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1 Introduction

Partial differential equations are used for the modeling of a wide variety of
(natural) phenomena appearing in biology, physics, chemistry, engineering,
finance and many more fields. Typically, closed-form solutions to these dif-
ferential equations are unknown or do not exist, despite their importance in
practice. A remedy is provided by numerical methods that construct approxi-
mations of the solutions to these differential equations. Ideally, these numerical
methods provide good approximations at a small computational cost. This is
the main topic of investigation in this thesis, where we will focus on linear
partial differential equations of elliptic or parabolic type.

The contents of this thesis can be roughly divided into two parts. In the
first part we study preconditioning, a technique that is used to accelerate solvers
for systems of linear equations arising in our approximation schemes. In the
second part, we focus on (adaptive) numericalmethods for parabolic evolution
equations in a simultaneous space-time approach.

1.1 Numerical methods for operator equations

We start with a brief description of the general setting that we study in this
thesis. For a thorough introduction, we refer the reader to the literature,
e.g. [Bra01, EG04, Ste08a].

1.1.1 Operator equations
We consider linear operator equations of the following type. For some Hilbert
space V , a linear map A : V → V ′ and data f ∈ V ′, we seek u ∈ V that solves

(1.1) Au = f or equivalently (Au)(v) = f(v) (v ∈ V ).

We require the problem (1.1) to be well-posed, meaning that there is a unique
solution that depends continuously on the given data. Typically, V is a Sobolev
space of functions on some bounded domain, and the operator A corresponds
to the variational formulation of some partial differential equation, but we also
encounter situations where A is a boundary integral operator.
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1. Introduction

Let us restrict ourselves toA being a bounded and coercive operator, meaning
that for all v ∈ V we have ‖Av‖V ′ ≤ C‖v‖V and (Av)(v) ≥ α‖v‖2V , for some
C < ∞ and α > 0. In this setting, the Lax–Milgram theorem asserts that the
problem (1.1) is well-posed with ‖A−1‖L(V ′,V ) ≤ 1/α.
Example 1.1.1. As a model problem for (elliptic) partial differential equations,
one may look at Poisson’s equation with homogeneous Dirichlet boundary
conditions. For some bounded Lipschitz domain Ω ⊂ Rd, this is the problem
of finding u that solves

−∆u = f on Ω, u = 0 on ∂Ω,

for given forcing data f .
In variational formulation this problem reads as finding u from the Sobolev

space H1
0 (Ω) := {v ∈ H1(Ω) : v|∂Ω = 0} that satisfies

(1.2) (Au)(v) := 〈∇u,∇v〉L2(Ω) = 〈f, v〉L2(Ω) (v ∈ H1
0 (Ω)).

The operator A is a bounded linear map H1
0 (Ω) → H1

0 (Ω)′. Moreover, the
Poincaré inequality shows that A is coercive. We conclude that (1.2) is a well-
posed operator equation for forcing data f ∈ H1

0 (Ω)′, and falls in the abstract
setting of (1.1).
Example 1.1.2. Another model problem of interest is Laplace’s equation with
inhomogeneous Dirichlet boundary conditions. For some bounded Lipschitz
domain Ω ⊂ Rd, this is the problem of finding u that solves

(1.3) ∆u = 0 on Ω, u = g on ∂Ω,

for given Dirichlet boundary data g. This problem admits an (alternative)
weak formulation in terms of boundary integral operators.

This requires some notation. Set Γ := ∂Ω, and consider the fractional
Sobolev space H 1

2 (Γ), which can be seen as the trace space of H1(Ω), with its
dual that we denote by H− 1

2 (Γ). Let G be the fundamental solution to the
Laplace equation (1.3), e.g., for d = 2 we haveG(·) := − 1

2π log | · |. We can now
introduce the Single Layer integral operator A : H−

1
2 (Γ)→ H

1
2 (Γ) by

(Aũ)(ṽ) :=

ˆ
Γ

ṽ(x)

ˆ
Γ

G(x− y)ũ(y) dy dx
(
ũ, ṽ ∈ H− 1

2 (Γ)
)
.

The Single Layer operator A is bounded and coercive, so for g ∈ H 1
2 (Γ) we

may consider the well-posed problem of finding ũ ∈ H− 1
2 (Γ) that solves

Aũ = g.

It turns out that this problem is equivalent to the original problem (1.3), in that
we can recover the weak solution u ∈ H1(Ω) via the representation formula
u(x) =

´
Γ
G(x− y)ũ(y) dy.

2



1.1. Numerical methods for operator equations

Finally, we note that solving the Laplace problemwithNeumann boundary
data—so replacing the boundary condition by ∂u

∂n = g in (1.3)—allows for a
similar weak formulation in terms of boundary integral operators. Here one
solvesBu = g, with theHypersingular integral operatorB : H

1
2 (Γ)→ H−

1
2 (Γ).

This operator maps in the ‘opposite direction’ of A, which will be important
later in this introduction.

1.1.2 Numerical approximation
For the numerical approximation of the operator equation (1.1) we can use the
Ritz–Galerkin method. For some finite-dimensional subspace VT ⊂ V , also
called the trial space, we consider the discretized operatorAT : VT → V ′T given
by (AT u)(v) := (Au)(v) (u, v ∈ VT ) and the naturally embedded right hand
side f ∈ V ′T . The Galerkin approximation of (1.1) is then the function uT ∈ VT
that solves

(1.4) AT uT = f.

SinceVT is a closed subspace ofV , the operatorAT is again coercive, andhence
the Lax–Milgram theorem asserts that this discretized problem is well-posed.

The advantage of the Galerkinmethod is that it provides us with a concrete
and tight error bound. Indeed, Céa’s lemma shows that the error satisfies

‖u− uT ‖V ≤ ‖A‖L(V ,V ′)‖A−1‖L(V ′,V ) inf
v∈VT

‖u− v‖V ,

which tells us that uT is a quasi-best approximation to u from VT .
To design a convergent numerical method, we actually have to construct

a family of trial spaces (VT )T ∈T. Here we wish to achieve two things simul-
taneously. On the one hand, we want our method to have a good approx-
imation rate, that is, we want the approximations to satisfy ‖u − uT ‖V ≤
C(dim VT )−γ‖u‖V for all T ∈ T with some large γ > 0 (and some constant
C > 0). On the other hand, we want the number of operations required to
calculate uT from (1.4) to be small, so ideally of order O(dim VT ). Both these
motives play a central role in this thesis.

In the finite element method, the trial spaces VT are constructed as spaces of
(dis)continuous piecewise polynomials of fixed degree with respect to meshes
T of the underlying domain. If the solution u is smooth, i.e., its derivatives
of sufficiently high order are bounded in a suitable norm, then optimal ap-
proximation rates are often obtained by simply considering a family of trial
spaces with respect to quasi-uniform meshes T , i.e., meshes having a uniform
mesh width. The situation changes drastically when the (unknown) solu-
tion u contains singularities, which may be induced by the geometry or the
data. In such cases, the approximation rate offered by trial spaces with respect
to quasi-uniformmeshes can drop significantly, making the numerical scheme

3



1. Introduction

converge slowly. Luckily, in many situations the approximation rate can be
improved significantly by considering trial spaces with respect to meshes that
are locally refined at these singularities.

Throughout this thesis we will focus on this latter situation, where the
solution u contains singularities. Clearly, in terms of accuracy, using trial
spaces adapted to the singularities is preferable. This comes at a price however,
as the mathematics and implementation of such adaptive numerical methods
is often more difficult than for the quasi-uniform case.

1.1.3 Solving the discretized system
An imported question is how to efficiently solve (1.4). To analyze this, we first
reformulate the problem in coordinates. With ΦT := {φ1, . . . , φn} being a
basis for VT , one infers that solving (1.4) for uT = u>ΦT , is equivalent to
finding u ∈ Rn that solves

(1.5) AT u = f ,

with the system matrixAT ∈ Rn×n and right hand side f ∈ Rn given by

AT := (AT ΦT )(ΦT ) = [(AT φj)(φi)]ij , f := f(ΦT ) = [f(φi)]i.

The computational complexity of solving the above matrix-vector system
using a direct method, e.g. using LU -factorization, is O(n3). This is pro-
hibitively expensive, as we are interested in constructing methods that run
in optimal (linear) time. Another problem is that direct methods require the
matrixAT to be available, which is not the case formatrix-freemethods, where
one has access to only the application ofAT . An example of such amatrix-free
method will be given in this thesis, where we devise an algorithm to apply
a system matrix AT in linear complexity, even though the matrix itself is not
sparsely populated.

A first efficiency gain can be obtained by solving (1.5) approximately yield-
ing some Rn 3 û ≈ u. For ûT := û>ΦT we have

‖u− ûT ‖V ≤ ‖u− uT ‖V︸ ︷︷ ︸
discretization error

+ ‖uT − ûT ‖V︸ ︷︷ ︸
algebraic error

,

so as long as the algebraic error is dominated by the discretization error, our
approximation ûT is still quasi-optimal. Such approximate solutions to (1.5)
are given by iterative solvers, being methods that produce a sequence of vectors
(u1,u2, . . .) converging to the solution u.

If the matrix AT is symmetric and positive definite, as when the operator
A is self-adjoint (A = A′) and coercive, then of particular interest is the Con-
jugate Gradient (CG) method. This iterative solver has favourable convergence
properties and has minimal computation costs, i.e., the cost of a single iter-
ation is dominated by the cost of a single application of AT . Write ρ(·) for

4



1.2. About Part I: Operator preconditioning

the spectral radius of an operator, and denote the spectral condition number
by κS(AT ) = ρ(AT )ρ(A−1

T ). Starting from an initial guess, the number of
iterations required by CG to reduce the initial algebraic error by a factor ε is
bounded by

√
κS(A) log(1/ε).

Unfortunately, for standard finite (or boundary) element bases, the system
matrices AT are (generally) ill-conditioned, in the sense that the condition
number κS(AT ) increases for decreasing mesh width. This implies that the
number of iterations required byCG to reach a certain accuracy increases upon
mesh refinement.

One way of fixing this conditioning issue, is to make use of precondition-
ing: instead of solving (1.5), one considers GTAT u = GT f where GT is
some preconditioner, i.e., an approximation of A−1

T that can be applied effi-
ciently. The number of iterations required by CG applied to this precondi-
tioned system to reduce the initial algebraic error by a factor ε, is bounded by√
κS(GTAT ) log(1/ε).

1.2 About Part I: Operator preconditioning

In the first part of this thesis we focus on constructing uniformly optimal pre-
conditionersGT for the family T ∈ T. This means that we want the condition
number of the preconditionedmatrix κS(GTAT ), and therefore also the num-
ber of iterations required by CG, to be bounded independently of the trial
space VT .

One technique for constructing such preconditioners is so-called operator
preconditioning ([Hip06]). This approachhinges on the availability of an opposite
order operator B, being a bounded and coercive linear map from V ′ to V . On
a continuous level we have that BA is a boundedly invertible map V → V ,
suggesting thatBmaybe used to construct a preconditioner forAT : VT → V ′T .

Let WT ⊂ W := V ′ be some finite dimensional subspace, and consider the
discretizedoperatorBT : WT → W ′

T givenby (BT u)(v) := (Bu)(v) (u, v ∈ WT ).
If one additionally has a boundedly invertible operator DT : VT → W ′

T , then
the composition D−1

T BT (D′T )−1 : V ′T → VT is a bounded and coercive map-
ping, and therefore serves as a preconditioner for AT . See also the diagram:

(1.6)
VT V ′T

W ′
T WT

AT

(D′T )−1D−1
T

BT

.

The typical example to keep in mind is where A : H−
1
2 (Γ)→ H

1
2 (Γ) is the

Single Layer operator and B : H
1
2 (Γ) → H−

1
2 (Γ) the Hypersingular operator

from Example 1.1.2.

5



1. Introduction

Now, for the construction of a suitableDT , we assumeH to be someHilbert
space (we take L2(Γ) in the above example) for which we have a Gelfand triple

W ↪→H 'H ′ ↪→ W ′.

If the trial spaces satisfyVT ⊂H , we can consider the operatorDT : VT → W ′
T

defined by (DT v)(w) := 〈v, w〉H (v ∈ VT , w ∈ WT ). This is a uniformly
boundedly invertible operator if the subspaces WT satisfy

(1.7) dim WT = dim VT

and

(1.8) inf
T ∈T

inf
0 6=v∈VT

sup
06=w∈WT

〈v, w〉H
‖v‖V ‖w‖W

> 0.

Assume these constraints to be satisfied. By equipping VT and WT with
basesΦT andΨT , respectively, thematrix representation of the preconditioned
system reads as

(1.9) D−1
T BTD

−>
T AT ,

with system matrices AT := (AT ΦT )(ΦT ) and BT := (BT ΨT )(ΨT ), and
‘generalized mass matrix’DT := 〈ΦT ,ΨT 〉H . The spectral condition number
of this preconditioned matrix system equals that of D−1

T BT (D′T )−1AT , and is
thus uniformly bounded.

The real challenge is constructing suitable subspaces WT ⊂ W that sat-
isfy (1.7) and (1.8). Moreover, we require a basis ΨT for WT that allows the
preconditioner (1.9) to be applied efficiently.

Special attention has to be paid to the inverse matrix D−1
T appearing in

the preconditioner. If the matrix DT is not diagonal, its inverse has to be
approximated, and it can generally be expected that, in order to obtain a
uniform preconditioner, the accuracywith whichD−1

T has to be approximated
increases with a decreasing minimal mesh-size. As a result, an application of
D−1
T cannot be expected to execute in linear time.
In this thesis, wewill propose suitable spacesWT ⊂ W , and circumvent this

latter issue by constructing bases ΨT that are H -orthogonal to ΦT , making
DT a diagonal matrix whose inverse can be exactly evaluated.

1.2.1 Contributions and Outline of Part I
The contents of Chapters 2–5 is essentially that of the following papers:

[SvV20a] R.P. Stevenson and R. van Venetië. Uniform preconditioners for
problems of negative order. Mathematics of Computation, 89(322):645–
674, 2020.
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1.2. About Part I: Operator preconditioning

[SvV21a] R.P. Stevenson and R. van Venetië. Uniform preconditioners of
linear complexity for problems of negative order. Computational Methods
in Applied Mathematics, 21(2):469–478, 2021.

[SvV20b] R.P. Stevenson and R. van Venetië. Uniform preconditioners for
problems of positive order. Computers & Mathematics with Applications,
79(12):3516–3530, 2020.

[SvV21b] R.P. Stevenson and R. van Venetië. Operator preconditioning: the
simplest case. Submitted to Applied Numerical Mathematics, 2021.

On average, the authors contributed equally to these works.

Chapter 2 ([SvV20a])

For some domain (or manifold) Ω and s ∈ [0, 1], we consider the fractional
Sobolev space Hs(Ω) (possibly with homogeneous Dirichlet boundary condi-
tions incorporated) and its dual that we denote here by H−s(Ω).

In this chapter we consider operator preconditioning for a bounded and
coercive operatorA : H−s(Ω)→ Hs(Ω), so of negative order−2s, discretized by
a family of trial spaces VT ⊂ H−s(Ω) being discontinuous piecewise constants
w.r.t. T . We consider a family T of uniformly shape regular, possibly locally
refined, meshes of Ω. In order to apply the aforementioned framework, we
assume availability of a suitable opposite order operatorB : Hs(Ω)→ H−s(Ω).

We propose a family of subspaces WT = span ΨT ⊂ Hs(Ω) satisfying
both (1.7) and (1.8). We achieve this by constructing ΨT as a collection that
is L2(Ω)-biorthogonal to ΦT , the (canonical) piecewise constant basis for VT .
As a consequence, the matrix DT := 〈ΦT ,ΨT 〉L2(Ω) is diagonal, and thus its
inverse, which appears in the preconditioner (1.9), can be evaluated exactly.

The functions ΨT are constructed in ST ⊕ BT , where ST is the space
of continuous piecewise linears w.r.t. T , and BT is a space containing bub-
ble functions. This allows us to construct a bounded and coercive operator
BT : WT → W ′

T as the sum ofBS
T : ST → S ′T , being the opposite order opera-

tor B discretized on ST ⊂ Hs(Ω), and an invertible diagonal scaling operator
on the bubble space. Besides the cost of the discretized operator BS

T , the cost
of the resulting preconditioner scales linearly in dim VT .

Our approach has a few advantages over earlier proposals: it does not
require the inverse of a non-diagonal matrix; it applies without any mildly
grading assumption on the mesh; and it does not require a barycentric refine-
ment of the mesh underlying the trial space. Furthermore, we will show that
our approach extends to the general case where VT is chosen as a space of
(dis)continuous piecewise polynomials of any order.

7



1. Introduction

Chapter 3 ([SvV21a])

We continue with the setting from the previous chapter. In this chapter we
construct a multi-level type operator that both fulfills the role of the opposite
order operator B and can be applied in optimal linear complexity. For this
construction, we require T to be a family of conforming partitions created by
newest vertex bisection. Together with the results from the previous chapter,
this provides uniformly optimal preconditioners for negative order operators
Adiscretized on a family of possibly locally refinedmeshes, that can be applied
in linear complexity.

Chapter 4 ([SvV20b])

In this chapter consider the operator preconditioning framework for positive
order operators, that is, we switch the roles of A and B.

More precisely, we construct preconditioners for a bounded and coercive
operator A : Hs(Ω) → H−s(Ω), being of positive order 2s, discretized by
VT ⊂ Hs(Ω) being continuous piecewise linears w.r.t T . Again, the mesh
family T is supposed to be uniformly shape regular, which allows for lo-
cally refined meshes. Assuming the availability of an opposite order operator
B : H−s(Ω) → Hs(Ω), we explore the operator preconditioning framework,
and aim to get results similar to the setting studied in Chapter 2.

We introduce a family of subspaces WT ⊂ H−s(Ω) satisfying both (1.7)
and (1.8). Similarly as before, we do this by constructing WT as the span of
a collection ΨT that is L2(Ω)-biorthogonal to ΦT , the Lagrange basis for VT .
Besides an easy proof of the inf-sup condition (1.8), this biorthogonality has
the advantage that the matrix DT := 〈ΦT ,ΨT 〉L2(Ω) is diagonal, and thus its
inverse, which appears in the preconditioner (1.9), can be evaluated exactly.

Since WT is a non-standard discretization space, we wish to simplify the
implementation of an operator BT : WT → W ′

T , similarly as the construction
given in Chapter 2. We achieve this by constructing WT as a subspace of
UT ⊕BT , where UT ⊂ H−s(Ω) is the space of discontinuous piecewise con-
stants w.r.t. T , and BT is some bubble space for which the H−s(Ω)-norm is
equivalent to a weighted L2(Ω)-norm. This allows us to construct a suitable
BT : WT → W ′

T as the sum of BU
T : UT → U ′T , being our opposite order op-

erator discretized on UT , and an invertible diagonal scaling operator on the
bubble space. Besides the cost of the discretized operator BU

T , the cost of the
resulting preconditioner scales linearly in dim VT .

This construction has the same advantages as that of Chapter 2: it avoids
the inverse of a non-diagonal matrix, it circumvents the need for a barycentric
refinement of the mesh, it applies without any mildly grading assumption on
the mesh, and it can be extended to higher order trial spaces.
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Chapter 5 ([SvV21b])

By restricting the setting from the previous chapters, we are able to construct
uniform preconditioners with an even simpler implementation. Consider
some closed manifold (or domain) Ω and trial spaces VT that are continuous
piecewise polynomials of some fixed degree w.r.t. T . Let some bounded
and coercive operators A : H−s(Ω) → Hs(Ω) and B : Hs(Ω) → H−s(Ω) be
given, and consider their corresponding discretizations AT : VT → V ′T and
BT : VT → V ′T .

In this chapter we introduce a uniformly boundedly invertible operator
DT : VT → V ′T , allowing us to take WT equal to VT in the operator precondi-
tioning framework (1.6). The resultingpreconditioned systemD−1

T BT (D′T )−1AT
and (D′T )−1ATD

−1
T BT are uniformly boundedly invertible. Moreover, thema-

trix representation ofDT with respect to the Lagrange basis of VT is diagonal,
making the implementation of this preconditioner surprisingly simple.

1.3 About Part II: Parabolic evolution equations

The second topic thatwill be discussed in this thesis is the (adaptive) numerical
solution of parabolic evolution equationswritten in a simultaneous space-time
variational formulation.

As an illustrative example, let us introduce the model problem of the heat
equation with homogeneous Dirichlet boundary conditions. For some time
interval I := (0, T ) and some spatial domain Ω ⊂ Rd, the heat equation reads
as finding u : I × Ω→ R that solves

(1.10)
∂tu−∆xu = g on I × Ω,

u = 0 on I × ∂Ω,

u = u0 on {0} × Ω,

for some forcing function g : I × Ω→ R and initial data u0 : Ω→ R.
In order to apply our approximation scheme we first need to derive a weak

formulation of the above differential equation. We multiply the first equation
by a test function v that vanishes on I × ∂Ω, integrate over I × Ω, and apply
integration by parts in space to find

(Bu)(v) :=

ˆ
I×Ω

(∂tu)v +∇xu · ∇xv dx dt =

ˆ
I×Ω

gv dx dt.

To enforce the initial condition, we introduce the trace map γ0 : u 7→ u(0, ·),
and test it against some additional test function w to find that

ˆ
Ω

(γ0u)w dx =

ˆ
Ω

u0w dx.

9



1. Introduction

Clearly, we must yet find suitable function spaces for u, v and w. Define
X := L2(I;H1

0 (Ω)) ∩ H1(I;H−1(Ω)), Y := L2(I;H1
0 (Ω)), and H := L2(Ω),

assume that g ∈ Y ′ and u0 ∈ H , and denote B :=
[
B γ0

]>. Finding u ∈ X
that solves

(1.11) Bu =

[
g
u0

]
is then a well-posed variational formulation of (1.10), meaning that the opera-
tor B is a boundedly invertible map X → Y ′ ×H ([SS09]).

A difficulty of the operator equation (1.11) appears when we consider dis-
cretizations. As the function space on the trial side does not coincide with
that of the test side, we cannot simply apply the Galerkin method like we
did in (1.4). Suppose that we have a family of trial spaces (Xδ)δ∈∆ ⊂ X ,
the question is how to construct a family of test spaces (Zδ)δ∈∆ ⊂ Y×H for
which the discretized operator Bδ : Xδ → Zδ

′, given by (Bδu)(v) := (Bu)(v)
((u, v) ∈ Xδ × Zδ), is uniformly boundedly invertible. For the latter to
hold, it turns out that the pairs (Xδ, Zδ) must satisfy dimXδ = dimZδ and
infδ∈∆ inf06=u∈Xδ sup06=u∈Zδ

(Bu)(v)
‖u‖X‖v‖Y×H > 0; cf. (1.7)–(1.8). The construction

of such a test space Zδ is hard, and we do not proceed this way.
Instead, we note that an equivalent problem to (1.11) is to compute

u = argmin
w∈X

‖Bw − g‖2Y ′ + ‖γ0w − u0‖2H ,

suggesting anapproximation approachby restricting theminimization to some
finite dimensional trial space Xδ ⊂ X . Unfortunately this is not feasible
in practice, because the Y ′-norm cannot be computed. To resolve this, we
consider some finite dimensional test space Y δ ⊂ Y and replace the Y ′-norm
by the (computable) Y δ ′-norm, yielding the approximation

(1.12) uδ = argmin
w∈Xδ

‖Bw − g‖2Y δ ′ + ‖γ0w − u0‖2H .

In [And13] it is shown that, if the family of pairs (Xδ, Y δ)δ∈∆ satisfy
(1.13)

Xδ ⊆ Y δ (δ ∈ ∆) and γ∆ := inf
δ∈∆

inf
06=w∈Xδ

sup
06=v∈Y δ

(∂tw)(v)

‖∂tw‖Y ′‖v‖Y
> 0,

then the approximation uδ satisfies ‖u−uδ‖X ≤ γ−1
∆ infw∈Xδ ‖u−w‖X , making

it is a quasi-best approximation to u fromXδ . The advantage of this approach
is that Y δ can be chosen larger in relation toXδ , making it easier to satisfy the
inf-sup condition.

1.3.1 Contributions and Outline of Part II
The contents of Chapters 6–9 is essentially that of the following papers:

10
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[SvVW21] R.P. Stevenson, R. van Venetië, and J. Westerdiep. A wavelet-in-
time, finite element-in-space adaptive method for parabolic evolution
equations. Submitted to Advances in Computational Mathematics, 2021.

[vVW21b] R. van Venetië and J. Westerdiep. Efficient space-time adaptivity
for parabolic evolution equations using wavelets in time and finite ele-
ments in space. Submitted to Numerical Linear Algebra with Applications,
2021.

[vVW21a] R. van Venetië and J. Westerdiep. A parallel algorithm for solving
linear parabolic evolution equations. Accepted in 9th Parallel-in-Time
Workshop, 2021.

[GvV21] G. Gantner and R. van Venetië. Adaptive space-time BEM for the
heat equation. Submitted to Computers & Mathematics with Applications,
2021.

On average, the authors contributed equally to these works.

Chapter 6 ([SvVW21])

For trial spaces Xδ that are full (or sparse) tensor products of finite element
spaces in time and space, in [And13] it was shown how to construct corre-
sponding test spaces Y δ ⊂ Y such that (1.13) holds. Unfortunately, neither
family allows for adaptive refinements both locally in time and space.

In this chapter we solve this issue by equipping X with a tensor product
basis of a wavelet basis in time and a hierarchical finite element basis in space.
We then constructXδ as the spanof a (finite) subset of this tensor product basis,
and construct Y δ of a similar type such that (1.13) holds, with the dimension
of Y δ being proportional to that of Xδ .

Using properties of the wavelets in time and applying multigrid precon-
ditioners in space, we construct optimal preconditioners Kδ

X : Xδ ′ → Xδ and
Kδ
Y : Y δ

′ → Y δ , allowing to solve the discrete problem (1.12) efficiently.
We propose an adaptive algorithm using a standard solve-estimate-mark-

refine loop. Let Xδ be the current trial space. In the solve step we find
its corresponding approximation uδ from (1.12). In the estimate step, we
introduce a neighborhood X¯

δ ⊃ Xδ and evaluate the residual on a basis of
X¯
δ\Xδ . In themark step, we select the basis functions forwhich the residual is

large. Finally, in the refine step, we build a new trial spaceX δ̃ ⊃ Xδ containing
all the marked basis functions. Under a saturation assumption, we prove that
the adaptive loop produces an r-linearly converging sequence to the solution.

Chapter 7 ([vVW21b])

In this chapter we discuss an implementation of the aforementioned adaptive
method in which every step is of linear complexity.
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The downside of having bases for Xδ and Y δ of wavelet-type is that the
system matrices appearing in the implementation of (1.12) are not sparsely
populated. By imposing a double-tree constraint on the index sets of Xδ and
Y δ , we are able to derive a matrix-free algorithm that can apply the system
matrices in linear complexity.

In order to build an actual linear complexity implementation, we based
our implementation on tree- and double-tree traversals. We conclude this
chapter with extensive results that demonstrate the linear runtime of our code
in practice.

Chapter 8 ([vVW21a])

One of the advantages of a simultaneous space-time solver over classical time-
stepping approaches is that they aremuch better suited for amassively parallel
implementation. In this chapter we investigate such a parallel algorithm.

We consider trial spaces Xδ being the tensor product of finite element
spaces in time and space, and show how this tensor product assumption
simplifies the implementation of (1.12). After introducing suitable precondi-
tioners, we investigate the parallel complexity of the resulting algorithm. We
illustrate our theoretical findings with massively time-parallel computations
done in practice.

Chapter 9 ([GvV21])

Deviating from the previous setting, here we construct an adaptive space-time
boundary element method for the heat equation. We consider the heat equation
with homogeneous forcing data and prescribedDirichlet data: for given initial
condition u0 : Ω→ R and Dirichlet data uD : I×∂Ω→ R, we seek u that solves

∂tu−∆xu = 0 on I × Ω,

u = uD on I × ∂Ω,

u = u0 on {0} × Ω.

Since the fundamental solution for the heat equation is known, we can proceed
similarly as in Example 1.1.2 to find an equivalent formulation of the problem
by solving an integral equation on the lateral space-time boundary I ×∂Ω, see
e.g. [AN87, Cos90]. In contrast to (1.11), this formulation is coercive.

In this chapter, we propose an a posteriori error estimator for the Galerkin
approximation to this integral equation. We show that the estimator is a lower
bound for the approximation error, andup toweightedL2-terms, also anupper
bound. In the numerical results, we let this error estimator drive an adaptive
loop that allows for anisotropic refinement. We observe that this loop is able
to effectively resolve singularities in time and space, and that it recovers the
optimal error decay rate in all of our examples.
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Operator preconditioning
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2 Problems of negative order

2.1 Introduction

This chapter is about the constructionofpreconditioners fordiscretizedbound-
edly invertible linear operators of negative order using the concept of ‘operator
preconditioning’ ([Hip06]). The idea is to precondition the discretized opera-
tor by a discretized operator of opposite order. This is an appealing idea, but
it turns out that in order to get a uniformly well-conditioned system, as well as
a preconditioner that can be implemented efficiently, the second discretization
has to be carefully chosen dependent on the first one.

For a Hilbert space H , and a densely embedded reflexive Banach space
W ↪→H , consider the Gelfand triple

W ↪→H 'H ′ ↪→ W ′.

For A being a boundedly invertible coercive linear operator W ′ → W , and
VT ⊂ H being a finite dimensional subspace of W ′, let (AT v)(ṽ) := (Av)(ṽ)
(v, ṽ ∈ VT ). For B being a boundedly invertible coercive linear operator
W → W ′, and WT being a finite dimensional subspace of W , let (BT w)(w̃) :=
(Bw)(w̃) (w, w̃ ∈ WT ).

A typical example is given by the case that for the boundary Γ of some
domain, H = L2(Γ), W = H

1
2 (Γ), A is the single layer integral operator

arising from the Laplacian, B is the corresponding hypersingular integral
operator, T is a partition from an infinite collection of partitions T, VT is a trial
space of discontinuous piecewise polynomials w.r.t. T , and WT is a suitable
subspace ofW , which thus cannot be equal toVT . Besides as boundary integral
equations, coercive linear operators of order−1 also appear in various domain
decomposition type methods in the equations for normal fluxes on interfaces.

Although less frequently, coercive linear operators of order−2 also appear
in the literature (e.g. see [FH19]).

In order to precondition AT : VT → V ′T with BT : WT → W ′
T we need to

be able to ‘identify’ V ′T with WT , similar to the identification of W ′′ with W .
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Let dim WT = dim VT and

(2.1) inf
T ∈T

inf
06=v∈VT

sup
0 6=w∈WT

〈v, w〉H
‖v‖W ′‖w‖W

> 0.

Then DT defined by (DT v)(w) := 〈v, w〉H (v ∈ VT , w ∈ WT ) is a uniformly
boundedly invertible linearmapVT → W ′

T , and so its adjointD′T is such amap
V ′T → WT . We conclude that the preconditioned system D−1

T BT (D′T )−1AT is
uniformly boundedly invertible VT → VT .

Equipping VT and WT with bases ΞT and ΨT , respectively, the matrix rep-
resentation of the preconditioned system reads asD−1

T BTD
−T
T AT , with ‘stiff-

nessmatrices’AT := (AT ΞT )(ΞT ) andBT := (BT ΨT )(ΨT ), and ‘generalized
mass matrix’ DT := 〈ΞT ,ΨT 〉H . Regardless of the choice of the bases, the
spectral condition number of this matrix is equal to that ofD−1

T BT (D′T )−1AT ,
and thus uniformly bounded.

After an earlier proposal from [Ste02], the currently commonly followed
construction of a suitable pair (VT ,WT ) is the one from [BC07]. Here VT is the
space of piecewise constants w.r.t. a partition T of a two-dimensional domain
or manifold equipped with the usual basis ΞT , and WT , defined as the span
of a collection ΨT , is a subspace of the space of continuous piecewise linears
w.r.t. a barycentric refinement of T constructed by subdividing each triangle
into 6 subtriangles by connecting its vertices andmidpointswith its barycenter.
In [HUT16] the inf-inf-sup condition (2.1) was demonstrated for families of
partitions including locally refined ones that satisfy a certain mildly-grading
condition from [Ste03a].

A problemwith the constructions from both [Ste02, BC07] is that thematrix
DT is not diagonal, so that its inverse has to be approximated. Knowing
that D−1

T BTD
−T
T is not well-conditioned, because AT is not whereas their

product is uniformly well-conditioned, the accuracy with which D−1
T has to

be approximated such that it gives rise to a uniform preconditioner increases
with an increasing (minimal) mesh-size.

2.1.1 Contributions
For the aforementioned VT and ΞT , in this chapter a space WT , given as
the span of a collection ΨT , will be constructed such that (2.1) is valid, and
DT = 〈ΞT ,ΨT 〉H is diagonal. i.e., ΞT and ΨT are biorthogonal. Thanks to
both ΞT and ΨT being ‘locally supported’, the corresponding biorthogonal
projector ontoWT is local, which allows to demonstrate the inf-inf-sup stability
without any mildly grading assumption on the partitions.

Each function in ΨT equals a function from the space S 0,1
T ,0 of continu-

ous piecewise linears1 w.r.t. T , plus a linear combination of ‘bubble func-
1The subscript 0 in the notation S 0,1

T ,0 refers to possible boundary conditions that are incor-
porated.
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tions’ from a space denoted as BT . Since the decomposition of S 0,1
T ,0 ⊕BT

into S 0,1
T ,0 and BT is stable w.r.t. the W -norm, instead of simply defining

(BT w)(w̃) := (Bw)(w̃) (w, w̃ ∈ WT ), a suitable boundedly invertible lin-
ear operator BT : WT → W ′

T will be constructed from an invertible diago-
nal scaling on the bubble space and a boundedly invertible linear operator
BS
T : S 0,1

T ,0 → (S 0,1
T ,0)′, e.g. (BS

T w)(w̃) := (Bw)(w̃) with B the hypersingular
operator. Other than in [Ste02, BC07], by this use of the stable decomposition
there is no need to discretize the hypersingular operator on a refinement of T .
The whole approach relies on existence of bubble functions with certain prop-
erties, whereas these functions themselves do not enter the implementation.

The total cost of the resulting preconditioner is the sum of the cost of the
application of BS

T plus cost that scales linearly in #T . For T being a uniform
refinement of some initial coarse partition, a BS

T of multi-level type can be
found whose cost scales linearly in #T ([BPV00]). SuchBS

T that also apply on
locally refined partitions will be discussed in Chapter 3.

The construction of the biorthogonal collection ΨT , and with that of the
preconditioner, is based on a general principle. It applies in any space di-
mension, and, as we will see, it applies equally well when VT is the space
of continuous piecewise linears. Higher order discretizations will be covered as
well.

The construction applies equally well on manifolds. The coefficients of the
functions from ΨT in terms of functions from S 0,1

T ,0 and the bubble functions
are given as inner products between functions of VT and S 0,1

T ,0. Since in the
manifold case, however, generally these inner products cannot be evaluated
exactly, we present an alternative slightly modified construction in which the
trueL2-inner product is replacedby amesh-dependent one by an element-wise
freezing of the Jacobian. It still yields a uniform preconditioner on general,
possibly locally refined partitions, while the same explicit formula for the
expansion coefficients of the functions of ΨT that was derived in the domain
case, now also applies in the manifold case.

2.1.2 Notations

In this work, by λ . µ we will mean that λ can be bounded by a multi-
ple of µ, independently of parameters which λ and µ may depend on, with
the sole exception of the space dimension d, or in the manifold case, on the
parametrization of themanifold that is used to define the finite element spaces
on it. Obviously, λ & µ is defined as µ . λ, and λ h µ as λ . µ and λ & µ.

For normed linear spaces Y and Z , in this work for convenience over R,
L(Y ,Z ) will denote the space of bounded linear mappingsY → Z endowed
with the operator norm ‖ · ‖L(Y ,Z ). The subset of invertible operators in
L(Y ,Z )with inverses inL(Z ,Y )will be denoted asLis(Y ,Z ). The condition
number of aC ∈ Lis(Y ,Z ) is defined as κY ,Z (C) := ‖C‖L(Y ,Z )‖C−1‖L(Z ,Y ).
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For Y a reflexive Banach space and C ∈ L(Y ,Y ′) being coercive, i.e.,

inf
06=y∈Y

(Cy)(y)

‖y‖2Y
> 0,

both C and <(C) := 1
2 (C + C ′) are in Lis(Y ,Y ′) with

‖<(C)‖L(Y ,Y ′) ≤ ‖C‖L(Y ,Y ′),

‖C−1‖L(Y ′,Y ) ≤ ‖<(C)−1‖L(Y ′,Y ) =
(

inf
06=y∈Y

(Cy)(y)

‖y‖2Y

)−1

.

The subset of coercive operators in Lis(Y ,Y ′) is denoted as Lisc(Y ,Y ′).
If C ∈ Lisc(Y ,Y ′), then C−1 ∈ Lisc(Y ′,Y ) and ‖<(C−1)−1‖L(Y ,Y ′) ≤
‖C‖2L(Y ,Y ′)‖<(C)−1‖L(Y ′,Y ).

Two countable collections Υ = (υi)i and Υ̃ = (υ̃i)i in a Hilbert space will
be called biorthogonal when 〈Υ, Υ̃〉 = [〈υj , υ̃i〉]ij is an invertible diagonal matrix,
and biorthonormal when it is the identity matrix.

2.1.3 Organization
In Sect. 2.2 the general principles of operator preconditioning are recalled. In
Sect. 2.3, it is applied to operators of negative order discretizedwith discontinu-
ous piecewise constants, first in the domain- and then in the manifold-case. In
Sect. 2.4, the same program is followed for trial spaces of continuous piecewise
linears. In Sect. 2.5 the results from Sect. 2.3-2.4 will be extended to higher
order finite element spaces. This will be done by both applying the operator
preconditioning framework directly to the higher order spaces, and by using
the preconditioner found for the lowest order case in a subspace correction
approach. Finally, in Sect. 2.6 we report on some numerical results obtained
with the new preconditioners, and compare them with those obtained with
the preconditioner from [BC07, HUT16].

2.2 Operator preconditioning

The exposition in this section largely follows [Hip06, Sect. 2] closely. Let
V , W be reflexive Banach spaces. We will search a ‘preconditioner’ G for
an A ∈ Lis(V ,V ′), i.e. an operator G ∈ Lis(V ′,V ) (whose application is
‘easy’ compared to that of A−1). It is often useful, e.g. for the application
of Conjugate Gradients, when the preconditioner is coercive, i.e., being an
operator in Lisc(V ′,V ). The following result is easily verified.

Proposition 2.2.1. If B ∈ Lis(W ,W ′) and D ∈ Lis(V ,W ′), then

G := D−1B(D′)−1 ∈ Lis(V ′,V ),

18



2.2. Operator preconditioning

and

‖G‖L(V ′,V ) ≤ ‖D−1‖2L(W ′,V )‖B‖L(W ,W ′),

‖G−1‖L(V ,V ′) ≤ ‖D‖2L(V ,W ′)‖B
−1‖L(W ′,W ).

If additionally B ∈ Lisc(W ,W ′), then G ∈ Lisc(V ′,V ), and

‖<(G)−1‖L(V ,V ′) ≤ ‖D‖2L(V ,W ′)‖<(B)−1‖L(W ′,W ).

Remark 2.2.2. We recall that by an application of the closed range theorem, D ∈
L(V ,W ′) is in Lis(V ,W ′) if and only if for all w ∈ W there exists a v ∈ V with
(Dv)(w) 6= 0, and

0 < inf
0 6=v∈V

sup
06=w∈W

(Dv)(w)

‖v‖V ‖w‖W

(
= ‖D−1‖−1

L(W ′,V )

)
.

In particular we are interested in finding a preconditioner for an operator
AT ∈ Lis(VT ,V ′T ) of the form GT = D−1

T BT (D′T )−1, where VT is some finite
dimensional (finite- or boundary element) space. In view of Proposition 2.2.1,
for that goal we search some finite dimensional space WT with

(2.2) dim WT = dim VT ,

and operators BT ∈ Lis(WT ,W ′
T ) and DT ∈ Lis(VT ,W ′

T ).
A typical setting is that, for some reflexive Banach spaces V and W , and

operators A ∈ Lisc(V ,V ′) and B ∈ Lisc(W ,W ′), we have VT ⊂ V (thus
equipped with ‖ ‖V ), (AT u)(v) := (Au)(v) (u, v ∈ VT ) and, for a suitable WT ⊂
W (thus equipped with ‖ ‖W ), take (BT w)(z) := (Bw)(z) (w, z ∈ WT ). In this
case AT ∈ Lisc(VT ,V ′T ) and BT ∈ Lisc(WT ,W ′

T ) with

‖AT ‖L(VT ,V ′T ) ≤ ‖A‖L(V ,V ′), ‖<(AT )−1‖L(V ′T ,VT ) ≤ ‖<(A)−1‖L(V ′,V ),

‖BT ‖L(WT ,W ′T ) ≤ ‖B‖L(W ,W ′), ‖<(BT )−1‖L(W ′T ,WT ) ≤ ‖<(B)−1‖L(W ′,W ).

An obvious construction of a suitableDT is discussed in the next proposition.

Proposition 2.2.3 (Fortin projector ([For77])). For some D ∈ Lis(V ,W ′), let
DT ∈ L(VT ,W ′

T ) be defined by (DT v)(w) := (Dv)(w). Then

‖DT ‖L(VT ,W ′T ) ≤ ‖D‖L(V ,W ′).

Assuming (2.2), additionally one has DT ∈ Lis(VT ,W ′
T ) if, and for W being

a Hilbert space, only if there exists a projector PT ∈ L(W ,W ) onto WT with
(DVT )((Id− PT )W ) = 0, in which case

‖D−1
T ‖L(W ′T ,VT ) ≤ ‖PT ‖L(W ,W )‖D−1‖L(W ′,V ).(2.3)
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Proof. The first statement is obvious. Now let us assume existence of a (Fortin)
projector PT . Then for vT ∈ VT ,

‖D−1‖−1
L(W ′,V )‖vT ‖V ≤ sup

0 6=w∈W

(DvT )(w)

‖w‖W
= sup

06=w∈W

(DvT )(PT w)

‖w‖W

≤ ‖PT ‖L(W ,W ) sup
06=wT ∈WT

(DvT )(wT )

‖wT ‖W
,

which together with Remark 2.2.2 and (2.2) shows that DT ∈ Lis(VT ,W ′
T ), in

particular (2.3).
Conversely (cf. [Bra01, Remark 4.9]), assume DT ∈ Lis(VT ,W ′

T ), and let
W be a Hilbert space. Then given w ∈ W , let wT be the first component of the
solution (wT , vT ) ∈ WT × VT of the well-posed saddle point problem

〈wT , zT 〉W + (DT vT )(zT ) =〈w, zT 〉W (zT ∈ WT ),

(DT uT )(wT ) =(DT uT )(w) (uT ∈ VT ).

Then PT := w 7→ wT is a valid Fortin projector.

In applications, one usually has a family of spaces VT and aims at a uni-
form preconditioner GT . In the setting of Proposition 2.2.3 it means that one
searches a Fortin projector PT such that ‖PT ‖L(W ,W ) is uniformly bounded.

2.2.1 Implementation
Given a finite collection Υ = {υ} in a linear space, we set the synthesis operator

FΥ : R#Υ → span Υ: c 7→ c>Υ :=
∑
υ∈Υ

cυυ.

Equipping R#Υ with the Euclidean scalar product 〈 , 〉, and identifying (R#Υ)′

with R#Υ using the corresponding Riesz map, we infer that the adjoint of FΥ,
known as the analysis operator, satisfies

F ′Υ : (span Υ)′ → R#Υ : f 7→ f(Υ) := [f(υ)]υ∈Υ.

A collection Υ is a basis for its span when FΥ ∈ Lis(R#Υ, span Υ) (and so
F ′Υ ∈ Lis((span Υ)′,R#Υ).)

Now let ΞT = {ξ} and ΨT = {ψ} be bases for VT and WT , respectively.
Then in coordinates the preconditioned system reads as

F−1
ΞT
GT AT FΞT = GTAT := D−1

T BTD
−>
T AT ,

where

AT := F ′ΞT AT FΞT , BT := F ′ΨT BT FΨT , DT := F ′ΨTDT FΞT .
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2.3. Piecewise constant discretization space

By identifying amap inL(R#ΞT ,R#ΞT )with a#ΞT ×#ΞT matrix by equip-
ping R#ΞT with the canonical basis {ei}, and by enumerating the elements of
ΞT one has

(AT )ij = 〈F ′ΞT AT FΞT ej , ei〉 = (AT FΞT ej)(FΞT ei) = (AT ξj)(ξi),

and similarly,

(BT )ij = (BT ψj)(ψi), (DT )ij = (DT ξj)(ψi).

PreferablyDT is such that its inverse can be applied in linear complexity, as is
the case whenDT is diagonal.
Remark 2.2.4. Using σ( ) and ρ( ) to denote the spectrum and spectral radius
of an operator, clearly σ(GTAT ) = σ(GT AT ). So for the spectral condition
number we have

κS(GTAT ) := ρ(GTAT )ρ((GTAT )−1) ≤ κVT ,VT (GT AT ),

which thus holds true independently of the choice of the basis ΞT for VT .
Furthermore, in view of an application of Conjugate Gradients, if AT and
BT are coercive and self-adjoint, then AT and GT are positive definite and
symmetric. Equipping Rdim VT with |||·||| := ‖(GT )−

1
2 · ‖ or |||·||| := ‖(AT )

1
2 · ‖,

in that case we have

κ(Rdim VT ,|||·|||),(Rdim VT ,|||·|||)(GTAT ) = κS(GTAT ).

2.3 Piecewise constant discretization space

For a boundedpolytopal domainΩ ⊂ Rd, ameasurable, closed, possibly empty
γ ⊂ ∂Ω, and an s ∈ [0, 1], we take

W := [L2(Ω), H1
0,γ(Ω)]s,2, V := W ′,

where H1
0,γ(Ω) is the closure in H1(Ω) of the C∞(Ω) ∩ H1(Ω) functions that

vanish at γ.2 The role of D ∈ Lis(V ,W ′) in Proposition 2.2.3 is going to be
played by the unique extension to V ×W of the duality pairing

(Dv)(w) := 〈v, w〉L2(Ω),

which satisfies ‖D‖L(V ,W ′) = ‖D−1‖L(W ′,V ) = 1.
Let (T )T ∈T be a family of conforming partitions of Ω into (open) uniformly

shape regular d-simplices, wherewe assume that γ is the (possibly empty) union
of (d − 1)-faces of T ∈ T . Thanks to the conformity and the uniform shape

2In the domain case, it is easy to generalize the results to Sobolev spaces with smoothness
index s ∈ [0, 3

2
), or even to s ∈ (− 1

2
, 3
2

).
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2. Problems of negative order

regularity, for d > 1 we know that neighbouring T, T ′ ∈ T , i.e. T ∩ T ′ 6= ∅,
have uniformly comparable sizes. For d = 1, we impose this uniform ‘K-mesh
property’ explicitly.3

For T ∈ T, we define N0
T as the set of vertices of T that are not on γ, and

for ν ∈ N0
T we set its valence

dT ,ν := #{T ∈ T : ν ∈ T}.

ForT ∈ T , andwithNT denoting the set of its vertices,we setN0
T ,T := N0

T ∩NT ,
and define hT := |T |1/d.

We take

VT = S −1,0
T := {u ∈ L2(Ω): u|T ∈ P0 (T ∈ T )} ⊂ V ,

and, as a first ingredient in the forthcoming construction of a suitable WT ,
define the space of continuous piecewise linears, zero on γ, by

S 0,1
T ,0 := {u ∈ H1

0,γ(Ω): u|T ∈ P1 (T ∈ T )},

equipped with the usual bases

(2.4) ΞT = {ξT : T ∈ T }, ΦT = {φT ,ν : ν ∈ N0
T },

respectively, defined by

(2.5) ξT :=

{
1 on T,
0 on Ω \ T, φT ,ν(ν′) = δν,ν′ (ν, ν′ ∈ N0

T ).

2.3.1 Construction of WT andDT .
Aiming at the construction of a (uniform) preconditioner GT ∈ Lisc(V ′T ,VT )
using the framework of operator preconditioning, we are going to construct
a collection ΨT ⊂ H1

0,γ(Ω) that is biorthogonal to ΞT , whose elements are
‘locally supported’, and for which

WT := span ΨT ⊂ W

has an ‘approximation property’. These three properties of ΨT will allow us
to construct a suitable Fortin projector, and they will give rise to a matrixDT
that is diagonal.

The construction of ΨT builds on two collections ΘT and ΣT of ‘locally
supported’ functions in H1

0,γ(Ω) whose cardinalities are equal to that of ΞT ,
3For our convenience, throughout this chapter we consider trial spaces w.r.t. conforming

partitions into uniformly shape regular d-simplices. It will however become clear that families
of non-conforming partitions into uniformly shape regular d-simplices or hyperrectangles that
satisfy a uniformK-mesh property can be dealt with as well.
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2.3. Piecewise constant discretization space

the first being biorthogonal to ΞT , and the second whose span has an ‘approx-
imation property’ and is inside S 0,1

T ,0.
Let ΘT = {θT : T ∈ T } ⊂ H1

0,γ(Ω) be such that θT ≥ 0, supp θT ⊂ T ,

(2.6) 〈θT , ξT ′〉L2(Ω) h δTT ′‖θT ‖L2(Ω)‖ξT ′‖L2(Ω), (T, T ′ ∈ T ),

and, for convenience only, that is scaled such that

(2.7) 〈θT , ξT 〉L2(Ω) = |T |.

One obvious possible construction of suchΘT is to take θT to be the ‘bubble
function’ defined by θT (x) = (2d+1)!

d

∏d+1
i=1 λi(x) for x ∈ T , and zero elsewhere,

where (λ1(x), · · · , λd+1(x)) are the barycentric coordinates of x w.r.t. T (see
e.g. [VS18] for (2.7)). Two forthcoming (harmless) conditions (2.26) and (2.27)
on ΘT will be satisfied as well by the above specification of θT .

Another, equally suited construction is, after making a uniform barycentric
refinement of T , to take θT as a the continuous piecewise linear hat function
associated to the barycenter of T , multiplied by a factor d+ 1.

We emphasize that the resulting preconditioner will not depend on the
actual construction of ΘT , but that only existence of a collection with the afore-
mentioned properties is relevant.

Defining ΣT = {σT ,T : T ∈ T } ⊂ S 0,1
T ,0 by

σT ,T :=
∑

ν∈N0
T ,T

d−1
T ,νφT ,ν ,

we have ∑
T∈T

σT ,T =
∑
ν∈N0

T

φT ,ν ,

being equal to the constant function 1 on Ω \ ∪{T∈T : T∩γ 6=∅}T , which yields
the aforementioned ‘approximation property’ (cf. footnote 4).

We now define

ΨT := {ψT ,T : T ∈ T } ⊂ S 0,1
T ,0 ⊕ span ΘT ,

by

(2.8) ψT ,T := σT ,T +
〈1− σT ,T , ξT 〉L2(Ω)

〈θT , ξT 〉L2(Ω)
θT −

∑
T ′∈T \{T}

〈σT ,T , ξT ′〉L2(Ω)

〈θT ′ , ξT ′〉L2(Ω)
θT ′ ,

The third term at the right-hand side corrects σT ,T such that it becomes or-
thogonal to ξT ′ for T ′ 6= T , whereas the second term ensures that the ψT ,T
sum up to 1, possibly except on a strip along the Dirichlet boundary:
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2. Problems of negative order

Lemma 2.3.1. It holds that

(2.9)
∑
T∈T

ψT ,T =
∑
T∈T

σT ,T +
∑
T∈T

〈1−
∑
T ′∈T σT ,T ′ , ξT 〉L2(Ω)

〈θT , ξT 〉L2(Ω)
θT ,

and

(2.10) 〈ΞT ,ΨT 〉L2(Ω) = diag{〈1, ξT 〉L2(Ω) : T ∈ T }.

Proof. Writing 1−σT ,T =
∑
T ′∈T \{T} σT ,T ′ + (1−

∑
T ′∈T σT ,T ′), (2.9) follows

from (2.8) by using that

∑
T∈T

∑
T ′∈T \{T}

〈σT ,T ′ , ξT 〉L2(Ω)

〈θT , ξT 〉L2(Ω)
θT −

∑
T∈T

∑
T ′∈T \{T}

〈σT ,T , ξT ′〉L2(Ω)

〈θT ′ , ξT ′〉L2(Ω)
θT ′ = 0.

The biorthonormality of ΞT and {θT /〈θT , ξT 〉L2(Ω) : T ∈ T } shows (2.10).

By expanding σT ,T in terms of the nodal basis, and by using
´
T
φT ,ν dx =

|T |
d+1 and the normalization (2.7), we arrive at the explicit expression
(2.11)
ψT ,T :=

∑
ν∈N0

T ,T

d−1
T ,νφT ,ν +

(
1− 1

d+1

∑
ν∈N0

T ,T

d−1
T ,ν
)
θT −

∑
T ′∈T \{T}

(
1
d+1

∑
ν∈N0

T ,T∩N0
T ,T ′

d−1
T ,ν
)
θT ′ ,

see Figure 2.1 for an illustration.

σT ,T

1 1
2

1
2

− 1
4

2

1
2

θT θT ′

ψT ,T

θT ′′

Figure 2.1. ψT ,T in one dimension (with bubbles constructed using a barycen-
tric refinement).

As a consequenceof 〈ΞT ,ΨT 〉L2(Ω) being invertible, thebiorthogonal ‘Fortin’
projector PT : L2(Ω) → H1

0,γ(Ω) with ranPT = WT and ran(Id − PT ) =

V
⊥L2(Ω)

T exists, and is, thanks to (2.10), given by

PT u =
∑
T∈T

〈u, ξT 〉L2(Ω)

〈1, ξT 〉L2(Ω)
ψT ,T .
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2.3. Piecewise constant discretization space

To prepare for the proof of (uniform) boundedness of PT , we list a few
properties of the collections ΞT , ΘT and ΣT . For T ∈ T , we set ω(0)

T (T ) := T ,
and for i = 0, 1, . . ., define the ‘rings’

R
(i+1)
T (T ) := {T ′ ∈ T : T ′ ∩ ω(i)

T (T ) 6= ∅}, ω
(i+1)
T (T ) := ∪

T ′∈R(i+1)
T (T )

T ′.

It holds that

(a) supp ξT ⊂ω(0)
T (T ), (b) suppσT ,T ⊂ω(1)

T (T ), (c) supp θT ⊂ω(0)
T (T ),(2.12)

‖σT ‖Hk(Ω) . h
d/2−k
T (k ∈ {0, 1}),(2.13)

‖θT ‖H1(Ω) . h
−1
T ‖θT ‖L2(Ω),(2.14)

whilst moreover ΞT is such that

〈1, ξT 〉L2(Ω) h h
d/2
T ‖ξT ‖L2(Ω).(2.15)

From (2.12)(b,c), we obtain that

(2.16) suppψT ,T ⊂ ω(1)
T (T ).

By using (2.6), (2.14), (2.13) and (2.12)(a) we infer that for k ∈ {0, 1}∥∥∥ 〈σT ,T − δTT ′1, ξT ′〉L2(Ω)

〈θT ′ , ξT ′〉L2(Ω)
θT ′
∥∥∥
Hk(Ω)

. h−kT ‖σT ,T−δTT ′1‖L2(supp ξT ′ )
. hd/2−kT ,

which, by again using (2.13) and (2.14), shows that

(2.17) ‖ψT ,T ‖Hk(Ω) . h
d/2−k
T (k ∈ {0, 1}).

Theorem 2.3.2. It holds that supT ∈T ‖PT ‖L(W ,W ) <∞.

Proof. From (2.16), (2.17), and (2.15), we have

‖PT u‖Hk(T ) ≤
∑

T ′∈R(1)
T (T )

‖ψT ,T ′‖Hk(Ω)

‖u‖L2(T ′)‖ξT ′‖L2(Ω)

|〈1, ξT ′〉L2(Ω)|

. h−kT ‖u‖L2(ω
(1)
T (T ))

(k ∈ {0, 1}),(2.18)

which in particular shows that

(2.19) sup
T ∈T
‖PT ‖L(L2(Ω),L2(Ω)) <∞.

To continue, we revisit the construction of WT and its basis ΨT by tem-
porarily including in N0

T also vertices of T that lie on the Dirichlet boundary
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2. Problems of negative order

γ. Denoting the extended set of vertices by NT , consequently for the ‘new’
ψT ,T , (2.9) shows that

(2.20)
∑
T∈T

ψT ,T =
∑
ν∈NT

φT ,ν = 1 on Ω.

For any ν ∈ NT , we select a (d− 1)-face e of a T ∈ T with ν ∈ e and e ⊂ γ
if ν ∈ γ, and define the functional

gT ,ν(u) :=

 
e

u ds.

By the trace theorem and homogeneity arguments (see e.g [SZ90, (3.6)]), one
infers that

|gT ,ν(u)| ≤ |e|−1‖u‖L1(e) . h
− d2
T ‖u‖L2(T ) + h

− d2 +1

T |u|H1(T ).

For T ∈ T , we select a ν ∈ NT with ν ∈ γ if T ∩ γ 6= ∅, and define

gT ,T := gT ,ν ,

and a Scott-Zhang ([SZ90]) type quasi-interpolator ΠT : H1(Ω)→ WT 4 by

ΠT u =
∑
T∈T

gT ,T (u)ψT ,T .

It satisfies

‖ΠT u‖Hk(T ) . h
−k
T ‖u‖L2(ω

(2)
T (T ))

+ h1−k
T |u|

H1(ω
(2)
T (T ))

(k ∈ {0, 1}).

Invoking (2.20) and using that gT ,T (1) = 1, we infer that for k ∈ {0, 1}

‖(Id−ΠT )u‖Hk(T ) = inf
p∈P0

‖(Id−ΠT )(u− p)‖Hk(T )

≤ inf
p∈P0

‖u− p‖Hk(T )+h−kT ‖u− p‖L2(ω
(2)
T (T ))

+h1−k
T |u|

H1(ω
(2)
T (T ))

h inf
p∈P0

h−kT ‖u− p‖L2(ω
(2)
T (T ))

+ h1−k
T |u|

H1(ω
(2)
T (T ))

(2.21)

h h1−k
T |u|

H1(ω
(2)
T (T ))

by an application of the Bramble-Hilbert lemma (cf. [SZ90, (4.2)]).
Noting that the ‘new’ ψT ,T differs only from the ‘old’, original one when

T ∩ γ 6= ∅, and that for those T and u ∈ H1
0,γ(Ω) it holds that gT ,T (u) = 0, we

conclude that ran ΠT |H1
0,γ(Ω) is included in the original space WT , which we

4The existence of such a ΠT which satisfies an estimate of type (2.21) for k = 0 can be used
as a definition of a (lowest order) approximation property of WT .

26



2.3. Piecewise constant discretization space

consider again from here on. Using that PT is a projector onto this WT , for
u ∈ H1

0,γ(Ω) writing PT u = ΠT u + PT (Id − ΠT )u, using (2.18) and (2.21) for
k ∈ {0, 1}we arrive at

‖PT u‖H1(T ) . ‖ΠT u‖H1(T ) + h−1
T ‖(Id−ΠT )u‖

L2(ω
(1)
T (T ))

. ‖u‖
H1(ω

(2)
T (T ))

+ h−1
T ‖(Id−ΠT )u‖

L2(ω
(1)
T (T ))

. ‖u‖
H1(ω

(3)
T (T ))

,

and consequently,

sup
T ∈T
‖PT ‖L(H1

0,γ(Ω),H1
0,γ(Ω))) <∞.

In combination with (2.19), the proof is completed by an application of the
Riesz-Thorin interpolation theorem.

From Proposition 2.2.3 and Theorem 2.3.2 we conclude the following:

Corollary 2.3.3. ForDT : VT → W ′
T defined by (DT v)(w) := (Dv)(w) = 〈v, w〉L2(Ω),

it holds thatDT ∈ Lis(VT ,W ′
T )with ‖DT ‖L(VT ,W ′T ) ≤ 1 and supT ∈T ‖D−1

T ‖L(W ′T ,VT ) ≤
supT ∈T ‖PT ‖L(WT ,WT ) <∞.

This result is thus validwithout any additional assumptions on themesh grading.
The latter is a consequence of the fact that we were able to equip VT and WT
with local biorthogonal bases. (Compare [Ste03a, eq. (2.30)] for conditions on
the mesh grading without having local biorthogonal bases). Additionally, the
biorthogonality has the important advantage of the matrix

DT = 〈ΞT ,ΨT 〉L2(Ω) = diag{|T | : T ∈ T }

being diagonal.

Before we discuss in §2.3.3 the construction of BT ∈ Lisc(WT ,W ′
T ), being

the last ingredient of our preconditioner, in the following subsection §2.3.2 we
revisit the construction of WT andDT in the manifold case.

2.3.2 Construction of WT andDT in the manifold case
Let Γ be a compact d-dimensional Lipschitz, piecewise smoothmanifold in Rd

′

for some d′ ≥ d with or without boundary ∂Γ. For some closed measurable
γ ⊂ ∂Γ and s ∈ [0, 1], let

W := [L2(Γ), H1
0,γ(Γ)]s,2, V := W ′.

We assume that Γ is given as the essentially disjoint union of ∪pi=1χi(Ωi), with,
for 1 ≤ i ≤ p, χi : Rd → Rd

′ being some smooth regular parametrization, and
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2. Problems of negative order

Ωi ⊂ Rd an open polytope. W.l.o.g. assuming that for i 6= j, Ωi ∩ Ωj = ∅, we
define

χ : Ω := ∪pi=1Ωi → ∪pi=1χi(Ωi) by χ|Ωi = χi.

Let T be a family of conforming partitions T of Γ into ‘panels’ such that,
for 1 ≤ i ≤ p, χ−1(T ) ∩ Ωi is a uniformly shape regular conforming partition
of Ωi into d-simplices (that for d = 1 satisfies a uniformK-mesh property). We
assume that γ is a (possibly empty) union of ‘faces’ of T ∈ T (i.e., sets of type
χi(e), where e is a (d− 1)-dimensional face of χ−1

i (T )).
As in Sect. 2.3, for T ∈ T, we define N0

T as the set of vertices of T that are
not on γ, set dT ,ν := #{T ∈ T : ν ∈ T}, and for T ∈ T , define hT := |T |1/d
and N0

T ,T := N0
T ∩NT , with NT being the set of the vertices of T .

We set

VT = S −1,0
T := {u ∈ L2(Γ) : u ◦ χ|χ−1(T ) ∈ P0 (T ∈ T )} ⊂ V ,

S 0,1
T ,0 := {u ∈ H1

0,γ(Γ) : u ◦ χ|χ−1(T ) ∈ P1 (T ∈ T )},

equipped with ΞT = {ξT : T ∈ T } and ΦT = {φT ,ν : ν ∈ N0
T }, respectively,

defined by ξT := 1 on T , ξT := 0 elsewhere, and φT ,ν(ν′) = δν,ν′ (ν, ν′ ∈ N0
T ).

Furthermore, we define ΣT = {σT ,T : T ∈ T } ⊂ S 0,1
T ,0 and ΘT = {θT : T ∈

T } ⊂ H1
0,γ(Γ) by σT ,T :=

∑
ν∈N0

T ,T
d−1
T ,νφT ,ν , θT := θχ−1(T ) ◦ χ−1 on T and

θT := 0 elsewhere. Thanks to our assumption of θχ−1(T ) ≥ 0, it holds that
〈θT , ξT 〉L2(Γ) h 〈θχ−1(T ), ξχ−1(T )〉L2(χ−1(T )) h ‖θT ‖L2(Γ)‖ξT ‖L2(Γ) (cf. (2.6)).

Now defining ΨT := {ψT ,T : T ∈ T } and WT := span ΨT ⊂ W by

(2.22) ψT ,T := σT ,T +
〈1− σT ,T , ξT 〉L2(Γ)

〈θT , ξT 〉L2(Γ)
θT −

∑
T ′∈T \{T}

〈σT ,T , ξT ′〉L2(Γ)

〈θT ′ , ξT ′〉L2(Γ)
θT ′ ,

and DT : VT → W ′
T by (DT v)(w) := (Dv)(w) = 〈v, w〉L2(Γ), the analysis

from Sect. 2.3 applies verbatim by only changing 〈 , 〉L2(Ω) into 〈 , 〉L2(Γ). It
yields that ‖DT ‖L(VT ,W ′T ) ≤ 1, supT ∈T ‖D−1

T ‖L(W ′T ,VT ) < ∞, and DT =
diag{〈1, ξT 〉L2(Γ) : T ∈ T }.

A hidden problem, however, is that the computation of DT , and that of
the scalar products in (2.22) involve integrals over Γ that generally have to
be approximated using numerical quadrature. Recalling that, for s > 0, the
preconditionerGT = D−1

T BTD
−>
T isnot auniformlywell-conditionedmatrix,

it is a priorily not clear which quadrature errors are allowable, in particular
when T is far from being quasi-uniform. For this reason, in the following
§2.3.2 we propose a slightly modified construction of WT and DT that does
not require the evaluation of integrals over Γ.

As apreparation, in the following lemmawepresent a non-standard inverse
inequality on the family (VT )T ∈T. Proofs of this inequality for d ≤ 3 can be
found in [DFG+04, GHS05]. It turns out that our construction of a ‘local’
collection ΨT ⊂ H1

0,γ(Ω) that is biorthogonal to ΞT allows for a very simple
proof.
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2.3. Piecewise constant discretization space

Lemma 2.3.4 (inverse inequality). With hT |T := hT , it holds that

‖hT vT ‖L2(Γ) . ‖vT ‖H1
0,γ(Γ)′ (vT ∈ VT ).

Proof. For PT : L2(Γ)→ H1
0,γ(Γ) defined by

PT u =
∑
T∈T

〈u, ξT 〉L2(Γ)

〈1, ξT 〉L2(Γ)
ψT ,T .

we have ran(Id− PT ) = V
⊥L2(Γ)

T , and as follows from (2.18),

‖PT u‖H1(Γ) . ‖h−1
T u‖L2(Γ) (u ∈ L2(Γ)).

The proof is completed by

‖vT ‖H1
0,γ(Γ)′= sup

0 6=w∈H1
0,γ(Γ)

〈vT , w〉L2(Γ)

‖w‖H1(Γ)
≥
〈vT , PT h2

T vT 〉L2(Γ)

‖PT h2
T vT ‖H1(Γ)

&
〈hT vT , hT vT 〉L2(Γ)

‖hT vT ‖L2(Γ)
.

Modified construction for manifolds

Given T ∈ T, on L2(Γ) we define an additional, ‘mesh-dependent’ scalar
product

〈u, v〉T :=
∑
T∈T

|T |
|χ−1(T )|

ˆ
χ−1(T )

u(χ(x))v(χ(x))dx.

