

The role of the space ‘%" is the next proposition is going to be played by #7.

Proposition 4.4.1. Let Z be an inner product space, Q € L(Z, %) a projector,
and with % = ranQ, let # := van(ld — Q), BY € Lis.(%,%"), and B? ¢
Lis.(B, B'). Then for any subspace ¥ C %,

(By)(5) = (B Qu)(Q9) + (BZ(1d - Q)((1d - Q)7) (4,5 € ¥),
is bounded and coercive — B € Lis (¥, %) — with

1Bz, <
(1QI2 + VIQIT = TRTZ) max (1B |l ), 1Bl (aa,00),
IRB)  @r,2) <
(14 VI=TQI2) max(IRGB™) ™ e ), IRB?) e ),
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4. PROBLEMS OF POSITIVE ORDER

where || Q] :== |Q| z(z,2)-

Proof. Let y,y € #. Write u = Qy, b = (Id — Q)y, and similarly @ = Qg,
b= (Id — Q)y. We have

(BN @) <max (B e 2 187N e ) - (Il 1l 2 + 1ol 2 15]12)

<max(-)y/lull + 1615 -/ Il + 1513

and

(B ) = win (IRB™) 1zt IRB?) gl ) ) - Ul + bl1%):

llutb%
Wlth’}/ = bup()#(u bYEU X B ”Jf”,jw for0 §£ (’LL b) € U x B wehave W
[1 —~,1+1]. Using that , /5 == = ||Q|| (see e.g. [Szy06, (5.5), (5.7), (6.2)]), the
proof is easily completed. O

Remark 4.4.2. For a quantitatively weaker result as Proposition 4.4.1 to hold it
is actually sufficient when () is only defined on %/, and neither is it needed
that it is a projector. Under these relaxed conditions, obvious estimates show
bounds as in Proposition 4.4.1 with the factors ||Q[* + /[|Q||* — ||Q|> and
1+ +/1—[Q| 2 reading as ||Q|#||®> + (1 + ||Q|«||)? and 2, respectively. Both

original factors are equal to 1 when () is an orthogonal projector.

We are going to apply this abstract proposition with ‘%'= ¥, ‘% ’'= Ur
being a standard finite element space, ‘%’= %7 being a suitably constructed
‘bubble space’, and ‘2= 27 := %1 + %, all equipped with the norm on #'.
The resulting ‘B’ will be the By € Lis.(#7, #7) we are seeking.

In order to apply above proposition, what is left is the construction of a
(uniformly) bounded projector defined on 2. Furthermore, to allow for a
simple preconditioner on %7 we would like to find a setting in which on this
bubble space the # -norm is equivalent to a weighted Ly-norm. Both issues
will be dealt with in the next two lemmas. The operator 7|2, in the first
lemma will play the role of ‘Q)’ in Proposition 4.4.1.

Lemma 4.4.3. Let Q1 € L(L2(Q), Hy ,(Q)') be a projector, % C ran Q7 and
PBr C ran(Id — Q) be subspaces of Lo(N2), and with %5 := U + B, let

(1) ||hz! (1d — QPllemy_(9),122) S L (approximation property)
(2) SUP7eT HQTlffT”ﬁ((ffT,lH\Lz(sz)),Lz(Q)) ,S 1, (boundedness in LQ(Q))
(3) b7 ML) S W+ 1my @) on 27 (inverse inequality)

Then Q7| %, : 25 — Zisaprojector,ran Q| 2, = Uy, ran(Id—Q7|2,) = B,
and
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4.4. Construction of By € Lis.(#7,77)

() suprer Q7|2 |l c(2r ) 1w ) ) < 00
@) ||l = 115 - || o) on B

Proof. The first three statements are easily verified. From (1) it follows that for
u e Hp (Q):

(u, (Id — Q7)) ,(0)

[dd = Q7)ullmy @y = sup
Hg () Vel (Q) ||'U||Héy’y(Q)
< |hrull Ly 1h7 (1d = QF)vll L, ()
- vEHé,w(Q) ”,U”Héw(ﬂ)

S Ihrull o)
Together with the inverse inequality on 27, this gives boundedness of || (Id —
QT)L@VT ||L((2£T’H'HH(I),_Y(Q)’)’Hév’Y(Q)/) and thus of ||Q7_|2’T ”‘C((QpT’”'”HéW(Q)’)’H(%,'Y(Q)l) .
The first result then follows from (2) and an interpolation argument.

By the inverse inequality on %1 and the previously derived inequality, we
have for by € Zy C ran(Id — Q1) that

167l m12_ 0y = 10d = QT)bT a1z (2 S Ih7b7 ] L2(2) S 071 HS_ (0 -
Another interpolation argument yields the second result. O

Lemma 4.4.4. Suppose that || - || =~ ||h5F - || 1, (q) holds on PB1, and that O is a
uniformly ||h5- - ||, (o)-stable basis for #7, i.e.

PBr=spanOr and |p3y ] cobl7, 0y = > veo, [P 1ML @),

then, for any (1 > 0, an operator B¥ € Lis (B, By is given by

(4.5) (BE D cot) (> dob) =B1 > coda|hF0]7, -

0cOr 0cOr 0cOr

Remark 4.4.5. It is not possible to construct By € Lis(#7, #7) directly as a
diagonal scaling operator. Indeed, this would require |[wr||» < [|hFwr 1,
for wr € #7. Suppose this to be true, then by Ls(2)-boundedness of the
biorthogonal projector Pr, we would find for v € #7 that

h=Svr, P h=Svr, P
ol = sup T LTOta) T bT P
wELs(Q) w2, wela (@)  IPTwl Ly

U w U w:
sup (7;, T)La () < swp (v, WT) Lo () < lorlly,
wrewr IMwTllo) ~ wrewsr 0Ty

which is known not to be true for smooth functions in %7
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4. PROBLEMS OF POSITIVE ORDER

Concluding: If, given a family of subspaces #7 C L2(f2), one can find
a family of projectors Q1 € L(L2(Q), Hj ,(Q)'), subspaces %7 C ran Q7 (of
finite element type) and %7 C ran(Id — Q) such that

(4.6) Wr C %5 = Ur + Br

(with these spaces equipped with ||-|| % -norm) and the conditions of Lemma 4.4.3
are satisfied, then given B¥ € Lis.(%r, %) and BY € Lis.(%7,#}), the op-
erator B defined by

47)

(Brw)(®) == (BY Qrw)(Q7w)+(BF(1d—Qr)w)(1d—Q7)d) (w,d € #7),

is in Lis.(#7, #). Moreover, assuming a uniformly |25 - ||, )-stable basis
for Z7, the operator B canbe of simple diagonal scaling type, where a natural
definition for B¥ is by (B7u)() := (Bu)(a) (u,@ € %r) for some opposite
order operator B € Lis.(#,#"). Finally, since Q)1 enters the implementation,
we search this projector to be of local type.

4.4.2 A space 77 enclosed in a space decomposable into the
piecewise constants and bubbles

In this subsection, we construct #7 = span ¥+ such that both ¥ is biorthog-
onal to &7 ((4.3)), and #7 is enclosed in a space that allows an appropriate
decomposition into the space of piecewise constants %7 := .7/ 1% and a bub-
ble space %#7.

Fix T € T and let 7, > T be a uniform red-refinement, i.e. every simplex
T € T is subdivided into 2¢ subsimplices.? We define ¥ = {¢7,: v €
N9}y Sf "9 by taking a weighted difference of “patch indicator’ functions:

(4.8) Yr, =211, —1,. . (veNY).

Lemma 4.4.6. The collection U satisfies (4.3) with supp ¢, = wy,, and

(4.9) (T s OT ) o) = Our|wr | (v,V' € NY).

Proof. Clearly supp¢7, = wr,, so we are left to show the biorthogonality
condition. Fix some vertex v € Ng-. For a simplex T, € 7 with v € T}, we
have

7. |
d+1°

(11, 070) 1202 =

2Red-refinement is not uniquely defined for d > 3, but the refined simplices at the corners of
the “parent simplex” are uniquely determined which suffices for our goal.
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4.4. Construction of By € Lis.(#7,77)

Let T, , € T. be the (unique) simplex with v € T, , C T},. From the refinement
equation satisfied by the nodal hats, and |7, ,,| = 27¢|T},|, it follows that

Z _ 2-4T, B
<1T*,1/7 ¢T,V>L2(Q) = <1T*,u7¢7;,l/ + 2 1¢T*71?>L2(Q) = ‘ | (1 + 2 1d)7
. d+1
u;éuENT*,V
27T,y P
A7, s dT W ) La) =+ = i+1 — 2 (v#V €Np).
From these relations (4.9) follows. O

By Lemma 4.4.6 it has been established that the Fortin interpolator is uni-
formly bounded, and that D is represented by a diagonal matrix. The next
proposition verifies the conditions imposed in Sect. 4.4.1 for the construction
of BT-

Proposition 4.4.7. Let %1 = ./ L0 o .= span W+ as constructed above, QQ+ be
the Lo(Q)-orthogonal projector onto %y, O := (Id—Q7) ¥, and Bt := span Or.
Then W7 C 27 = Ut + PB1 ((4.6)), the conditions of Lemma 4.4.3 are satisfied, in
particular Q7 = 1, and O is a uniformly ||h3- - ||, ()-stable basis for B+ as
required for Lemma 4.4.4.

Proof. The first statement follows from #7 C L2(£2). The first two conditions
of Lemma 4.4.3 are obviously valid. Concerning the third condition, the
inverse inequality |7 - |[1,0) S I - ||Hé,7(Q)’ holds, for general d, on Yil’o,
see e.g. Lemma 2.3.4, and thus in particular on Z7. The property Q7v¢, = 1.,
is easily checked.

We are left to show that the collection of bubbles {0, := (Id — Q7)v,: v €
N9} is [[h5 - ||L,()-stable. Pick some T' € T, then the normalized ‘bubble
element matrix’ satisfies

i|T‘71<9V791/>L2(T) = |T|71<2d1w7;,v - 1wT,,,72d1w7—*=V/ - 1wT,V/>L2(T)
(4.10) Cf2r-1 v=ve Ny,
-1 v#v € NJ.

For d > 2, this constant (symmetric) (d+1) x (d+1) matrix is strictly diagonally
dominant, and therefore positive definite. We conclude this proposition by

‘Zth,,l,L( —Tz:h NZ 2Sz:|cu| 10.1%, (7

veENS €T vEND. vENY
= D el Y hiblim = D el 1h50ulE, o) =
vENY TeT veENY
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Remark 4.4.8. For d = 1, the bubbles arising from ¥ as given in (4.8) do not
forma ||h%-- ||, (o) -stable collection. Instead, with 7. ~ 7 being the two times

uniform red-refinement, one can consider ¢r, = 1, — 11, for which

the statements of Lemma 4.4.6 and Proposition 4.4.7 are again valid.
Implementation
The matrix representation of preconditioner ]-';; G7(Fp, )" is given by
Gr=D;7'BrD;'.
With U as constructed in (4.8), we find that Dy = ‘F‘/I/TDT‘F‘PT is given by
Dy = diag{|w,|: v € N3 }.
Given some B? € Lis.(%r,%;) (recall that %r = .77 L9 then by taking
B as described in (4.7), we have
By = .F(I,TBT.F\IIT
= Fu, (Q7B¥ Q7 + (1d — Q7)'BZ(1d — Q7)) Fu,
=prBYpr + BY,
where, using that 75! (Id — Q7)Fy, = Idby O7 = (I — Q7)¥r,
BY = R BYFu, pri= FolQrFu,, BYi=Fb BiFo,.

Recall the canonical basis ¥ for % from (4.2). Using Q7. = 1,,, shows
that
1 ifT Cw,,

0 else.

(PT)T0 = {

From (4.10), we infer that ||hSTGDH%2(Q) ~ |w, |7 By making a harmless

modification to the definition of BY in (4.5) based on this equivalency, we
obtain that Lz
B =pD; 7.

The matrix B¥ depends on the operator B¥ € Lis.(%r, %) that is selected.
The canonical choice is the Galerkin discretization operator on %7 of a B €
Lis. (W, #"). The cost of the application of G'r is the cost of the application of
B plus cost that scales linearly in #7.

4.4.3 A space #7 thatis enclosed in a space decomposable into the
continuous piecewise linears and bubbles

We follow the same program as in the previous subsection Sect. 4.4.2 but now
with % = 5”%1, being the space of continuous piecewise linears.
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4.4. Construction of By € Lis.(#7,77)

Other than in Sect. 4.4.2, we cannot apply Proposition 4.4.1 for Q)1 being
the orthogonal projector onto %, since with the current choice of this space
it will not be a local projector. As an alternative, we take ()7 to be some
biorthogonal projector. The question whether it enjoys an approximation
property is answered in the following lemma.

Lemma 4.4.9. For v € N, so including vertices on -y, let 51, € Lo(R2) be such that
@) bl SHY D dv="Ta, swpé, C B(v;Rhy)
for some constant R > 0, and

[(Gus b)) o) = Surlwn| (v, € NY).

Denote @Z— = span{<5y: v E N%} so without vertices on ~. The biorthogonal

projector Q7+ w37 e no W(JSV for which ran Q1 = 72" and ran(Id —
v La(Q

Qr) = @?‘ L2 satisfies the approximation property
[h7" (1d — Qv e (9,222 S 1,

and [|Q7 || (L,(9),L22)) S 1.

Proof. We use the same strategy as in Chapter 2. That is, we define a Scott-
Zhang type quasi-interpolator Il: H(Q) — L2(Q), cf. [SZ90]. For every
v € N, selecta (d — 1)-face e, of some T € T withv € e, ande, C yifv € 7.
We define I11 by

Hru = Z 970 (WOT 0, 970 (1) 1:][ u ds.
vENT ey

Since g7, (1) = 1, using the properties from (4.11) one can show, cf. proof
of Theorem 2.5.1 for details, that

1h7 (1d = ) (@) o) S lulli)  (u€ HY(RQ)).

By construction, g7, (u) = 0 for v on v and v € Hj_ (), and therefore
ran Il7| L@ C @VT Finally, combined with L4 (€2)-boundedness and locality

of Q’-, and the fact that Q- reproduces @;, we find that
|7 (1d = Q7 )0l Loy = inf_ A7 (Id — Q) (v — wr)l Ly
wr EUT

< 7t (1 = ) @)l zagey S ol o) (v € H ().

The last statement can be proven similarly as in the proof of Theorem 4.3.1. [
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4. PROBLEMS OF POSITIVE ORDER

As before, let 7. >~ T denote a uniform red-refinement of 7, and for any
T e Tandv € Np, let T, , € 7. denote the simplex with v € T, C T. For
v € Nt, so including boundary vertices, define

Y 1 d2ttd 21+d -1,0
OTw = d+1 E : <1T+ d+1 1T*,u ~ d+1 § : 1T*,u/) € ,5”7* :
TeT v €Nt
TCwy V' v

These functions satisfy (4.11), and

(DT ST ) La() = O (d+ 1) Hwr |,

and so determine a valid biorthogonal projector ()7 via Lemma 4.4.9.
For T.. > T, a uniform red-refinement of 7., we define O := {01 ,: v €
N7} by
242 od
97’71, . — Zdﬁ (2 1WT**,V - 10.17‘*,,,)'
Since red-refinement subdivides each simplex into d subsimplices, one infers
that

(4.12) By =spanO7 Ly, ) S5 "7,
so that in particular Z7 C ker Q7.
Defining W7 := {¢7,: v € N3} by
V7w =070 + 07,0,
calculations as in the proof of Lemma 4.4.6 show the following result.

Lemma 4.4.10. The collection U satisfies (4.3) with supp ¢, = wr,, and

WJT,w ¢T,u’>L2(SZ) = 51/1/’(d + 1)_1‘WT,I/| (V> v € N’S)’)

So the Fortin interpolator is uniformly bounded, and D7 is represented by
a diagonal matrix. Next we verify the conditions imposed in Sect. 4.4.1 for the
construction of Br.

Proposition 4.4.11. Let %y, Q7, B1, and #7 = span V1 be defined as above.
Then W1 C Z7 = Ut + P71 ((4.6)), the conditions of Lemma 4.4.3 are satisfied,
in particular &7 = Q7Yr and so O = (Id — Q7)Vr, and lastly, O is an
|5 - || L, ()-orthogonal basis for 1 as required for Lemma 4.4.4.

Proof. The first statement is obviously true. We have already verified the
first two conditions of Lemma 4.4.3. The third condition follows from this
inverse inequality on ./ 1’1 (seee.g.(2.44)), and ¢+ = Q7 VYt is a consequence
of (4.12). The last statement follows from |supp#, N suppf,.| = 0 when
v#£V. O
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Implementation

Suppose that we have some operator B € Lis.(%r, %) uniformly (here
Ur = Yg’l). The matrix representation of the preconditioner G'r, with B
from (4.7) and the bases from Proposition 4.4.11, becomes

Gr=D;'BrD;",
By = Fy, (QrBf Qr + (1d = Q7)'BF (1d - Q7)) Fu»
= BY + BY,
with these matrices given by

Dy := Fy, Dy Fo, = diag {34 : v € N7},

BY .= Fjy B¥Fo,, BZ:=F, BZFo, =Dy 7,

where we used that ]-",ngT}"q,T = Id and ]-"@_1 (Id — Q7)Fw, = Id, and
where, based on [|h50, (7, ) = |wy| 1+% , we made an harmless modification
to the operator BY from Lemma 4.4.4.

4.5 Extensions

4.5.1 Higher order

Add the superscript 1 to the spaces defined so far, e.g. write ¥} for Yf?’l with
its nodal basis ®%-, and similarly use G- for the associated preconditioner from
either Sect. 4.4.2 or Sect. 4.4.3.

We will now consider a (family of) higher order continuous piecewise
polynomials, i.e. for some ¢ € {2,3,...} let

= 5@9’4 ={ue Hé’,y(Q)l ulr €EP(TET)C V.

Because we have an inverse inequality on #7-, we can construct a uniform pre-
conditioner G-+ € Lis(#7, #7) using an additive subspace correction method.
That is, we consider the overlapping decomposition ¥ = ¥} + #2, where
these spaces are given by

Yr=0r ), Y7 =070 ly). 97 =07 lhe" La@)-

Proposition 4.5.1. For k € {1,2}, let G% € Lis.((¥F)', V), then for I% - VF —
Y4 the trivial embedding, we find that G := Y a_| ILGE(IEY € Lis (Y4, ¥7),
with

k
1GT 0 vy S max 1GTllecorgy vy

IR(GT) v,y S max II?R(GT) Yoo oo yhy)-
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4. PROBLEMS OF POSITIVE ORDER

Proof. We have the (standard) inverse inequality [|u||y < [|h7"u| 1, ) for u €
7. Letu € ¥, then for any (u1,us) € ¥} x ¥2 with uy + us = u we find

[ully < Hlually + luzlly S llually + 17 usll Ly 0)-

Denote II%-: Hj () — ¥4 for the Scott-Zhang interpolator ([SZ90]). For u €
1 1 1 2 : :
V7, take uy = 7w € Y7 and up = u — II-u € 77, then from approximation
properties of the interpolator we infer
lurlly + 17 vl Ly @) < lully + luzlly + (17" uell Ly

S llully +[1h7 "zl L, @) S llullv-
Since apparently for u € ¥7,
lully = inf {|lully + [|h7%uz| Ly ) ur € 74, uz € Yo, ug +up = u},
the result follows from subspace correction methods theory, e.g. [Osw94]. [

On the space ¥} we can apply the operator G} constructed earlier, whereas
on ¥? a simple scaling operator suffices. Denote N;)_,z for the set of canonical
Lagrange evaluation points of y%e’ and let % = {¢’: v € N%e} be the
corresponding nodal basis. For some constant $» > 0, define an operator
Ry: V2 — (V3) by

(Rru)(w) = By" Y [0yl @ uv)w(v).

VEN;)JE
Proposition 4.5.2. The operator G% := R satisfies G% € Lis.((V3)', V#) uni-
formly.

Proof. It is not hard to see that the result follows if % is a (uniformly) || -

|| L) -stable basis. Writing Ni»* := N* 0 T, this stability can be deduced
from

[ 3 st
£

VENE,)—”

> e

VEN;)J‘

2
— Z h;Qs
L2() TeT

= Y eI o7, )

UEN%Z

2
= h—QS cy? (b’l/ 2
it TZT w2 Y lenPIoLIT ey

VEN;)JK

Implementation

Equipping 77 and ¥} with ®%, and ¥ with ®1, the matrix representation of
Gr=S0_ IEGE(IE) € Lis (¥4, V7) is given by

Gt = qrGirqr + G7,
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with G%— either from Sect. 4.4.2 or Sect. 4.4.3,

(a7)vw = 0L (v) (V' € Ny* v e NPY.

and ,
. —s — 0,
G7 = B diag{[|h7° 0yl .20y v € N7'}

4.5.2 Manifolds

Let T be a compact d-dimensional Lipschitz, piecewise smooth manifold in R%
for some d’ > d with or without boundary OI'. For some closed measurable
v C dl'and s € [0,1], let

V= [Lo(T), Hy,(D)]s,2, W =",

We assume that I' is given as the closure of the disjoint union of UY_; x; (),
with, for 1 <i <p, x;: R = RY being some smooth regular parametrization,
and ; C R? an open polytope. W.L.o.g. assuming that for i # j, ; N Q; = 0,
we define

x: Q=09 — U xi(Q4) by x

Q = Xi-

Let T be a family of conforming partitions 7 of I' into “panels’ such that,
for 1 <i <p, x }(T) N, is a uniformly shape regular conforming partition
of 2; into d-simplices (that for d = 1 satisfies a uniform K -mesh property). We
assume that  is a (possibly empty) union of ‘faces’ of T' € T (i.e., sets of type
xi(e), where e is a (d — 1)-dimensional face of x; ! (T)).

The usual lowest order boundary element spaces are defined by

5”7?1’0 = {u e LQ(F) u o X‘X—l(T) S P() (T S T)},7
5”70_’1 ={ue H&V(F): wo x|y-1ry € P1 (T €T)},

with their canonical bases denoted as X7 = {1r: T € T} and &7 = {¢,: v €
N}, respectively, with NY the vertices of 7 not on 7.

The construction of the preconditioners in the domain case relied on the
explicit construction of a collection ¥+ biorthogonal to &7, and on the ex-
plicit computation of a (bi)orthogonal projection of #7 := span ¥+ onto ei-
ther 77% or 72!, where orthogonality was interpreted w.r.t. the Lo(Q)-
scalar product. Both the construction of ¥ and the computation of the
(bi)orthogonal projection could be reduced to computations on the individual
elements in the partition, which yielded explicit expressions.

When attempting to transfer everything to the manifold case, a problem
is the appearance of a generally non-constant weight z—|dx(x)| in the Lo(I')-
scalar product

(0,0 Ly(ry = /Q u(x(@))v(x(2))|0x ()] d.
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4. PROBLEMS OF POSITIVE ORDER

To deal with this, following Sect. 2.3.2, on Ly (I') we define an additional ‘mesh-
dependent’ scalar product

=X o [, M

TeT

which is constructed by replacing on each x~!(7T'), the Jacobian |9x| by its
average % over x (T, and interpret (bi)orthogonality with respect to
this scalar product.

Now all steps in the construction of the preconditioners carry over, and yield
preconditioners for the manifold case whose implementations are exactly as
described in Sect. 4.4.2 and Sect. 4.4.3, where the patch volumes |wr .| now
should be read as the volumes of the patches on I'.

To prove that the constructed preconditioners are indeed uniform precondi-
tioners requires additional work due to the use of the mesh-dependent scalar
product. We refer to Chapter 2 for details. The key ingredient is that not only
the norm associated to (-, -) 1, (r) is uniformly equivalent to || - ||z, r), but also
that (-,-) 7, (r) and (-, -)7 are close in the sense that

(v, u)r — (v, u) L, )| S hrvllnmyllull L,y (v,u € La(T)).

4.6 Numerical experiments

Let ' = 9[0,1]®> C R® be the boundary of the unit cube, ¥ = HY%(T),
W = H-'/2(T), and %5 = .#3' C ¥ the trial space of continuous piecewise
polynomials of degree ¢ w.r.t. a partition 7. We shall evaluate preconditioning
of essentially a discretized Hypersingular Integral operator.

The Hypersingular Integral operator A € £(¥,7") is only semi-coercive,
since it has a non-trivial kernel equal to span{l}. Solving Au = f for f
with f(1) = 0 is, however, equivalent to solving Au = f with A given by
(Au)(v) = (Au)(v) + a(u, L r,m)(v,1)p,a) for some o > 0. This operator
A is in Lis.(¥,7"), and we shall consider preconditioning discretizations
Ar € Lisc(V7, V) of A. By comparing different values numerically, we found
a = 0.05 to give good results in our examples.

As opposite order operator B we take the Weakly Singular integral opera-
tor, which on compact 2-dimensional manifolds is known to be in Lis.(#, #").
We will compare preconditioners G based on the discretizations B¥ €
Lis(Ur, Uy ) of B, for Ur = Yoray = 54?’1 equipped with the canonical
bases ¥ = {1p: T € T} and &7 = {¢,: v € Ny}, respectively, cf. Sect. 4.4.2
or Sect. 4.4.3.

For ¢ = 1 (the lowest order case) and 77 being equipped with ®7, the
matrix representation of the preconditioner Gt reads either as (Sect. 4.4.2)

Gr=G7"" = D7 (prBY pr + 51.D7*) D!
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4.6. Numerical experiments

. 1 7T Cuw,,
where BY = (BX7)(X7), Dy = diag{|w,|: v € N7}, (p1) 10 = {

0 otherwise,
and B; > 0is some constant, or as (Sect. 4.4.3)

Gr =G3' = D' (BY + 407" Dy’

where BY = (B®7)(®7), Dy = diag{|$*
constant.

For ¢ > 1 denote the above G by either G#_ r G#O’l, then, with
Vr = Y7O-’£ being equipped with the standard nodal basis {¢/,: v € N4}, the

matrix representation of the preconditioner G € Eisc((ﬁﬁo—’e)’ ,Yf?’e) from
Sect. 4.5.1is

v € Ny}, and 1 > 0 is some

1,0
o

. L T . -3 0-2 . ¢
Gr = qrG7 g1 + P2 diag{||h ¢u||L2(Q)' v € N7},

where either x = —1,0 or x = 0,1, and (g7),, = ¢%, (v) ( € N, v € N}).
The (full) matrix representations of the discretized singular integral opera-

tors A7 and BY are calculated using the BEM++ software package [SBAT15].

Condition numbers are determined using Lanczos iteration with respect to

1
I = 11 A7 - .

4.6.1 Uniform refinements

Consider a conforming triangulation 7; of I' consisting of 2 triangles per side,
so 12 triangles with 8 vertices in total. We let T be the sequence {7 }x>1 of
uniform newest vertex bisections, where 7, > 7Tj;_1 is found by bisecting each
triangle from 7;_;.

With 77 = .7, Table 4.1 compares the condition numbers for the pre-
conditioned system given by Sect. 44.2 (%1 = ./ L9y and by Sect. 4.4.3

(U1 = ffﬂ’l). We see that the condition numbers remain nicely bounded,
and that both choices give similar condition numbers.

Instead of using the ‘full matrices’, we can consider compressed hierarchical
matrices to approximate the stiffness matrices A+ and B¥ for finer partitions.
Table 4.2 gives the condition numbers, again for uniform refinements, but now
using hierarchical matrices based on adaptive cross approximation [Hac99,
Beb00]. We see that even for large systems, our preconditioner gives very
satisfactory results.

Finally, consider the (higher order) trial space ¥7 = .#7**. Table 4.3 gives
condition numbers for the preconditioned system, using the method described
in Sect. 4.5.1.
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TasLe 4.1. Spectral condition numbers of the preconditioned hypersingular
system, using uniform refinements, discretized by continuous piecewise lin-
ears .#;", with a = 0.05. The preconditioners G’ and G are constructed
using the single layer operator discretized on % = .77 (Sect. 4.4.2) and

Ur = y;)—’l (Sec 4.4.3), respectively, where have used 5; = 0.65 in the first case
and $; = 0.34 in the second case.

dofs ks(A7) rs(GF"Ar) Kks(GY Ar)
14 3.0 2.71 2.64

50 7.1 2.36 2.37
194 14.2 2.25 2.26
770 28.7 2.30 2.27
3074 57.8 2.29 2.27
12290 115.7 2.29 2.27
49154 231.4 2.30 2.27

TaBLE 4.2. In the same setting as Table 4.1, but using compressed hierarchical
matrices.

dofs kg (AT) Ks(G;-l’OAT) KS (GgilAT)
12290 115.6 2.29 2.27
24578 168.7 2.24 2.24
49154 231.3 2.30 2.27
98306 336.9 2.25 2.25
196610 461.7 2.30 2.28
393218 671.9 2.27 2.28
786434 751.6 2.30 2.30

TaBLE 4.3. Spectral condition numbers of the preconditioned hypersingular
system, using uniform refinements, discretized by continuous piecewise cubics
Yg’?’, with o« = 0.05. The higher order preconditioners G}l’o and Ggil are
constructed as described in Sect. 4.5.1, by using the preconditioners from
Table 4.1 with constants ; = 0.65, 82 = 0.065 in the first case and 5, =
0.34, 2 = 0.065 in the second case.

dofs lis(AT) KS (G;—l’oAT) Ks (Ggll AT)
56 19.49 4.75 4.72
218 36.27 5.18 5.17
866 74.78 6.23 6.20
3458 150.73 6.55 6.48
13826 301.97 6.63 6.57
55298 603.86 6.65 6.58
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TasLE 4.4. Spectral condition numbers of the preconditioned hypersingular
system discretized by 5”70—’1 using local refinements at each of the eight cube
corners. Both preconditioners G}l’o and Ggil are constructed with same
parameters as in Table 4.1, and are compared against diagonal preconditioning.
The second column is defined by A7 i = minger hr.

dofs hymin  ks(diag(A7) ' A7) rs(Gr°A7) rs(GT A7)

8 1.4-10° 2.15 2.83 2.68

14 1.0-10° 2.79 2.71 2.64
314 1.1-1072 12.11 2.21 2.20
626 1.2-107* 13.18 2.31 2.30
938 1.3-10°6 13.43 2.36 2.36
1250 1.4-1078 13.51 2.39 2.38
1562 1.6-1010 13.53 2.41 2.39
1850 2.5-10712 13.55 2.41 2.40

4.6.2 Local refinements

Here we take T to be the sequence {7 }x>1 of locally refined triangulations,
where 7, > Tj_1 is constructed using conforming newest vertex bisection to
refine all triangles in 7, _; that touch a corner of the cube.

Table 4.4 gives condition numbers of the preconditioned hypersingular sys-
tem discretized by continuous piecewise linears, i.e. ¥7 = 5”70—’1. The condition
numbers remain bounded under local refinements, confirming uniformity of
the preconditioner w.r.t. T.

4.7 Conclusion

Using the framework of operator preconditioning, we have constructed uni-
form preconditioners for elliptic operators of orders 2s € [0, 2] discretized by
continuous finite (or boundary) elements. The evaluation of the precondition-
ers requires the application of an opposite order operator plus minor cost of
linear complexity. Compared to earlier proposals, both the construction of a
so-called dual-mesh and the inversion of a non-diagonal matrix are avoided,
and our results are valid without constraints on the mesh-grading. For lowest
order finite elements the computed condition numbers of the preconditioned
system are below 2.5.
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5  The simplest case

5.1 Introduction

This chapter deals with the construction of uniform preconditioners for nega-
tive and positive order operators, discretized by continuous piecewise polyno-
mial trial spaces, using the framework of ‘operator preconditioning’ [Hip06],
see also [SW98, Ste02, BC07, HJHUT20].

For some d-dimensional closed domain (or manifold) 2 and an s € [0, 1],
we consider the (fractional) Sobolev space H*({2) and its dual that we denote
by H*(Q). Let (<7)ret be a family of continuous piecewise polynomials of
some fixed degree ¢ w.r.t. uniformly shape regular, possibly locally refined,
partitions.

Given some families of uniformly boundedly invertible operators

As (Ll =) = (71 @)

Br: (Sl @) = (| o)

we are interested in constructing a preconditioner for A1 using operator pre-
conditioning with By, and vice versa. To this end, we introduce a uniformly
boundedly invertible operator D7: (7, |||l gr-+()) = (7 |- ||Hs(Q))', yield-
ing preconditioned systems D' By (D/) ' A7 and (D/-)~* A7 D> By thatare
uniformly boundedly invertible.

In Chapters 2 and 4 we already constructed such preconditioners in a more
general setting where different ansatz spaces were used to define Ay and Br.
The setting studied in the current work, however, allows for preconditioners
with a remarkably simple implementation.

A typical setting is that for some A: H™*(Q) — H*(Q?) and B: H*(Q) —
H~°(Q), both boundedly invertible and coercive, it holds that (A7u)(v) :=
(Au)(v) and (Byu)(v) := (Bu)(v) with u,v € .#7. An example for s = 1 is
that A is the Single Layer Integral operator and B is the Hypersingular Integral
operator. For this case, continuity of piecewise polynomial trial functions
is required for discretizing B, but not for A, for which often discontinuous
piecewise polynomials are employed. Nevertheless, when the solution of
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5. THE SIMPLEST CASE

the Single Layer Integral equation is expected to be smooth, e.g., when Q is a
smooth manifold, then itis advantageous to take an ansatz space of continuous
(or even smoother) functions also for A.

An obvious choice for D7 would be to consider (D7u)(v) := (u,v),(q).-
However, a problem becomes apparent when one considers the matrix repre-
sentation D of Dt in the standard basis being the mass matrix: the inverse
matrix D', that appears in the preconditioned system, is densely populated.
In view of application cost, this inverse matrix has to be approximated, where
it generally can be expected that, in order to obtain a uniform preconditioner,
approximation errors have to decrease with a decreasing (minimal) mesh size,
which will be confirmed in a numerical experiment. To circumvent this issue,
we will introduce a D7 that has a diagonal matrix representation, so that its
inverse can be exactly evaluated.

5.1.1 Notation

In this work, by A < 1 we mean that A can be bounded by a multiple of 1, inde-
pendently of parameters which A and ;s may depend on, with the sole exception
of the space dimension d, or in the manifold case, on the parametrization of
the manifold that is used to define the finite element spaces on it. Obviously,
A2 pisdefinedas pu S A and A< pas A S pand A 2 p.

For normed linear spaces ¢ and £, in this chapter for convenience over R,
L(¥ , Z) will denote the space of bounded linear mappings # — % endowed
with the operator norm || - ||z #). The subset of invertible operators in
L(¥, %) with inverses in L(Z, %) will be denoted as Lis(%, &).

For % a reflexive Banach space and C' € L(#, %) being coercive, i.e.,

o (VW)
2
o£yer  ||yll3,

both C' and R(C):=3(C + C’) are in Lis(#, %) with
ROl e .2y < NClle@ .2,

IC ™ e@r 2y < IRC) Mg ,a) = (

>0,

(Cy)(y))*l.

n
oAver |lyll%y

The subset of coercive operators in Lis(#,%") is denoted as Lis.(#,%").
If C € Lise(#,%), then C~1 € Lis(#', %) and |R(C™) oy <
”CH%(Z%@/’)H%(C)il”[,(@’,@)-
Given a family of operators C; € Lis(%;, Z;) (Lisc(%;, Z3)), we will write
C; € Lis(%;, %) (Lis.(%;, 27)) uniformly in 4, or simply “uniform’, when
sup max([|Cill c(a, 2:): 1C7 2 2,20)) < 00,

or
sup max([|Cill £ (@, 2,), IR(Co)Hle(z,m)) < oo
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5.2 Construction of D+ in the domain case

For some d-dimensional domain 2 and an s € [0, 1], we consider the Sobolev
spaces

H*(Q) := [Lo(Q), H (Q)]s2, H %(Q) := H*(Q),
which form the Gelfand triple H*(2) < Lo(2) >~ Lo2(Q) — H°(Q).