It is constructed from

〈u, v〉L2(Γ) =

ˆ
Ω

u(χ(x))v(χ(x))|∂χ(x)|dx

by replacing on each χ−1(T ), the Jacobian |∂χ| by its average |T |
|χ−1(T )| over

χ−1(T ).5
We now redefine ΨT := {ψT ,T : T ∈ T }, WT := span ΨT ⊂ W by

ψT ,T := σT ,T +
〈1− σT ,T , ξT 〉T
〈θT , ξT 〉T

θT −
∑

T ′∈T \{T}

〈σT ,T , ξT ′〉T
〈θT ′ , ξT ′〉T

θT ′ ,

and DT : VT → W ′
T by (DT vT )(wT ) := 〈vT , wT 〉T . Then, as in the domain

case, we get the explicit formulas

DT = 〈ΞT ,ΨT 〉T = diag{〈1, ξT 〉T : T ∈ T } = diag{|T | : T ∈ T },
5It will be clear from the following that |T |

|χ−1(T )| can be read as any constant approximation
to |∂χ| on L∞(χ−1(T ))-distance . hχ−1(T ), for example |∂χ(z)| for some z ∈ χ−1(T ). Then in
the following, the volumes |T | in the expression forDT should be read as |χ−1(T )||∂χ(z)|, with
which also the computation of |T | is avoided.
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2. Problems of negative order

and
(2.23)
ψT ,T =

∑
ν∈N0

T ,T

d−1
T ,νφT ,ν +

(
1− 1

d+1

∑
ν∈N0

T ,T

d−1
T ,ν
)
θT −

∑
T ′∈T \{T}

(
1
d+1

∑
ν∈N0

T ,T∩N0
T ,T ′

d−1
T ,ν
)
θT ′ .

thus with coefficients that are independent of χ.
What remains is to prove the uniform boundedness of ‖DT ‖L(VT ,W ′T ), and

that of ‖D−1
T ‖L(W ′T ,VT ). Because of the definition of DT in terms of the mesh-

dependent scalar product, for doing so we cannot simply rely on the ‘Fortin
criterion’ from Proposition 2.2.3.

Lemma 2.3.5. It holds that supT ∈T ‖DT ‖L(VT ,W ′T ) <∞.

Proof. If s = 0, i.e., when W = L2(Γ) ' L2(Γ)′ = V , then the uniform
boundedness of ‖DT ‖L(VT ,W ′T ) follows directly from 〈·, ·〉T h ‖ · ‖2L2(Γ).

By an interpolation argument, in the following it suffices to consider the
case s = 1, i.e., W = H1

0,γ(Γ) and V = H1
0,γ(Γ)′. By definition of 〈 , 〉T , it holds

that

(2.24) |〈v, u〉T − 〈v, u〉L2(Γ)| . ‖hT v‖L2(Γ)‖u‖L2(Γ) (v, u ∈ L2(Γ)).

By writing (DT vT )(wT ) = 〈vT , wT 〉L2(Γ) + 〈vT , wT 〉T − 〈vT , wT 〉L2(Γ), the
uniform boundedness of ‖DT ‖L(VT ,W ′T ) (for s = 1) now follows by combining
(2.24) and Lemma 2.3.4.

The 〈 , 〉T -biorthogonal projector P̌T : L2(Ω)→ H1
0,γ(Ω) with ran P̌T = WT

and ran(Id−P̌T ) = V
⊥〈 , 〉T
T exists and is givenby P̌T u =

∑
T∈T |T |−1〈u, ξT 〉T ψT ,T .

Since 〈 , 〉T gives rise to a norm that is uniformly equivalent to ‖ ‖L2(Γ), the
proof of Theorem 2.3.2 again applies, and shows that

sup
T ∈T
‖P̌T ‖L(L2(Γ),L2(Γ)) <∞, sup

T ∈T
‖P̌T ‖L(H1

0,γ(Γ),H1
0,γ(Γ)) <∞,

as well as

(2.25) ‖P̌T u‖H1(Γ) . ‖h−1
T u‖L2(Γ) (u ∈ L2(Γ)).

These properties of P̌T will be the key to prove the uniform boundedness
of ‖D−1

T ‖L(W ′T ,VT ). Indeed, for s = 0 uniform boundedness of ‖D−1
T ‖L(VT ,W ′T )

follows from

(DT vT )(P̌T vT ) = 〈vT , vT 〉T h ‖vT ‖2L2(Γ) & ‖vT ‖L2(Γ)‖P̌T vT ‖L2(Γ).

Toconclude, byan interpolationargument, uniformboundedness of ‖D−1
T ‖L(VT ,W ′T )

for any s ∈ [0, 1], it is sufficient to verify the case s = 1, which will be done
using the following modified inverse inequality.
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2.3. Piecewise constant discretization space

Lemma 2.3.6. It holds that

‖hT vT ‖L2(Γ) . sup
0 6=w∈H1

0,γ(Γ)

〈vT , w〉T
‖w‖H1(Γ)

(vT ∈ VT ).

Proof. Similar to proof of Lemma 2.3.4, using (2.25) for vT ∈ VT we estimate

sup
06=w∈H1

0,γ(Γ)

〈vT , w〉T
‖w‖H1(Γ)

≥ 〈vT , P̌T h
2
T vT 〉T

‖P̌T h2
T vT ‖H1(Γ)

&
〈hT vT , hT vT 〉T
‖hT vT ‖L2(Γ)

h ‖hT vT ‖L2(Γ).

Corollary 2.3.7. It holds that

‖vT ‖H1
0,γ(Γ)′ h sup

06=wT ∈WT

〈vT , wT 〉T
‖wT ‖H1(Γ)

(vT ∈ VT ),

( with ‘.’ being the statement supT ∈T ‖D−1
T ‖L(W ′T ,VT ) <∞ for s = 1).

Proof. The inequality ‘&’ is the statement of Lemma 2.3.5 for s = 1.
To prove the other direction, for v ∈ L2(Γ), (2.24) shows that∣∣∣‖v‖H1

0,γ(Γ)′ − sup
06=w∈H1

0,γ(Γ)

〈v, w〉T
‖w‖H1(Γ)

∣∣∣ . ‖hT v‖L2(Γ),

Taking v = vT ∈ VT , from Lemma 2.3.6 we conclude that

‖vT ‖H1
0,γ(Γ)′ . sup

06=w∈H1
0,γ(Γ)

〈vT , w〉T
‖w‖H1(Γ)

= sup
06=w∈H1

0,γ(Γ)

〈vT , P̌T w〉T
‖w‖H1(Γ)

≤ ‖P̌T ‖L(H1
0,γ(Γ),H1

0,γ(Γ)) sup
06=wT ∈WT

〈vT , wT 〉T
‖wT ‖H1(Γ)

. sup
06=wT ∈WT

〈vT , wT 〉T
‖wT ‖H1(Γ)

by supT ∈T ‖P̌T ‖L(H1
0,γ(Γ),H1

0,γ(Γ)) <∞.

2.3.3 Construction of BT ∈ Lisc(WT ,W
′
T ).

Havingestablished supT∈T max
(
‖DT ‖L(VT ,W ′T ), ‖D−1

T ‖L(W ′T ,VT )

)
<∞, in both

domain and manifold case, for the construction of uniform preconditioners it
remains to find BT ∈ Lisc(WT ,W ′

T ) with supT∈T ‖BT ‖L(WT ,W ′T ) < ∞ and
supT∈T ‖<(BT )−1‖L(W ′T ,WT ) <∞.

We add the following two assumptions on the collection ΘT of ‘bubbles’
and their span BT := span ΘT . For k ∈ {0, 1} it holds that

‖
∑
T∈T

cT θT ‖2Hk(Ω) h
∑
T∈T

h−2k
T |cT |2‖θT ‖2L2(Ω), ((cT )T∈T ⊂ R),(2.26)

‖u+ v‖2Hk(Ω) & ‖u‖
2
Hk(Ω) + ‖v‖2Hk(Ω) (u ∈ S 0,1

T ,0, v ∈ BT ).(2.27)
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2. Problems of negative order

(Here and in the following, Ω should be read as Γ in the manifold case).
Both properties are easily verified by a standard homogeneity argument for
both our earlier specifications of possible ΘT . From (2.27) it follows that
S 0,1
T ,0 ∩BT = {0}. Let IS

T be the linear projector defined on S 0,1 ⊕BT by
ran IS

T = S 0,1
T ,0 and ran IB

T = BT , where IB
T := Id− IS

T .
Below we give a construction of suitable BT that is independent of the

particular bubbles ΘT being chosen. Like WT , we equip S 0,1
T ,0, BT , and

S 0,1
T ,0 ⊕BT with ‖ ‖W .

Proposition 2.3.8. Given BS
T ∈ Lisc(S

0,1
T ,0, (S

0,1
T ,0)′) and BB

T ∈ Lisc(BT ,B′T ),
let BS⊕B

T : S 0,1
T ,0 ⊕BT → (S 0,1

T ,0 ⊕BT )′ be defined by

(BS⊕B
T w)(w̃):=(BS

T I
S
T w)(IS

T w̃) + (BB
T I

B
T w)(IB

T w̃).

Then thanks to (2.27), one has BS⊕B
T ∈ Lisc(S

0,1
T ,0 ⊕BT , (S

0,1
T ,0 ⊕BT )′), and

‖<(BS⊕B
T )−1‖L((S 0,1

T ,0⊕BT )′,S 0,1
T ,0⊕BT )

≤ 2 max(‖<(BS
T )−1‖L((S 0,1

T ,0)′,S 0,1
T ,0), ‖<(BB

T )−1‖L(B′T ,BT )),

‖BS⊕B
T ‖L(S 0,1

T ,0⊕BT ,(S
0,1
T ,0⊕BT )′) . max(‖BS

T ‖L(S 0,1
T ,0,(S

0,1
T ,0)′), ‖B

B
T ‖L(BT ,B′T )).

Proof. One has

|(BS⊕B
T w)(w)| ≥min(‖<(BS

T )−1‖−1

L((S 0,1
T ,0)′,S 0,1

T ,0)
, ‖<(BB

T )−1‖−1
L(B′T ,BT ))

× (‖IS
T w‖2W + ‖IB

T w‖2W ),

and

|(BS⊕B
T w)(w̃)| ≤max(‖BS

T ‖L(S 0,1
T ,0,(S

0,1
T ,0)′), ‖B

B
T ‖L(BT ,B′T ))

×
√
‖IS
T w‖2W + ‖IB

T w‖2W
√
‖IS
T w̃‖2W + ‖IB

T w̃‖2W .

From the triangle inequality and (2.27), one has 1
2‖w‖

2
W ≤ ‖IS

T w‖2W +
‖IB
T w‖2W . ‖w‖2W , which completes the proof.

By equippingWT ,S 0,1
T ,0 andBT byΨT ,ΦT , andΘT , respectively, the appli-

cations of IS
T |WT and IB

T |WT can easily determined in linear complexity. There-
fore a suitabledefinitionofBT : WT → W ′

T is givenby (BT w)(w̃):=(BS⊕B
T w)(w̃).

Clearly,

‖BT ‖L(WT ,W ′T ) ≤ ‖BS⊕B
T ‖L(S 0,1

T ,0⊕BT ,(S
0,1
T ,0⊕BT )′),

‖<(BT )−1‖L(W ′T ,WT ) ≤ ‖<(BS⊕B
T )−1‖L((S 0,1

T ,0⊕BT )′,S 0,1
T ,0⊕BT ).
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2.3. Piecewise constant discretization space

An obvious choice for BB
T ∈ Lisc(BT , (BT )′) such that

max
(

sup
T ∈T
‖BB
T ‖L(BT ,B′T ), ‖<(BB

T )−1‖L(B′T ,BT )

)
<∞,

is, in view of (2.26) and ‖θT ‖L2(Ω)

(2.6)
h 〈θT ,ξT 〉L2(Ω)

‖ξT ‖L2(Ω)

(2.7)
= |T |‖ξT ‖−1

L2(Ω) = hd/2,
given by

(2.28)
(
BB
T

∑
T∈T

cT θT
)( ∑

T∈T
dT θT

)
:= β

∑
T∈T

hd−2s
T cT dT .

for some constant β.
Possible choices for BS

T ∈ Lisc(S
0,1
T ,0, (S

0,1
T ,0)′) with

sup
T ∈T

(
‖BS
T ‖L(S 0,1

T ,0,(S
0,1
T ,0)′), ‖<(BS

T )−1‖L((S 0,1
T ,0)′,S 0,1

T ,0)

)
<∞

include (BS
T u)(v) := (Bu)(v) (u, v ∈ S 0,1

T ,0) for some B ∈ Lisc(W ,W ′).
For d ∈ {2, 3} and W = H

1
2
00(Γ) := [L2(Γ), H1

0 (Γ)] 1
2 ,2

, for this B one may
take the hypersingular integral operator, whereas for ∂Γ 6= ∅, and W =

H
1
2 (Γ) = [L2(Γ), H1(Γ)] 1

2 ,2
the recently introduced modified hypersingular

integral operator can be applied (see [HJHUT18]). (Note that H1
0 (Γ) = H1(Γ)

when ∂Γ = ∅.)
For a family of quasi-uniform partitions generated by a repeated applica-

tion of uniform refinements starting from some given initial partition, a compu-
tationally attractive alternative choice for BS

T is provided by the multi-level
operator from [BPV00], whose application can be performed in linear complex-
ity. In Chapter 3, such operators will be discussed that also apply on locally
refined meshes.

For W = H1
0,γ(Ω), i.e., when A is an operator of order −2 (cf. [FH19]), one

obviously takes (BS
T u)(v) =

´
Ω
∇u · ∇v dx, or (BS

T u)(v) =
´

Ω
∇u · ∇v dx +´

Ω
uv dx when meas(γ) = 0, whose application can be performed in linear

complexity.

2.3.4 Implementation
For both the domain case and the construction in the manifold case in §2.3.2,
the matrix representation GT = F−1

ΞT
GT (F ′ΞT )−1 of our preconditioner GT

reads asGT = D−1
T BTD

−>
T with
DT = diag{|T | : T ∈ T },

and
BT := F ′ΨT BT FΨT

= F ′ΨT
(
(IS
T |WT )′BS

T I
S
T |WT + (IB

T |WT )′BB
T I

B
T |WT

)
FΨT

= p>TB
S
T pT + q>TB

B
T qT ,
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2. Problems of negative order

where

BS
T := F ′ΦT B

S
T FΦT , pT := F−1

ΦT
IS
T |WT FΨT ,

BB
T := F ′ΘT B

B
T FΘT , qT := F−1

ΘT
IB
T |WT FΨT .

By substituting the definition of BB
T from (2.28), the definition of the basis

ΨT = {ψT ,T }T∈T for WT from (2.11) and (2.23), and that of the bases ΦT =

{φT ,ν}ν∈N0
T
and ΘT = {θT }T∈T for S 0,1

T ,0 and BT , respectively, we find that

BB
T = βD

1− 2s
d

T , (pT )νT =

{
d−1
T ,ν if ν ∈ N0

T ,T ,

0 if ν 6∈ N0
T ,T ,

(qT )T ′T = δT ′T − 1
d+1

∑
ν∈N0

T ,T∩N0
T ,T ′

d−1
T ,ν ,

whereasBS
T depends on BS

T ∈ Lisc(S
0,1
T ,0, (S

0,1
T ,0)′) being chosen. The cost of

the application ofGT is the cost of the application ofBS
T plus cost that scales

linearly in #T .

2.4 Continuous piecewise linear discretization space

Let aboundedpolytopaldomainΩ ⊂ Rd, γ ⊂ ∂Ω, s ∈ [0, 1],W := [L2(Ω), H1
0,γ(Ω)]s,2,

V := W ′,D ∈ Lis(V ,W ′), (T )T ∈T,N0
T , dT ,ν ,NT , andN0

T ,T be all as in Sect. 2.3.
In addition, for T ∈ T let NT be the set of all vertices of T , so including those
on a possibly non-empty γ, and for ν ∈ NT let ωT (ν) := ∪{T∈T : ν∈NT }T .

We take

VT = S 0,1
T := {u ∈ H1(Ω): u|T ∈ P1 (T ∈ T )} ⊂ V ,

and, as in Sect. 2.3,

S 0,1
T ,0 := {u ∈ H1

0,γ(Ω): u|T ∈ P1 (T ∈ T )},

equipped with nodal bases ΞT = {ξT ,ν : ν ∈ NT } and ΦT = {φT ,ν : ν ∈ N0
T },

respectively, defined by

ξT ,ν(ν′) = δν,ν′ (ν, ν′ ∈ NT ),

and φT ,ν = ξT ,ν for ν ∈ N0
T .

Analogously to the case of discontinuous piecewise constant trial spaces
in V studied in Sect. 2.3, using the framework of operator preconditioning
outlined in Sect. 2.2 we are going to construct a family of preconditionersGT ∈
Lisc(V ′T ,VT ) of type D−1

T BT (D′T )−1 with uniformly bounded ‖GT ‖L(V ′T ,VT )

and ‖<(GT )−1‖L(VT ,V ′T ).
The roles played in Sect. 2.3 by |T | (= | supp ξT |) and hT = |T |1/d, are in this

section going to be played by |ωT (ν)| (= | supp ξT ,ν |) and hT ,ν := |ωT (ν)|1/d.
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2.4. Continuous piecewise linear discretization space

2.4.1 Construction of WT andDT
To construct a collection ΨT = {ψT ,ν : ν ∈ NT } ⊂ H1

0,γ(Ω) that is biorthogonal
to ΞT , consists of locally supported functions, and for which

WT := span ΨT ⊂ W

has an ‘approximation property’, as in Sect. 2.3 we need two collections
ΣT ⊂ S 0,1

T ,0 and ΘT ⊂ H1
0,γ(Ω) of locally supported functions with #ΣT =

#ΘT = #ΞT , where ΘT is biorthogonal to ΞT , and ΣT has an ‘approximation
property’.

We define ΣT = {σT ,ν : ν ∈ NT } by σT ,ν := φT ,ν when ν ∈ N0
T , and

σT ,ν := 0 when ν ∈ NT \ N0
T . Then, obviously,

∑
ν∈NT σT ,ν equals 1 on

Ω \ ∪{T∈T : T∩γ 6=∅}T .
For constructing ΘT , on a reference d-simplex T̂ for ε > 0 we consider a

smooth ηε ∈ [0, 1], symmetric in the barycentric coordinates, with ηε(x) = 0

when d(x, ∂T̂ ) < ε, and ηε(x) = 1 when d(x, ∂T̂ ) > 2ε. Then for some fixed
ε > 0 small enough, it holds that

inf
06=p∈P1(T̂ )

sup
06=q∈P1(T̂ )

〈p, ηεq〉L2(T̂ )

‖p‖L2(T̂ )‖ηεq‖L2(T̂ )

> 0,

meaning that the biorthogonal projector Pε ∈ L(L2(T̂ ), L2(T̂ )) with ranPε =

ηεP1(T̂ ) and ran(Id − Pε) = P1(T̂ )⊥L2(T̂ ) exists. Consequently, with ΦT̂ =

{φT̂,ν : ν ∈ NT̂ } being the nodal basis for P1(T̂ ), we have that

{φ̃T̂,ε,ν : ν ∈ NT̂ } := 〈ΦT̂ ,ΦT̂ 〉
−1

L2(T̂ )
PεΦT̂ ⊂ H

1
0 (T̂ )

is L2(T̂ )-biorthonormal to {φT̂,ν : ν ∈ NT̂ }.
Now for T ∈ T , let FT̂,T : T → T̂ be an affine bĳection. Then {φ̃T,ε,ν : ν ∈

NT } defined by

(2.29) φ̃T,ε,ν := |T̂ |
|T | φ̃T̂,ε,FT̂,T (ν)

is L2(T )-biorthonormal to the nodal basis for P1(T ).
By selecting for ν ∈ NT , a T (ν) ∈ T with ν ∈ NT , and defining ΘT =

{θT ,ν : ν ∈ NT } ⊂ H1
0,γ(Ω) by

θT ,ν := |ωT (ν)|φ̃T (ν),ε,ν ,

where the specific scaling is chosen for convenience, we have for ν, ν′ ∈ NT ,

δνν′ |ωT (ν)| = 〈θT ,ν , ξT ,ν′〉L2(Ω) h δνν′‖θT ,ν‖L2(Ω)‖ξT ,ν′‖L2(Ω),

supp θT ,ν ⊂ T (ν), |θT ,ν |H1(Ω) . h
−1
T ,ν‖θT ,ν‖L2(Ω),

(2.30)
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2. Problems of negative order

i.e., properties analogous to (2.6), (2.12)(c), and (2.14).
Since furthermore ΣT and ΞT satisfy properties analogous to (2.12)(a,b),

(2.13) and (2.15), defining similarly to (2.8)

ψT ,ν := σT ,ν +
〈1− σT ,ν , ξT ,ν〉L2(Ω)

〈θT ,ν , ξT ,ν〉L2(Ω)
θT ,ν −

∑
ν′∈NT \{ν}

〈σT ,ν , ξT ,ν′〉L2(Ω)

〈θT ,ν′ , ξT ,ν′〉L2(Ω)
θT ,ν′

=


θT ,ν
d+1 ν ∈ NT \N0

T ,

φT ,ν + d
(d+2)(d+1)θT ,ν −

∑
ν′∈NT \{ν}

|ωT (ν)∩ωT (ν′)|
(d+2)(d+1)|ωT (ν′)|θT ,ν′ ν ∈ N0

T ,

(2.31)

we infer that
∑
ν∈NT ψT ,ν equals 1possibly except on a strip along theDirichlet

boundary, and similarly to Theorem 2.3.2, that the biorthogonal projector

(2.32) PT : u 7→
∑
ν∈NT

〈u, ξT ,ν〉L2(Ω)

〈1, ξT ,ν〉L2(Ω)
ψT ,ν ,

satisfies supT ∈T ‖PT ‖L(W ,W ) < ∞. With (DT v)(w) := (Dv)(w) ((v, w) ∈
VT ×WT ), we have ‖DT ‖L(VT ,W ′T ) ≤ 1 and supT ∈T ‖D−1

T ‖L(W ′T ,VT ) <∞, and

DT = F ′ΨTDT FΞT = diag{〈1, ξT ,ν〉L2(Ω) : ν ∈ NT } = diag
{

1
d+1 |ωT (ν)| : ν ∈ NT

}
.

2.4.2 Construction of BT ∈ Lisc(WT ,W
′
T ).

Since ΘT additionally satisfies, for k ∈ {0, 1},∥∥ ∑
ν∈NT

cνθT ,ν
∥∥2

Hk(Ω)
h
∑
ν∈NT

h−kT ,ν‖θT ,ν‖
2
L2(Ω)|cν |

2,

where ‖θT ,ν‖L2(Ω)
(2.30)
= |ωT (ν)|‖ξT ,ν‖−1

L2(Ω) h |ωT (ν)| 12 , and

‖u+ v‖2Hk(Ω) & ‖u‖
2
Hk(Ω) + ‖v‖2Hk(Ω) (u ∈ S 0,1

T ,0, v ∈ BT := span ΘT ).

(cf. (2.26)-(2.27)), we constructBT analogously as in §2.3.3: Assuming that we
have aBS

T ∈ Lisc(S
0,1
T ,0, (S

0,1
T ,0)′) available with supT ∈T ‖BS

T ‖L(S 0,1
T ,0,(S

0,1
T ,0)′) <

∞ and supT ∈T ‖<(BS
T )−1‖L((S 0,1

T ,0)′,S 0,1
T ,0) < ∞, for some constant β > 0 we

take (
BB
T

∑
ν∈NT

cνθT ,ν
)( ∑

ν∈NT

dνθT ,ν
)

:= β
∑
ν∈NT

|ωT (ν)|1− 2s
d cνdν ,

and
BT := (IS

T |WT )′BS
T I

S
T |WT + (IB

T |WT )′BB
T I

B
T |WT ,
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2.4. Continuous piecewise linear discretization space

where IS
T is the linear projector defined on S 0,1

T ,0 ⊕BT by ran IS
T = S 0,1

T ,0 and
ran IB

T = BT , where IB
T := Id−IS

T . Then one has supT ∈T ‖BT ‖L(WT ,W ′T ) <∞
and supT ∈T ‖<(BT )−1‖L(W ′T ,WT ) <∞.

Substituting the definition of ψT ,ν , one infers that GT = D−1
T BTD

−>
T ,

where
BT = p>TB

S
T pT + q>TB

B
T qT ,

and

(qT )ν′ν :=


δν′ν
d+1 ν ∈ NT \N0

T ,
d

(d+2)(d+1) ν ∈ N0
T , ν

′ = ν,

− |ωT (ν)∩ωT (ν′)|
(d+2)(d+1)|ωT (ν′)| ν ∈ N0

T , ν
′ 6= ν,

BS
T := F ′ΦT B

S
T FΦT ,

(pT )ν′ν := δν′ν (ν′ ∈ N0
T , ν ∈ NT ), BB

T := diag{β|ωT (ν)|1− 2s
d : ν ∈ NT }.

2.4.3 Manifold case.
From Sect. 2.3.2 recall the definitions of Γ, γ, W , V , χ : Ω → ∪pi=1χi(Ωi), and
that of the family of conforming partitions T of Γ.

As in the domain case discussed in Sect. 2.4.1, for T ∈ T let NT be the set
of vertices of T , andN0

T its subset of vertices not on γ, for T ∈ T letNT be the
vertices of T , N0

T ,T := N0
T ∩NT , and for ν ∈ NT let ωT (ν) := ∪{T∈T : ν∈NT }T .

We take

VT = S 0,1
T := {u ∈ H1(Γ) : u ◦ χ|χ−1(T ) ∈ P1 (T ∈ T )} ⊂ V ,

S 0,1
T ,0 := {u ∈ H1

0,γ(Γ) : u ◦ χ|χ−1(T ) ∈ P1 (T ∈ T )},

equipped with nodal bases ΞT = {ξT ,ν : ν ∈ NT } and ΦT = {φT ,ν : ν ∈ N0
T },

respectively, defined by

ξT ,ν(ν′) = δν,ν′ (ν, ν′ ∈ NT ),

and φT ,ν = ξT ,ν for ν ∈ N0
T .

Actually exclusively for the deriving an inverse inequality analogous to
Lemma 2.3.4, first we construct a collection ΨT = {ψT ,ν : ν ∈ NT } ⊂ H1

0,γ(Γ)
that has an ‘approximation property’ and that is biorthogonal to ΞT w.r.t. the
true L2(Γ)-scalar product: We define ΣT = {σT ,ν : ν ∈ NT } by σT ,ν := φT ,ν
when ν ∈ N0

T , and σT ,ν := 0 when ν ∈ NT \N0
T . Then, obviously,

∑
ν∈NT σT ,ν

equals 1 on Γ \ ∪{T∈T : T∩γ 6=∅}T .
Given a d-simplex T ⊂ Rd, by means of an affine bĳection we transport the

function ηε, defined in Sect. 2.3.2 on a reference d-simplex T̂ , to a function on
T and denote it by ηT,ε. Then for any panel T ∈ T ∈ T, for some ε > 0 small
enough it holds that

inf
06=p∈P1(χ−1(T ))

sup
06=q∈P1(χ−1(T ))

〈p ◦ χ−1, (ηT,εq) ◦ χ−1〉L2(T )

‖p ◦ χ−1‖L2(T )‖(ηT,εq) ◦ χ−1‖L2(T )
> 0
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2. Problems of negative order

Moreover, since the panels T get increasingly flat when diamT → 0, there
exists an ε > 0 such that above inf-sup condition is satisfied uniformly over all
T ∈ T ∈ T.

By selecting for each ν ∈ NT a T (ν) ∈ T with ν ∈ NT , as in Sect. 2.4.1
we obtain a collection ΘT = {θT ,ν : ν ∈ NT } with θT ,ν ⊂ H1

0 (T (ν)) that is
biorthogonal to ΞT , in particular that satisfies (2.30), after which we define the
ψT ,ν by means of formula (2.31). Having constructed the biorthogonal collec-
tionsΞT andΨT , we set thebiorthogonalprojectorPT : L2(Γ)→ H1

0,γ(Γ) : u 7→∑
ν∈NT

〈u,ξT ,ν〉L2(Γ)

〈1,ξT ,ν〉L2(Γ)
ψT ,ν which satisfies ‖PT u‖H1(Γ) . ‖h−1

T u‖L2(Γ). With the
aid of this projector, as in Lemma 2.3.4 one infers that

(2.33) ‖hT vT ‖L2(Γ) . ‖vT ‖(H1
0,γ)′ (vT ∈ VT ).

Having established this inverse inequality, to arrive at a construction of ΨT
that does not require the evaluation of integrals over Γ, as in Sect. 2.3.2 we
replace 〈 , 〉L2(Γ) by 〈 , 〉T . We redefine ΘT = {θT ,ν : ν ∈ NT } by

θT ,ν := |ωT (ν)| |χ
−1(T )|
|T | φ̃χ−1(T ),ε,χ−1(ν) ◦ χ−1

with the φ̃’s defined in (2.29), and following (2.31) set ΨT = {ψT ,ν : ν ∈ NT }
and WT := span ΨT by

ψT ,ν =


θT ,ν
d+1 ν ∈ NT \N0

T ,

φT ,ν + d
(d+2)(d+1)θT ,ν −

∑
ν′∈NT \{ν}

|ωT (ν)∩ωT (ν′)|
(d+2)(d+1)|ωT (ν′)|θT ,ν′ ν ∈ N0

T ,

As in Sect. 2.3.2, we set (DT vT )(wT ) := 〈vT , wT 〉T (vT ∈ VT , wT ∈ WT ),
and as in Sect. 2.3.2, using (2.33) one shows that supT ∈T ‖DT ‖L(VT ,W ′T ) < ∞.
Similarly as in Lemma 2.3.6, one proves that

‖hT vT ‖L2(Γ) . sup
06=w∈H1

0,γ(Γ)

〈vT , wT 〉T
‖w‖H1(Γ)

,

and with that supT ∈T ‖D−1
T ‖L(W ′T ,VT ) <∞.

Constructing BT ∈ Lisc(WT ,W ′
T ) as in Sect. 2.4.2, one arrives at the same

expressions forDT ,GT ,BT , qT ,BS
T , pT , andBB

T as in Sect. 2.4.1-2.4.2 in the
domain case.

2.5 Higher order case

In this section, we discuss the construction of an uniform preconditioner for
VT being either the space S −1,`

T of discontinuous piecewise polynomials of
degree ` > 0 w.r.t. T , or the space S 0,`

T of continuous piecewise polynomials
of degree ` > 1 w.r.t. T .
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2.5. Higher order case

Wewrite the spaces VT , BT , WT , and their bases ΞT , ΘT , ΨT from Sect. 2.3
or 2.4 asV 0

T ,B0
T ,W 0

T , andΞ0
T ,Θ0

T ,Ψ0
T , respectively. Thebiorthogonalprojector

formerly denoted as PT will now be denoted as P 0
T , and the matrices BT and

DT as B0
T and D0

T .
Although we consider the domain case, the results extend to the manifold

case following the approach outlined in §2.3.2 or §2.4.3.
In order to construct an uniform preconditioner, obvious possibilities are

to apply the framework of operator preconditioning directly to the higher
order polynomial space VT , or to use the preconditioner developed for the
lowest order case within a subspace correction framework. We investigate
both possibilities.

2.5.1 Application of the operator preconditioning framework

Discontinuous piecewise polynomials

Given ` > 0, for T ∈ T, let VT = S −1,`
T . With m = m(`) :=

(
d+`
`

)
− 1,

we equip VT with ΞT = {ξT,i : T ∈ T , 0 ≤ i ≤ m}, where for each T ∈ T ,
{ξT,i : 0 ≤ i ≤ m} is constructed by the common affine lifting approach from
a basis for the polynomials of degree ` on a reference d-simplex, such that
{ξT,0 : T ∈ T } = Ξ0

T , supp ξT,i ⊂ T , and ‖ξT,i‖L2(Ω) h |T |
1
2 .6

A straightforward generalization of the construction in the first paragraphs
of §2.4.1 of a collection inH1

0 (T ) that is biorthogonal to the nodal basis ofP1(T )
shows the following: There exists a set of ‘bubbles’ ΘT = {θT,i : T ∈ T , 0 ≤
i ≤ m} ⊂ H1

0,γ(Ω) such that for T, T ′ ∈ T , 0 ≤ i, i′ ≤ m, k ∈ {0, 1},

δ(T,i),(T ′,i′)|T | = 〈θT,i, ξT ′,i′〉L2(Ω) h δ(T,i),(T ′,i′)‖θT,i‖L2(Ω)‖ξT ′,i′‖L2(Ω),(2.34)

‖θT,i‖H1(Ω) . h−1
T ‖θT,i‖L2(Ω),(2.35)

sup θT,i ⊂ T ,(2.36) ∥∥ ∑
{T∈T ,0≤i≤m}

cT,iθT,i
∥∥2

Hk(Ω)
h

∑
{T∈T ,0≤i≤m}

h−2k
T |cT,i|2‖θT,i‖2L2(Ω),(2.37)

‖u+ v‖2Hk(Ω) & ‖u‖2Hk(Ω) + ‖v‖2Hk(Ω) (u ∈ S 0,1
T ,0, v ∈ BT := span ΘT ),(2.38)

{θT,0 : T ∈ T } = Θ0
T .(2.39)

Writing Ψ0
T = {ψ0

T ,T : T ∈ T }, we define ΨT := {ψT ,T,i : T ∈ T , 0 ≤ i ≤
m}, WT := span ΨT by

ψT ,T,i :=

 ψ0
T ,T −

∑
{T ′∈T ,1≤i′≤m}

〈ψ0
T ,T ,ξT ′,i′ 〉L2(Ω)

〈θT ′,i′ ,ξT ′,i′ 〉L2(Ω)
θT ′,i′ i = 0,

θT,i 1 ≤ i ≤ m.

6For i > 1, it is allowed that ξT,i is (nearly) orthogonal to 1|T , i.e., (2.15) is not required for
these ξT,i.
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2. Problems of negative order

Knowing that Ψ0
T and Ξ0

T , and ΘT and ΞT are biorthogonal, the correction
made to the ψ0

T ,T ensures that ΨT and ΞT are biorthogonal, in particular that

〈ψT ,T,i, ξT ′,i′〉 = δ(T,i),(T ′,i′)|T |.

For use later, notice that W 0
T ⊂ WT , and that by definition of ψ0

T ,T and σT ,T ,
for i′ > 0,

(RT )(T ′,i′),T := −
〈ψ0
T ,T , ξT ′,i′〉L2(Ω)

〈θT ′,i′ , ξT ′,i′〉L2(Ω)
= −|T ′|−1〈σT ,T , ξT ′,i′〉L2(Ω)

= −|T ′|−1
∑

ν∈N0
T ,T∩N0

T ,T ′

d−1
T ,ν〈φT ,ν , ξT ′,i′〉L2(Ω).

(2.40)

The biorthogonal projector PT : L2(Ω) → H1
0,γ(Ω) with ranPT = WT and

ran(Id− PT ) = V
⊥L2(Ω)

T is given by

PT u =
∑

{T∈T ,0≤i≤m}

〈u, ξT,i〉L2(Ω)

〈ψT ,T,i, ξT,i〉L2(Ω)
ψT ,T,i.

Theorem 2.5.1. It holds that supT ∈T ‖PT ‖L(W ,W ) <∞.

Proof. For T ′′ ∈ T , k ∈ {0, 1}, from supp ξT,i ⊂ T and suppψT ,T ′′,i ⊂ ω(1)
T (T ′′)

we have

(2.41) ‖PT u‖Hk(T ′′) ≤
∑

{T∈R(1)
T (T ′′), 0≤i≤m}

‖u‖L2(T )

‖ψT ,T,i‖Hk(Ω)‖ξT,i‖L2(Ω)

|〈ψT ,T,i, ξT,i〉L2(Ω)|
.

To bound the right-hand side we distinguish between terms with i = 0 and
those with i > 0.

From ‖ψ0
T ,T ‖Hk(Ω) . h

d/2−k
T ((2.17)), and for T ′ ∈ T , 1 ≤ i′ ≤ m,∥∥ 〈ψ0

T ,T ,ξT ′,i′ 〉L2(Ω)

〈θT ′,i′ ,ξT ′,i′ 〉L2(Ω)
θT ′,i′

∥∥
Hk(Ω)

.
‖ψ0
T ,T ‖L2(Ω)‖ξT ′,i′‖L2(Ω)

‖θT ′,i′‖L2(Ω)‖ξT ′,i′‖L2(Ω)
h−kT ′ ‖θT ′,i′

∥∥
L2(Ω)

. hd/2−kT ,

we infer that
‖ψT ,T,0‖Hk(Ω) . h

d/2−k
T ,

while, thanks to (2.15),

‖ξT,0‖L2(Ω)

|〈ψT ,T,0, ξT,0〉L2(Ω)|
=

‖ξT,0‖L2(Ω)

|〈ψ0
T ,T , ξT,0〉L2(Ω)|

=
‖ξT,0‖L2(Ω)

|〈1, ξT,0〉L2(Ω)|
h h

−d/2
T .

For 1 ≤ i ≤ m,

‖ψT ,T,i‖Hk(Ω)‖ξT,i‖L2(Ω)

|〈ψT ,T,i, ξT,i〉L2(Ω)|
=
‖θT,i‖Hk(Ω)‖ξT,i‖L2(Ω)

|〈θT,i, ξT,i〉L2(Ω)|
h
‖θT,i‖Hk(Ω)

‖θT,i‖L2(Ω)
. h−kT .
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2.5. Higher order case

Combining the above inequality with (2.41) shows that

(2.42) ‖PT u‖Hk(T ′′) . h
−k
T ‖u‖L2(ω

(1)
T (T ′′))

,

which is the analogue of estimate (2.18) that was proven for P 0
T . Since W 0

T ⊂
WT , by making use of the same Scott-Zhang type quasi-interpolator ΠT as has
been used in the proof of Theorem 2.3.2, copying the remainder of that proof
yields the claim.

Thanks this theorem, DT : VT → W ′
T defined by (DT v)(w) = 〈v, w〉L2(Ω)

satisfies supT ∈T max
(
‖DT ‖L(VT ,W ′T ), ‖D−1

T ‖L(W ′T ,VT )

)
< ∞. By enumerating

all ξT,i and ψT ,T,i with index i = 0 before those with index i > 0, its matrix

representation reads as DT =

[
D0
T 0

0 D1
T

]
, where D1

T := diag{|T |Idm×m : T ∈

T }.
Thanks to (2.37)-(2.38), a suitable BT ∈ Lisc(WT ,W ′

T ) can be defined sim-
ilarly as in §2.3.3: With IS

T being the linear projector defined on S 0,1
T ,0 ⊕BT

by ran IS
T = S 0,1

T ,0 and ran IB
T = BT , where IB

T := Id − IS
T , we define

BS⊕B
T ∈ Lisc(S

0,1
T ,0 ⊕BT , (S

0,1
T ,0 ⊕BT )′) by

(BS⊕B
T w)(w̃) = (BS

T I
S
T w)(IS

T w̃) + (BB
T I

B
T w)(IB

T w̃),

where

(BB
T

∑
{T∈T , 0≤i≤m}

cT,iθT ,i)(
∑

{T∈T , 0≤i≤m}

dT,iθT ,i) := β
∑

{T∈T , 0≤i≤m}

hd−2s
T cT,idT,i,

and BS
T is as in §2.3.3, and define BT ∈ Lisc(WT ,W ′

T ) by (BT w)(w̃) =
(BS⊕B
T w)(w̃).

Using that with RT as defined in (2.40),
[

Id 0
RT Id

]
is the basis transfor-

mation from ΨT to Ψ0
T ∪ {θT,i : T ∈ T , 1 ≤ i ≤ m}, one infers that the

representation of the resulting uniform preconditioner reads as
(2.43)

GT =

[
D0
T 0

0 D1
T

]−1
[

Id R>T
0 Id

][
B0
T 0

0 β(D1
T )1− 2s

d

] [
Id 0
RT Id

] [
D0
T 0

0 D1
T

]−1

,

which is thus independent of the particular bubbles ΘT being chosen.

Continuous piecewise polynomials

Given ` > 1, for T ∈ T, let VT = S 0,`
T . We equip VT with a basis ΞT =

Ξ0
T ∪ (ΞT \Ξ0

T ), where for each T ∈ T , the set of restrictions to T of those basis
functions thatdonot identicallyvanishonT is a liftedversionof afixedbasis for

41



2. Problems of negative order

the polynomials of degree ` on a reference d-simplex under an affine bĳection;
the support of each basis function ξ ∈ ΞT is connected and extends to a
uniformly bounded number of T ∈ T ; and finally, ‖ξ‖L2(Ω) h | supp ξ| 12 h |T | 12
for some T ∈ T with supp ξ ∩ T 6= ∅.

Similar to the previous §2.5.1, a biorthogonal collection ΘT = {θ(ξ) : ξ ∈
ΞT } of ‘bubbles’ exists that has properties analogous to (2.34)-(2.39), reading
|T | as | supp ξ|, and hT as | supp ξ|1/d. Writing the collection Ψ0

T as found in
§2.4 as {ψ0(ξ) : ξ ∈ Ξ0

T }, we define ΨT = {ψ(ξ) : ξ ∈ ΞT }, biorthogonal to ΞT ,
and WT := span ΨT by

ψ(ξ) :=

 ψ0(ξ)−
∑
ξ′∈ΞT \Ξ0

T

〈ψ0(ξ),ξ′〉L2(Ω)

〈θ(ξ′),ξ′〉L2(Ω)
θ(ξ′) ξ ∈ Ξ0

T ,

θ(ξ) ξ ∈ ΞT \ Ξ0
T .

Theorem 2.5.1 extends to the current setting and shows that the correspond-
ing biorthogonal projector is uniformly bounded. The representation of
resulting uniform preconditioner reads as (2.43), obviously now with D0

T
and B0

T as found in the continuous piecewise linear case, and the matrix
D1
T := diag{| supp ξ| : ξ ∈ ΞT \Ξ0

T }, and (R1
T )ξ,ν := −| supp ξ|−1〈φT ,ν , ξ〉L2(Ω)

for (ξ, ν) ∈ (ΞT \ Ξ0
T ) × N0

T , and (R1
T )ξ,ν = 0 for ν ∈ NT \ N0

T (recall
#Ξ0
T = #NT ).

2.5.2 Application of a subspace correction framework

For VT = S −1,`
T , in §2.5.1 we have demonstrated existence of a biorthogonal

projector that satisfies (2.42). In §2.5.1 we have shown that a similar result
holds true for VT = S 0,`

T . From the proof of Lemma 2.3.4 we learn that this
implies that for either choice of VT ,

(2.44) ‖hT vT ‖L2(Ω) . ‖vT ‖(H1
0,γ)′ (vT ∈ VT ).

Using this inverse inequality, we are going to decomposeVT in a uniformly sta-
bleway into V 0

T and a complement space onwhich the ‖ ‖V -norm is equivalent
to a scaled L2(Ω)-norm.

Proposition 2.5.2. Let Q0
T ∈ L(L2(Ω), L2(Ω)) be a projector with ranQ0

T = V 0
T ,

supT ∈T ‖Q0
T ‖L(L2(Ω),L2(Ω)) <∞, and

sup
T ∈T
‖h−1
T (Id− (Q0

T )∗)‖L(H1
0,γ(Ω),L2(Ω)) <∞.

Then supT ∈T ‖Q0
T |VT ‖L(VT ,VT ) <∞, and

(2.45) ‖hsT · ‖L2(Ω) h ‖ · ‖V on V 1
T := ran(Id−Q0

T )|VT .
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2.5. Higher order case

Proof. For u ∈ VT , thanks to (2.44) we have

‖(Id−Q0
T )u‖H1

0,γ(Ω)′ = sup
v∈H1

0,γ(Ω)

〈u, (Id− (Q0
T )∗)v〉L2(Ω)

‖v‖H1(Ω)
. ‖hT u‖L2(T )

. ‖u‖H1
0,γ(Ω)′ ,

so that the first statement follows by interpolation.
Again by interpolation, the second statement needs only to be proven for

s = 1. For that case it follows from the above equation and (2.44).

Next we use the decomposition VT = V 0
T ⊕ V 1

T from Proposition 2.5.2 to
build a preconditioner on VT from preconditioners on the subspaces.

Proposition 2.5.3. In the situation of Proposition 2.5.2, for i = 0, 1, let IiT de-
note the embedding of V i

T into VT , and let GiT ∈ Lisc((V i
T )′,V i

T ). Then GT :=∑1
i=0 I

i
TG

i
T (IiT )′ ∈ Lisc((VT )′,VT ) with

‖GT ‖L(V ′T ,VT ) ≤ 2 max
i
‖GiT ‖L((V i

T )′,V i
T ),

‖<(GT )−1‖L(VT ,V ′T ) ≤ 2‖Q0
T |VT ‖2L(VT ,VT ) max

i
‖<(GiT )−1‖L(V i

T ,(V
i
T )′)

Proof. The result follows as an easy case from the general theory of (additive)
subspace correction methods (e.g. [Osw94] + references cited there), together
with the inequalities

1

2
‖ · ‖2V ≤ ‖Q0

T · ‖2V + ‖(Id−Q0
T ) · ‖2V ≤ 2‖Q0

T ‖L(VT ,VT )‖ · ‖2V on VT ,

where we used that ‖(Id − Q0
T )|VT ‖L(VT ,VT ) = ‖Q0

T |VT ‖L(VT ,VT ), because
Q0
T |VT is a projector unequal to both the zero map and the identity ([Kat60,

XZ03])

On V 0
T we already have our uniform preconditioner G0

T available, so it
remains to construct such a preconditioner on the complement space V 1

T . In
the situation of Proposition 2.5.2, let ΞT = Ξ0

T ∪ (ΞT \ Ξ0
T ) be a basis for VT

such that Ξ1
T := ΞT \ Ξ0

T is a basis for V 1
T for which

(2.46) ‖hsT
∑
ξ∈Ξ1

T

cξξ‖2L2(Ω) h
∑
ξ∈Ξ1

T

|cξ|2‖hsT ξ‖2L2(Ω).

Then
(H1
T

∑
ξ∈Ξ1

T

cξξ)(
∑
ξ∈Ξ1

T

dξξ) :=
∑
ξ∈Ξ1

T

cξdξ‖hsT ξ‖2L2(Ω)
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2. Problems of negative order

satisfies supT ∈T max(‖H1
T ‖L(V 1

T ,(V
1
T )′), ‖<(H1

T )−1‖L((V 1
T )′,VT )) < ∞ thanks to

(2.45), and so G1
T := (H1

T )−1 is a suitable choice. The implementation of the
resulting uniform preconditioner GT reads as

(2.47) GT =

[
G0
T 0

0 diag{‖hsT ξ‖
−2
L2(Ω)

: ξ ∈ Ξ1
T }

]
.

What remains is, for both options for VT , to specify a Q0
T that satisfies the

conditions from Proposition 2.5.2, and to equip VT with a basis ΞT that is the
union of the basis Ξ0

T for V 0
T , and a basis Ξ1

T for V 1
T = ran(Id − Q0

T )|VT , the
latter being uniformly stablew.r.t. ‖hsT · ‖L2(Ω), i.e., one that satisfies (2.46).

Discontinuous piecewise polynomials

For VT = S −1,`
T , the conditions of Proposition 2.5.2 are fulfilled by taking Q0

T
to be the L2(Ω)-orthogonal projector onto V 0

T = S −1,0
T . 7

By taking ΞT = {ξT,i}T∈T ,0≤i≤m to be an L2(Ω)-orthogonal basis for VT
such that ξT ,0 = ξT and supp ξT ,i ⊂ T , (2.46) is valid.

Remarkably, with these specifications and by scaling ‖ξT ,i‖L2(Ω) = |T | 12 ,
the resulting GT is given by (2.43) with RT reading as the zero map (RT from
(2.40) is non-zero).

Continuous piecewise polynomials

Let VT = S 0,`
T for ` > 1. It is no option to take Q0

T to be the L2(Ω)-orthogonal
projector onto V 0

T = S 0,1
T because in that case we will not be able to equip

ran(Id−Q0
T )|VT with a locally supported basis.

From (2.32) recall the biorthogonal projector P 0
T onto W 0

T with ran(Id −
P 0
T ) = V 0

T . Writing (Id−P 0
T ) = (Id−P 0

T )(Id−Π0
T )withΠ0

T being a Scott-Zhang
type interpolator, one shows that supT ∈T ‖h−1

T (Id− P 0
T )‖L(H1

0,γ(Ω),L2(Ω)) <∞.
Since furthermore supT ∈T ‖P 0

T ‖L(L2(Ω),L2(Ω)) < ∞, the conditions of Proposi-
tion2.5.2 are satisfiedby takingQ0

T := (P 0
T )∗ = u 7→

∑
ν∈NT

(d+1)〈u,ψ0
T ,ν〉L2(Ω)

|ωT (ν)| ξ0
T ,ν .

Let us denote the weighted L2(Ω)-norm ‖hsT · ‖L2(Ω) by ||| · |||. We need
to equip V 1

T = ran(Id − Q0
T )|VT with a basis that is uniformly stable w.r.t.

||| · |||. Since the supports of the basis functions will extend to multiple T ∈ T ,
this task is more complex than for the discontinuous piecewise polynomial
case. Let ΞT = Ξ0

T ∪ (ΞT \ Ξ0
T ) be a basis for VT such that for each T ∈ T ,

{ξ|T : ξ ∈ Ξ, ξ|T 6≡ 0} is a uniformly L2(T )-stable basis for its span. Common
affine equivalent constructions yield such a basis. Then ΞT is stable w.r.t.
||| · |||, uniformly in T ∈ T, and so in particular, with V̄ 1

T := span ΞT \ Ξ0
T ,

VT = V 0
T ⊕ V̄ 1

T is a uniformly stable decomposition w.r.t. ||| · |||.
7Notice that for s ≥ 1

2
, Q0
T 6∈ L(V ,V ), so taking its restriction to VT is essential in Proposi-

tion 2.5.2.
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2.6. Numerical experiments

Corresponding to this decomposition, for v ∈ VT we write v = v0 + v̄1.
Taking v ∈ V 1

T , it holds that 0 = Q0
T v = Q0

T v
0 + Q0

T v̄
1 = v0 + Q0

T v̄
1, or

v0 = −Q0
T v̄

1 i.e. v = (Id−Q0
T )v̄1, showing that Id−Q0

T : V̄ 1
T → V 1

T is surjective.
Injectivity of thismap follows from |||v||| h |||Q0

T v̄
1|||+|||v̄1||| ≥ |||v̄1|||, and bounded

invertibility, uniformly in T , will follow from Q0
T being uniformly bounded

w.r.t. ||| · |||. The latter holds true because of ‖ψ0
T ,ν‖L2(Ω)‖ξ0

T ,ν‖L2(Ω) h |ωT (ν)|
d+1 ,

the local supports of the ψ0
T ,ν and ξ0

T ,ν , and the uniform K-mesh property of
T . We conclude that (Id − Q0

T )(ΞT \ Ξ0
T ) is a basis for V 1

T that is uniformly
stable w.r.t. ||| · |||.

SinceΞ0
T ∪(Id−Q0

T )(ΞT \Ξ0
T ) is not the basis of choice to set up the stiffness

matrix, we give the implementation GT of the uniform preconditionerGT for
VT being equipped with ΞT , partitioned into Ξ0

T = {ξT ,ν : ν ∈ NT } and
ΞT \ Ξ0

T . It reads as

GT =

[
Id ST
0 Id

][
G0
T 0

0 diag{‖hsT ξ‖
−2
L2(Ω)

: ξ ∈ ΞT \ Ξ0
T }

][
Id 0
S>T Id

]
,

where for (ν, ξ) ∈ NT × (ΞT \ Ξ0
T ), (ST )νξ := − (d+1)〈ξ,ψ0

T ,ν〉L2(Ω)

|ωT (ν)| , and where
in (2.47) we have replaced ‖hsT (Id−Q0

T )ξ‖−2
L2(Ω) by the equivalent ‖hsT ξ‖

−2
L2(Ω).

2.6 Numerical experiments

Let Γ = ∂[0, 1]3 ⊂ R3 be the two-dimensional manifold without boundary
given as the boundary of the unit cube, W := H1/2(Γ), V := H−1/2(Γ), and
VT = S −1,`

T ⊂ V .
The role of the opposite order operator BS

T ∈ Lisc(S
0,1
T ,0, (S

0,1
T ,0)′) from

Section 2.3.3 will be fulfilled by (BS
T u)(v) := (Bu)(v) for an adapted hypersin-

gular operator B ∈ Lisc(W ,W ′). The hypersingular operator B̃ ∈ L(W ,W ′)
itself is only semi-coercive, but there are various options to change it into a
coercive operator ([SW98]). We consider B ∈ Lisc(W ,W ′) given by (Bu)(v) =

(B̃u)(v)+α〈u,1〉L2(Γ)〈v,1〉L2(Γ) for someα > 0. By comparing different values
numerically, we find α = 0.05 to give good results in our examples.

Withm :=
(

2+`
`

)
−1, as in §2.5.2we equipVT with a usualL2(Γ)-orthogonal

basis {1|T : T ∈ T } ∪ {ξT,i : T ∈ T , 1 ≤ i ≤ m} where supp ξT,i ⊂ T ,
‖ξT,i‖L2(Ω) = |T | 12 , and denote the resulting stiffness matrix by AT . The
lowest order case ` = 0 corresponds tom = 0.

Equipping S 0,1
T ,0 with the nodal basis ΦT defined in (2.4)-(2.5), for ` = 0 the

matrix representation of the preconditioner reads as

GT = D−1
T
(
p>TB

S
T pT + βq>TD

1/2
T qT

)
D−1
T ,

with DT = diag{|T | : T ∈ T } and uniformly sparse pT and qT as given in
Sect. 2.3.4.
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2. Problems of negative order

Denoting above GT by G0
T , by applying for ` > 0 the subspace correc-

tion method from §2.5.2, the matrix representation of the resulting uniform
preconditioner is given by

GT =

[
G0
T 0

0 β diag{|T |−3/2Idm×m : T ∈ T }

]

The (full) matrix representations of the discretized singular integral oper-
ators AT and BS

T are calculated using the BETL2 software package [HK12]
(alternatively, one may apply low rank approximations in a hierarchical for-
mat). Condition numbers are determined using Lanczos iterationwith respect
to |||·||| := ‖A

1
2

T · ‖. The constant β is approximately optimized by comparing
different choices numerically.

Wewill compareourpreconditioner to thediagonalpreconditionerdiag(AT )−1,
and in the piecewise constant case, also to the related preconditioner ĜT from
[HUT16], where ĜT = D̂−1

T E
>
T B

S
T̂ ET D̂

−>
T is defined as follows. With T̂

being the barycentric refinement of T , a collection Ψ̂T ⊂ S 0,1

T̂ ,0
is constructed

in [BC07] such that the Fortin projector P̂T with ran P̂T = ŴT := span Ψ̂T

and ran(Id − P̂T ) = V
⊥L2(Γ)

T exists, and, under an additional sufficiently
mildly-grading condition on the partition, has a uniformly bounded norm
‖P̂T ‖L(W ,W ) (cf. Theorem 2.3.2); D̂T := 〈ΞT , Ψ̂T 〉L2(Γ); ET is the representa-
tion of the embedding ŴT ↪→ S 0,1

T̂ ,0
equipped with Ψ̂T and the nodal basis of

S 0,1

T̂ ,0
, respectively; and BS

T̂ ∈ Lisc(S
0,1

T̂
, (S 0,1

T̂
)′) is an opposite order opera-

tor that we take as (BS
T̂ u)(v) := (Bu)(v), with B the adapted hypersingular

operator.
Compared to ourGT = G0

T , the preconditioner ĜT has the disadvantages
that, besides the aforementioned mildly grading condition, the matrix D̂T ,
although uniformly sparse, is not diagonal, so that the (sufficiently accurate)
application of its inverse cannot be performed in linear complexity; further-
more that it requires evaluating the adapted hypersingular operator on the
larger space S 0,1

T̂ ,0
⊃ S 0,1

T ,0 (#T̂ = 6#T ); and finally that the non-standard
barycentric refinement T̂ has to be generated.

2.6.1 Uniform refinements
Consider a conforming triangulation T1 of Γ consisting of 2 triangles per side,
so 12 triangles in total. We let T be the sequence {Tk}k≥1 of uniform red-
refinements, where Tk � Tk−1 is found by subdividing each triangle from
Tk−1 into 4 congruent subtriangles.

For VT = S −1,`
T , Tables 2.1 and 2.2 show the condition numbers of the

preconditioned system for ` = 0 and ` = 2, respectively. Aside from being uni-
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2.6. Numerical experiments

Table 2.1. Spectral condition numbers of the preconditioned single layer sys-
tem, using uniform refinements, discretized by piecewise constants S −1,0

T .
Both matrices GT and ĜT are constructed using the adapted hypersingular
operator with α = 0.05; and β = 1.25 inGT .

dofs κS(diag(AT )−1AT ) κS(GTAT ) κS(ĜTAT )

12 14.56 2.51 1.29
48 29.30 2.52 1.58

192 58.25 2.66 1.77
768 116.3 2.71 1.89

3072 230.0 2.74 1.94
12288 444.8 2.79

Table 2.2. Spectral condition numbers of the preconditioned single layer
system, using uniform refinements, discretized by discontinuous piecewise
quadratics S −1,2

T . The matrixGT is constructed using the adapted hypersin-
gular operator, with α = 0.05, and β = 1.25.

dofs κS(diag(AT )−1AT ) κS(GTAT )

72 167.16 9.58
288 309.12 10.4

1152 616.03 11.1
4608 1211.3 11.3

18432 2337.2 11.4

formly bounded, the condition numbers of our preconditionerGT are of mod-
est size. In the constant case, ` = 0, Table 2.1 reveals that the preconditioner
ĜT from [BC07, HUT16] gives better condition numbers. As described above,
this quantitative gain comes at a price. In the result of dim S −1,0

T = 3072, us-
ing full matrices for the discretized adapted hypersingular operator, we found
a setup and application time of 1816s and 0.0971s for ĜT , compared to 385s
and 0.00284s forGT . These differences are due to numerical inversion of D̂T
by LU factorization with partial pivoting, and the enlargement S 0,1

T̂ ,0
⊃ S 0,1

T ,0,
also causing our test machine to go out of memory in calculating ĜT for the
last refinement. Although we expect them to be in any case significant, these
differences can be made smaller when the exact inversion of D̂T is avoided,
andBS

T̂ andBS
T are replaced by suitable low rank approximations.
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2. Problems of negative order

Table 2.3. Spectral conditionnumbers of thepreconditioned single layer system
discretized by piecewise constants S −1,0

T using local refinements at each of
the eight cube corners. Both matrices GT and ĜT are constructed using the
adapted hypersingular operator withα = 0.05; and β = 1.2 inGT . The second
column is defined by hT ,min := minT∈T hT .

dofs hT ,min κS(diag(AT )−1AT ) κS(GTAT ) κS(ĜTAT )

12 7.0 · 10−1 14.56 2.61 1.29
432 2.2 · 10−2 68.66 2.64 2.91
912 6.9 · 10−4 73.15 2.64 3.14

1872 6.7 · 10−7 73.70 2.64 3.25
2352 2.1 · 10−8 73.80 2.64 3.26
2976 2.3 · 10−10 73.66 2.64

2.6.2 Local refinements
Here we take T to be the sequence {Tk}k≥1 of locally refined triangulations,
where Tk � Tk−1 is constructed using conforming newest vertex bisection to
refine all triangles in Tk−1 that touch a corner of the cube.

As noted before, the preconditioner ĜT provides uniformly bounded con-
dition numbers if the family T satisfies some sufficientlymildly-grading condi-
tion on the partition [Ste03a, HUT16]. It is not directly clear whether T satisfies
this condition, but we included the results nonetheless.

Table 2.3 gives the results for the preconditioned single layer operator
discretized by piecewise constants S −1,0

T . The condition numbers κS(GTAT )
are nicely bounded under local refinements. In this case our preconditioner
gives condition numbers slightly smaller than the ones found with ĜT . The
calculation of the LU decomposition with partial pivoting of D̂T turns out to
break down in the last result (dim S −1,0

T = 2976).

2.7 Conclusion

In this chapter, we have seen how a uniformly boundedly invertible opera-
tor BS

T from the space of continuous piecewise linears w.r.t. any conforming
shape regular partition T , equipped with the norm of Hs(Ω) (or Hs(Γ)) for
some s ∈ [0, 1], to its dual can be used to uniformly precondition a bound-
edly invertible operator of opposite order discretized by discontinuous or
continuous polynomials of any fixed degree w.r.t. T . The cost of the resulting
preconditioner is the sum of a cost that scales linearly in #T and the cost of
the application of BS

T . For T being member of a nested sequence of quasi-
uniform partitions, BS

T has been constructed so that it requires linear cost. In
the following chapter, we will realize this also for locally refined partitions.
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3 Problems of negative order:
preconditioning at linear cost

3.1 Introduction

In this chapter, we construct a multi-level type preconditioner for operators
of negative orders −2s ∈ [−2, 0] that can be applied in linear time and yields
uniformly bounded condition numbers. The preconditioner will be construct-
ing using the framework of ‘operator preconditioning’ discussed in Chapter 2.
The role of the ‘opposite order operator’ will be fulfilled by a multi-level type
operator, based on the work of Wu and Zheng in [WZ17].

For some d-dimensional domain (or manifold) Ω, a measurable, closed,
possibly empty γ ⊂ ∂Ω, and an s ∈ [0, 1], we consider the Sobolev spaces

W := [L2(Ω), H1
0,γ(Ω)]s,2, V := W ′.

with H1
0,γ(Ω) being the closure in H1(Ω) of the smooth functions on Ω that

vanish at γ. Let (VT )T ∈T ⊂ V be a family of piecewise or continuous piece-
wise polynomials of some fixed degree w.r.t. uniformly shape regular, possibly
locally refined partitions. With, for T ∈ T, AT : VT → V ′T being some bound-
edly invertible linear operator, we are interested in constructing a preconditioner
GT : V ′T → VT such that the preconditioned operatorGT AT : VT → VT is uni-
formly boundedly invertible, and an application of GT can be evaluated in
O(dim VT ) arithmetic operations.

In order to create such a preconditioner, we will use the framework de-
scribed in Chapter 2. Given VT , we constructed an auxiliary space WT ⊂ W
with dim WT = dim VT , such that for DT defined by (DT v)(w) := 〈v, w〉L2(Ω)

(v ∈ VT , w ∈ WT ) and some suitable ‘opposite order’ operatorBW
T : WT → W ′

T ,
a preconditioner GT of the form GT := D−1

T BW
T (D′T )−1 is found. The space

WT is equipped with a basis that, modulo a scaling, is biorthogonal to the
canonical basis for VT , so that the representation ofDT is an invertible diago-
nal matrix.

With S 0,1
T ,0 ⊂ W being the space of continuous piecewise linears w.r.t. T ,

zero on γ, the above preconditioning approach hinges on the availability of
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3. Problems of negative order: preconditioning at linear cost

a uniformly boundedly invertible operator BS
T : S 0,1

T ,0 → (S 0,1
T ,0)′, which is

generally the most demanding requirement. For example, if s = 1
2 and γ =

∅, a viable option is to take BS
T as the discretized hypersingular operator.

While this induces a uniform preconditioner, the application of BS
T cannot be

evaluated in linear complexity.
In this chapterwe construct a suitablemulti-level type operatorBS

T that can
beapplied in linear complexity. For this constructionwe requireT to be a family
of conforming partitions created by Newest Vertex Bisection ([Mau95, Tra97]).
In the aforementioned setting of having an arbitrary s ∈ [0, 1], this multi-level
operator BS

T induces a uniform preconditioner GT , i.e., GT AT is uniformly
well-conditioned, where the cost of applying GT scales linearly in dim VT .
We also show that the preconditioner extends to the more general manifold
case, where Ω is a d-dimensional (piecewise) smooth Lipschitz manifold, and
the trial space VT is the parametric lift of a space of piecewise or continuous
piecewise polynomials.

Finally, we remark that commonmulti-level preconditioners based on over-
lapping subspace decompositions are known not to work well for operators of
negative order. A solution is provided by resorting to direct sum multi-level
subspace decompositions. Examples are given by wavelet preconditioners,
or closely related, the preconditioners from [BPV00], for the latter assuming
quasi-uniform partitions.

For −s = − 1
2 , an optimal multi-level preconditioner based on a non-

overlapping subspace decomposition for operators defined on the bound-
ary of a 2- or 3-dimensional Lipschitz polyhedron was recently introduced
in [FHPS19].

3.1.1 Outline
In Sect. 3.2 we summarize the (operator) preconditioning framework from
Chapter 2. In Sect. 3.3 we provide the multi-level type operator that can be
used as the ‘opposite order’ operator inside the preconditioner framework. In
Sect. 3.4 we comment on how to generalize the results to the case of piecewise
smooth manifolds. In Sect. 3.5 we conclude with numerical results.

3.1.2 Notation
In this work, by λ . µwemean that λ can be bounded by amultiple of µ, inde-
pendently of parameterswhichλ andµmaydependon,with the sole exception
of the space dimension d, or in the manifold case, on the parametrization of
the manifold that is used to define the finite element spaces on it. Obviously,
λ & µ is defined as µ . λ, and λ h µ as λ . µ and λ & µ.

For normed linear spaces Y and Z , in this work for convenience over R,
L(Y ,Z ) will denote the space of bounded linear mappingsY → Z endowed
with the operator norm ‖ · ‖L(Y ,Z ). The subset of invertible operators in
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3.2. Operator preconditioning

L(Y ,Z )with inverses inL(Z ,Y )will be denoted asLis(Y ,Z ). The condition
number of aC ∈ Lis(Y ,Z ) is defined as κY ,Z (C) := ‖C‖L(Y ,Z )‖C−1‖L(Z ,Y ).

For Y a reflexive Banach space and C ∈ L(Y ,Y ′) being coercive, i.e.,

inf
0 6=y∈Y

(Cy)(y)

‖y‖2Y
> 0,

both C and <(C) := 1
2 (C + C ′) are in Lis(Y ,Y ′) with

‖<(C)‖L(Y ,Y ′) ≤ ‖C‖L(Y ,Y ′),

‖C−1‖L(Y ′,Y ) ≤ ‖<(C)−1‖L(Y ′,Y ) =
(

inf
0 6=y∈Y

(Cy)(y)

‖y‖2Y

)−1

.

The subset of coercive operators in Lis(Y ,Y ′) is denoted as Lisc(Y ,Y ′).
If C ∈ Lisc(Y ,Y ′), then C−1 ∈ Lisc(Y ′,Y ) and ‖<(C−1)−1‖L(Y ,Y ′) ≤
‖C‖2L(Y ,Y ′)‖<(C)−1‖L(Y ′,Y ).

Given a family of operators Ci ∈ Lis(Yi,Zi) (Lisc(Yi,Zi)), we will write
Ci ∈ Lis(Yi,Zi) (Lisc(Yi,Zi)) uniformly in i, or simply ‘uniform’, when

sup
i

max(‖Ci‖L(Yi,Zi), ‖C
−1
i ‖L(Zi,Yi)) <∞,

or
sup
i

max(‖Ci‖L(Yi,Zi), ‖<(Ci)
−1‖L(Zi,Yi)) <∞.

3.2 Operator preconditioning

Let (T )T ∈T be a family of conforming partitions of a domain Ω ⊂ Rd into (open)
uniformly shape regular d-simplices, where we assume that γ is the (possibly
empty) union of (d − 1)-faces of T ∈ T . For d ≥ 2, such partitions automat-
ically satisfy a uniform K-mesh property, and for d = 1 we impose this as
an additional condition. The discussion of the manifold case is postponed to
Sect. 3.4.

Recalling that VT ⊂ V is a family of piecewise or continuous piecewise
polynomials of some fixed degree w.r.t. T , let AT ∈ Lis(VT ,V ′T ) uniformly in
T ∈ T. A common setting is that (AT v)(ṽ) := (Av)(ṽ) (v, ṽ ∈ VT ) for some
A ∈ Lisc(V ,V ′). We are interested in finding optimal preconditioners GT for
AT , i.e., GT ∈ Lis(V ′T ,VT ) uniformly in T ∈ T, whose application moreover
requires O(dim VT ) arithmetic operations.

Recall the space

S 0,1
T ,0 := {u ∈ H1

0,γ(Ω): u|T ∈ P1 (T ∈ T )} ⊂ W

(thus equipped with ‖ · ‖W ). In Chapter 2, using operator preconditioning,
we reduced the issue of constructing such preconditioners GT to the issue
of constructing BS

T ∈ Lisc(S
0,1
T ,0, (S

0,1
T ,0)′) uniformly. In the next section we

summarize this reduction.
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3. Problems of negative order: preconditioning at linear cost

3.2.1 Construction of optimal preconditioners
For the moment, consider the lowest order case of VT being either the space
of piecewise constants or continuous piecewise linears. In Chapter 2 a space
WT ⊂ W was constructed with dim WT = dim VT and

(3.1) inf
T ∈T

inf
0 6=v∈VT

sup
06=w∈WT

〈v, w〉L2(Ω)

‖v‖V ‖w‖W
> 0.

Moreover, WT ⊂ W was equipped with a locally supported basis ΨT that,
modulo a scaling, is L2(Ω)-biorthogonal to the canonical basis ΞT of VT .

As a consequence of (3.1), DT defined by (DT v)(w) := 〈v, w〉L2(Ω) (v ∈
VT , w ∈ WT ) is in Lis(VT ,W ′

T ) uniformly. We infer that once we have con-
structed BW

T ∈ Lis(WT ,W ′
T ) uniformly, then by taking

(3.2) GT := D−1
T BW

T (D′T )−1,

we have GT ∈ Lis(V ′T ,VT ) uniformly. Biorthogonality, modulo a scaling, of
the bases ΨT and ΞT implies that the matrix representation ofDT is diagonal,
so that D−1

T and its adjoint can be applied in linear complexity.
The aforementioned space WT is a subspace of S 0,1

T ,0 ⊕BT ⊂ W , where
BT is a ‘bubble space’ with dim BT = O(#T ), such that the projector IT on
S 0,1
T ,0 ⊕BT , defined by ran IT = S 0,1

T ,0 and ran(Id − IT ) = BT , is ‘local’ and
uniformly bounded, and the canonical basis ΘT of ‘bubbles’ for BT is, when
normalized in ‖ · ‖W , a uniformly Riesz basis for BT . Because of the latter,BB

T
defined by

(BB
T c>ΘT )(d>ΘT ) := β(∆T c)>d

for somediagonal∆T h diag(〈ΘT ,ΘT 〉W ) andconstantβ > 0 is inLisc(BT ,B′T )
uniformly.

Given some ‘opposite order’ operator BS
T ∈ Lisc(S

0,1
T ,0, (S

0,1
T ,0)′), by taking

(3.3) BW
T := I ′T B

S
T IT + (Id− IT )′BB

T (Id− IT ),

it holds thatBW
T ∈ Lisc(WT ,W ′

T )uniformly ([SvV20b, Prop. 5.1]), whichmakes
GT a uniform preconditioner.

3.2.2 Implementation of GT
Recalling the aforementioned bases ΞT , ΨT , and ΘT for VT , WT and BT ,
respectively, equipping S 0,1

T ,0 with the nodal basis ΦT , and equipping V ′T , W ′
T ,

B′T , and (S 0,1
T ,0)′with the dual basesΞ′T ,Ψ′T ,Θ′T , andΦ′T , respectively, the rep-

resentation of AT ∈ L(VT ,V ′T ) is the stiffness matrix AT := (AT ΞT )(ΞT ) :=
[(AT η)(ξ)](ξ,η)∈ΞT , and the representation of GT ∈ L(V ′T ,VT ) is the matrix
GT := (GΞ′T )(Ξ′T ). It is given by

(3.4) GT = D−1
T
(
p>TB

S
T pT + q>TB

B
T qT

)
D−>T ,
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3.2. Operator preconditioning

where both

DT := (DT ΞT )(ΨT ), BB
T := (BB

T ΘT )(ΘT )

are diagonal, both

pT := (IT ΨT )(Φ′T ), qT := ((Id− IT )ΨT )(Θ′T )

are uniformly sparse, and

(3.5) BS
T := (BS

T ΦT )(ΦT ).

Note that the cost of the application ofGT scales linearly in #T as soon as this
holds true for the application ofBS

T .
The above preconditioning approach is summarized in the following the-

orem.

Theorem 3.2.1 (Sect. 2.3). Given a family BS
T ∈ Lisc(S

0,1
T ,0, (S

0,1
T ,0)′) uniformly

in T ∈ T. Then for BW
T as described in (3.3), the operator GT from (3.2) is a

uniform preconditioner. Furthermore, if the matrix representation BS
T , cf. (3.5), can

be applied in O(#T ) operations, then the matrix representation of the preconditioner
GT , cf. (3.4), can be applied in O(#T ) operations.

Because BW
T in (3.3) is given as the sum of two operators that ‘act’ on

different subspaces ofWT , the condition number of the preconditioned system
depends on the relative scaling of both these operators which can be steered
by selecting the parameter β. A suitable β will be selected experimentally.

Alternatively, Proposition 4.4.1 shows that a value of β is reasonable if it
is chosen such that the interval bounded by the coercivity and boundedness
constants of BS

T is included in that interval corresponding to BB
T or vice

versa. Also these coercivity and boundedness constants can be approximated
experimentally or by making some theoretical estimates.

Constructions of ΨT , ΘT , and ∆T , and resulting explicit formulas for
matrices DT , BB

T , pT , qT are derived in Chapter 2. For ease of reading
we recall these formulas below for the case that VT is the space of piecewise
constants. For the continuous piecewise linear case we refer to Sect. 2.4.2.

Piecewise constant trial space VT

For T ∈ T, we defineNT as the set of vertices of T , andN0
T as the set of vertices

of T that are not on γ. For ν ∈ NT we set its valence

dT ,ν := #{T ∈ T : ν ∈ T}.

ForT ∈ T , andwithNT denoting the set of its vertices,we setN0
T ,T := N0

T ∩NT .
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3. Problems of negative order: preconditioning at linear cost

If one considers VT as the space of discontinuous piecewise constants, i.e.

VT = S −1,0
T := {u ∈ L2(Ω): u|T ∈ P0(T ∈ T )} ⊂ V ,

equipped with the canonical basis ΞT := {1T : T ∈ T }, then we find, for
arbitrary constant β > 0,

DT = diag{|T | : T ∈ T }, (pT )νT =

{
d−1
T ,ν if ν ∈ N0

T ,T ,

0 if ν 6∈ N0
T ,T ,

BB
T = βD

1− 2s
d

T , (qT )T ′T = δT ′T − 1
d+1

∑
ν∈N0

T ,T∩N0
T ,T ′

d−1
T ,ν .

3.2.3 Higher order case
For higher order discontinuous or continuous finite element spaces VT , suit-
able preconditioners GT can be built either from the current preconditioner
GT for the lowest order case by application of a subspace correction method
(most conveniently in the discontinuous case where on each element the space
of polynomials of some fixed degree is split into the space of constants and its
orthogonal complement), or by expanding WT by enlarging the bubble space
BT . While referring to Chapter 2 for details, we recall that with either option
the construction of an optimal preconditionerGT that can be applied in linear
complexity hinges on the availability of an operator BS

T ∈ Lisc(S
0,1
T ,0, (S

0,1
T ,0)′)

uniformly in T ∈ T, that can be applied in linear complexity.

3.3 An operator BS
T of multi-level type

In this section we will introduce an operator BS
T ∈ Lisc(S

0,1
T ,0, (S

0,1
T ,0)′) of

multi-level type. The operator BS
T is based on a stable multi-level decom-

position of S 0,1
T ,0 given by Wu and Zheng [WZ17]. Usually such a stable

multi-level decomposition is used as a theoretical tool for proving optimality
of an additive (or multiplicative) Schwarz type preconditioner for an operator
in Lisc(S

0,1
T ,0, (S

0,1
T ,0)′). In this work, however, we are going to use their results

for the construction of the operator BS
T ∈ Lisc(S

0,1
T ,0, (S

0,1
T ,0)′) for which it is

crucial that its application can be implemented in linear complexity.

3.3.1 Definition and analysis of BS
T

For d ≥ 2, let T be the family of all conforming partitions of Ω into d-simplices
that can be created by Newest Vertex Bisection starting from some given con-
forming initial partition T⊥ that satisfies a matching condition ([Ste08b]).

With T := ∪T ∈T{T : T ∈ T } and N := ∪T ∈TNT , for T ∈ T let gen(T ) be
the number of bisections needed to create T from its ancestor T ′ ∈ T⊥, and for
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3.3. An operator BS
T of multi-level type

ν ∈ N let gen(ν) := min{gen(T ) : T ∈ T, ν ∈ NT }. Notice that |T | h 2− gen(T ).
For T ∈ T, let QT denote the L2(T )-orthogonal projector onto P1(T ).

The case d = 1 can be included by letting T be the family of a partitions of Ω
that can be constructed by bisections from T⊥ = {Ω} such that the generations
of any two neighbouring subintervals in any T ∈ T differ by not more than
one.

For T ∈ T, set L = L(T ) := maxT∈T gen(T ) and define

T⊥ = T0 ≺ T1 ≺ · · · ≺ TL = T ⊂ T

by constructing Tj−1 from Tj by removing all ν ∈ Nj :=NTj from the latter for
which gen(ν) = j. For ν ∈ N0

j :=N0
Tj , we define ωj(ν) = ∪{T ∈ Tj : ν ∈ NT }.

With this hierarchy of partitions, we define an averaging quasi-interpolator
Πj ∈ L(S 0,1

T ,0,S
0,1
Tj ,0) by

(3.6) (Πju)(ν) :=

∑
{T∈Tj : ν∈NT } |T |(QTu)(ν)∑

{T∈Tj : ν∈NT } |T |
(u ∈ S 0,1

T ,0, ν ∈ N
0
j ).

Since S 0,1
Tj ,0 is a space of continuous piecewise linears, it indeed suffices to

define Πju at the vertices N0
j . Recall that S 0,1

T ,0 ⊂ W := [L2(Ω), H1
0,γ(Ω)]s,2 for

some s ∈ [0, 1]. The next theorem shows that Πj induces a stable multi-level
decomposition of S 0,1

T ,0.

Theorem 3.3.1 ([WZ17, Lemma 3.7]). For the averaging quasi-interpolator Πj

from (3.6), and Π−1 := 0, it holds that

‖u‖2W h
L∑
j=0

4js/d‖(Πj −Πj−1)u‖2L2(Ω) (u ∈ S 0,1
T ,0).

Proof. In [WZ17], the inequality ‘&’ was proven for the case s = 1, d ∈ {2, 3},
and γ = ∂Ω. The arguments, however, immediately extend to s ∈ [0, 1], d ≥ 1,
and γ ( ∂Ω.

The proof of the other inequality ‘.’ follows from well-known arguments:
For some t ∈ (1, 3

2 ), let H rt := [L2(Ω), H1
0,γ(Ω) ∩Ht(Ω)]r,2 for r ∈ [0, 1]. Then

H s ' W by the reiteration theorem, and for r ∈ [0, 1], ‖ · ‖H rt . 2jrt/d‖ · ‖L2(Ω)

on S 0,1
Tj ,0.

Let u ∈ S 0,1
T ,0 be written as

∑L
j=0 uj with uj ∈ S 0,1

Tj ,0. Then for ε ∈ (0, s),
ε ≤ t− s, we have

‖u‖2H s(Ω) .
L∑
j=0

L∑
i=j

‖uj‖H s+ε(Ω)‖ui‖H s−ε(Ω)

.
L∑
j=0

L∑
i=j

2j(s+ε)/d2i(s−ε)/d‖uj‖L2(Ω)‖ui‖L2(Ω) .
L∑
j=0

4js/d‖uj‖2L2(Ω).
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3. Problems of negative order: preconditioning at linear cost

Figure 3.1. For d = 3, a tetrahedron T ∈ Tj−1 and its bisection. The dots
indicate all vertices in N0

j \M0
j .

The relevance of the multi-level decomposition from Theorem 3.3.1 by Wu
and Zheng lies in the fact that (Πju)(ν) can only differ from (Πj−1u)(ν) in any
ν ∈ N0

j \N0
j−1 as well as in only two1 of its neighbours in N0

j−1 (the endpoints
of the edge on which ν was inserted):

Proposition 3.3.2 ([WZ17, Lemma 3.1]). With for j ≥ 1,

M0
j := {ν ∈ N0

j−1 : ωj(ν) = ωj−1(ν)},

it holds that for ν ∈M0
j , ((Πj −Πj−1)u)(ν) = 0, see Figure 3.1.

Remark 3.3.3. The proof from [WZ17] given for d ∈ {2, 3} generalizes to d ≥ 1.
Indeed the arguments that are used are based on the fact that the basis for
S1(T ) that is dual to the nodal basis takes equal values in all but one nodal
point. This is a consequence of the fact that the mass matrix of the nodal basis
for S1(T ), and so its inverse, is invariant under permutations of the barycentric
coordinates, which holds true in any dimension.

As a consequence of Proposition 3.3.2, we have

‖(Πj −Πj−1)u‖2L2(Ω) h 2−j
∑

ν∈N0
j \M0

j

|((Πj −Πj−1)u)(ν)|2.

From Theorem 3.3.1, we conclude that BS
T = (BS

T )′ ∈ Lisc(S
0,1
T ,0, (S

0,1
T ,0)′) de-

fined by

(3.7) (BS
T u)(v) :=

L∑
j=0

2j(
2s
d −1)

∑
ν∈N0

j \M0
j

((Πj −Πj−1)u)(ν)((Πj −Πj−1)v)(ν)

is uniform, i.e.

sup
T ∈T

max
(
‖BS
T ‖L(S 0,1

T ,0,(S
0,1
T ,0)′), ‖(B

S
T )−1‖L((S 0,1

T ,0)′,S 0,1
T ,0)

)
<∞.

1As pointed out in [WZ17], for d ≥ 3 the number of such neighbours will be larger when
employing the Scott-Zhang quasi-interpolator. Moreover, this interpolator is not suited for s ≤ 1

2
.

56



3.3. An operator BS
T of multi-level type

3.3.2 Implementation of BS
T

Since the operatorΠj is aweighted localL2(Ω)projection, it allows for a natural
implementation by considering S −1,1

T , the space of discontinuous piecewise
linears w.r.t. T . Recall the nodal basis ΦT for S 0,1

T ,0, and equip S −1,1
T with the

element-wise nodal basis.
Denote ET for the representation of the embedding S 0,1

T ,0 into S −1,1
T .

For 0 ≤ j ≤ L, let Rj be the representation of the L2(Ω)-orthogonal
projector of S −1,1

T onto S −1,1
Tj , and letR−1 := 0.

For 0 ≤ j ≤ L, let Hj be the representation of the averaging operator
Hj : S −1,1

Tj → S 0,1
Tj ,0 defined by

(3.8) (Hju)(ν) =

∑
{T∈Tj : ν∈NT } |T |u|T (ν)∑
{T∈Tj : ν∈NT } |T |

, (ν ∈ N0
T ),

and letH−1 := 0.
For 1 ≤ j ≤ L, let Pj be the representation of the embedding S 0,1

Tj−1,0
→

S 0,1
Tj ,0 (often called prolongation), and let P0 := 0.
Then the representationBS

T of BS
T from (3.7) is given by

BS
T = E>T

( L∑
j=0

(HjRj−PjHj−1Rj−1)>2j(
2s
d −1)(HjRj−PjHj−1Rj−1)

)
ET .

Applying ET amounts to duplicating values at any internal node with a
number equal to the valence of that node.

By representing T as the leaves of a binary tree with roots being the sim-
plices of T⊥, computing for x ∈ ranET the sequence (Rjx)0≤j≤L amounts
to computing, while traversing from the leaves to the root, for any parent
and both its children the orthogonal projection of a piecewise linear function
on the children to the space of linears on the parent. For d = 2, the matrix
representation of the latter projection is given in Figure 3.2.

Proposition 3.3.4. The application ofBS
T can be computed in O(#T ) operations.

Proof. Because the number of nodes in a binary tree is less than 2 times the
number of its leaves, for x ∈ Rdim S 0,1

T ,0 the computation of the sequence
(RjET x)0≤j≤L takes O(#T ) operations. From Proposition 3.3.2 recall that
any vector in ranHjRj − PjHj−1Rj−1 vanishes at M0

j , so that the num-
ber of its non-zero entries is bounded by #(N0

j \ M0
j ) ≤ 3#(N0

j \ N0
j−1).

Knowing already RjET x and Rj−1ET x, computing any non-zero entry of
(HjRj − PjHj−1Rj−1)ET x requires O(1) operations.

We conclude that the operator BS
T , with above matrix representationBS

T ,
satisfies the requirements of Theorem 3.2.1.
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Figure 3.2. Numbering of the vertices of the parent and that of both children
for d = 2, and the resulting matrix representation of the orthogonal projection
of the space of piecewise linears on the children to the space of linears on the
parent.

3.4 Manifold case

Let Γ be a compact d-dimensional Lipschitz, piecewise smoothmanifold in Rd
′

for some d′ ≥ d with or without boundary ∂Γ. For some closed measurable
γ ⊂ ∂Γ and s ∈ [0, 1], let

W := [L2(Γ), H1
0,γ(Γ)]s,2, V := W ′.

We assume that Γ is given as the essentially disjoint union of ∪pi=1χi(Ωi), with,
for 1 ≤ i ≤ p, χi : Rd → Rd

′ being some smooth regular parametrization, and
Ωi ⊂ Rd an open polytope. W.l.o.g. assuming that for i 6= j, Ωi ∩ Ωj = ∅, we
define

χ : Ω := ∪pi=1Ωi → ∪pi=1χi(Ωi) by χ|Ωi = χi.

Let T be a family of conforming partitions T of Γ into ‘panels’ such that,
for 1 ≤ i ≤ p, χ−1(T ) ∩ Ωi is a uniformly shape regular conforming partition
of Ωi into d-simplices (that for d = 1 satisfies a uniformK-mesh property). We
assume that γ is a (possibly empty) union of ‘faces’ of T ∈ T (i.e., sets of type
χi(e), where e is a (d− 1)-dimensional face of χ−1

i (T )).
We set

VT := {u ∈ L2(Γ) : u ◦ χ|χ−1(T ) ∈ P0 (T ∈ T )} ⊂ V ,

or

VT := {u ∈ C(Γ) : u ◦ χ|χ−1(T ) ∈ P1 (T ∈ T )} ⊂ V ,

equipped with canonical basis ΞT , and, for the construction of a precondi-
tioner,

S 0,1
T ,0 := {u ∈ H1

0,γ(Γ) : u ◦ χ|χ−1(T ) ∈ P1 (T ∈ T )} ⊂ W ,

equipped with canonical basis ΦT .
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3.4. Manifold case

As in the domain case, a space WT ⊂ W can be constructed with dim WT =

dimVT and infT ∈T inf06=v∈VT sup06=w∈WT

〈v,w〉L2(Γ)

‖v‖V ‖w‖W
> 0, which canbe equipped

with a locally supportedbasisΨT that,modulo a scaling, isL2(Γ)-biorthogonal
to ΞT . Now assuming that a family of BS

T ∈ Lisc(S
0,1
T ,0, (S

0,1
T ,0)′) uniformly

is available, the construction of an optimal preconditioner GT follows exactly
the same lines as outlined in Sect. 3.2 for the domain case.

For the case thatΓ is not piecewise polytopal, a hiddenproblem is, however,
that above construction of ΨT requires exact integration of lifted polynomials
over the manifold. To circumvent this problem, in Sect. 2.3.2 we have relaxed
the conditionofL2(Γ)-biorthogonality ofΞT andΨT to biorthogonalityw.r.t. to
a mesh-dependent scalar product obtained from the L2(Γ)-scalar product by
replacing the Jacobian on the pull back of each panel by itsmean. It was shown
that the resulting preconditioner is still optimal, and that the expression for
its matrix representation (for the moment without the representation of BS

T ),
that was recalled in Sect. 3.2.2 for the piecewise constant case, applies verbatim
by only reading |T | as the volume of the panel.2

It remains to discuss the construction of an operatorBS
T ofmulti-level type,

where it is now assumed that T is a family corresponding to newest vertex
bisection. An exact copy of the construction of BS

T given in the domain case
would require the application of the panel-wise L2(T )-orthogonal projector
QT , cf. (3.6), which generally poses a quadrature problem. Reconsidering the
domain case, the proof of [WZ17, Lemma 3.7] (which provides the proof of the
inequality ‘&’ in our Theorem 3.3.1) builds on the fact that for T0 ≺ T1 ≺ · · ·
being a sequence of uniformly refined partitions, the decomposition S 0,1

TL,0 =∑L
j=0 S 0,1

Tj ,0 ∩ (S 0,1
Tj−1,0

)⊥L2(Ω) , where S 0,1
T−1,0

:= {0}, is stable, uniformly in
L, w.r.t. the norm on W . This stability holds also true when the orthogonal
complements are taken w.r.t. a weighted L2(Ω)-scalar product, for any weight
w with w, 1/w ∈ L∞(Ω).

This has the consequence that for the construction of the multi-level oper-
ator BS

T in the manifold case, we may equip L2(Γ) with scalar product
p∑
i=1

ˆ
Ωi

u(χi(x))v(χi(x)) dx,

which is constructed from the canonical L2(Γ)-scalar product by simply omit-
ting the Jacobians |∂χi(x)|. With this modified scalar product, the panel-wise
orthogonal projector QT is the same as in the domain case. We conclude that
the resultingBS

T as in (3.7) is in Lisc(S
0,1
T ,0, (S

0,1
T ,0)′) uniformly, and that its ap-

plication can be performed in linear complexity. Indeed, its implementation is
equal as in the domain case as described in Sect. 3.3.2 when |T | in (3.8) is read
as |χ−1(T )|.

2In order to avoid the exact computation of this volume, actually it may read as
|χ−1(T )||∂χ(z)| for arbitrary z ∈ χ−1(T ).
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3. Problems of negative order: preconditioning at linear cost

3.5 Numerical experiments

Let Γ = ∂[0, 1]3 ⊂ R3 be the two-dimensional manifold without boundary
given as the boundary of the unit cube, W := H1/2(Γ), V := H−1/2(Γ).
We consider the trial space VT = S −1,0

T ⊂ V of discontinuous piecewise
constants. We will evaluate preconditioning of the discretized single layer
operator AT ∈ Lisc(VT ,V ′T ).

The role of theopposite order operator inLisc(S
0,1
T ,0, (S

0,1
T ,0)′) fromSect. 3.2.1

will be fulfilled by the multi-level operator BS
T from (3.7). Equipping S 0,1

T ,0
with the nodal basis ΦT , the matrix representation of the preconditioner GT
from Sect. 3.2.1 reads as

GT = D−1
T
(
p>TB

S
T pT + βq>TD

1/2
T qT

)
D−1
T ,

forDT = diag{|T | : T ∈ T }, uniformly sparse pT and qT as given in Sect. 3.2.1,
and with the representation of the multi-level operatorBS

T given by

BS
T = E>T

( L∑
j=0

(HjRj − PjHj−1Rj−1)>2−j/2(HjRj − PjHj−1Rj−1)
)
ET ,

for the representationsET ,Hj ,Rj andPj as provided in Sect. 3.3.2 (theminor
adaptations in the manifold case described in Sect. 3.4 to the matrix represen-
tations from Sections 3.2.1 and 3.3.2 vanish in the current simple case).

The BEM++ software package [ŚBA+15] is used to approximate the ma-
trix representation of the discretized single layer operator AT by hierarchical
matrices based on adaptive cross approximation [Hac99, Beb00].

Equipping VT and Rdim VT with ‘energy-norms’
√

(AT ·)(·) or ‖A
1
2

T · ‖, re-
spectively, we calculated the (spectral) conditionnumbersκL(VT ,VT )(GT AT ) =
κL(Rdim VT ,Rdim VT )(GTAT ) = ρ(GTAT )ρ((GTAT )−1), where ρ(·) is the spec-
tral radius, using the Lanczos method.

As initial partition T⊥ = T1 of Γ we take a conforming partition consisting
of 2 triangles per side, so 12 triangles in total, with an assignment of the
newest vertices that satisfies the matching condition. We fixed β = 5.3, being
the value for which, for a relative small uniform refinement T of T⊥, we found
ρ(D−1

T p
>
TB

S
T pTD

−1
T AT ) = ρ(D−1

T βq>TD
1/2
T qTD

−1
T AT ).

3.5.1 Uniform refinements
Here we let T be the sequence {Tk}k≥1 of (conforming) uniform refinements,
that is, Tk � Tk−1 is found by bisecting each triangle from Tk−1 into 2 subtri-
angles using Newest Vertex Bisection.

Table 3.1 shows the condition numbers of the preconditioned system in this
situation. The condition numbers are relatively small, and the timing results
show that the implementation of the preconditioner is indeed linear.
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3.5. Numerical experiments

Table 3.1. Spectral condition numbers of the preconditioned single layer sys-
tem discretized by piecewise constants S −1,0

T , using uniform refinements.
PreconditionerGT is constructed using the multi-level operator with β = 5.3.
The last column indicates the number of seconds per degree of freedom per
application ofGT .

dofs κS(AT ) κS(GTAT ) sec / dof
12 14.5 2.6 2.6 · 10−5

48 31.0 2.7 1.4 · 10−5

192 59.9 2.8 4.9 · 10−6

768 118.7 3.3 1.4 · 10−6

3072 234.6 3.8 6.3 · 10−7

12288 450.4 4.1 3.3 · 10−6

49152 852.5 4.3 6.5 · 10−7

196608 1566.4 4.5 7.3 · 10−7

786432 2730.5 4.6 7.8 · 10−7

3.5.2 Local refinements
Herewe takeT as a sequence {Tk}k≥1 of (conforming) locally refinedpartitions,
where Tk � Tk−1 is constructed by applying Newest Vertex Bisection to all
triangles in Tk−1 that touch a corner of the cube.

Table 3.2 contains results for the preconditioned single layer operator dis-
cretizedbypiecewise constantsS −1,0

T . Thepreconditioned conditionnumbers
are nicely bounded, and the timing results confirm that our implementation
of the preconditioner is of linear complexity, also in the case of locally refined
partitions.
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3. Problems of negative order: preconditioning at linear cost

Table 3.2. Spectral conditionnumbers of thepreconditioned single layer system
discretized by piecewise constants S −1,0

T , using local refinements at each of
the eight cube corners. OperatorGT is applied using the multi-level operator
with β = 5.3. The second column is defined by hT ,min := minT∈T

√
|T |.

The last column indicates the number of seconds per degree of freedom per
application ofGT .

dofs hT ,min κS(GTAT ) sec / dof
12 1.4 · 100 2.63 2.5 · 10−5

336 8.8 · 10−2 2.73 2.4 · 10−6

720 5.5 · 10−3 2.91 1.8 · 10−6

1104 3.4 · 10−4 2.96 1.8 · 10−6

1488 2.1 · 10−5 2.99 2.2 · 10−6

1872 1.3 · 10−6 2.98 2.0 · 10−6

2256 8.4 · 10−8 3.00 2.3 · 10−6

2640 5.2 · 10−9 3.00 2.0 · 10−6

3024 3.2 · 10−10 3.01 2.3 · 10−6

3408 2.0 · 10−11 3.01 2.5 · 10−6

3696 2.5 · 10−12 3.01 2.6 · 10−6
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4 Problems of positive order

4.1 Introduction

This chapter deals with the construction of uniform preconditioners for oper-
ators of positive order, using the framework of ‘operator preconditioning’ as
described in [Hip06], see e.g. [SW98, CN00] for earlier work. It will build on
our experiences with this approach for problems of negative order developed
in Chapter 2.

For some d-dimensional domain (or manifold) Ω, a measurable, closed,
possibly empty γ ⊂ ∂Ω, and an s ∈ [0, 1], we consider the Sobolev space

V := [L2(Ω), H1
0,γ(Ω)]

s,2
,

with H1
0,γ(Ω) being the closure in H1(Ω) of the smooth functions on Ω that

vanish at γ. For VT ⊂ V a closed, e.g. finite dimensional subspace, and
AT : VT → V ′T some boundedly invertible linear operator, we are interested
in constructing a preconditioner GT : V ′T → VT . More specifically, thinking of
a family of spaces VT and operators AT : VT → V ′T , our aim is to construct
preconditioners GT such that GT AT : VT → VT is uniformly boundedly in-
vertible.

It is well-known that such preconditioners of multi-level type are available.
The advantage of operator preconditioning is, however, that it does not require
a hierarchy of trial spaces.

In order to apply the operator preconditioning framework, one needs to
construct families of closed subspaces WT ⊂ W := V ′, uniformly boundedly
invertibleBT : WT → W ′

T , anduniformly boundedly invertibleDT : VT → W ′
T .

Then the resulting preconditioners GT are of the form

GT := D−1
T BT (D′T )

−1
.

The canonical setting is that for A : V → V ′, i.e., an operator of order 2s,
and an opposite order operator B : W → W ′, both boundedly invertible and
coercive, it holds that (AT u)(v) := (Au)(v) (u, v ∈ VT ), (BT u)(v) := (Bu)(v)
(u, v ∈ WT ), and (DT u)(v) := 〈u, v〉L2(Ω) (u ∈ VT , v ∈ WT ). A typical example
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4. Problems of positive order

for s = 1/2 is that A is the Hypersingular Integral operator, and B is the Weakly
Singular Integral operator, see [SW98].

A careful selection of WT has to be made to ensure that DT : VT → W ′
T

is uniformly boundedly invertible. A suitable family of (VT ,WT ) pairs has
been introduced in [Ste02, BC07]. Here T is a triangular partition of a two-
dimensional domain or manifold, VT is the space of continuous piecewise lin-
ears w.r.t. T , and WT is a subspace of the space of piecewise constants w.r.t. a
barycentric refinement of T , constructed by subdividing each triangle into 6
subtriangles by connecting its vertices and midpoints with its barycenter. It
has been shown in [Ste02, HUT16] that the preconditioner arising from these
pairs (VT ,WT ) is a uniformpreconditioner for families of partitions that satisfy
a certain mildly-grading condition.

A problem with the constructions from [Ste02, BC07] appears when one
considers the matrix representation GT in the standard bases, i.e. GT =
D−1
T BTD

−>
T . Indeed, thismatrixDT is notdiagonal, and its inverse is densely

populated so that it has to be approximated. Moreover, in order to get a
uniform preconditioner, since GT , being spectrally equivalent with A−1

T , gets
increasingly ill-conditionedwith adecreasingminimalmesh-size, the accuracy
with whichD−1

T has to be approximated increases with a decreasing minimal
mesh-size. As a result, an application ofD−1

T cannot be expected to execute in
linear time.

Another (practical) issue with these constructions is the need for the con-
struction of the non-standard barycentrical refinement of T . This refinement
increases the number of elements by a factor 6, and therefore also increases
the cost of evaluating BT : WT → W ′

T .

4.1.1 Contributions
With VT being the space of continuous piecewise linears, the construction of
WT presented in this chapter improves on the existing approach from [Ste02,
BC07] concerning the following aspects:

• The matrix representation DT of DT will be diagonal, allowing one to
(exactly) evaluateD−1

T in linear time;

• The operator GT will be a uniformly well-conditioned preconditioner
for families of uniformly shape regular partitions, without requiring a
mildly-grading assumption on the partitions;

• By using a stable decomposition of an enclosing space of WT into a
standard finite element space UT w.r.t. T (either being the space of
piecewise constants or UT = VT ) and some bubble space, our BT will
be the sum of the corresponding Galerkin discretization operator of the
opposite order operator B, and an operator whose representation is a
diagonal, with which the undesired barycentrical refinement is avoided;
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4.1. Introduction

• The construction of WT applies in any space dimension, and extends to
non piecewise planar manifolds.

We will extend the preconditioners to higher order finite element spaces
by applying a subspace correction framework.

Due to the interchanged roles of primal and dual spaces, compared to
our work in Chapter 2 on preconditioning operators of negative order, here
the stable construction of WT is simpler, but, on the other hand, the stable
decomposition of an enclosing space of WT is more delicate.

4.1.2 Outline

Sect. 4.1.3 recalls some notation that will be used throughout the article. In
Sect. 4.2 the general theory of operator preconditioning is summarized. In
Sect. 4.3, the framework is specialized to operators of positive order discretized
with continuous piecewise linears. Sect. 4.4 give two constructions of BT ∈
Lisc(WT ,W ′

T ) that avoid any refinement of the partition T that underlies the
trial space VT . In Sect. 4.5 the preconditioners are generalized to higher order
finite element spaces, and to spaces defined on manifolds. Finally, in Sect. 4.6
we report some numerical results obtained with the new preconditioners.

4.1.3 Notations

Byλ . µwewillmean thatλ can be bounded by amultiple ofµ, independently
of parameters which λ and µ may depend on, with the sole exception of the
space dimension d, or in the manifold case, on the parametrization of the
manifold that is used to define the finite element spaces on it. Obviously,
λ & µ is defined as µ . λ, and λ h µ as λ . µ and λ & µ.

For normed linear spaces Y and Z , in this work for convenience over R,
L(Y ,Z ) will denote the space of bounded linear mappingsY → Z endowed
with the operator norm ‖ · ‖L(Y ,Z ). The subset of invertible operators in
L(Y ,Z )with inverses inL(Z ,Y )will be denoted asLis(Y ,Z ). The condition
number of aC ∈ Lis(Y ,Z ) is defined as κY ,Z (C) := ‖C‖L(Y ,Z )‖C−1‖L(Z ,Y ).

For Y a reflexive Banach space and C ∈ L(Y ,Y ′) being coercive, i.e.,

inf
06=y∈Y

(Cy)(y)

‖y‖2Y
> 0,

both C and <(C) := 1
2 (C + C ′) are in Lis(Y ,Y ′) with

‖<(C)‖L(Y ,Y ′) ≤ ‖C‖L(Y ,Y ′),

‖C−1‖L(Y ′,Y ) ≤ ‖<(C)−1‖L(Y ′,Y ) =
(

inf
0 6=y∈Y

(Cy)(y)

‖y‖2Y

)−1

.
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4. Problems of positive order

The subset of coercive operators in Lis(Y ,Y ′) is denoted as Lisc(Y ,Y ′).
If C ∈ Lisc(Y ,Y ′), then C−1 ∈ Lisc(Y ′,Y ) and ‖<(C−1)−1‖L(Y ,Y ′) ≤
‖C‖2L(Y ,Y ′)‖<(C)−1‖L(Y ′,Y ).

Given a family of operators Ci ∈ Lis(Yi,Zi) (Lisc(Yi,Zi)), we will write
Ci ∈ Lis(Yi,Zi) (Lisc(Yi,Zi)) uniformly in i, or simply ‘uniform’, when

sup
i

max(‖Ci‖L(Yi,Zi), ‖C
−1
i ‖L(Zi,Yi)) <∞,

or
sup
i

max(‖Ci‖L(Yi,Zi), ‖<(Ci)
−1‖L(Zi,Yi)) <∞.

Given a finite collection Υ = {υ} in a linear space, we set the synthesis
operator

FΥ : R#Υ → span Υ: c 7→ c>Υ :=
∑
υ∈Υ

cυυ.

EquippingR#Υ with the Euclidean scalar product 〈·, ·〉, and identifying (R#Υ)′

with R#Υ using the corresponding Riesz map, we infer that the adjoint of FΥ,
known as the analysis operator, satisfies

F ′Υ : (span Υ)′ → R#Υ : f 7→ f(Υ) := [f(υ)]υ∈Υ.

A collection Υ is a basis for its span when FΥ ∈ Lis(R#Υ, span Υ) (and so
F ′Υ ∈ Lis((span Υ)′,R#Υ).)

Two countable collections Υ = (υi)i and Υ̃ = (υ̃i)i in a Hilbert space will
be called biorthogonal when 〈Υ, Υ̃〉 = [〈υj , υ̃i〉]ij is an invertible diagonal matrix,
and biorthonormal when it is the identity matrix.

4.2 Operator preconditioning

We shortly recap the idea of opposite order preconditioning, which is based
on the following result, see [Hip06, Sect. 2].

Proposition 4.2.1. Let V ,W be reflexive Banach spaces.
If B ∈ Lis(W ,W ′) and D ∈ Lis(V ,W ′), then

G := D−1B(D′)−1 ∈ Lis(V ′,V ),

and

‖G‖L(V ′,V ) ≤ ‖D−1‖2L(W ′,V )‖B‖L(W ,W ′),

‖G−1‖L(V ,V ′) ≤ ‖D‖2L(V ,W ′)‖B
−1‖L(W ′,W ).

If additionally B ∈ Lisc(W ,W ′), then G ∈ Lisc(V ′,V ), and

‖<(G)−1‖L(V ,V ′) ≤ ‖D‖2L(V ,W ′)‖<(B)−1‖L(W ′,W ).

66



4.2. Operator preconditioning

Let be given families of finite dimensional spaces VT for T ∈ T, and oper-
ators AT ∈ Lis(VT ,V ′T ) uniformly in T ∈ T. Then in light of Proposition 4.2.1
we will seek preconditioners for AT of the form

GT = D−1
T BT (D′T )−1,

where BT ∈ Lis(WT ,W ′
T ) and DT ∈ Lis(VT ,W ′

T ) (both uniformly in T ∈ T),
and

(4.1) dim WT = dim VT .

A typical situation is that for some reflexive Banach space V and A ∈
Lisc(V ,V ′), it holds that VT ⊂ V (thus equipped with ‖ · ‖V ) and (AT u)(v) :=
(Au)(v) (u, v ∈ VT ), so that indeed AT ∈ Lisc(VT ,V ′T ) uniformly in T ∈ T.
Then for a suitable reflexive Banach space W , an operator B ∈ Lisc(W ,W ′),
and a subspace WT ⊂ W (thus equipped with ‖ · ‖W ), one can take (BT w)(z) :=
(Bw)(z) (w, z ∈ WT ), giving BT ∈ Lisc(WT ,W ′

T ) uniformly. A possible con-
struction ofDT ∈ Lis(VT ,W ′

T ) uniformly is discussed in the next proposition.

Proposition 4.2.2 (Fortin projector ([For77])). For some D ∈ Lis(V ,W ′), let
DT ∈ L(VT ,W ′

T ) be defined by (DT v)(w) := (Dv)(w). Then

‖DT ‖L(VT ,W ′T ) ≤ ‖D‖L(V ,W ′).

Assuming (4.1), additionally one has DT ∈ Lis(VT ,W ′
T ) if, and for W being

a Hilbert space, only if there exists a projector PT ∈ L(W ,W ) onto WT with
(DVT )((Id− PT )W ) = 0, in which case

‖D−1
T ‖L(W ′T ,VT ) ≤ ‖PT ‖L(W ,W )‖D−1‖L(W ′,V ).

In our applications, the choices for W and D will be obvious, and the key
ingredient for the construction of a uniform preconditioner GT will be the
selection of WT that allows for a uniformly bounded Fortin projector PT .

4.2.1 Implementation
Let ΦT = (φi)i and ΨT = (ψi)i be bases for VT and WT , respectively. Then in
coordinates the preconditioned system reads as

F−1
ΦT
GT AT FΦT = GTAT := D−1

T BTD
−>
T AT ,

where

AT := F ′ΦT AT FΦT , BT := F ′ΨT BT FΨT , DT := F ′ΨTDT FΦT .

By identifying a map in L(R#ΦT ,R#ΦT ) with a #ΦT × #ΦT matrix by
equipping R#ΦT with the canonical basis (ei)i one has,

(AT )ij = 〈F ′ΦT AT FΦT ej , ei〉 = (AT FΦT ej)(FΦT ei) = (AT φj)(φi),
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4. Problems of positive order

and similarly,

(BT )ij = (BT ψj)(ψi), (DT )ij = (DT φj)(ψi).

Preferably DT is such that its inverse can be applied in linear complexity, as
is the case when DT is diagonal. A goal of this work is to construct such a
diagonalDT .
Remark 4.2.3. Using σ(·) and ρ(·) to denote the spectrum and spectral radius
of an operator, clearly σ(GTAT ) = σ(GT AT ). So for the spectral condition
number we have

κS(GTAT ) := ρ(GTAT )ρ((GTAT )−1) ≤ κVT ,VT (GT AT ),

which thus holds true independently of the choice of the basis ΦT for VT .
Furthermore, in view of an application of Conjugate Gradients, if AT and
BT are coercive and self-adjoint, then AT and GT are positive definite and
symmetric. Equipping Rdim VT with |||·||| := ‖(GT )−

1
2 · ‖ or |||·||| := ‖(AT )

1
2 · ‖,

in that case we have

κ(Rdim VT ,|||·|||),(Rdim VT ,|||·|||)(GTAT ) = κS(GTAT ).

4.3 Continuous piecewise linear discretization space

For a boundedpolytopal domainΩ ⊂ Rd, ameasurable, closed, possibly empty
γ ⊂ ∂Ω, and an s ∈ [0, 1], we take

V := [L2(Ω), H1
0,γ(Ω)]

s,2
, W := V ′,

which forms the Gelfand triple V ↪→ L2(Ω) ' L2(Ω)′ ↪→ W . We define the
operator D ∈ Lis(V ,W ′) as the unique extension to V × W of the duality
pairing

(Dv)(w) := 〈v, w〉L2(Ω),

which satisfies ‖D‖L(V ,W ′) = ‖D−1‖L(W ′,V ) = 1.
Let (T )T ∈T be a family of conforming partitions of Ω into closed uniformly

shape regular d-simplices. Thanks to the conformity and the uniform shape
regularity, for d > 1 we know that neighbouring T, T ′ ∈ T , i.e. T ∩ T ′ 6= ∅,
have uniformly comparable sizes. For d = 1, we impose this uniform ‘K-mesh
property’ explicitly.

For some T ∈ T, denoteN0
T as the subset of vertices that are not on γ, where

we assume that γ is the (possibly empty) union of (d− 1)-faces of T ∈ T . For
T ∈ T , write NT for the set of its vertices, set N0

T := N0
T ∩ NT , hT := |T |1/d,

and the piecewise constant function hT by hT |T = hT (T ∈ T ). For any
vertex ν ∈ N0

T , define the patch ωT ,ν :=
⋃
{T∈T :ν∈T} T and the local mesh size
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4.3. Continuous piecewise linear discretization space

hT ,ν := |ωT ,ν |1/d. We omit notational dependence on T if it is clear from the
context, and simply write ων and hν .

Let the discretization spaceVT be the space of continuouspiecewise linears,
zero on γ,

VT = S 0,1
T := {u ∈ H1

0,γ(Ω): u|T ∈ P1 (T ∈ T )} ⊂ V ,

equipped with the nodal bases

ΦT = {φν : ν ∈ N0
T }

defined by φν(ν′) := δνν′ (ν, ν′ ∈ N0
T ). For future reference, define the space

of discontinuous piecewise constants by

S −1,0
T := {u ∈ L2(Ω): u|T ∈ P0 (T ∈ T )} ⊂ W ,

equipped with the basis

(4.2) ΣT := {1T : T ∈ T },

where 1K is defined by, for anyK ⊆ Ω, 1K := 1 onK, and 1K := 0 elsewhere.

4.3.1 The subspace WT

We will construct the preconditioning space WT as

WT := span ΨT ⊂ W , with dim WT = dim VT

for a collection ΨT ⊂ L2(Ω) that is biorthogonal to ΦT , and for which the
biorthogonal projector PT ∈ L(W ,W ) onto WT is uniformly bounded. We
require the collection ΨT := {ψν ∈ W : ν ∈ N0

T } to satisfy

(4.3)
∣∣〈φν , ψν′〉L2(Ω)

∣∣ h δνν′‖φν‖L2(Ω)‖ψν′‖L2(Ω) (ν, ν′ ∈ N0
T ),

suppψν ⊆ ων (ν ∈ N0
T ).

Existence of such collections will be shown later in Sect. 4.4.

4.3.2 Bounded Fortin projector
From (4.3) it follows that the biorthogonal Fortin projector PT : H1

0,γ(Ω)′ →
L2(Ω) onto WT with ran(I − PT ) = V

⊥L2(Ω)

T exists, and is given by

PT u =
∑
ν∈N0

T

〈u, φν〉L2(Ω)

〈φν , ψν〉L2(Ω)
ψν .

Uniform boundedness of ‖PT ‖L(W ,W ) follows from uniform boundedness of
its adjoint P ′T , which can be shown similarly as in Theorem 2.5.11:

1Note that the roles of V and W are interchanged compared to Chapter 2.
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4. Problems of positive order

Theorem 4.3.1. It holds that supT ∈T ‖PT ‖L(W ,W ) = supT ∈T ‖P ′T ‖L(V ,V ) <∞.

Proof. Let T ∈ T. Define ω(0)
T := T for T ∈ T , and for i = 1, . . ., denote

ω
(i)
T :=

⋃
{T ′∈T : T ′∩ω(i−1)

T 6=∅} T
′. The adjoint P ′T : L2(Ω) → H1

0,γ(Ω) onto VT is
given by

P ′T u =
∑
ν∈N0

T

〈u, ψν〉L2(Ω)

〈φν , ψν〉L2(Ω)
φν .

Properties of the nodal basis functions, ‖φν‖2L2(Ω) h hdν and ‖φν‖2H1(Ω) . h
d−2
ν ,

in combination with (4.3), can be used to show that, for T ∈ T and k ∈ {0, 1},

(4.4)

‖P ′T u‖Hk(T ) ≤
∑
ν∈N0

T

‖φν‖Hk(T )

‖u‖L2(suppψν)‖ψν‖L2(Ω)

|〈φν , ψν〉L2(Ω)|

.
∑
ν∈N0

T

h−kν ‖u‖L2(suppψν) . h
−k
T ‖u‖L2(ω

(1)
T )

,

from which we may directly conclude that

sup
T ∈T
‖P ′T ‖L(L2(Ω),L2(Ω)) <∞.

For proving boundedness inH1
0,γ(Ω), we consider the Scott-Zhang ([SZ90])

interpolator ΠT : H1
0,γ(Ω) → VT . From (4.4) and properties of the ΠT [SZ90,

(3.8) and (4.3)], we deduce that

‖P ′T u‖H1(T ) = ‖ΠT u+ P ′T (Id−ΠT )u‖H1(T )

. ‖u‖
H1(ω

(1)
T (T ))

+ h−1
T ‖(Id−ΠT )u‖

L2(ω
(1)
T (T ))

. ‖u‖
H1(ω

(2)
T (T ))

,

and consequently
sup
T ∈T
‖P ′T ‖L(H1

0,γ(Ω),H1
0,γ(Ω)) <∞.

An application of the Riesz-Thorin interpolation theorem yields the result.

The basis ΨT has the crucial benefit that the matrix representation of DT ,
i.e.

DT = 〈ΦT ,ΨT 〉L2(Ω),

is diagonal, and thus easily invertible, cf. Sect. 4.2.1.
Combining the theoremwithProposition 4.2.2 gives the following corollary

(without requiring additional assumptions on the family of partitions T).

Corollary 4.3.2. Supposewe haveBT ∈ Lisc(WT ,W ′
T )uniformly. WithDT : VT →

WT defined by (DT v)(w) := 〈v, w〉L2(Ω), we find that GT = D−1
T BT (D′T )

−1 ∈
Lisc(V ′T ,VT ) is a uniform preconditioner of AT ∈ Lisc(VT ,V ′T ).
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T )

Given some B ∈ Lisc(W ,W ′), a possible choice for BT ∈ Lisc(WT ,W ′
T )

uniformly in T ∈ T, is (BT u)(v) := (Bu)(v) (u, v ∈ WT ). For d ∈ {2, 3} and
W ′ = V = H

1
2 (Ω), a suitable B is given by the Weakly Singular Integral

operator, whereas for W ′ = V = H
1
2
00(Ω) := [L2(Ω), H1

0 (Ω)] 1
2 ,2

, the recently
in [HJHUT18] introduced Modified Weakly Singular Integral operator can be
applied. Similar comments apply to screens.

4.4 Construction of BT ∈ Lisc(WT ,W ′
T )

Weexpect it to be impossible to construct abasisΨT in the (standard) spacesS −1,0
T

or S 0,1
T that is local and biorthogonal to ΦT as required in (4.3). One remedy

is to construct ΨT in a (finite element) space w.r.t. a refined partition T∗ � T .
However, this implies that some opposite order operatorB ∈ Lisc(W ,W ′) has
to be discretized on a spacew.r.t. the refined partition T∗. This increases the cost
of the preconditioner, and moreover, increases implementational complexity
as one has to actually construct this refined partition.

To circumvent (explicit) dependence on the refined partition T∗, we shall
apply the idea described in Sect. 2.3. That is, we will construct an operator
BT ∈ Lisc(WT ,W ′

T ) by decomposing an enclosing space of space WT into a
a standard finite element space UT , either S −1,0

T (in Sect. 4.4.2) or S 0,1
T (in

Sect. 4.4.3), and some bubble space BT . On UT we will apply the Galerkin
discretizationoperator of the opposite order operatorB, whereas on the bubble
space BT a diagonal scaling will suffice.

In the first subsection we present this construction of BT for some abstract
WT . In the subsequent subsections, we will present two viable options for WT ,
leading to two different preconditioners.

4.4.1 Stable decomposition
The role of the space ‘Y ’ is the next proposition is going to be played by WT .

Proposition 4.4.1. Let Z be an inner product space, Q ∈ L(Z ,Z ) a projector,
and with U := ranQ, let B := ran(Id − Q), BU ∈ Lisc(U ,U ′), and BB ∈
Lisc(B,B′). Then for any subspace Y ⊂ Z ,

(By)(ỹ) := (BU Qy)(Qỹ) + (BB(Id−Q)y)((Id−Q)ỹ) (y, ỹ ∈ Y ),

is bounded and coercive — B ∈ Lisc(Y ,Y ′) —with

‖B‖L(Y ,Y ′) ≤(
‖Q‖2 +

√
‖Q‖4 − ‖Q‖2

)
max(‖BU ‖L(U ,U ′), ‖BB‖L(B,B′)),

‖<(B)−1‖L(Y ′,Y ) ≤(
1 +

√
1− ‖Q‖−2

)
max(‖<(BU )−1‖L(U ′,U ), ‖<(BB)−1‖L(B′,B)),
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4. Problems of positive order

where ‖Q‖ := ‖Q‖L(Z ,Z ).

Proof. Let y, ỹ ∈ Y . Write u = Qy, b = (Id − Q)y, and similarly ũ = Qỹ,
b̃ = (Id−Q)ỹ. We have

|(B(y))(ỹ)| ≤max
(
‖BU ‖L(U ,U ′), ‖BB‖L(B,B′)

)
·
(
‖u‖Z ‖ũ‖Z + ‖b‖Z ‖b̃‖Z

)
≤max(· · · )

√
‖u‖2Z + ‖b‖2Z ·

√
‖ũ‖2Z + ‖b̃‖2Z ,

and

|(B(y))(y)| ≥ min
(
‖<(BU )−1‖−1

L(U ′,U ), ‖<(BB)−1‖−1
L(B′,B)

)
· (‖u‖2Z + ‖b‖2Z ).

Withγ := sup0 6=(u,b)∈U×B
|〈u,b〉Z |
‖u‖Z ‖b‖Z

, for0 6= (u, b) ∈ U ×Bwehave ‖u+b‖2Z
‖u‖2Z +‖b‖2Z

∈

[1− γ, 1 + γ]. Using that
√

1
1−γ2 = ‖Q‖ (see e.g. [Szy06, (5.5), (5.7), (6.2)]), the

proof is easily completed.

Remark 4.4.2. For a quantitatively weaker result as Proposition 4.4.1 to hold it
is actually sufficient when Q is only defined on Y , and neither is it needed
that it is a projector. Under these relaxed conditions, obvious estimates show
bounds as in Proposition 4.4.1 with the factors ‖Q‖2 +

√
‖Q‖4 − ‖Q‖2 and

1 +
√

1− ‖Q‖−2 reading as ‖Q|Y ‖2 + (1 + ‖Q|Y ‖)2 and 2, respectively. Both
original factors are equal to 1 when Q is an orthogonal projector.

We are going to apply this abstract proposition with ‘Y ’= WT , ‘U ’= UT
being a standard finite element space, ‘B’= BT being a suitably constructed
‘bubble space’, and ‘Z ’= ZT := UT + BT , all equipped with the norm on W .
The resulting ‘B’ will be the BT ∈ Lisc(WT ,W ′

T ) we are seeking.
In order to apply above proposition, what is left is the construction of a

(uniformly) bounded projector defined on ZT . Furthermore, to allow for a
simple preconditioner on BT we would like to find a setting in which on this
bubble space the W -norm is equivalent to a weighted L2-norm. Both issues
will be dealt with in the next two lemmas. The operator QT |ZT in the first
lemma will play the role of ‘Q’ in Proposition 4.4.1.

Lemma 4.4.3. Let QT ∈ L(L2(Ω), H1
0,γ(Ω)′) be a projector, UT ⊆ ranQT and

BT ⊆ ran(Id−QT ) be subspaces of L2(Ω), and with ZT := UT + BT , let

(1) ‖h−1
T (Id−Q′T )‖L(H1

0,γ(Ω),L2(Ω)) . 1, (approximation property)

(2) supT ∈T ‖QT |ZT ‖L((ZT ,‖·‖L2(Ω)),L2(Ω)) . 1, (boundedness in L2(Ω))

(3) ‖hT · ‖L2(Ω) . ‖ · ‖H1
0,γ(Ω)′ on ZT . (inverse inequality)

ThenQT |ZT : ZT → ZT is a projector, ranQT |ZT = UT , ran(Id−QT |ZT ) = BT ,
and
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(i) supT ∈T ‖QT |ZT ‖L((ZT ,‖·‖W ),W ) <∞,

(ii) ‖ · ‖W h ‖hsT · ‖L2(Ω) on BT .

Proof. The first three statements are easily verified. From (1) it follows that for
u ∈ H1

0,γ(Ω)′:

‖(Id−QT )u‖H1
0,γ(Ω)′ = sup

v∈H1
0,γ(Ω)

〈u, (Id−Q′T )v〉L2(Ω)

‖v‖H1
0,γ(Ω)

≤ sup
v∈H1

0,γ(Ω)

‖hT u‖L2(Ω)‖h−1
T (Id−Q′T )v‖L2(Ω)

‖v‖H1
0,γ(Ω)

. ‖hT u‖L2(Ω).

Together with the inverse inequality on ZT , this gives boundedness of ‖(Id−
QT )|ZT ‖L((ZT ,‖·‖H1

0,γ (Ω)′ ),H
1
0,γ(Ω)′) and thusof‖QT |ZT ‖L((ZT ,‖·‖H1

0,γ (Ω)′ ),H
1
0,γ(Ω)′).

The first result then follows from (2) and an interpolation argument.
By the inverse inequality on BT and the previously derived inequality, we

have for bT ∈ BT ⊆ ran(Id−QT ) that

‖bT ‖H1
0,γ(Ω)′ = ‖(Id−QT )bT ‖H1

0,γ(Ω)′ . ‖hT bT ‖L2(Ω) . ‖bT ‖H1
0,γ(Ω)′ .

Another interpolation argument yields the second result.

Lemma 4.4.4. Suppose that ‖ · ‖W h ‖hsT · ‖L2(Ω) holds on BT , and that ΘT is a
uniformly ‖hsT · ‖L2(Ω)-stable basis for BT , i.e.

BT = span ΘT and
∥∥hsT ∑

θ∈ΘT
cθθ
∥∥2

L2(Ω)
h
∑

θ∈ΘT
|cθ|2‖hsT θ‖2L2(Ω),

then, for any β1 > 0, an operator BB
T ∈ Lisc(BT ,B′T ) is given by

(4.5)
(
BB
T

∑
θ∈ΘT

cθθ
)( ∑

θ∈ΘT

dθθ
)

= β1

∑
θ∈ΘT

cθdθ‖hsT θ‖2L2(Ω).

Remark 4.4.5. It is not possible to construct BT ∈ Lis(WT ,W ′
T ) directly as a

diagonal scaling operator. Indeed, this would require ‖wT ‖W . ‖hsT wT ‖L2(Ω)

for wT ∈ WT . Suppose this to be true, then by L2(Ω)-boundedness of the
biorthogonal projector PT , we would find for vT ∈ VT that

‖h−sT vT ‖L2(Ω) = sup
w∈L2(Ω)

〈h−sT vT , PT w〉L2(Ω)

‖w‖L2(Ω)
. sup
w∈L2(Ω)

〈h−sT vT , PT w〉L2(Ω)

‖PT w‖L2(Ω)

= sup
wT ∈WT

〈vT , wT 〉L2(Ω)

‖hsT wT ‖L2(Ω)
. sup
wT ∈WT

〈vT , wT 〉L2(Ω)

‖wT ‖W
≤ ‖vT ‖V ,

which is known not to be true for smooth functions in VT .
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4. Problems of positive order

Concluding: If, given a family of subspaces WT ⊂ L2(Ω), one can find
a family of projectors QT ∈ L(L2(Ω), H1

0,γ(Ω)′), subspaces UT ⊆ ranQT (of
finite element type) and BT ⊆ ran(Id−QT ) such that

(4.6) WT ⊂ ZT := UT + BT

(with these spaces equippedwith ‖·‖W -norm) and the conditionsofLemma4.4.3
are satisfied, then givenBU

T ∈ Lisc(UT ,U ′T ) andBB
T ∈ Lisc(BT ,B′T ), the op-

erator BW
T defined by

(4.7)
(BT w)(w̃) := (BU

T QT w)(QT w̃)+(BB
T (Id−QT )w)((Id−QT )w̃) (w, w̃ ∈ WT ),

is in Lisc(WT ,W ′
T ). Moreover, assuming a uniformly ‖hsT · ‖L2(Ω)-stable basis

forBT , the operatorBB
T canbeof simplediagonal scaling type,where anatural

definition for BU
T is by (BT u)(ũ) := (Bu)(ũ) (u, ũ ∈ UT ) for some opposite

order operator B ∈ Lisc(W ,W ′). Finally, sinceQT enters the implementation,
we search this projector to be of local type.

4.4.2 A space WT enclosed in a space decomposable into the
piecewise constants and bubbles

In this subsection, we construct WT = span ΨT such that both ΨT is biorthog-
onal to ΦT ((4.3)), and WT is enclosed in a space that allows an appropriate
decomposition into the space of piecewise constants UT := S −1,0

T and a bub-
ble space BT .

Fix T ∈ T and let T∗ � T be a uniform red-refinement, i.e. every simplex
T ∈ T is subdivided into 2d subsimplices.2 We define ΨT = {ψT ,ν : ν ∈
N0
T } ⊂ S −1,0

T∗ by taking a weighted difference of ‘patch indicator’ functions:

(4.8) ψT ,ν := 2d+11ωT∗,ν − 1ωT ,ν (ν ∈ N0
T ).

Lemma 4.4.6. The collection ΨT satisfies (4.3) with suppψT ,ν = ωT ,ν and

(4.9) 〈ψT ,ν , φT ,ν′〉L2(Ω) = δνν′ |ωT ,ν | (ν, ν′ ∈ N0
T ).

Proof. Clearly suppψT ,ν = ωT ,ν , so we are left to show the biorthogonality
condition. Fix some vertex ν ∈ N0

T . For a simplex Tν ∈ T with ν ∈ Tν , we
have

〈1Tν , φT ,ν〉L2(Ω) =
|Tν |
d+ 1

.

2Red-refinement is not uniquely defined for d ≥ 3, but the refined simplices at the corners of
the ‘parent simplex’ are uniquely determined which suffices for our goal.
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4.4. Construction of BT ∈ Lisc(WT ,W ′
T )

Let T∗,ν ∈ T∗ be the (unique) simplex with ν ∈ T∗,ν ⊂ Tν . From the refinement
equation satisfied by the nodal hats, and |T∗,ν | = 2−d|Tν |, it follows that

〈1T∗,ν , φT ,ν〉L2(Ω) = 〈1T∗,ν , φT∗,ν +
∑

ν 6=ν̃∈NT∗,ν

2−1φT∗,ν̃〉L2(Ω) =
2−d|Tν |
d+ 1

(1 + 2−1d),

〈1T∗,ν , φT ,ν′〉L2(Ω) = · · · = 2−d|Tν |
d+ 1

2−1 (ν 6= ν′ ∈ N0
Tν ).

From these relations (4.9) follows.

By Lemma 4.4.6 it has been established that the Fortin interpolator is uni-
formly bounded, and that DT is represented by a diagonal matrix. The next
proposition verifies the conditions imposed in Sect. 4.4.1 for the construction
of BT .

Proposition 4.4.7. LetUT := S −1,0
T , WT := span ΨT as constructed above,QT be

theL2(Ω)-orthogonal projector ontoUT ,ΘT := (Id−QT )ΨT , andBT := span ΘT .
Then WT ⊂ ZT := UT + BT ((4.6)), the conditions of Lemma 4.4.3 are satisfied, in
particular QT ψν = 1ων , and ΘT is a uniformly ‖hsT · ‖L2(Ω)-stable basis for BT as
required for Lemma 4.4.4.

Proof. The first statement follows from WT ⊂ L2(Ω). The first two conditions
of Lemma 4.4.3 are obviously valid. Concerning the third condition, the
inverse inequality ‖hT · ‖L2(Ω) . ‖ · ‖H1

0,γ(Ω)′ holds, for general d, on S −1,0
T∗ ,

see e.g. Lemma 2.3.4, and thus in particular on ZT . The propertyQT ψν = 1ων
is easily checked.

We are left to show that the collection of bubbles {θν := (Id−QT )ψν : ν ∈
N0
T } is ‖hsT · ‖L2(Ω)-stable. Pick some T ∈ T , then the normalized ‘bubble

element matrix’ satisfies

1
4 |T |

−1〈θν , θν′〉L2(T ) = |T |−1〈2d1ωT∗,ν − 1ωT ,ν , 2
d1ωT∗,ν′ − 1ωT ,ν′ 〉L2(T )

=

{
2d − 1 ν = ν′ ∈ N0

T ,

−1 ν 6= ν′ ∈ N0
T .

(4.10)

For d ≥ 2, this constant (symmetric) (d+1)×(d+1)matrix is strictly diagonally
dominant, and therefore positive definite. We conclude this proposition by∥∥∥∑
ν∈N0

T

hsT cνθν

∥∥∥2

L2(Ω)
=
∑
T∈T

h2s
T

∥∥∥∑
ν∈N0

T

cνθν

∥∥∥2

L2(T )
h
∑
T∈T

h2s
T

∑
ν∈N0

T

|cν |2‖θν‖2L2(T )

=
∑
ν∈N0

T

|cν |2
∑
T∈T
‖hsT θν‖2L2(T ) =

∑
ν∈N0

T

|cν |2‖hsT θν‖2L2(Ω).
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4. Problems of positive order

Remark 4.4.8. For d = 1, the bubbles arising from ΨT as given in (4.8) do not
form a ‖hsT ·‖L2(Ω)-stable collection. Instead, with T∗∗ � T being the two times
uniform red-refinement, one can consider ψT ,ν = 16

3 1ωT∗∗,ν −
1
31ωT ,ν for which

the statements of Lemma 4.4.6 and Proposition 4.4.7 are again valid.

Implementation

The matrix representation of preconditioner F−1
ΦT
GT (F ′ΦT )−1 is given by

GT = D−1
T BTD

−>
T .

With ΨT as constructed in (4.8), we find thatDT = F ′ΨTDT FΦT is given by

DT = diag{|ων | : ν ∈ N0
T }.

Given some BU
T ∈ Lisc(UT ,U ′T ) (recall that UT = S −1,0

T ), then by taking
BT as described in (4.7), we have

BT := F ′ΨT BT FΨT

= F ′ΨT (Q′T B
U
T QT + (Id−QT )′BB

T (Id−QT ))FΨT

= p>TB
U
T pT +BB

T ,

where, using that F−1
ΘT

(Id−QT )FΨT = Id by ΘT = (I −QT )ΨT ,

BU
T := F ′ΣT B

U
T FΣT , pT := F−1

ΣT
QT FΨT , BB

T := F ′ΘT B
B
T FΘT ,

Recall the canonical basis ΣT for UT from (4.2). Using QT ψν = 1ων shows
that

(pT )Tν =

{
1 if T ⊂ ων ,
0 else.

From (4.10), we infer that ‖hsT θν‖2L2(Ω) h |ων |1+ 2s
d . By making a harmless

modification to the definition of BB
T in (4.5) based on this equivalency, we

obtain that
BB
T = β1D

1+ 2s
d

T .

The matrixBU
T depends on the operator BU

T ∈ Lisc(UT ,U ′T ) that is selected.
The canonical choice is the Galerkin discretization operator on UT of a B ∈
Lisc(W ,W ′). The cost of the application ofGT is the cost of the application of
BU
T plus cost that scales linearly in #T .

4.4.3 A space WT that is enclosed in a space decomposable into the
continuous piecewise linears and bubbles

We follow the same program as in the previous subsection Sect. 4.4.2 but now
with UT := S 0,1

T , being the space of continuous piecewise linears.
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4.4. Construction of BT ∈ Lisc(WT ,W ′
T )

Other than in Sect. 4.4.2, we cannot apply Proposition 4.4.1 for QT being
the orthogonal projector onto UT , since with the current choice of this space
it will not be a local projector. As an alternative, we take QT to be some
biorthogonal projector. The question whether it enjoys an approximation
property is answered in the following lemma.

Lemma 4.4.9. For ν ∈ NT , so including vertices on γ, let φ̃ν ∈ L2(Ω) be such that

(4.11) ‖φ̃ν‖L2(Ω) . h
d/2
ν ,

∑
ν∈NT

φ̃ν = 1Ω, supp φ̃ν ⊂ B(ν;Rhν)

for some constant R > 0, and∣∣〈φ̃ν , φν′〉L2(Ω)

∣∣ h δνν′ |ων | (ν, ν′ ∈ N0
T ).

Denote ŨT := span{φ̃ν : ν ∈ N0
T }, so without vertices on γ. The biorthogonal

projectorQT : u 7→
∑
ν∈N0

T

〈u,φ̃ν〉L2(Ω)

〈φν ,φ̃ν〉L2(Ω)

φν , for which ranQT = S 0,1
T and ran(Id−

QT ) = Ũ
⊥L2(Ω)

T , satisfies the approximation property

‖h−1
T (Id−Q′T )v‖L(H1

0,γ(Ω),L2(Ω)) . 1,

and ‖QT ‖L(L2(Ω),L2(Ω)) . 1.

Proof. We use the same strategy as in Chapter 2. That is, we define a Scott-
Zhang type quasi-interpolator ΠT : H1(Ω) → L2(Ω), cf. [SZ90]. For every
ν ∈ NT , select a (d− 1)-face eν of some T ∈ T with ν ∈ eν and eν ⊂ γ if ν ∈ γ.
We define ΠT by

ΠT u :=
∑
ν∈NT

gT ,ν(u)φ̃T ,ν , gT ,ν(u) :=

 
eν

u ds.

Since gT ,ν(1) = 1, using the properties from (4.11) one can show, cf. proof
of Theorem 2.5.1 for details, that

‖h−1
T (Id−ΠT )(u)‖L2(Ω) . ‖u‖H1(Ω) (u ∈ H1(Ω)).