Remark 5.2.1. In this work, for convenience we restrict ourselves to Sobolev
spaces with positive smoothness index which do not incorporate homoge-
neous Dirichlet boundary conditions and their duals. The proofs given below
can however be extended to the setting with boundary conditions, see the
arguments found in Chapters 2 and 4.

Let (7)7et be a family of conforming partitions of € into (open) uniformly
shape regular d-simplices. Thanks to the conformity and the uniform shape
regularity, for d > 1 we know that neighbouring 7, 7" € T, i.e. TNT" # 0,
have uniformly comparable sizes. For d = 1, we impose this uniform ‘K-mesh
property’ explicitly.

Fix £ > 0. For T € T, let .7 denote the space of continuous piecewise
polynomials of degree ¢ w.r.t. T, ie.,

Sri={uec H'(Q) :u|lr € P (T €T)}.

Additionally, for r € [—1, 1], we will write /7, as shorthand notation for the
normed linear space (7, || - || u-(0))-

Denote Nt for the set of the usual Lagrange evaluation points of %7, and
equip the latter space with &7 = {¢7, : v € Ny}, being the canonical nodal
basis defined by ¢, (V') := 6, (v,v' € N7). For T € T, set hy := |T|*/* and
let Ny := T'N N7 be the set of evaluation points in 7. We will omit notational
dependence on 7 if it is clear from the context, e.g., we will simply write ¢,.

5.2.1 Operator preconditioning

Given some family of opposite order operators Ay € Lis.(S7—s, (L1.—s))
and By € Lis.(S7s, (F7s)"), both uniformly in 7 € T, we are interested in
constructing optimal preconditioners for both A7 and B, using the idea of
opposite order preconditioning ([Hip06]).

Thatis, if one has an additional family of operators D € Lis(7 —s, (7.5)")
uniformly in 7 € T, then uniformly preconditioned systems for Ay and By
are given by

D;—lBT(D%—)_lAT € Eis(yfr,,s, 5/7’7,5),

(5.1) N 1
(D7) A7D3 By € Lis(ST5, - STs),
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see the following diagram:

Frs T ()
Dy’ |-
(7s) B STs

In the following we shall be concerned with constructing a suitable family D.

An obvious but unsatisfactory choice for Dy

An option would be to consider (D7u)(v) = (u,v)r,) (u,v € #7), being
uniformly in £(.S7_s, (#1s)"). For showing boundedness of its inverse, let
Q7 be the Ly (9)-orthogonal projector onto .#7 then

iz I (U, V) ()
”L((VT,S)’,YT,,S) = inf sup R

D> _
|7 ol oS o Talme Qoo

—1
> NQT Wz (re (), 12())

As follows from Proposition 2.2.3, the converse is also true, i.e., uniform bound-
edness of | D7 z((#y.) .7 _.) is actually equivalent to uniform boundedness
of Q7| c(ms (), 14 (02))-

This uniform boundedness of || Q7| z(z: (), 7+ () is well-known for fami-
lies of quasi-uniform, uniformly shape regular conforming partitions of €2 into
say d-simplices. It has also been demonstrated for families of locally refined
partitions, for d = 2 including those that are generated by the newest ver-
tex bisection (NVB) algorithm, see [Car02, GHS16, DST20]. On the other
hand, in [BY14] a one-dimensional counterexample was presented in which
the L, (€)-orthogonal projector on a family of sufficiently strongly graded, al-
though uniform K meshes, is not H'(§)-stable. Thus, in any case uniform
H1(Q)-stability cannot hold without assuming some sufficiently mild grading
of the meshes.

Aside from this latter theoretical shortcoming, more importantly, there is
a computational problem with the current choice of D7. The matrix represen-
tation of D w.rt. 7 is the ‘mass matrix’ Dy := (@7, ®71) 1, ). Its inverse
DZ', appearing in the preconditioner, is densely populated, and therefore has
to be approximated, where generally the error in such approximations has to
decrease with a decreasing (minimal) mesh-size in order to arrive at a uniform
preconditioner.

5.2.2 Constructing a practical D

To avoid the preceding problems, we shall construct Dy € Lis(Sr,—s, (S71.5)")
with a diagonal matrix representation. To this end, we require some auxiliary
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space S C H! (€2) equipped with a local basis - that is Ly (€2)-biorthogonal
to @7 and that has ‘approximation properties’. To be precise, let ®7 := {¢, €
H'(Q) : v € N7} be some collection that satisfies:

<$Va ¢V’>L2(Q) = 6VV’<17 ¢V>L2(Q)7 Z 51/ = 1q,
(52) veENT

b lliry S I6ullar@ (k€ {0,1}), supp ¢, C supp oyt

We will take D := I Dy with D and I being defined and analyzed in the
next two theorems.

Theorem 5.2.2. The operator D ST—s = (,5”75) defined by (Dru)(v) :=
(u, ) ,(q), satisfies DT € Lis(Sr—s, (5’78) ) uniformly in T € T.

Proof. This proof largely follows Sect. 2.3, but because here we consider a
Sobolev space H*(£2) that does not incorporate homogeneous boundary con-
ditions, it allows for an easier proof.

From the assumptions (5.2), it follows that the biorthogonal ‘Fortin’ projec-

tor Pr: Ly(Q) — H'(Q) onto .%7 with ran(Id — Pr) = yﬁLZ(Q) exists, and is
given by

Pru= Z 7@ Gu)La(@) bu-

vENT <¢V7¢V>L2 (©2)

Let T € T, by (5.2) and the fact that (1,¢,)r,0) ~ ||gz$,,||2LQ(Q), we find for
ke€{0,1}

[ )
G3)  NPrulmm S Y. o T a6y S Bl 2 (o (7))
VENT vilL2(Q)

with wr (1) := Uy, enyy Supp ¢o. This shows suprer | Prll (2, (9),1,(0)) < o0
From the above inequality, and ), Ny ¢, = 1, we deduce that

1(1d = Pr)ullgr(ry = inf [|(1d = Pr)(u—p)| )
P€Po
. -1
S mf = pllar) +hzle = pllaeray
: -1
< plen7£0 hg llu — p||L2(wT(T)) + |u|H1(T)
S lulm @r(my),

with the last step following from the Bramble-Hilbert lemma. We conclude
that suprc1 | Prllz(a (o), m1 () < oo, and consequently by the Riesz-Thorin

IThis last condition can be replaced by b having (uniformly) local support.
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interpolation theorem, that

sup || Prllccms @), 1o (0)) < 0.
TeT

This latter property guarantees that Dy is uniformly boundedly invertible:

<1

~ <U,U>L2(Q)
| D7 Zron = Supsup
LI IT))  suezr 0£ve Ty, [l == (o) vl =0

Pt nf <U7U>L2(Q)
107 Wm0l 22 Tyl
T,s T,—s #ue T — 50751;6(?7— Ullg-s) |Vl H= ()

_ <u7U>L2(Q)
= inf sup
0#£u€Sr s overs (@) ulli-=@) 1Pl me(0)

v

1Pl 2210+ 2 =

Theorem 5.2.3. For I: 14 — 577,3 being the bijection given by Ir¢, = by
(v € N7), it holds that I € Lis(S7,s, S1,s) uniformly in T € T.

Proof. Note that we may write
(1, ) 15 () 1 (U, du) Ly (0)
ITu = 222 4, and I u= Z B e O
ng:T (Dvs dv)La(0) veny (Gvs Ov)La(0)

Equivalently to (5.3), we see for k € {0, 1} that

> 1601l |60 | 1.

() —
||ITu||Hk(T) S/ ||u||L2(Supp¢,,) f, th”u”Lg(wT(T))'

o 6wl (@)

Following the same arguments as in the proof of Theorem 5.2.2, using that
I71 = 1, then reveals that I is uniformly bounded. Uniformly boundedness
of I7" follows similarly. O

As announced earlier, we define Dy € LS s, (F75)") by Dy := 1}57—,
so (Dru)(v) == (u, ITv) 1,(0) (u,v € #7). Combining the previous theorems
gives the following corollary.

Corollary 5.2.4. The operator D is in Lis(S1,—s, (S1.s)") uniformly in T € T.
Remark 5.2.5. The matrix representation of Dy w.r.t. &+ given by
DT = <CI)T7[T(I)T>L2(Q) = diag{(l, d)y)Lz(Q) Ve NT},

which is diagonal and therefore easily invertible. The matrix D7 is known as
the lumped mass matrix.
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Remark 5.2.6. The operator D7 depends merely on the existence of a biorthog-
onal basis @ that satisfies (5.2). Indeed, this basis does not appear in the
implementation of D

A possible construction of &7 can be given using techniques from Chap-
ter 2. Consider some collection of local ‘bubble’ functions O = {6, € H'(Q2) :
v € Nr} that satisfy: |(0,, ) Lo ()| = 5w'\|¢u||2LZ(Q)r 10 e ) S NPwll e )
(k € {0,1}), and suppd, C supp¢,. Existence of such a collection can be
shown by a construction on a reference d-simplex, and then using an affine
bijection to transfer it to general elements, see Sect. 2.4. A suitable ®; that
satisfies (5.2) is then given by

~ :I.7 v > vy P’

< Va¢u>L2(Q) V' ENS < u/7¢v/>L2(Q)
We emphasize that the construction of a uniform preconditioner outlined in

this subsection does not assume some sufficiently mild grading of the meshes.

Implementation

Taking ¢ as basis for both .7 _; and .15, the matrix representation of the
preconditioned systems from (5.1) read as

D:'BrD;"Ar and D;"ArD;'Br,
where

A7 = (A7®7)(®7), B7:=(Bro7)(®7),
Dy= Dy = (Dy®7)(®7) = diag{(1,4,) 1,0 : ¥ € N7}.

Alternatively, we could equip the spaces with the scaled nodal basis =
_1
D> ®7, so that the Ly(€2)-norm of any basis function is proportional to 1,

yielding
Ar = (Ard7) (7)) = (D;°) ArD;?,
By = (Br®r)(®7) = (D7) BrD;?,

v

Dy := (D1o7)(®7)

[N

(D7*)TDyD;* =1d,

showing that B is a uniform preconditioner for A7 (and vice versa). To the
best of our knowledge, so far this most easy form of operator preconditioning,
where the stiffness matrix of some operator w.r.t. some basis is preconditioned
by stiffness matrix of an opposite order operator w.r.t. the same basis, has not
been shown to be optimal.
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5.3 Manifold case

Let T be a compact d-dimensional Lipschitz, piecewise smooth manifold in R%
for some d’ > d without boundary 9I'. For s € [0, 1], we consider the Sobolev
spaces
H*(T) := [Ly(T), H'(I)]s2, H™*(T):= H*(T)".

We assume that I is given as the closure of the disjoint union of UY_; x;(€),
with, for 1 <i < p, x;: R = RY being some smooth regular parametrization,
and ; C R? an open polytope. W.L.o.g. assuming that for i # j, ; N Q; =0,
we define

x: Q=09 — U xi(Q) by x

Q = Xi-

Let T be a family of conforming partitions 7 of I into “panels’ such that,
for 1 <i <p, x }(T) N¢Y is a uniformly shape regular conforming partition
of Q; into d-simplices (that for d = 1 satisfies a uniform K-mesh property).

Fix £ > 0, we set

Sr={ue HI(F): uo x|y-1r)y € P (T €T)},

equipped with the canonical nodal basis & = {¢, : v € N1}.

For construction of an operator Dy € Lis(-#1_s, (-#7.5)") one can proceed
as in the domain case. A suitable collection ®; that is L, (T')-biorthogonal to
&7 exists. Moreover, the analysis from the domain case applies verbatim by
only changing (-, )1, (q) into (-,-,) 1, (). A hidden problem, however, is that the
computation of D7 = diag{(1,¢,)r,r) : ¥ € Ny} involves integrals over I
that generally have to be approximated using numerical quadrature.

In Sect. 2.3.2 we solved this issue by defining an additional ‘mesh-dependent’
scalar product

= & u xX))v X X
)7 = 3 iy | ) e

TeT

This is constructed by replacing on each x ~!(T'), the Jacobian |0x| by its average
% over x (7).

By considering & that is biorthogonal to ®7 with respect to (-, -)7, and the

linear bijection I7 given by I1¢, = (EV, one is able to show that the operator
Dy defined as (Dyu)(v) := (u, I7v)r satisfies the necessary requirements.
For details we refer to Chapter 2. The resulting matrix representation of Dy
w.r.t. & is then given by Dy = diag{(1,¢,)7: v € Nt}

5.4 Numerical experiments

Let I' = 9[0,1]®> C R? be the two-dimensional manifold without boundary
given as the boundary of the unit cube, s = %, and .7 the space of con-
tinuous piecewise polynomials of degree ¢ w.r.t. a partition 7. We will
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evaluate preconditioning of the discretized Single Layer Integral operator
A € Lis(S7—s,(S1.—s)') and an (essentially) discretized Hypersingular
Integral operator By € Lis.(-%7.s, (7.5)").

The Hypersingular Integral operator Be L£(H2(T),H 2(I)),is only-semi
coercive, but solving Bu = f for f with f(1) = 0 is equivalent to solving
Bu = f with B given by (Bu)(v) = (Bu)( )+ afu, 1) 1, ry{v, 1), (), for some
fixed a > 0. This operator B is in Lis.(H 2 (I'), H~ 2 (I)), and we shall consider
discretizations By € Lis (-1, (#1.5)") of B. We found o = 0.05 to give good
results in our examples.

Equipping both .7, and .7,_; with the standard nodal basis &7 = {¢, :
v € N7}, the matrix representations of the preconditioned systems from
Sect. 5.2.2 read as

-

D;'BrD;"Ar and D;'ArD;'Br,

for Dy=diag{(1, ¢,)r,r): ¥ € N7}, Ar=(A7®7)(®7)and By:=(Br®71)(®7).

We calculated (spectral) condition numbers of these preconditioned sys-
tems, where this condition number is given by rg(X) = p(X)p(X 1) with
p(-) denoting the spectral radius. Note that the condition numbers of the
preconditioned systems coincide, i.e.,

rs(D7'BrDy" A1) = ks(D7" A7D7' Br),

so we may restrict ourselves to results for preconditioning of At.

We used the BEM++ software package [SBA*15] to approximate the matrix
representation of A1 and By by hierarchical matrices based on adaptive cross
approximation [Hac99, Beb00].

As initial partition 7, = 7; of I' we take a conforming partition consist-
ing of 2 triangles per side, so 12 triangles in total, with an assignment of the
newest vertices that satisfies the so-called matching condition. We let T be the
sequence {7 }r>1 where the (conforming) partition 7, is found by applying
both uniform and local refinements. To be precise, 7} is constructed by first
applying k uniform bisections to 7, and then 4k local refinements by repeat-
edly applying NVB to all triangles that touch a corner of the cube. These
partitions share both the difficulties of locally refined partitions (the presence
of triangles with strongly different sizes) and that of uniform partitions (the
diagonally scaled stiffness matrix has a condition number > 2*s1).

5.4.1 Comparison preconditioners

Write G2 := D' By D> for the preconditioner constructed in Sect. 5.2.2.
We will compare this with the preconditioner described in Sect. 5.2.1, for which
the matrix representation is given by G¥ := M' By M, " with mass matrix
M= M7T— = (®7,®7) L, ). Because our partitions of the two-dimensional

95



5. THE SIMPLEST CASE

TasLe 5.1. Spectral condition numbers, ks(G5 A7) for o € {D, M}, of the
preconditioned Single Layer system discretized on {7 }x>1, by continuous
piecewise linears (¢ = 1) in the middle columns and discretized by continuous
piecewise cubics (¢ = 3) in the right columns. Here G2 is the precondi-
tioner introduced in Sect. 5.2.2, whereas G¥ is the preconditioner described
in Sect. 5.2.1 whose application requires an application of M;', which we
implemented using an LU-factorization.

Partition 7 Linears (£ = 1) Cubics (¢ = 3)
hmm hmax ‘ dofs G?AT G%V—]AT ‘ dofs G?AT G7MA7*
1.4-10° 1.4-10° 8 16.2 1.20 56 90.5 1.68

44-1072  5.0-107°1 | 218 14.9 1.91 1946 87.9 2.08
1.3-107%  3.5-107°! | 482 14.7 2.04 4322  86.1 2.17
4.3-107° 1.7-107°' | 962 14.7 2.10 8642  85.0 2.21
1.3-107% 8.8-10792 | 2306 15.4 2.14 20738 84.9 2.23
42-1078%  4.4-107°% | 7106 15.6 2.16 63938 84.9 2.24
1.3-107°  2.2-10792 | 25730 15.8 2.17 231554 84.8 2.25
41-1071 1.1-10792 | 99650 15.8 2.17 896834 84.7 2.25

surface are created with NVB, we know that also the latter preconditioner
provides uniformly bounded condition numbers. In contrast to D', the
inverse M;' cannot be evaluated in linear complexity. We implemented the
application of M ;" by computing an LU-factorization of M-

Table 5.1 compares the spectral condition numbers for the preconditioned
Single Layer systems with trial spaces given by continuous piecewise linears
and those by continuous piecewise cubics. The condition numbers rs(G2 Ar)
are uniformly bounded, but quantitatively the condition numbers rs(G3 A7)
are better.

5.4.2 Improving the preconditioner quality

As observed in Table 5.1, the preconditioner G appears to be of superior qual-
ity, but it has unfavourable computational complexity. It does suggest a way
forimproving G2: by replacing D' with a better approximation of M}, one
may hope to improve the quality. To this end, we introduce damped (precon-
ditioned) Richardson. Let 0 < A_ < A (D7 M7), Aoz (D7 M7) < Ay,

R%Q) := 0 and for k > 0 define

2
Al A

being the result of k Richardson iterations. Correspondingly define

RY*Y = RY +wD7'(1d - MrRY), w

(5.4) G = RYBrRY.
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TabLE 5.2. Spectral condition numbers ﬁg(G%’f )AT) with G%lf) the precondi-
tioner from (5.4) that incorporates k Richardson iterations. The systems are
discretized by continuous piecewise linears in the left columns and discretized
by continuous piecewise cubics in the right columns.

Linears (¢ = 1) Cubics (¢ = 3)
dofs k=2 k=4 k=6|dofs k=2 k=4 k=6
8 2.26 1.29 1.22 | 56 10.1 3.99 2.65

218 3.05 2.07 1.94 | 1946 8.96 3.57 2.52
482 3.53 2.28 2.08 | 4322 8.80 3.59 2.52
962 3.79 2.44 2.19 | 8642 8.63 3.59 2.52
2306 3.98 2.52 2.24 | 20738 8.54 3.59 2.52
7106 4.18 2.57 2.27 | 63938 8.54 3.59 2.52
25730  4.35 2.61 2.28 | 231554 8.54 3.59 2.52
99650  4.47 2.65 2.29 | 896834  8.54 3.59 2.52

It follows that G(Tl) = G2 and limy_, G%’f) = G¥. Although we have no
proof, we suspect that G(T]~c ) provides a uniform preconditioner for A7 due

to the fact that R(Tk ) approximates M, while preserving constant functions,
being a key ingredient in the proofs of Theorems 5.2.2 and 5.2.3.

Values for A_ and A can be found by calculating the extremal eigenvalues
of the corresponding preconditioned mass matrix on a reference simplex, see
e.g. [Wat87]. For ¢ = 1 this gives w = z(if;), whereas for / = 3 and d = 2 we
computed w = 0.836.

Table 5.2 compares the condition numbers x g (G(T]C ) Ar)fork € {2,4,6}. We
see that a few Richardson iterations drastically improves our preconditioner,
making its quality on par with that of G}’ while having a favourable linear
application cost.

Finally, to show that one cannot simply use any (iterative) method for ap-
proximating M;!, we consider the case where one approximates this inverse
using a Jacobi preconditioner. The resulting preconditioner is then given by

(5.5) G = (diag M7) ' By (diag M)~ ".

Table 5.3 clearly displays that this is not a uniformly bounded preconditioner,
which we assume is due to the fact that (diag M7) ! does not preserve constant
functions for ¢ > 1.

5.5 Conclusion

Considering discretized opposite order operators A7 and Bt using the same
ansatz space of continuous piecewise polynomial w.r.t. a possibly locally re-
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TasLE 5.3. Spectral condition numbers ks(GJ-A7) with G2 from (5.5), and
systems discretized by continuous piecewise cubics (£ = 3).

dofs GJAr
56 62.6
1946 377.1
4322 495.6
8642 1016.9

20738  3067.8
63938 10928.3

fined partition 7, we consider matrices D such that D}l B7—D7_-T isa uniform
preconditioner for A7, and D;—T A7—D7_—1 for Br. The obvious choice for Dy
would be the mass matrix, however, it yields uniformly bounded condition
numbers only under a mildly grading assumption on the mesh, and more
importantly, it has the disadvantage that its inverse is dense. We proved that
when taking D7 as the lumped mass matrix the condition numbers are uni-
formly bounded, remarkably without a sufficiently mild grading assumption
on the mesh, while obviously its inverse can be applied in linear cost.

In our experiments with locally refined meshes generated by Newest Vertex
Bisection, the condition numbers with D7 being the mass matrix are quantita-
tively better than those found with D7 being the lumped mass matrix though.
Constructing D' as an approximation for the inverse mass matrix by a few
preconditioned damped Richardson steps with the lumped mass matrix as a
preconditioner, both the resulting matrix can be applied at linear cost and the
observed condition numbers are essentially as good as with the inverse mass
matrix.
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Part 11

Space-time methods for parabolic
evolution equations
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6  An adaptive method

6.1 Introduction

This chapter is about the adaptive numerical solution of parabolic evolu-
tion equations written in a simultaneous space-time variational formulation.
In comparison to the usually applied time-marching schemes, simultaneous
space-time solvers offer the following potential advantages:

e local, adaptive refinements simultaneous in space and time ([SY18, RS19,
GS19)),

e quasi-best approximation from the selected trial space (‘Cea’s lemma’)
([And13, LM17, SW21b]), being a necessary requirement for proving
optimal rates for adaptive routines ([CS11, KSU16, RS19]),

e superior parallel performance ([DGVdZ18, NS19, HLNS19, vVW21a]),

e using the product structure of the space-time cylinder, sparse tensor
product approximation ([GO07, CS11, KSU16, RS19]) which allows to
solve the whole time evolution at a complexity of solving the corre-
sponding stationary problem.

Other relevant publications on space-time solvers include [Stel5, LMN16,
S720, Dev20, DS20].

In any case without applying sparse tensor product approximation, a disad-
vantage of the space-time approach is the larger memory consumption because
instead of solving a sequence of PDEs on a d-dimensional space, one has to
solve one PDE on a (d + 1)-dimensional space. This disadvantage, however,
disappears when one needs simultaneously the whole time evolution as for ex-
ample with problems of optimal control ([(GK11, BRU20]) or data-assimilation
([DSw21)).

6.1.1 Parabolic problem in a simultaneous space-time variational
formulation

For some separable Hilbert spaces V' < H with dense embedding (e.g. H} (12)
and L, (2) for the model problem of the heat equation on a spatial domain
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6. AN ADAPTIVE METHOD

Q C R%), and a boundedly invertible A(t) = A(t)": V — V' with (A(t)")(-) =
-1} (e.g. (A)N)(C) = [, V- V( dx), we consider

GO+ Au(t) =g(t) (te (0,1)),
’LL(O) = Up.

An application of a variational formulation of the PDE over space and time

leads to an equation

-l

where, with X := Ly(I; V)N HY(I; V') and Y := Ly(I; V), the operator at the
left hand side is boundedly invertible X — Y’ x H.

6.1.2 Our previous work

In [CS11, RS19] we equipped X and Y with Riesz bases being tensor prod-
ucts of wavelet bases in space in time, and H with some spatial Riesz basis.
Consequently, the equation (6.1) got an equivalent formulation as a bi-infinite

well-posed matrix-vector equation [E] u= ng } (actually, in [RS19], we con-
0 0

sidered a formulation of first order, and in [CS11] we used a variational for-
mulation with essentially interchanged roles of X and Y, which however is
irrelevant for the current discussion). To get a coercive bilinear form we formed
normal equations to which we applied an adaptive wavelet scheme ([CDDO1]).
With such a scheme the norm of a sufficiently accurate approximation of the
(infinite) residual vector of a current approximation is used as an a posteriori
error estimator. The coefficients in modulus of this vector are applied as local
error indictors in a bulk chasing (or Dérfler) marking procedure. The resulting
adaptive algorithm converges at the best possible rate in linear computational
complexity.

The goal of the current work is to investigate to what extent similar opti-
mal theoretical results can be shown for finite element discretizations, whilst
realizing a quantitatively superior implementation.

6.1.3 Least squares minimization

Without having Riesz bases for X and Y, already the step of first discretizing
and then forming normal equations does not apply, and we reverse their order.
A problem equivalent to (6.1) is to compute

(6.2) u = argmin || Bw — g||§/, + ||yow — u0||%1.
weX
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An obvious approach for the numerical approximation is to consider the min-
imization over finite dimensional subspaces X° of X, which however is not
feasible because of the presence of the dual norm.

For trial spaces X° that are ‘full’ (or ‘sparse’) tensor products of finite
element spaces in space and time, in [And13] it was shown how to construct
corresponding test spaces Y° C Y of similar type and dimension, such that
(X°,Y?) is uniformly inf-sup stable meaning that when the continuous dual
norm || - ||y is replaced by the discrete dual norm | - ||ys/, a minimization
over X° yields a quasi-best approximation to u from X°. Such a family of trial
spaces however does not allow to create a nested sequence of trial spaces by
adaptive local refinements.

6.1.4 Family of inf-sup stable pairs of trial and test spaces

To construct an alternative, essentially larger family, let 3 be a wavelet Riesz
basis for Lo (0, T) that, after renormalization, is also a Riesz basis for H'(0,T)).
We equip this basis with a tree structure where every wavelet that is not
on the coarsest level has a parent on the next coarser level. In space, we
consider the collection of all linear finite element spaces that can be generated
by conforming newest vertex bisection starting from an initial conforming
partition of a polytopal Q into d-simplices. The restriction to linear finite
elements is not essential and is made for simplicity only. Now we consider trial
spaces X° that are spanned by a number of wavelets each of them tensorized
with a finite element space from the aforementioned collection. In order to be
able to apply the arising system matrices in linear complexity, see [KS14] or
Chapter 7, we impose the condition that if a wavelet tensorized with a finite
element space is in the spanning set, then so is its parent wavelet tensorized
with a finite element space that includes the former one.

The infinite collection of finite element spaces can be associated to a hier-
archical ‘basis’ that can be equipped with a tree structure. Each hierarchical
basis function, except those on the coarsest level, is associated to a node v that
was inserted as the midpoint of an edge connecting two nodes on the next
coarser level, which nodes we call the parents of v. With this definition there
is a one-to-one correspondence between the finite element spaces from our
collection and the spans of the sets of hierarchical basis functions that form
trees. Consequently, our collection of trial spaces X° consists of the spans of
sets of tensor products of wavelets-in-time and hierarchical basis functions-in-
space which sets are downwards closed, also known as lower, in the sense that
if a pair of a wavelet and a hierarchical basis function is in the set, then so are
all its parents in time and space. Spaces from this collection can be ‘locally’
expanded by adding the span of a tensor product of a wavelet and hierarchical
basis function one-by-one.

For this family of spaces X° we construct a corresponding family of spaces
Y?® C Y of similar type such that each pair (X°, Y ) is uniformly inf-sup stable,
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with the dimension of Y being proportional to that of X°. Furthermore, using
the properties of the wavelets in time and by applying multigrid precondition-
ers in space we construct optimal preconditioners at X and Y-side which allow
afast solution of the discrete problems argmin,,¢ xs [| Bw—gl[3.,/ +|vow—wuol|3;.

6.1.5 Adaptive algorithm

Having fixed the family of trial spaces, it remains to develop an algorithm that
selects a suitable, preferably quasi-optimal, nested sequence of spaces from
the family adapted to the solution u of (6.2). The theory about adaptive (Ritz-)
Galerkin approximations for such quadratic minimization problems is in a
mature state. As noticed before, however, Galerkin approximations for (6.2)
are not computable.

Therefore given X?, let X° O X?° be such that saturation holds, i.e., for
some constant ¢ < 1, it holds that inf s [[u — w|x < (inf,ecxs ||u — w||x.
We now replace problem (6.2) by

(6.3) u?® = argmin || Bw — gl[3.s + [lyow — uol|%,

wex?
where in the notation u%? the first instance of § refers to the space V¢ and the
second to the space X?. Its (computable) Galerkin approximation from X° is
given by

ud = argmin || Bw — 9||§/§' + [lvow — o[-

weX?
By a standard adaptive procedure, described below, we expand X° to some
X% C X? such that 4% is closer to u?® than u?°. Next, we replace Y by Y°
(being the test space corresponding to X?) and repeat (i.e. consider (6.3) with
(8,6) reading as (4, ), and improve its Galerkin approximation u® from X°
by an adaptive enlargement of the latter space).

The adaptive expansion of the trial space X? to X will be by the application
of the usual solve-estimate-mark-refine paradigm, where the error indicators
are the coefficients of the residual vector w.r.t. (modified) tensor product basis
functions that were added to X? to create X°. In order for this collection
of additional tensor product basis functions to be stable in X-norm, for this
step we modify the hierarchical basis functions such that they get a vanishing
moment, and therefore become closer to ‘real” wavelets.

Under the aforementioned saturation assumption, we prove that the overall
adaptive procedure produces an r-linearly converging sequence to the solu-
tion.

6.1.6 Numerical results

We tested the adaptive algorithm in several examples with a two-dimensional
spatial domain. In all but one case, we observed a convergence rate equal to
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1/2, being the best that can be expected in view of the piecewise polynomial
degree of the trial functions and the tensor product construction, and for non-
smooth solutions improving upon usual non-adaptive approximation. Only
for the case where 1y = 1 and homogenous Dirichlet boundary conditions are
prescribed, the observed rate was reduced to 0.4. It is unknown whether or
not this is the best non-linear approximation rate for our family of trial spaces.

Thanks to the use of optimal preconditioners and that of a carefully de-
signed matrix-vector multiplication routine, which generalizes such a routine
for sparse-grids introduced in [BZ96] to adaptive settings, we observe that
throughout the whole execution of the adaptive loop the total runtime re-
mains proportional to the current number of unknowns.

Recently in [FK21], see also [GS21], a first order system least squares
(FOSLS) of second order parabolic PDEs was proven to be well-posed. This
formulation has the very attractive property that the several components of
the residual are all measured in Ly-norms. So other than with (6.2) there is
no need to discretize a dual-norm, and so to guarantee an inf-sup condition.
Minimization over any conforming trial space yields a quasi-best approxima-
tion from that space in the corresponding ‘energy-norm’. This norm, however,
is stronger than the norm on X. For the aforementioned example of a dis-
continuity between initial and boundary conditions, and with the application
of continuous piecewise linear finite elements w.r.t. tetrahedral meshes of
the space-time cylinder it results in a convergence rate of 0.07 for uniform
refinements, which is not visibly improved using adaptive refinements.

6.1.7 Organization

This chapter is organized as follows: In Sect. 6.2 the well-posed space-time
variational formulation of the parabolic problem is discussed, and in Sect. 6.3
we discuss its inf-sup stable discretisation. The adaptive solution procedure
is presented in Sect. 6.4, and its convergence is proven. The construction of
the trial and test spaces is detailed in Sect. 6.5, and optimal preconditioners
are presented. In Sect. 6.6, the definition of the enlarged space X?° is given,
and the construction of a stable basis of a stable complement space of X° in
X9 is outlined. Numerical results are presented in Sect. 6.7, and a conclusion
is formulated in Sect. 6.8.

6.1.8 Notations

In this work, by C' < D we will mean that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Obviously,
C 2z Disdefinedas D S C,andC < DasC < Dand C 2 D.

For normed linear spaces E and F, by L(E, F') we will denote the normed
linear space of bounded linear mappings E — F, and by Lis(E, F') its subset
of boundedly invertible linear mappings £ — F. We write E — F' to denote

105



6. AN ADAPTIVE METHOD

that F is continuously embedded into £. For simplicity only, we exclusively
consider linear spaces over the scalar field R.

6.2 Space-time formulations of a parabolic evolution
problem

Let V, H be separable Hilbert spaces of functions on some “spatial domain”
such that V' — H with dense embedding. Identifying H with its dual, we
obtain the Gelfand triple V <— H ~ H' — V".
For a.e.
tel:=(0,T),

let a(t; -, -) denote a bilinear form on V' x V such that for any n,{ € V, t —
a(t;n, ¢) is measurable on I, and such that for some p € R, fora.e. t € I,

(6:4) la(t;n, O S Mnllv Kl (n,¢ € V) (boundedness),

©5)  altyn,n) + eln.myu 2 |l (neV)  (Girding inequality).
With A(t) € Lis(V,V’) being defined by (A(t)n)(¢) = a(t;n,(), given a

forcing function g and an initial value ug, we are interested in solving the

parabolic initial value problem to finding v such that

(6.6) { du(t)+ A(tyu(t) =g(t) (tel),

In a simultaneous space-time variational formulation, the parabolic PDE
reads as finding « from a suitable space of functions of time and space such
that

(Bu)(v) := / (2 (1), () + alt; w(t), v(t))dt = / (g(t), v(t)) = g(v)

I I

for all v from another suitable space of functions of time and space. One
possibility to enforce the initial condition is by testing it against additional test
functions. A proof of the following result can be found in [SS09], cf. [DL92,
Ch.XVIII, §3] and [W1082, Ch. IV, §26] for slightly different statements.

Theorem 6.2.1. With X := Lo(I; V)NHY(I; V'), Y = Lo(1; V), under conditions
(6.4) and (6.5) it holds that

[B] € Lis(X, Y' x H),
Yo

where fort € I, v,: u v~ u(t,-) denotes the trace map. That is, assuming g € Y’ and
uo € H, finding uw € X such that

-
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6.2. Space-time formulations of a parabolic evolution problem

is a well-posed simultaneous space-time variational formulation of (6.6).

With @(t) := u(t)e ¢, (6.6) is equivalent to % (t) + (A(t) + old)a(t) =
g(t)e=? (t € I),@(0) = ug. Since ((A(t) +old)n)(n) 2 |In|l¥, w.l.o.g. we assume
that (6.5) is valid for p = 0, i.e., a(t; -, -) is coercive uniformly for a.e. t € I.

For simplicity, cf. discussion in Remark 6.3.5, additionally we assume
that a(t;-,-) is symmetric, and define A = A’ € Lis(Y,Y’') by (Aw)(v) =

[, (Aw(t))v(t) dt.

Because [A € Lis(Y x H,Y' x H), an equivalent formulation of (6.7)

0
0 Id
as a self-adjoint saddle point equation reads as finding (1, 0,u) € Y x H x X
(where = 0 = o) such that

A 0 B |p g
0 Id vl |o]| = |uo|,
B~y 0] |u 0

(6.8)

or equivalently

A B ||p g
6.9 — 7
69) [B’ —7670] M [—%uO}
or
(6.10) (B'A™'B +1570) u = B'A™ g + vjuo -
Si= fi=

We equip Y and X with ‘energy’-norms

115 = (A -1 =105 + 10 - 1R + e - s

which are equivalent to the canonical norms on Y and X. Notice that (6.8)-
(6.10) are the Euler-Langrange equations that result from the minimization
problem
u = argmin || Bw — f|[%. + [lvow — uo||7-
weX

Lemma 6.2.2. We have || - |% = (S-)(-).
Proof. It holds that

Bu)(or (Bw)(vn) + (row, va) )2
fol% = sup B Lz = sup | !
o2 Tl o o olE el
= (Sw)(w>7

where the first equality can be found in e.g. [ESV17, Thm. 2.1], and, when
realising that S is the Schur complement of the operator in (6.8), the last one
in e.g. [KS08, Lemma 2.2]. O
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6.3 Discretizations

6.3.1 Galerkin discretization of the Schur complement equation

Let (X%)sca be a collection of closed, e.g, finite dimensional, subspaces of X,
so equipped with || - || x. We will specify such a family in Sect. 6.5-6.6.1. We
define a partial order on A by

§ <8« X C X9

For § € A, let us € X? denote the Galerkin approximation to the solution u of
(6.10), i.e., the solution of

(6.11) (Sus)(v) = f(v) (veX°),

being the best approximation to u from X° w.r.t. || - || x.
For proving convergence of an adaptive solution routine, as well as for a
posteriori error estimation, we shall make the following assumption.