By construction, gT ,ν(u) = 0 for ν on γ and u ∈ H1
0,γ(Ω), and therefore

ran ΠT |H1
0,γ(Ω) ⊂ ŨT . Finally, combinedwithL2(Ω)-boundedness and locality

of Q′T , and the fact that Q′T reproduces ŨT , we find that

‖h−1
T (Id−Q′T )v‖L2(Ω) = inf

wT ∈ŨT

‖h−1
T (Id−Q′T )(v − wT )‖L2(Ω)

. ‖h−1
T (Id−ΠT )(v)‖L2(Ω) . ‖v‖H1

0,γ(Ω) (v ∈ H1
0,γ(Ω)).

The last statement can be proven similarly as in the proof of Theorem 4.3.1.
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4. Problems of positive order

As before, let T∗ � T denote a uniform red-refinement of T , and for any
T ∈ T and ν ∈ NT , let T∗,ν ∈ T∗ denote the simplex with ν ∈ T∗,ν ⊂ T . For
ν ∈ NT , so including boundary vertices, define

φ̃T ,ν := 1
d+1

∑
T∈T
T⊂ων

(
1T + d21+d

d+1 1T∗,ν − 21+d

d+1

∑
ν′∈NT
ν′ 6=ν

1T∗,ν′
)
∈ S −1,0

T∗ .

These functions satisfy (4.11), and

〈φ̃T ,ν , φT ,ν′〉L2(Ω) = δνν′(d+ 1)−1|ωT ,ν |,

and so determine a valid biorthogonal projector QT via Lemma 4.4.9.
For T∗∗ � T∗ a uniform red-refinement of T∗, we define ΘT := {θT ,ν : ν ∈

N0
T } by

θT ,ν := 2d+2

d+2

(
2d1ωT∗∗,ν − 1ωT∗,ν

)
.

Since red-refinement subdivides each simplex into d subsimplices, one infers
that

(4.12) BT := span ΘT ⊥L2(Ω) S −1,0
T∗ ,

so that in particular BT ⊂ kerQT .
Defining ΨT := {ψT ,ν : ν ∈ N0

T } by

ψT ,ν := φT ,ν + θT ,ν ,

calculations as in the proof of Lemma 4.4.6 show the following result.

Lemma 4.4.10. The collection ΨT satisfies (4.3) with suppψT ,ν = ωT ,ν and

〈ψT ,ν , φT ,ν′〉L2(Ω) = δνν′(d+ 1)−1|ωT ,ν | (ν, ν′ ∈ N0
T ).

So the Fortin interpolator is uniformly bounded, andDT is represented by
a diagonal matrix. Next we verify the conditions imposed in Sect. 4.4.1 for the
construction of BT .

Proposition 4.4.11. Let UT , QT , BT , and WT := span ΨT be defined as above.
Then WT ⊂ ZT := UT + BT ((4.6)), the conditions of Lemma 4.4.3 are satisfied,
in particular ΦT = QT ΨT and so ΘT = (Id − QT )ΨT , and lastly, ΘT is an
‖hsT · ‖L2(Ω)-orthogonal basis for BT as required for Lemma 4.4.4.

Proof. The first statement is obviously true. We have already verified the
first two conditions of Lemma 4.4.3. The third condition follows from this
inverse inequality onS −1,1

T∗∗ (see e.g. (2.44)), andΦT = QT ΨT is a consequence
of (4.12). The last statement follows from | supp θν ∩ supp θν′ | = 0 when
ν 6= ν′.
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4.5. Extensions

Implementation

Suppose that we have some operator BU
T ∈ Lisc(UT ,U ′T ) uniformly (here

UT = S 0,1
T ). The matrix representation of the preconditioner GT , with BT

from (4.7) and the bases from Proposition 4.4.11, becomes

GT = D−1
T BTD

−>
T ,

BT := F ′ΨT (Q′T B
U
T QT + (Id−QT )′BB

T (Id−QT ))FΨT

= BU
T +BB

T ,

with these matrices given by

DT := F ′ΨTDT FΦT = diag
{ |ων |
d+1

: ν ∈ N0
T
}
,

BU
T := F ′ΦT B

U
T FΦT , BB

T := F ′ΘT B
B
T FΘT = β1D

1+ 2s
d

T ,

where we used that F−1
ΦT
QT FΨT = Id and F−1

ΘT
(Id − QT )FΨT = Id, and

where, based on ‖hsT θν‖2L2(Ω) h |ων |
1+ 2s

d , we made an harmless modification
to the operator BB

T from Lemma 4.4.4.

4.5 Extensions

4.5.1 Higher order

Add the superscript 1 to the spaces defined so far, e.g. write V 1
T for S 0,1

T with
its nodal basisΦ1

T , and similarly useG1
T for the associated preconditioner from

either Sect. 4.4.2 or Sect. 4.4.3.
We will now consider a (family of) higher order continuous piecewise

polynomials, i.e. for some ` ∈ {2, 3, . . . } let

VT = S 0,`
T := {u ∈ H1

0,γ(Ω): u|T ∈ P` (T ∈ T )} ⊂ V .

Because we have an inverse inequality on VT , we can construct a uniform pre-
conditioner GT ∈ Lis(V ′T ,VT ) using an additive subspace correction method.
That is, we consider the overlapping decomposition VT = V 1

T + V 2
T , where

these spaces are given by

VT = (VT , ‖ · ‖V ), V 1
T = (V 1

T , ‖ · ‖V ), V 2
T = (VT , ‖h−sT · ‖L2(Ω)).

Proposition 4.5.1. For k ∈ {1, 2}, let GkT ∈ Lisc((V k
T )′,V k

T ), then for IkT : V k
T →

VT the trivial embedding, we find that GT :=
∑2
k=1 I

k
TG

k
T (IkT )′ ∈ Lisc(V ′T ,VT ),

with

‖GT ‖L(V ′T ,VT ) . max
k=1,2

‖GkT ‖L((V k
T )′,V k

T ),

‖<(GT )−1‖L(VT ,V ′T ) . max
k=1,2

‖<(GkT )−1‖L(V k
T ,(V

k
T )′).

79



4. Problems of positive order

Proof. We have the (standard) inverse inequality ‖u‖V . ‖h−sT u‖L2(Ω) for u ∈
VT . Let u ∈ VT , then for any (u1, u2) ∈ V 1

T × V 2
T with u1 + u2 = uwe find

‖u‖V ≤ ‖u1‖V + ‖u2‖V . ‖u1‖V + ‖h−sT u2‖L2(Ω).

Denote Π1
T : H1

0,γ(Ω)→ V 1
T for the Scott-Zhang interpolator ([SZ90]). For u ∈

VT , take u1 = Π1
T u ∈ V 1

T and u2 = u − Π1
T u ∈ V 2

T , then from approximation
properties of the interpolator we infer

‖u1‖V + ‖h−sT u2‖L2(Ω) ≤ ‖u‖V + ‖u2‖V + ‖h−sT u2‖L2(Ω)

. ‖u‖V + ‖h−sT u2‖L2(Ω) . ‖u‖V .

Since apparently for u ∈ VT ,

‖u‖V h inf
{
‖u1‖V + ‖h−sT u2‖L2(Ω) : u1 ∈ V1, u2 ∈ V2, u1 + u2 = u

}
,

the result follows from subspace correction methods theory, e.g. [Osw94].

On the spaceV 1
T we can apply the operatorG1

T constructed earlier, whereas
on V 2

T a simple scaling operator suffices. Denote N0,`
T for the set of canonical

Lagrange evaluation points of S 0,`
T , and let Φ`T = {φ`ν : ν ∈ N0,`

T } be the
corresponding nodal basis. For some constant β2 > 0, define an operator
RT : V 2

T → (V 2
T )′ by

(RT u)(w) := β−1
2

∑
ν∈N0,`

T

‖h−sT φ`ν‖2L2(Ω)u(ν)w(ν).

Proposition 4.5.2. The operator G2
T := R−1

T satisfies G2
T ∈ Lisc((V 2

T )′,V 2
T ) uni-

formly.

Proof. It is not hard to see that the result follows if Φ`T is a (uniformly) ‖h−sT ·
‖L2(Ω)-stable basis. Writing N0,`

T := N0,`
T ∩ T , this stability can be deduced

from∥∥∥h−sT ∑
ν∈N0,`

T

cνφ
`
ν

∥∥∥2

L2(Ω)
=
∑
T∈T

h−2s
T

∥∥∥∑
ν∈N0,`

T

cνφ
`
ν

∥∥∥2

L2(T )
h
∑
T∈T

h−2s
T

∑
ν∈N0,`

T

|cν |2‖φ`ν‖2L2(T )

=
∑

ν∈N0,`
T

|cν |2‖h−sT φ`ν‖2L2(Ω).

Implementation

Equipping VT and V 2
T with Φ`T , and V 1

T with Φ1
T , the matrix representation of

GT :=
∑2
k=1 I

k
TG

k
T (IkT )′ ∈ Lisc(V ′T ,VT ) is given by

GT = qTG
1
T q
>
T +G2

T ,
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4.5. Extensions

withG1
T either from Sect. 4.4.2 or Sect. 4.4.3,

(qT )ν′ν = φ`ν′(ν) (ν′ ∈ N0,`
T , ν ∈ N0,1

T ).

and
G2
T = β2 diag{‖h−sT φ`ν‖−2

L2(Ω)
: ν ∈ N0,`

T }.

4.5.2 Manifolds
Let Γ be a compact d-dimensional Lipschitz, piecewise smoothmanifold in Rd

′

for some d′ ≥ d with or without boundary ∂Γ. For some closed measurable
γ ⊂ ∂Γ and s ∈ [0, 1], let

V := [L2(Γ), H1
0,γ(Γ)]s,2, W := V ′.

We assume that Γ is given as the closure of the disjoint union of ∪pi=1χi(Ωi),
with, for 1 ≤ i ≤ p, χi : Rd → Rd

′ being some smooth regular parametrization,
and Ωi ⊂ Rd an open polytope. W.l.o.g. assuming that for i 6= j, Ωi ∩ Ωj = ∅,
we define

χ : Ω := ∪pi=1Ωi → ∪pi=1χi(Ωi) by χ|Ωi = χi.

Let T be a family of conforming partitions T of Γ into ‘panels’ such that,
for 1 ≤ i ≤ p, χ−1(T ) ∩ Ωi is a uniformly shape regular conforming partition
of Ωi into d-simplices (that for d = 1 satisfies a uniformK-mesh property). We
assume that γ is a (possibly empty) union of ‘faces’ of T ∈ T (i.e., sets of type
χi(e), where e is a (d− 1)-dimensional face of χ−1

i (T )).
The usual lowest order boundary element spaces are defined by

S −1,0
T := {u ∈ L2(Γ) : u ◦ χ|χ−1(T ) ∈ P0 (T ∈ T )}, ,
S 0,1
T := {u ∈ H1

0,γ(Γ) : u ◦ χ|χ−1(T ) ∈ P1 (T ∈ T )},

with their canonical bases denoted as ΣT = {1T : T ∈ T } and ΦT = {φν : ν ∈
N0
T }, respectively, with N0

T the vertices of T not on γ.
The construction of the preconditioners in the domain case relied on the

explicit construction of a collection ΨT biorthogonal to ΦT , and on the ex-
plicit computation of a (bi)orthogonal projection of WT := span ΨT onto ei-
ther S −1,0

T or S 0,1
T , where orthogonality was interpreted w.r.t. the L2(Ω)-

scalar product. Both the construction of ΨT and the computation of the
(bi)orthogonal projection could be reduced to computations on the individual
elements in the partition, which yielded explicit expressions.

When attempting to transfer everything to the manifold case, a problem
is the appearance of a generally non-constant weight x 7→|∂χ(x)| in the L2(Γ)-
scalar product

〈u, v〉L2(Γ) =

ˆ
Ω

u(χ(x))v(χ(x))|∂χ(x)| dx.
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To dealwith this, following Sect. 2.3.2, onL2(Γ)wedefine an additional ‘mesh-
dependent’ scalar product

〈u, v〉T :=
∑
T∈T

|T |
|χ−1(T )|

ˆ
χ−1(T )

u(χ(x))v(χ(x))dx.

which is constructed by replacing on each χ−1(T ), the Jacobian |∂χ| by its
average |T |

|χ−1(T )| over χ
−1(T ), and interpret (bi)orthogonality with respect to

this scalar product.
Now all steps in the construction of the preconditioners carry over, and yield

preconditioners for the manifold case whose implementations are exactly as
described in Sect. 4.4.2 and Sect. 4.4.3, where the patch volumes |ωT ,ν | now
should be read as the volumes of the patches on Γ.

To prove that the constructed preconditioners are indeed uniform precondi-
tioners requires additional work due to the use of the mesh-dependent scalar
product. We refer to Chapter 2 for details. The key ingredient is that not only
the norm associated to 〈·, ·〉L2(Γ) is uniformly equivalent to ‖ · ‖L2(Γ), but also
that 〈·, ·〉L2(Γ) and 〈·, ·〉T are close in the sense that

|〈v, u〉T − 〈v, u〉L2(Γ)| . ‖hT v‖L2(Γ)‖u‖L2(Γ) (v, u ∈ L2(Γ)).

4.6 Numerical experiments

Let Γ = ∂[0, 1]3 ⊂ R3 be the boundary of the unit cube, V := H1/2(Γ),
W := H−1/2(Γ), and VT = S 0,`

T ⊂ V the trial space of continuous piecewise
polynomials of degree `w.r.t. a partition T . We shall evaluate preconditioning
of essentially a discretized Hypersingular Integral operator.

The Hypersingular Integral operator Ã ∈ L(V ,V ′) is only semi-coercive,
since it has a non-trivial kernel equal to span{1}. Solving Ãu = f for f
with f(1) = 0 is, however, equivalent to solving Au = f with A given by
(Au)(v) = (Ãu)(v) + α〈u,1〉L2(Γ)〈v,1〉L2(Γ) for some α > 0. This operator
A is in Lisc(V ,V ′), and we shall consider preconditioning discretizations
AT ∈ Lisc(VT ,V ′T ) ofA. By comparing different values numerically, we found
α = 0.05 to give good results in our examples.

As opposite order operator B we take the Weakly Singular integral opera-
tor, which on compact 2-dimensionalmanifolds is known to be inLisc(W ,W ′).
We will compare preconditioners GT based on the discretizations BU

T ∈
Lisc(UT ,U ′T )ofB, forUT = S −1,0

T orUT = S 0,1
T equippedwith the canonical

bases ΣT = {1T : T ∈ T } and ΦT = {φν : ν ∈ NT }, respectively, cf. Sect. 4.4.2
or Sect. 4.4.3.

For ` = 1 (the lowest order case) and VT being equipped with ΦT , the
matrix representation of the preconditioner GT reads either as (Sect. 4.4.2)

GT = G−1,0
T = D−1

T
(
p>TB

U
T pT + β1D

3/2
T
)
D−1
T

82



4.6. Numerical experiments

whereBU
T = (BΣT )(ΣT ),DT = diag{|ων | : ν ∈ NT }, (pT )Tν =

{
1 if T ⊂ ων ,
0 otherwise,

and β1 > 0 is some constant, or as (Sect. 4.4.3)

GT = G0,1
T = D−1

T
(
BU
T + β1D

3/2
T
)
D−1
T

where BU
T = (BΦT )(ΦT ), DT = diag{| ωνd+1 | : ν ∈ NT }, and β1 > 0 is some

constant.
For ` > 1 denote the above GT by either G1,−1,0

T or G1,0,1
T , then, with

VT = S 0,`
T being equipped with the standard nodal basis {φ`ν : ν ∈ N `

T }, the
matrix representation of the preconditioner GT ∈ Lisc((S

0,`
T )′,S 0,`

T ) from
Sect. 4.5.1 is

G∗T = qTG
1,∗
T q

>
T + β2 diag{‖h−

1
2

T φ`ν‖−2
L2(Ω)

: ν ∈ N `
T },

where either ∗ = −1, 0 or ∗ = 0, 1, and (qT )ν′ν = φ`ν′(ν) (ν′ ∈ N `
T , ν ∈ N1

T ).
The (full) matrix representations of the discretized singular integral opera-

torsAT andBU
T are calculated using the BEM++ software package [ŚBA+15].

Condition numbers are determined using Lanczos iteration with respect to
|||·||| := ‖A

1
2

T · ‖.

4.6.1 Uniform refinements

Consider a conforming triangulation T1 of Γ consisting of 2 triangles per side,
so 12 triangles with 8 vertices in total. We let T be the sequence {Tk}k≥1 of
uniform newest vertex bisections, where Tk � Tk−1 is found by bisecting each
triangle from Tk−1.

With VT = S 0,1
T , Table 4.1 compares the condition numbers for the pre-

conditioned system given by Sect. 4.4.2 (UT = S −1,0
T ) and by Sect. 4.4.3

(UT = S 0,1
T ). We see that the condition numbers remain nicely bounded,

and that both choices give similar condition numbers.
Insteadof using the ‘fullmatrices’, we can consider compressedhierarchical

matrices to approximate the stiffness matrices AT and BU
T for finer partitions.

Table 4.2 gives the condition numbers, again for uniform refinements, but now
using hierarchical matrices based on adaptive cross approximation [Hac99,
Beb00]. We see that even for large systems, our preconditioner gives very
satisfactory results.

Finally, consider the (higher order) trial space VT = S 0,3
T . Table 4.3 gives

condition numbers for the preconditioned system, using themethoddescribed
in Sect. 4.5.1.
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Table 4.1. Spectral condition numbers of the preconditioned hypersingular
system, using uniform refinements, discretized by continuous piecewise lin-
ears S 0,1

T , with α = 0.05. The preconditionersG−1,0
T andG0,1

T are constructed
using the single layer operator discretized on UT = S −1,0

T (Sect. 4.4.2) and
UT = S 0,1

T (Sec 4.4.3), respectively, where have used β1 = 0.65 in the first case
and β1 = 0.34 in the second case.

dofs κS(AT ) κS(G−1,0
T AT ) κS(G0,1

T AT )

14 3.0 2.71 2.64
50 7.1 2.36 2.37

194 14.2 2.25 2.26
770 28.7 2.30 2.27

3074 57.8 2.29 2.27
12290 115.7 2.29 2.27
49154 231.4 2.30 2.27

Table 4.2. In the same setting as Table 4.1, but using compressed hierarchical
matrices.

dofs κS(AT ) κS(G−1,0
T AT ) κS(G0,1

T AT )

12290 115.6 2.29 2.27
24578 168.7 2.24 2.24
49154 231.3 2.30 2.27
98306 336.9 2.25 2.25

196610 461.7 2.30 2.28
393218 671.9 2.27 2.28
786434 751.6 2.30 2.30

Table 4.3. Spectral condition numbers of the preconditioned hypersingular
system, usinguniformrefinements, discretizedby continuouspiecewise cubics
S 0,3
T , with α = 0.05. The higher order preconditioners G−1,0

T and G0,1
T are

constructed as described in Sect. 4.5.1, by using the preconditioners from
Table 4.1 with constants β1 = 0.65, β2 = 0.065 in the first case and β1 =
0.34, β2 = 0.065 in the second case.

dofs κS(AT ) κS(G−1,0
T AT ) κS(G0,1

T AT )

56 19.49 4.75 4.72
218 36.27 5.18 5.17
866 74.78 6.23 6.20

3458 150.73 6.55 6.48
13826 301.97 6.63 6.57
55298 603.86 6.65 6.58
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Table 4.4. Spectral condition numbers of the preconditioned hypersingular
system discretized by S 0,1

T using local refinements at each of the eight cube
corners. Both preconditioners G−1,0

T and G0,1
T are constructed with same

parameters as inTable 4.1, andare comparedagainst diagonal preconditioning.
The second column is defined by hT ,min := minT∈T hT .

dofs hT ,min κS(diag(AT )−1AT ) κS(G−1,0
T AT ) κS(G0,1

T AT )

8 1.4 · 100 2.15 2.83 2.68
14 1.0 · 100 2.79 2.71 2.64

314 1.1 · 10−2 12.11 2.21 2.20
626 1.2 · 10−4 13.18 2.31 2.30
938 1.3 · 10−6 13.43 2.36 2.36

1250 1.4 · 10−8 13.51 2.39 2.38
1562 1.6 · 10−10 13.53 2.41 2.39
1850 2.5 · 10−12 13.55 2.41 2.40

4.6.2 Local refinements
Here we take T to be the sequence {Tk}k≥1 of locally refined triangulations,
where Tk � Tk−1 is constructed using conforming newest vertex bisection to
refine all triangles in Tk−1 that touch a corner of the cube.

Table 4.4 gives condition numbers of the preconditioned hypersingular sys-
temdiscretized by continuous piecewise linears, i.e.VT = S 0,1

T . The condition
numbers remain bounded under local refinements, confirming uniformity of
the preconditioner w.r.t. T.

4.7 Conclusion

Using the framework of operator preconditioning, we have constructed uni-
form preconditioners for elliptic operators of orders 2s ∈ [0, 2] discretized by
continuous finite (or boundary) elements. The evaluation of the precondition-
ers requires the application of an opposite order operator plus minor cost of
linear complexity. Compared to earlier proposals, both the construction of a
so-called dual-mesh and the inversion of a non-diagonal matrix are avoided,
and our results are valid without constraints on the mesh-grading. For lowest
order finite elements the computed condition numbers of the preconditioned
system are below 2.5.
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5 The simplest case

5.1 Introduction

This chapter deals with the construction of uniform preconditioners for nega-
tive and positive order operators, discretized by continuous piecewise polyno-
mial trial spaces, using the framework of ‘operator preconditioning’ [Hip06],
see also [SW98, Ste02, BC07, HJHUT20].

For some d-dimensional closed domain (or manifold) Ω and an s ∈ [0, 1],
we consider the (fractional) Sobolev space Hs(Ω) and its dual that we denote
by H−s(Ω). Let (ST )T ∈T be a family of continuous piecewise polynomials of
some fixed degree ` w.r.t. uniformly shape regular, possibly locally refined,
partitions.

Given some families of uniformly boundedly invertible operators

AT :
(
ST , ‖ · ‖H−s(Ω)

)
→
(
ST , ‖ · ‖H−s(Ω)

)′
,

BT :
(
ST , ‖ · ‖Hs(Ω)

)
→
(
ST , ‖ · ‖Hs(Ω)

)′
,

we are interested in constructing a preconditioner for AT using operator pre-
conditioning with BT , and vice versa. To this end, we introduce a uniformly
boundedly invertible operatorDT :

(
ST , ‖·‖H−s(Ω)

)
→
(
ST , ‖·‖Hs(Ω)

)′, yield-
ing preconditioned systemsD−1

T BT (D′T )−1AT and (D′T )−1ATD
−1
T BT that are

uniformly boundedly invertible.
In Chapters 2 and 4 we already constructed such preconditioners in a more

general setting where different ansatz spaces were used to define AT and BT .
The setting studied in the current work, however, allows for preconditioners
with a remarkably simple implementation.

A typical setting is that for some A : H−s(Ω) → Hs(Ω) and B : Hs(Ω) →
H−s(Ω), both boundedly invertible and coercive, it holds that (AT u)(v) :=
(Au)(v) and (BT u)(v) := (Bu)(v) with u, v ∈ ST . An example for s = 1

2 is
thatA is the Single Layer Integral operator andB is theHypersingular Integral
operator. For this case, continuity of piecewise polynomial trial functions
is required for discretizing B, but not for A, for which often discontinuous
piecewise polynomials are employed. Nevertheless, when the solution of
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the Single Layer Integral equation is expected to be smooth, e.g., when Ω is a
smoothmanifold, then it is advantageous to take an ansatz space of continuous
(or even smoother) functions also for A.

An obvious choice for DT would be to consider (DT u)(v) := 〈u, v〉L2(Ω).
However, a problem becomes apparent when one considers the matrix repre-
sentation DT of DT in the standard basis being the mass matrix: the inverse
matrixD−1

T , that appears in the preconditioned system, is densely populated.
In view of application cost, this inverse matrix has to be approximated, where
it generally can be expected that, in order to obtain a uniform preconditioner,
approximation errors have to decrease with a decreasing (minimal) mesh size,
which will be confirmed in a numerical experiment. To circumvent this issue,
we will introduce a DT that has a diagonal matrix representation, so that its
inverse can be exactly evaluated.

5.1.1 Notation
In this work, by λ . µwemean that λ can be bounded by amultiple of µ, inde-
pendently of parameterswhichλ andµmaydependon,with the sole exception
of the space dimension d, or in the manifold case, on the parametrization of
the manifold that is used to define the finite element spaces on it. Obviously,
λ & µ is defined as µ . λ, and λ h µ as λ . µ and λ & µ.

For normed linear spaces Y and Z , in this chapter for convenience over R,
L(Y ,Z ) will denote the space of bounded linear mappingsY → Z endowed
with the operator norm ‖ · ‖L(Y ,Z ). The subset of invertible operators in
L(Y ,Z ) with inverses in L(Z ,Y ) will be denoted as Lis(Y ,Z ).

For Y a reflexive Banach space and C ∈ L(Y ,Y ′) being coercive, i.e.,

inf
06=y∈Y

(Cy)(y)

‖y‖2Y
> 0,

both C and <(C) := 1
2 (C + C ′) are in Lis(Y ,Y ′) with

‖<(C)‖L(Y ,Y ′) ≤ ‖C‖L(Y ,Y ′),

‖C−1‖L(Y ′,Y ) ≤ ‖<(C)−1‖L(Y ′,Y ) =
(

inf
06=y∈Y

(Cy)(y)

‖y‖2Y

)−1

.

The subset of coercive operators in Lis(Y ,Y ′) is denoted as Lisc(Y ,Y ′).
If C ∈ Lisc(Y ,Y ′), then C−1 ∈ Lisc(Y ′,Y ) and ‖<(C−1)−1‖L(Y ,Y ′) ≤
‖C‖2L(Y ,Y ′)‖<(C)−1‖L(Y ′,Y ).

Given a family of operators Ci ∈ Lis(Yi,Zi) (Lisc(Yi,Zi)), we will write
Ci ∈ Lis(Yi,Zi) (Lisc(Yi,Zi)) uniformly in i, or simply ‘uniform’, when

sup
i

max(‖Ci‖L(Yi,Zi), ‖C
−1
i ‖L(Zi,Yi)) <∞,

or
sup
i

max(‖Ci‖L(Yi,Zi), ‖<(Ci)
−1‖L(Zi,Yi)) <∞.
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5.2 Construction of DT in the domain case

For some d-dimensional domain Ω and an s ∈ [0, 1], we consider the Sobolev
spaces

Hs(Ω) := [L2(Ω), H1(Ω)]s,2, H−s(Ω) := Hs(Ω)′,

which form the Gelfand triple Hs(Ω) ↪→ L2(Ω) ' L2(Ω)′ ↪→ H−s(Ω).

Remark 5.2.1. In this work, for convenience we restrict ourselves to Sobolev
spaces with positive smoothness index which do not incorporate homoge-
neous Dirichlet boundary conditions and their duals. The proofs given below
can however be extended to the setting with boundary conditions, see the
arguments found in Chapters 2 and 4.

Let (T )T ∈T be a family of conforming partitions of Ω into (open) uniformly
shape regular d-simplices. Thanks to the conformity and the uniform shape
regularity, for d > 1 we know that neighbouring T, T ′ ∈ T , i.e. T ∩ T ′ 6= ∅,
have uniformly comparable sizes. For d = 1, we impose this uniform ‘K-mesh
property’ explicitly.

Fix ` > 0. For T ∈ T, let ST denote the space of continuous piecewise
polynomials of degree `w.r.t. T , i.e.,

ST := {u ∈ H1(Ω) : u|T ∈ P` (T ∈ T )}.

Additionally, for r ∈ [−1, 1], we will write ST,r as shorthand notation for the
normed linear space

(
ST , ‖ · ‖Hr(Ω)

)
.

Denote NT for the set of the usual Lagrange evaluation points of ST , and
equip the latter space with ΦT = {φT,ν : ν ∈ NT }, being the canonical nodal
basis defined by φT,ν(ν′) := δνν′ (ν, ν′ ∈ NT ). For T ∈ T , set hT := |T |1/d and
letNT := T ∩NT be the set of evaluation points in T . We will omit notational
dependence on T if it is clear from the context, e.g., we will simply write φν .

5.2.1 Operator preconditioning

Given some family of opposite order operators AT ∈ Lisc(ST,−s, (ST,−s)′)
and BT ∈ Lisc(ST,s, (ST,s)′), both uniformly in T ∈ T, we are interested in
constructing optimal preconditioners for both AT and BT , using the idea of
opposite order preconditioning ([Hip06]).

That is, if onehas anadditional familyof operatorsDT ∈ Lis(ST,−s, (ST,s)′)
uniformly in T ∈ T, then uniformly preconditioned systems for AT and BT
are given by

(5.1)
D−1
T BT (D′T )−1AT ∈Lis(ST,−s,ST,−s),

(D′T )−1ATD
−1
T BT ∈Lis(ST,s,ST,s),
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see the following diagram:

ST,−s (ST,−s)′

(ST,s)′ ST,s

AT

(D′T )−1D−1
T

BT

.

In the followingwe shall be concernedwith constructing a suitable familyDT .

An obvious but unsatisfactory choice for DT
An option would be to consider (DT u)(v) := 〈u, v〉L2(Ω) (u, v ∈ ST ), being
uniformly in L(ST,−s, (ST,s)′). For showing boundedness of its inverse, let
QT be the L2(Ω)-orthogonal projector onto ST then

‖D−1
T ‖

−1
L((ST,s)′,ST,−s)

= inf
0 6=u∈ST,−s

sup
06=v∈Hs(Ω)

〈u, v〉L2(Ω)

‖u‖H−s(Ω)‖QT v‖Hs(Ω)

≥ ‖QT ‖−1
L(Hs(Ω),Hs(Ω)),

As follows fromProposition 2.2.3, the converse is also true, i.e., uniformbound-
edness of ‖D−1

T ‖L((ST,s)′,ST,−s) is actually equivalent to uniform boundedness
of ‖QT ‖L(Hs(Ω),Hs(Ω)).

This uniform boundedness of ‖QT ‖L(Hs(Ω),Hs(Ω)) is well-known for fami-
lies of quasi-uniform, uniformly shape regular conforming partitions of Ω into
say d-simplices. It has also been demonstrated for families of locally refined
partitions, for d = 2 including those that are generated by the newest ver-
tex bisection (NVB) algorithm, see [Car02, GHS16, DST20]. On the other
hand, in [BY14] a one-dimensional counterexample was presented in which
the L2(Ω)-orthogonal projector on a family of sufficiently strongly graded, al-
though uniform K meshes, is not H1(Ω)-stable. Thus, in any case uniform
H1(Ω)-stability cannot hold without assuming some sufficiently mild grading
of the meshes.

Aside from this latter theoretical shortcoming, more importantly, there is
a computational problemwith the current choice ofDT . The matrix represen-
tation of DT w.r.t. ΦT is the ‘mass matrix’ DT := 〈ΦT ,ΦT 〉L2(Ω). Its inverse
D−1
T , appearing in the preconditioner, is densely populated, and therefore has

to be approximated, where generally the error in such approximations has to
decrease with a decreasing (minimal) mesh-size in order to arrive at a uniform
preconditioner.

5.2.2 Constructing a practical DT
To avoid the preceding problems, we shall constructDT ∈ Lis(ST,−s, (ST,s)′)
with a diagonal matrix representation. To this end, we require some auxiliary
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space S̃T ⊂ H1(Ω) equipped with a local basis Φ̃T that is L2(Ω)-biorthogonal
to ΦT and that has ‘approximation properties’. To be precise, let Φ̃T := {φ̃ν ∈
H1(Ω) : ν ∈ NT } be some collection that satisfies:

(5.2)
〈φ̃ν , φν′〉L2(Ω) = δνν′〈1, φν〉L2(Ω),

∑
ν∈NT

φ̃ν = 1Ω,

‖φ̃ν‖Hk(Ω) . ‖φν‖Hk(Ω)

(
k ∈ {0, 1}

)
, supp φ̃ν ⊆ suppφν .1

We will takeDT := I ′T D̃T with D̃T and IT being defined and analyzed in the
next two theorems.

Theorem 5.2.2. The operator D̃T : ST,−s → (S̃T,s)′, defined by (D̃T u)(v) :=

〈u, v〉L2(Ω), satisfies D̃T ∈ Lis(ST,−s, (S̃T,s)′) uniformly in T ∈ T.

Proof. This proof largely follows Sect. 2.3, but because here we consider a
Sobolev space Hs(Ω) that does not incorporate homogeneous boundary con-
ditions, it allows for an easier proof.

From the assumptions (5.2), it follows that the biorthogonal ‘Fortin’ projec-
tor PT : L2(Ω) → H1(Ω) onto S̃T with ran(Id − PT ) = S

⊥L2(Ω)

T exists, and is
given by

PT u =
∑
ν∈NT

〈u, φν〉L2(Ω)

〈φ̃ν , φν〉L2(Ω)

φ̃ν .

Let T ∈ T , by (5.2) and the fact that 〈1, φν〉L2(Ω) h ‖φν‖2L2(Ω), we find for
k ∈ {0, 1}

(5.3) ‖PT u‖Hk(T ) .
∑
ν∈NT

‖φ̃ν‖Hk(T )

‖φν‖L2(Ω)
‖u‖L2(suppφν) . h

−k
T ‖u‖L2(ωT (T )),

with ωT (T ) :=
⋃
{ν∈NT } suppφν . This shows supT ∈T ‖PT ‖L(L2(Ω),L2(Ω)) <∞.

From the above inequality, and
∑
ν∈NT φ̃ν = 1, we deduce that

‖(Id− PT )u‖H1(T ) = inf
p∈P0

‖(Id− PT )(u− p)‖H1(T )

. inf
p∈P0

‖u− p‖H1(T ) + h−1
T ‖u− p‖L2(ωT (T ))

. inf
p∈P0

h−1
T ‖u− p‖L2(ωT (T )) + |u|H1(T )

. |u|H1(ωT (T )),

with the last step following from the Bramble-Hilbert lemma. We conclude
that supT ∈T ‖PT ‖L(H1(Ω),H1(Ω)) < ∞, and consequently by the Riesz-Thorin

1This last condition can be replaced by φ̃ν having (uniformly) local support.
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interpolation theorem, that

sup
T ∈T
‖PT ‖L(Hs(Ω),Hs(Ω)) <∞.

This latter property guarantees that D̃T is uniformly boundedly invertible:

‖D̃T ‖L(ST,−s,(S̃T,s)′)
= sup

0 6=u∈ST,−s

sup
06=v∈S̃T,s

〈u, v〉L2(Ω)

‖u‖H−s(Ω)‖v‖Hs(Ω)
≤ 1,

‖D̃−1
T ‖

−1

L((S̃T,s)′,ST,−s)
= inf

0 6=u∈ST,−s
sup

06=v∈S̃T,s

〈u, v〉L2(Ω)

‖u‖H−s(Ω)‖v‖Hs(Ω)

= inf
0 6=u∈ST,−s

sup
06=v∈Hs(Ω)

〈u, v〉L2(Ω)

‖u‖H−s(Ω)‖PT v‖Hs(Ω)

≥ ‖PT ‖−1
L(Hs(Ω),Hs(Ω)).

Theorem 5.2.3. For IT : ST,s → S̃T,s being the bĳection given by IT φν = φ̃ν

(ν ∈ NT ), it holds that IT ∈ Lis(ST,s, S̃T,s) uniformly in T ∈ T.

Proof. Note that we may write

IT u =
∑
ν∈NT

〈u, φ̃ν〉L2(Ω)

〈φν , φ̃ν〉L2(Ω)

φ̃ν and I−1
T u =

∑
ν∈NT

〈u, φν〉L2(Ω)

〈φ̃ν , φν〉L2(Ω)

φν .

Equivalently to (5.3), we see for k ∈ {0, 1} that

‖IT u‖Hk(T ) .
∑
ν∈NT

‖φ̃ν‖Hk(T )‖φ̃ν‖L2(Ω)

‖φν‖2L2(Ω)

‖u‖L2(suppφν) . h
−k
T ‖u‖L2(ωT (T )).

Following the same arguments as in the proof of Theorem 5.2.2, using that
IT 1 = 1, then reveals that IT is uniformly bounded. Uniformly boundedness
of I−1
T follows similarly.

As announced earlier, we define DT ∈ L(ST,−s, (ST,s)′) by DT := I ′T D̃T ,
so (DT u)(v) := 〈u, IT v〉L2(Ω) (u, v ∈ ST ). Combining the previous theorems
gives the following corollary.

Corollary 5.2.4. The operator DT is in Lis(ST,−s, (ST,s)′) uniformly in T ∈ T.

Remark 5.2.5. The matrix representation of DT w.r.t. ΦT given by

DT = 〈ΦT , IT ΦT 〉L2(Ω) = diag{〈1, φν〉L2(Ω) : ν ∈ NT },

which is diagonal and therefore easily invertible. The matrix DT is known as
the lumped mass matrix.
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5.2. Construction of DT in the domain case

Remark 5.2.6. The operator DT depends merely on the existence of a biorthog-
onal basis Φ̃T that satisfies (5.2). Indeed, this basis does not appear in the
implementation ofDT .

A possible construction of Φ̃T can be given using techniques from Chap-
ter 2. Consider some collection of local ‘bubble’ functions ΘT = {θν ∈ H1(Ω) :
ν ∈ NT } that satisfy:

∣∣〈θν , φν′〉L2(Ω)

∣∣ h δνν′‖φν‖2L2(Ω), ‖θν‖Hk(Ω) . ‖φν‖Hk(Ω)

(k ∈ {0, 1}), and supp θν ⊆ suppφν . Existence of such a collection can be
shown by a construction on a reference d-simplex, and then using an affine
bĳection to transfer it to general elements, see Sect. 2.4. A suitable Φ̃T that
satisfies (5.2) is then given by

φ̃ν := φν +
〈1, φν〉L2(Ω)

〈θν , φν〉L2(Ω)
θν −

∑
ν′∈NT

〈φν , φν′〉L2(Ω)

〈θν′ , φν′〉L2(Ω)
θν′ .

Weemphasize that the construction of a uniformpreconditioner outlined in
this subsection does not assume some sufficiently mild grading of the meshes.

Implementation

Taking ΦT as basis for both ST,−s and ST,s, the matrix representation of the
preconditioned systems from (5.1) read as

D−1
T BTD

−>
T AT and D−>T ATD

−1
T BT ,

where

AT := (AT ΦT )(ΦT ), BT := (BT ΦT )(ΦT ),

DT = D>T := (DT ΦT )(ΦT ) = diag{〈1, φν〉L2(Ω) : ν ∈ NT }.

Alternatively, we could equip the spaces with the scaled nodal basis Φ̆T :=

D
− 1

2

T ΦT , so that the L2(Ω)-norm of any basis function is proportional to 1,
yielding

ĂT := (AT Φ̆T )(Φ̆T ) = (D
− 1

2

T )>ATD
− 1

2

T ,

B̆T := (BT Φ̆T )(Φ̆T ) = (D
− 1

2

T )>BTD
− 1

2

T ,

D̆T := (DT Φ̆T )(Φ̆T ) = (D
− 1

2

T )>DTD
− 1

2

T = Id,

showing that B̆T is a uniform preconditioner for ĂT (and vice versa). To the
best of our knowledge, so far this most easy form of operator preconditioning,
where the stiffness matrix of some operator w.r.t. some basis is preconditioned
by stiffness matrix of an opposite order operator w.r.t. the same basis, has not
been shown to be optimal.
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5. The simplest case

5.3 Manifold case

Let Γ be a compact d-dimensional Lipschitz, piecewise smoothmanifold in Rd
′

for some d′ ≥ d without boundary ∂Γ. For s ∈ [0, 1], we consider the Sobolev
spaces

Hs(Γ) := [L2(Γ), H1(Γ)]s,2, H−s(Γ) := Hs(Γ)′.

We assume that Γ is given as the closure of the disjoint union of ∪pi=1χi(Ωi),
with, for 1 ≤ i ≤ p, χi : Rd → Rd

′ being some smooth regular parametrization,
and Ωi ⊂ Rd an open polytope. W.l.o.g. assuming that for i 6= j, Ωi ∩ Ωj = ∅,
we define

χ : Ω := ∪pi=1Ωi → ∪pi=1χi(Ωi) by χ|Ωi = χi.

Let T be a family of conforming partitions T of Γ into ‘panels’ such that,
for 1 ≤ i ≤ p, χ−1(T ) ∩ Ωi is a uniformly shape regular conforming partition
of Ωi into d-simplices (that for d = 1 satisfies a uniformK-mesh property).

Fix ` > 0, we set

ST := {u ∈ H1(Γ) : u ◦ χ|χ−1(T ) ∈ P` (T ∈ T )},

equipped with the canonical nodal basis ΦT = {φν : ν ∈ NT }.
For construction of an operator DT ∈ Lis(ST,−s, (ST,s)′) one can proceed

as in the domain case. A suitable collection Φ̃T that is L2(Γ)-biorthogonal to
ΦT exists. Moreover, the analysis from the domain case applies verbatim by
only changing 〈·, ·〉L2(Ω) into 〈·, ·, 〉L2(Γ). A hidden problem, however, is that the
computation of DT = diag{〈1, φν〉L2(Γ) : ν ∈ NT } involves integrals over Γ
that generally have to be approximated using numerical quadrature.

In Sect. 2.3.2we solved this issuebydefininganadditional ‘mesh-dependent’
scalar product

〈u, v〉T :=
∑
T∈T

|T |
|χ−1(T )|

ˆ
χ−1(T )

u(χ(x))v(χ(x))dx.

This is constructedby replacing on eachχ−1(T ), the Jacobian |∂χ|by its average
|T |

|χ−1(T )| over χ
−1(T ).

By considering Φ̃T that is biorthogonal toΦT with respect to 〈·, ·〉T , and the
linear bĳection IT given by IT φν = φ̃ν , one is able to show that the operator
DT defined as (DT u)(v) := 〈u, IT v〉T satisfies the necessary requirements.
For details we refer to Chapter 2. The resulting matrix representation of DT
w.r.t. ΦT is then given byDT = diag{〈1, φν〉T : ν ∈ NT }.

5.4 Numerical experiments

Let Γ = ∂[0, 1]3 ⊂ R3 be the two-dimensional manifold without boundary
given as the boundary of the unit cube, s = 1

2 , and ST the space of con-
tinuous piecewise polynomials of degree ` w.r.t. a partition T . We will
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5.4. Numerical experiments

evaluate preconditioning of the discretized Single Layer Integral operator
AT ∈ Lisc(ST,−s, (ST,−s)′) and an (essentially) discretized Hypersingular
Integral operator BT ∈ Lisc(ST,s, (ST,s)′).

The Hypersingular Integral operator B̃ ∈ L(H
1
2 (Γ), H−

1
2 (Γ)), is only-semi

coercive, but solving B̃u = f for f with f(1) = 0 is equivalent to solving
Bu = f with B given by (Bu)(v) = (B̃u)(v) + α〈u,1〉L2(Γ)〈v,1〉L2(Γ), for some
fixed α > 0. This operatorB is in Lisc(H

1
2 (Γ), H−

1
2 (Γ)), and we shall consider

discretizationsBT ∈ Lisc(ST,s, (ST,s)′) ofB. We found α = 0.05 to give good
results in our examples.

Equipping both ST,s and ST,−s with the standard nodal basis ΦT = {φν :
ν ∈ NT }, the matrix representations of the preconditioned systems from
Sect. 5.2.2 read as

D−1
T BTD

−>
T AT and D−>T ATD

−1
T BT ,

forDT = diag{〈1, φν〉L2(Γ) : ν ∈ NT },AT =(AT ΦT )(ΦT ) andBT :=(BT ΦT )(ΦT ).
We calculated (spectral) condition numbers of these preconditioned sys-

tems, where this condition number is given by κS(X) := ρ(X)ρ(X−1) with
ρ(·) denoting the spectral radius. Note that the condition numbers of the
preconditioned systems coincide, i.e.,

κS(D−1
T BTD

−>
T AT ) = κS(D−>T ATD

−1
T BT ),

so we may restrict ourselves to results for preconditioning ofAT .
We used the BEM++ software package [ŚBA+15] to approximate thematrix

representation ofAT andBT by hierarchical matrices based on adaptive cross
approximation [Hac99, Beb00].

As initial partition T⊥ = T1 of Γ we take a conforming partition consist-
ing of 2 triangles per side, so 12 triangles in total, with an assignment of the
newest vertices that satisfies the so-called matching condition. We let T be the
sequence {Tk}k≥1 where the (conforming) partition Tk is found by applying
both uniform and local refinements. To be precise, Tk is constructed by first
applying k uniform bisections to T⊥, and then 4k local refinements by repeat-
edly applying NVB to all triangles that touch a corner of the cube. These
partitions share both the difficulties of locally refined partitions (the presence
of triangles with strongly different sizes) and that of uniform partitions (the
diagonally scaled stiffness matrix has a condition number & 2k|s|).

5.4.1 Comparison preconditioners
Write GD

T := D−1
T BTD

−>
T for the preconditioner constructed in Sect. 5.2.2.

Wewill compare thiswith the preconditioner described in Sect. 5.2.1, forwhich
the matrix representation is given byGM

T := M−1
T BTM

−>
T with mass matrix

MT = M>
T = 〈ΦT ,ΦT 〉L2(Γ). Because our partitions of the two-dimensional
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5. The simplest case

Table 5.1. Spectral condition numbers, κS(G◦TAT ) for ◦ ∈ {D,M}, of the
preconditioned Single Layer system discretized on {Tk}k≥1, by continuous
piecewise linears (` = 1) in themiddle columns and discretized by continuous
piecewise cubics (` = 3) in the right columns. Here GD

T is the precondi-
tioner introduced in Sect. 5.2.2, whereas GM

T is the preconditioner described
in Sect. 5.2.1 whose application requires an application of M−1

T , which we
implemented using an LU-factorization.

Partition T Linears (` = 1) Cubics (` = 3)

hmin hmax dofs GD
T AT GM

T AT dofs GD
T AT GM

T AT

1.4 · 100 1.4 · 100 8 16.2 1.20 56 90.5 1.68
4.4 · 10−2 5.0 · 10−01 218 14.9 1.91 1946 87.9 2.08
1.3 · 10−3 3.5 · 10−01 482 14.7 2.04 4322 86.1 2.17
4.3 · 10−5 1.7 · 10−01 962 14.7 2.10 8642 85.0 2.21
1.3 · 10−6 8.8 · 10−02 2306 15.4 2.14 20738 84.9 2.23
4.2 · 10−8 4.4 · 10−02 7106 15.6 2.16 63938 84.9 2.24
1.3 · 10−9 2.2 · 10−02 25730 15.8 2.17 231554 84.8 2.25
4.1 · 10−11 1.1 · 10−02 99650 15.8 2.17 896834 84.7 2.25

surface are created with NVB, we know that also the latter preconditioner
provides uniformly bounded condition numbers. In contrast to D−1

T , the
inverseM−1

T cannot be evaluated in linear complexity. We implemented the
application ofM−1

T by computing an LU-factorization ofMT .
Table 5.1 compares the spectral condition numbers for the preconditioned

Single Layer systems with trial spaces given by continuous piecewise linears
and those by continuous piecewise cubics. The condition numbers κS(GD

T AT )
are uniformly bounded, but quantitatively the condition numbers κS(GM

T AT )
are better.

5.4.2 Improving the preconditioner quality
Asobserved inTable 5.1, thepreconditionerGM

T appears to be of superior qual-
ity, but it has unfavourable computational complexity. It does suggest a way
for improvingGD

T : by replacingD
−1
T with a better approximation ofM−1

T , one
may hope to improve the quality. To this end, we introduce damped (precon-
ditioned) Richardson. Let 0 < λ− ≤ λmin(D−1

T MT ), λmax(D−1
T MT ) ≤ λ+,

R
(0)
T := 0 and for k ≥ 0 define

R
(k+1)
T := R

(k)
T + ωD−1

T (Id−MTR(k)
T ), ω =

2

λ− + λ+
,

being the result of k Richardson iterations. Correspondingly define

(5.4) G
(k)
T := R

(k)
T BTR

(k)
T .
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5.5. Conclusion

Table 5.2. Spectral condition numbers κS(G
(k)
T AT ) with G(k)

T the precondi-
tioner from (5.4) that incorporates k Richardson iterations. The systems are
discretized by continuous piecewise linears in the left columns and discretized
by continuous piecewise cubics in the right columns.

Linears (` = 1) Cubics (` = 3)

dofs k = 2 k = 4 k = 6 dofs k = 2 k = 4 k = 6

8 2.26 1.29 1.22 56 10.1 3.99 2.65
218 3.05 2.07 1.94 1946 8.96 3.57 2.52
482 3.53 2.28 2.08 4322 8.80 3.59 2.52
962 3.79 2.44 2.19 8642 8.63 3.59 2.52
2306 3.98 2.52 2.24 20738 8.54 3.59 2.52
7106 4.18 2.57 2.27 63938 8.54 3.59 2.52
25730 4.35 2.61 2.28 231554 8.54 3.59 2.52
99650 4.47 2.65 2.29 896834 8.54 3.59 2.52

It follows that G(1)
T = GD

T and limk→∞G
(k)
T = GM

T . Although we have no
proof, we suspect that G(k)

T provides a uniform preconditioner for AT due
to the fact thatR(k)

T approximatesM−1
T , while preserving constant functions,

being a key ingredient in the proofs of Theorems 5.2.2 and 5.2.3.
Values for λ− and λ+ can be found by calculating the extremal eigenvalues

of the corresponding preconditioned mass matrix on a reference simplex, see
e.g. [Wat87]. For ` = 1 this gives ω = 2(d+2)

d+3 , whereas for ` = 3 and d = 2 we
computed ω = 0.836.

Table 5.2 compares the conditionnumbersκS(G
(k)
T AT ) for k ∈ {2, 4, 6}. We

see that a few Richardson iterations drastically improves our preconditioner,
making its quality on par with that of GM

T while having a favourable linear
application cost.

Finally, to show that one cannot simply use any (iterative) method for ap-
proximatingM−1

T , we consider the case where one approximates this inverse
using a Jacobi preconditioner. The resulting preconditioner is then given by

(5.5) GJ
T := (diagMT )−1BT (diagMT )−>.

Table 5.3 clearly displays that this is not a uniformly bounded preconditioner,
whichweassume is due to the fact that (diagMT )−1 does not preserve constant
functions for ` > 1.

5.5 Conclusion

Considering discretized opposite order operatorsAT andBT using the same
ansatz space of continuous piecewise polynomial w.r.t. a possibly locally re-
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5. The simplest case

Table 5.3. Spectral condition numbers κS(GJ
TAT ) with GJ

T from (5.5), and
systems discretized by continuous piecewise cubics (` = 3).

dofs GJ
TAT

56 62.6
1946 377.1
4322 495.6
8642 1016.9

20738 3067.8
63938 10928.3

finedpartition T , we considermatricesDT such thatD−1
T BTD

−>
T is a uniform

preconditioner forAT , andD−>T ATD
−1
T for BT . The obvious choice forDT

would be the mass matrix, however, it yields uniformly bounded condition
numbers only under a mildly grading assumption on the mesh, and more
importantly, it has the disadvantage that its inverse is dense. We proved that
when taking DT as the lumped mass matrix the condition numbers are uni-
formly bounded, remarkably without a sufficiently mild grading assumption
on the mesh, while obviously its inverse can be applied in linear cost.

In our experimentswith locally refinedmeshes generated byNewest Vertex
Bisection, the condition numbers withDT being themass matrix are quantita-
tively better than those foundwithDT being the lumpedmass matrix though.
Constructing D−1

T as an approximation for the inverse mass matrix by a few
preconditioned damped Richardson steps with the lumped mass matrix as a
preconditioner, both the resulting matrix can be applied at linear cost and the
observed condition numbers are essentially as good as with the inverse mass
matrix.

98



Part II

Space-time methods for parabolic
evolution equations
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6 An adaptive method

6.1 Introduction

This chapter is about the adaptive numerical solution of parabolic evolu-
tion equations written in a simultaneous space-time variational formulation.
In comparison to the usually applied time-marching schemes, simultaneous
space-time solvers offer the following potential advantages:

• local, adaptive refinements simultaneous in space and time ([SY18, RS19,
GS19]),

• quasi-best approximation from the selected trial space (‘Cea’s lemma’)
([And13, LM17, SW21b]), being a necessary requirement for proving
optimal rates for adaptive routines ([CS11, KSU16, RS19]),

• superior parallel performance ([DGVdZ18, NS19, HLNS19, vVW21a]),
• using the product structure of the space-time cylinder, sparse tensor

product approximation ([GO07, CS11, KSU16, RS19]) which allows to
solve the whole time evolution at a complexity of solving the corre-
sponding stationary problem.

Other relevant publications on space-time solvers include [Ste15, LMN16,
SZ20, Dev20, DS20].

In any casewithout applying sparse tensorproduct approximation, adisad-
vantage of the space-time approach is the largermemory consumption because
instead of solving a sequence of PDEs on a d-dimensional space, one has to
solve one PDE on a (d + 1)-dimensional space. This disadvantage, however,
disappearswhen one needs simultaneously thewhole time evolution as for ex-
ample with problems of optimal control ([GK11, BRU20]) or data-assimilation
([DSW21]).

6.1.1 Parabolic problem in a simultaneous space-time variational
formulation

For some separable Hilbert spaces V ↪→ H with dense embedding (e.g.H1
0 (Ω)

and L2(Ω) for the model problem of the heat equation on a spatial domain
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6. An adaptive method

Ω ⊂ Rd), and a boundedly invertible A(t) = A(t)′ : V → V ′ with (A(t)·)(·) h
‖ · ‖2V (e.g. (A(t)η)(ζ) =

´
Ω
∇η · ∇ζ dx), we consider{

du
dt (t) +A(t)u(t) = g(t) (t ∈ (0, T )),

u(0) = u0.

An application of a variational formulation of the PDE over space and time
leads to an equation

(6.1)
[
B
γ0

]
u =

[
g
u0

]
where, with X := L2(I;V ) ∩H1(I;V ′) and Y := L2(I;V ), the operator at the
left hand side is boundedly invertible X → Y ′ ×H .

6.1.2 Our previous work

In [CS11, RS19] we equipped X and Y with Riesz bases being tensor prod-
ucts of wavelet bases in space in time, and H with some spatial Riesz basis.
Consequently, the equation (6.1) got an equivalent formulation as a bi-infinite

well-posed matrix-vector equation
[
B
γ0

]
u =

[
g
u0

]
(actually, in [RS19], we con-

sidered a formulation of first order, and in [CS11] we used a variational for-
mulation with essentially interchanged roles of X and Y , which however is
irrelevant for the current discussion). To get a coercive bilinear formwe formed
normal equations towhichwe applied an adaptivewavelet scheme ([CDD01]).
With such a scheme the norm of a sufficiently accurate approximation of the
(infinite) residual vector of a current approximation is used as an a posteriori
error estimator. The coefficients in modulus of this vector are applied as local
error indictors in a bulk chasing (or Dörfler) marking procedure. The resulting
adaptive algorithm converges at the best possible rate in linear computational
complexity.

The goal of the current work is to investigate to what extent similar opti-
mal theoretical results can be shown for finite element discretizations, whilst
realizing a quantitatively superior implementation.

6.1.3 Least squares minimization

Without having Riesz bases for X and Y , already the step of first discretizing
and then forming normal equations does not apply, andwe reverse their order.
A problem equivalent to (6.1) is to compute

(6.2) u = argmin
w∈X

‖Bw − g‖2Y ′ + ‖γ0w − u0‖2H .
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6.1. Introduction

An obvious approach for the numerical approximation is to consider the min-
imization over finite dimensional subspaces Xδ of X , which however is not
feasible because of the presence of the dual norm.

For trial spaces Xδ that are ‘full’ (or ‘sparse’) tensor products of finite
element spaces in space and time, in [And13] it was shown how to construct
corresponding test spaces Y δ ⊂ Y of similar type and dimension, such that
(Xδ, Y δ) is uniformly inf-sup stable meaning that when the continuous dual
norm ‖ · ‖Y ′ is replaced by the discrete dual norm ‖ · ‖Y δ ′ , a minimization
overXδ yields a quasi-best approximation to u fromXδ . Such a family of trial
spaces however does not allow to create a nested sequence of trial spaces by
adaptive local refinements.

6.1.4 Family of inf-sup stable pairs of trial and test spaces
To construct an alternative, essentially larger family, let Σ be a wavelet Riesz
basis for L2(0, T ) that, after renormalization, is also a Riesz basis forH1(0, T ).
We equip this basis with a tree structure where every wavelet that is not
on the coarsest level has a parent on the next coarser level. In space, we
consider the collection of all linear finite element spaces that can be generated
by conforming newest vertex bisection starting from an initial conforming
partition of a polytopal Ω into d-simplices. The restriction to linear finite
elements is not essential and ismade for simplicity only. Nowwe consider trial
spaces Xδ that are spanned by a number of wavelets each of them tensorized
with a finite element space from the aforementioned collection. In order to be
able to apply the arising system matrices in linear complexity, see [KS14] or
Chapter 7, we impose the condition that if a wavelet tensorized with a finite
element space is in the spanning set, then so is its parent wavelet tensorized
with a finite element space that includes the former one.

The infinite collection of finite element spaces can be associated to a hier-
archical ‘basis’ that can be equipped with a tree structure. Each hierarchical
basis function, except those on the coarsest level, is associated to a node ν that
was inserted as the midpoint of an edge connecting two nodes on the next
coarser level, which nodes we call the parents of ν. With this definition there
is a one-to-one correspondence between the finite element spaces from our
collection and the spans of the sets of hierarchical basis functions that form
trees. Consequently, our collection of trial spaces Xδ consists of the spans of
sets of tensor products of wavelets-in-time and hierarchical basis functions-in-
space which sets are downwards closed, also known as lower, in the sense that
if a pair of a wavelet and a hierarchical basis function is in the set, then so are
all its parents in time and space. Spaces from this collection can be ‘locally’
expanded by adding the span of a tensor product of a wavelet and hierarchical
basis function one-by-one.

For this family of spacesXδ we construct a corresponding family of spaces
Y δ ⊂ Y of similar type such that each pair (Xδ, Y δ) is uniformly inf-sup stable,
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with the dimension of Y δ being proportional to that ofXδ . Furthermore, using
the properties of the wavelets in time and by applyingmultigrid precondition-
ers in spacewe construct optimal preconditioners atX and Y -sidewhich allow
a fast solution of the discrete problems argminw∈Xδ ‖Bw−g‖2Y δ′+‖γ0w−u0‖2H .

6.1.5 Adaptive algorithm
Having fixed the family of trial spaces, it remains to develop an algorithm that
selects a suitable, preferably quasi-optimal, nested sequence of spaces from
the family adapted to the solution u of (6.2). The theory about adaptive (Ritz-)
Galerkin approximations for such quadratic minimization problems is in a
mature state. As noticed before, however, Galerkin approximations for (6.2)
are not computable.

Therefore given Xδ , let X¯
δ ⊃ Xδ be such that saturation holds, i.e., for

some constant ζ < 1, it holds that infw∈X¯
δ ‖u − w‖X ≤ ζ infw∈Xδ ‖u − w‖X .

We now replace problem (6.2) by

(6.3) u¯
δ
¯
δ = argmin

w∈X¯
δ

‖Bw − g‖2
Y ¯
δ ′ + ‖γ0w − u0‖2H ,

where in the notation u¯
δ
¯
δ the first instance of

¯
δ refers to the space Y ¯

δ and the
second to the space X¯

δ . Its (computable) Galerkin approximation from Xδ is
given by

u¯
δδ = argmin

w∈Xδ
‖Bw − g‖2

Y ¯
δ ′ + ‖γ0w − u0‖2H .

By a standard adaptive procedure, described below, we expand Xδ to some
X δ̃ ⊆ X¯

δ such that u¯
δδ̃ is closer to u¯

δ
¯
δ than u¯

δδ . Next, we replace Y ¯
δ by Y ¯

δ̃

(being the test space corresponding to X¯
δ̃) and repeat (i.e. consider (6.3) with

(
¯
δ,

¯
δ) reading as (

¯
δ̃,

¯
δ̃), and improve its Galerkin approximation u¯

δ̃δ̃ from X δ̃

by an adaptive enlargement of the latter space).
The adaptive expansion of the trial spaceXδ toX δ̃will be by the application

of the usual solve-estimate-mark-refine paradigm, where the error indicators
are the coefficients of the residual vector w.r.t. (modified) tensor product basis
functions that were added to Xδ to create X¯

δ . In order for this collection
of additional tensor product basis functions to be stable in X-norm, for this
step we modify the hierarchical basis functions such that they get a vanishing
moment, and therefore become closer to ‘real’ wavelets.

Under the aforementioned saturation assumption, we prove that the overall
adaptive procedure produces an r-linearly converging sequence to the solu-
tion.

6.1.6 Numerical results
We tested the adaptive algorithm in several examples with a two-dimensional
spatial domain. In all but one case, we observed a convergence rate equal to

104



6.1. Introduction

1/2, being the best that can be expected in view of the piecewise polynomial
degree of the trial functions and the tensor product construction, and for non-
smooth solutions improving upon usual non-adaptive approximation. Only
for the case where u0 = 1 and homogenous Dirichlet boundary conditions are
prescribed, the observed rate was reduced to 0.4. It is unknown whether or
not this is the best non-linear approximation rate for our family of trial spaces.

Thanks to the use of optimal preconditioners and that of a carefully de-
signed matrix-vector multiplication routine, which generalizes such a routine
for sparse-grids introduced in [BZ96] to adaptive settings, we observe that
throughout the whole execution of the adaptive loop the total runtime re-
mains proportional to the current number of unknowns.

Recently in [FK21], see also [GS21], a first order system least squares
(FOSLS) of second order parabolic PDEs was proven to be well-posed. This
formulation has the very attractive property that the several components of
the residual are all measured in L2-norms. So other than with (6.2) there is
no need to discretize a dual-norm, and so to guarantee an inf-sup condition.
Minimization over any conforming trial space yields a quasi-best approxima-
tion from that space in the corresponding ‘energy-norm’. This norm, however,
is stronger than the norm on X . For the aforementioned example of a dis-
continuity between initial and boundary conditions, and with the application
of continuous piecewise linear finite elements w.r.t. tetrahedral meshes of
the space-time cylinder it results in a convergence rate of 0.07 for uniform
refinements, which is not visibly improved using adaptive refinements.

6.1.7 Organization

This chapter is organized as follows: In Sect. 6.2 the well-posed space-time
variational formulation of the parabolic problem is discussed, and in Sect. 6.3
we discuss its inf-sup stable discretisation. The adaptive solution procedure
is presented in Sect. 6.4, and its convergence is proven. The construction of
the trial and test spaces is detailed in Sect. 6.5, and optimal preconditioners
are presented. In Sect. 6.6, the definition of the enlarged space X¯

δ is given,
and the construction of a stable basis of a stable complement space of Xδ in
X¯
δ is outlined. Numerical results are presented in Sect. 6.7, and a conclusion

is formulated in Sect. 6.8.

6.1.8 Notations

In this work, by C . D we will mean that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Obviously,
C & D is defined as D . C, and C h D as C . D and C & D.

For normed linear spaces E and F , by L(E,F ) we will denote the normed
linear space of bounded linear mappings E → F , and by Lis(E,F ) its subset
of boundedly invertible linear mappings E → F . We write E ↪→ F to denote
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that E is continuously embedded into F . For simplicity only, we exclusively
consider linear spaces over the scalar field R.

6.2 Space-time formulations of a parabolic evolution
problem

Let V,H be separable Hilbert spaces of functions on some “spatial domain”
such that V ↪→ H with dense embedding. Identifying H with its dual, we
obtain the Gelfand triple V ↪→ H ' H ′ ↪→ V ′.

For a.e.
t ∈ I := (0, T ),

let a(t; ·, ·) denote a bilinear form on V × V such that for any η, ζ ∈ V , t 7→
a(t; η, ζ) is measurable on I , and such that for some % ∈ R, for a.e. t ∈ I ,

|a(t; η, ζ)| . ‖η‖V ‖ζ‖V (η, ζ ∈ V ) (boundedness),(6.4)
a(t; η, η) + %〈η, η〉H & ‖η‖2V (η ∈ V ) (Gårding inequality).(6.5)

With A(t) ∈ Lis(V, V ′) being defined by (A(t)η)(ζ) = a(t; η, ζ), given a
forcing function g and an initial value u0, we are interested in solving the
parabolic initial value problem to finding u such that

(6.6)
{

du
dt (t) +A(t)u(t) = g(t) (t ∈ I),

u(0) = u0.

In a simultaneous space-time variational formulation, the parabolic PDE
reads as finding u from a suitable space of functions of time and space such
that

(Bw)(v) :=

ˆ
I

〈dwdt (t), v(t)〉+ a(t;w(t), v(t))dt =

ˆ
I

〈g(t), v(t)〉 =: g(v)

for all v from another suitable space of functions of time and space. One
possibility to enforce the initial condition is by testing it against additional test
functions. A proof of the following result can be found in [SS09], cf. [DL92,
Ch.XVIII, §3] and [Wlo82, Ch. IV, §26] for slightly different statements.

Theorem 6.2.1. WithX := L2(I;V )∩H1(I;V ′), Y := L2(I;V ), under conditions
(6.4) and (6.5) it holds that [

B
γ0

]
∈ Lis(X,Y ′ ×H),

where for t ∈ Ī , γt : u 7→ u(t, ·) denotes the trace map. That is, assuming g ∈ Y ′ and
u0 ∈ H , finding u ∈ X such that

(6.7)
[
B
γ0

]
u =

[
g
u0

]
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is a well-posed simultaneous space-time variational formulation of (6.6).

With ũ(t) := u(t)e−%t, (6.6) is equivalent to dũ
dt (t) + (A(t) + %Id)ũ(t) =

g(t)e−%t (t ∈ I), ũ(0) = u0. Since ((A(t)+%Id)η)(η) & ‖η‖2V , w.l.o.g. we assume
that (6.5) is valid for % = 0, i.e., a(t; ·, ·) is coercive uniformly for a.e. t ∈ I .

For simplicity, cf. discussion in Remark 6.3.5, additionally we assume
that a(t; ·, ·) is symmetric, and define A = A′ ∈ Lis(Y, Y ′) by (Aw)(v) =´
I
(A(t)w(t))v(t) dt.

Because
[
A 0
0 Id

]
∈ Lis(Y ×H,Y ′ ×H), an equivalent formulation of (6.7)

as a self-adjoint saddle point equation reads as finding (µ, σ, u) ∈ Y ×H ×X
(where µ = 0 = σ) such thatA 0 B

0 Id γ0

B′ γ′0 0

µσ
u

 =

 gu0

0

 ,(6.8)

or equivalently [
A B
B′ −γ′0γ0

] [
µ
u

]
=

[
g

−γ′0u0

]
,(6.9)

or

(B′A−1B + γ′0γ0)︸ ︷︷ ︸
S:=

u = B′A−1g + γ′0u0︸ ︷︷ ︸
f :=

.(6.10)

We equip Y and X with ‘energy’-norms

‖ · ‖2Y := (A·)(·), ‖ · ‖2X := ‖ · ‖2Y + ‖∂t · ‖2Y ′ + ‖γT · ‖2H ,

which are equivalent to the canonical norms on Y and X . Notice that (6.8)–
(6.10) are the Euler-Langrange equations that result from the minimization
problem

u = argmin
w∈X

‖Bw − f‖2Y ′ + ‖γ0w − u0‖2H .