Assumption 6.3.1 (Saturation). There exists a collection of subspaces (°G xUy) se a
Y' x H,a mapping -: A — A: § — § where § > 6, and some fixed constant ¢ < 1
such that for all § € A, assuming that (g,ug) € °G x °Up,

N

(6.12) llu = us|lx < Cllu—usllx-

Remark 6.3.2. Notice that above assumption cannot be valid without a restric-
tion on the right-hand side f = B’A7'g 4+ vjup € X'. Indeed given any
X% c X® C X, consider a non-zero f € X' that vanishes on X°. Then
us = us = 0 # u, meaning that (6.12) does not hold.

For the time being we will operate under the restrictive assumption that when-
ever we apply (6.12) (visible by the appearance of the constant () we simply
assume that (g,ug) € °G x °Uy. Later, in Sect. 6.4.3, we will remove this
assumption.

The discretized problem from (6.11) only serves theoretical purposes. In-
deed, since the Schur complement operator S contains the inverse of A, there
is no way to determine us exactly. The reason to introduce (6.11) is that S
is an elliptic operator, so that for § < & we can make use of |u — uz||% =
lu —us||% — |Jus — us||%, being a crucial tool for proving convergence of adap-
tive algorithms.

6.3.2 Uniformly stable Galerkin discretization of the saddle-point
formulation

Our numerical approximations will be based on Galerkin discretizations of the
saddle-point formulation (6.9). Let (Y°)sc be a collection of closed subspaces
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of Y, so equipped with || - ||y, such that

(6.13) XCYy® (5eA),
and
(6.14) 1> A = inf inf sup M > 0.

€A 0£weX gsycys [|Orw|ly||v]ly

Notice that 1 — yA can be made arbitrarily small by selecting, for each § € A,
Y9 sufficiently large in relation to X°.

For 6,6 € AwithY? D Y%, and EJ, E denoting the embeddings Y — Y,
X% — X, let (u%,u%) € Y° x X? be the solution of

udd

A/ 2 A/
EY AES E{ BE%

(6.15) A
EY'B'EY —EXvnEX

o/
oo
—E% Youo

or, equivalently,

A !
By (B'ES(ES AL BY B + +)0) By u®
(6.16) 556:=

’ a o & o/
= E% (B'Ey(EY AEY)'EY g +u0) -

5=

Below we will see that (6.15)-(6.16) are uniquely solvable. Formulated in
‘operator language (6.15) is the Galerkin discretization of (6.9) on the closed
subspace Y% x X% CY x X. Unless Y® =Y, it holds that % # E'SES and
19 + B3 f, and so generally u®® # u.

As we will see, however, for Y?, and thus Y?, ‘large’ in relation to X°, u%
will be ‘close’ to us. This will allow us to show that (r-linear) convergence of
a sequence of Galerkin solutions us of (6.11) implies (r-linear) convergence of
the corresponding sequence udd.

We equip X? with a family of ‘energy’ norms

(Orw)(v)?

w355 = w3+ sup + lyrwlf.
075’061/8 || HY
By definition of v, it holds that
(6.17) Yall - llx <1 llgss < - llx  on X°.

As follows from [SW21b, Lemma 3.3], similar to Lemma 6.2.2 we have the
following result.
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Lemma 6.3.3. Thanks to (6.13) (and Y C Y?), for w € X° it holds that

5 (Bw)(v)?
w355 = (S%w)(w) = sup T + [lvowll3-
o£veyd VY

By using additionally (6.14) this result shows that (5%%.)(-) is coercive on X x
X? so that (6.16), and thus (6.15), has a unique solution.
Moreover, we have the following result.

Theorem 6.3.4 ((SW21b, Thm. 3.7]). Thanks to (6.13) (and Y° C V%) and (6.14),
it holds that

(6.18) u— us|x < llu—u”|x <y3"u—usllx-.

Remark 6.3.5. Without the assumption of a(t; -, -) being symmetric, the operator
Ain (6.8), (6.9), (6.10), (6.15), (6.16), and in the definition of || - ||y should be
replaced by A, := %(A + A’"), whereas 0; in the definitions of || - || x, 7a in (6.18),
and || - || x5 should be replaced by 9, + A,, where A, := (A — A’). Then, as
shown in [SW21a, Thm. 6.1], it holds that ||u — u®®||x < vx?||u — us| x-

Still without assuming that a(t; -, -) is symmetric, it is interesting that under
the original, easier to demonstrate inf-sup condition (6.14) in terms of J;, a
quasi-optimality result similar to (6.18) can be shown, where then the upper
bound for [[u—u® | x /||u—us| x depends on || A, £(v,y), and cannot be driven
to 1 by taking Y sufficiently large in relation to X°. The latter, however, will
be essential for the analysis in the current work, being the reason why we
consider only symmetric a(t; -, -).

6.3.3 Modified discretized saddle-point

In view of obtaining an efficient implementation, in the definition of (,u‘%, u&s)

in (6.15), and so in that of $% and f°° in (6.16), we replace (Eé/AEf/)_l by
N A/ ~/ N

some K{ = K¢ € Lis(Y?°,Y?) for which both, for some constant ka > 1,

(K o)) - 5
(6.19) W € [kxthal (€A veEY?)

(ie. K f, is an optimal (self-adjoint and coercive) preconditioner for Ef,,AEé),
and which can be applied at linear cost. The resulting system (6.16) is now
amenable to the application of the (preconditioned) conjugate residuals itera-
tion.

Despite this modification, we keep using the old notations for u%, u

|- 155 == (8%9-)(-)%, and f%.

56 @b
IS 7
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6.4. Convergent adaptive solution method

As shown in [SW21b, Remark 3.8], instead of (6.18) now it holds that
5 K
(620) I = usllx < flu = ullx < 22w = usllx,

whereas one deduces that (6.17) now should be read as

(621) Tzl I <1 lis < VRSTflx on X

For our forthcoming analysis, we will need % — 1 to be sufficiently small.

Remark 6.3.6. Later, in the proof of Proposition 6.4.5, temporarily we will
consider the system (6.15) with 6 = 4 (i.e. Y% = Y?), but with X% replaced by
X, and, as we do in the current subsection, E,‘;/AEgs/ replaced by (K9.)~!. The
resulting Schur operator B'ES K% E3' B + /o will be denoted as $9°°.

Notice that the exact solution u solves $°°u = B'ES K3 ES' g + vuo. Ob-
serving that §% = E35%° E4,, we have the Galerkin orthogonality (5% (u —
u%9))(X?) = 0. It holds that

1 ((B-)(v))?
I [lxsee := (S°°)()2 = | sup = [lyo - I3
X orvers (KY)To)(w) =110 4
= (B BYKLES B + o - Iy
is only a semi-norm on X, which is equal to || - || xss on X?, and

(6.22) [ llxsee < VEall-llx  onX.

6.4 Convergent adaptive solution method

6.4.1 Preliminaries

Foré € A, we consider the modified discretized saddle point problem (i.e. (6.16)
with (E;S,/AE%)*1 replaced by K?) taking 4 := § from Assumption 6.3.1. So
for a given ‘trial space’ X°, we employ Y? as ‘test space’, which is known
to be sufficiently large to give stability even when employed with trial space
X® 2 X°. We will use this room to (adaptively) expand X° to some X° C X?
while keeping Y fixed. Then in a second step we adapt the test space to the
new trial space, i.e., replace Y by Y°. By doing so will construct a sequence
(6;) € A with §; < §;;1 such that (u%°); converges r-linearly to u.

As a first step, in the next lemma it is shown that if one constructs from
w € X% av € X° that is closer to the best approximation us to u from X?, then,
thanks to Assumption 6.3.1, v is also closer to w.
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Lemma 6.4.1. Let w € X°, v € X° be such that for some p < 1,

Jus —vllx < pllus — wl|x.
Then

[u—vllx < V¢ +p2(1 = ) [Ju—wlx.

Proof. Using u —us Lx X° twice, we obtain

lu = vl% = llu— usllX + [lus — vl%
< lu—uslk + p*llus — wilk
= llu — usll% + p*(lu — ik — llu — usl%)
= (1= p)lu—uslx + p?llu — wllk
< (=) +p)lu — %,
where we used Assumption 6.3.1 and |lu — us||x < ||Ju — w||x. O

Notice that u%° is the Galerkin approximation from X° to the solution
u®? € X9 of the system 599998 — 98 je. itis its best approximation from X s
w.rt. || - || xss. In the next proposition it is shown that an improved Galerkin
approximation from an intermediate space X SO XD X 5, i.e., the function

u®, is, for =& — 1 sufficiently small, also an improved approximation to u, and

furthermore that this holds true also for u%°. The latter function will be the
successor of 429 in our converging sequence.

Proposition 6.4.2. Let § < 5 = & be such that
(6.23) 2 — 2| o5 < plud® — ud®| s

Then it holds that

5 KA -
lu—u®lx < AV C+p2(1-¢) flu—u?|x,

pi=
where p = (1 —&—p‘é’?),/% -1 % +p > Notice that pand p are < 1

w?e;z p < Land 24 — 1is sufficiently small dependent on p with % —1 | 0 when
pT L

Proof. Using that u — us Lx X?, it follows that |Ju — ud%||3 < :—zAHu —usl%
- A

((6.20)) is equivalent to |lus — u®’|| x < :—ZA — 1 ||u—wus||x. Similarly, Assump-
- A

tion 6.3.1 is equivalent to ||u — us||x < %Hug; — wl||x for any w € X°.
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6.4. Convergent adaptive solution method

Additionally using (6.21), we infer that

lus = w®llx < flus — w2l x + [|u — u?x

< flug =+ L2 —
SHW—U*‘SHXJFPV = [ —

KA KA
< (14 p2) s — |l + p = lus —u®|x

YA A

2

< [(1+p22), /% 5] flug — ¥ x

N - <2

From Lemma 6.4.1 we conclude that |[u—uf || x < \/CZ + p2(1 — C2)|u—u®||x.
Thanks to (6.20), it holds that

RA RA 5
flu — u‘(sH < W*AHU —usllx < V*AHU —u®|x,

which completes the proof. O

6.4.2 Bulk chasing and a posteriori error estimation

To realize (6.23), i.e., to construct from the Galerkin approximation u?® to

u®? an improved Galerkin approximation ud | we apply the concept of bulk

chasing, also known as Dorfler marking, on a collection of a posteriori error
indicators that constitute an efficient and reliable error estimator. We will
apply an estimator of ‘hierarchical basis’ type ([ZMD11]):

Let©s = {0\: A€ J5} C X9 be such that X +span ©5 = X? and, for some
constants 0 < m < M, forall§ € A,z € X° and ¢ := (cx)res; C R

(6.24) m?||z +¢TO5]% < |2l% + el < M?||z +cTO5]%.
A suitable collection ©4 will be constructed in Sect. 6.6.1.

Proposition 6.4.3. Assume (6.24). Letr? := (f20 — 5%0099)(©y), being the residual
vector of u®. Let J C Js be such that for some constant 9 € (0,1],

[ 1)
5 Ll = Offes |,

and, for some & < §, let X + span Oz ; C X0, Then with pi=1/1— (22 19)
A

(6.23) is valid, i.e.,

(6.25) % — ¥ a5 < pllu® — u®?| yas

113
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and so, when £& — 1 is sufficiently small dependent on ¥, with 24 — 1 | 0 when
YA N
¥ 1 0, for some constant p < p < 1,

= || x < pllu = u?x.

Proof. As a consequence of (6.24) and (6.21), we have

2
K
Lom?|z+cT 051 %ss < Il2l|%ss + el < WAMZHZ + ¢ Os][5ss-
A

A
We infer that
. §%9 8 _ 88 e
0% — ] o5 = sup (5% (u o )(z+¢c'65)
0#£(z,c)€X5 xR#7s |z +c ®6||X§§
§98 (195 _ 135V (e TO
LV ST )Ty
58 oseexsmrn 22+ el
38 _ §86,,00V(@
YA (cls, (f u®®)(Osl))
(6.26) KA 0tceR#7s el
VYA, S VA 5
=m-——I|rs|s[| = m-——=9rs |
KA KA
N $88 (488 _ 38))(cTO
— YAy sup (5% (u u®’))(c’ ©s)
FA - 0£(e)eXoxR*s |[2]13 55 + llc]|?
m YA ud? 38
Z MKJA’&” —u HX”
so that
[u®® — MHXM = [lu® 5|\X55 — [ — |2 s
m "/A 85 862
) lud? — w2,
which completes the proof of (6.25).
The final statement follows from an application of Proposition 6.4.2. O

Additionally we have that ||r f || provides an efficient and reliable a posteri-
ori estimator for ||u — u% || x:

Proposition 6.4.4. Assume (6.24). Recalling that ¢ < 1, let 22 < 1. Then for

I ESIAN ¢
€a 3/2
m V.;/% Mh,?/z
N 1) RN
el < flu— | x < I3 1l

1+<\/7 \/7 C\/i
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Proof. Assumption 6.3.1gives ||u—us||x < (|lu—u®’| x, whichby u—us Ly X?
yields

(6.27) lus = u®||x < flu —u®|x <

\/E_?Hugs - u§6||X-
As we already have noted in the proof of Proposition 6.4.2, (6.20) is equivalent

to [Jus —ud?||x < 72 — 1llu—us| x. Together with Assumption 6.3.1, it gives

2
K
g =l = [ — x| < €[22 = U= x
A

which in combination with (6.27) and ¢ :—i < 1yields

0 — ¥ < fu e < et — |
14+¢ LA—l V1-¢2—¢ N—Afl
A
The proof is completed by (6.21), andm%”rf” < ||u®—u? MHer
where the latter inequalities were shown in (6.26) when readmg (J,9, 6) as
(Js,1,9). O

Next we present an alternative a posteriori error estimator that does not
rely on (6.24), that we expect to be more accurate, and that can be a computed
at the cost of one additional inner product.

Proposition 6.4.5. Let %2 < %, and for v € X°, define

E9(0) = £ (v:g,u0) = \ (B2 (9 — Bo)) (I EL (g — Bu)) + o — ovl-

Then

A — (KA s KA
= < &%) < 24 (1422 |lu— o x.
TR vl € EW) € a2 (1 R vl
Proof. From Remark 6.3.6, recall that the semi-norm | - || ys- on X equals

| - || oo on X2, and (S92 (u — u®?))(X?) = 0, which implies
628) ol = e 4 [ e (w e XP),

and || - [| x5 < /Eall - [[x ((6.22)).
From (6.20) and Assumption 6.3.1, we have for v € X?

(6.29) lu —u?x < *IIU*U&IIX <C*I|U*UIIX
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From (6.29), the triangle-inequality, (6.21), and (6.28) we obtain for v € X g

[u—vlx < @HU“ —vllx
2N
VEA 55 VREA
< v —vflxes < [ = vf| a0
YA = CRa Ya — Cha
Conversely, we have
(6.28) X 3
lu = vlfsm "=l — [ Ssee + (12 — 05

(6.28),(6.22)

< = s[5 + mallu®® = vl%

(6.22),(6.29) KA

< rallu—usl% +ra(l+ (=) lu— vk

Ta

KA

<A+ (14—l
A

by again applying Assumption 6.3.1.
. 5! § 18
Noting that [[u — v[[} s = By (g9 — Bv)(Ky Ey (9 — Bv)) + [luo = vovlF,
the proof is completed. O

Notice that the estimator of ||u — v||x from Proposition 6.4.5 is exact when
¢ =0and ka = 1 = ya, where the one from Proposition 6.4.3, for v = u?°, is

exact only when additionally m =1 = M.

6.4.3 Data oscillation

In view of the discussion following Assumption 6.3.1, notice that all results
obtained so far that depend on the ‘saturation constant’ ¢, i.e., Lemma 6.4.1,
and Propositions 6.4.2, 6.4.3, and 6.4.4, are only valid under the condition that
(9,u0) € °G x °U.

Let us now consider the situation that the solutions and residuals in these
statements refer to solutions and residuals with the true data (g, up) € Y’ x H
being replaced by an approximation (°g, %ug) € °G x °Uy. In the following we
denote such solutions and residuals with an additional left superscript §, or more
generally § when a right-hand side (°g, %ug) € °G x °Uj has been used for their
computation.

Proposition 6.4.6. Assume (6.24), and let ¥ € (0,1] be a constant. Then for
28 — 1 and a constant & > 0 both being sufficiently small dependent on o, with
max(:—i —1,w) | 0 when 9 | 0, there exists a constant p < 1 such that for J C Js

with ||| > 9||°c2||, and X + span O], C X°, and
5 5 ~ )
max ([lg — °glly’ + [[uo — “woll &, lg — °glly + l[uo — *uollr) < &||°rs |,
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6.4. Convergent adaptive solution method

it holds that o
I~ < o — 2.

Proof. In the newly introduced notations, the statements of Propositions 6.4.3
and 6.4.4 read as

°u — 2w x < pl|%u — u®||x,
and
1)
(6.30) I°es 1 = (1o — %u®| x

The proof is easily completed by

5 5 B

u — ‘ul|x NI TN

|[3udd 5u55: }5 1°9 =gy + w0 —uol|ir < 20[|r; || = &||°u—"u?||x. O
- U X

In view of the latter proposition, we make the following assumption.
Assumption 6.4.7. We assume to have maps of the following types available:
A=Y xH: 6 (%, %) € °G x U,
n: A — Rsuch that ||g — °g||y+ + [[uo — *uollr < (), and n(8) < n(8) when & = 3,
Rso — A: e d(e) such that n(6(e)) < e.

Notice that this in particular means that for any € > 0 we are able to find a
§ € Aand (%, %ug) € °G x Uy with ||g—°g|ly +||uo —uo|| zr < e. A specification
of a suitable family (°G, °Uy)sca will be given in Sect. 6.6.4.

Given a § € A, and thinking of (%, %u¢) being a quasi-best approximation

to (g, up) from °G x Uy, the difference (g, uo) — (°g, ®ug) is often referred to as
data-oscillation.

6.4.4 A convergent algorithm

In view of the statement from Proposition 6.4.6, in the following we will use
the short-hand notations

5
wd =S pd =0l

i.e., ud is the solution of

631) B (B'ELKLEY B+ Alyo) B uf = B (B'ESKS B %9 + o) .

86 __ 13
Se°= f‘s:‘sfg:f

(cf. (6.16) and Sect. 6.3.3), and
(6.32) rd = Eil [B’Ef/KgEf,/(‘sg — Bu®) + v (°up — 'you‘s)} (©5)
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Instead of solving (6.31) exactly, we will allow it to be solved approximately
with a sufficiently small relative tolerance by the application of an iterative

method. To that end, we assume to have availablea K% = K%' € Lis(X?', X9)
for which both

(6.33) (K%) 'w)(w) = [lwllk (e X°)

(i.e. K is an optimal (self-adjoint and coercive) preconditioner for S°%), and
which can be applied at linear cost. Besides for an efficient iterative solving of
(6.31), we will use this preconditioner to compute a quantity that is equivalent
to the X-norm of the (algebraic) error in any approximation from X° to u°.
We denote such an approximate solution of (6.31) by @’ € X?°, with corre-
sponding residual vector ¥° defined as in (6.32) by replacing u°® by @’.

Algorithm 6.4.8.
Letw > 0,9 € (0,1], 0 < £ < 1be constants, and let £ > 0.
6= Ginit € A, ts = ||gllys + |luoll o
do
do compute @° € X° with #; := \/(f‘;—S@‘Sﬁ‘S)(K}S((f5—S§5fL5)) < Btsi=1s
if es := ||F°|| + n(6) + t5 < & then stop endif
until t5 < &es
i£1(8) > w[|F
thenselect § € As.t. X° D X7 is (a near-smallest) space with () < 7(6)/2.
else determine § < § < Js.t. X 3 is (a near- smallest) space that fora J C [ g
contains X? + span O] ; where ||| ;] > 9||F°||.

endif
tsi=es5 0:=9
enddo

Theorem 6.4.9. Assume (6.24), and let the constants ya and ka be as defined in
(6.14) and (6.19), respectively. For constants ¥, w/9, £/V, (52 —1)/w that are
sufficiently small, with additionally w and 2% — 1 sufficiently small dependent on ¥
with max(% —1,w) | Owhen 9 | 0, there exists a constant p < 1 such that between
any two successive passings of the until-clause the value of V||u — @’||x + n(5)
decreases with at least a factor p. For any € > 0, Algorithm 6.4.8 terminates, and at
termination it holds that ||u — @°||x + n(8) < e.

Remark 6.4.10. Minor adaptations to the proof show that the statement remains
true when one takes e; := £°(a’; °g, %ug) + 1(5) in Algorithm 6.4.8. Having to
compute ¥ anyway, the additional cost of computing this ¢; is small, and it
can be expected to be closer to |Ju — @°||x + 1(6).
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Proof. By replacing w by K% S%°w in (6.33), one infers that ($%v) (K% 5%°v) =~
|lv||% for v € X?, and so

(6.34) lu® — @[ = (f° = 82w ) (K (f° — 8%u)).
From (6.21) and (6.24), we have
(6.35)
- S (70 —ud))(cTO w2 N N
e =70 = sup SO N0 ks gy < sl — ),
0#ceR#7° ]|

If the algorithm stops, then

lu—a°llx < fu—ullx + [ =[x + [Ju® =@l x
<n(6) + % — v x + |u® — @||x  (by Thm. 6.2.1 & Ass. 6.4.7)

(630) . ~ - -
n(8) + e + [[u® — @l x < n(8) + [IF°] + Ir° = & + [lu® — @°|| x

(6.35) ) T (6.34) )
Sn(6) +[[F] + [lu’ — a@®flx S (o) +[[F°] +ts < e

The inner do-loop always terminates either by passing the until-clause or
by the stop-statement. Indeed, inside this loop the value of ¢s is driven to 0,
so that ||| + n(6) tends to [|r®|| + n(6). So if |[r®|| + n(8) # 0, then at some
moment t5 < &(||E°|| + n(0) + ts5), whereas if ||[r?|| + n(§) = 0 then at some
moment es < €.

When passing the until-clause, it holds that t5 < £(||F°|| + 7(6) + t5), and
so by using £ < 1 kicking back ¢5,

(6.36) ts S E(IE ] +n(8))
< E(l + 17 = x| +n(8))
S &% = wlx + (|3 — ’|lx +n(5))
< &lllu—u’llx +t5 +1(9))

Taking ¢ small enough and kicking back ts, we obtain t5 < &(|lu—u’||x +n(4)),
and similarly

(6.37) ts S E(lu = @llx +n(3)),
(6.38) ts S E(I1%u = u’llx + ().
When passing the until-clause, furthermore we have

lu —@°|lx St + llu—u’llx S ts + [°u— |l x +1(0) = ts + [ +n(5)

(6.39) < ts o+ [0 = B+ [F)] +0(0) S ts + [l — @ |lx + [E°) +n0(6)
-5 (636
Sts+1E) +n(8) S NFI +n(0)-
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Denoting § at the subsequent passing of the until-clause as J, we have

lu—@|x < ts + o — || x +n(5)
(62 5 _
ta*‘*” — ugllx +n(0)

ap

§=<6 s
<t;+ u—u||X+77(5)

K _ ~
<ts+ 2 lu— @) x + O(n(d)).
YA

By using t; < &(|lu— ~‘5||X +n(5)) ((6.37)) and kicking back ||u — ||X, we infer
that for £ sufficiently small,

(6.40) \m—ﬁmzdﬁ+0@mw—ﬁm+ow®»

In the case that
(6.41) () > w|[F]l,

it holds that ~
n(6) <n(d)/2,
and so, thanks to (6.39) and (6.41),

(6:42) lu =@l x < 0(8) /.
For any constant p; < 1, using (6.40) and (6.42) we have
= lx < prllu— @%l]x + LSOOy — 9] 4 O(5(5)
< prllu— @ x + ("L 4 1) Cn(s),
for some constant C' > 0, and so
Olu = @llx + 1) < profu— @ x + (9220272200 1) 0+ L)n(o)

Now let ¥ > 0 be such that 29C' + % < 1. Given a constant w (which later
will be selected such that w /7 is sufficiently small), let (25 —1)/w, (1 - p1)/w,

¢/w be sufficiently small such that the expression M < 1. We
conclude that i 1n this case ¥||u — @’||x + n(d) is reduced by at least a factor
max(p1,2190—|— S) < 1.

Next we consider the other case that

(6.43) n(6) < wl|E|l,
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so that
(6.44) 1E]5] > 9.
We have
_ ~ 636) (643)
(6.45) 20 = F < fJu’ — @l x Sts < E(IF) +n(8)) S ENF°

< E(Ie0)| + (e =),
and so by taking ¢ sufficiently small and kicking back ||r® — °||, also
(6.46) v — < e,
which together with (6.43) implies that
(6.47) n(6) < wlr’|.

From (6.44)-(6.46) we infer that

5,645) o (644 s s s 640 s
[ S IE S (0[] < el + (le® =22 S e[ + &l

By taking ¢ sufficiently small and kicking back ||r’||, we conclude that there
exists a constant ¢ > 0 such that

5 311100
[e°] ] = 9.

Assuming that 2 — 1 and w are small enough, using (6.47) an application
of Proposition 6.4.6 shows that there exists a constant p3 < 1 such that

(6.48) 1% — u® | x < psl|%u — u® x.
Furthermore we have
E 1< e+ 7 =) S 1% =Pl +ts S flu—@lx +n(8) +ts
6.37) s
S llu =@l x +n(0),
and so from (6.43) by kicking back 7(¢) and taking w sufficiently small,

(6.49) n(6) Swlu—@°l|x.
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We conclude that

Illu— @[ x +1(8) < 9°u — || x +On(8) +t5)
(6.38) < < -
< (9 + 0©))||%u — v’ || x + O(n(3))
< (9 + 0(€)pal’u — u® || x + O(n(8))
< (9 + 0©))ps[lu— @[ x + OW(5)) +ts] + O((5))

< (94 0©))ps[(1 + O)Ju = @l|x +O(n(8))] + O(n(8))

(6.49)
< [0+ 0(8)ps(L+ O(8)) + Ow)]lu — @°|| x
= [ps + O(5%)]0lu — @) x.

So forw /1 and £ /¥ sufficiently small, also in this case we established a reduction
of 9||u — @°||x 4 n(J) by at least a constant factor less than 1.

What is left to show is that the algorithm terminates. We have shown
that the value of ¥||u — @°||x + 7(J) at passing the until-clause is r-linearly
converging. We consider the corresponding value of es = [|E° + 1(8) + t5.
Arguments that we have used multiple times show that ||| < |lu — @°||x +
n(8)+ts,andsoes < ||lu—a’||x +1(8)+ts. Using thatts < £(||F°||+n(6)) < Ees,
for ¢ sufficiently small kicking back es; shows that

es S llu—@llx +n(5),
and so
es SOllu—1a’||x +n(d).

This last statement implies that at some moment e5; < ¢, meaning that the
algorithm stops. O

6.5 Wavelets-in-time tensorized with
finite-elements-in-space

We specify the parabolic problem at hand, as well as the type of families

(X%)sea and (Y?)sen of ‘trial” and ‘test’ spaces. A likely harmless minor

further restriction to these families that will be needed for the construction of

an X-stable collection ©; that spans an X-stable complement space of X° in
X?, specifically condition (6.24), will be postponed to Sect. 6.6.1.

6.5.1 Continuous problem

For some bounded domain © C RY, we take H = L,(Q2) and, for some closed
0 CT'pCOoN,V = H§7FD(Q) i= closgig){u € C(Q) N HY(Q): ulr, =0},
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6.5. Wavelets-in-time tensorized with finite-elements-in-space

and
alt;n, €) = / KV V¢ + enc dx,
Q

where K =K' € L (I x Q) with K(:) = Ida.e,and ¢ € Lo(I x Q).
W.lo.g. we take T" = 1.

6.5.2 Wavelets in time

We will construct the trial and test spaces as the span of wavelets-in-time
tensorized with finite element spaces-in-space. In this subsection we collect
some assumptions on the wavelets.

At the ‘trial side’” we consider a countable collection ¥ = {o): A € Vg}
of functions I — R known as wavelets. To each A\ € Vs we associate a value
|A] € No, called the level of A. We assume that the wavelets are locally supported
meaning that sup, ey sen, #{A € Vs: [A| = ¢, [suppor N 27(n + [0,1])] >
0} < oo and diamsupp oy < 27 To each A € Vs with |\| > 0, we associate
one or more A € Vy with |\| = |A\| — 1 and |supp oy Nsuppos| > 0 which we
call the parent(s) of \. We denote this relation between a parent A and a child
A by

5\ £ A

The definitions of parents and children give rise to obvious notions of ancestors
and descendants.

To each A € Vs, we associate some neighbourhood Sx () of supp oy with
diam Ss;(\) < 271" and

A<z A = Sz(A) D Ss(N).

For some wavelets bases, e.g. Alpert wavelets ([Alp93]), it suffices to take
Sz(\) = suppoy. With Cs = sup,c,,, 2/l diam supp o, a neighbourhood
that in any case is sufficiently large is {t € I: dist(t,suppoy) < Cx2~ 1},
Indeed, if with this definition ¢ € Sy;(\) and A <y, ), then dist(t,suppoy) <
dist(¢, supp o) + diam(supp o) < 205271, ie. t € Sg(N).

We assume that ¥ is a Riesz basis for Ls(I), and, when renormalized in
H'(I)-norm, it is a Riesz basis for H!(I). Although not essential, thinking of
wavelets being (essentially) constructed by means of dilation, we assume that

lloxll sy = 217
At the ‘test side” we consider a similar collection ¥ = {¢,: € Vg} of
wavelets, with the difference though that this one has to be an even orthonormal

basis for Ly (), whilst, renormalized in H'(I)-norm, it does not need to be a
Riesz basis for H'(I).
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6. AN ADAPTIVE METHOD

We will assume that ¥ and ¥ are selected such that for any £ € Ny,
span{oy: [A| < £} Uspan{cy: |A\| < ¢} C span{e,: |u| < £},
so that in particular

(6.50) Il > [N = (U/\M/JMLQ(I) =0= (Uf\M/JﬁLQ(I)-

6.5.3 Uniform stability

In the following proposition, we further specify the type of families of trial
and test spaces that we consider, and formulate sufficient conditions for the
requirements (6.13)-(6.14), which implied uniform stability of the Galerkin
discretizations of our saddle-point problem (6.9).

Proposition 6.5.1. For 6 € A, let

X=>"mew, Y'i=> ¢V

AEVs HEVy
for subspaces W3, V.2 C V of which finitely many are non-zero. Let
(651) <UA7¢H>L2(I) # 0= V/f 2 W)(\sa

and, for some constant ya > 0, for any p € Vg,

(6.52) inf sup % > YA-
0Fwe > w3 ozvevs [[wlve|vllv
{revy: (0l)\»¢u>L2(I)¢0}
Then X° C Y and
0
inf sup M = A,

0£weXS oy ||Opw]|y||v]ly

i.e., the conditions (6.13)-(6.14) for uniform stability are satisfied.

Proof. Forwy € Wandw := Y, ., oa@wx € X%, 00 =3 oy, (00 V) Lo (1) ¥u
shows that w =37 .\, 1, @ Yoy (00, Yu) Lo(nwa € Y by the first assump-
tion. Similarly dyw = >° ¥ ® U, where 0, = 3\, (0}, ¥u) L, (1) W
For any € > 0, the second assumption shows that for any p € Vy, there
exists a v, € V2 with 7, (v,) > (18 — &) [5 v lloallv and |3, v = lloglv-
With v := 3 o, ¥y ®@ v, € Y?, we infer that (0yw)(v) = Dpeve u(vn) =
(va = )l[Gwlly-[[vfly- m

124



6.5. Wavelets-in-time tensorized with finite-elements-in-space

In order to be able to apply at linear cost the arising linear operators in
(6.31)-(6.32), we will restrict the type of trial spaces X° = Y7, ., o\ ® W} by
imposing the following tree condition

(6.53) Aag A= W{ 2 W3,

For the same reason the analogous condition will be needed for Y. For X°
that satisfies (6.53), below the latter will be verified, and sufficient, more easily
verifiable conditions for (6.51)-(6.52) are derived.

Proposition 6.5.2. Let X° =Y, ., o\ ® W} satisfy (6.53). For p € Vy, set

76 . 5
We = > wy.
{Aevs: IAI=lul, |Sw (1)NSs (V)] >0}

Build Y° =3 o\, ¥u ® V2 by taking V.2 = {0} when W = {0}, and otherwise
5~ 1ir6
Vi 2 W,
where
(6.54) inf  sup w(v) > A

ozwews ozvevy [[wllve|[vllv

for some constant vy > 0. Then the conditions (6.51) and (6.52) from Proposition 6.5.1
for uniform stability are satisfied.
When dim V2 < dim W}, then dimY? < dim X°, and under the natural con-

dition that a larger Wj gives rise to a larger (more precisely, not smaller) Vlf, the
constructed Y satisfies the tree condition

(655) o<y = V}] D) VM'

Proof. Let (ox,%u)r,r) # 0 or (o%,¢u) ) # 0. Then |S§](~/\) N qugu)| >0
and |A| > |u| by (6.50). When |A| > |u|, A has an ancestor A with || = ||,

Wf\s D W7, and Ss;(\) 2 Ss()), and thus |Ss(A)NSy (12)| > 0. We conclude that

both E{AE\/E: (ox:u) Ly )70} Wg and Z{Aevzi (08 %u) Ly (1) #0} W;\S are included
in W¢, so that (6.51) and (6.52) are guaranteed by the selection of V2.

The statement dimY? < dim X° when dimV;? < dim W} follows from
dim W, < 3T cunt (3 =lul. [Se (NS ()] >0; dim WY, and the fact that for any
A € Vg, the number of p € Vg with |u| = |A| and [Sy () N Sxe(N)| > 0 is
uniformly bounded.

Let i 9y p1, and so Sy (fi) 2 Sy(u). For each A € vy with [A| = |u| and
|Sw(p) N Ss(N)| > 0, there exists a A <y A, thus with Sx(A) 2 Sxs()), and
W? 2 W{ by (6.53). We conclude that W3 2 W, which completes the proof
of (6.55). O
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As follows from [DSW21, Thm. 3.10] (taking B to be the Rieszmap H — H')
condition (6.54) has the following equivalent formulation.

Proposition 6.5.3. Condition (6.54) is equivalent to existence of a projector @} €

L(V,V)withranQ C V)2, ran Q* 2 WY, and ||Q|| z(v.v) < =&

6.5.4 Selection of the spatial approximation spaces as finite
element spaces

We will select the spaces W{ from a collection O of finite element spaces in V/,
which collection is closed under taking (finite) sums, and for which
w(v)

(6.56) inf inf sup ———— >0.
Weo oduew o vl Tl Tl

Consequently, the stability conditions (6.13)-(6.14) are satisfied for some yA > 0
by simply taking in Proposition 6.5.2.

0 ._ /90
(6.57) V=W eo.