Lemma 6.2.2. We have ‖ · ‖2X = (S·)(·).

Proof. It holds that

‖w‖2X = sup
06=v1∈Y

(Bw)(v1)

‖v1‖2Y
+ ‖γ0w‖2H = sup

06=(v1,v2)∈Y×H

((Bw)(v1) + 〈γ0w, v2〉H)2

‖v1‖2Y + ‖v2‖2H
= (Sw)(w),

where the first equality can be found in e.g. [ESV17, Thm. 2.1], and, when
realising that S is the Schur complement of the operator in (6.8), the last one
in e.g. [KS08, Lemma 2.2].
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6.3 Discretizations

6.3.1 Galerkin discretization of the Schur complement equation
Let (Xδ)δ∈∆ be a collection of closed, e.g, finite dimensional, subspaces of X ,
so equipped with ‖ · ‖X . We will specify such a family in Sect. 6.5-6.6.1. We
define a partial order on ∆ by

δ � δ̃ ⇐⇒ Xδ ⊆ X δ̃.

For δ ∈ ∆, let uδ ∈ Xδ denote the Galerkin approximation to the solution u of
(6.10), i.e., the solution of

(6.11) (Suδ)(v) = f(v) (v ∈ Xδ),

being the best approximation to u from Xδ w.r.t. ‖ · ‖X .
For proving convergence of an adaptive solution routine, as well as for a

posteriori error estimation, we shall make the following assumption.

Assumption6.3.1 (Saturation). There exists a collection of subspaces (δG×δU0)δ∈∆ ⊆
Y ′ ×H , a mapping · : ∆ → ∆: δ 7→

¯
δ where

¯
δ � δ, and some fixed constant ζ < 1

such that for all δ ∈ ∆, assuming that (g, u0) ∈ δG× δU0,

(6.12) ‖u− u
¯
δ‖X ≤ ζ‖u− uδ‖X .

Remark 6.3.2. Notice that above assumption cannot be valid without a restric-
tion on the right-hand side f = B′A−1g + γ′0u0 ∈ X ′. Indeed given any
Xδ ⊂ X¯

δ ( X , consider a non-zero f ∈ X ′ that vanishes on X¯
δ . Then

uδ = u
¯
δ = 0 6= u, meaning that (6.12) does not hold.

For the time being we will operate under the restrictive assumption that when-
ever we apply (6.12) (visible by the appearance of the constant ζ) we simply
assume that (g, u0) ∈ δG × δU0. Later, in Sect. 6.4.3, we will remove this
assumption.

The discretized problem from (6.11) only serves theoretical purposes. In-
deed, since the Schur complement operator S contains the inverse of A, there
is no way to determine uδ exactly. The reason to introduce (6.11) is that S
is an elliptic operator, so that for δ � δ̃ we can make use of ‖u − uδ̃‖2X =
‖u− uδ‖2X −‖uδ̃ − uδ‖2X , being a crucial tool for proving convergence of adap-
tive algorithms.

6.3.2 Uniformly stable Galerkin discretization of the saddle-point
formulation

Our numerical approximationswill be based onGalerkin discretizations of the
saddle-point formulation (6.9). Let (Y δ)δ∈∆ be a collection of closed subspaces
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of Y , so equipped with ‖ · ‖Y , such that

(6.13) Xδ ⊆ Y δ (δ ∈ ∆),

and

(6.14) 1 ≥ γ∆ := inf
δ∈∆

inf
06=w∈Xδ

sup
0 6=v∈Y δ

(∂tw)(v)

‖∂tw‖Y ′‖v‖Y
> 0.

Notice that 1 − γ∆ can be made arbitrarily small by selecting, for each δ ∈ ∆,
Y δ sufficiently large in relation to Xδ .

For δ, δ̂ ∈ ∆ with Y δ̂ ⊇ Y δ , andE δ̂Y ,EδX denoting the embeddings Y δ̂ → Y ,
Xδ → X , let (µδ̂δ, uδ̂δ) ∈ Y δ̂ ×Xδ be the solution of

(6.15)
[
E δ̂Y
′
AE δ̂Y E δ̂Y

′
BEδX

EδX
′
B′E δ̂Y −EδX

′
γ′0γ0E

δ
X

][
µδ̂δ

uδ̂δ

]
=

[
E δ̂Y
′
g

−EδX
′
γ′0u0

]
,

or, equivalently,

(6.16)

EδX
′
(B′E δ̂Y (E δ̂Y

′
AE δ̂Y )−1E δ̂Y

′
B + γ′0γ0)EδX︸ ︷︷ ︸

Sδ̂δ:=

uδ̂δ

= EδX
′
(B′E δ̂Y (E δ̂Y

′
AE δ̂Y )−1E δ̂Y

′
g + γ′0u0)︸ ︷︷ ︸

f δ̂δ:=

.

Below we will see that (6.15)-(6.16) are uniquely solvable. Formulated in
‘operator language’, (6.15) is the Galerkin discretization of (6.9) on the closed
subspace Y δ̂ ×Xδ ⊆ Y ×X . Unless Y δ̂ = Y , it holds that S δ̂δ 6= EδX

′
SEδX and

f δ̂δ 6= EδX
′
f , and so generally uδ̂δ 6= uδ .

As we will see, however, for Y δ , and thus Y δ̂ , ‘large’ in relation to Xδ , uδ̂δ
will be ‘close’ to uδ . This will allow us to show that (r-linear) convergence of
a sequence of Galerkin solutions uδ of (6.11) implies (r-linear) convergence of
the corresponding sequence uδ̂δ .

We equip Xδ with a family of ‘energy’ norms

‖w‖2
X δ̂δ

:= ‖w‖2Y + sup
06=v∈Y δ̂

(∂tw)(v)2

‖v‖2Y
+ ‖γTw‖2.

By definition of γ∆ it holds that

(6.17) γ∆‖ · ‖X ≤ ‖ · ‖X δ̂δ ≤ ‖ · ‖X on Xδ.

As follows from [SW21b, Lemma 3.3], similar to Lemma 6.2.2 we have the
following result.
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Lemma 6.3.3. Thanks to (6.13) (and Y δ ⊆ Y δ̂), for w ∈ Xδ it holds that

‖w‖2
X δ̂δ

= (S δ̂δw)(w) = sup
06=v∈Y δ̂

(Bw)(v)2

‖v‖2Y
+ ‖γ0w‖2H .

By using additionally (6.14) this result shows that (S δ̂δ·)(·) is coercive onXδ ×
Xδ so that (6.16), and thus (6.15), has a unique solution.

Moreover, we have the following result.

Theorem 6.3.4 ([SW21b, Thm. 3.7]). Thanks to (6.13) (and Y δ ⊆ Y δ̂) and (6.14),
it holds that

(6.18) ‖u− uδ‖X ≤ ‖u− uδ̂δ‖X ≤ γ−1
∆ ‖u− uδ‖X .

Remark 6.3.5. Without the assumption of a(t; ·, ·) being symmetric, the operator
A in (6.8), (6.9), (6.10), (6.15), (6.16), and in the definition of ‖ · ‖Y should be
replaced byAs := 1

2 (A+A′), whereas ∂t in the definitions of ‖·‖X , γ∆ in (6.18),
and ‖ · ‖X δ̂δ should be replaced by ∂t + Aa, where Aa := 1

2 (A− A′). Then, as
shown in [SW21a, Thm. 6.1], it holds that ‖u− uδ̂δ‖X ≤ γ−2

∆ ‖u− uδ‖X .
Still without assuming that a(t; ·, ·) is symmetric, it is interesting that under

the original, easier to demonstrate inf-sup condition (6.14) in terms of ∂t, a
quasi-optimality result similar to (6.18) can be shown, where then the upper
bound for ‖u−uδ̂δ‖X/‖u−uδ‖X depends on ‖Aa‖L(Y,Y ′), and cannot be driven
to 1 by taking Y δ sufficiently large in relation to Xδ . The latter, however, will
be essential for the analysis in the current work, being the reason why we
consider only symmetric a(t; ·, ·).

6.3.3 Modified discretized saddle-point

In view of obtaining an efficient implementation, in the definition of (µδ̂δ, uδ̂δ)

in (6.15), and so in that of S δ̂δ and f δ̂δ in (6.16), we replace (E δ̂Y
′
AE δ̂Y )−1 by

someK δ̂
Y = K δ̂

Y

′
∈ Lis(Y δ̂

′
, Y δ̂) for which both, for some constant κ∆ ≥ 1,

(6.19) ((K δ̂
Y )−1v)(v)

(Av)(v)
∈ [κ−1

∆ , κ∆] (δ ∈ ∆, v ∈ Y δ̂)

(i.e. K δ̂
Y is an optimal (self-adjoint and coercive) preconditioner for E δ̂Y

′
AE δ̂Y ),

and which can be applied at linear cost. The resulting system (6.16) is now
amenable to the application of the (preconditioned) conjugate residuals itera-
tion.

Despite this modification, we keep using the old notations for µδ̂δ , uδ̂δ , S δ̂δ ,
‖ · ‖X δ̂δ := (S δ̂δ·)(·) 1

2 , and f δ̂δ .
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As shown in [SW21b, Remark 3.8], instead of (6.18) now it holds that

(6.20) ‖u− uδ‖X ≤ ‖u− uδ̂δ‖X ≤
κ∆

γ∆
‖u− uδ‖X ,

whereas one deduces that (6.17) now should be read as

(6.21) γ∆√
κ∆
‖ · ‖X ≤ ‖ · ‖X δ̂δ ≤

√
κ∆‖ · ‖X on Xδ.

For our forthcoming analysis, we will need κ∆

γ∆
− 1 to be sufficiently small.

Remark 6.3.6. Later, in the proof of Proposition 6.4.5, temporarily we will
consider the system (6.15) with δ̂ = δ (i.e. Y δ̂ = Y δ), but with Xδ replaced by
X , and, as we do in the current subsection, EδY

′
AEδY replaced by (Kδ

Y )−1. The
resulting Schur operator B′EδYKδ

Y E
δ
Y

′
B + γ′0γ0 will be denoted as Sδ∞.

Notice that the exact solution u solves Sδ∞u = B′EδYK
δ
Y E

δ
Y

′
g + γ′0u0. Ob-

serving that Sδδ = EδX
′
Sδ∞EδX , we have the Galerkin orthogonality (Sδ∞(u−

uδδ))(Xδ) = 0. It holds that

‖ · ‖Xδ∞ := (Sδ∞·)(·) 1
2 =

√
sup

06=v∈Y δ

((B·)(v))2

((Kδ
Y )−1v)(v)

+ ‖γ0 · ‖2H

=

√
(EδY

′
B·)(Kδ

Y E
δ
Y

′
B·) + ‖γ0 · ‖2H

is only a semi-norm on X , which is equal to ‖ · ‖Xδδ on Xδ , and

(6.22) ‖ · ‖Xδ∞ ≤
√
κ∆‖ · ‖X on X.

6.4 Convergent adaptive solution method

6.4.1 Preliminaries

For δ ∈ ∆, we consider themodifieddiscretized saddlepointproblem (i.e. (6.16)
with (E δ̂Y

′
AE δ̂Y )−1 replaced by K δ̂

Y ) taking δ̂ :=
¯
δ from Assumption 6.3.1. So

for a given ‘trial space’ Xδ , we employ Y ¯
δ as ‘test space’, which is known

to be sufficiently large to give stability even when employed with trial space
X¯
δ ) Xδ . We will use this room to (adaptively) expand Xδ to some X δ̃ ⊂ X¯

δ

while keeping Y ¯
δ fixed. Then in a second step we adapt the test space to the

new trial space, i.e., replace Y ¯
δ by Y ¯

δ̃ . By doing so will construct a sequence
(δi) ⊆ ∆ with δi � δi+1 such that (u¯

δiδi)i converges r-linearly to u.
As a first step, in the next lemma it is shown that if one constructs from

w ∈ Xδ a v ∈ X¯
δ that is closer to the best approximation u

¯
δ to u fromX¯

δ , then,
thanks to Assumption 6.3.1, v is also closer to u.
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Lemma 6.4.1. Let w ∈ Xδ , v ∈ X¯
δ be such that for some ρ ≤ 1,

‖u
¯
δ − v‖X ≤ ρ‖u

¯
δ − w‖X .

Then
‖u− v‖X ≤

√
ζ2 + ρ2(1− ζ2) ‖u− w‖X .

Proof. Using u− u
¯
δ ⊥X X¯

δ twice, we obtain

‖u− v‖2X = ‖u− u
¯
δ‖2X + ‖u

¯
δ − v‖2X

≤ ‖u− u
¯
δ‖2X + ρ2‖u

¯
δ − w‖2X

= ‖u− u
¯
δ‖2X + ρ2(‖u− w‖2X − ‖u− u

¯
δ‖2X)

= (1− ρ2)‖u− u
¯
δ‖2X + ρ2‖u− w‖2X

≤ (ζ2(1− ρ2) + ρ2)‖u− w‖2X ,

where we used Assumption 6.3.1 and ‖u− uδ‖X ≤ ‖u− w‖X .

Notice that u¯
δδ is the Galerkin approximation from Xδ to the solution

u¯
δ
¯
δ ∈ X¯

δ of the system S¯
δ
¯
δu¯
δ
¯
δ = f¯

δ
¯
δ , i.e., it is its best approximation from Xδ

w.r.t. ‖ · ‖X¯
δ
¯
δ . In the next proposition it is shown that an improved Galerkin

approximation from an intermediate space X¯
δ ⊇ X δ̃ ⊇ Xδ , i.e., the function

u¯
δδ̃ , is, for κ∆

γ∆
− 1 sufficiently small, also an improved approximation to u, and

furthermore that this holds true also for u¯
δ̃δ̃ . The latter function will be the

successor of u¯
δδ in our converging sequence.

Proposition 6.4.2. Let δ � δ̃ �
¯
δ be such that

(6.23) ‖u¯
δ
¯
δ − u¯

δδ̃‖X¯
δ
¯
δ ≤ ρ‖u¯

δ
¯
δ − u¯

δδ‖X¯
δ
¯
δ .

Then it holds that

‖u− u¯
δ̃δ̃‖X ≤

κ∆

γ∆

√
ζ2 + ρ̂2(1− ζ2)︸ ︷︷ ︸

ρ̄:=

‖u− u¯
δδ‖X ,

where ρ̂ :=
(
1 + ρ

√
κ∆

γ∆

)√κ2
∆

γ2
∆
− 1

√
ζ2

1−ζ2 + ρ
√
κ∆

γ∆
. Notice that ρ̂ and ρ̄ are < 1

when ρ < 1 and κ∆

γ∆
− 1 is sufficiently small dependent on ρ with κ∆

γ∆
− 1 ↓ 0 when

ρ ↑ 1.

Proof. Using that u − u
¯
δ ⊥X X¯

δ , it follows that ‖u − u¯
δδ‖2X ≤

κ2
∆

γ2
∆
‖u − uδ‖2X

((6.20)) is equivalent to ‖u
¯
δ−u¯

δδ‖X ≤
√

κ2
∆

γ2
∆
− 1 ‖u−uδ‖X . Similarly, Assump-

tion 6.3.1 is equivalent to ‖u − uδ‖X ≤
√

ζ2

1−ζ2 ‖u
¯
δ − w‖X for any w ∈ Xδ .
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Additionally using (6.21), we infer that

‖u
¯
δ − u¯

δδ̃‖X ≤ ‖u
¯
δ − u¯

δ
¯
δ‖X + ‖u¯

δ
¯
δ − u¯

δδ̃‖X

≤ ‖u
¯
δ − u¯

δ
¯
δ‖X +

√
κ∆

γ∆
‖u¯

δ
¯
δ − u¯

δδ̃‖X¯
δ
¯
δ

≤ ‖u
¯
δ − u¯

δ
¯
δ‖X + ρ

√
κ∆

γ∆
‖u¯

δ
¯
δ − u¯

δδ‖X

≤
(
1 + ρ

√
κ∆

γ∆

)
‖u

¯
δ − u¯

δ
¯
δ‖X + ρ

√
κ∆

γ∆
‖u

¯
δ − u¯

δδ‖X

≤
[(

1 + ρ
√
κ∆

γ∆

)√κ2
∆

γ2
∆
− 1

√
ζ2

1−ζ2 + ρ
√
κ∆

γ∆

]
‖u

¯
δ − u¯

δδ‖X

FromLemma6.4.1we conclude that ‖u−u¯
δδ̃‖X ≤

√
ζ2 + ρ̂2(1− ζ2)‖u−u¯

δδ‖X .
Thanks to (6.20), it holds that

‖u− u¯
δ̃δ̃‖X ≤

κ∆

γ∆
‖u− uδ̃‖X ≤

κ∆

γ∆
‖u− u¯

δδ̃‖X ,

which completes the proof.

6.4.2 Bulk chasing and a posteriori error estimation

To realize (6.23), i.e., to construct from the Galerkin approximation u¯
δδ to

u¯
δ
¯
δ an improved Galerkin approximation u¯

δδ̃ , we apply the concept of bulk
chasing, also known as Dörfler marking, on a collection of a posteriori error
indicators that constitute an efficient and reliable error estimator. We will
apply an estimator of ‘hierarchical basis’ type ([ZMD+11]):

Let Θδ = {θλ : λ ∈ Jδ} ⊆ X¯
δ be such thatXδ+span Θδ = X¯

δ and, for some
constants 0 < m ≤M , for all δ ∈ ∆, z ∈ Xδ and c := (cλ)λ∈Jδ ⊂ R.

(6.24) m2‖z + c>Θδ‖2X ≤ ‖z‖2X + ‖c‖2 ≤M2‖z + c>Θδ‖2X .

A suitable collection Θδ will be constructed in Sect. 6.6.1.

Proposition 6.4.3. Assume (6.24). Let r¯
δ
δ := (f¯

δ
¯
δ−S¯

δ
¯
δu¯
δδ)(Θδ), being the residual

vector of u¯
δδ . Let J ⊆ Jδ be such that for some constant ϑ ∈ (0, 1],

‖r¯
δ
δ |J‖ ≥ ϑ‖r¯

δ
δ ‖,

and, for some δ̃ �
¯
δ, let Xδ + span Θδ|J ⊆ X δ̃ . Then with ρ :=

√
1−

(
m
M

γ∆

κ2
∆
ϑ
)2,

(6.23) is valid, i.e.,

(6.25) ‖u¯
δ
¯
δ − u¯

δδ̃‖X¯
δ
¯
δ ≤ ρ‖u¯

δ
¯
δ − u¯

δδ‖X¯
δ
¯
δ ;
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and so, when κ∆

γ∆
− 1 is sufficiently small dependent on ϑ, with κ∆

γ∆
− 1 ↓ 0 when

ϑ ↓ 0, for some constant ρ < ρ̄ < 1,

‖u− u¯
δ̃δ̃‖X ≤ ρ̄‖u− u¯

δδ‖X .

Proof. As a consequence of (6.24) and (6.21), we have

γ∆

κ2
∆

m2‖z + c>Θδ‖2X¯
δ
¯
δ ≤ ‖z‖2X¯

δ
¯
δ + ‖c‖2 ≤ κ2

∆

γ∆
M2‖z + c>Θδ‖2X¯

δ
¯
δ .

We infer that

‖u¯
δδ̃ − u¯

δδ‖X¯
δ
¯
δ = sup

06=(z,c)∈Xδ×R#Jδ

(S¯
δ
¯
δ(u¯

δδ̃ − u¯
δδ))(z + c>Θδ)

‖z + c>Θδ‖X¯
δ
¯
δ

≥ m
√
γ∆

κ∆
sup

06=(z,c)∈Xδ×R#Jδ

(S¯
δ
¯
δ(u¯

δδ̃ − u¯
δδ))(c>Θδ)√

‖z‖2
X¯
δ
¯
δ + ‖c‖2

≥ m
√
γ∆

κ∆
sup

06=c∈R#Jδ

〈c|J , (f¯
δ
¯
δ − S¯

δ
¯
δu¯
δδ)(Θδ|J)〉

‖c|J‖

= m

√
γ∆

κ∆
‖r¯

δ
δ |J‖ ≥ m

√
γ∆

κ∆
ϑ‖r¯

δ
δ ‖

= m

√
γ∆

κ∆
ϑ sup

06=(z,c)∈Xδ×R#Jδ

(S¯
δ
¯
δ(u¯

δ
¯
δ − u¯

δδ))(c>Θδ)√
‖z‖2

X¯
δ
¯
δ + ‖c‖2

≥ m

M

γ∆

κ2
∆

ϑ‖u¯
δ
¯
δ − u¯

δδ‖X¯
δ
¯
δ .

(6.26)

so that

‖u¯
δ
¯
δ − u¯

δδ̃‖2
X¯
δ
¯
δ = ‖u¯

δ
¯
δ − u¯

δδ‖2
X¯
δ
¯
δ − ‖u¯

δδ̃ − u¯
δδ‖2

X¯
δ
¯
δ

≤
(

1−
(m
M

γ∆

κ2
∆

ϑ
)2)‖u¯

δ
¯
δ − u¯

δδ‖2
X¯
δ
¯
δ ,

which completes the proof of (6.25).
The final statement follows from an application of Proposition 6.4.2.

Additionally we have that ‖r¯
δ
δ ‖ provides an efficient and reliable a posteri-

ori estimator for ‖u− u¯
δδ‖X :

Proposition 6.4.4. Assume (6.24). Recalling that ζ < 1, let κ∆

γ∆
< 1

ζ . Then for
δ ∈ ∆,

m
√
γ∆

κ
3/2
∆

1+ζ

√
κ2

∆
γ2
∆

−1

‖r¯
δ
δ ‖ ≤ ‖u− u¯

δδ‖X ≤
M

κ
3/2
∆

γ
3/2
∆

√
1−ζ2−ζ

√
κ2

∆
γ2
∆

−1

‖r¯
δ
δ ‖.
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Proof. Assumption 6.3.1 gives ‖u−u
¯
δ‖X ≤ ζ‖u−u¯

δδ‖X , which byu−u
¯
δ ⊥X X¯

δ

yields

(6.27) ‖u
¯
δ − u¯

δδ‖X ≤ ‖u− u¯
δδ‖X ≤ 1√

1−ζ2
‖u

¯
δ − u¯

δδ‖X .

As we already have noted in the proof of Proposition 6.4.2, (6.20) is equivalent

to ‖u
¯
δ−u¯

δ
¯
δ‖X ≤

√
κ2

∆

γ2
∆
− 1 ‖u−u

¯
δ‖X . Together with Assumption 6.3.1, it gives

∣∣∣‖u
¯
δ − u¯

δδ‖X − ‖u¯
δ
¯
δ − u¯

δδ‖X
∣∣∣ ≤ ζ√κ2

∆

γ2
∆

− 1 ‖u− u¯
δδ‖X

which in combination with (6.27) and ζ κ∆

γ∆
< 1 yields

1

1+ζ

√
κ2

∆
γ2
∆

−1

‖u¯
δ
¯
δ − u¯

δδ‖X ≤ ‖u− u¯
δδ‖X ≤ 1

√
1−ζ2−ζ

√
κ2

∆
γ2
∆

−1

‖u¯
δ
¯
δ − u¯

δδ‖X .

Theproof is completedby (6.21), andm
√
γ∆

κ∆
‖r¯

δ
δ ‖ ≤ ‖u¯

δ
¯
δ−u¯

δδ‖X¯
δ
¯
δ ≤M κ∆√

γ∆
‖r¯

δ
δ ‖

where the latter inequalities were shown in (6.26) when reading (J, ϑ, δ̃) as
(Jδ, 1,

¯
δ).

Next we present an alternative a posteriori error estimator that does not
rely on (6.24), that we expect to be more accurate, and that can be a computed
at the cost of one additional inner product.

Proposition 6.4.5. Let κ∆

γ∆
< 1

ζ , and for v ∈ X
δ , define

Eδ(v) = Eδ(v; g, u0) :=

√
(E¯

δ
Y

′
(g −Bv))(K¯

δ
Y E¯

δ
Y

′
(g −Bv)) + ‖u0 − γ0v‖2H .

Then

γ∆ − ζκ∆√
κ∆

‖u− v‖X ≤ Eδ(v) ≤
√
κ∆(ζ2 + (1 + ζ

κ∆

γ∆
)2)‖u− v‖X .

Proof. From Remark 6.3.6, recall that the semi-norm ‖ · ‖X¯
δ∞ on X equals

‖ · ‖X¯
δ
¯
δ on X¯

δ , and (S¯
δ∞(u− u¯

δ
¯
δ))(X¯

δ) = 0, which implies

(6.28) ‖u− w‖2
X¯
δ∞ = ‖u− u¯

δ
¯
δ‖2
X¯
δ∞ + ‖u¯

δ
¯
δ − w‖2

X¯
δ∞ (w ∈ X¯

δ),

and ‖ · ‖X¯
δ∞ ≤ √κ∆‖ · ‖X ((6.22)).

From (6.20) and Assumption 6.3.1, we have for v ∈ Xδ

(6.29) ‖u− u¯
δ
¯
δ‖X ≤

κ∆

γ∆
‖u− u

¯
δ‖X ≤ ζ

κ∆

γ∆
‖u− v‖X
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From (6.29), the triangle-inequality, (6.21), and (6.28) we obtain for v ∈ Xδ

‖u− v‖X ≤
1

1− ζ κ∆

γ∆

‖u¯
δ
¯
δ − v‖X

≤
√
κ∆

γ∆ − ζκ∆
‖u¯

δ
¯
δ − v‖X¯

δ
¯
δ ≤

√
κ∆

γ∆ − ζκ∆
‖u− v‖X¯

δ∞ .

Conversely, we have

‖u− v‖2
X¯
δ∞

(6.28)
= ‖u− u¯

δ
¯
δ‖2
X¯
δ∞ + ‖u¯

δ
¯
δ − v‖2

X¯
δ∞

(6.28),(6.22)
≤ ‖u− u

¯
δ‖2X¯

δ∞ + κ∆‖u¯
δ
¯
δ − v‖2X

(6.22),(6.29)
≤ κ∆‖u− u

¯
δ‖2X + κ∆(1 + ζ

κ∆

γ∆
)2‖u− v‖2X

≤ κ∆(ζ2 + (1 + ζ
κ∆

γ∆
)2)‖u− v‖2X .

by again applying Assumption 6.3.1.
Noting that ‖u− v‖2

X¯
δ∞ := E¯

δ
Y

′
(g − Bv)(K¯

δ
Y E¯

δ
Y

′
(g − Bv)) + ‖u0 − γ0v‖2H ,

the proof is completed.

Notice that the estimator of ‖u− v‖X from Proposition 6.4.5 is exact when
ζ = 0 and κ∆ = 1 = γ∆, where the one from Proposition 6.4.3, for v = u¯

δδ , is
exact only when additionallym = 1 = M .

6.4.3 Data oscillation
In view of the discussion following Assumption 6.3.1, notice that all results
obtained so far that depend on the ‘saturation constant’ ζ, i.e., Lemma 6.4.1,
and Propositions 6.4.2, 6.4.3, and 6.4.4, are only valid under the condition that
(g, u0) ∈ δG× δU0.

Let us now consider the situation that the solutions and residuals in these
statements refer to solutions and residuals with the true data (g, u0) ∈ Y ′ ×H
being replaced by an approximation (δg, δu0) ∈ δG × δU0. In the following we
denote such solutions and residuals with an additional left superscript δ, or more
generally δ̃ when a right-hand side (δ̃g, δ̃u0) ∈ δ̃G× δ̃U0 has been used for their
computation.

Proposition 6.4.6. Assume (6.24), and let ϑ ∈ (0, 1] be a constant. Then for
κ∆

γ∆
− 1 and a constant ω̂ > 0 both being sufficiently small dependent on ϑ, with

max(κ∆

γ∆
− 1, ω̂) ↓ 0 when ϑ ↓ 0, there exists a constant ρ̌ < 1 such that for J ⊆ Jδ

with ‖δr¯
δ
δ |J‖ ≥ ϑ‖δr¯

δ
δ ‖, and Xδ + span Θδ|J ⊆ X δ̃ , and

max
(
‖g − δg‖Y ′ + ‖u0 − δu0‖H , ‖g − δ̃g‖Y ′ + ‖u0 − δ̃u0‖H

)
≤ ω̂‖δr¯

δ
δ ‖,
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it holds that
‖δ̃u− δ̃u¯

δ̃δ̃‖X ≤ ρ̌‖δu− δu¯
δδ‖X .

Proof. In the newly introduced notations, the statements of Propositions 6.4.3
and 6.4.4 read as

‖δu− δu¯
δ̃δ̃‖X ≤ ρ̄‖δu− δu¯

δδ‖X ,

and

‖δr¯
δ
δ ‖ h ‖

δu− δu¯
δδ‖X(6.30)

The proof is easily completed by

‖δ̃u− δu‖X
‖δ̃u¯

δ̃δ̃−δu¯
δ̃δ̃‖X

}
. ‖δ̃g−δg‖Y ′+‖δ̃u0−δu0‖H ≤ 2ω̂‖δr¯

δ
δ ‖ h ω̂‖δu−δu¯

δδ‖X .

In view of the latter proposition, we make the following assumption.

Assumption 6.4.7. We assume to have maps of the following types available:

∆→ Y ′ ×H : δ 7→ (δg, δu0) ∈ δG× δU0,

η : ∆→ R such that ‖g − δg‖Y ′ + ‖u0 − δu0‖H ≤ η(δ), and η(δ̃) ≤ η(δ) when δ̃ � δ,
R>0 → ∆: ε 7→ δ(ε) such that η(δ(ε)) ≤ ε.

Notice that this in particular means that for any ε > 0 we are able to find a
δ ∈ ∆ and (δg, δu0) ∈ δG×δU0 with ‖g−δg‖Y ′+‖u0−δu0‖H ≤ ε. A specification
of a suitable family (δG, δU0)δ∈∆ will be given in Sect. 6.6.4.

Given a δ ∈ ∆, and thinking of (δg, δu0) being a quasi-best approximation
to (g, u0) from δG× δU0, the difference (g, u0)− (δg, δu0) is often referred to as
data-oscillation.

6.4.4 A convergent algorithm
In view of the statement from Proposition 6.4.6, in the following we will use
the short-hand notations

uδ = δu¯
δδ, rδ = δr¯

δ
δ ,

i.e., uδ is the solution of

(6.31) EδX
′
(B′E¯

δ
YK¯

δ
Y E¯

δ
Y

′
B + γ′0γ0)EδX︸ ︷︷ ︸

S¯
δδ=

uδ = EδX
′
(B′E¯

δ
YK¯

δ
Y E¯

δ
Y

′
δg + γ′0

δu0)︸ ︷︷ ︸
fδ=δf ¯

δ

δ
:=

.

(cf. (6.16) and Sect. 6.3.3), and

(6.32) rδ = E¯
δ
X

′[
B′E¯

δ
YK¯

δ
Y E¯

δ
Y

′
(δg −Buδ) + γ′0(δu0 − γ0u

δ)
]
(Θδ)
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Instead of solving (6.31) exactly, we will allow it to be solved approximately
with a sufficiently small relative tolerance by the application of an iterative
method. To that end, we assume to have available aKδ

X = Kδ
X

′ ∈ Lis(Xδ ′, Xδ)
for which both

(6.33) ((Kδ
X)−1w)(w) h ‖w‖2X (w ∈ Xδ)

(i.e. Kδ
X is an optimal (self-adjoint and coercive) preconditioner for S¯

δδ), and
which can be applied at linear cost. Besides for an efficient iterative solving of
(6.31), we will use this preconditioner to compute a quantity that is equivalent
to the X-norm of the (algebraic) error in any approximation from Xδ to uδ .

We denote such an approximate solution of (6.31) by ũδ ∈ Xδ , with corre-
sponding residual vector r̃δ defined as in (6.32) by replacing uδ by ũδ .

Algorithm 6.4.8.
Let ω > 0, ϑ ∈ (0, 1], 0 < ξ < 1 be constants, and let ε > 0.
δ := δinit ∈ ∆, tδ h ‖g‖Y ′ + ‖u0‖H .
do

do compute ũδ ∈ Xδ with t̃δ :=
√

(fδ−S¯
δδũδ)(Kδ

X(fδ−S¯
δδũδ)) ≤ tδ

2 ; tδ := t̃δ

if eδ := ‖r̃δ‖+ η(δ) + tδ ≤ ε then stop endif
until tδ ≤ ξeδ
if η(δ) > ω‖r̃δ‖
then select δ̃ ∈ ∆ s.t. X δ̃ ⊇ Xδ is (a near-smallest) space with η(δ̃) ≤ η(δ)/2.
else determine δ � δ̃ �

¯
δ s.t. X δ̃ is (a near- smallest) space that for a J ⊆ I¯

δ
δ

contains Xδ + span Θδ|J where ‖r̃δ|J‖ ≥ ϑ‖r̃δ‖.
endif

tδ̃ := eδ , δ := δ̃
enddo

Theorem 6.4.9. Assume (6.24), and let the constants γ∆ and κ∆ be as defined in
(6.14) and (6.19), respectively. For constants ϑ, ω/ϑ, ξ/ϑ, (κ∆

γ∆
− 1)/ω that are

sufficiently small, with additionally ω and κ∆

γ∆
− 1 sufficiently small dependent on ϑ

with max(κ∆

γ∆
− 1, ω) ↓ 0 when ϑ ↓ 0, there exists a constant ρ̆ < 1 such that between

any two successive passings of the until-clause the value of ϑ‖u − ũδ‖X + η(δ)
decreases with at least a factor ρ̆. For any ε > 0, Algorithm 6.4.8 terminates, and at
termination it holds that ‖u− ũδ‖X + η(δ) . ε.

Remark 6.4.10. Minor adaptations to the proof show that the statement remains
true when one takes eδ := Eδ(ũδ; δg, δu0) + η(δ) in Algorithm 6.4.8. Having to
compute r̃δ anyway, the additional cost of computing this eδ is small, and it
can be expected to be closer to ‖u− ũδ‖X + η(δ).
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6.4. Convergent adaptive solution method

Proof. By replacing w by Kδ
XS¯

δδw in (6.33), one infers that (S¯
δδv)(Kδ

XS¯
δδv) h

‖v‖2X for v ∈ Xδ , and so

(6.34) ‖uδ − ũδ‖2X h (fδ − S¯
δδũδ)(Kδ

X(fδ − S¯
δδũδ)).

From (6.21) and (6.24), we have
(6.35)

‖rδ − r̃δ‖ = sup
06=c∈R#Jδ

(S¯
δ
¯
δ(ũδ − uδ))(c>Θδ)

‖c‖
≤ κ

1
2
∆

m ‖u
δ − ũδ‖X¯

δ
¯
δ ≤ κ∆

m ‖u
δ − ũδ‖X .

If the algorithm stops, then

‖u− ũδ‖X ≤ ‖u− δu‖X + ‖δu− uδ‖X + ‖uδ − ũδ‖X
. η(δ) + ‖δu− uδ‖X + ‖uδ − ũδ‖X (by Thm. 6.2.1 & Ass. 6.4.7)

(6.30)
h η(δ) + ‖rδ‖+ ‖uδ − ũδ‖X ≤ η(δ) + ‖r̃δ‖+ ‖rδ − r̃δ‖+ ‖uδ − ũδ‖X

(6.35)
. η(δ) + ‖r̃δ‖+ ‖uδ − ũδ‖X

(6.34)
. η(δ) + ‖r̃δ‖+ tδ ≤ ε.

The inner do-loop always terminates either by passing the until-clause or
by the stop-statement. Indeed, inside this loop the value of tδ is driven to 0,
so that ‖r̃δ‖ + η(δ) tends to ‖rδ‖ + η(δ). So if ‖rδ‖ + η(δ) 6= 0, then at some
moment tδ ≤ ξ(‖r̃δ‖ + η(δ) + tδ), whereas if ‖rδ‖ + η(δ) = 0 then at some
moment eδ ≤ ε.

When passing the until-clause, it holds that tδ ≤ ξ(‖r̃δ‖ + η(δ) + tδ), and
so by using ξ < 1 kicking back tδ ,

tδ . ξ(‖r̃δ‖+ η(δ))(6.36)
≤ ξ(‖rδ‖+ ‖r̃δ − rδ‖+ η(δ))

. ξ(‖δu− uδ‖X + ‖ũδ − uδ‖X + η(δ))

. ξ(‖u− uδ‖X + tδ + η(δ))

Taking ξ small enough and kicking back tδ , we obtain tδ . ξ(‖u−uδ‖X +η(δ)),
and similarly

tδ . ξ(‖u− ũδ‖X + η(δ)),(6.37)
tδ . ξ(‖δu− uδ‖X + η(δ)).(6.38)

When passing the until-clause, furthermore we have

‖u− ũδ‖X . tδ + ‖u− uδ‖X . tδ + ‖δu− uδ‖X + η(δ) h tδ + ‖rδ‖+ η(δ)

≤ tδ + ‖rδ − r̃δ‖+ ‖r̃δ‖+ η(δ) . tδ + ‖uδ − ũδ‖X + ‖r̃δ‖+ η(δ)

. tδ + ‖r̃δ‖+ η(δ)
(6.36)
. ‖r̃δ‖+ η(δ).

(6.39)
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Denoting δ at the subsequent passing of the until-clause as δ̃, we have

‖u− ũδ̃‖X . tδ̃ + ‖δ̃u− uδ̃‖X + η(δ̃)

(6.20)
≤ tδ̃ +

κ∆

γ∆
‖δ̃u− δ̃uδ̃‖X + η(δ̃)

δ�δ̃
≤ tδ̃ +

κ∆

γ∆
‖δ̃u− ũδ‖X + η(δ̃)

≤ tδ̃ +
κ∆

γ∆
‖u− ũδ‖X +O(η(δ̃)).

By using tδ̃ . ξ(‖u− ũδ̃‖X +η(δ̃)) ((6.37)) and kicking back ‖u− ũδ̃‖X , we infer
that for ξ sufficiently small,

(6.40) ‖u− ũδ̃‖X ≤ (
κ∆

γ∆
+O(ξ))‖u− ũδ‖X +O(η(δ̃)).

In the case that

(6.41) η(δ) > ω‖r̃δ‖,

it holds that
η(δ̃) ≤ η(δ)/2,

and so, thanks to (6.39) and (6.41),

(6.42) ‖u− ũδ‖X . η(δ)/ω.

For any constant ρ1 < 1, using (6.40) and (6.42) we have

‖u− ũδ̃‖X ≤ ρ1‖u− ũδ‖X + κ∆/γ∆+O(ξ)−ρ1

ω ω‖u− ũδ‖X +O(η(δ̃))

≤ ρ1‖u− ũδ‖X +
(κ∆/γ∆+O(ξ)−ρ1

ω + 1
)
Cη(δ),

for some constant C > 0, and so

ϑ‖u− ũδ̃‖X + η(δ̃) ≤ ρ1ϑ‖u− ũδ‖X +
(
ϑ
(κ∆/γ∆−ρ1+O(ξ)

ω + 1
)
C + 1

2

)
η(δ)

Now let ϑ > 0 be such that 2ϑC + 1
2 < 1. Given a constant ω (which later

will be selected such that ω/ϑ is sufficiently small), let (κ∆

γ∆
− 1)/ω, (1− ρ1)/ω,

ξ/ω be sufficiently small such that the expression κ∆/γ∆−ρ1+O(ξ)
ω ≤ 1. We

conclude that in this case ϑ‖u − ũδ‖X + η(δ) is reduced by at least a factor
max(ρ1, 2ϑC + 1

2 ) < 1.

Next we consider the other case that

(6.43) η(δ) ≤ ω‖r̃δ‖,
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so that

(6.44) ‖r̃δ|J‖ ≥ ϑ‖r̃δ‖.

We have

‖rδ − r̃δ‖ . ‖uδ − ũδ‖X . tδ
(6.36)
≤ ξ(‖r̃δ‖+ η(δ))

(6.43)
. ξ‖r̃δ‖(6.45)

≤ ξ(‖rδ‖+ ‖rδ − r̃δ‖),

and so by taking ξ sufficiently small and kicking back ‖rδ − r̃δ‖, also

(6.46) ‖rδ − r̃δ‖ . ξ‖rδ‖,

which together with (6.43) implies that

(6.47) η(δ) . ω‖rδ‖.

From (6.44)-(6.46) we infer that

‖rδ‖
(6.45)
. ‖r̃δ‖

(6.44)
. ‖r̃δ|J‖ ≤ ‖rδ|J‖+ ‖rδ − r̃δ‖

(6.46)
. ‖rδ|J‖+ ξ‖rδ‖.

By taking ξ sufficiently small and kicking back ‖rδ‖, we conclude that there
exists a constant ϑ̃ > 0 such that

‖rδ|J‖ ≥ ϑ̃‖rδ‖.

Assuming that κ∆

γ∆
− 1 and ω are small enough, using (6.47) an application

of Proposition 6.4.6 shows that there exists a constant ρ3 < 1 such that

(6.48) ‖δ̃u− uδ̃‖X ≤ ρ3‖δu− uδ‖X .

Furthermore we have

‖r̃δ‖ ≤ ‖rδ‖+ ‖r̃δ − rδ‖ . ‖δu− uδ‖X + tδ . ‖u− ũδ‖X + η(δ) + tδ
(6.37)
. ‖u− ũδ‖X + η(δ),

and so from (6.43) by kicking back η(δ) and taking ω sufficiently small,

(6.49) η(δ) . ω‖u− ũδ‖X .
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We conclude that

ϑ‖u− ũδ̃‖X + η(δ̃) ≤ ϑ‖δ̃u− uδ̃‖X +O(η(δ̃) + tδ̃)

(6.38)
≤ (ϑ+O(ξ))‖δ̃u− uδ̃‖X +O(η(δ̃))

(6.48)
≤ (ϑ+O(ξ))ρ3‖δu− uδ‖X +O(η(δ̃))

≤ (ϑ+O(ξ))ρ3

[
‖u− ũδ‖X +O(η(δ)) + tδ

]
+O(η(δ̃))

(6.37)
≤ (ϑ+O(ξ))ρ3

[
(1 +O(ξ))‖u− ũδ‖X +O(η(δ))

]
+O(η(δ))

(6.49)
≤
[
(ϑ+O(ξ))ρ3(1 +O(ξ)) +O(ω)

]
‖u− ũδ‖X

=
[
ρ3 +O(ω+ξ

ϑ )
]
ϑ‖u− ũδ‖X .

So forω/ϑ and ξ/ϑ sufficiently small, also in this caseweestablisheda reduction
of ϑ‖u− ũδ̃‖X + η(δ̃) by at least a constant factor less than 1.

What is left to show is that the algorithm terminates. We have shown
that the value of ϑ‖u − ũδ‖X + η(δ) at passing the until-clause is r-linearly
converging. We consider the corresponding value of eδ = ‖r̃δ‖ + η(δ) + tδ .
Arguments that we have used multiple times show that ‖r̃δ‖ . ‖u − ũδ‖X +

η(δ)+tδ , and so eδ . ‖u−ũδ‖X+η(δ)+tδ . Using that tδ ≤ ξ(‖r̃δ‖+η(δ)) ≤ ξeδ ,
for ξ sufficiently small kicking back eδ shows that

eδ . ‖u− ũδ‖X + η(δ),

and so
eδ . ϑ‖u− ũδ‖X + η(δ).

This last statement implies that at some moment eδ ≤ ε, meaning that the
algorithm stops.

6.5 Wavelets-in-time tensorized with
finite-elements-in-space

We specify the parabolic problem at hand, as well as the type of families
(Xδ)δ∈∆ and (Y δ)δ∈∆ of ‘trial’ and ‘test’ spaces. A likely harmless minor
further restriction to these families that will be needed for the construction of
an X-stable collection Θδ that spans an X-stable complement space of Xδ in
X¯
δ , specifically condition (6.24), will be postponed to Sect. 6.6.1.

6.5.1 Continuous problem
For some bounded domain Ω ⊂ Rd, we take H = L2(Ω) and, for some closed
∅ ⊆ ΓD ⊆ ∂Ω, V = H1

0,ΓD
(Ω) := closH1(Ω){u ∈ C∞(Ω) ∩ H1(Ω): u|ΓD = 0},
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6.5. Wavelets-in-time tensorized with finite-elements-in-space

and
a(t; η, ζ) :=

ˆ
Ω

K∇η · ∇ζ + cηζ dx,

where K = K> ∈ L∞(I × Ω) with K(·) h Id a.e., and c ∈ L∞(I × Ω).
W.l.o.g. we take T = 1.

6.5.2 Wavelets in time

We will construct the trial and test spaces as the span of wavelets-in-time
tensorized with finite element spaces-in-space. In this subsection we collect
some assumptions on the wavelets.

At the ‘trial side’ we consider a countable collection Σ = {σλ : λ ∈ ∨Σ}
of functions I → R known as wavelets. To each λ ∈ ∨Σ we associate a value
|λ| ∈ N0, called the level of λ. We assume that the wavelets are locally supported
meaning that supn∈N, `∈N0

#{λ ∈ ∨Σ : |λ| = `, | suppσλ ∩ 2−`(n + [0, 1])| >
0} < ∞ and diam suppσλ . 2−|λ|. To each λ ∈ ∨Σ with |λ| > 0, we associate
one or more λ̃ ∈ ∨Σ with |λ̃| = |λ| − 1 and | suppσλ ∩ suppσλ̃| > 0 which we
call the parent(s) of λ. We denote this relation between a parent λ̃ and a child
λ by

λ̃ /Σ λ.

The definitions of parents and children give rise to obvious notions of ancestors
and descendants.

To each λ ∈ ∨Σ we associate some neighbourhood SΣ(λ) of suppσλ with
diamSΣ(λ) . 2−|λ| and

λ̃ /Σ λ =⇒ SΣ(λ̃) ⊇ SΣ(λ).

For some wavelets bases, e.g. Alpert wavelets ([Alp93]), it suffices to take
SΣ(λ) = suppσλ. With CΣ := supλ∈∨Σ

2|λ| diam suppσλ, a neighbourhood
that in any case is sufficiently large is {t ∈ I : dist(t, suppσλ) ≤ CΣ2−|λ|}.
Indeed, if with this definition t ∈ SΣ(λ) and λ̃ /Σ λ, then dist(t, suppσλ̃) ≤
dist(t, suppσλ) + diam(suppσλ) ≤ 2CΣ2−|λ|, i.e. t ∈ SΣ(λ̃).

We assume that Σ is a Riesz basis for L2(I), and, when renormalized in
H1(I)-norm, it is a Riesz basis for H1(I). Although not essential, thinking of
wavelets being (essentially) constructed by means of dilation, we assume that

‖σλ‖H1(I) h 2|λ|.

At the ‘test side’ we consider a similar collection Ψ = {ψµ : µ ∈ ∨Ψ} of
wavelets, with the difference though that this one has to be an even orthonormal
basis for L2(Ω), whilst, renormalized in H1(I)-norm, it does not need to be a
Riesz basis for H1(I).
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We will assume that Σ and Ψ are selected such that for any ` ∈ N0,

span{σλ : |λ| ≤ `} ∪ span{σ′λ : |λ| ≤ `} ⊆ span{ψµ : |µ| ≤ `},

so that in particular

(6.50) |µ| > |λ| =⇒ 〈σλ, ψµ〉L2(I) = 0 = 〈σ′λ, ψµ〉L2(I).

6.5.3 Uniform stability

In the following proposition, we further specify the type of families of trial
and test spaces that we consider, and formulate sufficient conditions for the
requirements (6.13)-(6.14), which implied uniform stability of the Galerkin
discretizations of our saddle-point problem (6.9).

Proposition 6.5.1. For δ ∈ ∆, let

Xδ =
∑
λ∈∨Σ

σλ ⊗W δ
λ , Y δ =

∑
µ∈∨Ψ

ψµ ⊗ V δµ

for subspacesW δ
λ , V

δ
µ ⊆ V of which finitely many are non-zero. Let

〈σλ, ψµ〉L2(I) 6= 0 =⇒ V δµ ⊇W δ
λ ,(6.51)

and, for some constant γ∆ > 0, for any µ ∈ ∨Ψ,

inf
0 6=w∈

∑
{λ∈∨Σ : 〈σ′

λ
,ψµ〉L2(I) 6=0}

W δ
λ

sup
06=v∈V δµ

w(v)

‖w‖V ′‖v‖V
≥ γ∆.(6.52)

Then Xδ ⊆ Y δ and

inf
06=w∈Xδ

sup
06=v∈Y δ

(∂tw)(v)

‖∂tw‖Y ′‖v‖Y
≥ γ∆,

i.e., the conditions (6.13)-(6.14) for uniform stability are satisfied.

Proof. Forwλ ∈W δ
λ andw :=

∑
λ∈∨Σ

σλ⊗wλ ∈ Xδ ,σλ =
∑
µ∈∨Ψ

〈σλ, ψµ〉L2(I)ψµ
shows that w =

∑
µ∈∨Ψ

ψµ⊗
∑
λ∈∨Σ

〈σλ, ψµ〉L2(I)wλ ∈ Y δ by the first assump-
tion. Similarly ∂tw =

∑
µ∈∨Ψ

ψµ ⊗ ṽµ where ṽµ :=
∑
λ∈∨Σ

〈σ′λ, ψµ〉L2(I)wλ.
For any ε > 0, the second assumption shows that for any µ ∈ ∨Ψ, there
exists a vµ ∈ V δµ with ṽµ(vµ) ≥ (γ∆ − ε)‖ṽµ‖V ′‖vµ‖V and ‖ṽµ‖V ′ = ‖vµ‖V .
With v :=

∑
µ∈∨Ψ

ψµ ⊗ vµ ∈ Y δ , we infer that (∂tw)(v) =
∑
µ∈∨Ψ

ṽµ(vµ) ≥
(γ∆ − ε)‖∂tw‖Y ′‖v‖Y .
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6.5. Wavelets-in-time tensorized with finite-elements-in-space

In order to be able to apply at linear cost the arising linear operators in
(6.31)-(6.32), we will restrict the type of trial spaces Xδ =

∑
λ∈∨Σ

σλ ⊗W δ
λ by

imposing the following tree condition

(6.53) λ̃ /Σ λ =⇒W δ
λ̃
⊇W δ

λ .

For the same reason the analogous condition will be needed for Y δ . For Xδ

that satisfies (6.53), below the latter will be verified, and sufficient, more easily
verifiable conditions for (6.51)-(6.52) are derived.

Proposition 6.5.2. Let Xδ =
∑
λ∈∨Σ

σλ ⊗W δ
λ satisfy (6.53). For µ ∈ ∨Ψ, set

“W δ
µ :=

∑
{λ∈∨Σ : |λ|=|µ|, |SΨ(µ)∩SΣ(λ)|>0}

W δ
λ .

Build Y δ =
∑
µ∈∨Ψ

ψµ ⊗ V δµ by taking V δµ = {0} when “W δ
µ = {0}, and otherwise

V δµ ⊇ “W δ
µ

where

inf
06=w∈ “W δ

µ

sup
06=v∈V δµ

w(v)

‖w‖V ′‖v‖V
≥ γ∆(6.54)

for some constantγ∆ > 0. Then the conditions (6.51) and (6.52) fromProposition 6.5.1
for uniform stability are satisfied.

When dimV δµ . dim “W δ
µ , then dimY δ . dimXδ , and under the natural con-

dition that a larger “W δ
µ gives rise to a larger (more precisely, not smaller) V δµ , the

constructed Y δ satisfies the tree condition

(6.55) µ̃ /Ψ µ =⇒ Vµ̃ ⊇ Vµ.

Proof. Let 〈σλ, ψµ〉L2(I) 6= 0 or 〈σ′λ, ψµ〉L2(I) 6= 0. Then |SΣ(λ) ∩ SΨ(µ)| > 0

and |λ| ≥ |µ| by (6.50). When |λ| > |µ|, λ has an ancestor λ̃ with |λ̃| = |µ|,
W δ
λ̃
⊇W δ

λ , andSΣ(λ̃) ⊇ SΣ(λ), and thus |SΣ(λ̃)∩SΨ(µ)| > 0. We conclude that
both

∑
{λ∈∨Σ : 〈σλ,ψµ〉L2(I) 6=0}W

δ
λ and

∑
{λ∈∨Σ : 〈σ′λ,ψµ〉L2(I) 6=0}W

δ
λ are included

in “W δ
µ , so that (6.51) and (6.52) are guaranteed by the selection of V δµ .

The statement dimY δ . dimXδ when dimV δµ . dim “W δ
µ follows from

dim “W δ
µ ≤

∑
{λ∈∨Σ : |λ|=|µ|, |SΨ(µ)∩SΣ(λ)|>0} dimW δ

λ , and the fact that for any
λ ∈ ∨Σ, the number of µ ∈ ∨Ψ with |µ| = |λ| and |SΨ(µ) ∩ SΣ(λ)| > 0 is
uniformly bounded.

Let µ̃ /Ψ µ, and so SΨ(µ̃) ⊇ SΨ(µ). For each λ ∈ ∨Σ with |λ| = |µ| and
|SΨ(µ) ∩ SΣ(λ)| > 0, there exists a λ̃ /Σ λ, thus with SΣ(λ̃) ⊇ SΣ(λ), and
W δ
λ̃
⊇ W δ

λ by (6.53). We conclude that “W δ
µ̃ ⊇ “W δ

µ , which completes the proof
of (6.55).
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6. An adaptive method

As follows from [DSW21, Thm. 3.10] (takingB to be theRieszmapH → H ′)
condition (6.54) has the following equivalent formulation.

Proposition 6.5.3. Condition (6.54) is equivalent to existence of a projector Q ∈
L(V, V ) with ranQ ⊆ V δµ , ranQ∗ ⊇ “W δ

λ , and ‖Q‖L(V,V ) ≤ 1
γ∆

.

6.5.4 Selection of the spatial approximation spaces as finite
element spaces

Wewill select the spacesW δ
λ from a collectionO of finite element spaces in V ,

which collection is closed under taking (finite) sums, and for which

(6.56) inf
W∈O

inf
06=w∈W

sup
06=v∈W

w(v)

‖w‖V ′‖v‖V
> 0.

Consequently, the stability conditions (6.13)-(6.14) are satisfied for someγ∆ > 0
by simply taking in Proposition 6.5.2.

(6.57) V δµ := “W δ
µ ∈ O.

As follows from Proposition 6.5.3, (6.56) is equivalent to uniform bound-
edness w.r.t. the norm on V of the H-orthogonal projector onto W ∈ O. It is
well-known that an example of such a collectionO is given by the set of all finite
element spacesW δ

λ w.r.t. quasi-uniform, uniformly shape regular conforming
partitions of Ω into, say, d-simplices.

It is known that the uniform boundedness w.r.t. the V -norm of the H-
orthogonal projector holds also true for finite element spaces w.r.t. locally re-
fined partitions as long as the grading of the partitions is sufficiently mild. In
[GHS16] it has been shown that for d = 2 spatial dimensions, and polynomial
orders up to 12, the collection of all conforming partitions that can be gener-
ated by newest vertex bisection (NVB), starting from a fixed conforming initial
partition T⊥ with an assignment of the newest vertices that satisfies a so-called
matching condition, is sufficiently mildly graded in the above sense. Since
the overlay of two conforming NVB partitions is a conforming NVB partition,
this collection is closed under taking (finite) sums. In other words, with this
collection of finite element spaces, which we will employ in our experiments,
again the choice (6.57) guarantees uniform stability.

In [Car04] a result similar to that from [GHS16] has been shown for red-
blue-green refinement and lowest order finite elements again for d = 2. Un-
fortunately, for d > 2 such results seem not yet to be available.
Remark 6.5.4 (Getting γ∆ close to 1). We discussed uniform boundedness
w.r.t. the V -norm of the H-orthogonal projectors onto a family of finite el-
ement spaces, which, by taking V δµ := “W δ

µ in Proposition 6.5.2, yields the
uniform inf-sup condition (6.14) some value γ∆ > 0, and so uniform stability
of the Galerkin discretizations of the saddle-point (6.9).

126



6.5. Wavelets-in-time tensorized with finite-elements-in-space

For proving convergence of our adaptive routine Algorithm 6.4.8, however,
we needed a value of γ∆ > 0 that is sufficiently close to 1. Although in our
numerical experiments, reported on in Sect. 6.7, with continuous piecewise
linear finite element spaces generated by conforming NVB and V δµ = “W δ

µ , the
adaptive routine is r-linearly converging, there is no guarantee that 1 − γ∆ is
sufficiently small.

Restricting to quasi-uniform partitions, below we show that 1− γ∆ can be
made arbitrarily small by taking the mesh underlying V δµ to be a sufficiently
deep, but fixed refinement of the mesh underlying “W δ

µ . One may conjecture
that the same result holds true for sufficiently mildly graded locally refined
meshes.

Let the diameters of any d-simplex in the partitions underlying “W δ
µ and V δµ

be proportional to hc and hf , respectively. For s ∈ [0, 1], let Hs := [H,V ]s,2.
In any case when Ω is a Lipschitz domain, it is known that there exists an
s ∈ (0, 1] such that the solution u ∈ V of 〈u, v〉V = f(v) (v ∈ V ) satisfies
‖u‖H1+s(Ω) . ‖f‖(H1−s)′ , assuming the right-hand side is bounded. From this,
the Aubin-Nitsche duality argument shows that the V -orthogonal projector
Pµ onto V δµ satisfies ‖Id − Pµ‖L(V,H1−s) . hsf . On the other hand, on “W δ

µ we
have the following inverse inequality ‖ · ‖(H1−s)′ . h

−s
c ‖ · ‖V ′ (e.g. (2.44)).

Given w ∈ “W δ
µ , for any ε > 0, there exists a v ∈ V with w(v) ≥ (1 −

ε)‖w‖V ′‖v‖V . We infer that, for some constant C > 0,

w(Pµv) = w(v) + w((Id− Pµ)v)

≥ (1− ε)‖w‖V ′‖v‖V − ‖w‖(H1−s)′‖(Id− Pµ)v‖H1−s

≥ (1− (ε+ C(hf/hc)
s)‖w‖V ′‖v‖V

≥ (1− (ε+ C(hf/hc)
s)‖w‖V ′‖Pµv‖V .

Since ε > 0was arbitrary, we conclude that γ∆ ≥ (1−C(hf/hc)
s)which proves

our assertion.

6.5.5 Best possible rates
Although so far we have not proved it, we expect that the sequence of ap-
proximations generated by our adaptive Algorithm 6.4.8 is not only r-linearly
converging, but, ignoring data oscillation, that it is a sequence of approxima-
tions from a sequence of spaces from the family (Xδ)δ∈∆ that converges with
the best possible rate. In this subsection, we show that with our selection
of the (Xδ)δ∈∆, under some (mild) smoothness conditions on the solution u
this best possible rate equals the rate of best approximation to the solution of
the corresponding stationary problem from the spatial finite element spaces
w.r.t. the V -norm.

Consider a family of spaces Xδ =
∑
λ∈∨Σ

σλ ⊗ W δ
λ that satisfies (6.53),

with the W δ
λ selected from a collection of finite element spaces O that in any
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case contains all such spaces that correspond to uniform refinements of some
initial partition of Ω. Let Σ a collection of wavelets of order dt, and assume
that the finite element spaces are of order dx. When for each Xδ , the space
Y δ is selected as in Proposition 6.5.2, then the combination of (6.20) and the
analysis from [SS09, Sect. 7.1] shows that if the exact solution u of our parabolic
problem satisfies the mixed regularity condition u ∈ Hdt(I)⊗Hdx(Ω), then a
suitable (non-adaptive) choice of the spacesW δ

λ yields a sequence of solutions
uδ̂δ ∈ Xδ (for arbitrary Y δ̂ ⊃ Y δ) of the modified discretized saddle-point
from Sect 6.3.3, for which

‖u− uδ̂δ‖X . (dimXδ)−min(dt−1, dx−1
d ).

Note that for dt−1 ≥ dx−1
d , the rate dx−1

d equals the best rate in the V -norm that
can be expected when the finite element spaces are employed for solving the
corresponding stationary problem, which is posed on a d-dimensional domain
instead over the d+ 1-dimensional space-time cylinder.

For an optimal adaptive choice of the W δ
λ as finite element spaces w.r.t. a

sufficiently ‘rich’ collection of locally refined partitions, as the collection of all
conforming NVB partitions, it can be expected that the rate min(dt − 1, dx−1

d )
is realized under much milder regularity conditions on u.

When instead of being finite element spaces, the spacesW δ
λ can be selected

as the spans of some wavelets from a Riesz basis for V of order dx, and addi-
tionally the tree condition (6.53) is dropped, a precise characterization of those
u that can be approximated at a rate s < min(dt − 1, dx−1

d ) in terms of tensor
products of Besov spaces can be deduced from [Nit06, SU09]. The collection of
finite element spaces w.r.t. locally refined meshes, as those generated by NVB,
is very resemblant to the collection of spans of sets of such wavelets when
on these sets a tree condition is imposed similar to the tree constraint (6.53)
that we imposed in the temporal direction. In other words, the collection of
spacesXδ that we consider is similar to the collection of spans of sets of tensor
products of temporal and spatial wavelets when these sets satisfy a ‘double-
tree’ constraint. In view of results from [BDDP02], we do not expect that this
constraint makes the resulting approximation classes much smaller.

6.5.6 Preconditioners
Our adaptive solution method of the parabolic problem requires optimal pre-
conditioners for EδY

′
AEδY and S¯

δδ , i.e., for both Z = Y and Z = X and δ ∈ ∆,
we need operators Kδ

Z = Kδ
Z

′ ∈ L(Zδ
′
, Zδ) with h(Kδ

Zh) h ‖h‖2
Zδ ′

(h ∈ Zδ ′),
moreover which should be applicable at linear cost.

To construct these preconditioners, for Z ∈ {Y,X} we will select a sym-
metric, bounded, and coercive bilinear form on Z × Z, and after selecting
some basis for Zδ , we will construct a matrix Kδ

Z = Kδ
Z

> that can be applied
in linear complexity, and that is uniformly spectrally equivalent to the inverse
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of the stiffness matrix corresponding to this bilinear form (being the matrix
representation of the linear mapping Zδ → Zδ

′ defined by the bilinear form
w.r.t. the basis for Zδ being chosen and the corresponding dual basis for Zδ ′).
Then Kδ

Z ∈ L(Zδ
′
, Zδ), defined as the operator whose matrix representation

is Kδ
Z w.r.t. the aforementioned bases of Zδ ′ and Zδ , is the preconditioner that

satisfies our needs.
Notice that the choice of the basis for Zδ is irrelevant. Indeed, denoting

the aforementioned stiffness matrix as Cδ
Z with corresponding operator CδZ =

CδZ
′ ∈ Lis(Zδ, Zδ

′
), one may verify that

‖Kδ
Z‖L(Zδ′,Zδ)‖(Kδ

Z)−1‖L(Zδ,Zδ ′) h ‖Kδ
ZC

δ
Z‖L(Zδ,Zδ)‖(Kδ

ZC
δ
Z)−1‖L(Zδ,Zδ)

=
λmax(Kδ

ZCδ
Z)

λmin(Kδ
ZCδ

Z)
.

Preconditioner at the ‘test side’

Let Y = Z. Since Ψ is an orthonormal basis for L2(I), any y ∈ Y is of the form∑
µ∈∨Ψ

ψµ ⊗ vµ for some vµ ∈ V with
∑
µ∈∨Ψ

‖vµ‖2V < ∞. Taking as bilinear
form on Y × Y simply the scalar product on Y × Y , we have

〈
∑

µ1∈∨Ψ

ψµ1
⊗ v(1)

µ1
,
∑

µ2∈∨Ψ

ψµ2
⊗ v(2)

µ2
〉Y =

∑
µ∈∨Ψ

〈v(1)
µ , v(2)

µ 〉V .

Equipping Y δ =
∑
µ∈∨Ψ

ψµ ⊗ V δµ with a basis of type ∪µ∈∨Ψ
ψµ ⊗ Φδµ, the

resulting stiffness matrix reads as blockdiag[Aδ
µ]µ∈∨Ψ

, where Aδ
µ = 〈Φδµ,Φδµ〉V

is the stiffness matrix of 〈·, ·〉V w.r.t. Φδµ. Selecting Kδ
µ h (Aδ

µ)−1, the matrix
representation of the optimal preconditioner reads as

Kδ
Y = blockdiag[Kδ

µ]µ∈∨Ψ
.

It is well-known that when V δµ is a finite element space, possibly w.r.t. a locally
refined partition, suitable Kδ

µ ofmulti-grid type are available. These Kδ
µ can be

applied in linear complexity, and so can Kδ
Y .

To show, in Theorem 6.4.9, that our adaptive Algorithm 6.4.8 is r-linearly
converging we required C∆ − 1 to be sufficiently small, which requires that
‖(EδY

′
AEδY )−1 −Kδ

Y ‖L(Y δ′,Y δ) or, equivalently, ‖Id −Kδ
Y E

δ
Y

′
AEδY ‖L(Y δ,Y δ) is

sufficiently small, i.e. the eigenvalues of Kδ
Y E

δ
Y

′
AEδY are sufficiently close to

1. Given an initial optimal, self-adjoint, and coercive preconditioner Kδ
Y , and

some upper and lower bounds on the spectrum of the preconditioned system,
one can satisfy the latter condition by polynomial acceleration using Cheby-
chev polynomials of sufficiently high degree. In our numerical experiments,
it turned out that it was not needed to apply this ‘acceleration’.
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Preconditioner at the ‘trial side’

The preconditioner presented in this section is inspired by constructions of
preconditioners in [And16, NS19] for parabolic problems discretized on a
tensor product of temporal and spatial spaces.

Thanks to Σ and {2−|λ|σλ : λ ∈ ∨Σ} being Riesz bases for L2(I) andH1(I),
any x ∈ X is of the form

∑
λ∈∨Σ

σλ⊗wλ for somewλ ∈ V with
∑
λ∈∨Σ

‖wλ‖2V +

4|λ|‖wλ‖2V ′ <∞, and

〈
∑
λ1∈∨Σ

σλ1
⊗ w(1)

λ1
,
∑
λ2∈∨Σ

σλ2
⊗ w(2)

λ2
〉 :=

∑
λ∈∨Σ

〈w(1)
λ , w

(2)
λ 〉V + 4|λ|〈w(1)

λ , w
(2)
λ 〉V ′

is a symmetric, bounded, and coercive bilinear form on X × X . Equipping
Xδ =

∑
λ∈∨Σ

σλ⊗W δ
λ with a basis of type∪λ∈∨Σσλ⊗Φδλ, the resulting stiffness

matrix reads as
blockdiag[Aδ

λ + 4|λ|〈Φδλ,Φδλ〉V ′ ]λ∈∨Σ

where Aδ
λ = 〈Φδλ,Φδλ〉V .

Thanks to our assumption (6.56), for u ∈ W δ
λ it holds that ‖u‖V ′ .

sup06=w∈W δ
λ

〈u,w〉
‖w‖V ≤ ‖u‖V ′ . With u denoting the representation of u w.r.t. Φδλ,

we have
sup

0 6=w∈W δ
λ

〈u,w〉
‖w‖V

= ‖(Aδ
λ)−

1
2 Mδ

λu‖,

where Mδ
λ = 〈Φδλ,Φδλ〉, so that

〈Φδλ,Φδλ〉V ′ .Mδ
λ(Aδ

λ)−1Mδ
λ ≤ 〈Φδλ,Φδλ〉V ′ .

Since both Aδ
λ and Mδ

λ are symmetric and positive definite, [PW12, Thm.
4] shows that

1
2

(
Aδ
λ+4|λ|Mδ

λ(Aδ
λ)−1Mδ

λ

)
≤ (Aδ

λ+2|λ|Mδ
λ)(Aδ

λ)−1(Aδ
λ+2|λ|Mδ

λ)

≤ Aδ
λ+4|λ|Mδ

λ(Aδ
λ)−1Mδ

λ.

Now assuming that

(6.58) Kδ
λ h (Aδ

λ + 2|λ|Mδ
λ)−1,

we infer that
Kδ
X = blockdiag

[
Kδ
λA

δ
λK

δ
λ

]
λ

is the matrix representation of an optimal preconditioner.
Notice that (6.58) requires anoptimalpreconditioner of adiscretized reaction-

diffusion equation that is robust w.r.t. to the size of the (constant) reaction
term. In [OR00] it was shown that, under a ‘full-regularity’ assumption, for
quasi-uniform meshes multiplicative multi-grid yields such a preconditioner,
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moreover whose application can be performed at linear cost. Although we
expect that using the theory of subspace correctionmethods the full regularity
assumption can be avoided, and furthermore that the optimality, robustness
and linear complexity result extends to locally refined meshes, proofs of such
extensions seem not to be available.

6.6 A concrete realization

6.6.1 The collection O of finite element spaces, and the map δ →
¯
δ

We further specify the collectionO of finite element spaces, construct a linearly
independent set inH1

0,ΓD
(Ω), known as the hierarchical basis, and equip itwith

a tree structure such that there exists a 1-1 correspondence between the finite
element spaces in O, and the spans of subsets of the hierarchical basis that
form trees.

With this specification ofO, there will be a 1-1 correspondence between the
spacesXδ =

∑
λ∈σλ σλ⊗W

δ
λ withW δ

λ ∈ O that satisfy (6.53), and the spans of
collections of tensor products of wavelets σλ and hierarchical basis functions
whose sets of index pairs are lower, also known as downward closed. Given such
a Xδ , we will define X¯

δ by a certain enlargement the lower set.
For d ≥ 2, let T be the family of all conforming partitions of a polytope

Ω ⊂ Rd into (closed) d-simplices that can be created by NVB starting from
some given conforming initial partition T⊥ with an assignment of the newest
vertices that satisfies the matching condition, see [Ste08b]. We define a partial
order on T by writing T � T̃ when T̃ is a refinement of T .

With some small adaptations that we leave to the reader, in the following
the case d = 1 can be included by letting T to be the family of a partitions of Ω
into (closed) subintervals that can be constructed by bisections from T⊥ = {Ω}
such that the generations of any two neighbouring subintervals in any T ∈ T
differ by not more than one.

The collection O that we will consider is formed by the spacesW = WT of
continuous piecewise linearsw.r.t. T ∈ T, zero on a possible Dirichlet boundary
ΓD being the union of ∂T∩∂Ω for some T ∈ T⊥. We expect that generalizations
to finite element spaces of higher order do not impose essential difficulties.

ForT ∈ T := ∪T ∈T{T : T ∈ T }, we set gen(T ) to be thenumber of bisections
needed to create T from its ‘ancestor’ T ′ ∈ T⊥. With N being the set of all
vertices (or nodes) of all T ∈ T, for ν ∈ N we set gen(ν) := min{gen(T ) : T ∈
T, ν ∈ T}.

Any ν ∈ Nwith gen(ν) > 0 is themidpoint of an edge of one ormore T ∈ T
with gen(T ) = gen(ν)− 1. The vertices ν̃ of these T with gen(ν̃) = gen(ν)− 1
are defined as the parents of ν. We denote this relation between a parent ν̃
and a child ν by ν̃ /N ν, see Figure 6.1. Vertices ν ∈ Nwith gen(ν) = 0 have no
parents.
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ν̃1

ν̃2
ν

Figure 6.1. ν̃1, ν̃2 /N ν, and T and its refinement T d+ (for d = 2).

An (essentially) non-overlapping partition T of Ω into T ∈ T is in T if and
only if the setNT of vertices of all T ∈ T forms a tree, meaning that it contains
all ν ∈ Nwith gen(ν) = 0 as well as all parents of any ν ∈ NT with gen(ν) > 0,
cf. [DKS16] for the d = 2 case.

Definition 6.6.1. For any T ∈ T, we define T d+ ∈ T (denoted as T ++ in
[DKS16] for the d = 2 case) by replacing any T ∈ T by its 2d ‘descendants’ of
the dth generation, see Figure 6.1.

Since this refinement adds exactly one vertex at the midpoint on any edge
of all T ∈ T , one infers that indeed T d+ ∈ T. The corresponding tree NT d+ is
created from NT by the addition of all descendants up to generation d of all
ν ∈ NT .1

For ν ∈ N, we set φν as the continuous piecewise linear function w.r.t. the
uniform partition {T ∈ T : gen(T ) = gen(ν)} ∈ T, which function is 1 at ν and 0
at all other vertices of this partition. SettingN0 := N \ ΓD and, for any T ∈ T,
NT ,0 := NT \ΓD, the collection {φν : ν ∈ N0} is known as the hierarchical basis,
and for any T ∈ T, it holds thatWT = span{φν : ν ∈ NT ,0}.

With above specification of the collection O of finite element spaces, there
exists a 1-1 correspondence between the spaces

∑
λ∈∨Σ

σλ ⊗W δ
λ withW δ

λ ∈ O
that satisfy (6.53), and the spaces of the form

(6.59) Xδ = span{σλ ⊗ φν : (λ, ν) ∈ Iδ,0 := Iδ \ (∨Σ × ΓD)}

for some finite Iδ ⊂ ∨Σ ×N being a lower set in the sense

(6.60) (λ, ν) ∈ Iδ and
{

λ̃ /Σ λ =⇒ (λ̃, ν) ∈ Iδ,
ν̃ /N ν or gen(ν̃) = 0 =⇒ (λ, ν̃) ∈ Iδ.

For above specification ofXδ , from Proposition 6.5.2 with the specification
(6.57) one infers that the corresponding space

(6.61) Y δ = span{ψµ ⊗ φν : (µ, ν) ∈ IYδ,0},
1The addition of only all children of all ν ∈ NT yields a tree only if T is a uniform partition.
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where

(6.62) IYδ,0 := {(µ, ν) : ∃(λ, ν) ∈ Iδ,0, µ ∈ ∨Ψ, |µ| = |λ|, |SΨ(µ) ∩ SΣ(λ)| > 0}

which index set is a lower set.
Remark 6.6.2 (Complexity of matrix-vector multiplications). The fact that the
index sets of the bases forXδ and Y δ are lower sets is the key why it is possible
to compute residuals of the system S¯

δδuδ = fδ ((6.31)) in O(dimXδ) opera-
tions. Indeed, when one has a bilinear form that is ‘local’ and equals the tensor
product of bilinear forms in time and space, and two spaces spanned by tensor
productmulti-level bases corresponding to lower sets, then the resultinggener-
alized systemmatrix w.r.t. both bases can be applied in a number of operations
that is proportional to the sum of the dimensions of both spaces. The algo-
rithm that realizes this complexity makes a clever use of multi- to single-scale
transformations alternately in time and space. In a ‘uniform’ sparse-grid set-
ting, i.e., without ‘local refinements’, this algorithm was introduced in [BZ96],
and it was later extended to general lower sets in [KS14]. The definition of a
lower set in [KS14], there called multi-tree, is more restrictive than our current
definition that allows more localized refinements. Details about the matrix-
vector multiplication and a proof of its optimal computational complexity is
given in Chapter 7.

Definition 6.6.3. Given Xδ = span{σλ ⊗ φ̂ν : (λ, ν) ∈ Iδ,0} for some lower set
Iδ ⊂ ∨Σ ×N, we define the lower set I

¯
δ , and with thatX¯

δ , by adding, for each
(λ, ν) ∈ Iδ and any child λ̃ of λ and any descendant ν̃ of ν up to generation d,
all pairs (λ̃, ν) and (λ, ν̃) to Iδ .

6.6.2 The collection Θδ such that X¯
δ = Xδ ⊕Θδ

Recall that for the bulk chasing process we need an ‘X-stable’ basis Θδ that
spans an ‘X-stable’ complement space of Xδ in X¯

δ , i.e., a collection that
satisfies (6.24). For that goal we define amodified hierarchical basis {φ̂ν : ν ∈ N0}
by φ̂ν := φν when gen(ν) = 0, and

φ̂ν := φν −

∑
{ν̃∈N0 : ν̃/Nν}

´
Ω
φνdx´

Ω
φν̃dx

φν̃

#{ν̃ ∈ N : ν̃ /N ν}

otherwise. Notice that for those ν with gen(ν) > 0 that have all their parents
not on ΓD it holds that

´
Ω
φ̂ν dx = 0, i.e., φ̂ν has a vanishing moment, and

furthermore that for any T ∈ T,WT = span{φ̂ν : ν ∈ NT ,0} .
For any T ∈ T, it holds that

WT = span{φν : ν ∈ NT ,0} = span{φ̂ν : ν ∈ NT ,0},
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and thus for any lower set Iδ ⊂ ∨Σ ×N,

Xδ = span{σλ ⊗ φ̂ν : (λ, ν) ∈ Iδ,0} = span{σλ ⊗ φν : (λ, ν) ∈ Iδ,0}.

Moreover, for any T ∈ T, the basis transformation from the modified to un-
modified hierarchical basis forWT can be applied in linear complexity travers-
ing from the leaves to the roots.

Given δ, the collection Θδ will be the set of properly normalized functions
σλ⊗ φ̂ν for (λ, ν) ∈ I

¯
δ,0 \Iδ,0. In order to demonstrate (6.24), we have to impose

some gradedness assumption on the lower sets Iδ .

Definition 6.6.4. The gradedness constant of a lower set Iδ ⊂ ∨Σ × N is the
smallest Lδ ∈ N such that for all (λ, ν) ∈ Iδ for which ν has an ancestor ν̃ ∈ N

with gen(ν)− gen(ν̃) = Lδ , it holds that (λ̆, ν̃) ∈ Iδ for any child λ̆ ∈ ∨Σ of λ.

Remark 6.6.5 (Uniform boundedness of the gradedness constants). Under the
(unproven) assumption that our adaptive method creates a sequence of spaces
Xδ which are quasi-optimal for the approximation of the solution of the the
parabolic PDE, one may hope that these spaces have a uniformly bounded grad-
edness constant, unless (locally) the solution u is extremely more smooth as
function of t than as function of the spatial variables.

To see this, consider the non-adaptive sparse grid index sets of the form
{(λ, ν) ∈ ∨Σ ×N : L̃|λ|+ gen(ν) ≤ N} for some constant L̃ and N ∈ N, which
are appropriate when the behaviour of u as function of t on the one hand and
that of the spatial variables on the other is globally similar. Then for L̃ ≤ L,
the gradedness constant of this index set is ≤ L, where the smallest spatial
resolution in the ‘sparse-grid mesh’ equals the smallest temporal resolution in
this mesh to the power L̃/d. So only when a polynomial decay of the spatial
resolution as function of the temporal resolution does not suffice for a proper
approximation of u, one cannot expect to have a gradedness constant that is
uniformly bounded.

Proposition6.6.6. For (λ, ν) ∈ ∨Σ×N0, let eλµ := 1/
√

2( 2
d−1) gen(ν) + 4|λ|2(− 2

d−1) gen(ν)

and θλν := eλµσλ ⊗ φ̂ν . For any δ ∈ ∆, let Θδ := {θλν : (λ, ν) ∈ Jδ :=
I
¯
δ,0 \ Iδ,0}. Then Xδ ⊕ span Θδ = X¯

δ , and there exist constants 0 < mδ ≤ Mδ ,
only dependent on the gradedness constant Lδ , such that for any z ∈ Xδ and
c = (cλν)(λ,ν)∈I

¯
δ,0\Iδ,0 ⊂ R,

mδ(‖z‖2X + ‖c‖2) ≤ ‖z + c>Θδ‖2X ≤Mδ(‖z‖2X + ‖c‖2)

So under the mild assumption that the gradedness constants of the setsXδ

that we encounter are uniformly bounded, we have shown that the condition
(6.24) is satisfied.

134



6.6. A concrete realization

Proof. Setting cλν := 0when (λ, ν) 6∈ I
¯
δ,0\Iδ,0, andwriting z =

∑
λ∈∨Σ

σλ⊗wλ
wherewλ ∈ span{φ̂ν : (λ, ν) ∈ Iδ,0}, fromΣ and {2−|λ|σλ : λ ∈ ∨Σ} being Riesz
bases for L2(I) andH1(I), and c>Θδ =

∑
λ σλ ⊗

∑
ν eλµcλν φ̂ν , an application

of Lemma 6.6.7 given below shows that

‖z + c>Θδ‖2X h
∑
λ

{
‖wλ +

∑
ν

eλµcλν φ̂ν‖2H1(Ω) + 4|λ|‖wλ +
∑
ν

eλµcλν φ̂ν‖2H1
0,ΓD

(Ω)′

}
h
{∑

λ

‖wλ‖2H1(Ω)+4|λ|‖wλ‖2H1
0,ΓD

(Ω)′+
∑
ν

(
2( 2

d−1) gen(ν)+4|λ|2(− 2
d−1) gen(ν)

)
|eλµcλν |2

}
=
∑
λ

‖wλ‖2H1(Ω) + 4|λ|‖wλ‖2H1
0,ΓD

(Ω)′ +
∑
ν

|cλν |2 h ‖z‖2X + ‖c‖2,

with the h-symbol in the second line dependent on the gradedness constant.

Lemma 6.6.7. For T̃ ∈ T, and either T 3 T � T̃ and v ∈WT , or T = ∅,NT ,0 := ∅,
and v = 0, and scalars (dν)ν∈NT̃ ,0\NT ,0 , it holds that

‖v +
∑
ν

dν φ̂ν‖2H1(Ω) h ‖v‖
2
H1(Ω) +

∑
ν

2( 2
d−1) gen(ν)|dν |2(6.63)

‖v +
∑
ν

dν φ̂ν‖2H1
0,ΓD

(Ω)′ h ‖v‖
2
H−1(Ω) +

∑
ν

2(− 2
d−1) gen(ν)|dν |2(6.64)

with the constants hidden in theh-symbols only dependent onMT̃ T := max{gen(T̃ )−
gen(T ) : T̃ 3 T̃ ⊂ T ∈ T } orMT̃ T := max{gen(T̃ ) : T̃ ∈ T̃ } for T = ∅.

Proof. Once the equivalences are shown uniformly in any T � T̃ for which
MT̃ T = 1, a repeated application of these equivalences shows them for the
general case, with constants that are only dependent on MT̃ T . So in the
following, it suffices to consider the case that MT̃ T = 1. The case T = ∅ is
easy, so we will consider the case that T ∈ T.

Let ΦT̃ = {φT̃ ,ν : ν ∈ NT̃ ,0} denote the standard nodal basis for WT̃ . For
any weight function 0 < wT̃ ∈

∏
T∈T̃ P0(T ), with ‖ · ‖L2,wT̃

(Ω) := ‖w
1
2

T̃ · ‖L2(Ω)

it holds that ‖
∑
ν cνφT̃ ,ν‖2L2,wT̃

(Ω) h
∑
ν |cν |2‖φT̃ ,ν‖2L2,wT̃

(Ω), only dependent
on the spectrum of the element mass matrix on a reference element, i.e., on
the space dimension d, so independent of the weight function wT̃ . We refer to
this equivalence by saying that ΦT̃ is (uniformly) stable w.r.t. ‖ · ‖L2,wT̃

(Ω).
Notice that for ν ∈ NT̃ ,0 \NT ,0, it holds that φT̃ ,ν = φν . W.r.t. the splitting

NT̃ ,0 = NT ,0 + NT̃ ,0 \ NT ,0, the basis transformation from ΦT ∪ {φ̂ν : ν ∈

NT̃ ,0 \ NT ,0} to ΦT ∪ {φν : ν ∈ NT̃ ,0 \ NT ,0} is of the form
[
Id ∗
0 Id

]
, and the
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basis transformation from the latter basis to ΦT̃ is of the form
[
Id 0
∗ Id

]
. The

entries in both non-zero off-diagonal blocks are uniformly bounded, where
non-zeros can only occur for index pairs (ν, ν̃) that are vertices of the same
T̃ ∈ T̃ . Consequently, for a family of weight functions (wT̃ )T̃ ∈T that have
uniformly bounded jumps in the sense that

(6.65) sup
T̃ ∈T

sup
{T,T ′∈T̃ : T∩T ′ 6=∅}

wT̃ |T
wT̃ |T ′

<∞,

all basis transformationsbetween theL2,wT̃
(Ω)-normalizedbasesΦT ∪{φ̂ν : ν ∈

NT̃ ,0 \NT ,0}, ΦT ∪ {φν : ν ∈ NT̃ ,0 \NT ,0} and ΦT̃ are uniformly bounded.
Since, as we have seen, ΦT̃ is (uniformly) stable w.r.t. ‖ · ‖L2,wT̃

(Ω), we
conclude that also ΦT ∪{φ̂ν : ν ∈ NT̃ ,0 \NT ,0} and ΦT ∪{φν : ν ∈ NT̃ ,0 \NT ,0}
are (uniformly) stablew.r.t. ‖·‖L2,wT̃

(Ω). Because of the uniformK-mesh property
of T ∈ T, examples of families of weights that satisfy (6.65) are given by
(hsT̃ )T̃ ∈T for any s ∈ R, where hT̃ |T := 2− gen(T )/d(h |T |1/d) (T ∈ T̃ ).

For showing (6.63), let PT : WT̃ → WT be the projector with ranPT = WT
and ran(Id − PT ) = span{φ̂ν : ν ∈ NT̃ ,0 \ NT ,0}. Using the form of the basis
transformation fromΦT ∪{φν : ν ∈ NT̃ ,0\NT ,0} toΦT ∪{φ̂ν : ν ∈ NT̃ ,0\NT ,0},
one infers that

Id− PT = JT ◦ (Id− IT ),

where IT is the nodal interpolator ontoWT , and JT is defined by JT φν = φ̂ν .
Since both {φ̂ν : ν ∈ NT̃ ,0 \ NT ,0} and {φν : ν ∈ NT̃ ,0 \ NT ,0} are uniformly
stable w.r.t. ‖h−1

T̃ · ‖L2(Ω), and ‖h−1

T̃ φ̂ν‖L2(Ω) h ‖h−1

T̃ φν‖L2(Ω), it follows that
JT is uniformly bounded w.r.t. ‖h−1

T̃ · ‖L2(Ω), i.e. ‖h−1

T̃ JT hT̃ ‖L(L2(Ω),L2(Ω)) . 1,
and so

‖h−1

T̃ (Id− PT )v‖L2(Ω) . ‖h−1

T̃ (Id− IT )v‖L2(Ω) . |v|H1(Ω) (v ∈WT̃ ).

Using the common inverse inequality ‖ · ‖H1(Ω) . ‖h−1

T̃ · ‖L2(Ω) on WT̃ , we
infer that (Id − PT ) is uniformly bounded in the H1(Ω)-norm, and that ‖ ·
‖H1(Ω) h ‖h−1

T̃ · ‖L2(Ω) on ran(Id−PT ). The proof of (6.63) is completed by the
uniform stability of {φ̂ν : ν ∈ NT̃ ,0 \NT ,0}w.r.t. ‖h

−1

T̃ · ‖L2(Ω), and the fact that
‖h−1

T̃ φ̂ν‖2L2(Ω) h 2( 2
d−1) gen(ν).

Moving to (6.64), either by
´

Ω
φ̂ν dx = 0, or otherwise using the proximity

of the Dirichlet boundary ΓD by an application of Poincaré’s inequality, it
holds that

|〈φ̂ν , v〉L2(Ω)| . 2− gen(ν)/d‖φ̂ν‖L2(Ω)|v|H1(supp φ̂ν) (ν ∈ N0 \NT⊥,0).
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By using that for T ∈ T̃ the number of ν ∈ NT̃ ,0 \NT ,0 for which supp φ̂ν has
non-empty intersection with T is uniformly bounded, and furthermore that
ΦT ∪{φ̂ν : ν ∈ NT̃ ,0 \NT ,0} is uniformly stable w.r.t. ‖hT · ‖L2(Ω), we infer that
for any z =

∑
ν∈NT ,0 zνφT ,ν ∈WT it holds that

‖
∑

ν∈NT̃ ,0\NT ,0

dν φ̂ν‖H1
0,ΓD

(Ω)′ = sup
06=v∈H1

0,ΓD
(Ω)

〈
∑
ν∈NT̃ ,0\NT ,0

dν φ̂ν , v〉L2(Ω)

‖v‖H1(Ω)

.
√ ∑
ν∈NT̃ ,0\NT ,0

|dν |2‖hT̃ φ̂ν‖2L2(Ω)

≤
√ ∑
ν∈NT ,0

|zν |2‖hT̃ φT ,ν‖2L2(Ω) +
∑

ν∈NT̃ ,0\NT ,0

|dν |2‖hT̃ φ̂ν‖2L2(Ω)

h ‖hT̃ (z +
∑

ν∈NT̃ ,0\NT ,0

dν φ̂ν)‖L2(Ω) . ‖z +
∑

ν∈NT̃ ,0\NT ,0

dν φ̂ν‖H1
0,ΓD

(Ω)′

(6.66)

the last inequality by application of a less common inverse inequality which
proof can be found in Lemma 2.3.4 for general dimensions d. From (6.66) it
follows that Id−PT is uniformly bounded in theH1

0,ΓD
(Ω)′-norm, and also that

‖
∑
ν∈NT̃ ,0\NT ,0

dν φ̂ν‖2H1
0,ΓD

(Ω)′
h
∑
ν∈NT̃ ,0\NT ,0

|dν |22(− 2
d−1) gen(ν), where we

used that ‖hT̃ φ̂ν‖2L2(Ω) h 2(− 2
d−1) gen(ν). The proof of (6.64) is completed.

6.6.3 The wavelet collections Σ and Ψ

Aswavelet basis Σ = {σλ : λ ∈ ∨Σ}we select the three-point hierarchical basis
illustrated in Figure 6.2. This basis is known to be a Riesz basis for L2(I),
and, after re-normalization, for H1(I) (see [Ste96]). It also satisfies the other
assumptions made in Sect. 6.5.2. The wavelets up to level ` span the space of
continuous piecewise linear functions on I w.r.t. the uniform partition into 2`

subintervals.
As wavelet basis Ψ = {ψµ : µ ∈ ∨Ψ} we take the orthonormal (discontinu-

ous) piecewise linear wavelets, see Figure 6.3. The wavelets up to level ` span
the space of (discontinuous) piecewise linear functions on I w.r.t. the uniform
partition into 2` subintervals.

6.6.4 The family (δG, δU0)δ∈∆

The index set∨Σ is naturally identifiedwith the set of ‘nodal dyadic’ points, see
Figure 6.4, which is the natural index set for the one-dimensional hierarchical
basis that we denote by {φλ : λ ∈ ∨Σ}. Recalling that for δ ∈ ∆, Xδ =
span{σλ ⊗ φν : (λ, ν) ∈ Iδ,0 = Iδ \ (∨Σ × ΓD)} for some lower set Iδ ⊂ ∨Σ ×N,
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level ` > 1
20

−20 −2`/2−21/2

21/2 2`/2

− 1
2

2`/2

2−`

level 0 level 1

Figure 6.2. Three-point hierarchical basis Σ. On level 0 there are two wavelets,
and on level 1 there is one wavelet, whose parents are both wavelets on level 0.
On each level ` > 1 there are 2`−1 wavelets, among them near each boundary
one boundary-adapted wavelet, where each wavelet has one parent being the
wavelet on level `−1 whose support includes the support of its child (so SΣ(λ)
can be taken equal to suppσλ). All but one wavelets have one (bdr. wav) or
two vanishing moments.

−21+`/2

−
√

32`/2

√
3

2`/2

−2`/2
2−`

−
√

3

√
32`/2

√
32`/2

1

1

0

level ` ≥ 1
level 0

21+`/2

Figure 6.3. L2(I)-orthonormal (discontinuous) piecewise linear wavelet basis
Ψ. On level ` = 0 there are 2wavelets. On each level ` ≥ 1 there are 2`wavelets
of two types, each of them having 2 parents being the wavelets on level ` − 1
whose supports include the supports of their children (so SΨ(µ) can be taken
equal to suppψµ). Thewavelets on level 0 have either 0 or 1 vanishingmoment,
all other wavelets have two vanishing moments.
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Figure 6.4. Index set ∨Σ with parent-child relations, and the one-dimensional
hierarchical basis.

we define
δG := span{φλ ⊗ φν : (λ, ν) ∈ Iδ}, δU0 := span{φν : (λ, ν) ∈ Iδ, φλ(0) 6= 0}.

Since the level of resolution of these spaces is comparable to that ofXδ , based
on our experiences with wavelet and finite element methods we expect that
with this choice of (δG, δU0) and the definition of X¯

δδ , that saturation holds,
i.e., that Assumption 6.3.1 assumption is valid.

Given g ∈ Y ′ and u0 ∈ L2(Ω), it remains to define their approximations
(δg, δu0) ∈ (δG, δU0). In general, the construction of these approximations
depends on the data at hand. Below we give a construction that applies to
general continuous g and u0, and that avoids quadrature issues.

For ν ∈ N with gen(ν) = 0, let φ̃ν := δν . Each ν ∈ N with gen(ν) > 0
is the midpoint of an edge of a T ∈ T with gen(T ) = gen(ν) − 1. Denoting
the endpoints of this edge as ν1, ν2 ∈ N, let φ̃ν := δν − 1

2 (δν1
+ δν2

). Then
{φ̃ν : ν ∈ N} ⊂ C(Ω)′ is biorthogonal to {φν : ν ∈ N}. With {φ̃λ : λ ∈ ∨Σ} ⊂
C(I)′ defined analogously for the one-dimensional case, for g ∈ C(I × Ω) and
u0 ∈ C(Ω) we define the interpolants

δg :=
∑

(λ,ν)∈Iδ

(φ̃λ ⊗ φ̃ν)(g)φλ ⊗ φν , δu0 :=
∑

{ν : (λ,ν)∈Iδ, φλ(0) 6=0}

φ̃ν(u0)φν .

Since we expect that for sufficiently smooth g and u0, the errors ‖g− δg‖Y ′ and
‖u0− δu0‖L2(Ω) are of higher order than the approximation error infw∈Xδ ‖u−
w‖X , for our convenience in the adaptive Algorithm 6.4.8 we ignore errors
caused by data-oscillation by setting η(·) ≡ 0.

Notice that setting up the matrix vector formulation of the system (6.31)
that defines our approximation uδ requires computing the vectors[

〈δg, ψµ ⊗ φν〉L2(I⊗Ω)

]
(µ,ν)∈IY

¯
δ,0

,
[
〈δu0, φν〉L2(Ω)

]
{ν : (λ,ν)∈Iδ,0, σλ(0) 6=0}

which can be performed inO(dimXδ) operations because Iδ and IY
¯
δ,0 are lower

sets (and #IY
¯
δ,0 . #Iδ).
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6.7 Numerical experiments

We test our algorithm on the heat equation, i.e., the parabolic problem with
a(t; η, ζ) =

´
Ω
∇η · ∇ζdx, posed on a two-dimensional polygonal spatial do-

main Ω, and Dirichlet boundary ΓD = ∂Ω. Recall from §6.6.3 the three-point
continuous piecewise linear temporal wavelet basis Σ, the orthonormal dis-
continuous piecewise linear temporal wavelet basis Ψ, and the hierarchical
continuous piecewise linear spatial basis Ξ := {φν : ν ∈ N0}.

We consider ‘trial’ spacesXδ which are spanned by finite subsets of Σ⊗ Ξ
whose index sets are lower sets (more precisely, satisfy (6.59)-(6.60)), and
corresponding ‘test’ spaces Y δ spanned by finite subsets of Ψ⊗Ξ as defined in
(6.61)-(6.62). We construct the enlarged trial spaceX¯

δ as defined in Def. 6.6.3,
with corresponding test space Y ¯

δ .
For a given level N ∈ N, span{σλ : |λ| ≤ N} coincides with the span of

the continuous piecewise linears on an N -times recursive dyadic refinement
of I , and span{φν ∈ Ξ : gen(ν) ≤ 2N} coincides with that of the continuous
piecewise linears, zero at ∂Ω, on a 2N -times recursive bisection refinement of
an initial partitionT⊥. Therefore, the spanof the ‘full’ tensorproduct {σλ : |λ| ≤
N} ⊗ {φν : gen(ν) ≤ 2N} equals a space of lowest order continuous finite
elements w.r.t. a quasi-uniform shape regular product mesh into prismatic
elements.

Taking only those index pairs (λ, ν) for which 2|λ|+gen(ν) ≤ 2N produces
a ‘sparse’ tensor product on levelN . Sparse tensor products allow to overcome
the curse of dimensionality in the sense that for smooth solutions they achieve
a rate in X-norm that is equal to the best rate in the H1(Ω)-norm that can
be expected for the corresponding stationary problem on the spatial domain,
here the Poisson equation; see also Sect. 6.5.5.

We run our adaptive Algorithm 6.4.8 with θ = 0.5 and ξ = 1
2 , computing

δg and δu0 as in Sect. 6.6.4. Since we envisage that in our experiments data-
oscillation errors are not dominant, for our convenience we took ω = ∞. We
solve the arising linear system of (6.31) using Preconditioned CG, using the
previous solution as initial guess. We then perform Dörfler marking on the
residual, yielding a minimal set J , and finally choose Iδ̃ as the smallest lower
set containing J ∪ Iδ . Due to this constraint generally we add index pairs
outside of the marked set, i.e. Iδ̃ \ Iδ ) J . Still, in our experiments, we observe
#Iδ̃ −#Iδ . #J with a moderate constant.

Remark 6.7.1. Rather we would have applied an algorithm that produces a Iδ̃
such that Iδ̃ \ Iδ is guaranteed to have an, up to a multiplicative factor, smallest
cardinality among all lower sets Iδ̃ ⊃ Iδ that realize the bulk criterion. Such an
algorithm was introduced in [BD04, BFV19] for ‘single-tree’ approximation,
but seems not to be available for the ‘double-tree’ (i.e. lower set) constraint that
we need here.

We compare adaptive refinementwith non-adaptive full- and sparse tensor
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6.7. Numerical experiments

products, and monitor the error estimator Eδ(ũδ) from Proposition 6.4.5, the
residual error estimator from Proposition 6.4.3, and the L2(Ω) trace error at
t = 0.

6.7.1 Condition numbers of preconditioner
For the calibration of our preconditioners, we consider Ω := [0, 1]2, and com-
pare uniformly refined space-time meshes with locally refined meshes with re-
finements towards {0} × ∂Ω.

The replacement of the nonlocal operator (E¯
δ
Y

′
AE¯

δ
Y )−1 in the forward

application of S¯
δδ by the block-diagonal preconditionerK¯

δ
Y from Sect. 6.5.6 is

only guaranteed to result in a convergent algorithm when the eigenvalues of
K¯
δ
Y E¯

δ
Y

′
AE¯

δ
Y are sufficiently close to one.

In Table 6.1, we investigate the values

κδ := max{λmax(K¯
δ
Y A¯

δ
Y ), 1/λmin(K¯

δ
Y A¯

δ
Y )}

with A¯
δ
Y the matrix representation of E¯

δ
Y

′
AE¯

δ
Y , and K¯

δ
Y built from spatial

multigrid preconditioners K¯
δ
µ corresponding to n V-cycles. In each V-cycle

we applied one pre- and one post Gauss-Seidel smoother. In case of a locally
refined spatial mesh, on each level these Gauss-Seidel updates were restricted
to the vertices whose generation is equal to that level as well as both endpoints
of the edgeonwhich these verticeswere inserted ([WZ17]). We see that for both
uniform and locally refined space-time meshes, κδ converges to 1 rapidly in n,
and is essentially independent of dimXδ . In our examples, κδ is sufficiently
close to one already for n = 1.

Fixingn = 1 for the forward application ofS¯
δδ , wewant to preconditionS¯

δδ

itself as well. Following Sect. 6.5.6, we build a block-diagonal preconditioner
takingKδ

λ to correspond tomV-cycles of the aforementionedmultigridmethod
nowapplied toAδ

λ+2|λ|Mδ
λwithAδ

λ andMδ
λ being stiffness- ormass-matrices.

dimXδ n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

uniform 729 1.343 1.070 1.017 1.004 1.001 1.000
35937 1.360 1.075 1.019 1.004 1.001 1.000

2146689 1.365 1.077 1.019 1.004 1.001 1.000
local 766 1.306 1.058 1.013 1.003 1.001 1.000

30151 1.307 1.058 1.013 1.003 1.001 1.000
1964797 1.307 1.058 1.013 1.003 1.001 1.000

Table 6.1. Values κδ := max{λmax(K¯
δ
Y A¯

δ
Y ), 1/λmin(K¯

δ
Y A¯

δ
Y )} using spatial

multigrid with n V-cycles.
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Table 6.2 shows the condition numbers of the preconditionedmatrix. We again
see fast stabilization in m as well as in dimXδ . We fix m = 3 in the sequel.
Most interestingly, in every of our example problems, the adaptive algorithm
only needs one or two PCG iterations to reach the error tolerance tδ .

6.7.2 Smooth problem
We consider the square domain Ω := [0, 1]2 and prescribe

u(t, x, y) := (1 + t2)x(1− x)y(1− y)

with derived data u0 and g. For this smooth solution, full and sparse tensor
products are expected to yield the best possible error decays proportional to
(dimXδ)−1/3 and (dimXδ)−1/2, respectively.

The left side of Figure 6.5 shows the error progressions for the smooth
problem. We plot the error estimator Eδ(ũδ) := Eδ(ũδ; δg, δu0) h ‖δu − ũδ‖X
fromProposition 6.4.5, the residual error estimator ‖rδ‖, and ‖γ0(δu−ũδ)‖L2(Ω).
We see that the error progressions are as expected. For this solution, adaptive
refinement yields no advantage over sparse grid refinement. We observe a
higher order of convergence for the trace at t = 0 measured in L2(Ω).

6.7.3 Moving peak problem
We consider a square domain Ω := [0, 1]2 and select

u(t, x, y) := x(1− x)y(1− y) exp(−100[(x− t)2 + (y − t)2]).

We took this example from [LS20]. The solution is smooth, and almost zero
everywhere except on a small strip near the diagonal from (0, 0, 0) to (1, 1, 1)
of the space-time cylinder. As u is smooth, we expect sparse grid refinements

dimXδ m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

uniform 4913 9.196 6.119 6.048 6.042 6.041 6.041
35937 9.718 6.315 6.263 6.260 6.260 6.260
274625 9.991 6.750 6.749 6.751 6.752 6.752
2146689 10.115 7.080 7.087 7.088 7.088 7.088

local 3520 5.707 5.132 5.110 5.111 5.111 5.111
30151 6.355 5.734 5.706 5.704 5.704 5.704
244870 7.619 6.879 6.843 6.841 6.841 6.841
1964797 9.353 8.734 8.703 8.701 8.701 8.701

Table 6.2. Spectral condition numbers ofKδ
XS¯

δδ , using spatial multigrid with
m V-cycles.
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Figure 6.5. Error progressions for (left) the smooth problem and (right) the
moving peak problem. Shown: estimated X-norm error (solid line), residual
norm (dashed), and t = 0 trace error (dotted) as a function of dimXδ for
adaptive (black), sparse grid (red), and full grid refinement (orange).

to asymptotically yield the optimal error decay proportional to (dimXδ)−1/2,
albeit with a terrible constant. Adaptive refinement should be able to achieve
the same rate at quantitatively smaller doubletrees.

From the right of Figure 6.5, we see that the sparse grid rate is not (yet)
optimal, while our adaptive routine is able to find the optimal rate from
dimXδ ≈ 103 onwards. Figure 6.6 shows the number of basis functions σλ⊗φν
whose supports intersect given points in the time-space cylinder. We see the
adaptation to the moving peak.

6.7.4 Cylinder problem

Selecting the L-shaped domain Ω := [−1, 1]2 \ [−1, 0]2 with data u0 ≡ 0 and
g(t, x, y) := t · 1{x2+y2<1/4}, the true solution is known to be singular at the
re-entrant corner and at the wall of the cylinder {(t, x, y) : x2 + y2 = 1/4}.
We took this example from [FK21]. The left side of Figure 6.7 shows the
error progression for this cylinder problem. We see that the full grid error
decay proportional to (dimXδ)−1/4 is improved to an error decay proportional
to (dimXδ)−1/3 by considering sparse grids. Adaptive refinement, however,
achieves the best possible error decay proportional to (dimXδ)−1/2, recovering
the rate for a smooth solution.
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Figure 6.6. Moving peak problem, adaptive lower set with dimXδ = 89 401.
Shown: #{(λ, ν) ∈ Iδ : (t, x, y) ∈ suppσλ ⊗ φν} for a selection of times t.

6.7.5 Singular problem

We again select the L-shaped domain Ω := [−1, 1]2 \ [−1, 0]2 with data u0 ≡ 1
and g ≡ 0. The solution has a strong singularity along {0} × ∂Ω due to the in-
compatibility of initial- and boundary conditions, in addition to the singularity
at the re-entrant corner (0, 0). At the right of Figure 6.7, for uniform refinement,
we see the extremely slow error decay proportional to (dimXδ)−1/11, already
found in [FK21]. Interestingly, sparse grid refinement offers no rate improve-
ment over full grid refinement. The adaptive algorithm yields a much better
error decay proportional to (dimXδ)−2/5. We observed that increasing the
Dörfler marking parameter to θ = 0.7 decreases the convergence rate to −1/3,
whereas a θ smaller than 0.5 did not improve the rate beyond −2/5. Looking
at Figure 6.8, we see strong adaptivity towards {0} × ∂Ω and I × {(0, 0)},
and observe basis functions σλ ⊗ φν that span Xδ whose barycenter is at
t = 2−14 ≈ 10−4.

6.7.6 Gradedness and error reduction

In Sect. 6.4weused (6.24) to demonstrate proportionality of ‖rδ‖ and ‖u−uδ‖X ,
aswell as a constant error reduction in each iteration of the adaptive algorithm.
In Proposition 6.6.6, we showed that (6.24) holds when the gradedness Lδ of
Definition 6.6.4 is uniformly bounded.
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Figure 6.7. Error progressions for (left) the cylinder problem and (right) the
singular problem. Shown: estimated X-norm error (solid line), residual norm
(dashed), and t = 0 trace error (dotted) as a function of dimXδ for adaptive
(black), sparse grid (red), and full grid refinement (orange).

Figure 6.8. Barycenters of supports of basis functions σλ ⊗ φν spanning Xδ

generated by Algorithm 6.4.8 of dimension 81 074 for the singular problem.
Left: a top-down view, with a 10× zoom to the origin; right: centers in
spacetime, logarithmic in time.
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Figure 6.9. Gradedness and estimated X-norm error at every iteration of the
adaptive loop, for the four different model problems under consideration.

In the left picture of Figure 6.9, we see however a more than expected in-
crease in gradedness, where in particular for the singular problemwe observe
a logarithmic increase in terms of dimXδ . However, this turns out not to be
a problem in practice: Figures 6.5 and 6.7 demonstrate that the residual error
‖rδ‖ and the estimatedX-norm error Eδ(ũδ) are very close, and even converge
for the singular problem. Moreover, in the right picture of Figure 6.9, we see
a constant error reduction of ρ̆ ≈ 0.89 at every step of the adaptive algorithm,
and hence, that the conclusion of Theorem 6.4.9 holds in practice.

6.7.7 Total runtime and memory consumption

Figure 6.10 shows the total runtime andpeakmemory consumption after every
iteration of the adaptive algorithm. The top row shows absolute values, and
the bottom row values relative to dimXδ .

The left of the figure shows that the adaptive algorithm runs in optimal
linear time in the dimension of the current trial space.

The right of the figure shows that the peak memory is linear as well, sta-
bilizing to around 15kB per degree of freedom. This is relatively high, mainly
because our implementation uses trees rather than hash maps to represent
vectors to ensure a linear-time implementation of the matrix-vector products
(cf. Rem. 6.6.2).
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Figure 6.10. Total runtime and peak memory consumption as function of
dimXδ , measured after every iteration of the adaptive loop, for the four dif-
ferent model problems.

6.8 Conclusion

We have constructed an adaptive solver for a space-time variational formula-
tion of parabolic evolution problems. The collection of trial spaces are given by
the spans of sets of tensor products of wavelets-in-time and hierarchical basis
functions-in-space. Compared to our previous works [CS11, RS19] where we
employed ‘true’ wavelets also in space, the theoretical results are weaker. We
have demonstrated r-linear convergence of the adaptive routine, but have not
shown optimal rates at linear complexity. On the other hand, the runtimes
that we obtained with the current approach are much better.
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7 Adaptivity: an efficient implementation

7.1 Introduction

This chapter is about an efficient adaptivemethod for parabolic evolution equa-
tions using a simultaneous space-time variational formulation. Compared to
the more classical time-stepping schemes, these space-time methods are very
flexible. Among other things, they are especially well-suited for massively
parallel computation ([NS19, vVW21a]), and some can guarantee quasi-best
approximations from the trial space ([And13, FK21, SZ20]).

We are interested in those space-time methods that permit adaptive re-
finement locally in space and time. Within this class, wavelet-based methods
(see [SS09, GK11, KSU16]) are attractive, as they can be shown to be quasi-
optimal: they produce a sequence of solutions that converges at the best pos-
sible rate, at optimal linear computational cost. Moreover, they can overcome
the curse of dimensionality using a form of sparse tensor-product approximation,
solving the whole time evolution at a runtime proportional to that of solving
the corresponding stationary problem.

In Chapter 6, we constructed an r-linearly converging space-time adaptive
solver for parabolic evolution equations that exploits the product structure of
the space-time cylinder to construct a family of trial spaces given as the spans
of wavelets-in-time tensorized with (locally refined) finite element spaces-in-
space.

The principal difference between this and other wavelet-based methods is
that we use wavelets in time only, and standard finite elements in space. This
eases implementation, and alleviates the need for a suitable spatial wavelet
basis, which is generally difficult for general domains ([RS18]). Unfortunately,
there is no free lunch: a proof of optimal convergence is, for our method, not
yet available.

In this chapter we discuss an implementation of the adaptive algorithm
from Chapter 6, in which the different steps (each iteration of the linear alge-
braic solver, the error estimation, Dörflermarking, and refinement of trial- and
test spaces) are of linear complexity.

Special care has to be taken for matrix-vector products. For a bilinear form
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that is ‘local’ and equals (a sum of) tensor-product(s) of bilinear forms in time
and space, and ‘trial’ and ‘test’ spaces spanned by tensor-product multi-level
bases with double-tree index sets, the resulting system matrix w.r.t. both bases
can be applied in linear complexity, even though this matrix is not sparse.
The algorithm that realizes this complexity makes a clever use of multi- to
single-scale transformations alternately in time and space. This unidirectional
principlewas introduced in [BZ96] for ‘uniform’ sparse grids, so without ‘local
refinements’, and it was later extended to general downward closed or lower
sets, also called adaptive sparse grids, in [KS14]. The definition of a lower set
in [KS14], there calledmulti-tree, ismore restrictive than our current definition
that allows more localized refinements.

To the best of our knowledge, other implementations for the efficient eval-
uation of tensor-product bilinear forms (see [Pfl10, KS14, Pab15, Rek18]) are
based on the concept of hash maps. There, a hash function is used to map
basis functions to array indices. In an adaptive loop, the final set of basis func-
tions is unknown in advance so it is impossible to construct a hash function
that guarantees an upper bound on the number of hash collisions. Aiming at
true linear complexity, we implement these operations by traversing trees and
double-trees, so without the use of hash maps.

Organization

In §7.2, we look at the abstract parabolic problem, its stable discretization,
and the adaptive routine. In §7.3, we provide an abstract algorithm for the
efficient evaluation of tensor-product bilinear forms w.r.t. multilevel bases
indexed on double-trees. In §7.4, we take the heat equation as a model problem,
and provide a concrete family of trial- and test spaces with bases indexed
by double-trees that permits local space-time adaptivity. In §7.5, we discuss
the practical implementation of the adaptive algorithm. Finally, in §7.6, we
provide extensive numerical experiments to demonstrate the linear runtime of
the algorithm.

Notation

In this work, by C . D we will mean that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Obviously,
C & D is defined as D . C, and C h D as C . D and C & D.

For normed linear spaces E and F , by L(E,F ) we will denote the normed
linear space of bounded linear mappings E → F , and by Lis(E,F ) its subset
of boundedly invertible linear mappings E → F . We write E ↪→ F to denote
that E is continuously embedded into F . For simplicity only, we exclusively
consider linear spaces over the scalar field R.
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7.2 Space-time adaptivity for a parabolic model problem

In this section, we summarize the relevant parts of Chapter 6.
Let V,H be separable Hilbert spaces of functions on some “spatial domain”

such that V ↪→ H with dense and compact embedding. IdentifyingH with its
dual, we obtain the Gelfand triple V ↪→ H ' H ′ ↪→ V ′.

For a.e.
t ∈ I := (0, T ),

let a(t; ·, ·)denote a bilinear formon V ×V so that for any η, ζ ∈ V , t 7→ a(t; η, ζ)
is measurable on I , and such that for a.e. t ∈ I ,

|a(t; η, ζ)| . ‖η‖V ‖ζ‖V (η, ζ ∈ V ) (boundedness),
a(t; η, η) & ‖η‖2V (η ∈ V ) (coercivity).

With (A(t)·)(·) := a(t; ·, ·) ∈ Lis(V, V ′), given a forcing function g and initial
value u0, we want to solve the parabolic initial value problem of

(7.1) finding u : I → V such that
{

du
dt (t) +A(t)u(t) = g(t) (t ∈ I),

u(0) = u0.

Example 7.2.1. For the model problem of the heat equation on some spatial
domain Ω ⊂ Rd we select V := H1

0 (Ω), H := L2(Ω), and a(t; η, ζ) :=
´

Ω
∇xη ·

∇xζ dx.
In our simultaneous space-timevariational formulation, theparabolic prob-

lem is to find u s.t.

(Bu)(v) :=

ˆ
I

〈dudt (t), v(t)〉H + a(t;u(t), v(t))dt =

ˆ
I

〈g(t), v(t)〉H =: g(v)

for all v from some suitable space of functions of time and space. One possibil-
ity to enforce the initial condition is by testing against additional test functions.

Theorem 7.2.2 ([SS09]). WithX := L2(I;V )∩H1(I;V ′), Y := L2(I;V ), we have[
B
γ0

]
∈ Lis(X,Y ′ ×H),

where for t ∈ Ī , γt : u 7→ u(t, ·) denotes the trace map. In other words,

(7.2) finding u ∈ X s.t. (Bu, γ0u) = (g, u0) given (g, u0) ∈ Y ′ ×H

is a well-posed simultaneous space-time variational formulation of (7.1).

We define A ∈ Lis(Y, Y ′) and ∂t ∈ Lis(X,Y ′) as

(Au)(v) :=

ˆ
I

a(t;u(t), v(t))dt , and ∂t := B −A.
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Following [SW21b], we assume that A is self-adjoint. Morever, in view of an
efficient implementation,weassume thatA is afinite sumof tensor-product op-
erators. If A does not have this structure, one may alternatively consider (low-
rank) tensor-product approximations of A, see e.g. [Hac12] for an overview.

We equip Y and X with ‘energy’-norms

‖ · ‖2Y := (A·)(·), ‖ · ‖2X := ‖∂t · ‖2Y ′ + ‖ · ‖2Y + ‖γT · ‖2H ,

which are equivalent to the canonical norms on Y and X .
The solution u of (7.2) equals the solution of the following minimization

problem

(7.3) u = argmin
w∈X

‖Bw − g‖2Y ′ + ‖γ0w − u0‖2H ,

which in turn is the second component of the solution of

(7.4) finding (µ, u) ∈ Y ×X s.t.
[
A B
B′ −γ′0γ0

] [
µ
u

]
=

[
g
−u0

]
.

Indeed, taking the Schur complement of (7.4) w.r.t. the Y -block results in the
Euler-Lagrange equations of (7.3).

7.2.1 Discretizations
Take a family (Xδ)δ∈∆ of closed subspaces of X , and define

(7.5) uδ = argmin
w∈Xδ

‖Bw − g‖2Y ′ + ‖γ0w − u0‖2H ,

being the best approximation to u from Xδ w.r.t. ‖ · ‖X . Solving this problem,
however, is not feasible because of the presence of the dual norm. Therefore,
take (Y δ)δ∈∆ to be a family of closed subspaces of Y such that
(7.6)

Xδ ⊆ Y δ (δ ∈ ∆), and γ∆ := inf
δ∈∆

inf
06=w∈Xδ

sup
06=v∈Y δ

(∂tw)(v)

‖∂tw‖Y ′‖v‖Y
> 0.

For
¯
δ ∈ ∆ with Y ¯

δ ⊇ Y δ , we replace Y ′ by Y ¯
δ ′ in (7.5) yielding the approxi-

mation
u¯
δδ = argmin

w∈Xδ
‖Bw − g‖2

Y ¯
δ ′ + ‖γ0w − u0‖2H .

Notice that u¯
δδ approximates uδ in that u¯

δδ = uδ when Y ¯
δ = Y .

With E¯
δ
Y : Y ¯

δ → Y and EδX : Xδ → X denoting the trivial embeddings,
u¯
δδ is the second component of the solution of[

E¯
δ
Y

′
AE¯

δ
Y E¯

δ
Y

′
BEδX

EδX
′
B′E¯

δ
Y −EδX

′
γ′0γ0E

δ
X

][
µ¯
δδ

u¯
δδ

]
=

[
E¯
δ
Y

′
g

−EδX
′
γ′0u0

]
.
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7.2. Space-time adaptivity for a parabolic model problem

Taking the Schur complement w.r.t. the Y ¯
δ-block then leads to the equation

EδX
′
(B′E¯

δ
Y (E¯

δ
Y

′
AE¯

δ
Y )−1E¯

δ
Y

′
B + γ′0γ0)EδXu¯

δδ

= EδX
′
(B′E¯

δ
Y (E¯

δ
Y

′
AE¯

δ
Y )−1E¯

δ
Y

′
g + γ′0u0),

(7.7)

which has a unique solution (cf. Lemma 6.3.3) that satisfies ‖u − u¯
δδ‖X ≤

γ−1
∆ ‖u− uδ‖X whenever Y ¯

δ ⊇ Y δ ; cf. [SW21b, Thm. 3.7]. For now, we assume
the right-hand side of (7.7) to be evaluated exactly. Later, in §7.4.5, we will
discuss approximation of the right-hand side.

In view of obtaining an efficient solver, we want to replace the inverses
in (7.7) while aiming to preserve quasi-optimality of the solution. To this
end, let K¯

δ
Y = K¯

δ
Y

′
∈ Lis(Y ¯

δ ′, Y ¯
δ) be a uniformly optimal preconditioner for

E¯
δ
Y

′
AE¯

δ
Y that can be applied in linear complexity. Then, for some κ∆ ≥ 1 we

have
((K¯

δ
Y )−1v)(v)

(Av)(v)
∈ [κ−1

∆ , κ∆] (δ ∈ ∆, v ∈ Y ¯
δ).

Replacing (E¯
δ
Y

′
AE¯

δ
Y )−1 byK¯

δ
Y , we denote the solution of (7.7) again by u¯

δδ .
It is quasi-optimal with ‖u− u¯

δδ‖X ≤ κ∆

γ∆
‖u− uδ‖X ; cf. [SW21b, Rem. 3.8].

7.2.2 Adaptive refinement loop
Our adaptive loop, given in Algorithm 7.1, takes the familiar Solve, Estimate,
Mark and refine steps, and is driven by an efficient and reliable ‘hierarchical
basis’ a posteriori error estimator.

The adaptive loop below requires a saturation assumption. Define a partial
order on∆ by δ̃ � δwheneverX δ̃ ⊇ Xδ . Let δ 7→

¯
δ � δ be amapping providing

saturation in that for some ζ < 1,

(7.8) ‖u− u
¯
δ‖X ≤ ζ‖u− uδ‖X (δ ∈ ∆).

With this choice of
¯
δ, we are interested in finding uδ := u¯

δδ ∈ Xδ that solves

(7.9) EδX
′
(B′E¯

δ
YK¯

δ
Y E¯

δ
Y

′
B + γ′0γ0)EδX︸ ︷︷ ︸

S¯
δδ:=

uδ = EδX
′
(B′E¯

δ
YK¯

δ
Y E¯

δ
Y

′
g + γ′0u0)︸ ︷︷ ︸

fδ:=

.

Notice that (7.9) is uniquely solvable even with X¯
δ as ‘trial space’, and we

use this ‘room’ betweenXδ andX¯
δ to our advantage. ExpandingXδ to some

intermediate space Xδ ⊂ X δ̃ ⊂ X¯
δ yields a uδ̃ that is a better approximation

to u than uδ ; cf. Proposition 6.4.2. This function will be the successor of uδ in
our loop, and we will show that the resulting sequence of functions converges
r-linearly to u; see Algorithm 7.1 and Theorem 7.2.4.
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7. Adaptivity: an efficient implementation

Solving

Instead of solving the symmetric positive definite system (7.9) exactly, we con-
struct an approximate solution ûδ using Preconditioned Conjugate Gradients
(PCG). To this end, letKδ

X = Kδ
X

′ ∈ Lis(Xδ ′, Xδ) be a uniformly optimal pre-
conditioner for S¯

δδ . Then ((Kδ
X)−1w)(w) h ‖w‖2X h ‖Kδ

XS¯
δδw‖2X for w ∈ Xδ .

Writing w = Kδ
XS¯

δδ(uδ − vδ) reveals that this induces an algebraic error esti-
mator
(7.10)
βδ(vδ) :=

√
(fδ − S¯

δδvδ)(Kδ
X(fδ − S¯

δδvδ)) h ‖uδ − vδ‖X (vδ ∈ Xδ, δ ∈ ∆).

With ûδk denoting the approximant at iteration k of the PCG loop, βδ(ûδk) is
already available as

√
βk, for βk the variable used in computing the next search

direction.

Error estimation

Let Θδ := {θλ : λ ∈ Jδ} be some uniformly X-stable basis satisfying Xδ ⊕
span Θδ = X¯

δ , in that

(7.11) ‖z + c>Θδ‖2X h ‖z‖2X + ‖c‖2 (c ∈ `2(Jδ), z ∈ Xδ, δ ∈ ∆).

Define the trivial embedding P δ : Xδ → X¯
δ . Akin to (7.9), we define S¯

δ
¯
δ

and f¯
δ
¯
δ , and with it, the residual-based a posteriori error estimator rδ : Xδ →

`2(Jδ), as
(7.12)
S¯
δ
¯
δ := E¯

δ
X

′
(B′E¯

δ
YK¯

δ
Y E¯

δ
Y

′
B + γ′0γ0)E¯

δ
X , f¯

δ
¯
δ := E¯

δ
X

′
(B′E¯

δ
YK¯

δ
Y E¯

δ
Y

′
g + γ′0u0),

rδ(ûδ) := (f¯
δ
¯
δ − S¯

δ
¯
δP δûδ)(Θδ).

For ûδ close to uδ , the error estimator ‖rδ(ûδ)‖ is reliable and efficient:

Lemma 7.2.3. Assume (7.8) and (7.11), κ∆

γ∆
< 1

ζ , and fix some ξ > 0 small enough.
For ûδ ∈ Xδ satisfying β(ûδ) ≤ ξ

1−ξ‖r
δ(ûδ)‖, we have

‖rδ(ûδ)‖ h ‖u− ûδ‖X and ‖u− ûδ‖X . ‖u− uδ‖X (δ ∈ ∆).

Proof. For convenience, we write r̂δ := rδ(ûδ) and rδ := rδ(uδ).
By (7.8), (7.11) and κ∆

γ∆
< 1

ζ , Proposition 6.4.4 shows that

(7.13) ‖rδ‖ h ‖u− uδ‖X (δ ∈ ∆).

From (7.11) one deduces that ‖rδ− r̂δ‖ . ‖uδ− ûδ‖X ; cf. (6.25). By assump-
tion, for ξ < 1, we find βδ(ûδ) . ξ‖r̂δ‖. Combined this reveals

(7.14) ‖rδ − r̂δ‖
(7.11)
. ‖uδ − ûδ‖X

(7.10)
h βδ(ûδ) . ξ‖r̂δ‖.
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7.2. Space-time adaptivity for a parabolic model problem

Using this, we can show reliability of the estimator by

‖u− ûδ‖X ≤ ‖u− uδ‖X + ‖uδ − ûδ‖X
(7.13),(7.10)

h ‖rδ‖+ βδ(ûδ) ≤ ‖r̂δ‖+ ‖rδ − r̂δ‖+ βδ(ûδ)
(7.14)
. ‖r̂δ‖.

For efficiency of the estimator, we deduce

‖r̂δ‖
(7.13)
. ‖u− uδ‖X + ‖rδ − r̂δ‖ ≤ ‖u− ûδ‖X + ‖uδ − ûδ‖X + ‖rδ − r̂δ‖

(7.14)
. ‖u− ûδ‖X + ξ‖r̂δ‖,

so taking ξ sufficiently small and kicking back ‖r̂δ‖ yields

(7.15) ‖r̂δ‖ . ‖u− ûδ‖X .

Similarly, from (7.13) and (7.14) it follows that

(7.16) ‖r̂δ‖ . ‖u− uδ‖X .

We infer quasi-optimality of ûδ from

‖u− ûδ‖X
(7.14)
. ‖u− uδ‖X + ξ‖r̂δ‖

(7.16)
. ‖u− uδ‖X .

In the solve step, we need to iterate PCG until βδ(ûδk)/‖rδ(ûδk)‖ is small
enough. In the algorithm below, this is ensured by the do-while loop which
also avoids the (expensive) recomputation of the residual at every PCG itera-
tion.

Marking and refinement

Denoting the output of the solve step by ûδ , we drive the adaptive loop by
performing Dörfler marking on the residual r̂δ := rδ(ûδ), i.e., for some θ ∈
(0, 1], we mark the smallest set J ⊂ Jδ for which ‖r̂δ|J‖ ≥ θ‖r̂δ‖. We then
construct the smallest δ̃ � δ such that X δ̃ contains span Θδ|J .

Theorem 7.2.4 (Theorem 6.4.9 with η = 0). Assume (7.8) and (7.11). For ξ and
κ∆

γ∆
− 1 sufficiently small with κ∆

γ∆
− 1 ↓ 0 when θ ↓ 0, the sequence of approximations

produced by Algorithm 7.1 converges r-linearly to u, in that after every iteration,
‖u− ûδ‖X decreases with a factor at least ρ < 1.

Remark 7.2.5. In a practical implementation, to ensure termination, Algo-
rithm 7.1 has to be complemented by an appropriate stopping criterium; cf. Al-
gorithm 6.30.
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Algorithm 7.1: Space-time adaptive refinement loop.
Data: θ ∈ (0, 1], ξ ∈ (0, 1), δ := δinit ∈ ∆;

tδ := Eδ(0) =

√
(E¯

δ
Y

′
g)(K¯

δ
Y E¯

δ
Y

′
g) + ‖u0‖2H ;

repeat
Solve:

do
Compute ûδ∗ ∈ Xδ with βδ(ûδ∗) ≤ tδ/2;
tδ := βδ(ûδ∗);
eδ := ‖rδ(ûδ∗)‖+ tδ ;

while tδ > ξeδ ;
ûδ := ûδ∗;

Estimate: Set r̂δ := rδ(ûδ);
Mark: Mark a smallest J ⊂ Jδ for which ‖r̂δ|J‖ ≥ θ‖r̂δ‖;
Refine: Determine the smallest δ̃ ∈ ∆ such that
X δ̃ ⊃ Xδ ⊕ span Θδ|J ;
tδ̃ := eδ , δ := δ̃;

Proof. For convenience, we denote rδ := rδ(uδ) and r̂δ := rδ(ûδ). The stopping
criterium of the solve step ensures that βδ(ûδ) ≤ ξ

(
‖r̂δ‖+βδ(ûδ)

)
, so for ξ < 1

we are in the situation of Lemma 7.2.3.
We have

‖r̂δ − rδ‖
(7.14)
. ξ‖r̂δ‖ ≤ ξ

(
‖rδ‖+ ‖r̂δ − rδ‖

)
,

so taking ξ sufficiently small and kicking back ‖r̂δ − rδ‖ yields

(7.17) ‖r̂δ − rδ‖ . ξ‖rδ‖.

After marking, we have ‖r̂δ‖ ≤ θ−1‖r̂δ|J‖, which shows that

‖rδ‖
(7.14)
. ‖r̂δ‖ . ‖r̂δ|J‖ ≤ ‖rδ|J‖+ ‖rδ − r̂δ‖

(7.17)
. ‖rδ|J‖+ ξ‖rδ‖,

so for ξ small enough, kicking back ‖rδ‖ reveals that for a θ̂ > 0 dependent on
θ,

‖rδ|J‖ ≥ θ̂‖rδ‖.

From Proposition 6.4.3 we now find that, for κ∆

γ∆
− 1 ↓ 0 when θ ↓ 0, there is a

ρ̄ < 1 for which

(7.18) ‖u− uδ̃‖X ≤ ρ̄‖u− uδ‖X .
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Combining the results shows that

‖u− ûδ̃‖X ≤ ‖u− uδ̃‖X + ‖uδ̃ − ûδ̃‖X
(7.14),(7.16)

≤ (1 +O(ξ))‖u− uδ̃‖X
(7.18)
≤ (1 +O(ξ))ρ̄‖u− uδ‖X
≤ (1 +O(ξ))ρ̄(‖u− ûδ‖X + ‖uδ − ûδ‖X)

(7.14),(7.15)
≤ (1 +O(ξ))ρ̄︸ ︷︷ ︸

=:ρ

‖u− ûδ‖X ,

so for ξ small enough, ρ < 1, completing the proof of r-linear convergence.

7.2.3 Adaptive trial- and test spaces
The convergence rate of our adaptive loop is determined by the approxima-
tion properties of the family (Xδ)δ∈∆. We want to construct a family that
allows for local refinements. Here, the crucial problem is guaranteeing the
inf-sup stability condition (7.6). It is known that inf-sup stability is satisfied
for full tensor-products of (non-uniform) finite element spaces, and in [And13,
Prop. 4.2], this result was generalized to families of sparse tensor-products.
Unfortunately, neither family allows for adaptive refinements both locally in
time and space.

In §7.4 we will solve this by first equipping X with a tensor-product of
(infinite) bases: a wavelet basis Σ in time, and a hierarchical basis in space. We
then construct Xδ as the span of a (finite) subset of this tensor-product basis,
which we grow by adding particular functions.

By imposing a double-tree constraint on the index set of the basis of Xδ , we
can apply tensor-product operators in linear complexity; see §7.3. Moreover,
this constraint implies that for our model problem the inf-sup condition (7.6)
is satisfied and we can construct optimal preconditionersK¯

δ
Y andKδ

X .

7.3 The application of linear operators in linear complexity

An efficient implementation of our adaptive loop requires the efficient appli-
cation of the operators E¯

δ
Y

′
BEδX and EδX

′
γ′0γ0E

δ
X appearing in (7.9). Both

terms are finite sums of tensor-products of operators in time and space. When
we equip our trial and test spaces with tensor-products of multilevel bases, it
turns out that we can evaluate these operators in linear complexity.

More precisely, this section will show the abstract result that given

• tensor-products Ψ := Ψ0 ×Ψ1, Ψ̆ := Ψ̆0 × Ψ̆1 of multilevel bases Ψ0, Ψ1,
Ψ̆0, Ψ̆1 indexed by ∨0, ∨1, ∨̆0, ∨̆1, and
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7. Adaptivity: an efficient implementation

• (finite) subsets Λ ⊂ ∨0 × ∨1, Λ̆ ⊂ ∨̆0 × ∨̆1 that are double-trees, and

• linear operators Ai : span Ψi → (span Ψ̆i)′ that are local (i ∈ {0, 1}),

we can apply thematrix ((A0⊗A1)Ψ|Λ)(Ψ̆|Λ̆) inO(#Λ+#Λ̆) operations even
though this matrix is not uniformly sparse.

Example 7.3.1. For our model problem, Ψ0 and Ψ̆0 will be wavelets for H1(I)

or L2(I) in time, and Ψ1 = Ψ̆1 will be a hierarchical finite element basis for
H1

0 (Ω) in space. We will apply the result of this section to the operators γ′0γ0

and B = ∂t +A.
Wewill achieve this complexity using a variant of theunidirectional principle.

Denote with IΛ the extension with zeros of a vector supported on Λ to one
on ∨0 × ∨1, and with RΛ its adjoint; define IΛ̆ and RΛ̆ analogously. Define
Ai := (AiΨ

i)(Ψ̆i). We will split A0 in its upper and strictly lower triangular
parts U0 and L0, so that

RΛ̆(A0 ⊗A1)IΛ = RΛ̆(L0 ⊗ Id)(Id⊗A1)IΛ +RΛ̆(U0 ⊗ Id)(Id⊗A1)IΛ.

This in itself is not useful, as (Id⊗A1)IΛ maps into a vector space which
dimension we cannot control. However, the restriction RΛ̆ gives us elbow
room: in Theorem 7.3.13 we construct double-trees Σ,Θ with #Σ + #Θ .
#Λ̆ + #Λ s.t.

(7.19)
{
RΛ̆(L0 ⊗ Id)(Id⊗A1)IΛ = RΛ̆(L0 ⊗ Id)RΣIΣ(Id⊗A1)IΛ,

RΛ̆(U0 ⊗ Id)(Id⊗A1)IΛ = RΛ̆(U0 ⊗ Id)RΘIΘ(Id⊗A1)IΛ.

These right hand sides we can apply efficiently, and their application boils
down to applications of L0, U0, and A1 in a single coordinate direction only.
Simple matrix-vector products are inefficient though, as these matrices are
again not uniformly sparse. However, by using the properties of a double-tree
and the sparsity of the operator in single scale, we can evaluate U0,L0 and A1

in linear time; see §7.3.1.
We follow the structure of [KS14, §3], which applies the aforementioned

idea to multi-trees though with a slightly more restrictive definition of a tree.
For readability, we defer the proofs of Theorems 7.3.7, 7.3.9, 7.3.11, and 7.3.13
to Appendix 7.A.

7.3.1 Evaluation of linear operators w.r.t. trees
Let Ψ be a (multilevel) collection of functions on some domain Q.
Example 7.3.2. In our application, Q will be either the time interval I with Ψ
being a collection of wavelets, or the spatial domain Ω, in which case Ψ is a
collection of hierarchical basis functions.
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Writing Ψ = {ψλ : λ ∈ ∨}, we assume that the ψλ are locally supported in
the sense that with |λ| ∈ N0 denoting the level of λ,

sup
λ∈∨

2|λ| diam suppψλ <∞,(7.20)

sup
`∈N0

sup
x∈Q

#{λ ∈ ∨ : |λ| = ` ∧ suppψλ ∩B(x; 2−`) 6= ∅} <∞.(7.21)

Wewill refer to the functions ψλ as beingwavelets, although not necessarily
they have vanishing moments or other specific wavelet properties.