As follows from Proposition 6.5.3, (6.56) is equivalent to uniform bound-
edness w.r.t. the norm on V' of the H-orthogonal projector onto W € O. It is
well-known that an example of such a collection O is given by the set of all finite
element spaces W w.r.t. quasi-uniform, uniformly shape regular conforming
partitions of € into, say, d-simplices.

It is known that the uniform boundedness w.r.t. the V-norm of the H-
orthogonal projector holds also true for finite element spaces w.r.t. locally re-
fined partitions as long as the grading of the partitions is sufficiently mild. In
[GHS16] it has been shown that for d = 2 spatial dimensions, and polynomial
orders up to 12, the collection of all conforming partitions that can be gener-
ated by newest vertex bisection (NVB), starting from a fixed conforming initial
partition 7, with an assignment of the newest vertices that satisfies a so-called
matching condition, is sufficiently mildly graded in the above sense. Since
the overlay of two conforming N'VB partitions is a conforming NVB partition,
this collection is closed under taking (finite) sums. In other words, with this
collection of finite element spaces, which we will employ in our experiments,
again the choice (6.57) guarantees uniform stability.

In [Car04] a result similar to that from [GHS16] has been shown for red-

blue-green refinement and lowest order finite elements again for d = 2. Un-
fortunately, for d > 2 such results seem not yet to be available.
Remark 6.5.4 (Getting ya close to 1). We discussed uniform boundedness
w.r.t. the V-norm of the H-orthogonal projectors onto a family of finite el-
ement spaces, which, by taking V;} := Wl‘f in Proposition 6.5.2, yields the
uniform inf-sup condition (6.14) some value ya > 0, and so uniform stability
of the Galerkin discretizations of the saddle-point (6.9).
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6.5. Wavelets-in-time tensorized with finite-elements-in-space

For proving convergence of our adaptive routine Algorithm 6.4.8, however,
we needed a value of yo > 0 that is sufficiently close to 1. Although in our
numerical experiments, reported on in Sect. 6.7, with continuous piecewise
linear finite element spaces generated by conforming NVB and Vj = Wg , the
adaptive routine is r-linearly converging, there is no guarantee that 1 — v, is
sufficiently small.

Restricting to quasi-uniform partitions, below we show that 1 — yA can be
made arbitrarily small by taking the mesh underlying V? to be a sufficiently

deep, but fixed refinement of the mesh underlying Wl‘f. One may conjecture
that the same result holds true for sufficiently mildly graded locally refined
meshes.

Let the diameters of any d-simplex in the partitions underlying Wg and Vj
be proportional to h. and hy, respectively. For s € [0,1], let H® := [H, V], 2.
In any case when ) is a Lipschitz domain, it is known that there exists an
s € (0,1] such that the solution v € V of (u,v)y = f(v) (v € V) satisfies
llull gres ) S I fll (215, assuming the right-hand side is bounded. From this,
the Aubin-Nitsche duality argument shows that the V-orthogonal projector
P, onto V;? satisfies [[Id — Py[|zv,31-<) S k. On the other hand, on W we
have the following inverse inequality || - ||(z1-2) S kol - |lv: (e.g. (2.44)).

Given w € W/‘f, for any € > 0, there exists a v € V with w(v) > (1 —
e)|lw|lv||v]lv. We infer that, for some constant C' > 0,

w(Pyv) = w(v) + w((Id = Fy)v)
2 (I =e)llwllvllvllv = l[wllzr-=) | (Id = Pu)oll342-
> (L= (e + Clhs/he))[wllv-llvllv
2 (1= (e + C(hys/he)®)|lwllv || Puvllv.

Since ¢ > 0 was arbitrary, we conclude thatya > (1—C(hy/h.)®) which proves
our assertion.

6.5.5 Best possible rates

Although so far we have not proved it, we expect that the sequence of ap-
proximations generated by our adaptive Algorithm 6.4.8 is not only r-linearly
converging, but, ignoring data oscillation, that it is a sequence of approxima-
tions from a sequence of spaces from the family (X°)sca that converges with
the best possible rate. In this subsection, we show that with our selection
of the (X?)sea, under some (mild) smoothness conditions on the solution u
this best possible rate equals the rate of best approximation to the solution of
the corresponding stationary problem from the spatial finite element spaces
w.r.t. the V-norm.

Consider a family of spaces X° = Y, ox ® W} that satisfies (6.53),
with the W selected from a collection of finite element spaces O that in any
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6. AN ADAPTIVE METHOD

case contains all such spaces that correspond to uniform refinements of some
initial partition of 2. Let ¥ a collection of wavelets of order d;, and assume
that the finite element spaces are of order d,. When for each X°, the space
Y? is selected as in Proposition 6.5.2, then the combination of (6.20) and the
analysis from [SS09, Sect. 7.1] shows that if the exact solution u of our parabolic
problem satisfies the mixed regularity condition v € H% (I) ® H% (), then a
suitable (non-adaptive) choice of the spaces W7 yields a sequence of solutions
u® € X° (for arbitrary Y° O Y?) of the modified discretized saddle-point
from Sect 6.3.3, for which

llu— u®x S (dim X %)~ minde—t 252,

Note that ford, —1 > d“‘d’ L the rate d%l equals the best rate in the V-norm that
can be expected when the finite element spaces are employed for solving the
corresponding stationary problem, which is posed on a d-dimensional domain
instead over the d + 1-dimensional space-time cylinder.

For an optimal adaptive choice of the W? as finite element spaces w.r.t. a
sufficiently ‘rich’ collection of locally refined partitions, as the collection of all
conforming NVB partitions, it can be expected that the rate min(d; — 1, %)
is realized under much milder regularity conditions on u.

When instead of being finite element spaces, the spaces I can be selected
as the spans of some wavelets from a Riesz basis for V' of order d,, and addi-
tionally the tree condition (6.53) is dropped, a precise characterization of those
u that can be approximated at a rate s < min(d; — 1, %==1) in terms of tensor
products of Besov spaces can be deduced from [Nit06, SU09]. The collection of
finite element spaces w.r.t. locally refined meshes, as those generated by NVB,
is very resemblant to the collection of spans of sets of such wavelets when
on these sets a tree condition is imposed similar to the tree constraint (6.53)
that we imposed in the temporal direction. In other words, the collection of
spaces X° that we consider is similar to the collection of spans of sets of tensor
products of temporal and spatial wavelets when these sets satisfy a ‘double-
tree’ constraint. In view of results from [BDDP02], we do not expect that this
constraint makes the resulting approximation classes much smaller.

6.5.6 Preconditioners

Our adaptive solution method of the parabolic problem requires optimal pre-
conditioners for B3 AES and §%, i.e., forboth Z=Y and Z = X and § € A,
we need operators K% = K3 € £(2%,2°) with h(K$h) = |[h]|%s (h € Z%),
moreover which should be applicable at linear cost.

To construct these preconditioners, for Z € {Y, X} we will select a sym-
metric, bounded, and coercive bilinear form on Z x Z, and after selecting

some basis for Z°, we will construct a matrix K¢ = K¢ ' that can be applied
in linear complexity, and that is uniformly spectrally equivalent to the inverse
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6.5. Wavelets-in-time tensorized with finite-elements-in-space

of the stiffness matrix corresponding to this bilinear form (being the matrix
representation of the linear mapping Z° — Z %" defined by the bilinear form
w.r.t. the basis for Z° being chosen and the corresponding dual basis for Z o,
Then K% € £(Z%, Z%), defined as the operator whose matrix representation
is K&, w.r.t. the aforementioned bases of Z°' and Z?, is the preconditioner that
satisfies our needs.

Notice that the choice of the basis for Z° is irrelevant. Indeed, denoting
the aforementioned stiffness matrix as C, with corresponding operator C =
¢ e Lis(Z%, %), one may verify that

IEZ N cizo 2 |(B2) "l eqze 2oy = 1K 2CY | eizs,20) 1 (K5C%) oo, 20)
A (K5CY)
Alluin(I{éZ(—j%) '

Preconditioner at the “test side’

LetY = Z. Since ¥ is an orthonormal basis for Ly(I), any y € Y is of the form
> opevy Yu ® vy for some v, € Vwith }: |v.|l# < co. Taking as bilinear
form on Y x Y simply the scalar product on Y x Y, we have

(T ool T iy = X .

H1EVw H2EVw HEV Y

Equipping Y° = 3 ., ¥, ® V) with a basis of type Uycv, ¥, ® @), the
resulting stiffness matrix reads as blockdiag[A%],.cv,,, where A8 = (95, &%)y
is the stiffness matrix of (-, )y w.r.t. @2. Selecting KZ ~ (AZ)_l, the matrix

representation of the optimal preconditioner reads as
K3$ = blockdiag[K?] e, -

It is well-known that when V}? is a finite element space, possibly w.r.t. a locally
refined partition, suitable KZ of multi-grid type are available. These Kz can be
applied in linear complexity, and so can K$..

To show, in Theorem 6.4.9, that our adaptive Algorithm 6.4.8 is r-linearly
converging we required Ca — 1 to be sufficiently small, which requires that
(B8 AES )~ — K |l gy ysy or, equivalently, ||Id — KO EY AEY | p(ys oy is
sufficiently small, i.e. the eigenvalues of K ES'AES, are sufficiently close to
1. Given an initial optimal, self-adjoint, and coercive preconditioner K9, and
some upper and lower bounds on the spectrum of the preconditioned system,
one can satisfy the latter condition by polynomial acceleration using Cheby-
chev polynomials of sufficiently high degree. In our numerical experiments,
it turned out that it was not needed to apply this ‘acceleration’.
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Preconditioner at the “trial side”

The preconditioner presented in this section is inspired by constructions of
preconditioners in [And16, NS19] for parabolic problems discretized on a
tensor product of temporal and spatial spaces.

Thanks to ¥ and {27Noy: A € Vs } being Riesz bases for Ly(I) and H' (1),
any z € X isof theform ), ., oa®@wy forsomewy € Vwith )", ., [lwall}, +
4wy |12 < oo, and

1 2 (2 (2
( Z o ®w§\l), Z a,\2®w5\2)> = Z (wg\),wg\))V—|—4l)“<wg),w§\)>v,

A1EVSE A2€Vs AEVS

is a symmetric, bounded, and coercive bilinear form on X x X. Equipping
X0 =Y v, O2@W] withabasis of type Uxey,, 05 @ 3, the resulting stiffness
matrix reads as

blockdiag[A + 4*(®3, @) v ]aevy

where A3 = (@3, ®3)v.
Thanks to our assumption (6.56), for u € W} it holds that |jully: <

SUP( e W % < |lully+ . With u denoting the representation of u w.r.t. ®3,
we have (. w0)
U, w

sup
0AWEW? [[wllv

where M3 = (@3, ®3), so that

_1 5
= [I(AS) "= M3,

(@3, @)y < M3 (AL) MY < (2, 23w

Since both A$ and M are symmetric and positive definite, [PW12, Thm.
4] shows that

HAG MY (AD) M) < (AL 2P MD(AD) (AL +2PMY)
< A +4PIvig (A) g,
Now assuming that
(6.58) K3 =~ (A +2PM3) 1,

we infer that
K¢ = blockdiag [K‘;A‘;K‘f\} .

is the matrix representation of an optimal preconditioner.

Notice that (6.58) requires an optimal preconditioner of a discretized reaction-
diffusion equation that is robust w.r.t. to the size of the (constant) reaction
term. In [OROOQ] it was shown that, under a ‘full-regularity” assumption, for
quasi-uniform meshes multiplicative multi-grid yields such a preconditioner,
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moreover whose application can be performed at linear cost. Although we
expect that using the theory of subspace correction methods the full regularity
assumption can be avoided, and furthermore that the optimality, robustness
and linear complexity result extends to locally refined meshes, proofs of such
extensions seem not to be available.

6.6 A concrete realization

6.6.1 The collection O of finite element spaces, and the map § — ¢

We further specify the collection O of finite element spaces, construct a linearly
independent setin H; ., (2), known as the hierarchical basis, and equip it with
a tree structure such that there exists a 1-1 correspondence between the finite
element spaces in O, and the spans of subsets of the hierarchical basis that
form trees.

With this specification of O, there will be a 1-1 correspondence between the
spaces X° =Y, oA ® W} with W{ € O that satisfy (6.53), and the spans of
collections of tensor products of wavelets o and hierarchical basis functions
whose sets of index pairs are lower, also known as downward closed. Given such
a X°, we will define X? by a certain enlargement the lower set.

For d > 2, let T be the family of all conforming partitions of a polytope
Q C R into (closed) d-simplices that can be created by NVB starting from
some given conforming initial partition 7, with an assignment of the newest
vertices that satisfies the matching condition, see [Ste08b]. We define a partial
order on T by writing 7 < 7 when T is a refinement of 7.

With some small adaptations that we leave to the reader, in the following
the case d = 1 can be included by letting T to be the family of a partitions of {2
into (closed) subintervals that can be constructed by bisections from 7, = {Q}
such that the generations of any two neighbouring subintervals inany 7 € T
differ by not more than one.

The collection O that we will consider is formed by the spaces W = W of
continuous piecewise linears w.x.t. T € T, zero on a possible Dirichlet boundary
I' p being the union of 9T'NJS for some T € T, . We expect that generalizations
to finite element spaces of higher order do not impose essential difficulties.

ForT € T :=Urcr{T: T € T}, wesetgen(T) tobe the number of bisections
needed to create 7' from its ‘ancestor’ 7 € 7,. With 91 being the set of all
vertices (or nodes) of all T € %, for v € 9 we set gen(v) := min{gen(T): T €
T, veT}.

Any v € Mwith gen(v) > 0is the midpoint of an edge of one or more T € T
with gen(T') = gen(v) — 1. The vertices © of these T with gen(7) = gen(v) — 1
are defined as the parents of v. We denote this relation between a parent
and a child v by © <y, v, see Figure 6.1. Vertices v € 9 with gen(v) = 0 have no
parents.
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FIGURE 6.1. U1y, U3 <y v, and T and its refinement 79+ (for d = 2).

An (essentially) non-overlapping partition 7 of Q into T € T isin T if and
only if the set N of vertices of all T' € T forms a tree, meaning that it contains
all v € 9 with gen(v) = 0 as well as all parents of any v € Ny with gen(v) > 0,
cf. [DKS16] for the d = 2 case.

Definition 6.6.1. For any 7 € T, we define 79" € T (denoted as 7+ in
[DKS16] for the d = 2 case) by replacing any T € T by its 2¢ “descendants’ of
the dth generation, see Figure 6.1.

Since this refinement adds exactly one vertex at the midpoint on any edge
of all T € T, one infers that indeed 7+ € T. The corresponding tree Nya+ is
created from Ny by the addition of all descendants up to generation d of all
v e Nyl

For v € 91, we set ¢, as the continuous piecewise linear function w.r.t. the
uniform partition {T € T: gen(T') = gen(v)} € T, which function is 1 at v and 0
at all other vertices of this partition. Setting 91, := 91\ I'p and, forany 7 € T,
Nr o := N7 \Tp, the collection {¢, : v € Ny} is known as the hierarchical basis,
and for any 7 € T, it holds that Wy = span{¢,: v € N7}

With above specification of the collection O of finite element spaces, there
exists a 1-1 correspondence between the spaces » |\, oA ® Wy with Wy € O
that satisfy (6.53), and the spaces of the form

(6.59) X% =span{or ® ¢,: (\,v) € I50:=I5\ (Vx x Tp)}

for some finite I5 C Vs x 2 being a lower set in the sense

(6.60) (A\v) e ls and{ Adz A = (i» v) € Is,

vagvor gen(r) =0 = (\,») € Is.

For above specification of X°, from Proposition 6.5.2 with the specification
(6.57) one infers that the corresponding space

(6.61) Y = span{y, ® ¢, : (1,v) € I3},

IThe addition of only all children of all v € N7 yields a tree only if 7 is a uniform partition.
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where
(6.62) I} :={(p,v): I\ v) € I5o, p € Vu, |u| = |\, [Sw () N Sx(N)] > 0}

which index set is a lower set.

Remark 6.6.2 (Complexity of matrix-vector multiplications). The fact that the
index sets of the bases for X° and Y are lower sets is the key why it is possible
to compute residuals of the system S%%u’ = f° ((6.31)) in O(dim X?) opera-
tions. Indeed, when one has a bilinear form that is ‘local” and equals the tensor
product of bilinear forms in time and space, and two spaces spanned by tensor
product multi-level bases corresponding to lower sets, then the resulting gener-
alized system matrix w.r.t. both bases can be applied in a number of operations
that is proportional to the sum of the dimensions of both spaces. The algo-
rithm that realizes this complexity makes a clever use of multi- to single-scale
transformations alternately in time and space. In a “uniform’ sparse-grid set-
ting, i.e., without ‘local refinements’, this algorithm was introduced in [BZ96],
and it was later extended to general lower sets in [KS14]. The definition of a
lower set in [KS14], there called multi-tree, is more restrictive than our current
definition that allows more localized refinements. Details about the matrix-
vector multiplication and a proof of its optimal computational complexity is
given in Chapter 7.

Definition 6.6.3. Given X’ = span{oy ® ¢,: (A, v) € I} for some lower set
Is C Vs x M, we define the lower set 15, and with that X L by adding, for each
(\,v) € I5 and any child X of A and any descendant  of v up to generation d,
all pairs (\,v) and (\, ) to I5.

6.6.2 The collection O such that X? = X% @ O;

Recall that for the bulk chasing process we need an ‘X-stable’ basis O; that
spans an ‘X-stable’ complement space of X° in X?, i.e., a collection that
satisfies (6.24). For that goal we define a modified hierarchical basis {él, v EeENy}
by ¢y := ¢, when gen(v) = 0, and

. 2 penty: pam} T z;ji@’

Pv 1= Py = #{veN:vanv}

otherwise. Notice that for those v with gen(v) > 0 that have all their parents
not on I'p it holds that fQ ¢, dx = 0, ie, ¢, has a vanishing moment, and

furthermore that forany 7 € T, Wy = span{q@,,: veNro}.
For any 7 € T, it holds that

Wy =span{¢,: v € Ny} = spa11{g2>V: veNrot,
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6. AN ADAPTIVE METHOD

and thus for any lower set Is C Vx x N,

X0 = span{oy ® él,: (A, v) € Iso} =span{oy ® ¢, : (\,v) € Iso}.

Moreover, for any 7 € T, the basis transformation from the modified to un-
modified hierarchical basis for Wy can be applied in linear complexity travers-
ing from the leaves to the roots.

Given 6, the collection ©; will be the set of properly normalized functions
oA® ¢?l, for (A, v) € I50\ Is,0. In order to demonstrate (6.24), we have to impose
some gradedness assumption on the lower sets I5.

Definition 6.6.4. The gradedness constant of a lower set Is C Vy x M is the
smallest Ls € N such that for all (\,v) € I5 for which v has an ancestor 7 € N

with gen(v) — gen(?) = Ly, it holds that (X, 7) € I for any child A € Vx, of \.

Remark 6.6.5 (Uniform boundedness of the gradedness constants). Under the
(unproven) assumption that our adaptive method creates a sequence of spaces
X° which are quasi-optimal for the approximation of the solution of the the
parabolic PDE, one may hope that these spaces have a uniformly bounded grad-
edness constant, unless (locally) the solution u is extremely more smooth as
function of ¢ than as function of the spatial variables.

To see this, consider the non-adaptive sparse grid index sets of the form
{(\v) € Vg x N: LIA| 4 gen(v) < N} for some constant L and N € N, which
are appropriate when the behaviour of  as function of ¢ on the one hand and
that of the spatial variables on the other is globally similar. Then for L < L,
the gradedness constant of this index set is < L, where the smallest spatial
resolution in the ‘sparse-grid mesh’ equals the smallest temporal resolution in
this mesh to the power L/d. So only when a polynomial decay of the spatial
resolution as function of the temporal resolution does not suffice for a proper
approximation of u, one cannot expect to have a gradedness constant that is
uniformly bounded.

Proposition 6.6.6. For (\, 1) € Vg xMy, let ey, := 1/3/2(G "D en() 4 41A12(=F-1) gen(®)
and 0y, = e o\ ® g?)u. For any 6 € A, let ©5 := {0x,: (\,v) € Js =

Iso \ Iso}. Then X° @ span©s = X9, and there exist constants 0 < mgs < Ms,

only dependent on the gradedness constant Ls, such that for any z € X° and

c= (C)\”)(/\»V)efg,o\fa,o CR,

ms(l2% + llel®) < llz+e" 0% < Ms(ll21% + llell*)
So under the mild assumption that the gradedness constants of the sets X°
that we encounter are uniformly bounded, we have shown that the condition

(6.24) is satisfied.
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6.6. A concrete realization

Proof. Setting cy, := 0when (A, v) & Is o\ I50, and writing z = Z)\E\/z: o\ QWwy
where wy, € span{,: (\,v) € I}, from L and {27 Moy : A € Vs } being Riesz

bases for Ly(I) and H'(I),and c' ©5 = DAoA®Y, exuc,\yéy, an application
of Lemma 6.6.7 given below shows that

Iz +c" Ok = Z {Ilwx + Z e)\uc)\Vél/H%Il(Q) + 4w + Z e’\ﬂc’\”é”nifé,rlj @}
A v v

~ {Z ||w/\||§11(9)+4‘/\| HU)AH%_FD () "‘Z (2(%_1) gen(v) 1 4Plg(=3-1) gen(y)) \eAuCAuP}
S ,

v
A _
= 3 o lnay + 4V Mwalldy a3 el = Dl + e,
A v

with the <-symbol in the second line dependent on the gradedness constant.
O

Lemma 6.6.7. For T € T,and either T> T < T andv € W, orT =0, N7 =0,
and v = 0, and scalars (d,,)l,eNf J\Nr o it holds that

n 2_ en(v
(6.63) o+ dudullin gy = I0lFg) + > 20 e, |?

7 —2_ en(v
668 ot Y ddulhy, oy~ Iolhao + 320 E g2

with the constants hidden in the ~-symbols only dependent on Mz := max{ gen(T)—
gen(T): T>T CT € T}or My :=max{gen(T): T € T} for T = 0.

Proof. Once the equivalences are shown uniformly in any 7 =< 7 for which
Mz, = 1, a repeated application of these equivalences shows them for the
general case, with constants that are only dependent on AMj;,. So in the
following, it suffices to consider the case that M3, = 1. The case T = 0 is
easy, so we will consider the case that 7 € T.

Let ®7 = {¢4 ,: ¥ € Ny} denote the standard nodal basis for W. For

1
any weight function 0 < ws € [[ o7 Po(T), with || - ||L2’w%(9) = w2 oo
it holds that || Y~ CU¢7-7V||%2,w7~,(Q) ~y, |CV|2||¢7~—,I/||%2,7,;7~_(Q)/ only dependent
on the spectrum of the element mass matrix on a reference element, i.e., on

the space dimension d, so independent of the weight function ws. We refer to
this equivalence by saying that ®5 is (uniformly) stable w.r.t. || - || Lo, (9)-

Notice that for v € Ns , \ N7, itholds that ¢5 , = ¢,. W.r.t. the splitting
Nz o = N7+ N, \ N7, the basis transformation from ®7 U {(51,: v e

Nz o\ N7} to @7 U{¢,: v € Ny \ N7} is of the form [Id * } , and the

0 Id
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6. AN ADAPTIVE METHOD

basis transformation from the latter basis to ®+ is of the form {If 1(21 . The
entries in both non-zero off-diagonal blocks are uniformly bounded, where
non-zeros can only occur for index pairs (v, 7) that are vertices of the same
T € T. Consequently, for a family of weight functions (w+)7 7 that have

uniformly bounded jumps in the sense that

’LU71|T

(6.65) sup sup

< 00,
TeT{T,T"eT: TNT'#0} w7

all basis transformations between the Ly . ({2)-normalized bases drU{d,: v e
Nz o\ N1o}, @7 U{¢y: v € N3 ;\ N7} and @5 are uniformly bounded.

Since, as we have seen, ®; is (uniformly) stable w.r.t. || - ||z, , (@), we
conclude that also ®7U{¢,: v € Nz o\ N7o}and @7U{¢,: v € NT’O \Nro}
are (uniformly) stable w.r.t. ||- || Lo (9)- Because of the uniform K-mesh property
of T € T, examples of families of weights that satisfy (6.65) are given by
(h%)7cr for any s € R, where hy|r = 27 &nD/A(< [TV ) (T € 7).

For showing (6.63), let Pr: W5 — W7 be the projector with ran Pr = W
and ran(Id — Py) = span{¢,: v € N3\ N7,0}. Using the form of the basis
transformation from ®7U{¢,: v € N3 (\ N7 o} to drU{d,: v e Nz o\N70},
one infers that

Id— Pr = Jyo(ld— Ir),

where I is the nodal interpolator onto Wy, and J is defined by Jr¢, = QAS,,.
Since both {¢,: v € Nz o\ Nro}and {¢,: v € N3\ N7} are uniformly
stable w.r.t. ||ff1 | Lo (0), and \\h*1q5V||L2(Q) ~ ||h7f,1q5l,||L2(Q), it follows that

Jris umformly bounded w.r.t. ||h =l pa(o), ie. ||h;1 Jrhs|l 2. ), L)) S 1,
and so

1871 (1d = Pr)v]L,0) S 171 (0d = I7)ollny) S [0l (v € W),

Using the common inverse inequality | - [|51q) < ||h;1 N La) on Ws, we
infer that (Id — Pr) is uniformly bounded in the H!(Q)-norm, and that || -
) = Hh;l ‘||, (@) onran(Id — Pr). The proof of (6.63) is completed by the
uniform stability of {¢,: v € Nz o\ N1} wrt. Hh;1 ||, (), and the fact that
KBl ) = 2B D 80n0),

Moving to (6.64), either by [, ¢, dz = 0, or otherwise using the proximity

of the Dirichlet boundary I'p by an application of Poincaré’s inequality, it
holds that

(v, V) Loyl S 27 gen(u)/dﬂﬁbuHLZ(Q)|U\H1(SHPP¢;U) (v €9 \ N7\0)-
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6.6. A concrete realization

By using that for " € T the number of v € Nz o \ N7 for which supp qASL, has
non-empty intersection with 7' is uniformly bounded, and furthermore that
drU{o,: ve Nz o\ N7,0} is uniformly stable w.r.t. |7 - || L, (o), we infer that
for any z = ZVENT,O zp¢1,, € Wr it holds that

(vens \Nro Dby V) Lo ()

” Z dl/él/”Hol)FD(Q)’: Sup

VENF o \NT.0 0FAvEH] 1, () vl 21 (2)
S ldPlhgdul, e
(6.66) VENF o \NT.0
< Z |Zu‘2||h7—¢7’,u”%2(9) + Z |dl’|2‘|h7~'¢y||2L2(Q)
vENTO VvENZ o\NT 0
~ [|hs(z + Z dydu)lza) S llz + Z d”(b””Hé,rD(Q)’
VENT0\NT.0 VENZ o\NT 0

the last inequality by application of a less common inverse inequality which
proof can be found in Lemma 2.3.4 for general dimensions d. From (6.66) it
follows that Id — Pr is uniformly bounded in the Hj - (€2)’-norm, and also that

n —2_
|| ZVGN%’U\NT,O dlld)V”%é,FD () ~ ZyeN%,O\NT’D |dv|22( d 1)gcn(1/), where we

used that Hhﬂf;uH%Q(Q) ~ 2(=3-1en() The proof of (6.64) is completed. [

6.6.3 The wavelet collections > and ¥

As wavelet basis ¥ = {0 : A € Vx} we select the three-point hierarchical basis
illustrated in Figure 6.2. This basis is known to be a Riesz basis for La(I),
and, after re-normalization, for H'(I) (see [Ste96]). It also satisfies the other
assumptions made in Sect. 6.5.2. The wavelets up to level ¢ span the space of
continuous piecewise linear functions on I w.r.t. the uniform partition into 2°
subintervals.

As wavelet basis ¥ = {¢,: u € Vg } we take the orthonormal (discontinu-
ous) piecewise linear wavelets, see Figure 6.3. The wavelets up to level £ span
the space of (discontinuous) piecewise linear functions on / w.r.t. the uniform
partition into 2¢ subintervals.

6.6.4 The family (°G, Up)sen

The index set Vy, is naturally identified with the set of ‘nodal dyadic’ points, see
Figure 6.4, which is the natural index set for the one-dimensional hierarchical
basis that we denote by {¢»: A € Vg}. Recalling that for § € A, X° =
span{oy ® ¢, : (A, v) € Iso =I5\ (Vg x I'p)} for some lower set I5 C Vx x N,
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20

91/2
level 0 level 1

_920 _921/

_2(/2

Ficure 6.2. Three-point hierarchical basis 3. On level 0 there are two wavelets,
and on level 1 there is one wavelet, whose parents are both wavelets on level 0.
On each level ¢ > 1 there are 2°~! wavelets, among them near each boundary
one boundary-adapted wavelet, where each wavelet has one parent being the
wavelet on level £ — 1 whose support includes the support of its child (so Sx())

can be taken equal to suppoy). All but one wavelets have one (bdr. wav) or
two vanishing moments.

Ql+£/2
VER R WRVEV S
level 0 V3. ' !
1 b 9t/2 ! level ¢ > 1
/” ‘| ,
e Al I I I I I I |
> S T N B A B B
0 /,/ 1 l\ ! \ -
/,’ \ ,' 2—£
- U e/
_\/g'// “I’ 2
_\/525/2
_ol+e/2

FiGure 6.3. Ly(I)-orthonormal (discontinuous) piecewise linear wavelet basis
T. Onlevel ¢ = 0 there are 2 wavelets. On each level ¢ > 1 there are 2¢ wavelets
of two types, each of them having 2 parents being the wavelets on level £ — 1
whose supports include the supports of their children (so Sy (1) can be taken

equal to supp ¥,,). The wavelets on level 0 have either 0 or 1 vanishing moment,
all other wavelets have two vanishing moments.
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6.6. A concrete realization

Ficure 6.4. Index set Vx, with parent-child relations, and the one-dimensional
hierarchical basis.

we define
G 1= span{¢py @ ¢, (\,v) € I5}, Uy := span{p,: (\,v) € I5, $»(0) # 0}.

Since the level of resolution of these spaces is comparable to that of X, based
on our experiences with wavelet and finite element methods we expect that
with this choice of (°G,°U;) and the definition of X, that saturation holds,
i.e., that Assumption 6.3.1 assumption is valid.

Given g € Y and ug € L2(f), it remains to define their approximations
(°g,%0) € (°G,%Uy). In general, the construction of these approximations
depends on the data at hand. Below we give a construction that applies to
general continuous g and u, and that avoids quadrature issues.

For v € 9 with gen(v) = 0, let ¢, := §,. Each v € 9 with gen(v) > 0
is the midpoint of an edge of a T' € T with gen(7T") = gen(v) — 1. Denoting
the endpoints of this edge as v1,15 € N, let b, = 6, — %(5,1 + d,,). Then
{¢,: v € N} C C(Q) is biorthogonal to {¢,: v € MN}. With {px: A € Vs} C
C(I)' defined analogously for the one-dimensional case, for g € C(I x 2) and
ug € C(Q) we define the interpolants

69 = Z (é)\ ® éu)(g)¢>\ & ¢I/7 6“0 = Z ¢U(UO)¢V~

()‘11/)615 {V: (A,U)GL;, (j),\(())#()}

Since we expect that for sufficiently smooth g and uy, the errors ||g — °g||y~ and
luo — %uo || 1., () are of higher order than the approximation error inf ¢ xs [|u —
w||x, for our convenience in the adaptive Algorithm 6.4.8 we ignore errors
caused by data-oscillation by setting 7(-) = 0.

Notice that setting up the matrix vector formulation of the system (6.31)
that defines our approximation u’ requires computing the vectors

4 )
[< 971/}/1' & ¢D>L2(I®Q)](M,U)EI;0’ [< Uo, ¢V>L2(Q)]{U: (A\v)€Els.0, 0 (0)#£0}

which can be performed in O(dim X?) operations because I5 and I3, are lower
sets (and #13, < #15).
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6. AN ADAPTIVE METHOD

6.7 Numerical experiments

We test our algorithm on the heat equation, i.e., the parabolic problem with
a(t;n,¢) = [, V- V{dx, posed on a two-dimensional polygonal spatial do-
main {2, and Dirichlet boundary I'p = 0f2. Recall from §6.6.3 the three-point
continuous piecewise linear temporal wavelet basis 3, the orthonormal dis-
continuous piecewise linear temporal wavelet basis ¥, and the hierarchical
continuous piecewise linear spatial basis = := {¢, : v € N }.

We consider ‘trial” spaces X° which are spanned by finite subsets of ¥ ® =
whose index sets are lower sets (more precisely, satisfy (6.59)-(6.60)), and
corresponding “test’ spaces Y spanned by finite subsets of ¥ ® = as defined in
(6.61)-(6.62). We construct the enlarged trial space X? as defined in Def. 6.6.3,
with corresponding test space Y°.

For a given level N € N, span{oy : |A\| < N} coincides with the span of
the continuous piecewise linears on an N-times recursive dyadic refinement
of I, and span{¢, € Z : gen(r) < 2N} coincides with that of the continuous
piecewise linears, zero at 92, on a 2/N-times recursive bisection refinement of
aninitial partition 7 . Therefore, the span of the ‘full” tensor product {o: |A| <
N} @ {¢,: gen(v) < 2N} equals a space of lowest order continuous finite
elements w.r.t. a quasi-uniform shape regular product mesh into prismatic
elements.

Taking only those index pairs (A, v) for which 2|\| +gen(v) < 2N produces
a ‘sparse’ tensor product on level V. Sparse tensor products allow to overcome
the curse of dimensionality in the sense that for smooth solutions they achieve
a rate in X-norm that is equal to the best rate in the H'(Q2)-norm that can
be expected for the corresponding stationary problem on the spatial domain,
here the Poisson equation; see also Sect. 6.5.5.

We run our adaptive Algorithm 6.4.8 with § = 0.5 and { = 1, computing
%g and ®uq as in Sect. 6.6.4. Since we envisage that in our experiments data-
oscillation errors are not dominant, for our convenience we took w = co. We
solve the arising linear system of (6.31) using Preconditioned CG, using the
previous solution as initial guess. We then perform Dorfler marking on the
residual, yielding a minimal set ./, and finally choose I as the smallest lower
set containing J U I;. Due to this constraint generally we add index pairs
outside of the marked set, i.e. [5 \ Is 2 J. Still, in our experiments, we observe
#15z — #15 < #J with a moderate constant.

Remark 6.7.1. Rather we would have applied an algorithm that produces a I;
such that I5 \ I; is guaranteed to have an, up to a multiplicative factor, smallest
cardinality among all lower sets I; O I; that realize the bulk criterion. Such an
algorithm was introduced in [BD04, BFV19] for ‘single-tree” approximation,
but seems not to be available for the ‘double-tree’ (i.e. lower set) constraint that
we need here.

We compare adaptive refinement with non-adaptive full- and sparse tensor
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products, and monitor the error estimator £°(@°) from Proposition 6.4.5, the
residual error estimator from Proposition 6.4.3, and the Ly (€2) trace error at
t=0.

6.7.1 Condition numbers of preconditioner

For the calibration of our preconditioners, we consider 2 := [0, 1]?, and com-
pare uniformly refined space-time meshes with locally refined meshes with re-
finements towards {0} x Of.