For ` ∈ N0, and any Λ ⊂ ∨, we set Λ` := {λ ∈ Λ : |λ| = `} and Λ`↑ := {λ ∈
Λ : |λ| ≥ `}, and write Ψ` := Ψ|∨` .

For ` ∈ N0, we assume a collection Φ` = {φλ : λ ∈ ∆`}, whose members
will be referred to as being scaling functions, with

span Φ`+1 ⊇ span Φ` ∪Ψ`+1, Φ0 = Ψ0 (∆0 := ∨0),(7.22)
sup
`∈N0

sup
λ∈∆`

2` diam suppφλ <∞,(7.23)

sup
`∈N0

sup
x∈Q

#{λ ∈ ∆` : suppφλ ∩B(x; 2−`) 6= ∅} <∞,(7.24)

{φλ|Σ:λ ∈ ∆`, φλ|Σ 6≡ 0} is independent (for all open Σ ⊂ Q, ` ∈ N0).(7.25)

W.l.o.g. we assume that the index sets ∆` for different ` are mutually disjoint,
and set Φ := ∪`∈N0

Φ` with index set ∆ := ∪`∈N0
∆`. For λ ∈ ∆, we set |λ| := `

when λ ∈ ∆`.
Viewing Ψ`, Φ` as column vectors, the assumptions we made so far guar-

antee the existence of matrices p`, q` such that[
(Φ`−1)> (Ψ`)

>
]

= (Φ`)
> [p` q`

]
,

where the number of non-zeros per row and column of p` and q` is finite,
uniformly in the rows and columns and in ` ∈ N (here also (7.25) has been
used). We refer to p` as the prolongation matrix. Columns of p` contain the
mask of the scaling functions, whereas columns of q` contain the mask of the
wavelets.

To each λ ∈ ∨with |λ| > 0, we associate one ormoreµ ∈ ∨with |µ| = |λ|−1
and | suppψλ ∩ suppψµ| > 0. We call µ a parent of λ, and so λ a child of µ.

To each λ ∈ ∨, we associate some neighbourhood S(λ) of suppψλ, with
diameter . 2−|λ|, such that for |λ| > 0, S(λ) ⊂ ∪µ∈parent(λ)S(µ).
Remark 7.3.3. Such a neighborhood always exists even when a child has only
one parent. Indeed with C := supλ∈∨ 2|λ| diam suppψλ and S(λ) := {x ∈
Q : dist(x, suppψλ) < C2−|λ|}, for µ being a parent of λ and x ∈ S(λ),
dist(x, suppψµ) ≤ dist(x, suppψλ) + diam suppψλ < 2C2−|λ| = C2−|µ|, i.e.,
x ∈ S(µ).
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Definition 7.3.4 (Tree). A finite Λ ⊂ ∨`↑ is called an `-tree, or simply a tree
when ` = 0, when for any λ ∈ Λ its parents in ∨`↑ are in Λ. This is not a tree
in the graph-theoretical sense, but rather one in the sense of a family history
tree.

Example 7.3.5 (Hierarchical basis in one dimension). Figure 7.1 shows an exam-
ple multilevel collection Ψ of functions defined on the interval [0, 1]. Its index
set ∨I with parent-child relations is shown left, with a tree Λ ⊂ ∨I visualised
in red. This collection is called the hierarchical basis. With S(λ) := suppψλ for
λ ∈ ∨I, the hierarchical basis satisfies conditions mentioned above.

` = 0

` = 1

` = 2

` = 3

•(0,0) •(0,1)

•(1,0)

•(2,0) •(2,1)

•(3,0) •(3,1) •(3,2) •(3,3)

Index set ∨I and tree Λ ⊂ ∨I

1

0• •

•

• •

• • • •

Multilevel functions Ψ Scaling functions Φ

Figure 7.1. Hierarchical basis for the interval [0, 1].

A routine eval

Let (Ψ,Φ) and (Ψ̆, Φ̆) satisfy the conditions of the previous subsection, and let
A : span Φ→ (span Φ̆)′ be local in that (Au)(v) = (Au|supp v)(v). Typically, A is
a (partial) differential operator in variational form; e.g. A ∈ L(H1(I), L2(I)′)

with (Au)(v) =
´
I

du
dt v dt. For trees Λ ⊂ ∨ and Λ̆ ∈ ∨̆, we are interested in the

efficient application of the matrix (AΨ|Λ)(Ψ̆|Λ̆).
Just for brevity of the following argument, assume Ψ = Ψ̆ and Φ = Φ̆.

The matrix (AΨ|Λ)(Ψ|Λ) is not uniformly sparse, so a straight-forward matrix-
vector product is not of linear complexity. However, for Λ a uniform tree up
to level `, i.e. Λ = {λ ∈ ∨ : |λ| ≤ `}, a solution is provided by the multi- to
single-scale transform T characterized by Ψ|Λ = T>Φ` through the equality
(AΨ|Λ)(Ψ|Λ) = T>(AΦ`)(Φ`)T , as the transforms can be applied in linear
complexity and the single-scale matrix is uniformly sparse.

For general trees however, we don’t have dim Φ` . dim Ψ|Λ so the previous
approach is not of linear complexity. Clever level-by-level multi-to-singlescale
transformations and the prolongation of only relevant functions does allow
applying (AΨ|Λ)(Ψ̆|Λ̆) in linear complexity; see Algorithm 7.2 below.
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On several places the restriction of a vector (of scalars or of functions) to
its indices in some subset of the index set should be read as the vector of
full length where the entries with indices outside this subset are replaced by
zeros. For index sets ∆ and ∆̆, matrix m ∈ R#∆̆×#∆, and subset Π ⊂ ∆, we
write supp(m,Π) ⊂ ∆̆ for the index set corresponding to the image ofm under
{x|Π : x ∈ R#∆}.

Algorithm 7.2: Function eval(A).
Data: ` ∈ N, Π̆ ⊂ ∆̆`−1, Π ⊂ ∆`−1, `-trees Λ̆ ⊂ ∨̆`↑ and Λ ⊂ ∨`↑,

d ∈ R#Π, c ∈ R#Λ.
Result: [e, f ] where e = (Au)(Φ̆|Π̆), f = (Au)(Ψ̆|Λ̆), with

u := d>Φ|Π + c>Ψ|Λ.
if Π̆ ∪ Λ̆ 6= ∅ then

Π̆B := {λ ∈ Π̆ :
∣∣ supp φ̆λ ∩ ∪µ∈Λ`S(µ)

∣∣ > 0}, Π̆A := Π̆ \ Π̆B

ΠB := {λ ∈ Π :
∣∣ suppφλ ∩

(
∪µ∈Λ̆`

S̆(µ) ∪γ∈Π̆B
supp φ̆γ

)∣∣ > 0},
ΠA := Π \ΠB

Π̆ := supp(p̆`, Π̆B) ∪ supp(q̆`, Λ̆`)
Π := supp(p`,ΠB) ∪ supp(q`,Λ`)
d := p`d|ΠB + q`c|Λ`
[e, f ] := eval(A)(`+ 1, Π̆, Λ̆`+1↑,Π,Λ`+1↑,d, c|Λ`+1↑)

e =

[
e|Π̆A
e|Π̆B

]
:=

[
(AΦ|Π)(Φ̆|Π̆A)d

(p̆>` e)|Π̆B

]

f =

[
f |Λ̆`
f |Λ̆`+1↑

]
:=

[
(q̆>` e)|Λ̆`
f

]

Remark 7.3.6. Let Λ̆ ⊂ ∨̆, Λ ⊂ ∨ be trees, and c ∈ `2(Λ), then

[e, f ] := eval(A)(1, Λ̆0, Λ̆1↑,Λ0,Λ1↑, c|Λ0
, c|Λ1↑),

satisfies

(AΨ|Λ)(Ψ̆|Λ̆)c =

[
e
f

]
.

Theorem 7.3.7. A call of eval yields the output as specified, at the cost of O(#Π̆ +

#Λ̆ + #Π + #Λ) operations.

Proof. See Appendix 7.A.
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Routines evalupp and evallow

Let A : span Φ→ (span Φ̆)′ be local and linear. Set

A := (AΨ)(Ψ̆) = [(Aψµ)(ψ̆λ)](λ,µ)∈∨̆×∨

as well as U := [(Aψµ)(ψ̆λ)]|λ|≤|µ| and L := [(Aψµ)(ψ̆λ)]|λ|>|µ| so that A =
L + U. As sketched in the introduction of this section, this splitting is going
to be necessary for the application of system matrices in the tensor-product
setting; see also (7.19). Algorithms 7.3 and 7.4 below can be used to evaluate
U and L in linear complexity.

Algorithm 7.3: Function evalupp(A).
Data: ` ∈ N, Π̆ ⊂ ∆̆`−1, Π ⊂ ∆`−1, `-trees Λ̆ ⊂ ∨̆`↑ and Λ ⊂ ∨`↑,

d ∈ R#Π, c ∈ R#Λ.
Result: [e, f ] where e = (Au)(Φ̆|Π̆), f = U|Λ̆×Λc, with

u := d>Φ|Π + c>Ψ|Λ.
if Π̆ ∪ Λ̆ 6= ∅ then

Π̆B := {λ ∈ Π̆ :
∣∣ supp φ̆λ ∩ ∪µ∈Λ`S(µ)

∣∣ > 0}, Π̆A := Π̆ \ Π̆B

Π̆ := supp(p̆`, Π̆B) ∪ supp(q̆`, Λ̆`)
Π := supp(q`,Λ`)
d := q`c|Λ`
[e, f ] := evalupp(A)(`+ 1, Π̆, Λ̆`+1↑,Π,Λ`+1↑,d, c|Λ`+1↑)

e =

[
e|Π̆A
e|Π̆B

]
:=

[
(AΦ|Π)(Φ̆|Π̆A)d

(AΦ|Π)(Φ̆|Π̆B )d + (p̆>` e)|Π̆B

]

f =

[
f |Λ̆`
f |Λ̆`+1↑

]
:=

[
(q̆>` e)|Λ̆`
f

]

Remark 7.3.8. Let Λ̆ ⊂ ∨̆, Λ ⊂ ∨ be trees, and c ∈ `2(Λ), then

[e, f ] := evalupp(A)(1, Λ̆0, Λ̆1↑,Λ0,Λ1↑, c|Λ0 , c|Λ1↑),

satisfies
U|Λ̆×Λc =

[
e
f

]
.

Theorem 7.3.9. A call of evalupp yields the output as specified, at the cost of
O(#Π̆ + #Λ̆ + #Π + #Λ) operations.

Proof. See Appendix 7.A.
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Algorithm 7.4: Function evallow(A).
Data: ` ∈ N, Π ⊂ ∆`−1, `-trees Λ̆ ⊂ ∨̆`↑ and Λ ⊂ ∨`↑, d ∈ R#Π,

c ∈ R#Λ.
Result: f = (AΦ|Π)(Ψ̆|Λ̆)d + L|Λ̆×Λc.
if Π̆ ∪ Λ̆ 6= ∅ then

ΠB := {λ ∈ Π :
∣∣ suppφλ ∩ ∪µ∈Λ̆`

S̆(µ)
∣∣ > 0},

Π := supp(p`,ΠB) ∪ supp(q`,Λ`)
ΠB := supp(p`,ΠB)
Π̆ := supp(q̆`, Λ̆`)
d := p`d|ΠB + q`c|Λ`
e := (AΦ|ΠB )(Φ̆|Π̆)p`d|ΠB

f =

[
f |Λ̆`
f |Λ̆`+1↑

]
:=

[
(q̆>` e)|Λ̆`
evallow(A)(`+ 1, Λ̆`+1↑,Π,Λ`+1↑,d, c|Λ`+1↑)

]

Remark 7.3.10. Let Λ̆ ⊂ ∨̆, Λ ⊂ ∨ be trees, and c ∈ `2(Λ), then

L|Λ̆×Λc = evallow(A)(1, Λ̆1↑,Λ0,Λ1↑, c|Λ0
, c|Λ1↑).

Theorem 7.3.11. A call of evallow yields the output as specified, at the cost of
O(#Λ̆ + #Π + #Λ) operations.

Proof. See Appendix 7.A.

7.3.2 Application of tensor-product operators w.r.t. double-trees

For i ∈ {0, 1}, let Ai : span Φi → span Φ̆′i be local and linear and let

Ai = (AΨi)(Ψ̆i) = [(Aψiµ)(ψ̆iλ)]λ∈∨̆i,µ∈∨i = Li + Ui.

where Ui := [(Ai)λ,µ]|λ|≤|µ| and Li := [(Ai)λ,µ]|λ|>|µ|. For i ∈ {0, 1}, let
¬i := 1− i.

Definition 7.3.12 (Double-tree). Define the coordinate projector Pi(b0, b1) :=
bi. We call Λ ⊂ {∨̆0 × ∨̆1,∨0 × ∨̆1, ∨̆0 × ∨1,∨0 × ∨1}, a double-tree when for
i ∈ {0, 1} and any µ ∈ P¬iΛ, the fiber

Λi,µ := Pi(P¬i|Λ)−1{µ}

is a tree (in ∨̆i or ∨i), i.e., Λ is a double-tree when ‘frozen’ in each of its
coordinates, at any value of that coordinate, it is a tree in the remaining
coordinate.
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Figure 7.2.With∨I fromFigure 7.1: ∨I×∨I in black; a double-treeΛ ⊂ ∨I×∨I
in red; the projection P0Λ in gray, and a fiber Λ0,µ for µ ∈ P1Λ in brown.

From Λ = ∪µ∈P¬iΛ(P¬i|Λ)−1{µ}, we have PiΛ = ∪µ∈P¬iΛΛi,µ, which,
being a union of trees, is a tree itself. See also Figure 7.2.

For a subsetC of a (double) index set♦, let I♦C denote the extension operator
with zeros of a vector supported on C to one on ♦, and let R♦C denotes its
(formal) adjoint, being the restriction operator of a vector supported on ♦ to
one onC. Since the set ♦will always be clear from the context, we will denote
these operators simply by IC and RC.

As sketched in the introduction of this section, the pieces are now in place
to apply RΛ̆(A0 ⊗A1)IΛ in linear complexity.

Theorem 7.3.13. Let Λ̆ ⊂ ∨̆0 × ∨̆1, Λ ⊂ ∨0 × ∨1 be finite double-trees. Then

Σ :=
⋃

λ∈P0Λ

(
{λ} ×

⋃{
µ∈P0Λ̆:|µ|=|λ|+1, |S̆0(µ)∩S0(λ)|>0

} Λ̆1,µ

)
,

Θ :=
⋃

λ∈P1Λ

(
{µ ∈ P0Λ̆ : ∃γ ∈ Λ0,λ s.t. |γ| = |µ|, |S̆0(µ) ∩ S0(γ)| > 0} × {λ}

)
,

are double-trees with #Σ . #Λ̆ and #Θ . #Λ, and

RΛ̆(A0 ⊗A1)IΛ =RΛ̆(L0 ⊗ Id)IΣRΣ(Id⊗A1)IΛ+

RΛ̆(Id⊗A1)IΘRΘ(U0 ⊗ Id)IΛ.

Proof. See Appendix 7.A.

TheapplicationofRΛ̆(L0⊗Id)IΣ boilsdown to the applicationofRΛ̆0,µ
L0IΣ0,µ

for every µ ∈ P1Σ∩P1Λ̆. Such an application can be performed inO(#Λ̆0,µ+
#Σ0,µ) operations by means of a call of evallow(A0); see also Algorithm 7.9.

164



7.4. The heat equation and practical realization

Since
∑
µ∈∨̆1

#Λ̆0,µ + #Σ0,µ = #Λ̆ + #Σ, we conclude that the application of
RΛ̆(L0 ⊗ Id)IΣ can be performed in O(#Λ̆ + #Σ) operations.

Similarly, applications of RΣ(Id ⊗A1)IΛ, RΛ̆(Id ⊗A1)IΘ, and RΘ(U0 ⊗
Id)IΛ using calls of eval(A1), eval(A1), and evalupp(A0) respectively, can be
done in O(#Σ + #Λ), O(#Λ̆ + #Θ), and O(#Θ + #Λ) operations. From
#Σ . #Λ̆ and #Θ . #Λ we conclude the following.

Corollary 7.3.14. Let Λ̆ ⊂ ∨̆0 × ∨̆1, Λ ⊂ ∨0 × ∨1 be finite double-trees, then
RΛ̆(A0 ⊗A1)IΛ can be applied in O(#Λ̆ + #Λ) operations.

7.4 The heat equation and practical realization

In this section, we consider the numerical approximation of the heat equation

(7.26)
{

du
dt (t)− (∆xu)(t) = g(t) (t ∈ I),

u(0) = u0.

For some bounded domain Ω ⊂ R2, we take H := L2(Ω) and V := H1
0 (Ω), so

that X = L2(I;H1
0 (Ω)) ∩H1(I;H−1(Ω)) and Y = L2(I;H1

0 (Ω)). We define

a(t; η, ζ) :=

ˆ
Ω

∇η · ∇ζ dx,

and aim to solve the parabolic initial value problem (7.1) numerically. The
bilinear forms present in our variational formulation (7.4) satisfy

A = Mt ⊗Ax, B = Dt ⊗Mx +A, and γ′0γ0 = Gt ⊗Mx

where

(7.27)
(Mtv)(w) :=

ˆ
I

vw dt, (Dtv)(w) :=

ˆ
I

v′w dt, (Gtv)(w) := v(0)w(0),

(Axη)(ζ) :=

ˆ
Ω

∇η · ∇ζ dx, (Mxη)(ζ) :=

ˆ
Ω

ηζ dx.

In this section, we first construct suitable tensor-product bases forX and Y
which functions are wavelets in time and hierarchical finite element functions
in space. We then build our discrete ‘trial’ and ‘test’ spaces (Xδ, Y δ)δ∈∆ as
the span of subsets of these tensor-product bases. We finish with concrete
uniformly optimal preconditioners Kδ

X and K¯
δ
Y , the basis necessary for error

estimation in the adaptive loop, and evaluation of the right-hand side of (7.9)
using interpolants.

7.4.1 Wavelets in time
We construct piecewise linear wavelet bases Σ for H1(I) and Ξ for L2(I).
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Basis on the trial side

For Σ, we choose the three-point wavelet basis from [Ste98]; for completeness,
we include its construction. For ` ≥ 0, define the scaling functions as the nodal
continuous piecewise linearsw.r.t. a uniformpartition into 2` subintervals, that
is ΦΣ

` := {φ(`,n) : 0 ≤ n ≤ 2`} with φ(`,n)(k2−`) = δkn for 0 ≤ k ≤ 2`. Define
Σ0 := ΦΣ

0 , and for ` ≥ 1, define Σ` := {σλ : λ := (`, n) with 0 ≤ n < 2`−1}
with σλ = σ(`,n) as in the right of Figure 7.3. Note that each σλ is a linear
combination of three nodal functions from ΦΣ

` , hence the name three-point
wavelet.

By imposing the parent-child structure

(7.28) λ̃ /Σ λ ⇐⇒ |λ̃|+ 1 = |λ| and | suppσλ ∩ suppσλ̃| > 0,

on any two indices λ̃, λ, we get the tree shown left in Figure 7.3.
Define Σ := ∪`≥0Σ`, ∨Σ := {λ : σλ ∈ Σ}, and S(σλ) := suppσλ. We see

that Σ satisfies (7.20)–(7.21) and that the ΦΣ
` satisfy (7.22)–(7.25). Moreover,

one can show that Σ is a Riesz basis for L2(I) (cf. [Ste98, Thm. 4.2]), and that
{2−|λ|σλ} is a Riesz basis for H1(I) (cf. [Ste98, Thm. 4.3]).

` = 0

` = 1

` = 2

` = 3

•(0,0) •(0,1)

•(1,0)

•(2,0) •(2,1)

•(3,0) •(3,1) •(3,2) •(3,3)

• •
σ(0,0)

1

σ(0,1)

◦ ◦•
σ(1,0)

21/2

−21/2

◦ ◦• •

σ(`,0)

2`/2

−2`/2
− 1

22`/2
• ◦ • ◦ •

σ(`,n)

◦◦ ••

σ(`,2`−1−1)

Figure 7.3. Left: three-point wavelet index set ∨Σ with parent-child relations;
right: three-point wavelets.

Basis on the test side

We construct an L2(I)-orthonormal basis Ξ.
For ` ≥ 0, define the (discontinuous) piecewise linear scaling functions

w.r.t. a uniform partition into 2` subintervals by ΦΞ
` := {φ(`,n) : 0 ≤ n < 2`+1}

where φ(0,0)(t) := 1[0,1](t) and φ(0,1)(t) :=
√

3(2t − 1)1[0,1], and for ` ≥ 1,
φ(`,2k)(t) := φ(0,0)(2

`t − k) and φ(`,2k+1)(t) := φ(0,1)(2
`t − k). Let Ξ0 := ΦΞ

0 ,
and define Ξ1 := {ξ(1,0), ξ(1,1)} as in the right of Figure 7.4. For ` ≥ 2, we take
Ξ` := {ξ(`,n) : 0 ≤ n < 2`}with

ξ(`,2k)(t) := 2(`−1)/2ξ(1,0)(2
`−1t− k), ξ(`,2k+1)(t) := 2(`−1)/2ξ(1,1)(2

`−1t− k).
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The resulting Ξ := ∪`≥0Ξ` is an orthonormal basis for L2(I), and together
with its scaling functions ∪`ΦΞ

` , the conditions from §7.3.1 are satisfied with
S(ξµ) := supp ξµ. We impose a parent-child relation analogously to (7.28); see
the left of Figure 7.4.

` = 0

` = 1

` = 2

` = 3

•(0,0) •(0,1)

•(1,0) •(1,1)

•(2,0) •(2,1) •(2,2) •(2,3)

• • • • • • • •

ξ(0,0)1
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√
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−
√
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ξ(1,1)√
6

−
√

6

2
√

2

−2
√

2

√
2

−
√

2

Figure 7.4. Left: orthonormal wavelet index set ∨Ξ with parent-child relations;
right: the wavelets at levels 0 and 1.

7.4.2 Finite elements in space
Let T be the family of all conforming partitions of Ω into triangles that can
be created by Newest Vertex Bisection from some given conforming initial
triangulation T⊥with an assignment of newest vertices satisfying thematching
condition; cf. [Ste08b].

Define T := ∪T ∈T{T : T ∈ T }. For T ∈ T, set gen(T ) as the number
of bisections needed to create T from its ‘ancestor’ T ′ ∈ T⊥. With N the
set of all vertices of all T ∈ T, for ν ∈ N we set gen(ν) := min{gen(T ) :
ν is a vertex of T ∈ T}.

Any ν ∈ N with gen(ν) > 0 is the midpoint of an edge eν of one or two
T ∈ T with gen(T ) = gen(ν) − 1. The set of newest vertices ν̃ of these T ,
so those vertices of T with |ν̃| = gen(ν) − 1, are defined as the parents of ν,
denoted ν̃ /N ν. The set of godparents of ν, denoted gp(ν), are defined as the
two endpoints of eν . Vertices with gen(ν) = 0 have no parents or godparents.
Example 7.4.1. In Figure 7.5, the parents of ν4 are ν1 and ν3 and its godparents
are ν0, ν2; the sole parent of ν5 is ν4, and its godparents are ν0 and ν3.

Proposition 7.4.2 ([DKS16]). An (essentially) non-overlapping partition T of Ω
into triangles is in T if and only if the set NT of vertices of all T ∈ T forms a tree in
the sense of §7.3.1, meaning that it contains every vertex of generation zero as well as
all parents of any ν ∈ NT ; see also Figure 7.5.

Let O be the collection of spaces WT of continuous piecewise linears
w.r.t. T ∈ Tvanishing on ∂Ω. For ν ∈ N, we setψν as that continuous piecewise
linear function on the uniform partition Tν := {T ∈ T : gen(T ) = gen(ν)} ∈ T
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NT

Figure 7.5. Vertex tree NT and its triangulation T shown level-by-level.

for which ψν(ν̃) = δνν̃ for ν̃ ∈ Tν . Setting N0 := N \ ∂Ω, the collec-
tion {ψν : ν ∈ N0} is known as the hierarchical basis. For T ∈ T, write
NT ,0 := NT \ ∂Ω and ΨT := {ψν : ν ∈ NT ,0}; it holds thatWT = span ΨT .

Applying stiffness matrices

The hierarchical basis satisfies conditions (7.20) and (7.21), and so, the ap-
plication of stiffness matrices (AΨT )(ΨT ) for A ∈ {Ax,Mx} can be done
through eval(A).1 However, the computation in Theorem 7.3.13 does not in-
volve the lower and upper parts of A. This crucial insight allows for a faster
and easier approach using standard finite element techniques: span ΨT is a
continuous piecewise linear finite element space, so it has a canonical single-
scale basis ΦT := span{φT ,ν} characterized by φT ,ν(ν̃) = δνν̃ for ν̃ ∈ NT ,0,
for which the application of (AΦT )(ΦT ) at linear cost using local element
matrices is standard. This is different from the general setting in §7.3.1, in
that dim ΦT = dim ΨT also for locally refined triangulations. Let T be the
transformation characterized by ΨT = T>ΦT , we find

(7.29) (AΨT )(ΨT ) = T>(AΦT )(ΦT )T.

We can apply T in linear complexity by iterating over the vertices bottom-up
while applying elementary local transformations in which not parent-child,
but godparent-child relations play a role.

7.4.3 Inf-sup stable family of trial- and test spaces

With Σ and Ξ from §7.4.1 and ΨN0
:= {ψν : ν ∈ N0} from §7.4.2, we find that

X = span(Σ⊗ΨN0) and Y = span(Ξ⊗ΨN0). We now turn to the construction
of Xδ and Y δ .

1This would require the definition of a suitable single-scale basis.
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7.4. The heat equation and practical realization

Definition 7.4.3. For a double-tree Λδ ⊂ ∨Σ ×N, define Λδ
0 := Λδ \ ∨Σ × ∂Ω.

We construct our ‘trial’ space as

Xδ := span{σλ ⊗ ψν : (λ, ν) ∈ Λδ
0}.

Defining the double-tree Λδ
Y,0 ⊂ ∨Ξ ×N0 as

Λδ
Y,0 := {(µ, ν) : ∃(λ, ν) ∈ Λδ

0, µ ∈ ∨Ξ, |µ| = |λ|, | supp ξµ ∩ suppσλ| > 0},

we construct our ‘test’ space as Y δ = Y δ(Xδ) := span{ξµ⊗ψν : (µ, ν) ∈ Λδ
Y,0}.

Theorem 7.4.4. Define ∆ := {δ : Λδ ⊂ ∨Σ×N is a double-tree} equipped with the
partial ordering δ � δ̃ ⇐⇒ Λδ ⊆ Λδ̃ . With Xδ and Y δ as above, uniform inf-sup
stability holds; cf. (7.6).

Proof. See Proposition 6.5.2.

Definition 7.4.5. Given a double-tree Λδ ⊂ ∨Σ × N, we define Λ¯
δ ⊃ Λδ by

adding, for (λ, ν) ∈ Λδ and any child λ̃ of λ and descendant ν̃ of ν up to
generation 2, all pairs (λ̃, ν) and (λ, ν̃). We expect this choice ofX¯

δ to provide
saturation; cf. (7.8).

7.4.4 Preconditioners
Wefollow§6.5.6 for the constructionof optimalpreconditionersKδ

Y forEδY
′
AEδY

and Kδ
X for S¯

δδ necessary for solving (7.9). With notation from Defini-
tion 7.3.12, we equip Xδ and Y δ with bases

⋃
λ∈P0Λδ0

σλ ⊗Ψδ
λ with Ψδ

λ := {ψν : ν ∈ (Λδ
0)1,λ},⋃

µ∈P0ΛδY,0

ξµ ⊗Ψδ
µ with Ψδ

µ := {ψν : ν ∈ (Λδ
Y,0)1,µ}.

Matrix representations of preconditioners from §6.5.6 are then given byKδ
Y := blockdiag[Kδ

µ]µ∈P0ΛδY,0
where Kδ

µ h (Aδ
µ)−1,

Kδ
X := blockdiag[Kδ

λA
δ
λK

δ
λ]λ∈P0Λδ0

where Kδ
λ h (Aδ

λ + 2|λ|Mδ
λ)−1

with Aδ
µ := (AxΨδ

µ)(Ψδ
µ), Aδ

λ := (AxΨδ
λ)(Ψδ

λ), and Mδ
λ := (MxΨδ

λ)(Ψδ
λ). Suit-

able spatial preconditionersKδ
µ are provided bymultigridmethods. In [OR00]

itwas shown that for quasi-uniform triangulations, satisfying a ‘full-regularity’
assumption, a multiplicative multigrid method yields suitable Kδ

λ, and we as-
sume these results to hold for our locally refined triangulations T ∈ T as well.
In §7.5.1 below, we detail our linear-complexity multigrid implementation
following [WZ17].
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7.4.5 Right-hand side
We follow §6.6.4. For g ∈ C(I × Ω), u0 ∈ C(Ω), we can approximate the
right-hand side of (7.9) by interpolants, avoiding quadrature issues.

The procedure of §7.4.2 for constructing the hierarchical basis ΨN := {ψν :
ν ∈ N} can be applied in time as well, yielding the basis {ψλ : λ ∈ ∨I} from
Figure 7.1 which index set ∨I coincides with ∨Σ. We construct {ψ̃ν : ν ∈ N} ⊂
C(Ω)′ biorthogonal to ΨN, with ψ̃ν := δν−

∑
ν̃∈gp(ν) δν̃/2. In time, define {ψ̃λ :

λ ∈ ∨I} ⊂ C(I)′ analogously. Define the vectors g := [(ψ̃λ ⊗ ψ̃ν)(g)](λ,ν)∈Λδ

and u0 := [ψ̃ν(u0)]ν∈P1Λδ . Upon replacing (g, u0) in (7.9) by the interpolants

δg :=
∑

(λ,ν)∈Λδ

g(λ,ν)ψλ ⊗ ψν , δu0 :=
∑

ν∈P1Λδ

u0,νψν ,

we can evaluate its right-hand side in linear complexity by computing the
quantities

[〈ξµ ⊗ ψν , δg〉L2(I×Ω)](µ,ν)∈Λδ̂Y,0
= R

Λδ̂Y,0
(Mt ⊗Mx)IΛδg,

[σλ(0)〈ψν , δu0〉L2(Ω)](λ,ν)∈Λδ0
= [σλ(0)wν ](λ,ν)∈Λδ0

where w = (MxΨN|P1Λδ)(ΨN|P1Λδ)u0.

7.4.6 Two-level basis
We now discuss the construction of a uniformly X-stable basis Θδ , needed
in the local error estimator rδ of (7.12). Following §6.6.3, define a modified
hierarchical basis {ψ̂ν : ν ∈ N0} by

ψ̂ν = ψν when gen(ν) = 0, else ψ̂ν := ψν −

∑
{ν̃∈N:ν̃/Nν}

´
Ω
ψν dx´

Ω
ψν̃ dx

ψν̃

#{ν̃ ∈ N : ν̃ /N ν}
.

For any T ∈ T,WT = span{ψ̂ν : ν ∈ NT ,0} = span ΨT and the transformation
from modified to unmodified hierarchical basis can be performed in linear
complexity. For T � T ∈ T, d ∈ `2(NT ,0 \ NT ,0) and v ∈ WT , Lemma 6.6.7
shows that

(7.30)

‖v +
∑
ν dνψ̂ν‖2H1(Ω) h ‖v‖

2
H1(Ω) + ‖d‖2,

‖v +
∑
ν dνψ̂ν‖2H−1(Ω) h ‖v‖

2
H−1(Ω) +

∑
ν 4− gen(ν)|dν |2,

with the constants in the h-symbols dependent on max
{T 3T⊂T∈T }

{gen(T ) −

gen(T )} only. We then construct a basis for X¯
δ 	Xδ as

Θδ := {eλνσλ ⊗ ψ̂ν : (λ, ν) ∈ Λ¯
δ
0 \Λδ

0} where 1

eλν
=
√

1 + 4|λ|−gen(ν).
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7.5. Implementation

Define the gradedness of a double-tree Λδ ⊂ ∨Σ ×N as the smallest Lδ ∈ N
for which every (λ, ν) ∈ Λδ with ν̃ an ancestor of ν with gen(ν)− gen(ν̃) = Lδ ,
it holds that (λ̆, ν̃) ∈ Λδ for all λ̆ /Σ λ. Thanks to Σ being a (scaled) Riesz basis
for L2(I) and H1(I), together with the H1(Ω)- and H−1(Ω)-stable splittings
of (7.30), it holds that

‖z + c>Θδ‖2X h ‖z‖2X + ‖c‖2 (c ∈ `2(Λ¯
δ
0 \Λδ

0), z ∈ Xδ),

with the constant in the h-symbol dependent on Lδ only, so when Lδ is uni-
formly bounded, condition (7.11) is satisfied.

7.5 Implementation

A tree-based implementation of the aforementioned adaptive algorithm in
C++ can be found at [vVW21d]. In this section, we describe our design choices
for a linear complexity implementation.

7.5.1 Trees and linear operators in one axis
In §7.3, we consider an abstract multilevel collection Ψ indexed on ∨Ψ. En-
dowed with a parent-child relation, ∨Ψ has a tree-like structure that we call a
mother tree; see also Figures 7.3 and 7.4.

In our applications, the support of a wavelet ψλ is a union of simplices of
generation |λ|. In time, these simplices are subintervals of I found by dyadic
refinement. In space, they are elements of T, the collection of all triangles
found by newest vertex bisection. Endowed with the natural parent-child
relation, both collections of simplices have a tree structure we call the domain
mother tree. Every wavelet ψλ stores references to the simplices T of generation
|λ| that make up its support; conversely, every T stores a reference to ψλ.

Every mother tree ∨ is stored once in memory, and every node λ ∈ ∨ stores
references to its parents, children, and siblings. We treat the mother tree as
infinite by lazy initialization, constructing new nodes as they are needed.

Trees

We store a tree Λ ⊂ ∨ using the parent-child relation, and additionally, at
each λ ∈ Λ store a reference to the corresponding node in ∨. This allows
us to compare different trees subject to the same mother tree. This tree-like
representationdoesnot allowdirect access of arbitrarynodes: in anyoperation,
we traverse Λ from its roots in breadth-first, or level-wise, order.

Tree operations

One important operation is the union of one tree Λ into another Λ̆. This can be
implemented by traversing both trees simultaneously in breadth-first order.
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7. Adaptivity: an efficient implementation

The union allows us to easily perform high-level operations, such as vector
addition: given two vectors c ∈ `2(Λ), d ∈ `2(Λ̆) on the same mother tree ∨,
we use the union to perform c := c + d. See Figure 7.6 for an example.

•2 •3

•1

• •2

• • • •

•1 •2

•3

•4 •

•1 •1 • •

•3 •5

•4

•4 •2

•1 •1 • •

Figure 7.6. Left: c ∈ `2(Λ) for Λ ⊂ ∨I; Middle: d ∈ `2(Λ̆) for Λ̆ ⊂ ∨I; Right:
in-place sum c := c + d.

Tree operations in time

The routineseval, evalupp, andevallow from§7.3.1 involvevarious level-wise
index sets (represented as arrays of references into their mother trees). One
example is Π̆B = {λ ∈ Π̆ :

∣∣ supp φ̆λ ∩ ∪µ∈Λ`S(µ)
∣∣ > 0}, which we constructed

efficiently using the domain mother tree; see Algorithm 7.5.

Algorithm 7.5: The construction of Π̆B .
Data: ` ∈ N, Π̆ ⊂ ∆̆`−1, Λ` ⊂ ∨`.
Result: [Π̆A, Π̆B ] where Π̆A = Π̆ \ Π̆B ,

Π̆B = {λ ∈ Π̆ :
∣∣ supp φ̆λ ∩ ∪µ∈Λ`S(µ)

∣∣ > 0}.
Π̆A := ∅;
Π̆B := ∅;
for µ ∈ Λ` do

for T ∈ ψµ.support do // We have S(ψµ) = suppψµ.
T .parent.marked := true;

for λ ∈ Π̆ do
if ∃T ∈ φ̆λ.support with T.marked = true then

Π̆B .insert(λ);
else

Π̆A.insert(λ);
for µ ∈ Λ` do

for T ∈ ψµ.support do
T .parent.marked := false;
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7.5. Implementation

We can apply the linear operators appearing in the routines of §7.3.1 effi-
ciently by again traversing the domainmother tree; for example, Algorithm 7.6
details a matrix-free application of (AΦ|Π)(Φ̆|Π̆).

Algorithm 7.6: The computation of e = (AΦ|Π)(Φ̆|Π̆)d.

Data: Index sets Π ⊂ ∆`, Π̆ ⊂ ∆̆`, d ∈ `2(Π), local and linear
A : span Φ→ span Φ̆′.

Result: e = (AΦ|Π)(Φ̆|Π̆)d
for λ ∈ Π do φλ.data := dλ;
for µ ∈ Π̆ do

eλ := 0;
for T ∈ φ̆µ.support do

for φλ ∈ T.functions(∆`) do
// {φλ : λ ∈ ∆`, | suppφλ ∩ T | > 0}

eλ := eλ +A(φλ)(φ̆µ|T ) · φλ.data;
for λ ∈ Π do φλ.data := 0;

Operations in space

We can construct a triangulation T from a vertex treeNT in linear complexity.
First mark every ν ∈ NT in its mother tree, then traverse the domain mother
tree T. A triangle T visited in this traversal is in T exactly when the newest
vertex of its children is not marked.

For the preconditionersKδ
µ andKδ

λ from §7.4.4we usemultigrid. We apply
multiplicative V-cycle multigrid, in each cycle applying one pre- and one post
Gauss-Seidel smoother with reversed ordering of the unknowns.

In view of obtaining a linear complexity algorithm, at level k we re-
strict smoothing to the vertices of generation k as well as their godparents,
cf. [WZ17]. For T ∈ T we consider WT , the space of continuous piecewise
linears w.r.t. T , zero on ∂Ω, now equipped with the single-scale basis ΦT . Set
L = L(T ) := maxT∈T gen(T ), and define the sequence

T⊥ = T0 ≺ T1 ≺ · · · ≺ TL = T ⊂ T

where Tk−1 is constructed from Tk by removing all vertices ν ∈ NTk for which
gen(ν) = k. For 1 ≤ k ≤ L, let Mk be the set of new vertices and their
godparents, i.e.,Mk :=

⋃
ν∈NTk\NTk−1

{ν} ∪ gp(ν), and letMk,0 := Mk \ ∂Ω be
the vertices not on the boundary. We consider the multilevel decomposition,
cf. [WZ17],

(7.31) WTL = WT0
+

L∑
k=1

∑
ν∈Mk,0

spanφk,ν , where φk,ν := φTk,ν .
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7. Adaptivity: an efficient implementation

For 1 ≤ k ≤ L, let Pk be the prolongation matrix, i.e., the matrix represen-
tation of the embedding WTk−1

→ WTk , and enumerate the vertices Mk,0 as
(νik)nki=1. Algorithm 7.7 details a (non-recursive) implementation of a single
multiplicative V-cycle for the multilevel decomposition (7.31) using Gauss-
Seidel smoothing. We assume the availability of an efficient coarse-grid solver;
in our application, a direct solve suffices. For linear complexity, we use in-place
vector updates restricted to non-zeros.

Note that this multigrid method is given in terms of the single-scale basis
ΦT ; it can be transformed to the hierarchical basis ΨT similarly to (7.29).
Multiple V-cycles are done by setting u0 := 0 and iterating uk := MG(A, f −
Auk−1).

Algorithm 7.7: Single multiplicative V-cycle multigrid MG(A, f).
Data: Some f ∈W ′T and a linear operator A : WT →W ′T .
Result: u = u>ΦT ∈WT , the result of a single V-cycle applied to f .
r := f(ΦT );
for L ≥ k ≥ 1 do

for ν = ν1
k , . . . , ν

nk
k do

rk,ν := rν ;
ek,ν := rk,ν/(Aφk,ν)(φk,ν);
r := r− ek,ν(Aφk,ν)(ΦTk);

r := P>k r;
Solve (AΦT0

)(ΦT0
)u = r;

for 1 ≤ k ≤ L do
u := Pku;
for ν = νnkk , . . . , ν1

k do
uν := uν + ek,ν ;
uν := uν + (rk,ν − (Aφk,ν)(u>ΦTk))/(Aφk,ν)(φk,ν);

7.5.2 Double-trees and tensor-product operators

For every node in a double-tree Λ ⊂ ∨0 × ∨1, we store a reference to the
underlying pair of nodes in their mother trees. This allows growing double-
trees intuitively, and allows comparing different double-trees over the same
pair of mother trees. C++ templates allow us to re-use much of the tree code
without runtime performance loss.

In §7.3.2 we saw how to apply a tensor-product operator. For this, we
first construct the double-trees Σ and Θ; construction of Σ is illustrated in
Algorithm 7.8. Evaluation of the operator then reduces to the four simple
steps of Algorithm 7.9.
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7.5. Implementation

Algorithm 7.8: Function GenerateSigma(Λ̆,Λ).
Data: Λ̆ ⊂ ∨̆0 × ∨̆1, Λ ⊂ ∨0 × ∨1

Result: Σ for application of Theorem 7.3.13 with Λ̆ and Λ.
Σ := P0Λ× {ν ∈ P1Λ̆ : |ν| = 0};
for λ ∈ Σ.project(0) do

for T ∈ φλ.support do
for µ ∈ T.functions(∨̆0

|λ|) do
Σ.fiber(1, λ).union(Λ̆.fiber(1, µ));

Algorithm 7.9: Algorithm to evaluate d = RΛ̆(A0 ⊗A1)IΛc.

Data: Λ ⊂ ∨0 × ∨1, Λ̆ ⊂ ∨̆0 × ∨̆1, c ∈ `2(Λ), d ∈ `2(Λ̆).
Σ := GenerateSigma(Λ̆,Λ);
Θ := GenerateTheta(Λ̆,Λ);
s := 0 ∈ `2(Σ);
t := 0 ∈ `2(Θ);
l := 0 ∈ `2(Λ̆);
for λ ∈ s.project(0) do eval(A1)(s.fiber(1, λ), c.fiber(1, λ));
for µ ∈ l.project(1) do evallow(A0)(l.fiber(0, µ), s.fiber(0, µ));
for µ ∈ t.project(1) do evalupp(A0)(t.fiber(0, µ), c.fiber(0, µ));
for λ ∈ d.project(0) do eval(A1)(d.fiber(1, λ), t.fiber(1, λ));
d := d + l;

Memory optimizations

As the memory consumption of a double-tree is significant, at around 280
bytes per node, we want to have as few double-trees in memory as possible.
By storing the nodes of Λ in a persistent container, every node is uniquely
identified with its index in the container. This induces a mapping R#Λ ↔
`2(Λ) and allowsus to overlaymultiple vectors on the sameunderlyingdouble-
tree in a memory-friendly way.

The Σ generated by Algorithm 7.8 for the application of a tensor-product
operator can play the role of Θ necessary for the application of its transpose
operator (and vice versa). This allows tensor-product operators and their
transposes to share the double-trees Σ and Θ.

With these insights, our implementation of the heat equation has at most 5
different double-trees in memory.
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7. Adaptivity: an efficient implementation

7.5.3 The adaptive loop
In the refine step of the adaptive loop, we first mark a set J of nodes in Λ¯

δ \Λδ

using Dörfler marking (possible in linear complexity; cf. [PP20]). We then
refine Λδ to the smallest double-tree containing J :

1. mark all nodes in Λ¯
δ that are also present in Λδ ((ii) in Fig. 7.7);

2. traverse Λ¯
δ from every node in J , top-down in level-wise order, until

hitting a previously marked node. Mark all nodes along the way ((iii–iv)
in Fig. 7.7);

3. union the marked nodes of Λ¯
δ into Λδ ((v) in Fig. 7.7).

As #Λ¯
δ . #Λδ and we visit every node of Λ¯

δ at most twice, the traversal is
linear in #Λδ . See also Figure 7.7.
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Figure 7.7. Adaptive refinement of a double-treewith underlying unarymother
trees. Left to right: (i) Λδ ; (ii) Λ¯

δ with nodes in Λ¯
δ \Λδ in white; (iii) nodes in

J marked in red; (iv) nodes marked in the top-down traversal; (v) refined Λδ .

7.6 Numerical experiments

We consider the heat equation (7.26), and assess our implementation of the
adaptive Algorithm 7.1 for its numerical solution. Complementing the con-
vergence results gathered in §6.7, here we provide results on the practical
performance of the adaptive loop. Results were gathered on a multi-core
2.2 GHz machine, provided by the Dutch national e-infrastructure with the
support of SURF Cooperative.

7.6.1 The adaptive loop
We summarize the main results from §6.7. We run Algorithm 7.1 with θ = 1

2
and ξ = 1

2 . We consider four problems.
In the smooth problem, we select Ω := [0, 1]2 and prescribe the solution

u(t, x, y) := (1 + t2)x(1− x)y(1− y).

In the moving peak problem, we again select Ω := [0, 1]2 with prescribed
solution

u(t, x, y) := x(1− x)y(1− y) exp(−100[(x− t)2 + (y − t)2]);
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Figure 7.8. Error convergence and peak memory usage of the adaptive loop
for the four problems of §7.6.1.

here, u is essentially zero outside a small strip along the diagonal (0, 0, 0) to
(1, 1, 1).

In the cylinder problem, we select Ω := [−1, 1]2 \ [−1, 0]2 with data

u0 ≡ 0, and g(t, x, y) := t · 1{x2+y2<1/4}.

The solution has singularities in the re-entrant corner and along the wall of
the cylinder {(t, x, y) : x2 + y2 = 1/4}.

In the singular problem, we select Ω := [−1, 1]2 \ [−1, 0]2 with data u0 ≡ 1
and g ≡ 0; the solution then has singularities along {0} × ∂Ω and I × {(0, 0)}.

Convergence

To estimate the error ‖u − ûδ‖X , we measure the residual error estimator
‖rδ(ûδ)‖ from (7.12); see also Lemma 7.2.3. In the left pane of Figure 7.8, for
the first three problems, we observe a convergence rate of 1/2, which is the best
that can be expected from our family of trial spaces (Xδ)δ∈∆. For the singular
problem, the reduced rate 0.4 is found; it is unknown if a better rate can be
expected.

Memory

The right pane of Figure 7.8 shows the peak memory consumption after every
iteration of the adaptive algorithm. We see that the peak memory is linear in
dimXδ , stabilizing to around 15kB per degree of freedom. This is relatively
high due to our implementation based on double-trees. In fact, the double-
trees together make up around 85% of the total memory. For the singular
problem, the largest double-treeΛ¯

δ
Y occupies around 40% of the total memory.
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Figure 7.9. Time (in ms) per DoF of bilinear form evaluations in time.

7.6.2 Linearity of operations

The majority of our runtime is spent in the application of bilinear forms. In
this section, wemeasure the application times to assert their linear complexity.

In time

We select three sequences {ΛU}, {ΛL}, {ΛR} of trees in ∨Σ, one uniformly
refined and two graded towards the left and right respectively. For each such
tree Λ ⊂ ∨Σ, we define a corresponding tree Λ̆ := {µ ∈ ∨Ξ : ∃λ ∈ Λ, |λ| =
|µ|, | supp ξµ ∩ suppσλ| > 0} ⊂ ∨Ξ.

We select the bilinear formsMt andDt from (7.27), and run the algorithms
from §7.3.1. We see in Figure 7.9 that the runtime per degree of freedom
stabilizes to 10−3 ms, essentially independent of the bilinear form and the
trees. We suspect the increase until 107 degrees of freedom has to do with
cache locality.

In space

On the L-shaped domain Ω := [−1, 1]2 \ [−1, 0]2, we select two sequences
of hierarchical basis trees, one uniformly refined and the other refined by a
standard adaptive loop on −∆u = 1, u|∂Ω = 0.

For a hierarchical basis tree ΨT = {ψν : ν ∈ NT ,0}, we denote the stiffness
matrix 〈∇ΨT ,∇ΨT 〉L2(Ω) as AT . We measure the runtime of the conversion
from vertex tree NT to triangulation T (cf. §7.5.1), the application time of AT
through (7.29), and that of multigrid on AT (with 1 and 3 V-cycles) through
Algorithm7.7. Figure 7.10 confirms that the relative runtimeof everyoperation
is essentially independent of the refinement strategy. Interesting is again the
increase until 105 degrees of freedom.

178



7.6. Numerical experiments

103 104 105 106 107 108

10 4

10 3

Ti
m

e 
[m

s]
 p

er
 D

oF

MG3
MG1
N  to 
A

Uniform
Adaptive
Uniform
Adaptive

Figure 7.10. Time (inms) perDoF of important operations in space, for uniform
and adaptive refinements.

102 103 104 105 106 107

10 3

Ti
m

e 
[m

s]
 p

er
 D

oF

smooth
moving peak
cylinder
singular

B
′
0 0

B
′
0 0

102 103 104 105 106 107

KX

KY

KX

KY

Figure 7.11. Time (in ms) per DoF of the four bilinear forms applied in the
solve step of the adaptive algorithm.

In space-time

Solving (7.9) using PCG requires the application of the four linear operators
E¯
δ
YBE

δ
X , EδX

′
γ′0γ0E

δ
X , Kδ

X , and K¯
δ
Y . For the first two, Corollary 7.3.14 asserts

that their application time is of linear complexity, while for the preconditioners
Kδ
X and K¯

δ
Y , this follows from the block-diagonal structure of their matrix

representation.
We run the adaptive algorithm on the four problems of §7.6.1. Figure 7.11

shows that the application time of the aforementioned operators is essentially
independent of the problem, even though the underlying double-trees are
vastly different. We again see an increase in relative runtime until 106 degrees
of freedom.

Figure 7.12 shows the runtimes of the solve, estimate, mark and refine steps
of the adaptive loop. We confirm that each step is of linear complexity, and
that the total runtime is governed by the solve and estimate steps.
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Figure 7.13. Speedup and time (inms) per DoF of the solve step in the adaptive
loop, for different number of parallel processors.

7.6.3 Shared-memory parallelism

Most of our execution time is spent applying the linear operators from Fig-
ure 7.11. We can obtain a significant speedup with multithreading. In Algo-
rithm 7.9, all fibers inside each of the four for-loops are disjoint, and we can
easily parallelize each loop using OpenMP.

We run the parallel code on the smooth and singular problems. The right
pane of Figure 7.13 shows decent parallel performance for the singular prob-
lem, with 10× speedup at 16 cores. The left pane however reveals a load
balancing issue: as u is smooth, the two fibers (Λδ

0)1,λ with |λ| = 0 contain the
majority of the degrees of freedom. This results in poor parallel efficiency for
the first and fourth loop in Algorithm 7.9.
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7.7 Conclusion

We discussed an implementation of an adaptive solver for a space-time vari-
ational formulation of parabolic evolution equations where every step is of
linear complexity.

We constructed a family of trial spaces spanned by tensor-products of
wavelets in time and hierarchical basis functions in space. The resulting adap-
tive loop is able to resolve singularities locally in space and time, and we
proved its r-linear convergence.

After imposing a double-tree constraint on the index set of the trial spaces,
we devised an abstract algorithm that is able to apply the system matrices
in linear complexity. We achieve this complexity in practice by a tree-based
implementation. Thenumerical results showhighperformance of the adaptive
loop as a whole.

7.A Proofs of Theorems in §7.3

Theorem 7.3.7. A call of eval yields the output as specified, at the cost of O(#Π̆ +

#Λ̆ + #Π + #Λ) operations.

Proof. By locality of the collections Φ̆ and Ψ̆, and sparsity of the matrices p̆`
and q̆`, we see that #Π̆ . #Π̆B+#Λ̆` . #Λ`+#Λ̆`. So after sufficientlymany
recursive calls, the current set Π̆ ∪ Λ̆ will be empty. For use later, we note that
similarly #Π . #ΠB + #Λ` . #Λ̆` + #Π̆B + #Λ` . #Λ` + #Λ̆`.

For Π̆ ∪ Λ̆ = ∅, the call produces nothing, which is correct.
Now let Π̆ ∪ Λ̆ 6= ∅. From Λ being an `-tree, the definitions of S(·) and Π̆A,

and the locality of A, one has

e|Π̆A = (Au)(Φ̆|Π̆A) = (A(d>Φ|Π))(Φ̆|Π̆A).

By choice of Π we have

u := d>Φ|Π + c|>Λ`+1↑
Ψ|Λ`+1↑ = (d|ΠB )>Φ|ΠB + c>Ψ|Λ = u− (d|ΠA)>Φ|ΠA .

By induction the recursive call yieldse = (Au)(Φ̆|Π̆), and f = (Au)(Ψ̆|Λ̆`+1↑
).

From Λ̆ being an `-tree, the definitions of S̆(·) and ΠA, and the locality of A,
we have

(Au)(Ψ̆|Λ̆`↑) = (Au)(Ψ̆|Λ̆`↑),

and so in particular f |Λ`+1,↑ = f .
The definition of Π̆ shows that

Φ̆|Π̆B = (p̆>` Φ̆|Π̆)|Π̆B , Ψ̆|Λ̆` = (q̆>` Φ̆|Π̆)|Λ̆` .
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We conclude that

f |Λ̆` = (Au)(Ψ̆|Λ̆`) = (Au)(Ψ̆|Λ̆`) =
(
q̆>` e

)
|Λ̆` ,

and from | suppφλ ∩ supp φ̆µ| = 0 for (λ, µ) ∈ ΠA × Π̆B , that

e|Π̆B = (Au)(Φ̆|Π̆B ) = (Au)(Φ̆|Π̆B ) =
(
p̆>` e

)
|Π̆B .

From the assumptions on the collections Φ, Φ̆, Ψ̆, and Ψ, and their conse-
quences on the sparsity of thematrices p`, p̆`, q`, and q̆`, one infers that the total
cost of the evaluations of the statements in eval isO(#Π̆ + #Λ̆` + #Π + #Λ`)
plus the cost of the recursive call. Using#Π̆+#Π . #Λ̆`+#Λ` and induction,
we conclude the second statement of the theorem.

Theorem 7.3.9. A call of evalupp yields the output as specified, at the cost of
O(#Π̆ + #Λ̆ + #Π + #Λ) operations.

Proof. By locality of the collections Φ̆ and Ψ̆, and sparsity of the matrices p̆`
and q̆`, we see that #Π̆ . #Π̆B+#Λ̆` . #Λ`+#Λ̆`. So after sufficientlymany
recursive calls, the current set Π̆ ∪ Λ̆ will be empty. Notice that #Π . #Λ`.

For Π̆ ∪ Λ̆ = ∅, the call produces nothing, which is correct.
Now let Π̆ ∪ Λ̆ 6= ∅. From Λ being an `-tree, the definitions of S(·) and Π̆A,

and the locality of A, one has

e|Π̆A = (Au)(Φ̆|Π̆A) = (A(d>Φ|Π))(Φ̆|Π̆A).

By definition of Π we have

u := d>Φ|Π + c|>Λ`+1↑
Ψ|Λ`+1↑ = c>Ψ|Λ = u− d>Φ|Π.

By induction the recursive call yields

e = (Au)(Φ̆|Π̆), f = UΛ̆`+1↑×Λ`+1↑
c|Λ`+1↑ = f |Λ̆`+1↑

.

The definition of Π̆ shows that

Φ̆|Π̆B = (p̆>` Φ̆|Π̆)|Π̆B , Ψ̆|Λ̆` = (q̆>` Φ̆|Π̆)|Λ̆` .

We conclude that

f |Λ̆` = (A(c>Ψ|Λ))(Ψ̆|Λ̆`) = (Au)(Ψ̆|Λ̆`) =
(
q̆>` e

)
|Λ̆` ,

and

e|Π̆B = (Au)(Φ̆|Π̆B ) = (Au)(Φ̆|Π̆B ) + (A(d>Φ|Π))(Φ̆|Π̆B )

=
(
p>` e

)
|Π̆B + (A(d>Φ|Π))(Φ̆|Π̆B ).
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7.A. Proofs of Theorems in §7.3

From the assumptions on the collections Φ, Φ̆, Ψ̆, and Ψ, and their conse-
quences on the sparsity of thematrices p`, p̆`, q`, and q̆`, one infers that the total
cost of the evaluations of the statements in eval isO(#Π̆ + #Λ̆` + #Π + #Λ`)
plus the cost of the recursive call. Using#Π̆+#Π . #Λ̆`+#Λ` and induction,
we conclude the second statement of the theorem.

Theorem 7.3.11. A call of evallow yields the output as specified, at the cost of
O(#Λ̆ + #Π + #Λ) operations.

Proof. Notice that #Π . #Λ` + #ΠB . #Λ` + #Λ̆`.
For Π̆ ∪ Λ̆ = ∅, the call produces nothing, which is correct.
Now let Π̆ ∪ Λ̆ 6= ∅. The definitions of Π̆ and ΠB show that

f |Λ̆` = (AΦ|Π)(Ψ̆|Λ̆`)d = (AΦ|Π)(Ψ̆|Λ̆`)d|ΠB
=
(
q̆>` (AΦ|ΠB )(Φ̆|Π̆)p`d|ΠB

)
|Λ̆` = (q̆>` e)|Λ̆`

From Λ̆ being an `-tree, the definitions of S̆(·) and ΠB , and the locality of
a, and for the third equality, the definition of Π, one has

f |Λ̆`+1↑
= a(Ψ̆|Λ̆`+1↑

,Φ|Π)d + L|Λ̆`+1↑×Λ`
c|Λ` + L|Λ̆`+1↑×Λ`+1↑

c|Λ`+1↑

= (AΦ|Π)(Ψ̆|Λ̆`+1↑)
d|ΠB + (AΨ|Λ`)(Ψ̆|Λ̆`+1↑

)c|Λ` + L|Λ̆`+1↑×Λ`+1↑
c|Λ`+1↑

= (AΦ|Π)(Ψ̆|Λ̆`+1↑
)d + L|Λ̆`+1↑×Λ`+1↑

c|Λ`+1↑

= evallow(A)(`+ 1, Λ̆`+1↑,Π,Λ`+1↑,d, c|Λ`+1↑)

by induction.
From the assumptions on the collections Φ, Ψ̆, and Ψ, and their conse-

quences on the sparsity of the matrices p`, q`, and q̆`, one easily infers that the
total cost of the evaluations of the statements in evallow isO(#Λ̆`+#Π+#Λ`)
plus the cost of the recursive call. Using #Π . #Λ̆` + #Λ` and induction, we
conclude the second statement of the theorem.

Theorem 7.3.13. Let Λ̆ ⊂ ∨̆0 × ∨̆1, Λ ⊂ ∨0 × ∨1 be finite double-trees. Then

Σ :=
⋃

λ∈P0Λ

(
{λ} ×

⋃{
µ∈P0Λ̆:|µ|=|λ|+1, |S̆0(µ)∩S0(λ)|>0

} Λ̆1,µ

)
,

Θ :=
⋃

λ∈P1Λ

(
{µ ∈ P0Λ̆ : ∃γ ∈ Λ0,λ s.t. |γ| = |µ|, |S̆0(µ) ∩ S0(γ)| > 0} × {λ}

)
,

are double-trees with #Σ . #Λ̆ and #Θ . #Λ, and

RΛ̆(A0 ⊗A1)IΛ =RΛ̆(L0 ⊗ Id)IΣRΣ(Id⊗A1)IΛ+

RΛ̆(Id⊗A1)IΘRΘ(U0 ⊗ Id)IΛ.
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7. Adaptivity: an efficient implementation

Proof. We write

RΛ̆(A0 ⊗A1)IΛ =RΛ̆((L0 + U0)⊗A1)IΛ

=RΛ̆(L0 ⊗ Id)(Id⊗A1)IΛ+(7.32)
RΛ̆(Id⊗A1)(U0 ⊗ Id)IΛ.(7.33)

Considering (7.32), the range of (Id ⊗ A1)IΛ consists of vectors whose
entries with first index outside P0Λ are zero. In view of the subsequent
application of L0 ⊗ Id, furthermore only those indices (λ, γ) ∈ P0Λ × ∨̆1

of these vectors might be relevant for which ∃(µ, γ) ∈ Λ̆, i.e. γ ∈ Λ1,µ,
with |µ| > |λ| and |S̆0(µ) ∩ S0(λ)| > 0. Indeed |S̆0(µ) ∩ S0(λ)| = 0 implies
| supp ψ̆0

µ ∩ suppψ0
λ| = 0, and so A0(ψ̆0

µ, ψ
0
λ) = 0. If for given (λ, γ) such a pair

(µ, γ) exists for |µ| > |λ|, then such a pair exists for |µ| = |λ|+1 aswell, because
Λ̆0,γ is a tree, and S̆0(µ′) ⊃ S̆0(µ) for any ancestor µ′ of µ. In order words, the
condition |µ| > |λ| can be read as |µ| = |λ| + 1. The set of (λ, γ) that we just
described is given by the set Σ, and so we infer that

RΛ̆(L0 ⊗ Id)(Id⊗A1)IΛ = RΛ̆(L0 ⊗ Id)IΣRΣ(Id⊗A1)IΛ.

Now let (λ, γ) ∈ Σ. Using that P0Λ is a tree, and S0(λ) ⊂ S0(λ′) for any
ancestor λ′ of λ, we infer that (λ′, γ) ∈ Σ. Using that for any µ ∈ P0Λ̆, Λ̆1,µ

is a tree, we infer that for any ancestor γ′ of γ, (λ, γ′) ∈ Σ, so that Σ is a
double-tree.

For anyµ ∈ ∨̆0, the number ofλ ∈ ∨0 with |µ| = |λ|+1 and |S̆0(µ)∩S0(λ)| >
0 is uniformly bounded, from which we infer that #Σ .

∑
µ∈P0Λ̆ #Λ̆1,µ =

#Λ̆.
Considering (7.33), the range of (U0 ⊗ Id)IΛ consists of vectors that can

only have non-zero entries for indices (µ, λ) ∈ ∨̆0×P1Λ for which there exists
a γ ∈ Λ0,λ with |γ| ≥ |µ| and |S̆0(µ) ∩ S0(γ)| > 0. Since Λ0,λ is a tree, and
S0(γ′) ⊃ S0(γ) for any ancestor γ′ of γ, equivalently |γ| ≥ |µ| can be read as
|γ| = |µ|. Furthermore, in view of the subsequent application of RΛ̆(Id⊗A1),
it suffices to consider those indices (µ, λ) with µ ∈ P0Λ̆. The set of (µ, λ) that
we just described is given by the set Θ, and so we infer that

RΛ̆(Id⊗A1)(U0 ⊗ Id)IΛ = RΛ̆(Id⊗A1)IΘRΘ(U0 ⊗ Id)IΛ.

Now let (µ, λ) ∈ Θ. If λ′ is an ancestor of λ, then from P0Λ being a tree,
and Λ0,λ ⊂ Λ0,λ′ , we have (µ, λ′) ∈ Θ. If µ′ is an ancestor of µ, then from P0Λ̆

being a tree, and S̆0(µ′) ⊃ S̆0(µ), we infer that (µ′, λ) ∈ Θ, and thus that Θ is
a double-tree.

For any γ ∈ ∨0, the number of µ ∈ ∨̆0 with |µ| = |γ| and |S̆0(µ)∩S0(γ)| > 0
is uniformly bounded, from which we infer that #Θ .

∑
λ∈P1Λ #Λ0,λ =

#Λ.
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8 A parallel algorithm

8.1 Introduction

This chapter dealswith solving parabolic evolution equations in a time-parallel
fashion using tensor-product discretizations. Time-parallel algorithms for
solving parabolic evolution equations have become a focal point following the
enormous increase in parallel computing power. Spatial parallelism is a ubiq-
uitous component in large-scale computations, but when spatial parallelism is
exhausted, parallelization of the time axis is of interest.

Time-stepping methods first discretize the problem in space, and then
solve the arising system of coupled ODEs sequentially, immediately revealing
a primary source of difficulty for time-parallel computation.

Alternatively, one can solve simultaneously in space and time. Origi-
nally introduced in [BJ89, BJ90], these space-time methods are very flexi-
ble: some can guarantee quasi-best approximations, meaning that their er-
ror is proportional to that of the best approximation from the trial space
[And13, DS18, FK21, SZ20], or drive adaptive routines [SY18, RS19]. Many
are especially well-suited for time-parallel computation [GN16, NS19]. Since
the first significant contribution to time-parallel algorithms [Nie64] in 1964,
many methods suitable for parallel computation have surfaced; see the re-
view [Gan15].

Parallel complexity

The (serial) complexity of an algorithmmeasures asymptotic runtime on a sin-
gle processor in terms of the input size. Parallel complexitymeasures asymptotic
runtime given sufficiently many parallel processors having access to a shared
memory, i.e., assuming there are no communication costs.

In the current context of tensor-product discretizations of parabolic PDEs,
we denote withNt andNx the number of unknowns in time and space respec-
tively.

The parareal method [LMT01] aims at time-parallelism by alternating a
serial coarse-grid solve with fine-grid computations in parallel. This way, each
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8. A parallel algorithm

iteration has a time-parallel complexity ofO(
√
NtNx), and combinedwith par-

allel multigrid in space, a parallel complexity of O(
√
Nt logNx). The popular

MGRIT algorithm extends these ideas to multiple levels in time; cf. [FFK+14].
Recently, Neumüller and Smears proposed an iterative algorithm that uses

aFast FourierTransform in time. Each iteration runs serially inO(Nt log(Nt)Nx)
and parallel in time, inO(log(Nt)Nx). By also incorporating parallel multigrid
in space, its parallel runtime may be reduced to O(logNt + logNx).

Our contribution

We study a variational formulation introduced in [SW21b] which was based
on work by Andreev [And13, And16]. Recently in [SvVW21, vVW21b], we
studied this formulation in the context of space-time adaptivity and its efficient
implementation in serial and on shared-memory parallel computers. The
current chapter instead focuses on its massively parallel implementation and
time-parallel performance.

Our method has remarkable similarities with the approach of [NS19], and
the most essential difference is the substitution of their Fast Fourier Transform
by our Fast Wavelet Transform. The strengths of both methods include a solid
inf-sup theory that enables quasi-optimal approximate solutions from the trial
space, ease of implementation, and excellent parallel performance in practice.

Our method has another strength: based on a wavelet transform, for fixed
algebraic tolerance it runs serially in linear complexity. Parallel in time, it
runs in complexity O(log(Nt)Nx); parallel in space and time, in O(log(NtNx)).
Moreover, when solving to an algebraic error proportional to the discretiza-
tion error, incorporating a nested iteration (cf. [Hac85, Ch. 5]) results in com-
plexities O(NtNx), O(log(Nt)Nx), and O(log2(NtNx)) respectively. This is on
par with best-known results on parallel complexity for elliptic problems; see
also [Bra81].

Organization of this chapter

In §8.2, we formally introduce the problem, derive a saddle-point formulation,
and provide sufficient conditions for quasi-optimality of discrete solutions. In
§8.3, we detail on the efficient computation of these discrete solutions. In §8.4
we take a concrete example—the reaction-diffusion equation—and analyze
the serial and parallel complexity of our algorithm. In §8.5, we test these
theoretical findings in practice. We conclude in §8.6.

Notations

For normed linear spacesU and V , in thiswork for convenience overR,L(U, V )
will denote the space of bounded linear mappings U → V endowed with the
operator norm ‖ · ‖L(U,V ). The subset of invertible operators in L(U, V ) with
inverses in L(V,U) will be denoted as Lis(U, V ).
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8.2. Quasi-optimal approximations to the parabolic problem

Given a finite-dimensional subspace Uδ of a normed linear space U , we
denote the trivial embeddingU δ → U byEδU . For a basis Φδ—viewed formally
as a column vector—of Uδ , we define the synthesis operator as

FΦδ : RdimUδ → Uδ : c 7→ c>Φδ =:
∑
φ∈Φδ

cφφ.