The replacement of the nonlocal operator (Ef,/AEf,)_1 in the forward

application of S%° by the block-diagonal preconditioner K f, from Sect. 6.5.6 is
only guaranteed to result in a convergent algorithm when the eigenvalues of

!/
K g/ Ef, AE% are sufficiently close to one.
In Table 6.1, we investigate the values

s = max{ Amax (K3 A ), 1/ Amin (K3 A3 )}

!
with Ag, the matrix representation of Eg AEf/, and Kg, built from spatial

multigrid preconditioners K% corresponding to n V-cycles. In each V-cycle
we applied one pre- and one post Gauss-Seidel smoother. In case of a locally
refined spatial mesh, on each level these Gauss-Seidel updates were restricted
to the vertices whose generation is equal to that level as well as both endpoints
of the edge on which these vertices were inserted ([WZ17]). We see that for both
uniform and locally refined space-time meshes, k5 converges to 1 rapidly in n,
and is essentially independent of dim X°. In our examples, x; is sufficiently
close to one already for n = 1.

Fixingn = 1 for the forward application of 5%°, we want to precondition S2°
itself as well. Following Sect. 6.5.6, we build a block-diagonal preconditioner
taking K3 to correspond to m V-cycles of the aforementioned multigrid method
now applied to A§ +2/* M3 with A4 and M being stiffness- or mass-matrices.

dmX? n=1 n=2 n=3 n=4 n=5 n==6

uniform 729 1343 1.070 1.017 1.004 1.001 1.000
35937 1360 1.075 1.019 1.004 1.001 1.000
2146689 1365 1.077 1.019 1.004 1.001 1.000

local 766 1306 1.058 1.013 1.003 1.001 1.000
30151 1.307 1.058 1.013 1.003 1.001 1.000
1964797 1.307 1.058 1.013 1.003 1.001 1.000

TasLe 6.1. Values ks := max{)\max(K%A%), I/Amin(Kg/Ag,)} using spatial
multigrid with n V-cycles.
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Table 6.2 shows the condition numbers of the preconditioned matrix. We again
see fast stabilization in m as well as in dim X°. We fix m = 3 in the sequel.
Most interestingly, in every of our example problems, the adaptive algorithm
only needs one or two PCG iterations to reach the error tolerance 5.

6.7.2 Smooth problem

We consider the square domain (2 := [0, 1]? and prescribe

u(t, z,y) = (1+t*)a(l —2)y(l —y)

with derived data uy and g. For this smooth solution, full and sparse tensor
products are expected to yield the best possible error decays proportional to
(dim X°)~1/3 and (dim X?)~'/2, respectively.

The left side of Figure 6.5 shows the error progressions for the smooth
problem. We plot the error estimator £%(@°) = £°(a’; %, %ug) =~ [|% — @0 ||x
from Proposition 6.4.5, the residual error estimator ||r°||, and || yo (Pu—°)|| 1, (0)-
We see that the error progressions are as expected. For this solution, adaptive
refinement yields no advantage over sparse grid refinement. We observe a
higher order of convergence for the trace at t = 0 measured in Ly(€2).

6.7.3 Moving peak problem

We consider a square domain 2 := [0, 1] and select

u(t,z,y) = z(1 — 2)y(1 —y) exp(=100[(z — t)* + (y — t)?]).

We took this example from [LS20]. The solution is smooth, and almost zero
everywhere except on a small strip near the diagonal from (0, 0,0) to (1,1, 1)
of the space-time cylinder. As u is smooth, we expect sparse grid refinements

dmX? m=1 m=2 m=3 m=4 m=5 m=6

uniform 4913  9.196  6.119 6.048 6.042 6.041 6.041
35937 9718 6315 6263 6260 6260 6.260

274625 9991 6750 6749 6751 6.752  6.752
2146689 10.115 7.080 7.087 7.088 7.088  7.088

local 3520 5707 5132 5110 5111 5111 5.111
301561 6355 5734 5706 5704 5704 5.704
244870 7619 6879 6.843 6.841 6.841 6.841
1964797 9.353 8734 8703 8701 8701 8.701

TaBLE 6.2. Spectral condition numbers of K $%, using spatial multigrid with
m V-cycles.
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Ficure 6.5. Error progressions for (left) the smooth problem and (right) the
moving peak problem. Shown: estimated X-norm error (solid line), residual
norm (dashed), and ¢ = 0 trace error (dotted) as a function of dim X?° for
adaptive (black), sparse grid (red), and full grid refinement (orange).

to asymptotically yield the optimal error decay proportional to (dim X%)~1/2,
albeit with a terrible constant. Adaptive refinement should be able to achieve
the same rate at quantitatively smaller doubletrees.

From the right of Figure 6.5, we see that the sparse grid rate is not (yet)
optimal, while our adaptive routine is able to find the optimal rate from
dim X? = 103 onwards. Figure 6.6 shows the number of basis functions oy ® ¢,,
whose supports intersect given points in the time-space cylinder. We see the
adaptation to the moving peak.

6.7.4 Cylinder problem

Selecting the L-shaped domain Q := [—1,1]? \ [-1,0]* with data up = 0 and
g(t,z,y) =t - Liz24,221/4y, the true solution is known to be singular at the
re-entrant corner and at the wall of the cylinder {(t,z,y): 2* + y* = 1/4}.
We took this example from [FK21]. The left side of Figure 6.7 shows the
error progression for this cylinder problem. We see that the full grid error
decay proportional to (dim X°)~1/4 is improved to an error decay proportional
to (dim X°)~'/3 by considering sparse grids. Adaptive refinement, however,
achieves the best possible error decay proportional to (dim X?)~1/2, recovering
the rate for a smooth solution.
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t=0.1 t=0.2

FIGURE 6.6. Moving peak problem, adaptive lower set with dim X? = 89401.
Shown: #{(\,v) € Is: (t,z,y) € supp oy ® ¢, } for a selection of times t.
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6.7.5 Singular problem

We again select the L-shaped domain Q := [—1,1]? \ [-1,0]? with data ug = 1
and g = 0. The solution has a strong singularity along {0} x 99 due to the in-
compatibility of initial- and boundary conditions, in addition to the singularity
atthere-entrant corner (0,0). Atthe right of Figure 6.7, for uniform refinement,
we see the extremely slow error decay proportional to (dim X?)~1/!!, already
found in [FK21]. Interestingly, sparse grid refinement offers no rate improve-
ment over full grid refinement. The adaptive algorithm yields a much better
error decay proportional to (dim X%)~2/5. We observed that increasing the
Dorfler marking parameter to 6 = 0.7 decreases the convergence rate to —1/3,
whereas a ¢ smaller than 0.5 did not improve the rate beyond —2/5. Looking
at Figure 6.8, we see strong adaptivity towards {0} x 99 and I x {(0,0)},
and observe basis functions oy ® ¢, that span X° whose barycenter is at
t=2""~10"%

6.7.6 Gradedness and error reduction

In Sect. 6.4 we used (6.24) to demonstrate proportionality of |r’ || and ||u—u°|| x,
as well as a constant error reduction in each iteration of the adaptive algorithm.
In Proposition 6.6.6, we showed that (6.24) holds when the gradedness L; of
Definition 6.6.4 is uniformly bounded.
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Ficure 6.7. Error progressions for (left) the cylinder problem and (right) the
singular problem. Shown: estimated X-norm error (solid line), residual norm
(dashed), and ¢ = 0 trace error (dotted) as a function of dim X° for adaptive
(black), sparse grid (red), and full grid refinement (orange).
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FIGURE 6.8. Barycenters of supports of basis functions o ® ¢, spanning X°
generated by Algorithm 6.4.8 of dimension 81074 for the singular problem.
Left: a top-down view, with a 10x zoom to the origin; right: centers in

spacetime, logarithmic in time.
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Ficure 6.9. Gradedness and estimated X-norm error at every iteration of the
adaptive loop, for the four different model problems under consideration.

In the left picture of Figure 6.9, we see however a more than expected in-
crease in gradedness, where in particular for the singular problem we observe
a logarithmic increase in terms of dim X°. However, this turns out not to be
a problem in practice: Figures 6.5 and 6.7 demonstrate that the residual error
|r?|| and the estimated X -norm error £°(i’) are very close, and even converge
for the singular problem. Moreover, in the right picture of Figure 6.9, we see
a constant error reduction of p =~ 0.89 at every step of the adaptive algorithm,
and hence, that the conclusion of Theorem 6.4.9 holds in practice.

6.7.7 Total runtime and memory consumption

Figure 6.10 shows the total runtime and peak memory consumption after every
iteration of the adaptive algorithm. The top row shows absolute values, and
the bottom row values relative to dim X°.

The left of the figure shows that the adaptive algorithm runs in optimal
linear time in the dimension of the current trial space.

The right of the figure shows that the peak memory is linear as well, sta-
bilizing to around 15kB per degree of freedom. This is relatively high, mainly
because our implementation uses trees rather than hash maps to represent
vectors to ensure a linear-time implementation of the matrix-vector products
(cf. Rem. 6.6.2).
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Ficure 6.10. Total runtime and peak memory consumption as function of
dim X?, measured after every iteration of the adaptive loop, for the four dif-
ferent model problems.

6.8 Conclusion

We have constructed an adaptive solver for a space-time variational formula-
tion of parabolic evolution problems. The collection of trial spaces are given by
the spans of sets of tensor products of wavelets-in-time and hierarchical basis
functions-in-space. Compared to our previous works [CS11, RS19] where we
employed ‘true” wavelets also in space, the theoretical results are weaker. We
have demonstrated r-linear convergence of the adaptive routine, but have not
shown optimal rates at linear complexity. On the other hand, the runtimes
that we obtained with the current approach are much better.
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7 Adaptivity: an efficient implementation

7.1 Introduction

This chapter is about an efficient adaptive method for parabolic evolution equa-
tions using a simultaneous space-time variational formulation. Compared to
the more classical time-stepping schemes, these space-time methods are very
flexible. Among other things, they are especially well-suited for massively
parallel computation ([NS19, vVW21a]), and some can guarantee quasi-best
approximations from the trial space ([And13, FK21, SZ20]).

We are interested in those space-time methods that permit adaptive re-
finement locally in space and time. Within this class, wavelet-based methods
(see [SS09, GK11, KSU16]) are attractive, as they can be shown to be quasi-
optimal: they produce a sequence of solutions that converges at the best pos-
sible rate, at optimal linear computational cost. Moreover, they can overcome
the curse of dimensionality using a form of sparse tensor-product approximation,
solving the whole time evolution at a runtime proportional to that of solving
the corresponding stationary problem.

In Chapter 6, we constructed an r-linearly converging space-time adaptive
solver for parabolic evolution equations that exploits the product structure of
the space-time cylinder to construct a family of trial spaces given as the spans
of wavelets-in-time tensorized with (locally refined) finite element spaces-in-
space.

The principal difference between this and other wavelet-based methods is
that we use wavelets in time only, and standard finite elements in space. This
eases implementation, and alleviates the need for a suitable spatial wavelet
basis, which is generally difficult for general domains ([RS18]). Unfortunately,
there is no free lunch: a proof of optimal convergence is, for our method, not
yet available.

In this chapter we discuss an implementation of the adaptive algorithm
from Chapter 6, in which the different steps (each iteration of the linear alge-
braic solver, the error estimation, Dorfler marking, and refinement of trial- and
test spaces) are of linear complexity.

Special care has to be taken for matrix-vector products. For a bilinear form
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that is ‘local” and equals (a sum of) tensor-product(s) of bilinear forms in time
and space, and ‘trial” and ‘test” spaces spanned by tensor-product multi-level
bases with double-tree index sets, the resulting system matrix w.r.t. both bases
can be applied in linear complexity, even though this matrix is not sparse.
The algorithm that realizes this complexity makes a clever use of multi- to
single-scale transformations alternately in time and space. This unidirectional
principle was introduced in [BZ96] for “uniform’ sparse grids, so without ‘local
refinements’, and it was later extended to general downward closed or lower
sets, also called adaptive sparse grids, in [KS14]. The definition of a lower set
in [KS14], there called multi-tree, is more restrictive than our current definition
that allows more localized refinements.

To the best of our knowledge, other implementations for the efficient eval-
uation of tensor-product bilinear forms (see [Pfl10, KS14, Pab15, Rek18]) are
based on the concept of hash maps. There, a hash function is used to map
basis functions to array indices. In an adaptive loop, the final set of basis func-
tions is unknown in advance so it is impossible to construct a hash function
that guarantees an upper bound on the number of hash collisions. Aiming at
true linear complexity, we implement these operations by traversing trees and
double-trees, so without the use of hash maps.

Organization

In §7.2, we look at the abstract parabolic problem, its stable discretization,
and the adaptive routine. In §7.3, we provide an abstract algorithm for the
efficient evaluation of tensor-product bilinear forms w.r.t. multilevel bases
indexed on double-trees. In §7.4, we take the heat equation as a model problem,
and provide a concrete family of trial- and test spaces with bases indexed
by double-trees that permits local space-time adaptivity. In §7.5, we discuss
the practical implementation of the adaptive algorithm. Finally, in §7.6, we
provide extensive numerical experiments to demonstrate the linear runtime of
the algorithm.

Notation

In this work, by C' < D we will mean that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Obviously,
C 2 Disdefinedas D SC,andC <~ DasC < Dand C 2 D.

For normed linear spaces E and F, by L(E, F') we will denote the normed
linear space of bounded linear mappings E — F, and by Lis(E, F) its subset
of boundedly invertible linear mappings £ — F. We write E — F to denote
that E' is continuously embedded into F. For simplicity only, we exclusively
consider linear spaces over the scalar field R.
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7.2 Space-time adaptivity for a parabolic model problem

In this section, we summarize the relevant parts of Chapter 6.

Let V, H be separable Hilbert spaces of functions on some “spatial domain”
such that V' — H with dense and compact embedding. Identifying H with its
dual, we obtain the Gelfand triple V — H ~ H' — V',

For a.e.

tel:=(0,T),

leta(t; -, -) denote abilinear formon V' x V' so thatforany n,{ € V, t — a(t; 1, {)
is measurable on I, and such that for a.e. t € I,

la(t;n, O < Inllv Kl (1, € V) (boundedness),
a(t;n,n) Z Inlly, (neV)  (coercivity).
With (A(¢)-)() = a(t; -, ) € Lis(V, V'), given a forcing function g and initial

value ug, we want to solve the parabolic initial value problem of

G+ A@u(t) =gt) (el

(7.1) finding u : I — V such that { w(0) = uo.

Example 7.2.1. For the model problem of the heat equation on some spatial
domain  C R? we select V := H}(Q), H := L(Q2), and a(t;n,¢) = [, V7 -
Vx( dx.

In our simultaneous space-time variational formulation, the parabolic prob-
lem is to find u s.t.

(Bu)(v) := /I<%(t)vv(t)>H + a(t; u(t), v(t))dt = /<g(t)7v(t)>H =:g(v)

for all v from some suitable space of functions of time and space. One possibil-
ity to enforce the initial condition is by testing against additional test functions.

Theorem 7.2.2 ([SS09]). With X := Lo(I; V)NHY(I; V"), Y := Ly(I; V), we have
{B} € Lis(X,Y' x H),
7o

where for t € I, v w s u(t,-) denotes the trace map. In other words,
(72)  findingu € X s.t.  (Bu,yu) = (g,up) given (g,up) €Y' x H
is a well-posed simultaneous space-time variational formulation of (7.1).

We define A € Lis(Y,Y’) and 9; € Lis(X,Y”) as

(Au)(v) := /Ia(t;u(t),v(t))dt, and 0;:=B— A.
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Following [SW21b], we assume that A is self-adjoint. Morever, in view of an

efficientimplementation, we assume that A is a finite sum of tensor-product op-

erators. If A does not have this structure, one may alternatively consider (low-

rank) tensor-product approximations of A, see e.g. [Hac12] for an overview.
We equip Y and X with ‘energy’-norms

115 = (A -1 =110 15+ 1 - 1R + e - 1

which are equivalent to the canonical norms on Y and X.
The solution u of (7.2) equals the solution of the following minimization
problem

(7.3) u = argmin || Bw — g||%/, + |lvow — u0||%{,
weX

which in turn is the second component of the solution of

(74)  finding (4, u) €Y x X s.t {B’ —’Y(/)VO} M - L“O] '

Indeed, taking the Schur complement of (7.4) w.r.t. the Y-block results in the
Euler-Lagrange equations of (7.3).
7.2.1 Discretizations

Take a family (X 9 sen of closed subspaces of X, and define

(7.5) us = argmin || Bw — g3 + [[vow — uoll%,
weX?
being the best approximation to u from X° w.r.t. || - ||x. Solving this problem,

however, is not feasible because of the presence of the dual norm. Therefore,
take (Y%)sea to be a family of closed subspaces of Y such that

(7.6)
X(s - )ﬂs ((5 S A), and YA = inf inf sup M > 0.
SEA 0#£wEX? ey s ||Opwlly|lv]ly

For § € A with Y% D V?, we replace Y’ by Y?' in (7.5) yielding the approxi-
mation

ud = argmin | Bw — g||§/§/ + [lrow — uoll%-

weX
Notice that u?° approximates us in that u®® = us when Y° =Y.
With E2 : Y? — Y and ES : X% — X denoting the trivial embeddings,
u% is the second component of the solution of
!/ !
B AR, EBVBES u‘”] B
5| =

/ ) / Y
EYBE, —BoF] v

5/
Ey g 1
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Taking the Schur complement w.r.t. the Y°-block then leads to the equation

/ 5 687 S\—10"
o7 EX (B'Ey(Ey AEY)™'Ey B+ i) E%u®
’ ’ . RN
= E% (B'Ey.(Ey AEy)™"Ey g+ vjuo),

which has a unique solution (cf. Lemma 6.3.3) that satisfies |u — u%°|x <
Yx'|lu — us|| x whenever Y¢ D Y; cf. [SW21b, Thm. 3.7]. For now, we assume
the right-hand side of (7.7) to be evaluated exactly. Later, in §7.4.5, we will
discuss approximation of the right-hand side.

In view of obtaining an efficient solver, we want to replace the inverses
in (7.7) while aiming to preserve quasi-optimality of the solution. To this

end, let Kf, = Kgl € Lis(Y? Y?) be a uniformly optimal preconditioner for

EglAEf, that can be applied in linear complexity. Then, for some kA > 1 we
have

(Ky) " 0)(v)
(Av)(v)

Replacing (Ef,/AEf/ )~ by K2, we denote the solution of (7.7) again by u%.
It is quasi-optimal with [Ju — u®[|x < %2 [[u — ug]|x; cf. [SW21b, Rem. 3.8].

€ [ka' kal (0€AveEY?).

7.2.2 Adaptive refinement loop

Our adaptive loop, given in Algorithm 7.1, takes the familiar Solve, Estimate,
Mark and refine steps, and is driven by an efficient and reliable ‘hierarchical
basis’ a posteriori error estimator.

The adaptive loop below requires a saturation assumption. Define a partial

order on Aby § > § whenever X 5D X9, Let§ s 6 = dbea mapping providing
saturation in that for some ( < 1,

(7.8) [ = usllx < Cllu—usllx  (6€A).
With this choice of §, we are interested in finding u® := 1%’ € X?° that solves

/ 5 .5 5 / S 78 67
(79)  EX (B'EyKyEy B+7)EX v’ = EX (B'Ey Ky Ey g+7u0) -

S§5;: f5::

Notice that (7.9) is uniquely solvable even with X? as ‘trial space’, and we
use this ‘room’ between X? and X? to our advantage. Expanding X° to some
intermediate space X° C X° C X? yields a u® that is a better approximation
to u than u?; cf. Proposition 6.4.2. This function will be the successor of uw® in
our loop, and we will show that the resulting sequence of functions converges
r-linearly to u; see Algorithm 7.1 and Theorem 7.2.4.
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Solving

Instead of solving the symmetric positive definite system (7.9) exactly, we con-
struct an approximate solution 4 using Preconditioned Conjugate Gradients
(PCG). To this end, let K = K 35{/ € Lis(X 5/, X?) be a uniformly optimal pre-
conditioner for $%. Then ((K%)™'w)(w) = |Jw||% = ||K%S%w|% for w € X?.
Writing w = K% 5% (u® — v°) reveals that this induces an algebraic error esti-
mator

(7.10)

B (%) = /(7 — S909) (K (1 — 5500))  Ju’ —o¥l|x  (v° € XP,6 € A).

With 4 denoting the approximant at iteration k of the PCG loop, 5°(43) is
already available as +/fy, for 8, the variable used in computing the next search
direction.

Error estimation

Let ©5 := {0\ : A € Js5} be some uniformly X-stable basis satisfying X° @
span ©s = X?¢, in that

(7.11) lz+cTOsl% = 1% +llel® (e € la(J5), 2 € X°, 5 € A).

Define the trivial embedding P° : X° — X°. Akin to (7.9), we define S%°
and f?°, and with it, the residual-based a posteriori error estimator r’ : X° —
ls(Js), as

(7.12)

5% = B (B'ELKLEL B+ o) B, 90 = B (B'ES KL EL g+ vuo),
0 (a0) == (f20 — S99 P°al)(Oy).

For @’ close to u?, the error estimator ||r®(@%)|| is reliable and efficient:
Lemma 7.2.3. Assume (7.8) and (7.11), 52 < %, and fix some & > 0 small enough.
For 4° € X9 satisfying 8(0°) < 1%5”1-5(126)”, we have

S/ AB\| .5 .5 s
[r° (@) = |lu—a°(|x and [lu—2a°[x S |lu—u’l[x (6 €A).

Proof. For convenience, we write £ := r?(4’) and r® := rf(uf).
By (7.8), (7.11) and % < %, Proposition 6.4.4 shows that
(7.13) 2] = [lu—u’|lx (3 €A).

From (7.11) one deduces that |[r® — 9| < ||u® —@°||x; cf. (6.25). By assump-
tion, for £ < 1, we find 3 (4°) < €||#%||. Combined this reveals

571D sy (710 o X
(7.14) 10 — 20| <’ — @’ x = B°(a°) < €JIF°).
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Using this, we can show reliability of the estimator by

lu —@°llx < flu—u’lx +[lu’ =@’ x

(7.13),(7.10)|

~

i (7.14)
e+ B2 (@) < [|8°) + [Ix® — %)) + 8% (a°) S [1#°)).

For efficiency of the estimator, we deduce

(7.13)
B2 < Nl = llx + [’ = 2] < flu =@l x + u® =@ lx + e =2
(7.14) s s
S llu =@l x +€[E°,
so taking ¢ sufficiently small and kicking back ||#°| yields
(7.15) 1001 S Jlu = @°llx
Similarly, from (7.13) and (7.14) it follows that
(7.16) 1B Jlu = w’llx
We infer quasi-optimality of 4’ from

s (7.14) s s (7.16) s
Ju—ax S flu—ullx + &% S [lu—u’[x. O

In the solve step, we need to iterate PCG until 5°(49)/|[r°(al)|| is small
enough. In the algorithm below, this is ensured by the do-while loop which
also avoids the (expensive) recomputation of the residual at every PCG itera-
tion.

Marking and refinement

Denoting the output of the solve step by @, we drive the adaptive loop by
performing Dérfler marking on the residual #° := r°(a?), i.e., for some 6 €
(0,1], we mark the smallest set J C Js for which [[#°];] > 6[|#°||. We then

construct the smallest § = § such that X contains span Os| ;.

Theorem 7.2.4 (Theorem 6.4.9 with n = 0). Assume (7.8) and (7.11). For £ and
22 — Lsufficiently small with Z% —1 | 0 when 0 | 0, the sequence of approximations
produced by Algorithm 7.1 converges r-linearly to u, in that after every iteration,
|lu — @ || x decreases with a factor at least p < 1.

Remark 7.2.5. In a practical implementation, to ensure termination, Algo-
rithm 7.1 has to be complemented by an appropriate stopping criterium; cf. Al-
gorithm 6.30.
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Algorithm 7.1: Space-time adaptive refinement loop.
Data: 6 € (0,1], £ € (0,1), 0 := dinit € A;

ts = £9(0) =\ (BY 9) (K02 ) + o
repeat
Solve:
do
Compute ﬁi € X% with g°(al) < t5/2;
= p°(a )
es = v (@)[| + ts;
while t5 > Les;
= ad;
Estimate: Set ° := r9(0%);
Mark: Mark a smallest J C J; for which [|#°] ;]| > 0]|£°]];
Refi~ne: Determine the smallest § € A such that
X% > X9 @ span O] ;
t; i =e5,0 = 5;

Proof. For convenience, we denote r’ := r%(u 5) and #° := r®(4°). The stopping
criterium of the solve step ensures that ﬁ(s( ) <€(||B0] + B2 (i), sofor £ < 1
we are in the situation of Lemma 7.2.3.

We have

R S A ) PO
122 — el S EE) < &(fle) + 120 —2°)),
so taking ¢ sufficiently small and kicking back [|#° — r°| yields
(717) [ = x| S €lle’])

After marking, we have ||#°| < 6~1||#°| 7|, which shows that

PG s ) s oS s )
el S IR S R0l < MLl + [l = 22 < e ] + €l
so for ¢ small enough, kicking back ||r’ || reveals that for a § > 0 dependent on
0,
[ > 6]1x°]].

From Proposition 6.4.3 we now find that, for 2—2 — 1/l 0when6 | 0, thereisa
p < 1 for which

(7.18) lu— vl x < pllu—u’|x.

156



7.3. The application of linear operators in linear complexity

Combining the results shows that

lu—a°llx < llu—v’|x+[lu’ — @) x
(7.14),(7.16) .
<1+ 0©)u -l
(7.18)
< (1+0©))pllu—u’llx
<1+ 0E)p(lu—a°|x + [[u® —a°|x)

(7.14),(7.15) _ ~0
< (14 0()pllu—1a°|x,
N————
=ip

so for £ small enough, p < 1, completing the proof of r-linear convergence. [J

7.2.3 Adaptive trial- and test spaces

The convergence rate of our adaptive loop is determined by the approxima-
tion properties of the family (X%)sca. We want to construct a family that
allows for local refinements. Here, the crucial problem is guaranteeing the
inf-sup stability condition (7.6). It is known that inf-sup stability is satisfied
for full tensor-products of (non-uniform) finite element spaces, and in [And13,
Prop. 4.2], this result was generalized to families of sparse tensor-products.
Unfortunately, neither family allows for adaptive refinements both locally in
time and space.

In §7.4 we will solve this by first equipping X with a tensor-product of
(infinite) bases: a wavelet basis X in time, and a hierarchical basis in space. We
then construct X° as the span of a (finite) subset of this tensor-product basis,
which we grow by adding particular functions.

By imposing a double-tree constraint on the index set of the basis of X, we
can apply tensor-product operators in linear complexity; see §7.3. Moreover,
this constraint implies that for our model problem the inf-sup condition (7.6)

is satisfied and we can construct optimal preconditioners K- f, and K§.

7.3 The application of linear operators in linear complexity

An efficient implementation of our adaptive loop requires the efficient appli-

cation of the operators Ef//BEg( and E%'v~oE% appearing in (7.9). Both
terms are finite sums of tensor-products of operators in time and space. When
we equip our trial and test spaces with tensor-products of multilevel bases, it
turns out that we can evaluate these operators in linear complexity.

More precisely, this section will show the abstract result that given

e tensor-products ¥ := W0 x ¥, U := U0 x Ul of multilevel bases ¥°, U1,
U0, ¥l indexed by VO, v1, V0, V1, and

157



7. ADAPTIVITY:. AN EFFICIENT IMPLEMENTATION

e (finite) subsets A C VO x V1, A C V0 x V! that are double-trees, and
e linear operators A; : span U — (span W?)’ that are local (i € {0,1}),

we can apply the matrix ((Ao® A1) ¥|a) (¥ A)INO(H#A+ #A) operations even
though this matrix is not uniformly sparse.

Example 7.3.1. For our model problem, ¥° and ¥° will be wavelets for H'(I)
or Ly(I) in time, and ¥! = ¥! will be a hierarchical finite element basis for
H () in space. We will apply the result of this section to the operators )70
and B = 0; + A.

We will achieve this complexity using a variant of the unidirectional principle.
Denote with /A the extension with zeros of a vector supported on A to one
on VY x V!, and with R, its adjoint; define I and Ry analogously. Define
A; = (A;09)(¥%). We will split A, in its upper and strictly lower triangular
parts Uy and Ly, so that

Ry(Ao® Ay)Ia = Ry (Lo ® 1d)(Id ®A1)Ia + R4 (Up © 1d)(Id @A) .

This in itself is not useful, as (Id ®A1)Ix maps into a vector space which
dimension we cannot control. However, the restriction Rx gives us elbow
room: in Theorem 7.3.13 we construct double-trees X, ® with #X + #0 <
#]X + #A st

(7.19) R[\(LO (9 Id)(Id ®A1)IA = RA(LO & Id)REIE(Id ®A1)IA,
' Ry (Up @1d)(Id @A, )Ia = Rz (Ug © Id)Rele(Id ©A1)I4.

These right hand sides we can apply efficiently, and their application boils
down to applications of Lo, Uy, and A, in a single coordinate direction only.
Simple matrix-vector products are inefficient though, as these matrices are
again not uniformly sparse. However, by using the properties of a double-tree
and the sparsity of the operator in single scale, we can evaluate Uy, Ly and A,
in linear time; see §7.3.1.

We follow the structure of [KS14, §3], which applies the aforementioned
idea to multi-trees though with a slightly more restrictive definition of a tree.
For readability, we defer the proofs of Theorems 7.3.7, 7.3.9, 7.3.11, and 7.3.13
to Appendix 7.A.

7.3.1 Evaluation of linear operators w.r.t. trees

Let ¥ be a (multilevel) collection of functions on some domain Q.

Example 7.3.2. In our application, ) will be either the time interval / with ¥
being a collection of wavelets, or the spatial domain (2, in which case ¥ is a
collection of hierarchical basis functions.
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Writing ¥ = {¢ : A € V}, we assume that the i are locally supported in
the sense that with |A\| € Ny denoting the level of A,

(7.20) sup 2 diam supp 1, < oo,
Aev

(7.21) sup sup #{\ € V : [\| = £ Asupp ¢y N B(z;27°) # 0} < oo.
LeNg z€Q

We will refer to the functions ¢, as being wavelets, although not necessarily
they have vanishing moments or other specific wavelet properties.

For ¢ € Ng,and any A C vV, weset Ay :={A € A:|A| ={}and Ay :={\ €
A 2|\ > ¢}, and write ¥, := ¥|y,.

For ¢ € Ny, we assume a collection &, = {¢» : A € Ay}, whose members
will be referred to as being scaling functions, with

(722) Span (I)g+1 D) Span (I)g U \I’g+1, (I)o = \IJO (AO = \/0),

(7.23) sup sup 2°diamsupp ¢ < oo,
£eNg AeA,

(7.24) sup sup #{\ € Ay :supp o N B(x;27%) # 0} < oo,
LeNg z€Q

(7.25) {¢paln:A € Ay, ¢pa|n # 0} is independent (for all open ¥ C @, £ € Ny).

W.l.o.g. we assume that the index sets A, for different ¢ are mutually disjoint,
and set ® := Uen, Py with index set A := Upen,Ay. For A € A, we set [\ := /¢
when )\ € Ay.

Viewing W,, ®, as column vectors, the assumptions we made so far guar-
antee the existence of matrices py, q¢ such that

{(‘Peq)T (\I’e)T} =(@)" [pe ae],

where the number of non-zeros per row and column of p, and ¢, is finite,
uniformly in the rows and columns and in ¢ € N (here also (7.25) has been
used). We refer to p, as the prolongation matrix. Columns of p, contain the
mask of the scaling functions, whereas columns of ¢, contain the mask of the
wavelets.

Toeach A\ € Vwith|A| > 0, we associate one or more i € V with |u| = |A\|—1
and |supp ¥ Nsupp¥,| > 0. We call i a parent of A, and so X a child of p.

To each A € V, we associate some neighbourhood S(\) of supp ¢, with
diameter < 2711, such that for [A| > 0, S(A) C U,eparens(n)S (1)

Remark 7.3.3. Such a neighborhood always exists even when a child has only
one parent. Indeed with C' := sup, ., 2/* diamsupp v, and S(\) = {z €
Q : dist(x,supppy) < C2-}, for u being a parent of A and = € S(\),
dist(z, suppp,,) < dist(x,supp ) + diamsupp s < 20271 = C2714, je,,
x € S(p).
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Definition 7.3.4 (Tree). A finite A C V4 is called an /{-tree, or simply a tree
when ¢ = 0, when for any A € A its parents in V4 are in A. This is not a tree
in the graph-theoretical sense, but rather one in the sense of a family history
tree.

Example 7.3.5 (Hierarchical basis in one dimension). Figure7.1 shows an exam-
ple multilevel collection ¥ of functions defined on the interval [0, 1]. Its index
set V5 with parent-child relations is shown left, with a tree A C V5 visualised
in red. This collection is called the hierarchical basis. With S()) := supp ¢ for
A € V3, the hierarchical basis satisfies conditions mentioned above.

/=0 (0,0) (0,1) 1[
OX«)

(=1
=2
{=3

Index set V5 and tree A C V5 Multilevel functions ¥ Scaling functions ®

Figure 7.1. Hierarchical basis for the interval [0, 1].

A routine eval

Let (¥, ®) and (¥, d) satisfy the conditions of the previous subsection, and let
A: span® — (span ®)’ be local in that (Au)(v) = (Aulsuppw)(v). Typically, A is
a (partial) differential operator in variational form; e.g. A € L(H'(I), L2(I)")
with (Au)(v) = [; 9%v dt. For trees A C V and A € V, we are interested in the
efficient application of the matrix (A¥|, ) (| i)

Just for brevity of the following argument, assume ¥ = ¥ and & = &.
The matrix (AU |4 )(¥]a) is not uniformly sparse, so a straight-forward matrix-
vector product is not of linear complexity. However, for A a uniform tree up
tolevel £, ie. A = {A € V : |A\| < ¢}, a solution is provided by the multi- to
single-scale transform 71" characterized by ¥|y = TT®, through the equality
(AW[p)(¥[p) = TT(A®,)(P)T, as the transforms can be applied in linear
complexity and the single-scale matrix is uniformly sparse.

For general trees however, we don't have dim ®, < dim ¥|4 so the previous
approach is not of linear complexity. Clever level-by-level multi-to-singlescale
transformations and the prolongation of only relevant functions does allow
applying (A¥|,)(¥ &) in linear complexity; see Algorithm 7.2 below.
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7.3. The application of linear operators in linear complexity

On several places the restriction of a vector (of scalars or of functions) to
its indices in some subset of the index set should be read as the vector of
full length where the entries with indices outside this subset are replaced by
zeros. For index sets A and A, matrix m € R#2X#2 and subset II C A, we

write supp(m, II) C A for the index set corresponding to the image of m under
{x|m : x € R*A}.

Algorithm 7.2: Function eval(A).

Data: ¢ € N, 11 C A,_1, 11 C Ay_q, l-trees A C Verand A C Vi,
d € R# ¢ e R#A,
Result: [e, f] where e = (Au)(®

wi=d ®|g+cV[y.
if ITUA # ) then
1V_IB = {>‘ € ﬁ : ‘supp(;vb)\ ﬂUMGA/S( )| > O}IﬁA = ﬁu\ﬂB
g:={\ell: ‘suppqﬁA N ( ek, 5'( U ety supp¢7)| > 0},
T, =11\ 1p )
i= supp(pe, L) Usupp(de, Ar)
:= supp(pe, I1p) U supp(qe, Ar)
= pld|HB + q5C|A14 _
f] = eval(A)(€ +1, 1T Ag+1T,H, Ag+1¢,g, C‘A[Jr”)

: (AB|r) (] )d

e = e‘ﬁA =

el (b e)

B[
|Ae+1T

Remark 7.3.6. Let A €V, A C V be trees, and ¢ € £5(A), then

f[)r f= (Au)(i'

]\), with

I8 I 1

IIp

elx

cH
f

[e, f] = eV&l(A)(l,[v\o,/u\lT,Ao,AlT,C|AO,C‘A1T),

satisfies

(avla)Ele = [¢].

Theorem 7.3.7. A call of eval yields the output as specified, at the cost of O(#1I1 +
#A + #11 + #A) operations.

Proof. See Appendix 7.A. O
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7. ADAPTIVITY:. AN EFFICIENT IMPLEMENTATION

Routines evalupp and evallow

Let A: span® — (span ®)’ be local and linear. Set
= (AD)(¥) = [(A) @A) (a gy evxv

as well as U := [(Aw#)(du))\)]‘,wgw and L := [(Aw#)(t/uu)h,\bw so that A =
L + U. As sketched in the introduction of this section, this splitting is going
to be necessary for the application of system matrices in the tensor-product

setting; see also (7.19). Algorithms 7.3 and 7.4 below can be used to evaluate
U and L in linear complexity.

Algorithm 7.3: Function evalupp(A).

Data: ¢ € N, I c Ag,l, II c Ay_q, l-trees AcC \7£T and A C V4,
d € R#*II ¢ € R#A,

Result: [e, f] where e = (Au)(<i>|ﬁ), f = Uy, c with
o u=d g+ P,
fIIUA # () then

Mp:={\ell: |suppgzv5,\ N Upen,S(p)| > 0}, I, =1\ 1lp
11 := supp(p, lI5) U supp(d, A¢)

I := supp(qe, Ae)

d := qucly, o

e, f] := evalupp(A)(€ + 1,1L Apy1p, I, Apyar, d, €fa, )

o [elin.] _ [A2lm) @, )a
eliiy | [(A®[n)(@y, )d + (57 e,

fly, |
i

Remark 7.3.8. Let A C V, A C V be trees, and ¢ € l5(A), then

[e, f] := evalupp(A)(l,7&0,/quT,A07A1¢,c|AO,c|A1T),

satisfies
e
Ul[\xACZ f .

Theorem 7.3.9. A call of evalupp yields the output as specified, at the cost of
O(H#IT + #A + #I1 + #A) operations.

Proof. See Appendix 7.A. O
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7.3. The application of linear operators in linear complexity

Algorithm 7.4: Function evallow(A).
Data: £ € N, I1 C Ay_4, (-trees A C Vyyp and A C Vg, d € R#TT,
c € R#A,
Result: f = (A®|;p)(¥[5)d + L], s
if [TU A # () then
Mp :={\€1I: [suppds N U5, 5(p)| > 0},
I := supp(pe, [p) U supp(qr, Ar)
L == supp(pe, 1p)
1T := supp(de, Ar)
d := pedfn, + gecla,
= (AP|m,, ) (Plg)pedm,

_ s | @ el
f|7\e+1T

evallow(A)(¢ + 1, Ag+1¢7ﬂ, Agyir,d,clag,,y)
Remark 7.3.10. Let A € V, A C V be trees, and ¢ € /5(A), then

o |

-

L|;, ¢ = evallow(A)(1, /V\lT,AO,AlT,c|A0, clay,)-

Theorem 7.3.11. A call of evallow yields the output as specified, at the cost of
O(#[v& + #I1 + #A) operations.

Proof. See Appendix 7.A. O

7.3.2 Application of tensor-product operators w.r.t. double-trees

Fori € {0,1},let A;: span®; — span @, be local and linear and let

A; = (AD,)(Fy) = [(AVL) (W3] aevi pevi = Li + Us.

where U; = [(Ai)k,;t]\/\|§|u| and L; = [(Ai))\7ﬂ]\>\|>\#«\' For i € {0,1}, let

—7:=1—1.

Definition 7.3.12 (Double-tree). Define the coordinate projector P;(bg,b1) :=
b;. We call A C {V9 x V1 V0 x V1 V0 x vi VO x vl a double-tree when for
i €{0,1} and any p € P-;A, the fiber

Aiy = Pi(Poi|a) H{u}

is a tree (in V? or V?), i.e., A is a double-tree when ‘frozen’ in each of its
coordinates, at any value of that coordinate, it is a tree in the remaining
coordinate.
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° o o o |0 |[ofeele
1w e PiAe>e] [¢] [o] o |[o]|[0|e|oe ¢ "
N
~
° o o o o |(ofeele
I
TM,M
—1=0 A(J,// (- \/3

Ficure7.2. With V5 from Figure 7.1: V5 x V3 inblack; a double-tree A C V3 x V3
in red; the projection PyA in gray, and a fiber Ag , for ;1 € Py A in brown.

From A = Uuep_,a(P-i|la) " {u}, we have P,A = U,ep_,aAi,, which,
being a union of trees, is a tree itself. See also Figure 7.2.

For a subset <1 of a (double) index set ¢, let I 2 denote the extension operator
with zeros of a vector supported on < to one on ¢, and let R% denotes its
(formal) adjoint, being the restriction operator of a vector supported on ¢ to
one on <. Since the set ¢ will always be clear from the context, we will denote
these operators simply by I and R.

As sketched in the introduction of this section, the pieces are now in place
to apply R5 (Ao ® A1)l in linear complexity.

Theorem 7.3.13. Let A € VO x V1, A C VO x V! be finite double-trees. Then

¥ = U ({)\} X U Al,,u),
AEPGA {nePoAiul=|a141, 180 (m)ns0(A)| >0}
©:= |J ({neRA:3yeronst hl=lul 15°G0) N S°()] > 0} x {A}),

AEPIA
are double-trees with #3 < #A and #© S #A,and

Rx (Ao ®A1)IpA =Rx (Lo ®1d)IsRs(1d ® Aj)Ia+
RA(Id ® A1)IeRe(Uy @ 1Id)I,.

Proof. See Appendix 7.A. O

The application of R 5 (Lo®Id)Is; boils down to theapplicationof R4 |~ Lols, ,

for every € PyX N P A. Such an application can be performed in O(#A,,, +
#3,,,) operations by means of a call of evallow(Ay); see also Algorithm 7.9.
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7.4. The heat equation and practical realization

Since ) v, #A, ut#30,, = #A + #3, we conclude that the application of
R (Lo ® Id)Is can be performed in O(#A + #3) operations.

Similarly, applications of Rx(Id ® A1)Ia, R (Id ® A;)le, and Re(Uy ®
Id)IA using calls of eval(A;), eval(A;), and evalupp(Ay) respectively, can be
done in O(#X + #A), O(#A + #0), and O(#0O + #A) operations. From
#¥ < #A and #© < #A we conclude the following.

Corollary 7.3.14. Let AcC VO xV, AcVOxV!pe finite double-trees, then
Rx (Ao ® Aq)I can be applied in O(#A + #A) operations.

7.4 The heat equation and practical realization

In this section, we consider the numerical approximation of the heat equation

G0 = (Axu)(t) =g(t) (tel),
(7.26) { d w(0) = u.

For some bounded domain Q C R?, we take H := Ly(Q2) and V := H}(Q), so
that X = Lo(I; HH(Q) N HY(I; H-1(Q)) and Y = Lo(I; H}(2)). We define

altin, ) = /Q V- Ve dx,

and aim to solve the parabolic initial value problem (7.1) numerically. The
bilinear forms present in our variational formulation (7.4) satisfy

A=M;®Ax, B=D;®My+A, and 7y =G ® My

where

(M) (w) == [ vwdt, (Dw)(w):= [ vwdt, (G)(w) = v(0)w(0),
(7.27) /’ /’

(Aen)(Q) 1= [ V- Vedx,  (Myn)(C) = / 0 dx.
Q Q

In this section, we first construct suitable tensor-product bases for X and Y
which functions are wavelets in time and hierarchical finite element functions
in space. We then build our discrete ‘trial” and “test’ spaces (X%, Y%)sca as
the span of subsets of these tensor-product bases. We finish with concrete
uniformly optimal preconditioners K% and K f,, the basis necessary for error
estimation in the adaptive loop, and evaluation of the right-hand side of (7.9)
using interpolants.

7.4.1 Wavelets in time

We construct piecewise linear wavelet bases ¥ for H'(I) and = for Ly(I).
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Basis on the trial side

For X, we choose the three-point wavelet basis from [Ste98]; for completeness,
we include its construction. For ¢ > 0, define the scaling functions as the nodal
continuous piecewise linears w.r.t. a uniform partition into 2¢ subintervals, that
is ®F := {P(r,n) : 0 < n < 2} with ¢ (k27F) = Gy, for 0 < k < 2¢. Define
Yo := ®}, and for ¢ > 1, define ¥y := {0 : A := ({,n) with 0 < n < 2671}
with oy = 0, as in the right of Figure 7.3. Note that each o is a linear
combination of three nodal functions from ®%, hence the name three-point
wavelet.
By imposing the parent-child structure

(7.28) Adg A <= [\ +1=|)\| and [suppoy Nsuppos| > 0,

on any two indices A, \, we get the tree shown left in Figure 7.3.

Define ¥ := Uy>0%, Vs := {A : o) € £}, and S(oy) := suppor. We see
that ¥ satisfies (7.20)—(7.21) and that the ®} satisfy (7.22)—(7.25). Moreover,
one can show that ¥ is a Riesz basis for Ly (I) (cf. [Ste98, Thm. 4.2]), and that
{2=M gy} is a Riesz basis for H*(I) (cf. [Ste98, Thm. 4.3]).

1 91/2
K =0 (0,0) (0,1) - . %ﬁj
% 721 2 0'(1_’0)

:0) 9(0,1)

/=1 P 0(¢,0) O(e,n) O(,20-1-1)
4 =2
(=3 "@A@'

Ficure 7.3. Left: three-point wavelet index set Vx, with parent-child relations;
right: three-point wavelets.

Basis on the test side

We construct an Ly (])-orthonormal basis E.

For £ > 0, define the (discontinuous) piecewise linear scaling functions
w.r.t. a uniform partition into 2¢ subintervals by &% := {pum:0<n< 2t+1}
where ¢(0)(t) = 1jo1(t) and ¢(o1)(t) = V3(2t — 1)1}, and for ¢ > 1,
(ZS([,Qk-)(t) = ¢(0,0)(2£t - k) and ¢(€,2k+1)(t) = (;5(071)(2[15 — k) Let =0 = (I)OE,
and define Z; := {{(1,0),{(1,1)} as in the right of Figure 7.4. For / > 2, we take
== {f([m) 0<n< 24} with

Eam () =226 (257 — k), Epongn)(t) =27V 2 (2 — k).
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7.4. The heat equation and practical realization

The resulting = := U;>0Z is an orthonormal basis for Lo (I), and together
with its scaling functions Ug@%, the conditions from §7.3.1 are satisfied with
S(&,) == supp&,. We impose a parent-child relation analogously to (7.28); see
the left of Figure 7.4.

§a1,1)

(1,0

A A B A A A A A 7\/.)7
L A O A A O A N A A

FiGure 7.4. Left: orthonormal wavelet index set V= with parent-child relations;
right: the wavelets at levels 0 and 1.

7.4.2 Finite elements in space

Let T be the family of all conforming partitions of 2 into triangles that can
be created by Newest Vertex Bisection from some given conforming initial
triangulation 7 with an assignment of newest vertices satisfying the matching
condition; cf. [Ste08b].

Define ¥ := Urer{T : T € T}. For T € %, set gen(T) as the number
of bisections needed to create T' from its ‘ancestor’ 77 € 7,. With 0N the
set of all vertices of all T € ¥, for v € M we set gen(v) := min{gen(T) :
visavertexof T € T}.

Any v € 0 with gen(r) > 0 is the midpoint of an edge e, of one or two
T € ¥ with gen(T) = gen(r) — 1. The set of newest vertices © of these T,
so those vertices of T' with || = gen(v) — 1, are defined as the parents of v,
denoted U <y v. The set of godparents of v, denoted gp(v), are defined as the
two endpoints of e,. Vertices with gen(r) = 0 have no parents or godparents.

Example 7.4.1. In Figure 7.5, the parents of v4 are 11 and v3 and its godparents
are vy, v; the sole parent of v5 is v4, and its godparents are vy and vs.

Proposition 7.4.2 ([DKS16]). An (essentially) non-overlapping partition T of Q
into triangles is in T if and only if the set N of vertices of all T € T forms a tree in
the sense of §7.3.1, meaning that it contains every vertex of generation zero as well as
all parents of any v € N, see also Figure 7.5.

Let O be the collection of spaces W7 of continuous piecewise linears
w.r.t. 7 € Tvanishing on 992. For v € M, we set 1, as that continuous piecewise
linear function on the uniform partition T, :== {T € T : gen(T) = gen(v)} € T
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Vo V1 V2 V3 V3 Vo Vg

X X

%

L 7

V4
Vg Vs
V7
o 141
Nt To T T2 T3

FiGure 7.5. Vertex tree N7 and its triangulation 7 shown level-by-level.

for which v, () = §,5 for ¥ € T,. Setting My = N\ 01, the collec-
tion {¢, : v € My} is known as the hierarchical basis. For T € T, write
Nro:=Ny\0Qand ¥ := {4, : v € Ny }; it holds that Wy = span U

Applying stiffness matrices

The hierarchical basis satisfies conditions (7.20) and (7.21), and so, the ap-
plication of stiffness matrices (AVU7)(¥7) for A € {Ax, My} can be done
through eval(A).! However, the computation in Theorem 7.3.13 does not in-
volve the lower and upper parts of A. This crucial insight allows for a faster
and easier approach using standard finite element techniques: span ¥ is a
continuous piecewise linear finite element space, so it has a canonical single-
scale basis ®7 := span{¢ .} characterized by ¢1 (V) = d,5 for ¥ € Ny,
for which the application of (A®7)(P7) at linear cost using local element
matrices is standard. This is different from the general setting in §7.3.1, in
that dim @ = dim W also for locally refined triangulations. Let T" be the
transformation characterized by ¥ = T'" &7, we find

(7.29) (AV7)(U7) = T (A7) (®7)T.

We can apply T in linear complexity by iterating over the vertices bottom-up
while applying elementary local transformations in which not parent-child,
but godparent-child relations play a role.

7.4.3 Inf-sup stable family of trial- and test spaces

With ¥ and = from §7.4.1 and Wy, := {9, : v € Ny} from §7.4.2, we find that
X =span(X ® Ug,)and Y = span(E ® Pg, ). We now turn to the construction
of X% and Y?.

IThis would require the definition of a suitable single-scale basis.
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7.4. The heat equation and practical realization

Definition 7.4.3. For a double-tree A° C Vs x N, define A := A%\ vy x 9Q.
We construct our ‘trial” space as

X% :=span{oy ® 1, : (\,v) € AJ}.
Defining the double-tree A‘SKO C Ve X Ny as
AYo = {(v) : 3\ v) € A, p € Vz, ul = |Al, [supp &, Nsuppox| > 0},
we construct our ‘test’ space as Y° = Y°(X?) := span{£, ® ¢, : (u,v) € Aj }.

Theorem 7.4.4. Define A := {5 : A° C Vyx x Nis a double-tree} equipped with the
partial ordering § < 6 <= A° C A°. With X° and Y as above, uniform inf-sup
stability holds; cf. (7.6).

Proof. See Proposition 6.5.2. O

Definition 7.4.5. Given a double-tree A° C Vx x N, we define A? D A° by
adding, for (\,v) € A’ and any child A of A and descendant 7 of v up to
generation 2, all pairs (), v) and (), 7). We expect this choice of X? to provide
saturation; cf. (7.8).

7.4.4 Preconditioners

We follow §6.5.6 for the construction of optimal preconditioners K¢ for B3’ AE?.
and K% for S2° necessary for solving (7.9). With notation from Defini-
tion 7.3.12, we equip X° and Y with bases

U o)\ ® \Ifi with \I/()S\ = {wl/ ve (A(Os)l)\}’
AEPYAS

UA5 §u ® \I/z with \Ili ={Y,:ve (ABY,O)LAL}'
HEPYAY,

Matrix representations of preconditioners from §6.5.6 are then given by

K3 = blockdiag[K3] e pas, , where K =~ (AS)™,
K% := blockdiag[K{ ASKS | \ep,a;  Where K3 = (A5 +22M3)~!

with Af := (A ¥9) (1)), AS = (Ax¥})(¥3), and M := (M ¥3)(¥3). Suit-
able spatial preconditioners Ki are provided by multigrid methods. In [OR00]
it was shown that for quasi-uniform triangulations, satisfying a ‘full-regularity’
assumption, a multiplicative multigrid method yields suitable K4, and we as-
sume these results to hold for our locally refined triangulations 7" € T as well.

In §7.5.1 below, we detail our linear-complexity multigrid implementation
following [WZ17].
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7.4.5 Right-hand side

We follow §6.6.4. For g € C(I x ), ug € C(Q), we can approximate the
right-hand side of (7.9) by interpolants, avoiding quadrature issues.

The procedure of §7.4.2 for constructing the hierarchical basis Uy := {9, :
v € M} can be applied in time as well, yielding the basis {15 : A € V5} from
Figure 7.1 which index set V5 coincides with Vx. We construct {1&,, v EeEN} C
c(Q) biorthogonal to ¥, with 1[)” =0, — Zﬂegp(y) 05 /2. In time, define {J}A :
A € V5} € C(I) analogously. Define the vectors g := [()y ® z/iy)(g)]w)e,\a
and ug := [¢,, (uo)],e p,as- Upon replacing (g, uo) in (7.9) by the interpolants

59 = Z g(/\,y)w)\ ® Yy, JUO = Z g, Yy,
(A v)EAS vePAS

we can evaluate its right-hand side in linear complexity by computing the
quantities

[(€n ® Yy, 59>L2(1XQ)](#,V)@A§,U = RAf,o(Mt ® My)Ipsg,

[02(0) (%0, o) Lo (@) (ryens = [0A0)WL](x ) ens

where w = (Mx%sn|p as)(Tn|p,as)uo.

7.4.6 Two-level basis

We now discuss the construction of a uniformly X-stable basis O, needed
in the local error estimator r’ of (7.12). Following §6.6.3, define a modified

hierarchical basis {1}, : v € My} by
Jo ¥v dx
Z{Dem:ﬂdmu} f; V5 dxwf’
#{D EMN: Udm I/}

wl’ = w” when gen(y) = 07 else 1Lu = 1/}1/ -

Forany 7 € T, W = span{qﬁy :v € Nt} = span U7 and the transformation
from modified to unmodified hierarchical basis can be performed in linear
complexity. For 7 = 7 € T, d € {2(Nt,0\ N1o) and v € Wy, Lemma 6.6.7
shows that

lo+ 32, vty = 101310 + 1117,

(7.30) . o
lo+ 3, dutul gy = (0300 + X, 4750, 2,

with the constants in the ~-symbols dependent on max _ {gen(T) —
{I>TCTeT}

gen(T)} only. We then construct a basis for X? © X? as

. 1
05 = {eavor @, : (A, v) € AS\ AS}  where = V1 + 4M—gen(¥),

Av
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Define the gradedness of a double-tree A% C Vs x 91 as the smallest Ls € N
for which every (A, v) € A° with 7 an ancestor of v with gen(v) — gen(77) = Ls,
it holds that (X, 7) € A® for all A<y A. Thanks to & being a (scaled) Riesz basis
for Lo(I) and H'(I), together with the H'(Q)- and H~'(Q)-stable splittings
of (7.30), it holds that

Iz +cTOsl1% = [|21% + lcl*  (c € La(AD\ AJ), = € X?),

with the constant in the <-symbol dependent on L; only, so when L; is uni-
formly bounded, condition (7.11) is satisfied.

7.5 Implementation

A tree-based implementation of the aforementioned adaptive algorithm in
C++ can be found at [vVW21d]. In this section, we describe our design choices
for a linear complexity implementation.

7.5.1 Trees and linear operators in one axis

In §7.3, we consider an abstract multilevel collection ¥ indexed on Vy. En-
dowed with a parent-child relation, Vg has a tree-like structure that we call a
mother tree; see also Figures 7.3 and 7.4.

In our applications, the support of a wavelet ¢ is a union of simplices of
generation |\|. In time, these simplices are subintervals of I found by dyadic
refinement. In space, they are elements of ¥, the collection of all triangles
found by newest vertex bisection. Endowed with the natural parent-child
relation, both collections of simplices have a tree structure we call the domain
mother tree. Every wavelet ¢ stores references to the simplices T of generation
|A| that make up its support; conversely, every T stores a reference to 1.

Every mother tree V is stored once in memory, and every node A € V stores
references to its parents, children, and siblings. We treat the mother tree as
infinite by lazy initialization, constructing new nodes as they are needed.

Trees

We store a tree A C V using the parent-child relation, and additionally, at
each A € A store a reference to the corresponding node in V. This allows
us to compare different trees subject to the same mother tree. This tree-like
representation does not allow direct access of arbitrary nodes: in any operation,
we traverse A from its roots in breadth-first, or level-wise, order.

Tree operations

One important operation is the union of one tree A into another A. This can be
implemented by traversing both trees simultaneously in breadth-first order.
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7. ADAPTIVITY:. AN EFFICIENT IMPLEMENTATION

The union allows us to easily perform high-level operations, such as vector

o

addition: given two vectors ¢ € {3(A), d € ¢3(A) on the same mother tree V,
we use the union to perform c := ¢ + d. See Figure 7.6 for an example.

FiGure 7.6. Left: ¢ € ¢3(A) for A C V5; Middle: d € €2(/u\) for A C V5; Right:
in-place sum ¢ := c +d.

Tree operations in time

The routines eval, evalupp, and evallow from §7.3.1 involve various level-wise
index sets (represented as arrays of references into their mother trees). One
exampleis Ilp = {\ e 11 : | supp Na Uuea,S(u)| > 0}, which we constructed
efficiently using the domain mother tree; see Algorithm 7.5.

Algorithm 7.5: The construction of I1.
Data: ¢ EUN, 1:_[ C Agfl, Af C \/é. 5
Result: [I14,115] where IT4 = II\ II,
g = {\ €Il |supp gr NUpea, ()| > 0}.

Iy =0
g = 0;
for u € Ay do
for T € v,,.support do // We have S(¢,) =supp e, .
T.parent.marked := true;
for A € Il do
if 3T € ¢».support with T.marked = true then
g .insert(A);
else
11 A.dnsert());
for € Ay do
forT € v, .support do
T .parent.marked := false;
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7.5. Implementation

We can apply the linear operators appearing in the routines of §7.3.1 effi-
ciently by again traversing the domain mother tree; for example, Algorithm 7.6
details a matrix-free application of (A@\H)(Ci)|ﬁ)

Algorithm 7.6: The computation of e = (A®|)(® 1) d.

Data: Index sets IT C Ay, ﬁ c Ay de £5(II), local and linear
A: span® — span @’.

Result: e = (Ad|;) (P )d
for A € Il do ¢).data :=d,;
for ;€ 11 do

e, :=0;

forT € éu.support do
for ¢ € T.functions(A,) do

/1 {ox: A€ Ag,[supp gx NT| > 0}
ey :=e) + A(¢)\)(¢H|T) . (;S,\.data;
for A € Il do ¢).data :=0;

Operations in space

We can construct a triangulation 7 from a vertex tree N7 in linear complexity.
First mark every v € N7 in its mother tree, then traverse the domain mother
tree T. A triangle T visited in this traversal is in 7 exactly when the newest
vertex of its children is not marked.

For the preconditioners K’ and K3 from §7.4.4 we use multigrid. We apply
multiplicative V-cycle multigrid, in each cycle applying one pre- and one post
Gauss-Seidel smoother with reversed ordering of the unknowns.

In view of obtaining a linear complexity algorithm, at level k£ we re-
strict smoothing to the vertices of generation k as well as their godparents,
cf. [WZ17]. For T € T we consider W, the space of continuous piecewise
linears w.r.t. 7, zero on 0f), now equipped with the single-scale basis ®7. Set
L = L(T) := maxpe7 gen(T), and define the sequence

T.=To<Th < <TL=TCT

where 7j;,_ is constructed from 7}, by removing all vertices v € N7, for which
gen(v) = k. For 1 < k < L, let My be the set of new vertices and their
godparents, i.e., M}, := UveNTk N, {v} Ugp(v), and let M}, g := M}, \ 092 be

the vertices not on the boundary. We consider the multilevel decomposition,
of. [WZ17],

L
(7.31) Wr, =Wg + Z Z span ¢y, where ¢, = ¢, ..
k=1veMy o
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For 1 < k < L, let Py, be the prolongation matrix, i.e., the matrix represen-
tation of the embedding W7, , — Wy, and enumerate the vertices My o as
(vi)k,. Algorithm 7.7 details a (non-recursive) implementation of a single
multiplicative V-cycle for the multilevel decomposition (7.31) using Gauss-
Seidel smoothing. We assume the availability of an efficient coarse-grid solver;
in our application, a direct solve suffices. For linear complexity, we use in-place
vector updates restricted to non-zeros.

Note that this multigrid method is given in terms of the single-scale basis
®7; it can be transformed to the hierarchical basis W7 similarly to (7.29).
Multiple V-cycles are done by setting ug := 0 and iterating uy, := MG(A, f —
Auk,l).

Algorithm 7.7: Single multiplicative V-cycle multigrid MG(A4, f).

Data: Some f € W and a linear operator A: Wr — Wi
Result: u = u' ®7 € W, the result of a single V-cycle applied to f.

r:= f(®7);
forL >k>1do
forv=vj,...,* do
Tkyw =Ty,

Chk,v *= Tk?»l//(Ad)k,u)(gbk,u);
r:=r-— ek,u(A(bk',u)((ka)/’
r:= Pgr;

Solve (AP ) (P, )u=r;

for1 <k <Ldo
u:=Pru;
forv=v.*,... v} do
u, = uy +ek:,1/;

u, =u, + (rk,v - (Aﬁbk,u)(u—rq)ﬁ))/(A¢k,u)(¢k,u);

7.5.2 Double-trees and tensor-product operators

For every node in a double-tree A C VY x V!, we store a reference to the
underlying pair of nodes in their mother trees. This allows growing double-
trees intuitively, and allows comparing different double-trees over the same
pair of mother trees. C++ templates allow us to re-use much of the tree code
without runtime performance loss.

In §7.3.2 we saw how to apply a tensor-product operator. For this, we
first construct the double-trees ¥ and ®; construction of X is illustrated in
Algorithm 7.8. Evaluation of the operator then reduces to the four simple
steps of Algorithm 7.9.
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7.5. Implementation

Algorithm 7.8: Function GenerateSigma(A, A).

Data: A c VO x V1, A c VO x V1
Result: 3 for application of Theorem 7.3.13 with A and A.
Y= PAx{vePA: |y =0}
for A\ € X.project(0) do
for T' € ¢).support do
for y € T.functions(V}, ) do

Y. .fiber(1,A).union(A.fiber (1, u));

Algorithm 7.9: Algorithm to evaluate d = R4 (Ao ® Aj)Iac.
Data: A C VO x V1, A C V0 x V!, ¢ € (5(A), d € lo(A).
3 := GenerateSigma(A, A);
0= GenerateTheta(_/VX, A);

s:=0¢€ (X);
t:=0 € (»(0);
1:=0 € lr(A);

for \ € s.project(0) do eval(A;)(s.fiber(1, A),c.fiber(1, \));
for p € l.project(l) do evallow(Ap)(l.fiber(0, u),s.fiber(0, u));
for i € t.project(1l) do evalupp(Ao)(t.fiber(0, i), c.fiber(0, u));
for A € d.project(0) do eval(A4;)(d.fiber(1, A),t.fiber(1,\));

d=d+1]

Memory optimizations

As the memory consumption of a double-tree is significant, at around 280
bytes per node, we want to have as few double-trees in memory as possible.
By storing the nodes of A in a persistent container, every node is uniquely
identified with its index in the container. This induces a mapping R**
¢3(A) and allows us to overlay multiple vectors on the same underlying double-
tree in a memory-friendly way.

The X generated by Algorithm 7.8 for the application of a tensor-product
operator can play the role of ® necessary for the application of its transpose
operator (and vice versa). This allows tensor-product operators and their
transposes to share the double-trees X and ©.

With these insights, our implementation of the heat equation has at most 5
different double-trees in memory:.
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7.5.3 The adaptive loop

In the refine step of the adaptive loop, we first mark a set J of nodes in A%\ A?
using Dorfler marking (possible in linear complexity; cf. [PP20]). We then
refine A° to the smallest double-tree containing .J:

1. mark all nodes in A? that are also present in A? ((ii) in Fig. 7.7);

2. traverse A? from every node in J, top-down in level-wise order, until
hitting a previously marked node. Mark all nodes along the way ((iii-iv)
in Fig. 7.7);

3. union the marked nodes of A? into A? ((v) in Fig. 7.7).

As #A° < #A° and we visit every node of A° at most twice, the traversal is
linear in #A°. See also Figure 7.7.

o0—O0 o0—O0 o0—O
*—o O—O0

. i 11
1. 11 1.

Ficure 7.7. Adaptive refinement of a double-tree with underlying unary mother
trees. Left to right: (i) A?; (ii) A° with nodes in A? \ A° in white; (iii) nodes in
J marked in red; (iv) nodes marked in the top-down traversal; (v) refined A°.

—O

7.6 Numerical experiments

We consider the heat equation (7.26), and assess our implementation of the
adaptive Algorithm 7.1 for its numerical solution. Complementing the con-
vergence results gathered in §6.7, here we provide results on the practical
performance of the adaptive loop. Results were gathered on a multi-core
2.2 GHz machine, provided by the Dutch national e-infrastructure with the
support of SURF Cooperative.

7.6.1 The adaptive loop

We summarize the main results from §6.7. We run Algorithm 7.1 with § = 1

2
and ¢ = 1. We consider four problems.
In the smooth problem, we select Q) := [0, 1] and prescribe the solution

u(t,z,y) == (1 + 13zl — 2)y(1 — y).

In the moving peak problem, we again select 2 := [0, 1]? with prescribed
solution

u(t,z,y) = (1 — 2)y(1 - y) exp(=100[(z — ) + (y — 1)*));
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. Error convergence in dimx® Memory consumption
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Ficure 7.8. Error convergence and peak memory usage of the adaptive loop
for the four problems of §7.6.1.

here, u is essentially zero outside a small strip along the diagonal (0,0,0) to
(1,1,1).
In the cylinder problem, we select Q := [—1,1]? \ [-1,0]? with data

Uy = 0, and g(t,l‘,y) =1t- 1{:1:2+y2<1/4}-

The solution has singularities in the re-entrant corner and along the wall of
the cylinder {(t,z,y) : 2> + y? = 1/4}.

In the singular problem, we select 2 := [—1,1]% \ [—1,0]* with data ug = 1
and g = 0; the solution then has singularities along {0} x 92 and I x {(0,0)}.

Convergence

To estimate the error ||u — °|x, we measure the residual error estimator
[x°(a?)| from (7.12); see also Lemma 7.2.3. In the left pane of Figure 7.8, for
the first three problems, we observe a convergence rate of 1/2, which is the best
that can be expected from our family of trial spaces (X°)sca. For the singular
problem, the reduced rate 0.4 is found; it is unknown if a better rate can be
expected.

Memory

The right pane of Figure 7.8 shows the peak memory consumption after every
iteration of the adaptive algorithm. We see that the peak memory is linear in
dim X?, stabilizing to around 15kB per degree of freedom. This is relatively
high due to our implementation based on double-trees. In fact, the double-
trees together make up around 85% of the total memory. For the singular

problem, the largest double-tree Ag, occupies around 40% of the total memory.

177



7. ADAPTIVITY:. AN EFFICIENT IMPLEMENTATION

eval evalupp evallow

1073 4

MWz )(VIR,)
MWz ) (VIR,)
DiZ|a ) (VIR,)
D¢z |a ) (WI5,)
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1074 4 JR—
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Ficure 7.9. Time (in ms) per DoF of bilinear form evaluations in time.

7.6.2 Linearity of operations

The majority of our runtime is spent in the application of bilinear forms. In
this section, we measure the application times to assert their linear complexity.

In time

We select three sequences {Ay}, {Ar}, {Ar} of trees in Vs, one uniformly
refined and two graded towards the left and right respectively. For each such
tree A C Vx, we define a corresponding tree Ai={pevz:3Ire A=
|ul, [supp €, Nsupp oy | > 0} C V.

We select the bilinear forms M; and D; from (7.27), and run the algorithms
from §7.3.1. We see in Figure 7.9 that the runtime per degree of freedom
stabilizes to 1072 ms, essentially independent of the bilinear form and the
trees. We suspect the increase until 107 degrees of freedom has to do with
cache locality.

In space

On the L-shaped domain Q := [-1,1]? \ [-1,0]?, we select two sequences
of hierarchical basis trees, one uniformly refined and the other refined by a
standard adaptive loop on —Au = 1, u|spq = 0.

For a hierarchical basis tree U7 = {¢, : v € N1 o}, we denote the stiffness
matrix (V¥7, VUr) 1, (o) as A7. We measure the runtime of the conversion
from vertex tree Nt to triangulation 7 (cf. §7.5.1), the application time of A
through (7.29), and that of multigrid on Ay (with 1 and 3 V-cycles) through
Algorithm 7.7. Figure7.10 confirms that the relative runtime of every operation
is essentially independent of the refinement strategy. Interesting is again the
increase until 10° degrees of freedom.
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Ficure 7.10. Time (in ms) per DoF of important operations in space, for uniform
and adaptive refinements.
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Ficure 7.11. Time (in ms) per DoF of the four bilinear forms applied in the
solve step of the adaptive algorithm.

In space-time

Solving (7.9) using PCG requires the application of the four linear operators
EY BES, B i ES, K%, and K} For the first two, Corollary 7.3.14 asserts
that their application time is of linear complexity, while for the preconditioners
K% and Kf,, this follows from the block-diagonal structure of their matrix
representation.

We run the adaptive algorithm on the four problems of §7.6.1. Figure 7.11
shows that the application time of the aforementioned operators is essentially
independent of the problem, even though the underlying double-trees are
vastly different. We again see an increase in relative runtime until 10° degrees
of freedom.

Figure 7.12 shows the runtimes of the solve, estimate, mark and refine steps
of the adaptive loop. We confirm that each step is of linear complexity, and
that the total runtime is governed by the solve and estimate steps.
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Ficure 7.12. Time (in ms) per DoF of the steps in the adaptive loop.
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FiGure 7.13. Speedup and time (in ms) per DoF of the solve step in the adaptive
loop, for different number of parallel processors.

7.6.3 Shared-memory parallelism

Most of our execution time is spent applying the linear operators from Fig-
ure 7.11. We can obtain a significant speedup with multithreading. In Algo-
rithm 7.9, all fibers inside each of the four for-loops are disjoint, and we can
easily parallelize each loop using OpenMP.

We run the parallel code on the smooth and singular problems. The right
pane of Figure 7.13 shows decent parallel performance for the singular prob-
lem, with 10x speedup at 16 cores. The left pane however reveals a load
balancing issue: as u is smooth, the two fibers (AJ); » with |A\| = 0 contain the
majority of the degrees of freedom. This results in poor parallel efficiency for
the first and fourth loop in Algorithm 7.9.
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7.7 Conclusion

We discussed an implementation of an adaptive solver for a space-time vari-
ational formulation of parabolic evolution equations where every step is of
linear complexity.

We constructed a family of trial spaces spanned by tensor-products of
wavelets in time and hierarchical basis functions in space. The resulting adap-
tive loop is able to resolve singularities locally in space and time, and we
proved its r-linear convergence.

After imposing a double-tree constraint on the index set of the trial spaces,
we devised an abstract algorithm that is able to apply the system matrices
in linear complexity. We achieve this complexity in practice by a tree-based
implementation. The numerical results show high performance of the adaptive
loop as a whole.

7.A  Proofs of Theorems in §7.3

Theorem 7.3.7. A call of eval yields the output as specified, at the cost of O(#11 +
#A + #I1 + #A) operations.

Proof. By locality of the collections & and ¥, and sparsity of the matrices
and §,, we see that #11 < #1115+ #A; < #A,+#A,. So after sufficiently many
recursive calls, the current set IT U A will be empty. For use later, we note that
similarly #I1 < #1105 + #A¢ < #A0 + #1015 + #A0 < #M0 + #As.

For I1U A = 0), the call produces nothing, which is correct.

Now let ITTU A # ). From A being an /-tree, the definitions of S(-) and 4,
and the locality of A, one has

eliy, = (Au)(®l,) = (AT @[n))(Plyq,,)-

By choice of 1I we have

U= QT(P‘H—i_ C‘;\rg+1¢\ll‘Az+1¢ = (d|HB)T(I)|HB + CT\I’lA =u-—- (d‘HA)T(I)‘HA'

By induction the recursive call yields e = (Au)(®| i)-and £ = (Au) (| Rear ).

From A being an (-tree, the definitions of S (-) and I14, and the locality of A,
we have

(Au)(T5,,) = (Au)(¥]5,,).

and so in particular f[5,,, . = f.
The definition of II shows that

y . y e
Dy, = (0 ), Vg, = @
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We conclude that

f

x, = (Au)(Plg) = (Aw)(P[5,) = (i €)5,,

and from | supp ¢ N supp gzvS/,,| = 0 for (A, p) € T4 x I, that
ity) = (Aw)(@lig,) = (] )i,

From the assumptions on the collections ®, ®, ¥, and ¥, and their conse-
quences on the sparsity of the matrices py, P, q¢, and q,, one infers that the total
cost of the evaluations of the statements in eval is O(#f[ +#A,+ #IT+ #Ay)
plus the cost of the recursive call. Using #ﬂ+ #II < #/V\ ¢+#Ay and induction,
we conclude the second statement of the theorem. O

elyy, = (Au)(®

Theorem 7.3.9. A call of evalupp yields the output as specified, at the cost of
O(HI0 + #A + #I1 + #A) operations.

Proof. By locality of the collections ® and W, and sparsity of the matrices

and q,, we see that #ﬁ < #f[B + #M S H#A+ #Ag. So after sufficiently many

recursive calls, the current set 11U A will be empty. Notice that #II < #A,.
For ITU A = (), the call produces nothing, which is correct.

Now let [TU A # (). From A being an /-tree, the definitions of S(-) and 14,
and the locality of A, one has

e

i, = (Au)(Dlg,) = (A(dT ®|n)) (@

f[A ) :
By definition of II we have

wi=d"®lg+cly,, Vs, =c ¥y =u—d P
By induction the recursive call yields

e = (Au)(®

ﬂ)’ f= UA@+1¢XAe+1TC Appir = f‘lv\u-m'

The definition of II shows that

v

Ol = (07 )l Vs, = (@ @lp)ls,-
We conclude that
£y, = (AT T))(Tlx,) = (Aw)(Pl5,) = (3 e)l5,.

and
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From the assumptions on the collections @, <i>, \il, and ¥, and their conse-
quences on the sparsity of the matrices py, pe, q¢, and §,, one infers that the total

cost of the evaluations of the statements in eval is O(#H + #Ry+ #TT+ #Ay)
plus the cost of the recursive call. Using #11+ #I < #Ay+#A, and induction,
we conclude the second statement of the theorem. O

Theorem 7.3.11. A call of evallow yields the output as specified, at the cost of
(’)(#/v& + #I1 + #A) operations.

Proof. Notice that #II < #A, + #11p S #MAo + #A,.
For ITU A = ), the call produces nothing, which is correct.
Now let [TU A # (). The definitions of and I 5 show that

fl5, = (A®|n)(¥|x,)d = (AD|u)(¥[x,)dm,
= (CIz (A‘I)|H )( )Péd|HB)|]\e = (EIZQ) A

From A being an /-tree, the definitions of S () and II 5, and the locality of
a, and for the third equality, the definition of II, one has

Flipr, = ¥l @lmd + L5, oncla, + T, Clac
= (A®[n) (5, dlms + (AU )(l5, el + L5, a1 Claca:
= (A®[n) (U, A +Tl5,,  on,, o Clac,
= evallow(A)(¢+ 1,7&“”,&, Aryip,d,clag, )

by induction.
From the assumptions on the collections ®, \i!, and ¥, and their conse-
quences on the sparsity of the matrices py, q,, and q,, one easily infers that the

total cost of the evaluations of the statements in evallowis O(#]\g +H#II+#Ay)
plus the cost of the recursive call. Using #II < #A, + #A, and induction, we
conclude the second statement of the theorem. O

Theorem 7.3.13. Let A € VO x V1, A c VO x V1 be finite double-trees. Then
== U (0 U Av),
A€o {nePo Aslul=IA1+1, 139 (m)nSO (V)| >0 }

o= | (tuehh:3ncAosst = lul. 18°0) N ()] > 0} x [A}).
AEPA

are double-trees with #3 < #A and #© S #A, and

R]\(Ao ® Al)IA :R]\(LO ® Id)IzRg(Id ® A1>IA+
RA(Id ® A1)leRe(Uy®1d)I4.
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Proof. We write

RA(AO X Al)IA :RA((LO =+ Uo) X Al)IA
(7.32) =Rjx (Lo ®1d)(Id ® Ay)Ix+
(7.33) Ri(Id® A1)(Up @ Id)Ia.

Considering (7.32), the range of (Id ® A;)Ia consists of vectors whose
entries with first index outside PyA are zero. In view of the subsequent
application of Ly ® Id, furthermore only those indices (\,7) € PyA x V!
of these vectors might be relevant for which 3(u,v) € A, ie. v € Ay,
with |p| > |A| and |S°(x) N SO(\)| > 0. Indeed |S°(p) N SO(\)| = 0 implies
| supp ¢, Nsupp ¥} | = 0, and so Ag(¢¥9,%3) = 0. If for given (\,~) such a pair
(i, y) exists for |p| > |A|, then such a pair exists for || = |A\|+1 as well, because
Ay is a tree, and S°(u’) D 5°(u) for any ancestor 41’ of 4. In order words, the
condition |u| > |A| can be read as |u| = || + 1. The set of (), ) that we just
described is given by the set X, and so we infer that

Ry(Lo®1d)(Id ® Ay)Ia = Ry (Lo ® Id) 5 Rs(Id © A)Ia.

Now let (\,7) € X. Using that PyA is a tree, and S°(\) C S°()\) for any
ancestor X’ of A, we infer that (\,v) € 3. Using that for any u € PyA, 1‘1, "
is a tree, we infer that for any ancestor 7' of 7, (A,7’) € X, so that ¥ is a
double-tree.

Forany ;€ V°, thenumber of A € VO with || = [A|+1and [S()NS°(\)] >
0 is uniformly bounded, from which we infer that #X < > p & #A,, =
#A.
Considering (7.33), the range of (Uy ® Id)Ia consists of vectors that can
only have non-zero entries for indices (11, \) € V° x P, A for which there exists
a~y € A with |y > |u| and [S°(x) N S°(5)| > 0. Since Ag  is a tree, and
S9(v") D S9(y) for any ancestor v/ of ~, equivalently |y| > || can be read as
|| = |p|. Furthermore, in view of the subsequent application of R4 (Id ® A;),
it suffices to consider those indices (1, A) with . € PyA. The set of (11, \) that
we just described is given by the set ®, and so we infer that

Ri(Id® A1)(Ug@1d)Ix = R4 (Id ® Ay)IeRe(Uy @ Id)I4.

Now let (1, A) € ©. If X is an ancestor of ), then from PyA being a tree,
and Ag x C Ag x, we have (u, \') € ©. If 1/ is an ancestor of p, then from PA
being a tree, and S5°(i/) O $°(u), we infer that (4, \) € ©, and thus that © is
a double-tree.

For any € V?, the number of 1 € V0 with || = |y| and |S°(1) N S°(y)| > 0
is uniformly bounded, from which we infer that #© < > \_p A #Aox =

#A.
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8 A parallel algorithm

8.1 Introduction

This chapter deals with solving parabolic evolution equations in a time-parallel
fashion using tensor-product discretizations. Time-parallel algorithms for
solving parabolic evolution equations have become a focal point following the
enormous increase in parallel computing power. Spatial parallelism is a ubig-
uitous component in large-scale computations, but when spatial parallelism is
exhausted, parallelization of the time axis is of interest.

Time-stepping methods first discretize the problem in space, and then
solve the arising system of coupled ODEs sequentially, immediately revealing
a primary source of difficulty for time-parallel computation.

Alternatively, one can solve simultaneously in space and time. Origi-
nally introduced in [BJ89, B]J90], these space-time methods are very flexi-
ble: some can guarantee quasi-best approximations, meaning that their er-
ror is proportional to that of the best approximation from the trial space
[And13, DS18, FK21, SZ20], or drive adaptive routines [SY18, RS19]. Many
are especially well-suited for time-parallel computation [GN16, NS19]. Since
the first significant contribution to time-parallel algorithms [Nie64] in 1964,
many methods suitable for parallel computation have surfaced; see the re-
view [Ganl5].

Parallel complexity

The (serial) complexity of an algorithm measures asymptotic runtime on a sin-
gle processor in terms of the input size. Parallel complexity measures asymptotic
runtime given sufficiently many parallel processors having access to a shared
memory, i.e., assuming there are no communication costs.

In the current context of tensor-product discretizations of parabolic PDEs,
we denote with N; and Ny the number of unknowns in time and space respec-
tively.

The parareal method [LMT01] aims at time-parallelism by alternating a
serial coarse-grid solve with fine-grid computations in parallel. This way, each
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iteration has a time-parallel complexity of O(1/N;Nx), and combined with par-
allel multigrid in space, a parallel complexity of O(v/N; log Nx). The popular
MGRIT algorithm extends these ideas to multiple levels in time; cf. [FFK114].

Recently, Neumiiller and Smears proposed an iterative algorithm that uses
a Fast Fourier Transform in time. Eachiteration runs serially in O (N, log(V;) Nx)
and parallel in time, in O(log(N;) Nx). By also incorporating parallel multigrid
in space, its parallel runtime may be reduced to O(log N; + log Nx).

Our contribution

We study a variational formulation introduced in [SW21b] which was based
on work by Andreev [And13, And16]. Recently in [SYVW21, vVW21b], we
studied this formulation in the context of space-time adaptivity and its efficient
implementation in serial and on shared-memory parallel computers. The
current chapter instead focuses on its massively parallel implementation and
time-parallel performance.

Our method has remarkable similarities with the approach of [NS19], and
the most essential difference is the substitution of their Fast Fourier Transform
by our Fast Wavelet Transform. The strengths of both methods include a solid
inf-sup theory that enables quasi-optimal approximate solutions from the trial
space, ease of implementation, and excellent parallel performance in practice.

Our method has another strength: based on a wavelet transform, for fixed
algebraic tolerance it runs serially in linear complexity. Parallel in time, it
runs in complexity O(log(N;)Nx); parallel in space and time, in O(log(N;Nx)).
Moreover, when solving to an algebraic error proportional to the discretiza-
tion error, incorporating a nested iteration (cf. [Hac85, Ch. 5]) results in com-
plexities O(N;Ny), O(log(N;)Nx), and O(logQ(NtNx)) respectively. This is on
par with best-known results on parallel complexity for elliptic problems; see
also [Bra81].

Organization of this chapter

In §8.2, we formally introduce the problem, derive a saddle-point formulation,
and provide sufficient conditions for quasi-optimality of discrete solutions. In
§8.3, we detail on the efficient computation of these discrete solutions. In §8.4
we take a concrete example—the reaction-diffusion equation—and analyze
the serial and parallel complexity of our algorithm. In §8.5, we test these
theoretical findings in practice. We conclude in §8.6.

Notations

For normed linear spaces U and V/, in this work for convenience over R, L(U, V)
will denote the space of bounded linear mappings U — V endowed with the
operator norm || - ||z(v,v). The subset of invertible operators in £L(U, V') with
inverses in £(V, U) will be denoted as Lis(U, V).
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8.2. Quasi-optimal approximations to the parabolic problem

Given a finite-dimensional subspace U % of a normed linear space U, we
denote the trivial embedding U® — U by E?;. For a basis ®’—viewed formally
as a column vector—of U?, we define the synthesis operator as

Fas :RIMUT 00y 0790 = > cs.
pe®d
Equip R4mU° with the Euclidean inner product and identify (R%™U°)’ with
RAmU® ysing the corresponding Riesz map. We find the adjoint of Fgs, the
analysis operator, to satisfy

(Fps) + (UP) = RIMUT 2 f s f(00) = [f(d)]peas-

For quantities f and g, by f < g, we mean that f < C' - g with a constant
that does not depend on parameters that f and g may depend on. By f = g,
we mean that f < gand g < f. For matrices A and B € RV*N by A =~ B we
will denote spectral equivalence, i.e. " Az ~ " Bz for all z € RY.

8.2 Quasi-optimal approximations to the parabolic problem

Let V, H be separable Hilbert spaces of functions on some spatial domain such
that V' is continuously embedded in H, ie. V — H, with dense compact
embedding. Identifying H with its dual yields the Gelfand triple V — H ~
H < V.
For a.e.

tel:=(0,7T),
let a(t; -, -) denote abilinear formon V' x V' so thatforany n,{ € V, t — a(t;n, ()
is measurable on I, and such that fora.e. t € I,

la(t;n, OIS lnllvIiKlly - (n,¢ € V) (boundedness),
a(t;n,n) 2 il (meV)  (coercivity).
With (A(¢)-)() == a(t; -, ) € Lis(V, V'), given a forcing function g and initial

value u, we want to solve the parabolic initial value problem of

G+ Au(t) =g(t) (tel),

(8.1) finding u : I — V such that { w(0) = uo.

8.2.1 An equivalent self-adjoint saddle-point system

In a simultaneous space-time variational formulation, the parabolic problem
reads as finding u from a suitable space of functions of time and space s.t.

(Bw)(v) := /<%§’(t)»v(t)>1{ +a(t;w(t), v(t)dt = /<g(t)»v(t)>H =:g(v)

1
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for all v from another suitable space of functions of time and space. One
possibility to enforce the initial condition is by testing against additional test
functions.

Theorem 8.2.1 ([SS09]). With X = Lo(I; V)NHY(I; V'), Y = Lo(I; V'), we have
{B] € Lis(X,Y' x H),
7o

where for t € I, v u s u(t,-) denotes the trace map. In other words,
(8.2)  findingu € X s.t. (Bu,vyou) = (g,u0) given (g,up) €Y' x H
is a well-posed simultaneous space-time variational formulation of (8.1).
We define A € Lis(Y,Y") and 9; € Lis(X,Y”) as
(Au)(v) = /a(t;u(t), o(B)dt, and & :i= B — A
I

Following [SW21b], we assume that A is symmetric. We can reformulate (8.2)
as the self-adjoint saddle point problem

A 0 Bl |v g
(8.3) finding (v,0,u) € Y x H x X s.t. 0 Id v |o| = |uo| -
B v, 0] |u 0

By taking a Schur complement w.r.t. the H-block, we can reformulate this as
1 A B v g
8.4 find ,u) €Y x X sit. = .
(8.4) inding (v, u) s {B’ —7670} L‘] {—%uo}
We equip Y and X with ‘energy’-norms
15 = (A 15 =10 13 + 1 15+ llvr - I

which are equivalent to the canonical norms on Y and X.

8.2.2 Uniformly quasi-optimal Galerkin discretizations

Our numerical approximations will be based on the saddle-point formula-
tion (8.4). Let (Y% X%)sca be a collection of closed subspaces of Y x X
satisfying

(8.5) X°cY?, 9X°cY? (6e€A),
and
(8.6) 1>~a:=inf inf  sup _O)(v) > 0.

S€A 0AUEX? g£ycy's |0¢ully vy
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8.3. Solving efficiently on tensor-product discretizations

Remark 8.2.2. In [SW21b, §4], these conditions were verified for X° and Y
being tensor-products of (locally refined) finite element spaces in time and
space. In Chapter 6, we relax these conditions to X and Y being adaptive sparse
grids, allowing adaptive refinement locally in space and time simultaneously.

For 6 € A, let (v2,7°) € Y? x X? solve the Galerkin discretization of (8.4):

vl | By
| '
5

~EX yjuo
The solution (v?, @%) of (8.7) exists uniquely, and exhibits uniform quasi-optimality
in that [|u — @ || x < yx'inf,,cxs [|[u — us|x forall § € A.

Instead of solving a matrix representation of (8.7) using e.g. preconditioned
MINRES, we will opt for a computationally more attractive method. By taking
the Schur complement w.r.t. the Y9-block in (8.7), and replacing (E3 AES )~
in the resulting formulation by a preconditioner K{. that can be applied cheaply,
we arrive at the Schur complement formulation of finding u’ € X° s.t.

ES'AES  EY'BES

8.7
&7 By BB B b

®8) EY (B'EYKYEY B+~ EX v’ = EY (B'ESKYEY g + vhu) .

=:86 =:f9

The resulting operator $° € Lis(X?®, X?') is self-adjoint and elliptic. Given a
self-adjoint operator K3 € L(Y?',Y?) satisfying, for some ra > 1,

((£9)~'v) (v)

(59) (40)(0)

IS [K,Zl,liA] (beA, ve Y‘s)7

the solution u° of (8.8) exists uniquely as well. In fact, the following holds.

Theorem 8.2.3 ([SW21b, Rem. 3.8]). Take (Y° x X%)scn satisfying (8.5)—(8.6),
and K7 satisfying (8.9). Solutions u’ € X° of (8.8) are uniformly quasi-optimal, i.e.

RA .
u—ul||x < Wjulgf‘s lu —usllx (6 € A).
5

8.3 Solving efficiently on tensor-product discretizations

From now on, we assume that X° := X} ® X2 and Y? := Y}’ ® Y;? are tensor-
products, and for ease of presentation, we assume that the spatial discretizations
on X% and Y? coincide, i.e. X3 = Y}, reducing (8.5) to X C Y and {- X} C
YP.

We equip X} with a basis ®¢, X with ®Z, and Y}’ with Z°.
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8.3.1 Construction of K

Define O := (2°,2%), (1) and Ax = (9%, ®%)y. Given Kx ~ A! uniformly
ind € A, define

Ky :=07'® K.
Then, the preconditioner K{ := Fzsgas Ky (Fasgas) € LYY Y?) satis-
fies (8.9); cf. §6.5.6.

When =° is orthogonal, O is diagonal and can be inverted exactly. For
standard finite element bases ®J, suitable Ky that can be applied efficiently
(at cost linear in the discretization size) are provided by symmetric multigrid
methods.

8.3.2 Preconditioning the Schur complement formulation

We will solve a matrix representation of (8.8) with an iterative solver, thus
requiring a preconditioner. Inspired by the constructions of [And16, NS19],

we build an optimal self-adjoint coercive preconditioner K% € £(X%', X%) asa
wavelet-in-time block-diagonal matrix with multigrid-in-space blocks.

Let U be a separable Hilbert space of functions over some domain. A given
collection ¥ = {4y }rev, is a Riesz basis for U when

span¥ =U, and |clly(vq) = [le' Tllo forall ce€ la(Vy).

Thinking of ¥ being a basis of wavelet-type, for indices A € Vy, its level is
denoted |\| € No. We call ¥ uniformly local when for all A € Vg,

diam(supp ¢x) < 27 and #{p € Vi : |u| = |A|,| supp¢Nsupp | > 0} < 1.

Assume ¥ := {0 : A € Vy} is a uniformly local Riesz basis for Lo(I) with
{27 Mgy : X € vy} Riesz for H!(I). Writing w € X as Y aevy, Or @w) for some
wy € V, we define the bounded, symmetric, and coercive bilinear form

(Dx D on@wa)( ) 0u@uvy)i= Y (wr,oa)v + 4wy, vi)vr.

AEVS HEVS AEVS

The operator D, := E}'DxE% is in Lis(X?, X%"). Its norm and that of its
inverse are bounded uniformly in § € A. When X? = span ¥° ® @S for some
Y0:= {or: XA € Vys } C X, the matrix representation of D3 w.r.t. ©° @ ®9 is

(Fsgas) Dy Fysgas = D% = blockdiag[Ax + 421(®F, ®3) v ]xev,, -

Theorem 8.3.1 (§6.5.6). Define M, := (®3, ®3) . When we have matrices K; ~
(Ax + 27My) ! uniformly in 6 € A and j € Ny, it follows that

D' = Kx := blockdiag[K |y Ax K|y ]rev,; -
This yields an optimal preconditioner K% = Fysges K x (Fsigas) € Lis(X?, X9).
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8.3. Solving efficiently on tensor-product discretizations

In [OR00] it was shown that under a ‘full-regularity” assumption, for quasi-
uniform meshes, a multiplicative multigrid method yields K satisfying the
conditions of Thm. 8.3.1, which can moreover be applied in linear time.

8.3.3 Wavelets in time

The preconditioner K x requires X to be equipped with a wavelet basis ¢,
whereas one typically uses a different (single-scale) basis ®¢ on X;. To bridge
this gap, a basis transformation from ¥° to ®) is required. We define the
wavelet transform as W := (]{1)?)*1}‘25.1

Define V; := span{oy € £ : |A| < j}. Equip each V; with a (single-scale)
basis ®;, and assume that ®) := ®; for some J, so that X := V. Since
Vit1 = V; @ span¥; where X; := {0y : |A\| = j}, there exist matrices P; and
Q;suchthat®! =&/, Pjand ¥ = ®[,,Q;, with M; := [P;|Q,] invertible.

Writing v € V; inboth formsv = cOT<I>0+Z;.];01 djVjandv = c;®,, theba-
sis transformation W, := W, mapping wavelet coordinates (¢} ,d; ,...,d)_;)
to single-scale coordinates c; satisfies

W;_1+ O

(8.10) W, =M, , [ A

} , and W;:=1Id.

Uniform locality of ¥ implies uniform sparsity of the M, i.e. with O(1) nonzeros
per row and column. Then, assuming a geometrical increase in dim Vj; in
terms of j, which is true in the concrete setting below, matrix-vector products
x — W;x can be performed (serially) in linear complexity; cf. [Ste03b].

8.3.4 Solving the system

The matrix representation of S° and f° from (8.8) w.r.t. a basis ®¢ @ ® of X°
is
. g . 3
S = (~7:<I>f®q>§>/5 Faipws and f:= <~7:<1>f®<1>§)/f .
Envisioning an iterative solver, using §8.3.2 we have a preconditioner in terms

of the wavelet-in-time basis ¥° ® ®, with which their matrix representation
is

(8.11) S = (Fysgas) S Fusges and  fi= (Frsgas) f°-

These two forms are related: with the wavelet transform W := W; @ Idx,
we have S = WTSW and f = W f, and the matrix representation of (8.8)
becomes

(8.12) findingw s.t. Sw = f

n literature, this transform is typically called an inverse wavelet transform.
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We can then recover the solution in single-scale coordinates as u = Ww.

We use Preconditioned Conjugate Gradients (PCG), with preconditioner
K x, to solve (8.12). Given an algebraic error tolerance ¢ > 0 and current guess
wy,, we monitor 7] Kx7;, < ¢2 where r, := f — Swy,. This data is available
within PCG, and constitutes a stopping criterium: with ug := Frsgapswy € X s,
we see

(8.13) e Kxr = (f° = SPuf) (K% (£ — S°u)) = [[u® — up|l%

where = follows from (6.34), so that the algebraic error satisfies |[u’ —ul | x < e.

8.4 A concrete setting: the reaction-diffusion equation

On a bounded Lipschitz domain 2 C RY, take H := Ly(Q), V := H}(Q2), and
altin, Q) i= | DVy- V¢ -+ encdx
Q

where D = DT € R4 is positive definite, and ¢ > 0.2 We note that A(t) is
symmetric and coercive. W.l.o.g. we take I := (0,1),i.e. T := 1.

Fix pi, px € N. With {7;} the family of quasi-uniform partitions of I into
subintervals, and {7} that of conforming quasi-uniform triangulations of 2,
we define A as the collection of pairs (77, Zq). We construct our trial- and test
spaces as

X' =XoXx: Y =Y ®X],

where, with P;! (7' denoting the space of piecewise degree-p polynomials on

T,
X :=HYI)NPNT), X$:=H} QNP (Ta), Y : =P, (T1).

These spaces satisfy condition (8.5), with coinciding spatial discretizations on
X? and Y. For this choice of A, inf-sup condition (8.6) follows from [SW21b,
Thm. 4.3].

For X7, we choose ® to be the Lagrange basis of degree p; on 7T7; for X2,
we choose ®J, to be that of degree px on Tg. An orthogonal basis =° for Y}’
may be built as piecewise shifted Legendre polynomials of degree p; w.r.t. 7;.

For p; = 1, one finds a suitable wavelet basis ¥ in [Ste98]. For p; > 1, one
can either split the system into lowest- and higher-order parts and perform the
transform on the lowest-order part only, or construct higher-order wavelets
directly; cf. [Dij09].

Owing to the tensor-product structure of X° and Y and of the operators
A and 0,, the matrix representation of our formulation becomes remarkably
simple.

2This is easily generalized to variable coefficients, but notation becomes more obtuse.
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8.4. A concrete setting: the reaction-diffusion equation

Lemma 8.4.1. Define g := (Fasgas)'g, uo := ¢ (0) ® (ug, P3) 1, (0, and

T:= <§T®faEg>L2(I)v N = <(I)?755>L2(1)a

Ty == 30(0)[@8(0)], My = (93, D%) 1,0
A = (DO VO 1y0) + cMy, B =T @ M+ N ® Ax.

With Ky := O~! @ Ky from §8.3.1, we can write S and f from §8.3.4 as
S=B'KyB+Ty® M,, f=B"Kyg+u.

Note that N and T are non-square, L'y is very sparse, and T is bidiagonal.

In fact, assumption (8.5) allows us to write .S in an even simpler form.

Lemma 8.4.2. The matrix S can be written as

S =A@ (MKyxMy)+ M, ® (Ax K Ay) + LT @ (My K, Ay)
+L® (AxKxMx) + FO oy Mx

where
L:= <§T¢f7¢)3>1}2(1)7 M, = <(I)f7¢)f>L2(I)a At = <§T(I>f7 (%(I)f>L2(I)

This matrix representation does not depend on Y,? or Z° at all.

Proof. The expansion of B := T ® My + N ® Ay in S yields a sum of five
Kronecker products, one of which is

(TT @ M) Ky (T® Ay) = (TTO7'N) ®@ (M, K, A,).
We will show that TTO'N = LT; similar arguments hold for the other
terms. Thanks to X? C Y,?, we can define the trivial embedding F}? : X — Y.

Defining

I

T6: X? - thé ’ (T‘Su)(v) = <§Tuuv>L2(I)a
!

M(S: Y? - Y;té ) (Méu)(v) = <U7U>L2(I)7

we find O = (Fzs) M Fzs, N = (Fzs) MOF) Fgp and T = (Fzs)'T° Fyg, 50
TTO N = (Fgs) T F) Fos = (90, @)1,y = L. O
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8.4.1 Parallel complexity

The parallel complexity of our algorithm is the asymptotic runtime of solv-
ing (8.12) for u € RNtNx in terms of N, := dim X and Ny := dim X2, given
sufficiently many parallel processors and assuming no communication cost.

We understand the serial (resp. parallel) cost of a matrix B, denoted C
(resp. C%), as the asymptotic runtime of performing  — Bz € R in terms of
N, on a single (resp. sufficiently many) processors at no communication cost.
For uniformly sparse matrices, i.e. with O(1) nonzeros per row and column, the
serial cost is O(N), and the parallel cost is O(1) by computing each cell of the
output concurrently.

From Theorem 8.3.1, we see that K x is such that ro (K x S ) S 1uniformly in
§ € A. Therefore, for a given algebraic error tolerance ¢, we require O(loge 1)
PCG iterations. Assuming that the parallel cost of matrices dominates that of
vector addition and inner products, the parallel complexity of a single PCG
iteration is dominated by the cost of applying Kx and 5. As § = WTSW,
our algorithm runs in complexity

(8.14) O(loge ' [Ck, + Cyyr + Cs +Cpy]) (0 € {s,p}).

Theorem 8.4.3. For fixed algebraic error tolerance € > 0, our algorithm runs in
o serial complexity O(NyNx);
o time-parallel complexity O(log(N¢)Nx);

o space-time-parallel complexity O(log(NLuNx)).

Proof. We absorb the constant factor loge™! of (8.14) into O. We analyse the
cost of every matrix separately.

The (inverse) wavelet transform

As W = W, ® ldy, its serial cost equals O(Cyy, Nx). The choice of wavelet
allows performing « — W,z at linear serial cost (cf. §8.3.3), so that Cy, =
O(NyNy).

Using (8.10), we write W; as the composition of J matrices, each uniformly
sparse and hence at parallel cost O(1). Because the mesh in time is quasi-
uniform, we have J = log N;. We find that C@Vt = O(J) = O(log Ny), so
that the time-parallel cost of W equals O(log(NN;)Nx). By exploiting spatial
parallelism as well, we find C};, = O(log N;). Analogous arguments hold for
W, and WT.
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8.4. A concrete setting: the reaction-diffusion equation

The preconditioner

Recall that Ky := blockdiag[K |y Ax K|y ]x. Since the cost of K is indepen-
dent of j, we see that

Cicx = O(Ni- (205, + C4,)) = O2N;Cic, + NiNyo).

Implementing the K as typical multiplicative multigrid solvers with linear
serial cost, we find Cg = O(N;Ny).

Through temporal parallelism, we can apply each block of Kx concur-
rently, resulting in a time-parallel cost of O(2C% + C3 ) = O(Nx).

By parallelizing in space as well, we reduce the cost of the uniformly sparse
Ay to O(1). The parallel cost of multiplicative multigrid on quasi-uniform
triangulations is O(log Ny ); cf. [MFL*91]. It follows that C% = O(log Ny).

The Schur matrix

Using Lemma 8.4.1, we write § = BTKyB+Ty® My where B=T® M, +
N ® Ay, which immediately reveals that

Cs=Cgr +Ck, +Cp+Cr, -Cpr = O(NtNx +Ck,), and
C% =max {Ch+ + Ck, +C%, CL -Ch} =0(Ck,)

because every matrix except Ky is uniformly sparse. With arguments similar
to the previous paragraph, we see that Ky (and hence S) has serial cost
O(N,;Ny), time-parallel cost O(Ny), and space-time-parallel cost O(log Ny).

O

8.4.2 Solving to higher accuracy

Instead of fixing the algebraic error tolerance, maybe more realistic is is to desire
a solution @’ € X?° for which the error is proportional to the discretization
error, ie. |lu — @0 x Sinf,,exs ||u — us| x-

Assuming that this error decays with a (problem-dependent) rate s > 0,
ie. inf, cxs |u — usl|x S (N¢Nx)~*%, then the same holds for the solution
u® of (8.8); cf. Thm. 8.2.3. When the algebraic error tolerance decays as ¢ <
(NyNx)~*, a triangle inequality and (8.13) show that the error of our solution
@° obtained by PCG decays at rate s too.

In this case, loge™! = O(log(N:Ny)). From (8.14) and the proof of The-
orem 8.4.3, we find our algorithm to run in superlinear serial complexity
O(N; Ny log(N;Ny)), time-parallel complexity O(log*(N;) log(Ny )Ny ), and poly-
logarithmic complexity O(log*(N;Ny)) parallel in space and time.

For elliptic PDEs, algorithms are available that offer quasi-optimal solu-
tions, serially in linear complexity O(Ny)—the cost of a serial solve to fixed
algebraic error—and in parallel in O(log” Ny), by combining a nested iteration
with parallel multigrid; cf. [Hac85, Ch. 5] and [Bra81].

195



8. A PARALLEL ALGORITHM

In [HVW95], the question is posed whether “good serial algorithms for
parabolic PDEs are intrinsically as parallel as good serial algorithms for elliptic
PDEs”, basically asking if the lower bound of O(log*(N; Ny)) can be attained
by an algorithm that runs serially in O(N;Ny); see [Wor91, §2.2] for a formal
discussion.

Nested iteration drives down the serial complexity of our algorithm to a lin-
ear O(N;Nx), and also improves the time-parallel complexity to O(log(N;) Nx).?
This is on par with the best-known results for elliptic problems, so we answer
the question posed in [HVW95] in the affirmative.

8.5 Numerical experiments

We take the simple heat equation, i.e. D = Idx and ¢ = 0. Weselectp, = px =1,
i.e. lowest order finite elements in space and time. We will use the 3-point
wavelet introduced in [Ste98].

We implemented our algorithm in Python using the open source finite el-
ement library NGSolve [Sch14] for meshing and discretization of the bilinear
forms in space and time, MPI through mpi4py [DPS05] for distributed com-
putations, and SciPy [Vir20] for the sparse matrix-vector computations. The
source code is available at [vVW21c].

8.5.1 Preconditioner calibration on a 2D problem

Our preconditioner is optimal, meaning that xo(Kx S’) < 1. Here we will
investigate this condition number quantitatively.

As amodel problem, we partition the temporal interval I uniformly into 27
subintervals. We consider the domain © := [0, 1]?, and triangulate it uniformly
into 4% triangles. We set N; := dim X? = 2/ +1and Ny := dim X = (2K -1)%

We start by using direct inverses K; = (Ax + 2/ M)~ ! and Kx = A;! to
determine the best possible condition numbers. We found that replacing K
by K¢ = (aAx + 2/ M)~ for a = 0.3 gave better conditioning; see also the
left of Table 8.1. At the right of Table 8.1, we see that the condition numbers
are very robust with respect to spatial refinements, but less so for refinements
in time. Still, at N; = 16 129, we observe a modest x2 (K x S’) of 8.74.

Replacing the direct inverses with multigrid solvers, we found a good
balance between speed and conditioning at 2 V-cycles with 3 Gauss-Seidel
smoothing steps per grid. We decided to use these for our experiments.

3Interestingly, nested iteration offers no improvements parallel in space and time, with com-
plexity still O(log% N¢ Nx)).
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50 N, =65 129 257 513 1025 2049 4097 8193
401 N,—49 634 705 753 7.89 815 837 860 878

225 633 689 755 791 814 838 857 873
301 91 614 689 755 793 815 838 857 874
20 3969 614 7.07 756 7.87 816 838 857 874
o 16129 614 652 755 786 816 837 857 874

0.0 0.2 0.4 0.6 0.8 1.0
a

TasLe 8.1. Computed condition numbers ro(KxS). Left: fixed N; = 1025,
Ny = 961 for varying «. Right: fixed o = 0.3 for varying N; and Nx.

8.5.2 Time-parallel results

We perform computations on Cartesius, the Dutch supercomputer. Each
Cartesius node has 64GB of memory and 12 cores (at 2 threads per core)
running at 2.6GHz. Using the preconditioner detailed above, we iterate PCG
on (8.12) with S computed as in Lemma 8.4.2, until achieving an algebraic
error of ¢ = 1075; see also §8.3.4. For the spatial multigrid solvers, we use 2
V-cycles with 3 Gauss-Seidel smoothing steps per grid.

Memory-efficient time-parallel implementation

For X € RN=*Nt we define (X) € RM™x as the vector obtained by stacking
columns of X vertically. For memory efficency, we do not build matrices of
the form B; ® By appearing in Lemma 8.4.2 directly, but instead perform
matrix-vector products using the identity

(8.15) (B, @ By)(X) = (Bx(B,X")") = (1d, ® By)(B: X ").

Each parallel processor stores only a subset of the temporal degrees of free-
dom, e.g. a subset of columns of X. When B, is uniformly sparse, which holds
true for all of our temporal matrices, using (8.15) we can evaluate (B;® Bx)(X)
in O(Cp, ) operations parallel in time: on each parallel processor, we compute
‘our’ columns of Y := B, X " by receiving the necessary columns of X from
neighbouring processors, and then compute B,Y " without communication.

The preconditioner K x is block-diagonal, making its time-parallel applica-
tion trivial. Representing the wavelet transform of §8.3.3 as the composition of
J Kronecker products allows a time-parallel implementation using the above.

2D problem

We select Q := [0,1]? with a uniform triangulation 7o, and we triangu-
late I uniformly into 7;. We prescribe the smooth solution u(t,z,y) =
exp(—2n?t) sin(rz) sin(ry), so the problem has vanishing forcing data g.
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8. A PARALLEL ALGORITHM

Table 8.2 details the strong scaling results, i.e. fixing the problem size and
increasing the number of processors P. We triangulate I into 2'* time slabs,
yielding N; = 16385 temporal degrees of freedom, and € into 4% triangles,
yielding a X2 of dimension N, = 65025. The resulting system contains
1065434625 degrees of freedom and our solver reaches the algebraic error
tolerance after 16 iterations. In perfect strong scaling, the total number of
CPU-hours remains constant. Even at 2 048 processors, we observe a parallel
efficiency of around 92.9%, solving this system in a modest 11.7 CPU-hours.
Acquiring strong scaling results on a single node was not possible due to
memory limitations.

Table 8.3 details the weak scaling results, i.e. fixing the problem size per
processor and increasing the number of processors. In perfect weak scaling,
the time per iteration should remain constant. We observe a slight increase
in time per iteration on a single node, but when scaling to multiple nodes,
we observe a near-perfect parallel efficiency of around 96.7%, solving the final
system with 4278 467 585 degrees of freedom in a mere 109 seconds.

3D problem

We select Q := [0,1]® with u(t, x,y,2) := exp(—3n>t) sin(rz) sin(my) sin(7z),
so the problem has vanishing forcing data g.

Table 8.4 shows the strong scaling results. We triangulate I uniformly into
214 time slabs, and  uniformly into 8% tetrahedra. The arising system has
N = 4097020095 unknowns, which we solve to tolerance in 18 iterations. The
results are comparable to those in two dimensions, albeit a factor two slower
at similar problem sizes.

Table 8.5 shows the weak scaling results for the 3D problem. As in the
two-dimensional case, we observe excellent scaling properties, and see that
the time per iteration is nearly constant.

8.6 Conclusion

We have presented a framework for solving linear parabolic evolution equa-
tions massively in parallel. Based on earlier ideas [And16, NS19, SW21b], we
found a remarkably simple symmetric Schur-complement equation. With a
tensor-product discretization of the space-time cylinder using standard finite
elements in time and space together with a wavelet-in-time multigrid-in-space
preconditioner, we were able to solve the arising systems to fixed accuracy in
a uniformly bounded number of PCG steps.

We found that our algorithm runs in linear complexity on a single pro-
cessor. Moreover, when sufficiently many parallel processors are available and
communication is free, its runtime scales logarithmically in the discretization
size. These complexity results translate to a highly efficient algorithm in prac-
tice.
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8.6. Conclusion

P N Ny N = N;Ny its time(s) time/it(s) CPU-hrs

1-16 16385 65025 1065434625 ———— outof memory ———
32 16385 65025 1065434625 16 1224.85 76.55 10.89
64 16385 65025 1065434625 16 615.73 38.48 10.95

128 16385 65025 1065434625 16 309.81 19.36 11.02
256 16385 65025 1065434625 16 163.20 10.20 11.61
512 16385 65025 1065434625 16 96.54 6.03 13.73
512 16385 65025 1065434625 16 96.50 6.03 13.72

1024 16385 65025 1065434625 16 45.27 2.83 12.88

2048 16385 65025 1065434625 16 20.59 1.29 11.72

TasLE 8.2. Strong scaling results for the 2D problem.

P N Ny N = N;N, its time(s) time/it(s) CPU-hrs
L 1 9 261121 2350089 8 33.36 4.17 0.01
8 2 17 261121 4439057 11 46.66 4.24 0.03
@ 4 33 261121 8616993 12 54.60 4.55 0.06
éo 8 65 261121 16972865 13 65.52 5.04 0.15
@ 16 129 261121 33684609 13 86.94 6.69 0.39
* 32 257 261121 67108097 14 93.56 6.68 0.83
- 64 513 261121 133955073 14 94.45 6.75 1.68
8 128 1025 261121 267649025 14 93.85 6.70 3.34
.%1 256 2049 261121 535036929 15 101.81 6.79 7.24
=] 512 4097 261121 1069812737 15 101.71 6.78 14.47
é’ 1024 8193 261121 2139364353 16 108.32 6.77 30.81
2048 16385 261121 4278467585 16 109.59 6.85 62.34
TaBLE 8.3. Weak scaling results for the 2D problem.
P N, Ny N = N¢N, its time(s) time/it(s) CPU-hrs
1-64 16385 250047 4097020095 ——— outof memory ————
128 16385 250047 4097020095 18 3308.49 174.13 117.64
256 16385 250047 4097020095 18 1655.92 87.15 117.75
512 16385 250047 4097020095 18 895.01 47.11 127.29
1024 16385 250047 4097020095 18 451.59 23.77 128.45
2048 16385 250047 4097020095 18 221.12 12.28 125.80

TasLE 8.4. Strong scaling results for the 3D problem.
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8. A PARALLEL ALGORITHM

P N Ny N = N¢Ny its time(s) time/it(s) CPU-hrs

16 129 250047 32256063 15 183.65 12.24 0.82

32 257 250047 64262079 16 196.26 12.27 1.74
64 513 250047 128274111 16 197.55 12.35 3.51
128 1025 250047 256298175 17 210.21 12.37 7.47
256 2049 250047 512346303 17  209.56 12.33 14.90
512 4097 250047 1024442559 17 210.14 12.36 29.89
1024 8193 250047 2048635071 18 221.77 12.32 63.08
2048 16385 250047 4097020095 18 221.12 12.28 125.80

The numerical experiments serve as a showcase for the described space-
time method, and exhibit its excellent time-parallelism by solving a linear
system with over 4 billion unknowns in just 109 seconds, using just over 2
thousand parallel processors. By incorporating spatial parallelism as well, we

TasLE 8.5. Weak scaling results for the 3D problem.

expect these results to scale well to much larger problems.

Although performed in the rather restrictive setting of the heat equation
discretized using piecewise linear polynomials on uniform triangulations,
the parallel framework already allows solving more general linear parabolic
PDEs using polynomials of varying degree on locally refined (tensor-product)
meshes. In this more general setting, we envision load balancing to become

the main hurdle in achieving good scaling results.
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9  Adaptive BEM for the heat equation

9.1 Introduction

This chapter is about the adaptive numerical approximation of the heat equa-
tion using a simultaneous space-time boundary element method (BEM). In
the last years, there has been a growing interest in space-time BEM for the
heat equation [CS13, MST14, MST15, HT18, CR19, DNS19, DZO"19, Taul9,
ZWOM21]. In contrast to the differential operator based variational formu-
lation on the space-time cylinder, the variational formulation corresponding
to space-time BEM is coercive [AN87, Cos90] so that the discretized version
always has a unique solution regardless of the chosen trial space which is even
quasi-optimal in the natural energy norm. Moreover, it is naturally applicable
on unbounded domains and only requires a mesh of the lateral boundary of the
space-time cylinder resulting in a dimension reduction. The potential disad-
vantage that discretizations lead to dense matrices due to the nonlocality of the
boundary integral operators has been tackled, e.g., in [MST14, MST15, HT18]
via the fast multipole method and #-matrices.

Two often mentioned advantages of simultaneous space-time methods are
their potential for massive parallelization as well as their potential for fully
adaptive refinement to resolve singularities local in both space and time. While
the first advantage has been investigated in, e.g., [DZO"19, ZWOM21], the lat-
ter requires suitable a posteriori computable error estimators, which have not
been developed yet for the heat equation. Indeed, concerning a posteriori error
estimation as well as adaptive refinement for BEM for time-dependent prob-
lems, we are only aware of the works [Gl412, GOSS20] for the wave equation
in two and three space dimensions, respectively.

In the present manuscript, we generalize the results [Fae00, Fae02] from
Faermann for stationary PDEs to the heat equation: Let 2 C R%, d = 2,3, be a
Lipschitz domain with boundary I' := 9Q and T' > 0 a given end time point
with corresponding time interval I := (0,T"). We abbreviate the space-time
cylinder @ := I x Q with lateral boundary ¥ := I x I" and corresponding outer
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9. AparTivE BEM FOR THE HEAT EQUATION

normal vector n € R?. With the heat kernel

_l=?

Gt ) = We 7 for (t,x) € (0,00) x R%,
0 else,

and a given function f : ¥ — R, we consider the boundary integral equation,

9.1) (Y o)(t,x) = /ZG(t —s,x—y)p(t —s,x —y)dyds = f(t,x),

for a.e. (t,x) € ¥. Here, ¥ is the single-layer operator. For given initial
condition up : 2 — R and Dirichlet data up : ¥ — R, such equations arise
from the heat equation

Ou—Au = 0 on @,
9.2) u = up ony,
u(0,-) = wuy onf.

Let P be a mesh of the space-time boundary 3 consisting of prismatic ele-
ments Jx K withJ C Tand K C T, and let ® be an associated approximation of
¢. Typically, ® is a piecewise polynomial with respect to P. As ¥ is an isomor-
phism from the dual space H~1/2~1/4(%) := H/21/4(%) to the anisotropic
Sobolev space H'/%1/4(x%), the discretization error [|¢ — ®||p—1/2.-1/4(x) is
equivalent to the norm of the residual || f — 7 ®| g1/21/4(5). We show that
the residual norm can be localized up to weighted L,-terms, i.e.,

D (@, IXE) S =Vl S D 1P (@, IxK) +(p(®, IXK)?,
IXKEeP JXKeP

where 7p(®,J x K)? measures the H'/?/4-seminorm of the residual in a
neighborhood of J x K and (p(®) := (diam(K)~!+ |J\_1/2)||f—“//<I>H%2(JxK).
The hidden constants depend only on the regularity of the of the meshes found
by fixing either the temporal or the spatial coordinate in P. In particular, we do
not require any assumption on the relation between the spatial and temporal
size of the mesh elements, making anisotropically refined meshes possible.

If the elements satisfy the scaling |J| ~ diam(K)? and if @ is the Galerkin
approximation of ¢ in a discrete space X that contains at least all P-piecewise
constant functions, then we can additionally prove that

Cp(®,J x K) S np (@, J x K).

Indeed, numerical experiments (with d = 2) suggest that this is not the case in
general: If the scaling condition is not enforced, we observe situations where
the Ly-terms ¢ do not decay under mesh-refinement.

That being said, the estimator 7 does not only behave efficiently but also
reliably in all considered examples. Moreover, anisotropic refinement steered
by the space- and time-components of the estimator always yield the optimal
algebraic convergence rate of both the estimator and the error.
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9.2. Preliminaries

Outline

The remainder of this chapter is organized as follows: Section 9.2 summarizes
the general principles of the space-time boundary element method for the
heat equation. Section 9.3 recalls the localization argument of [Fae00, Fae02]
and applies it to anisotropic Sobolev spaces (Theorem 9.3.3). This result is
then invoked in Corollary 9.3.5 for the residual, resulting in efficient and
reliable a posteriori computable error bounds. In particular, a Poincaré-type
inequality (Lemma 9.3.4) allows to estimate the weighted Lo-terms that are
still present in the upper bound from Theorem 9.3.3. Finally, Section 9.4
introduces an adaptive algorithm for d = 2 which is based on the derived
error estimator. Different marking and refinement strategies are presented.
The adaptive algorithm is subsequently applied to several concrete examples
with typical singularities in space and time.

9.2 Preliminaries

9.2.1 General notation

Throughout and without any ambiguity, | - | denotes the absolute value of
scalars, the Euclidean norm of vectors in R, or the the measure of a set in R™,
e.g., the length of an interval or the area of a surface in R3. We write A < B to
abbreviate A < C'B with some generic constant C' > 0, which is clear from the
context. Moreover, A =~ B abbreviates A < B < A.

9.2.2 Anisotropic Sobolev spaces

For d-dimensional w C Q2 or (d — 1) -dimensional w C T, and i € (0, 1], we first
recall the Sobolev space H#(w) := {v € La( ) : ol e < oo} associated
with the SoboleV—Slobodeckl] norm [0l () = 19117, () + 0130 (), With

f f ‘mv(w) v(y)|? dy dx lf,u S (07 1)7

"U|2H;L( ) — y‘dlm(w)+2u '
: Ve UHLQ(UJ) ifp=1,

where dim(w) denotes the dimension of w, i.e., d or d — 1, and V,, denotes the
(weak) gradient on w, i.e., the standard gradient or the surface gradient.
Moreover, we define for any subinterval J C I,v e (0,1], and any Banach
space X,
HY(J; X) = {v € Lo(J; X) = vllgvgix) < oo}

associated with the norm |||, ;.x) = VII7,.x) + [v[Fv (s.x) With

v —v(s 2 .
LL%dsdt ifv e (0,1),
||3tv||%2(w) ifv=1,

|’U|%IV(J;X) =
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9. AparTivE BEM FOR THE HEAT EQUATION

where 0, denotes the (weak) time derivative. If X = R, we simply write H"(.J),
vl v (7y, and |v| v (5. Finally, we recall the anisotropic Sobolev space

HWY(J X w) := Lo(J; H*(w)) N HY(J; La(w))
with corresponding norm

HUH?{N‘“(JXQ;) = ||U||2L2(J;Hu(w)) + ||UH12Hv(J;L2(w)) (“ € HMY(J x W))-

We will sometimes use the abbreviation
ey = [ et (0 € Ll B @),

For w € {Q,T'}, we denote H #~¥(I x w) for the dual of H*" (I x w) with
duality pairing (-, -) rx.. We view Lo(I X w) as subspace of H * ¥ (I x w) via

(v, V) rxw = /1/ v(t, x)Y(t, ) de dt (v € H*Y(I X w),v € La(I x w))

9.2.3 Boundary integral equations

It is well-known that for vy € L?(Q) and up € H'/?'/4(%), the heat equa-
tion (9.2) admits a unique solution v € H''/2(Q). With the normal derivative
ON 1= Opu € H™1/271/4(X), u satisfies the representation formula

9.3) u = Myug+ VN — Hup,
where

©4)  (Aouo)(t.z) = / Gtz — yuoly)dy ((t.2) € Q)

denotes the initial potential,

05  (Fén)(t.z) = /E G(t—s,@ — y)on(y) dyds ((t.z) € Q)

denotes the single-layer potential, and

06 (Fup)t.a) = [ Gl = sz —yhup®)dyds ((t.2)€ Q)

denotes the double-layer potential. These linear operators satisfy the mapping
properties ./, : L*(Q) — HYY/2(Q), ¥, : HY/2"1/4(%) - H“/2(Q), and
Sy + HY2YA(S) - HY/2(Q). The lateral trace (-)|5; of these potentials is
given by

(Moyuo)ls = Moyug, (Von)ls = Vén, (Hup)ls= (X —1/2up,
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where the initial operator .#;, the single-layer operator ¥/, and the double-
layer operator %" are defined as in (9.4)—(9.6) for (t,x) € X. Applying the
lateral trace to (9.3) thus results in

9.7) Von = (KX +1/2)up — Mouo,

ie, (9.1) with f := (& + 1/2)up — Ayug. As the single-layer operator ¥ is
also coercive, i.e.,

9.8) P, )5 > ceoollVlli1/2 10y (¥ € HTV2TVA(E))

with some constant ccoe > 0, (9.7) is uniquely solvable and the solution ¢y
is just the missing normal derivative 0, u to compute u via the representation
formula (9.3).

Alternatively, one can make the ansatz u = %uo +7 ¢. Indeed, both %uo
and 7 ¢ satisfy the heat equation, where .#ju, restricted to {0} x € coincides

with ug and V4 ¢ vanishes there. To satisfy the Dirichlet boundary conditions,
one has to solve

9.9) V¢ =up — Mouo,

ie., (9.1) with f := up — #yug. While (9.7) is called direct method as it
directly provides the physically relevant quantity ¢ = Onu, (9.9) is called
indirect method.

For more details and proofs, we refer to the seminal works [AN87, Noo88,
Co0s90], which considered ug = 0, and to [DNS19, Doh19] for the general case.
9.2.4 Boundary meshes

Throughout this work, we consider prismatic meshes P of ¥:

e P is a finite set of prisms of the form P = J x K, where J C I = [0, 7]
is some non-empty compact interval and K C I is the image of some
compact Lipschitz domain! K C R?~! under some bi-Lipschitz mapping;

e forall P, P € P with P #+ P, the intersection has measure zero on 3;
e Pisa partition of ¥, i.e., ¥ = Upcp P.
For arbitrary t € I and @ € I, we abbreviate the induced sets

Ply:={KCT: ({t} xI)N(J x K) # 0 forsome J x K € P}

1 A compact Lipschitz domain is the closure of a bounded Lipschitz domain. For d = 2, itisa
compact interval with non-empty interior.

205



9. AparTivE BEM FOR THE HEAT EQUATION

and
Plo:={JCT: (Ix{z})Nn(JxK) #0forsome J x K € P}.

For almost all t € I, P|; is a mesh of T, i.e., a partition of I into finitely many
compact Lipschitz domains such that the intersection of two distinct elements
has measure zero on I'. Similarly, for almost all € T', P|,, is a mesh of I, ie.,
a partition of I into finitely many non-empty compact intervals such that the
intersection of two different intervals is at most a point. Note that for one fixed
prismatic mesh P there exist constants Cpe; > 1, Caist > 1, Cshape > 1, and
Ciqu > 1 such that:

e for almost all ¢ € I, the number of neighbors of an element in P|; is
bounded, i.e.,

(9.10) #{KePly: KNK #0} < Cye forall K € P,

e for almost all ¢ € I, the elements of P|; are uniformly away from non-
neighboring elements, i.e.,

(9.11) diam(K) < Cyie dist(K, K) forall K, K € P|, with K N K = 0;

e for almost all ¢t € I, the elements of P|; are shape-regular, i.e.,

(9.12) gl K| < diam(K)9! < Cgpape| K| forall K € P|y;

shape
e for almost all € T, P|,, is locally quasi-uniform, i.e.,

(9.13) |J| < Ciqu|J| forall J,J € P|, with J N .J # 0.

In the remainder of this work, we will always indicate the dependence of
estimates on these particular constants.

Remark 9.2.1. If, for d = 2, the meshes P|, are found by iteratively bisecting
some initial mesh and the level difference of neighboring elements is bounded
by 1, then the constants from (9.10)—(9.12) depend only on the initial mesh;
cf. [AFF*13]. For d = 3, the same holds true if the initial mesh is for instance a
conforming (curvilinear) triangulation of I" and one iteratively applies newest
vertex bisection. The arguments for (9.10)—(9.11) are found in [AFF*17, Sec-
tion 2.3 and 4.1].

9.2.5 Boundary element method

Given a prismatic boundary mesh P and an associated finite-dimensional trial
space X C H~'/271/4(%), e.g., the space of all P-piecewise polynomials of
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some fixed degree in space and time, let € & denote the Galerkin discretiza-
tion of the solution ¢ of the boundary integral equation (9.1), i.e.,

<7/<I)3\P>E:<f7\:[j>2 (lI/EX)7
which is equivalent to the Galerkin orthogonality
(9.14) (V(p—-0),¥)x =0 (VeX).

Note that coercivity (9.8) guarantees unique solvability of the latter equations,
and the Céa lemma applies

cont

||¢ - (I)||H—1/2v—1/4(2) < min ||¢ - \IJHH—1/27—1/4(2)7

Ceoe VEX

where C..oy is the operator norm of ¥ : H~1/2=1/4(x) — HY/%V4(%).

Suppose P = {J x K : J € P;, K € Pr} is a full tensor-mesh correspond-
ing to a mesh Pr of I' with uniform mesh-size h, ~ diam(K) for all K € Pr
and a mesh P of I with uniform step-size h; ~ h for some o > 0. Using
P-piecewise polynomials of some degree p, € Ny in space- and some degree
pt € Ng in time-direction as trial space X, then gives the error decay rate

_ min{px+3/2,(pt+5/4)0}
d—1+to

(9.15) min [[¢ — V|| g-1/2.-1/a5) S N for all smooth ¢;
vex

see [CR19, Theorem 3.3]. Here, N < hg (dfl)h{ ! = pd-1+7 denotes the number

of degrees of freedom. The optimal grading parameter is thus given by ¢ =

+ + 5)/(pt + 3) with resulting rate —Zﬁﬁ/f.
P + 3 5) with resulting rate O (N

9.3 A posteriori error estimation

As 7 is an isomorphism, it holds that
(916) ||¢) — (P||H—1/2,—1/4(2) ~ ||f — 7/(1)||H1/2‘1/4(Z)'

Here, ® € H~1/271/4(%) can be an arbitrary approximation of the solution
¢ of (9.1). While the right-hand side is in principle a posteriori computable,
the computation of the Sobolev—Slobodeckij norm over the full space-time
boundary ¥ is expensive, and it does not provide any information on where
to locally refine the given mesh to increase the accuracy of the approximation.
According to (9.16), it is sufficient to derive suitable estimate for the residual
f — 7 ® in the H'/?1/4(%)-norm. Recall that this term is L,(X)-orthogonal to
all functions ¥ € X provided that ® is the Galerkin approximation of ¢ in X;
see (9.14).
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9.3.1 Localization of the anisotropic Sobolev-Slobodeckij norm

The following proposition provides the key argument for our a posteriori error
estimation. While the first inequality is trivial, the original version of the
second one already goes back to [Fae00, Fae02]. We make use of the slightly
generalized version from [GP20, Lemma 4.5]; see [Gan17, Lemma 5.3.2] for a
detailed proof.

Proposition 9.3.1. Let p € (0,1) and Pr be a mesh of T'. Then, there exist constants
C1, Cs > 0 such that for all v € H*(T'), there holds that

it > > hwom S Py < D0 D Il kom

KePr f(e])r KePr KG?F
KNK#£) KNK#)
+Cy Y diam(K) o]
Ly(K)-
KePr

The constant Cy is given as C1 = 2(Chei + 1)? with Che from (9.10) (with P|;
replaced by Pr), and Cy depends only on the dimension d, p, I, and the constant Cgigt
from (9.11) (with P|, replaced by Pr). O

Note that local quasi-uniformity (9.13) (with P|, replaced by P;) of a time
mesh Py is actually equivalent to

diam(J) = |J| < Ciqu dist(J, J) forall J,J € P; with JN.J = 0.

Moreover, for any element J € Py, there are at most three J € P; with

JNJ # 0. In particular, the same reference as before applies and we also
obtain the following proposition.

Proposition 9.3.2. Let v € (0, 1) and Py be a mesh of I. Then, there exist constants
C1,Cq > 0 such that for all v € H”(I), there holds that

crt Z Z ol vud) S ol (1) < Z Z ol v(JUJ)

JEPr Jerr JEPr Jerr

JNJ#0 JNJ#0
+Co > 17 ollZ, -

JEPT

The constant C1 is given as Cy = 32, and Co depends only on v, |I|, and the constant
Ciqu from (9.13) (with P replaced by Py). O

The latter two propositions allow to derive the following a posteriori error
estimation, which can be employed for arbitrary approximations ®.
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Theorem 9.3.3. Let w,v € (0,1) and ‘P be a prismatic mesh of ¥. Then, there exist
constants Clg, Cl, > 0 such that for all v € H"" (%), there holds that

rel

2 2 200112
Z ( Z |U|L2(Jﬁf;HH(KUf())+Z ‘UlH”(JUj;Lg(Kﬁf())) < (Cear) 10l v ()

JXKeP JxKeP IxKeP

|JNJ|>0 JNJ#0
KNK#0 |[KNK|>0
as well as
I \—2 2 2 2
(Cre1) ”vHH“’V(E)SZ ( Z |U‘L2(ij;Hu(Kuf<))+ Z |U|H"(Juj;L2(Kﬂf()))
JXKEP JxKeP IxKeP
|JnJ|>0 JNJT#0
KNK#D |IKNK|>0
(9.17) + > (diam(K) 7 + [T [oll7, -
JXKeP

The constant Cg is given as Clg = max(2(Che + 1)%,32) with Che from (9.10),
and C\,, depends only on d, j1, v, I, |I| and the constants Cais from (9.11) as well as
Cqu from (9.13).

Proof. We split the proof into four steps.
Step 1: In this step, we bound ||v||z, 1, (r)) from below. Proposition 9.3.1
gives that

EeEy WECSTAST T D SHD SR S A

KePl: KeP|,
KNK#)

Note that K € P|, is equivalent to J x K € P for some J with ¢t € J. With the
indicator function 1g of a set S, the last term thus is equal to

/1 v (t, )Hu KUK) / Z Ly(t Zl o, H“ (KUK) dt

KGPhKGP\t IJXKEP  jxKeP
KNK#) KNK#)D

Z Z MLQ JNJ;He(KUK))"

JXKEP JIxKeP
[7nJ|>0
KNK#)
Step 2: In this step, we bound ||v| 1, r;z=(r)) from above. Proposition 9.3.1
gives that

T / ot )27
/ S W e+ diam(K) ot ), o db.
KePl: K€P|t KePly
KNK#)
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The first term in this expression has already been treated in Step 1. As K € P|,
is equivalent to J x K € P for some J with t € J, the second term reads

[ 3 im0 e ) ey dt = |3 Li0e) dism() ot

Kepl, JxKeP
> diam(K) " (|vll3, )
JXKeP

Step 3: In this step, we bound ||v|| g (1,1, (r)) from below. The Fubini theorem,
Proposition 9.3.2, and the same argument as in Step 1 give that

||UHH“(IL2(F))N/ Z Z Hv(JuJ)d

JEPlw JEPs
JNJ#)D
[ @) X k@@l d
Uxkep FxKeP

JNJ#0D

> 2 PlRgudiamngy

JXKEP JxKeP
JNJ#0
|[KNK|>0

Step 4: In this step, we bound ||v|| g+ (7,1, (r)) from above. The Fubini theorem
and Proposition 9.3.2 give that

ol 1y = | 0@ ey d
LY eyt X I de.

JEP|= JG'P|m JEP|2
JNJT#D

The first term has already been treated in Step 3. The second term reads

[ ol g de= [ 3 @ U ool de

JEP|z JxKeP
= Z 200012, e i) -
JXKEP
This concludes the proof. O

9.3.2 Poincaré-type inequality

Assuming the grading | J| = diam(K)*/¥ as well as Ly(X)-orthogonality of v to
piecewise constants, the following local Poincaré-type inequality allows to get
rid of the weighted Lj-terms in (9.17). The proof works essentially as in [Cos90,
Proposition 5.3], where a global version on uniform meshes is considered.

210



9.3. A posteriori error estimation

Lemma 9.3.4. Let pi,v € (0,1) and P be a prismatic mesh of ¥. Then, there holds
forallv € H*Y(X) and all J x K € P with (v, 1)1,(sxx) = 0 that
10117, (7x k) < Cshape (diam(K)* [v[Z, 5. pu(xey) + TP 101300 (510 10)) -

Here, Cshape > 1 is the constant from (9.12).

Proof. Let I1;, Ik, and I ;4 x denote the Ly-orthogonal projection onto the
space of constants on J, K, and J x K, respectively. Note thatIT;« x = II; @I
and thus

vl Ly rx )y = (L = i)Vl Ly (rx k)
< (1 =1y @ 1d)vl|py(rxxy + 1ALy @ Id = 11y @ Il )| 1, (¢ 1) -

As II; has operator norm 1, a standard Poincaré-type inequality, see, e.g.,
[Fae02, Lemma 3.4] for the elementary proof, shows for the second term that

(T ©1d =Ty @ Mg )07, ey < (1 =1d @ Tk )v[|7, 5 k)
- / 10 = Tl )12,

diam(K)*1+2 K)d—1+2u

C. hape ;.
< % dlam(K)zﬂ‘fU‘QLg(J;H#(K)'

The first term can be estimated similarly

1 v
11 =Ty @ 1)o7, e x) < §|J|2 0130 (72 (7))

which concludes the proof. O

9.3.3 A posteriori error estimators

For arbitrary prismatic meshes P of ¥ with some associated trial space X C
H~1Y/2-Y4(%) and ® € X, we define the following error indicators for all
Jx KeP,

np(®,J x K) = Z |f = qj/(I)‘Lg(Jﬁ]Hl/z(KUK))’
IxKeP
[JNJF|>0
KNK#)

Z \f = %é‘ﬂw (JUJ;:L2(KNK))’

IxKeP
JNJT#D
|[KNK|>0

(B(D,J x K) = diam(K) || f = V|7, s k)
(@, 7 x K)? = |J[ 72 f - 7/‘1’||2L2(Jx1<)~

1p(®,J x K)?
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The corresponding error estimators read as

np(®,J x K)? :=n%(®,J x K)? +nb(®,J x K)?,
:l‘:

(p(®,J x K)? i= CB(®, ] x K)? +<§>(<I> J % K>2
mp(®)? = > np(®,J x K2, (p(@)7i= ) (p(®,J x K)>.
JXKeP JXKeP

With (9.16), we overall obtain the following a posteriori estimates.

Corollary 9.3.5. Let ¢ be the solution of (9.1) and P be a prismatic mesh of ¥ with
some associated discrete trial space X C H —1/2,=1/4(%2). Then, there exist constants
Ceg, Cre1 > 0 such that for arbitrary ® € X, there holds that

Cotnp(@) < 6 = Bl g-12-1/3(y < Coat (np(@)2 + (p(9)2) /2.

If the space X contains all P-piecewise constant functions and ® € X is the Galerkin
approximation of ¢, there further holds that

Cp (@, IxK)? < Cpape (diam(K) ™'+ [J]7Y2) (diam(K) +[J]?)np (@, JxK)?

forall J x K € P. If Cy g diam(K) < |J|V/? < Cyraa diam(K) is satisfied for all
J x K € P and a uniform constant Cgyaq > 1, this implies the existence of a constant

Crel > 0 such that
H(b - (I)||H—1/2,71/4(2) < Cranp(®).

The constants Cot and Clo) are given as Cegr = Clg Ceont ad Crel = Clyy/Ceoe With
Ceg and Cy, from Theorem 9.3.3, the operator norm Ceong of ¥, and ccoe from (9.8).
The constant Che) is given as Crel = Crel \/ 2Cshape(1 + Cgrad)- O

Remark 9.3.6. According to (9.15), the required scaling |J| =~ diam(K)?, i.e.,
o = 2, is the optimal scaling for approximating smooth solutions ¢ if the
polynomial degrees of X satisfy p, = 2p; + 1.

9.4 Numerical experiments

In this section, we employ the error estimator  within an adaptive algorithm
using different refinement strategies, and investigate the resulting convergence
rates. We restrict ourselves to the case d = 2, with I' = 902 being the boundary
of a polygonal domain 2 C R?, and set the time domain to be I = (0, 1).

For P a prismatic mesh of the space-time boundary, i.e., a quadrilateral
mesh as d = 2, we consider the trial space & of piecewise constants with respect
to P. In particular, this allows us to perform integration in time analytically for
all integrals that are involved in the computation of the Galerkin matrix and
the evaluation of the single-layer operator ¥; see, e.g., [Cos90]. The remaining
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9.4. Numerical experiments

integrals over I" have a logarithmic singularity, for which we use the quadrature
rules from [Smi00]. For the computation of the Sobolev-Slobodeckij seminorm
in the Faermann estimator np(®), we use Duffy transformations and Gauss
quadrature for the regularized integrands.

9.4.1 Adaptive algorithm

In our numerical experiments below, we employ the following adaptive algo-
rithm with § = 0.9.

Algorithm. Let 0 < 0 < 1 be a marking parameter and P = {J x K : J €
Pz, K € Pr} be an initial tensor-mesh corresponding to a mesh Pr of I and a mesh
Prof I =[0,T). Foreach ¢ =0,1,2,..., iterate the following steps:

(i) Compute Galerkin approximation ®, of ¢ in the space X; of all P,-piecewise
constant functions on X.

(ii) Compute indicators nig (®y, Jx K) and np, (®¢, J x K) for all elements Jx K €
Pe.

iii) Determine two minimal sets of marked elements MZ, Mt C P, such that
? ¢

(9.18) np, (20)> < > 0B, (e, IXK)+ D>, (B, JxK)?,
Ix KeM® TxKeM:

(iv) Refine at least all marked elements to obtain a new mesh Py .
We will focus on isotropic and anisotropic adaptive strategies:

e In isotropic refinement, we require M¥ = M} in the marking step (iii),
so that (9.18) simplifies to 8%np, (Pr)* < 3, e, 1P (Pe, J X K)2.
In the refinement step (iv), we iteratively mark additional elements to
ensure that, after subdividing all marked elements into four congruent
rectangles, the new mesh P, has only one hanging node per edge.

e Inanisotropic refinement, we bisect the elements M¥%\ M/, in space, bisect
the elements M} \ M7 in time, and subdivide all elements M7 N M}
into four congruent rectangles. Then, we iteratively bisect additional
elements in space and/or time to ensure that the level difference in space
and in time between elements sharing an edge in the new mesh P, is
bounded by 1. Here, the level in space and the level in time of elements
are defined as the number of bisections in space and time, respectively,
to obtain the element from the initial mesh P.

For comparison, we also include uniform refinement, where P, is obtained
from P, by subdividing each element into four congruent rectangles. For
all considered refinement strategies, it is easy to see that the mesh constants
from (9.10)-(9.13) for to (P¢)¢en, depend only on the initial mesh Py.
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9.4.2 Reference for exact error

As the exact error [|¢ — @||-1/2,-1/4(x;) cannot be readily computed in the
examples below, we compare the error estimator 7 and the weighted L,-terms
(p from Section 9.3.3 with the following (h — h/2)-estimator: For a mesh P,
define the uniformly refined mesh as P. With the the Galerkin approximation
& from the refined trial space, we define the (h — h/2)-estimator as

o~

[®— |2 = (¥(®— D), D — )y

Under the saturation assumption |¢ — By < geatlld — @y, the triangle
inequality shows that this estimator is equivalent to ||¢ — ®||, and therefore
to the error |[¢ — ®||7-1/2.-1/4(x) by coercivity of #. Note that the saturation
assumption is indeed satisfied under the realistic (asymptotic) assumption that

¢ — @[y = O ((#P)~*) for some arbitrary rate s > 0.

9.4.3 Smooth problem

Let Q = (0,1)? and prescribe u(t, z1, x2) := exp(—2m2t) sin(rx1 ) sin(rxs) with
initial condition ug(x1, x2) := sin(wx1 ) sin(nxs) and Dirichlet data up = 0. We
choose Py := {[0,1] x K : K € Pr} with the uniform mesh Pr of I being
aligned with the corners and consisting of four elements, as initial mesh of the
space-time boundary X.

Figure 9.1 displays the results in double-logarithmic plots so that the slopes
of the lines indicate the corresponding convergence rates. With the number of
degrees of freedom N = #7P, we see the expected rate O(N ~5/8) = O(N~0-625)
from (9.15) for both uniform refinement and isotropic refinement (with still
slightly worse rate for the Lo-terms (p(®) for uniform refinement), albeit
adaptive isotropic refinement offers quantitively better results. For anisotropic
refinement refinement, the rate is improved to O(N~15/22) ~ O(N~068). Ac-
cording to (9.15), this coincides with the best possible rate that can be achieved
with uniform tensor-meshes, where the optimal scaling parameter in h; ~ hg
is given by o = 6/5. Note that we do not require setting an explicit scaling in
our anisotropic adaptive algorithm, it recovers the optimal rate automatically.

9.4.4 Mildly singular problem

Let Q = (0,1)?, with initial condition ug = 0 and Dirichlet data up (¢, z1, 72) =
t2. We expect the solution here to be only singular in the four corners of the
unit square as the initial condition is compatible with the Dirichlet data. The
initial mesh Py is chosen as in Section 9.4.3