Equip RdimUδ with the Euclidean inner product and identify (RdimUδ)′ with
RdimUδ using the corresponding Riesz map. We find the adjoint of FΦδ , the
analysis operator, to satisfy

(FΦδ)
′ : (U δ)′ → RdimUδ : f 7→ f(Φδ) := [f(φ)]φ∈Φδ .

For quantities f and g, by f . g, we mean that f ≤ C · g with a constant
that does not depend on parameters that f and g may depend on. By f h g,
we mean that f . g and g . f . For matricesA andB ∈ RN×N , byA h B we
will denote spectral equivalence, i.e. x>Ax h x>Bx for all x ∈ RN .

8.2 Quasi-optimal approximations to the parabolic problem

Let V,H be separable Hilbert spaces of functions on some spatial domain such
that V is continuously embedded in H , i.e. V ↪→ H , with dense compact
embedding. Identifying H with its dual yields the Gelfand triple V ↪→ H '
H ′ ↪→ V ′.

For a.e.
t ∈ I := (0, T ),

let a(t; ·, ·)denote a bilinear formon V ×V so that for any η, ζ ∈ V , t 7→ a(t; η, ζ)
is measurable on I , and such that for a.e. t ∈ I ,

|a(t; η, ζ)| . ‖η‖V ‖ζ‖V (η, ζ ∈ V ) (boundedness),
a(t; η, η) & ‖η‖2V (η ∈ V ) (coercivity).

With (A(t)·)(·) := a(t; ·, ·) ∈ Lis(V, V ′), given a forcing function g and initial
value u0, we want to solve the parabolic initial value problem of

(8.1) finding u : I → V such that
{

du
dt (t) +A(t)u(t) = g(t) (t ∈ I),

u(0) = u0.

8.2.1 An equivalent self-adjoint saddle-point system
In a simultaneous space-time variational formulation, the parabolic problem
reads as finding u from a suitable space of functions of time and space s.t.

(Bw)(v) :=

ˆ
I

〈dwdt (t), v(t)〉H + a(t;w(t), v(t))dt =

ˆ
I

〈g(t), v(t)〉H =: g(v)
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8. A parallel algorithm

for all v from another suitable space of functions of time and space. One
possibility to enforce the initial condition is by testing against additional test
functions.

Theorem 8.2.1 ([SS09]). WithX := L2(I;V )∩H1(I;V ′), Y := L2(I;V ), we have[
B
γ0

]
∈ Lis(X,Y ′ ×H),

where for t ∈ Ī , γt : u 7→ u(t, ·) denotes the trace map. In other words,

(8.2) finding u ∈ X s.t. (Bu, γ0u) = (g, u0) given (g, u0) ∈ Y ′ ×H

is a well-posed simultaneous space-time variational formulation of (8.1).

We define A ∈ Lis(Y, Y ′) and ∂t ∈ Lis(X,Y ′) as

(Au)(v) :=

ˆ
I

a(t;u(t), v(t))dt , and ∂t := B −A.

Following [SW21b], we assume that A is symmetric. We can reformulate (8.2)
as the self-adjoint saddle point problem

(8.3) finding (v, σ, u) ∈ Y ×H ×X s.t.

A 0 B
0 Id γ0

B′ γ′0 0

vσ
u

 =

 gu0

0

 .
By taking a Schur complement w.r.t. the H-block, we can reformulate this as

(8.4) finding (v, u) ∈ Y ×X s.t.
[
A B
B′ −γ′0γ0

] [
v
u

]
=

[
g

−γ′0u0

]
.

We equip Y and X with ‘energy’-norms

‖ · ‖2Y := (A·)(·), ‖ · ‖2X := ‖∂t · ‖2Y ′ + ‖ · ‖2Y + ‖γT · ‖2H ,

which are equivalent to the canonical norms on Y and X .

8.2.2 Uniformly quasi-optimal Galerkin discretizations
Our numerical approximations will be based on the saddle-point formula-
tion (8.4). Let (Y δ, Xδ)δ∈∆ be a collection of closed subspaces of Y × X
satisfying

(8.5) Xδ ⊂ Y δ, ∂tX
δ ⊂ Y δ (δ ∈ ∆),

and

(8.6) 1 ≥ γ∆ := inf
δ∈∆

inf
06=u∈Xδ

sup
06=v∈Y δ

(∂tu)(v)

‖∂tu‖Y ′‖v‖Y
> 0.
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8.3. Solving efficiently on tensor-product discretizations

Remark 8.2.2. In [SW21b, §4], these conditions were verified for Xδ and Y δ

being tensor-products of (locally refined) finite element spaces in time and
space. InChapter 6,we relax these conditions toXδ

t andY δ being adaptive sparse
grids, allowing adaptive refinement locally in space and time simultaneously.

For δ ∈ ∆, let (vδ, uδ) ∈ Y δ ×Xδ solve the Galerkin discretization of (8.4):

(8.7)
[
EδY
′
AEδY EδY

′
BEδX

EδX
′
B′EδY −EδX

′
γ′0γ0E

δ
X

][
vδ

uδ

]
=

[
EδY
′
g

−EδX
′
γ′0u0

]
.

The solution (vδ, uδ)of (8.7) exists uniquely, andexhibitsuniformquasi-optimality
in that ‖u− uδ‖X ≤ γ−1

∆ infuδ∈Xδ ‖u− uδ‖X for all δ ∈ ∆.
Instead of solving amatrix representation of (8.7) using e.g. preconditioned

MINRES, we will opt for a computationally more attractive method. By taking
the Schur complement w.r.t. the Y δ-block in (8.7), and replacing (EδY

′
AEδY )−1

in the resulting formulation by a preconditionerKδ
Y that can be applied cheaply,

we arrive at the Schur complement formulation of finding uδ ∈ Xδ s.t.

(8.8) EδX
′
(B′EδYK

δ
Y E

δ
Y

′
B + γ′0γ0)EδX︸ ︷︷ ︸

=:Sδ

uδ = EδX
′
(B′EδYK

δ
Y E

δ
Y

′
g + γ′0u0)︸ ︷︷ ︸

=:fδ

.

The resulting operator Sδ ∈ Lis(Xδ, Xδ ′) is self-adjoint and elliptic. Given a
self-adjoint operatorKδ

Y ∈ L(Y δ
′
, Y δ) satisfying, for some κ∆ ≥ 1,

(8.9)
(
(Kδ

Y )−1v
)
(v)

(Av
)
(v)

∈ [κ−1
∆ , κ∆] (δ ∈ ∆, v ∈ Y δ),

the solution uδ of (8.8) exists uniquely as well. In fact, the following holds.

Theorem 8.2.3 ([SW21b, Rem. 3.8]). Take (Y δ × Xδ)δ∈∆ satisfying (8.5)–(8.6),
andKδ

Y satisfying (8.9). Solutions uδ ∈ Xδ of (8.8) are uniformly quasi-optimal, i.e.

‖u− uδ‖X ≤
κ∆

γ∆
inf

uδ∈Xδ
‖u− uδ‖X (δ ∈ ∆).

8.3 Solving efficiently on tensor-product discretizations

From now on, we assume that Xδ := Xδ
t ⊗Xδ

x and Y δ := Y δt ⊗ Y δx are tensor-
products, and for ease of presentation,weassume that the spatial discretizations
on Xδ and Y δ coincide, i.e. Xδ

x = Y δx , reducing (8.5) to Xδ
t ⊂ Y δt and d

dt X
δ
t ⊂

Y δt .
We equip Xδ

t with a basis Φδt , Xδ
x with Φδx, and Y δt with Ξδ .
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8. A parallel algorithm

8.3.1 Construction ofKδ
Y

Define O := 〈Ξδ,Ξδ〉L2(I) and Ax := 〈Φδx,Φδx〉V . GivenKx h A−1
x uniformly

in δ ∈ ∆, define
KY := O−1 ⊗Kx.

Then, the preconditioner Kδ
Y := FΞδ⊗Φδx

KY (FΞδ⊗Φδx
)′ ∈ L(Y δ

′
, Y δ) satis-

fies (8.9); cf. §6.5.6.
When Ξδ is orthogonal, O is diagonal and can be inverted exactly. For

standard finite element bases Φδx, suitable Kx that can be applied efficiently
(at cost linear in the discretization size) are provided by symmetric multigrid
methods.

8.3.2 Preconditioning the Schur complement formulation
We will solve a matrix representation of (8.8) with an iterative solver, thus
requiring a preconditioner. Inspired by the constructions of [And16, NS19],
we build an optimal self-adjoint coercive preconditionerKδ

X ∈ L(Xδ ′, Xδ) as a
wavelet-in-time block-diagonal matrix with multigrid-in-space blocks.

Let U be a separable Hilbert space of functions over some domain. A given
collection Ψ = {ψλ}λ∈∨Ψ is a Riesz basis for U when

span Ψ = U, and ‖c‖`2(∨Ψ) h ‖c>Ψ‖U for all c ∈ `2(∨Ψ).

Thinking of Ψ being a basis of wavelet-type, for indices λ ∈ ∨Ψ, its level is
denoted |λ| ∈ N0. We call Ψ uniformly local when for all λ ∈ ∨Ψ,

diam(suppψλ) . 2−|λ| and #{µ ∈ ∨Ψ : |µ| = |λ|, | suppψµ∩suppψλ| > 0} . 1.

Assume Σ := {σλ : λ ∈ ∨Σ} is a uniformly local Riesz basis for L2(I) with
{2−|λ|σλ : λ ∈ ∨Σ} Riesz forH1(I). Writingw ∈ X as

∑
λ∈∨Σ

σλ⊗wλ for some
wλ ∈ V , we define the bounded, symmetric, and coercive bilinear form

(DX

∑
λ∈∨Σ

σλ ⊗ wλ)(
∑
µ∈∨Σ

σµ ⊗ vµ) :=
∑
λ∈∨Σ

〈wλ, vλ〉V + 4|λ|〈wλ, vλ〉V ′ .

The operator Dδ
X := EδX

′
DXE

δ
X is in Lis(Xδ, Xδ ′). Its norm and that of its

inverse are bounded uniformly in δ ∈ ∆. When Xδ = span Σδ ⊗ Φδx for some
Σδ:= {σλ : λ ∈ ∨Σδ} ⊂ Σ, the matrix representation of Dδ

X w.r.t. Σδ ⊗ Φδx is

(FΣδ⊗Φδ)
′
Dδ
XFΣδ⊗Φδ =: Dδ

X = blockdiag[Ax + 4|λ|〈Φδx,Φδx〉V ′ ]λ∈∨Σδ
.

Theorem 8.3.1 (§6.5.6). DefineMx := 〈Φδx,Φδx〉H . When we have matricesKj h
(Ax + 2jMx)−1 uniformly in δ ∈ ∆ and j ∈ N0, it follows that

D−1
X hKX := blockdiag[K|λ|AxK|λ|]λ∈∨Σδ

.

This yields an optimal preconditionerKδ
X := FΣδ⊗ΦδKX(FΣδ⊗Φδ)

′ ∈ Lis(Xδ ′, Xδ).
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8.3. Solving efficiently on tensor-product discretizations

In [OR00] it was shown that under a ‘full-regularity’ assumption, for quasi-
uniform meshes, a multiplicative multigrid method yields Kj satisfying the
conditions of Thm. 8.3.1, which can moreover be applied in linear time.

8.3.3 Wavelets in time
The preconditioner KX requires Xδ

t to be equipped with a wavelet basis Σδ ,
whereas one typically uses a different (single-scale) basis Φδt onXδ

t . To bridge
this gap, a basis transformation from Σδ to Φδt is required. We define the
wavelet transform asWt := (FΦδt

)−1FΣδ .1
Define Vj := span{σλ ∈ Σ : |λ| ≤ j}. Equip each Vj with a (single-scale)

basis Φj , and assume that Φδt := ΦJ for some J , so that Xδ
t := VJ . Since

Vj+1 = Vj ⊕ span Σj where Σj := {σλ : |λ| = j}, there exist matrices Pj and
Qj such that Φ>j = Φ>j+1Pj and Ψ>j = Φ>j+1Qj , withMj := [Pj |Qj ] invertible.

Writing v ∈ VJ in both forms v = c>0 Φ0+
∑J−1
j=0 d

>
j Ψj and v = c>J ΦJ , the ba-

sis transformationWt := WJ mappingwavelet coordinates (c>0 ,d
>
0 , . . . ,d

>
J−1)

to single-scale coordinates cJ satisfies

(8.10) WJ = MJ−1

[
WJ−1 0

0 Id

]
, and W0 := Id.

Uniform locality ofΣ implies uniform sparsity of theMj , i.e.withO(1)nonzeros
per row and column. Then, assuming a geometrical increase in dimVj in
terms of j, which is true in the concrete setting below, matrix-vector products
x 7→Wtx can be performed (serially) in linear complexity; cf. [Ste03b].

8.3.4 Solving the system
The matrix representation of Sδ and fδ from (8.8) w.r.t. a basis Φδt ⊗ Φδx of Xδ

is
S := (FΦδt⊗Φδx

)
′
SδFΦδt⊗Φδx

and f := (FΦδt⊗Φδx
)
′
fδ.

Envisioning an iterative solver, using §8.3.2 we have a preconditioner in terms
of the wavelet-in-time basis Σδ ⊗ Φδx, with which their matrix representation
is

(8.11) Ŝ := (FΣδ⊗Φδx
)
′
SδF±δ⊗⊕δx and f̂ := (FΣδ⊗Φδx

)
′
fδ.

These two forms are related: with the wavelet transform W := Wt ⊗ Idx,
we have Ŝ = W>SW and f̂ = W>f , and the matrix representation of (8.8)
becomes

(8.12) finding w s.t. Ŝw = f̂ .

1In literature, this transform is typically called an inverse wavelet transform.
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8. A parallel algorithm

We can then recover the solution in single-scale coordinates as u = Ww.
We use Preconditioned Conjugate Gradients (PCG), with preconditioner

KX , to solve (8.12). Given an algebraic error tolerance ε > 0 and current guess
wk, we monitor r>kKXrk ≤ ε2 where rk := f̂ − Ŝwk. This data is available
withinPCG, and constitutes a stopping criterium: withuδk := FΣδ⊗Φδx

wk ∈ Xδ ,
we see

(8.13) r>kKXrk = (fδ − Sδuδk)(Kδ
X(fδ − Sδuδk)) h ‖uδ − uδk‖2X

whereh follows from (6.34), so that the algebraic error satisfies ‖uδ−uδk‖X . ε.

8.4 A concrete setting: the reaction-diffusion equation

On a bounded Lipschitz domain Ω ⊂ Rd, take H := L2(Ω), V := H1
0 (Ω), and

a(t; η, ζ) :=

ˆ
Ω

D∇η · ∇ζ + cηζdx

where D = D> ∈ Rd×d is positive definite, and c ≥ 0.2 We note that A(t) is
symmetric and coercive. W.l.o.g. we take I := (0, 1), i.e. T := 1.

Fix pt, px ∈ N. With {TI} the family of quasi-uniform partitions of I into
subintervals, and {TΩ} that of conforming quasi-uniform triangulations of Ω,
we define ∆ as the collection of pairs (TI , IΩ). We construct our trial- and test
spaces as

Xδ := Xδ
t ⊗Xδ

x, Y δ := Y δt ⊗Xδ
x,

where, with P−1
p (T ) denoting the space of piecewise degree-p polynomials on

T ,

Xδ
t := H1(I) ∩ P−1

pt (TI), Xδ
x := H1

0 (Ω) ∩ P−1
px (TΩ), Y δt := P−1

pt (TI).

These spaces satisfy condition (8.5), with coinciding spatial discretizations on
Xδ and Y δ . For this choice of ∆, inf-sup condition (8.6) follows from [SW21b,
Thm. 4.3].

For Xδ
t , we choose Φδt to be the Lagrange basis of degree pt on TI ; for Xδ

x,
we choose Φδx to be that of degree px on TΩ. An orthogonal basis Ξδ for Y δt
may be built as piecewise shifted Legendre polynomials of degree pt w.r.t. TI .

For pt = 1, one finds a suitable wavelet basis Σ in [Ste98]. For pt > 1, one
can either split the system into lowest- and higher-order parts and perform the
transform on the lowest-order part only, or construct higher-order wavelets
directly; cf. [Dĳ09].

Owing to the tensor-product structure of Xδ and Y δ and of the operators
A and ∂t, the matrix representation of our formulation becomes remarkably
simple.

2This is easily generalized to variable coefficients, but notation becomes more obtuse.
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8.4. A concrete setting: the reaction-diffusion equation

Lemma 8.4.1. Define g := (FΞδ⊗Φδx
)
′
g, u0 := Φδt (0)⊗ 〈u0,Φ

δ
x〉L2(Ω), and

T := 〈 d
dt Φδt ,Ξ

δ〉L2(I), N := 〈Φδt ,Ξδ〉L2(I),

Γ0 := Φδt (0)[Φδt (0)]>, Mx := 〈Φδx,Φδx〉L2(Ω),

Ax := 〈D∇Φδx,∇Φδx〉L2(Ω) + cMx, B := T ⊗Mx +N ⊗Ax.

WithKY := O−1 ⊗Kx from §8.3.1, we can write S and f from §8.3.4 as

S = B>KYB + Γ0 ⊗Mx, f = B>KY g + u0.

Note thatN and T are non-square, Γ0 is very sparse, and T is bidiagonal.

In fact, assumption (8.5) allows us to write S in an even simpler form.

Lemma 8.4.2. The matrix S can be written as

S = At ⊗ (MxKxMx) +Mt ⊗ (AxKxAx) +L> ⊗ (MxKxAx)

+L⊗ (AxKxMx) + Γ0 ⊗Mx

where

L := 〈 d
dt Φδt ,Φ

δ
t 〉L2(I), Mt := 〈Φδt ,Φδt 〉L2(I), At := 〈 d

dt Φδt ,
d
dt Φδt 〉L2(I).

This matrix representation does not depend on Y δt or Ξδ at all.

Proof. The expansion of B := T ⊗Mx + N ⊗ Ax in S yields a sum of five
Kronecker products, one of which is

(T> ⊗Mx)KY (T ⊗Ax) = (T>O−1N)⊗ (MxKxAx).

We will show that T>O−1N = L>; similar arguments hold for the other
terms. Thanks toXδ

t ⊂ Y δt , we can define the trivial embeddingF δt : Xδ
t → Y δt .

Defining

T δ : Xδ
t → Y δt

′
, (T δu)(v) := 〈 d

dt u, v〉L2(I),

Mδ : Y δt → Y δt
′
, (Mδu)(v) := 〈u, v〉L2(I),

we findO = (FΞδ)
′
M δFΞδ ,N = (FΞδ)

′
MδFδt FΦδt

and T = (FΞδ)
′T δFΦδt

, so

T>O−1N = (FΦδt
)
′
T δ
′
F δt FΦδt

= 〈Φt, d
dt Φt〉L2(I) = L>.
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8. A parallel algorithm

8.4.1 Parallel complexity

The parallel complexity of our algorithm is the asymptotic runtime of solv-
ing (8.12) for u ∈ RNtNx in terms of Nt := dimXδ

t and Nx := dimXδ
x, given

sufficiently many parallel processors and assuming no communication cost.
We understand the serial (resp. parallel) cost of a matrix B, denoted CsB

(resp.CpB), as the asymptotic runtime of performing x 7→ Bx ∈ RN in terms of
N , on a single (resp. sufficiently many) processors at no communication cost.
For uniformly sparsematrices, i.e. withO(1) nonzeros per row and column, the
serial cost is O(N), and the parallel cost is O(1) by computing each cell of the
output concurrently.

FromTheorem8.3.1, we see thatKX is such thatκ2(KX Ŝ) . 1uniformly in
δ ∈ ∆. Therefore, for a given algebraic error tolerance ε, we requireO(log ε−1)
PCG iterations. Assuming that the parallel cost of matrices dominates that of
vector addition and inner products, the parallel complexity of a single PCG
iteration is dominated by the cost of applying KX and Ŝ. As Ŝ = W>SW ,
our algorithm runs in complexity

(8.14) O(log ε−1[C◦KX
+ C◦W> + C◦S + C◦W ]) (◦ ∈ {s, p}).

Theorem 8.4.3. For fixed algebraic error tolerance ε > 0, our algorithm runs in

• serial complexity O(NtNx);

• time-parallel complexity O(log(Nt)Nx);

• space-time-parallel complexity O(log(NtNx)).

Proof. We absorb the constant factor log ε−1 of (8.14) into O. We analyse the
cost of every matrix separately.

The (inverse) wavelet transform

As W = Wt ⊗ Idx, its serial cost equals O(CsWt
Nx). The choice of wavelet

allows performing x 7→ Wtx at linear serial cost (cf. §8.3.3), so that CsW =
O(NtNx).

Using (8.10), we writeWt as the composition of J matrices, each uniformly
sparse and hence at parallel cost O(1). Because the mesh in time is quasi-
uniform, we have J h logNt. We find that CpWt

= O(J) = O(logNt), so
that the time-parallel cost of W equals O(log(Nt)Nx). By exploiting spatial
parallelism as well, we find CpW = O(logNt). Analogous arguments hold for
W>

t andW>.
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8.4. A concrete setting: the reaction-diffusion equation

The preconditioner

Recall that KX := blockdiag[K|λ|AxK|λ|]λ. Since the cost of Kj is indepen-
dent of j, we see that

CsKX
= O

(
Nt · (2CsKj

+ CsAx
)
)

= O(2NtC
s
Kj

+NtNx).

Implementing the Kj as typical multiplicative multigrid solvers with linear
serial cost, we find CsKX

= O(NtNx).
Through temporal parallelism, we can apply each block of KX concur-

rently, resulting in a time-parallel cost of O(2CsKj
+ CsAx

) = O(Nx).
By parallelizing in space as well, we reduce the cost of the uniformly sparse

Ax to O(1). The parallel cost of multiplicative multigrid on quasi-uniform
triangulations is O(logNx); cf. [MFL+91]. It follows that CpKX

= O(logNx).

The Schur matrix

Using Lemma 8.4.1, we write S = B>KYB+ Γ0⊗Mx whereB = T ⊗Mx +
N ⊗Ax, which immediately reveals that

CsS = CsB> + CsKY
+ CsB + CsΓ0

· CsM = O(NtNx + CsKY
), and

CpS = max
{
Cp

B>
+ CpKY

+ CpB, C
p
Γ0
· CpM

}
= O(CpKY

)

because every matrix exceptKY is uniformly sparse. With arguments similar
to the previous paragraph, we see that KY (and hence S) has serial cost
O(NtNx), time-parallel cost O(Nx), and space-time-parallel cost O(logNx).

8.4.2 Solving to higher accuracy
Instead of fixing the algebraic error tolerance,maybemore realistic is is to desire
a solution ũδ ∈ Xδ for which the error is proportional to the discretization
error, i.e. ‖u− ũδ‖X . infuδ∈Xδ ‖u− uδ‖X .

Assuming that this error decays with a (problem-dependent) rate s > 0,
i.e. infuδ∈Xδ ‖u − uδ‖X . (NtNx)−s, then the same holds for the solution
uδ of (8.8); cf. Thm. 8.2.3. When the algebraic error tolerance decays as ε .
(NtNx)−s, a triangle inequality and (8.13) show that the error of our solution
ũδ obtained by PCG decays at rate s too.

In this case, log ε−1 = O(log(NtNx)). From (8.14) and the proof of The-
orem 8.4.3, we find our algorithm to run in superlinear serial complexity
O(NtNx log(NtNx)), time-parallel complexityO(log2(Nt) log(Nx)Nx), andpoly-
logarithmic complexity O(log2(NtNx)) parallel in space and time.

For elliptic PDEs, algorithms are available that offer quasi-optimal solu-
tions, serially in linear complexity O(Nx)—the cost of a serial solve to fixed
algebraic error—and in parallel in O(log2Nx), by combining a nested iteration
with parallel multigrid; cf. [Hac85, Ch. 5] and [Bra81].
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8. A parallel algorithm

In [HVW95], the question is posed whether “good serial algorithms for
parabolic PDEs are intrinsically as parallel as good serial algorithms for elliptic
PDEs”, basically asking if the lower bound of O(log2(NtNx)) can be attained
by an algorithm that runs serially in O(NtNx); see [Wor91, §2.2] for a formal
discussion.

Nested iteration drives down the serial complexity of our algorithm to a lin-
earO(NtNx), andalso improves the time-parallel complexity toO(log(Nt)Nx).3
This is on par with the best-known results for elliptic problems, so we answer
the question posed in [HVW95] in the affirmative.

8.5 Numerical experiments

We take the simple heat equation, i.e.D = Idx and c = 0. We select pt = px = 1,
i.e. lowest order finite elements in space and time. We will use the 3-point
wavelet introduced in [Ste98].

We implemented our algorithm in Python using the open source finite el-
ement library NGSolve [Sch14] for meshing and discretization of the bilinear
forms in space and time, MPI through mpi4py [DPS05] for distributed com-
putations, and SciPy [Vir20] for the sparse matrix-vector computations. The
source code is available at [vVW21c].

8.5.1 Preconditioner calibration on a 2D problem

Our preconditioner is optimal, meaning that κ2(KX Ŝ) . 1. Here we will
investigate this condition number quantitatively.

As amodel problem, we partition the temporal interval I uniformly into 2J

subintervals. We consider the domainΩ := [0, 1]2, and triangulate it uniformly
into 4K triangles. We setNt := dimXδ

t = 2J+1 andNx := dimXδ
x = (2K−1)2.

We start by using direct inversesKj = (Ax + 2jMx)−1 andKx = A−1
x to

determine the best possible condition numbers. We found that replacingKj

byKα
j = (αAx + 2jMx)−1 for α = 0.3 gave better conditioning; see also the

left of Table 8.1. At the right of Table 8.1, we see that the condition numbers
are very robust with respect to spatial refinements, but less so for refinements
in time. Still, at Nt = 16 129, we observe a modest κ2(KX Ŝ) of 8.74.

Replacing the direct inverses with multigrid solvers, we found a good
balance between speed and conditioning at 2 V-cycles with 3 Gauss-Seidel
smoothing steps per grid. We decided to use these for our experiments.

3Interestingly, nested iteration offers no improvements parallel in space and time, with com-
plexity stillO(log2(NtNx)).
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8.5. Numerical experiments

0.0 0.2 0.4 0.6 0.8 1.0
10

20

30

40

50
2(KXS)

Nt = 65 129 257 513 1 025 2 049 4 097 8 193
Nx = 49 6.34 7.05 7.53 7.89 8.15 8.37 8.60 8.78

225 6.33 6.89 7.55 7.91 8.14 8.38 8.57 8.73
961 6.14 6.89 7.55 7.93 8.15 8.38 8.57 8.74

3 969 6.14 7.07 7.56 7.87 8.16 8.38 8.57 8.74
16 129 6.14 6.52 7.55 7.86 8.16 8.37 8.57 8.74

Table 8.1. Computed condition numbers κ2(KX Ŝ). Left: fixed Nt = 1025,
Nx = 961 for varying α. Right: fixed α = 0.3 for varying Nt and Nx.

8.5.2 Time-parallel results

We perform computations on Cartesius, the Dutch supercomputer. Each
Cartesius node has 64GB of memory and 12 cores (at 2 threads per core)
running at 2.6GHz. Using the preconditioner detailed above, we iterate PCG
on (8.12) with S computed as in Lemma 8.4.2, until achieving an algebraic
error of ε = 10−6; see also §8.3.4. For the spatial multigrid solvers, we use 2
V-cycles with 3 Gauss-Seidel smoothing steps per grid.

Memory-efficient time-parallel implementation

For X ∈ RNx×Nt , we define (X) ∈ RNtNx as the vector obtained by stacking
columns of X vertically. For memory efficency, we do not build matrices of
the form Bt ⊗ Bx appearing in Lemma 8.4.2 directly, but instead perform
matrix-vector products using the identity

(8.15) (Bt ⊗Bx)(X) = (Bx(BtX
>)>) = (Idt ⊗Bx)(BtX

>).

Each parallel processor stores only a subset of the temporal degrees of free-
dom, e.g. a subset of columns ofX . WhenBt is uniformly sparse, which holds
true for all of our temporalmatrices, using (8.15)we can evaluate (Bt⊗Bx)(X)
inO(CsBx

) operations parallel in time: on each parallel processor, we compute
‘our’ columns of Y := BtX

> by receiving the necessary columns ofX from
neighbouring processors, and then computeBxY

> without communication.
The preconditionerKX is block-diagonal, making its time-parallel applica-

tion trivial. Representing the wavelet transform of §8.3.3 as the composition of
J Kronecker products allows a time-parallel implementation using the above.

2D problem

We select Ω := [0, 1]2 with a uniform triangulation TΩ, and we triangu-
late I uniformly into TI . We prescribe the smooth solution u(t, x, y) :=
exp(−2π2t) sin(πx) sin(πy), so the problem has vanishing forcing data g.
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8. A parallel algorithm

Table 8.2 details the strong scaling results, i.e. fixing the problem size and
increasing the number of processors P . We triangulate I into 214 time slabs,
yielding Nt = 16 385 temporal degrees of freedom, and Ω into 48 triangles,
yielding a Xδ

x of dimension Nx = 65 025. The resulting system contains
1 065 434 625 degrees of freedom and our solver reaches the algebraic error
tolerance after 16 iterations. In perfect strong scaling, the total number of
CPU-hours remains constant. Even at 2 048 processors, we observe a parallel
efficiency of around 92.9%, solving this system in a modest 11.7 CPU-hours.
Acquiring strong scaling results on a single node was not possible due to
memory limitations.

Table 8.3 details the weak scaling results, i.e. fixing the problem size per
processor and increasing the number of processors. In perfect weak scaling,
the time per iteration should remain constant. We observe a slight increase
in time per iteration on a single node, but when scaling to multiple nodes,
we observe a near-perfect parallel efficiency of around 96.7%, solving the final
system with 4 278 467 585 degrees of freedom in a mere 109 seconds.

3D problem

We select Ω := [0, 1]3 with u(t, x, y, z) := exp(−3π2t) sin(πx) sin(πy) sin(πz),
so the problem has vanishing forcing data g.

Table 8.4 shows the strong scaling results. We triangulate I uniformly into
214 time slabs, and Ω uniformly into 86 tetrahedra. The arising system has
N = 4 097 020 095 unknowns, which we solve to tolerance in 18 iterations. The
results are comparable to those in two dimensions, albeit a factor two slower
at similar problem sizes.

Table 8.5 shows the weak scaling results for the 3D problem. As in the
two-dimensional case, we observe excellent scaling properties, and see that
the time per iteration is nearly constant.

8.6 Conclusion

We have presented a framework for solving linear parabolic evolution equa-
tions massively in parallel. Based on earlier ideas [And16, NS19, SW21b], we
found a remarkably simple symmetric Schur-complement equation. With a
tensor-product discretization of the space-time cylinder using standard finite
elements in time and space together with a wavelet-in-timemultigrid-in-space
preconditioner, we were able to solve the arising systems to fixed accuracy in
a uniformly bounded number of PCG steps.

We found that our algorithm runs in linear complexity on a single pro-
cessor. Moreover, when sufficiently many parallel processors are available and
communication is free, its runtime scales logarithmically in the discretization
size. These complexity results translate to a highly efficient algorithm in prac-
tice.
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8.6. Conclusion

P Nt Nx N = NtNx its time (s) time/it (s) CPU-hrs
1–16 16 385 65 025 1 065 434 625 out of memory

32 16 385 65 025 1 065 434 625 16 1224.85 76.55 10.89
64 16 385 65 025 1 065 434 625 16 615.73 38.48 10.95

128 16 385 65 025 1 065 434 625 16 309.81 19.36 11.02
256 16 385 65 025 1 065 434 625 16 163.20 10.20 11.61
512 16 385 65 025 1 065 434 625 16 96.54 6.03 13.73
512 16 385 65 025 1 065 434 625 16 96.50 6.03 13.72

1 024 16 385 65 025 1 065 434 625 16 45.27 2.83 12.88
2 048 16 385 65 025 1 065 434 625 16 20.59 1.29 11.72

Table 8.2. Strong scaling results for the 2D problem.

P Nt Nx N = NtNx its time (s) time/it (s) CPU-hrs

si
ng

le
no

de 1 9 261 121 2 350 089 8 33.36 4.17 0.01
2 17 261 121 4 439 057 11 46.66 4.24 0.03
4 33 261 121 8 616 993 12 54.60 4.55 0.06
8 65 261 121 16 972 865 13 65.52 5.04 0.15
16 129 261 121 33 684 609 13 86.94 6.69 0.39

m
ul
tip

le
no

de
s 32 257 261 121 67 108 097 14 93.56 6.68 0.83

64 513 261 121 133 955 073 14 94.45 6.75 1.68
128 1 025 261 121 267 649 025 14 93.85 6.70 3.34
256 2 049 261 121 535 036 929 15 101.81 6.79 7.24
512 4 097 261 121 1 069 812 737 15 101.71 6.78 14.47

1 024 8 193 261 121 2 139 364 353 16 108.32 6.77 30.81
2 048 16 385 261 121 4 278 467 585 16 109.59 6.85 62.34

Table 8.3. Weak scaling results for the 2D problem.

P Nt Nx N = NtNx its time (s) time/it (s) CPU-hrs
1–64 16 385 250 047 4 097 020 095 out of memory
128 16 385 250 047 4 097 020 095 18 3 308.49 174.13 117.64
256 16 385 250 047 4 097 020 095 18 1 655.92 87.15 117.75
512 16 385 250 047 4 097 020 095 18 895.01 47.11 127.29

1 024 16 385 250 047 4 097 020 095 18 451.59 23.77 128.45
2 048 16 385 250 047 4 097 020 095 18 221.12 12.28 125.80

Table 8.4. Strong scaling results for the 3D problem.
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8. A parallel algorithm

P Nt Nx N = NtNx its time (s) time/it (s) CPU-hrs
16 129 250 047 32 256 063 15 183.65 12.24 0.82
32 257 250 047 64 262 079 16 196.26 12.27 1.74
64 513 250 047 128 274 111 16 197.55 12.35 3.51

128 1 025 250 047 256 298 175 17 210.21 12.37 7.47
256 2 049 250 047 512 346 303 17 209.56 12.33 14.90
512 4 097 250 047 1 024 442 559 17 210.14 12.36 29.89

1 024 8 193 250 047 2 048 635 071 18 221.77 12.32 63.08
2 048 16 385 250 047 4 097 020 095 18 221.12 12.28 125.80

Table 8.5. Weak scaling results for the 3D problem.

The numerical experiments serve as a showcase for the described space-
time method, and exhibit its excellent time-parallelism by solving a linear
system with over 4 billion unknowns in just 109 seconds, using just over 2
thousand parallel processors. By incorporating spatial parallelism as well, we
expect these results to scale well to much larger problems.

Although performed in the rather restrictive setting of the heat equation
discretized using piecewise linear polynomials on uniform triangulations,
the parallel framework already allows solving more general linear parabolic
PDEs using polynomials of varying degree on locally refined (tensor-product)
meshes. In this more general setting, we envision load balancing to become
the main hurdle in achieving good scaling results.
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9 Adaptive BEM for the heat equation

9.1 Introduction

This chapter is about the adaptive numerical approximation of the heat equa-
tion using a simultaneous space-time boundary element method (BEM). In
the last years, there has been a growing interest in space-time BEM for the
heat equation [CS13, MST14, MST15, HT18, CR19, DNS19, DZO+19, Tau19,
ZWOM21]. In contrast to the differential operator based variational formu-
lation on the space-time cylinder, the variational formulation corresponding
to space-time BEM is coercive [AN87, Cos90] so that the discretized version
always has a unique solution regardless of the chosen trial space which is even
quasi-optimal in the natural energy norm. Moreover, it is naturally applicable
onunboundeddomains andonly requires amesh of the lateral boundary of the
space-time cylinder resulting in a dimension reduction. The potential disad-
vantage that discretizations lead to densematrices due to the nonlocality of the
boundary integral operators has been tackled, e.g., in [MST14, MST15, HT18]
via the fast multipole method andH-matrices.

Two often mentioned advantages of simultaneous space-time methods are
their potential for massive parallelization as well as their potential for fully
adaptive refinement to resolve singularities local in both space and time. While
the first advantage has been investigated in, e.g., [DZO+19, ZWOM21], the lat-
ter requires suitable a posteriori computable error estimators, which have not
been developed yet for the heat equation. Indeed, concerning a posteriori error
estimation as well as adaptive refinement for BEM for time-dependent prob-
lems, we are only aware of the works [Glä12, GÖSS20] for the wave equation
in two and three space dimensions, respectively.

In the present manuscript, we generalize the results [Fae00, Fae02] from
Faermann for stationary PDEs to the heat equation: Let Ω ⊂ Rd, d = 2, 3, be a
Lipschitz domain with boundary Γ := ∂Ω and T > 0 a given end time point
with corresponding time interval I := (0, T ). We abbreviate the space-time
cylinderQ := I×Ω with lateral boundary Σ := I×Γ and corresponding outer
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9. Adaptive BEM for the heat equation

normal vector n ∈ Rd. With the heat kernel

G(t,x) :=

 1
(4πt)d/2 e

− |x|
2

4t for (t,x) ∈ (0,∞)× Rd,

0 else,

and a given function f : Σ→ R, we consider the boundary integral equation,

(9.1) (V φ)(t,x) :=

ˆ
Σ

G(t− s,x− y)φ(t− s,x− y) dy ds = f(t,x),

for a.e. (t,x) ∈ Σ. Here, V is the single-layer operator. For given initial
condition u0 : Ω → R and Dirichlet data uD : Σ → R, such equations arise
from the heat equation

∂tu−∆u = 0 on Q,
u = uD on Σ,

u(0, ·) = u0 on Ω.
(9.2)

Let P be a mesh of the space-time boundary Σ consisting of prismatic ele-
mentsJ×KwithJ ⊆ I andK ⊆ Γ, and letΦbe an associated approximationof
φ. Typically, Φ is a piecewise polynomial with respect to P . As V is an isomor-
phism from the dual space H−1/2,−1/4(Σ) := H1/2,1/4(Σ)′ to the anisotropic
Sobolev space H1/2,1/4(Σ), the discretization error ‖φ − Φ‖H−1/2,−1/4(Σ) is
equivalent to the norm of the residual ‖f − V Φ‖H1/2,1/4(Σ). We show that
the residual norm can be localized up to weighted L2-terms, i.e.,∑
J×K∈P

ηP(Φ, J×K)2 . ‖f−V Φ‖2H1/2,1/4(Σ) .
∑

J×K∈P
ηP(Φ, J×K)2+ζP(Φ, J×K)2,

where ηP(Φ, J × K)2 measures the H1/2,1/4-seminorm of the residual in a
neighborhood of J×K and ζP(Φ) := (diam(K)−1 + |J |−1/2)‖f−V Φ‖2L2(J×K).
The hidden constants depend only on the regularity of the of themeshes found
by fixing either the temporal or the spatial coordinate inP . In particular, we do
not require any assumption on the relation between the spatial and temporal
size of the mesh elements, making anisotropically refined meshes possible.

If the elements satisfy the scaling |J | h diam(K)2 and if Φ is the Galerkin
approximation of φ in a discrete space X that contains at least all P-piecewise
constant functions, then we can additionally prove that

ζP(Φ, J ×K) . ηP(Φ, J ×K).

Indeed, numerical experiments (with d = 2) suggest that this is not the case in
general: If the scaling condition is not enforced, we observe situations where
the L2-terms ζ do not decay under mesh-refinement.

That being said, the estimator η does not only behave efficiently but also
reliably in all considered examples. Moreover, anisotropic refinement steered
by the space- and time-components of the estimator always yield the optimal
algebraic convergence rate of both the estimator and the error.
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Outline
The remainder of this chapter is organized as follows: Section 9.2 summarizes
the general principles of the space-time boundary element method for the
heat equation. Section 9.3 recalls the localization argument of [Fae00, Fae02]
and applies it to anisotropic Sobolev spaces (Theorem 9.3.3). This result is
then invoked in Corollary 9.3.5 for the residual, resulting in efficient and
reliable a posteriori computable error bounds. In particular, a Poincaré-type
inequality (Lemma 9.3.4) allows to estimate the weighted L2-terms that are
still present in the upper bound from Theorem 9.3.3. Finally, Section 9.4
introduces an adaptive algorithm for d = 2 which is based on the derived
error estimator. Different marking and refinement strategies are presented.
The adaptive algorithm is subsequently applied to several concrete examples
with typical singularities in space and time.

9.2 Preliminaries

9.2.1 General notation
Throughout and without any ambiguity, | · | denotes the absolute value of
scalars, the Euclidean norm of vectors in Rn, or the the measure of a set in Rn,
e.g., the length of an interval or the area of a surface in R3. We write A . B to
abbreviate A ≤ CB with some generic constant C > 0, which is clear from the
context. Moreover, A h B abbreviates A . B . A.

9.2.2 Anisotropic Sobolev spaces
For d-dimensional ω ⊆ Ω or (d− 1)-dimensional ω ⊆ Γ, and µ ∈ (0, 1], we first
recall the Sobolev space Hµ(ω) :=

{
v ∈ L2(ω) : ‖v‖Hµ(ω) < ∞

}
associated

with the Sobolev–Slobodeckĳ norm ‖v‖2Hµ(ω)
:= ‖v‖2L2(ω) + |v|2Hµ(ω), with

|v|2Hµ(ω) :=


´
ω

´
ω
|v(x)−v(y)|2
|x−y|dim(ω)+2µ dy dx if µ ∈ (0, 1),

‖∇ωv‖2L2(ω) if µ = 1,

where dim(ω) denotes the dimension of ω, i.e., d or d− 1, and ∇ω denotes the
(weak) gradient on ω, i.e., the standard gradient or the surface gradient.

Moreover, we define for any subinterval J ⊆ I , ν ∈ (0, 1], and any Banach
space X ,

Hν(J ;X) :=
{
v ∈ L2(J ;X) : ‖v‖Hν(J;X) <∞

}
associated with the norm ‖v‖2Hν(J;X)

:= ‖v‖2L2(J;X) + |v|2Hν(J;X), with

|v|2Hν(J;X) :=


´
J

´
J
‖v(t)−v(s)‖2X
|t−s|1+2ν dsdt if ν ∈ (0, 1),

‖∂tv‖2L2(ω) if ν = 1,
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9. Adaptive BEM for the heat equation

where ∂t denotes the (weak) time derivative. IfX = R, we simplywriteHν(J),
‖v‖Hν(J), and |v|Hν(J). Finally, we recall the anisotropic Sobolev space

Hµ,ν(J × ω) := L2(J ;Hµ(ω)) ∩Hν(J ;L2(ω))

with corresponding norm

‖v‖2Hµ,ν(J×ω) := ‖v‖2L2(J;Hµ(ω)) + ‖v‖2Hν(J;L2(ω))

(
v ∈ Hµ,ν(J × ω)

)
.

We will sometimes use the abbreviation

|v|2L2(J;Hµ(ω)) :=

ˆ
J

|v(t, ·)|2Hµ(ω) dt
(
v ∈ L2(J ;Hµ(ω))

)
.

For ω ∈ {Ω,Γ}, we denoteH−µ,−ν(I × ω) for the dual ofHµ,ν(I × ω) with
duality pairing 〈· , ·〉I×ω . We view L2(I ×ω) as subspace ofH−µ,−ν(I ×ω) via

〈v , ψ〉I×ω :=

ˆ
I

ˆ
ω

v(t,x)ψ(t,x) dx dt
(
v ∈ Hµ,ν(I × ω), ψ ∈ L2(I × ω)

)
.

9.2.3 Boundary integral equations
It is well-known that for u0 ∈ L2(Ω) and uD ∈ H1/2,1/4(Σ), the heat equa-
tion (9.2) admits a unique solution u ∈ H1,1/2(Q). With the normal derivative
φN := ∂nu ∈ H−1/2,−1/4(Σ), u satisfies the representation formula

u = M̃0u0 + Ṽ φN − K̃ uD,(9.3)

where

(M̃0u0)(t,x) :=

ˆ
Ω

G(t,x− y)u0(y) dy
(
(t,x) ∈ Q

)
(9.4)

denotes the initial potential,

(Ṽ φN )(t,x) :=

ˆ
Σ

G(t− s,x− y)φN (y) dy ds
(
(t,x) ∈ Q

)
(9.5)

denotes the single-layer potential, and

(K̃ uD)(t,x) :=

ˆ
Σ

∂n(y)G(t− s,x− y)uD(y) dy ds
(
(t,x) ∈ Q

)
(9.6)

denotes the double-layer potential. These linear operators satisfy themapping
properties M̃0 : L2(Ω) → H1,1/2(Q), Ṽ0 : H−1/2,−1/4(Σ) → H1,1/2(Q), and
K̃0 : H1/2,1/4(Σ) → H1,1/2(Q). The lateral trace (·)|Σ of these potentials is
given by

(M̃0u0)|Σ = M0u0, (Ṽ φN )|Σ = V φN , (K̃ uD)|Σ = (K − 1/2)uD,
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where the initial operator M0, the single-layer operator V , and the double-
layer operator K are defined as in (9.4)–(9.6) for (t,x) ∈ Σ. Applying the
lateral trace to (9.3) thus results in

V φN = (K + 1/2)uD −M0u0,(9.7)

i.e., (9.1) with f := (K + 1/2)uD −M0u0. As the single-layer operator V is
also coercive, i.e.,

〈V ψ , ψ〉Σ ≥ ccoe‖ψ‖2H−1/2,−1/4(Σ)

(
ψ ∈ H−1/2,−1/4(Σ)

)
(9.8)

with some constant ccoe > 0, (9.7) is uniquely solvable and the solution φN
is just the missing normal derivative ∂nu to compute u via the representation
formula (9.3).

Alternatively, one canmake the ansatz u = M̃0u0+Ṽ φ. Indeed, both M̃0u0

and Ṽ φ satisfy the heat equation, where M̃0u0 restricted to {0} × Ω coincides
with u0 and Ṽ φ vanishes there. To satisfy the Dirichlet boundary conditions,
one has to solve

V φ = uD −M0u0,(9.9)

i.e., (9.1) with f := uD −M0u0. While (9.7) is called direct method as it
directly provides the physically relevant quantity φN = ∂nu, (9.9) is called
indirect method.

For more details and proofs, we refer to the seminal works [AN87, Noo88,
Cos90], which considered u0 = 0, and to [DNS19, Doh19] for the general case.

9.2.4 Boundary meshes

Throughout this work, we consider prismatic meshes P of Σ:

• P is a finite set of prisms of the form P = J ×K, where J ⊆ I = [0, T ]
is some non-empty compact interval and K ⊆ Γ is the image of some
compact Lipschitzdomain1 K̂ ⊂ Rd−1 under somebi-Lipschitzmapping;

• for all P, P̃ ∈ P with P 6= P̃ , the intersection has measure zero on Σ;

• P is a partition of Σ, i.e., Σ =
⋃
P∈P P .

For arbitrary t ∈ I and x ∈ Γ, we abbreviate the induced sets

P|t :=
{
K ⊆ Γ : ({t} × Γ) ∩ (J ×K) 6= ∅ for some J ×K ∈ P

}
1A compact Lipschitz domain is the closure of a bounded Lipschitz domain. For d = 2, it is a

compact interval with non-empty interior.
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and

P|x :=
{
J ⊆ I : (I × {x}) ∩ (J ×K) 6= ∅ for some J ×K ∈ P

}
.

For almost all t ∈ I , P|t is a mesh of Γ, i.e., a partition of Γ into finitely many
compact Lipschitz domains such that the intersection of two distinct elements
has measure zero on Γ. Similarly, for almost all x ∈ Γ, P|x is a mesh of I , i.e.,
a partition of I into finitely many non-empty compact intervals such that the
intersection of two different intervals is at most a point. Note that for one fixed
prismatic mesh P there exist constants Cnei ≥ 1, Cdist ≥ 1, Cshape ≥ 1, and
Clqu ≥ 1 such that:

• for almost all t ∈ I , the number of neighbors of an element in P|t is
bounded, i.e.,

#
{
K̃ ∈ P|t : K ∩ K̃ 6= ∅

}
≤ Cnei for allK ∈ P|t.(9.10)

• for almost all t ∈ I , the elements of P|t are uniformly away from non-
neighboring elements, i.e.,

diam(K) ≤ Cdist dist(K, K̃) for allK, K̃ ∈ P|t withK ∩ K̃ = ∅;(9.11)

• for almost all t ∈ I , the elements of P|t are shape-regular, i.e.,

C−1
shape|K|

d−1 ≤ diam(K)d−1 ≤ Cshape|K| for allK ∈ P|t;(9.12)

• for almost all x ∈ Γ, P|x is locally quasi-uniform, i.e.,

|J | ≤ Clqu|J̃ | for all J, J̃ ∈ P|x with J ∩ J̃ 6= ∅.(9.13)

In the remainder of this work, we will always indicate the dependence of
estimates on these particular constants.
Remark 9.2.1. If, for d = 2, the meshes P|t are found by iteratively bisecting
some initial mesh and the level difference of neighboring elements is bounded
by 1, then the constants from (9.10)–(9.12) depend only on the initial mesh;
cf. [AFF+13]. For d = 3, the same holds true if the initial mesh is for instance a
conforming (curvilinear) triangulation of Γ and one iteratively applies newest
vertex bisection. The arguments for (9.10)–(9.11) are found in [AFF+17, Sec-
tion 2.3 and 4.1].

9.2.5 Boundary element method
Given a prismatic boundarymeshP and an associated finite-dimensional trial
space X ⊂ H−1/2,−1/4(Σ), e.g., the space of all P-piecewise polynomials of

206



9.3. A posteriori error estimation

some fixed degree in space and time, let Φ ∈ X denote the Galerkin discretiza-
tion of the solution φ of the boundary integral equation (9.1), i.e.,

〈V Φ , Ψ〉Σ = 〈f , Ψ〉Σ
(
Ψ ∈ X

)
,

which is equivalent to the Galerkin orthogonality

〈V (φ− Φ) , Ψ〉Σ = 0
(
Ψ ∈ X

)
.(9.14)

Note that coercivity (9.8) guarantees unique solvability of the latter equations,
and the Céa lemma applies

‖φ− Φ‖H−1/2,−1/4(Σ) ≤
Ccont

ccoe
min
Ψ∈X
‖φ−Ψ‖H−1/2,−1/4(Σ),

where Ccont is the operator norm of V : H−1/2,−1/4(Σ)→ H1/2,1/4(Σ).
Suppose P =

{
J ×K : J ∈ PI ,K ∈ PΓ

}
is a full tensor-mesh correspond-

ing to a mesh PΓ of Γ with uniform mesh-size hx h diam(K) for all K ∈ PΓ

and a mesh PI of I with uniform step-size ht h hσx for some σ > 0. Using
P-piecewise polynomials of some degree px ∈ N0 in space- and some degree
pt ∈ N0 in time-direction as trial space X , then gives the error decay rate

min
Ψ∈X
‖φ−Ψ‖H−1/2,−1/4(Σ) . N

−min{px+3/2,(pt+5/4)σ}
d−1+σ for all smooth φ;(9.15)

see [CR19, Theorem3.3]. Here,N h h
−(d−1)
x h−1

t = hd−1+σ
x denotes thenumber

of degrees of freedom. The optimal grading parameter is thus given by σ =

(px + 3
2 )/(pt + 5

4 ) with resulting rate O
(
N−

px+3/2
d−1+σ

)
.

9.3 A posteriori error estimation

As V is an isomorphism, it holds that

‖φ− Φ‖H−1/2,−1/4(Σ) h ‖f − V Φ‖H1/2,1/4(Σ).(9.16)

Here, Φ ∈ H−1/2,−1/4(Σ) can be an arbitrary approximation of the solution
φ of (9.1). While the right-hand side is in principle a posteriori computable,
the computation of the Sobolev–Slobodeckĳ norm over the full space-time
boundary Σ is expensive, and it does not provide any information on where
to locally refine the given mesh to increase the accuracy of the approximation.
According to (9.16), it is sufficient to derive suitable estimate for the residual
f − V Φ in the H1/2,1/4(Σ)-norm. Recall that this term is L2(Σ)-orthogonal to
all functions Ψ ∈ X provided that Φ is the Galerkin approximation of φ in X ;
see (9.14).
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9.3.1 Localization of the anisotropic Sobolev–Slobodeckĳ norm

The following proposition provides the key argument for our a posteriori error
estimation. While the first inequality is trivial, the original version of the
second one already goes back to [Fae00, Fae02]. We make use of the slightly
generalized version from [GP20, Lemma 4.5]; see [Gan17, Lemma 5.3.2] for a
detailed proof.

Proposition 9.3.1. Let µ ∈ (0, 1) and PΓ be a mesh of Γ. Then, there exist constants
C1, C2 > 0 such that for all v ∈ Hµ(Γ), there holds that

C−1
1

∑
K∈PΓ

∑
K̃∈PΓ

K∩K̃ 6=∅

|v|2
Hµ(K∪K̃)

≤ ‖v‖2Hµ(Γ) ≤
∑
K∈PΓ

∑
K̃∈PΓ

K∩K̃ 6=∅

|v|2
Hµ(K∪K̃)

+ C2

∑
K∈PΓ

diam(K)−2µ‖v‖2L2(K).

The constant C1 is given as C1 = 2(Cnei + 1)2 with Cnei from (9.10) (with P|t
replaced byPΓ), andC2 depends only on the dimension d, µ, Γ, and the constantCdist

from (9.11) (with P|t replaced by PΓ). �

Note that local quasi-uniformity (9.13) (with P|x replaced by PI ) of a time
mesh PI is actually equivalent to

diam(J) = |J | ≤ Clqu dist(J, J̃) for all J, J̃ ∈ PI with J ∩ J̃ = ∅.

Moreover, for any element J ∈ PI , there are at most three J̃ ∈ PI with
J ∩ J̃ 6= ∅. In particular, the same reference as before applies and we also
obtain the following proposition.

Proposition 9.3.2. Let ν ∈ (0, 1) and PI be a mesh of I . Then, there exist constants
C1, C2 > 0 such that for all v ∈ Hν(I), there holds that

C−1
1

∑
J∈PI

∑
J̃∈PI
J∩J 6=∅

|v|2
Hν(J∪J̃)

≤ ‖v‖2Hν(I) ≤
∑
J∈PI

∑
J̃∈PI
J∩J 6=∅

|v|2
Hν(J∪J̃)

+ C2

∑
J∈PI

|J |−2ν‖v‖2L2(J).

The constant C1 is given as C1 = 32, and C2 depends only on ν, |I|, and the constant
Clqu from (9.13) (with P|x replaced by PI ). �

The latter two propositions allow to derive the following a posteriori error
estimation, which can be employed for arbitrary approximations Φ.
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Theorem 9.3.3. Let µ, ν ∈ (0, 1) and P be a prismatic mesh of Σ. Then, there exist
constants C ′eff , C

′′
rel > 0 such that for all v ∈ Hµ,ν(Σ), there holds that∑

J×K∈P

( ∑
J̃×K̃∈P
|J∩J̃|>0

K∩K̃ 6=∅

|v|2
L2(J∩J̃;Hµ(K∪K̃))

+
∑

J̃×K̃∈P
J∩J̃ 6=∅
|K∩K̃|>0

|v|2
Hν(J∪J̃;L2(K∩K̃))

)
≤ (C ′eff)2‖v‖2Hµ,ν(Σ)

as well as

(C ′rel)
−2‖v‖2Hµ,ν(Σ)≤

∑
J×K∈P

( ∑
J̃×K̃∈P
|J∩J̃|>0

K∩K̃ 6=∅

|v|2
L2(J∩J̃;Hµ(K∪K̃))

+
∑

J̃×K̃∈P
J∩J̃ 6=∅
|K∩K̃|>0

|v|2
Hν(J∪J̃;L2(K∩K̃))

)

+
∑

J×K∈P

(
diam(K)−2µ + |J |−2ν

)
‖v‖2L2(J×K).(9.17)

The constant C ′eff is given as C ′eff = max(2(Cnei + 1)2, 32) with Cnei from (9.10),
and C ′rel depends only on d, µ, ν, Γ, |I| and the constants Cdist from (9.11) as well as
Clqu from (9.13).

Proof. We split the proof into four steps.
Step 1: In this step, we bound ‖v‖L2(I;Hµ(Γ)) from below. Proposition 9.3.1
gives that

‖v‖2L2(I;Hµ(Γ)) =

ˆ
I

‖v(t, ·)‖2Hµ(Γ) dt &
ˆ
I

∑
K∈P|t

∑
K̃∈P|t
K∩K̃ 6=∅

|v(t, ·)|2
Hµ(K∪K̃)

dt.

Note thatK ∈ P|t is equivalent to J ×K ∈ P for some J with t ∈ J . With the
indicator function 1S of a set S, the last term thus is equal to
ˆ
I

∑
K∈P|t

∑
K̃∈P|t
K∩K̃ 6=∅

|v(t, ·)|2
Hµ(K∪K̃)

dt =

ˆ
I

∑
J×K∈P

1J(t)
∑

J̃×K̃∈P
K∩K̃ 6=∅

1J̃(t)|v(t, ·)|2
Hµ(K∪K̃)

dt

=
∑

J×K∈P

∑
J̃×K̃∈P
|J∩J̃|>0

K∩K̃ 6=∅

|v|2
L2(J∩J̃;Hµ(K∪K̃))

.

Step 2: In this step, we bound ‖v‖L2(I;Hµ(Γ)) from above. Proposition 9.3.1
gives that

‖v‖2L2(I;Hµ(Γ)) =

ˆ
I

‖v(t, ·)‖2Hµ(Γ) dt

.
ˆ
I

∑
K∈P|t

∑
K̃∈P|t
K∩K̃ 6=∅

|v(t, ·)|2
Hµ(K∪K̃)

+
∑
K∈P|t

diam(K)−2µ‖v(t, ·)‖2L2(K) dt.
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The first term in this expression has already been treated in Step 1. AsK ∈ P|t
is equivalent to J ×K ∈ P for some J with t ∈ J , the second term readsˆ
I

∑
K∈P|t

diam(K)−2µ‖v(t, ·)‖2L2(K) dt =

ˆ
I

∑
J×K∈P

1J(t) diam(K)−2µ‖v(t, ·)‖2L2(K) dt

=
∑

J×K∈P
diam(K)−2µ‖v‖2L2(J×K).

Step 3: In this step, we bound ‖v‖Hν(I;L2(Γ)) from below. The Fubini theorem,
Proposition 9.3.2, and the same argument as in Step 1 give that

‖v‖2Hν(I;L2(Γ)) &
ˆ

Γ

∑
J∈P|x

∑
J̃∈P|x
J∩J̃ 6=∅

|v(·,x)|2
Hν(J∪J̃)

dx

=

ˆ
Γ

∑
J×K∈P

1K(x)
∑

J̃×K̃∈P
J∩J̃ 6=∅

1K̃(x)|v(·,x)|2
Hν(J∪J̃)

dx

=
∑

J×K∈P

∑
J̃×K̃∈P
J∩J̃ 6=∅
|K∩K̃|>0

|v|2
Hν(J∪J̃;L2(K∩K̃))

.

Step 4: In this step, we bound ‖v‖Hν(I;L2(Γ)) from above. The Fubini theorem
and Proposition 9.3.2 give that

‖v‖2Hν(I;L2(Γ)) =

ˆ
Γ

‖v(·,x)‖2Hν(I) dx

.
ˆ

Γ

∑
J∈P|x

∑
J̃∈P|x
J∩J̃ 6=∅

|v(·,x)|2
Hν(J∪J̃)

+
∑
J∈P|x

|J |−2ν‖v(·,x)‖2L2(J) dx.

The first term has already been treated in Step 3. The second term readsˆ
Γ

∑
J∈P|x

|J |−2ν‖v(·,x)‖2L2(J) dx =

ˆ
Γ

∑
J×K∈P

1K(x) |J |−2ν‖v(·,x)‖2L2(J) dx

=
∑

J×K∈P
|J |−2ν‖v‖2L2(J×K).

This concludes the proof.

9.3.2 Poincaré-type inequality
Assuming the grading |J | h diam(K)µ/ν aswell asL2(Σ)-orthogonality of v to
piecewise constants, the following local Poincaré-type inequality allows to get
rid of theweightedL2-terms in (9.17). The proofworks essentially as in [Cos90,
Proposition 5.3], where a global version on uniform meshes is considered.
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Lemma 9.3.4. Let µ, ν ∈ (0, 1) and P be a prismatic mesh of Σ. Then, there holds
for all v ∈ Hµ,ν(Σ) and all J ×K ∈ P with 〈v , 1〉L2(J×K) = 0 that

‖v‖2L2(J×K) ≤ Cshape

(
diam(K)2µ|v|2L2(J;Hµ(K)) + |J |2ν |v|2Hν(J;L2(K))

)
.

Here, Cshape ≥ 1 is the constant from (9.12).

Proof. Let ΠJ , ΠK , and ΠJ×K denote the L2-orthogonal projection onto the
space of constants on J ,K, and J×K, respectively. Note thatΠJ×K = ΠJ⊗ΠK

and thus

‖v‖L2(J×K) = ‖(1−ΠJ×K)v‖L2(J×K)

≤ ‖(1−ΠJ ⊗ Id)v‖L2(J×K) + ‖(ΠJ ⊗ Id−ΠJ ⊗ΠK)v‖L2(J×K).

As ΠJ has operator norm 1, a standard Poincaré-type inequality, see, e.g.,
[Fae02, Lemma 3.4] for the elementary proof, shows for the second term that

‖(ΠJ ⊗ Id−ΠJ ⊗ΠK)v‖2L2(J×K) ≤ ‖(1− Id⊗ΠK)v‖2L2(J×K)

=

ˆ
J

‖(1−ΠK)v(t, ·)‖2L2(K) dt

≤ diam(K)d−1+2µ

2|K|

ˆ
J

|v(t, ·)|2Hµ(K) dt

≤ Cshape

2
diam(K)2µ|v|2L2(J;Hµ(K).

The first term can be estimated similarly

‖(1−ΠJ ⊗ Id)v‖2L2(J×K) ≤
1

2
|J |2ν |v|2Hν(J;L2(K)),

which concludes the proof.

9.3.3 A posteriori error estimators
For arbitrary prismatic meshes P of Σ with some associated trial space X ⊂
H−1/2,−1/4(Σ) and Φ ∈ X , we define the following error indicators for all
J ×K ∈ P ,

ηxP(Φ, J ×K) :=
∑

J̃×K̃∈P
|J∩J̃|>0

K∩K̃ 6=∅

|f − V Φ|2
L2(J∩J̃;H1/2(K∪K̃))

,

ηtP(Φ, J ×K)2 :=
∑

J̃×K̃∈P
J∩J̃ 6=∅
|K∩K̃|>0

|f − V Φ|2
H1/4(J∪J̃;L2(K∩K̃))

,

ζxP(Φ, J ×K) := diam(K)−1‖f − V Φ‖2L2(J×K),

ζtP(Φ, J ×K)2 := |J |−1/2‖f − V Φ‖2L2(J×K).
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The corresponding error estimators read as

ηP(Φ, J ×K)2 := ηxP(Φ, J ×K)2 + ηtP(Φ, J ×K)2,

ζP(Φ, J ×K)2 := ζxP(Φ, J ×K)2 + ζtP(Φ, J ×K)2,

ηP(Φ)2 :=
∑

J×K∈P
ηP(Φ, J ×K)2, ζP(Φ)2 :=

∑
J×K∈P

ζP(Φ, J ×K)2.

With (9.16), we overall obtain the following a posteriori estimates.

Corollary 9.3.5. Let φ be the solution of (9.1) and P be a prismatic mesh of Σ with
some associated discrete trial space X ⊂ H−1/2,−1/4(Σ). Then, there exist constants
Ceff , C̃rel > 0 such that for arbitrary Φ ∈ X , there holds that

C−1
eff ηP(Φ) ≤ ‖φ− Φ‖H−1/2,−1/4(Σ) ≤ C̃rel

(
ηP(Φ)2 + ζP(Φ)2

)1/2
.

If the space X contains all P-piecewise constant functions and Φ ∈ X is the Galerkin
approximation of φ, there further holds that

ζP(Φ, J×K)2 ≤ Cshape

(
diam(K)−1+ |J |−1/2

)(
diam(K)+ |J |1/2

)
ηP(Φ, J×K)2

for all J ×K ∈ P . If C−1
grad diam(K) ≤ |J |1/2 ≤ Cgrad diam(K) is satisfied for all

J ×K ∈ P and a uniform constant Cgrad ≥ 1, this implies the existence of a constant
Crel > 0 such that

‖φ− Φ‖H−1/2,−1/4(Σ) ≤ CrelηP(Φ).

The constants Ceff and C̃rel are given as Ceff = C ′eff Ccont and Crel = C ′rel/ccoe with
C ′eff and C ′rel from Theorem 9.3.3, the operator norm Ccont of V , and ccoe from (9.8).
The constant Crel is given as Crel = C̃rel

√
2Cshape(1 + Cgrad).

Remark 9.3.6. According to (9.15), the required scaling |J | h diam(K)2, i.e.,
σ = 2, is the optimal scaling for approximating smooth solutions φ if the
polynomial degrees of X satisfy px = 2pt + 1.

9.4 Numerical experiments

In this section, we employ the error estimator η within an adaptive algorithm
using different refinement strategies, and investigate the resulting convergence
rates. We restrict ourselves to the case d = 2, with Γ = ∂Ω being the boundary
of a polygonal domain Ω ⊂ R2, and set the time domain to be I = (0, 1).

For P a prismatic mesh of the space-time boundary, i.e., a quadrilateral
mesh as d = 2, we consider the trial spaceX of piecewise constantswith respect
toP . In particular, this allows us to perform integration in time analytically for
all integrals that are involved in the computation of the Galerkin matrix and
the evaluation of the single-layer operator V ; see, e.g., [Cos90]. The remaining
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integrals overΓhave a logarithmic singularity, forwhichweuse the quadrature
rules from [Smi00]. For the computation of the Sobolev–Slobodeckĳ seminorm
in the Faermann estimator ηP(Φ), we use Duffy transformations and Gauss
quadrature for the regularized integrands.

9.4.1 Adaptive algorithm
In our numerical experiments below, we employ the following adaptive algo-
rithm with θ = 0.9.

Algorithm. Let 0 < θ ≤ 1 be a marking parameter and P =
{
J × K : J ∈

PI ,K ∈ PΓ

}
be an initial tensor-mesh corresponding to a mesh PΓ of Γ and a mesh

PI of I = [0, T ]. For each ` = 0, 1, 2, . . . , iterate the following steps:

(i) Compute Galerkin approximation Φ` of φ in the space X` of all P`-piecewise
constant functions on Σ.

(ii) Compute indicators ηxP`(Φ`, J×K) and ηtP`(Φ`, J×K) for all elementsJ×K ∈
P`.

(iii) Determine two minimal sets of marked elementsMx
` ,Mt

` ⊆ P` such that

(9.18) θ2ηP`(Φ`)
2 ≤

∑
J×K∈Mx

`

ηxP`(Φ`, J×K)2+
∑

J×K∈Mt
`

ηtP`(Φ`, J×K)2.

(iv) Refine at least all marked elements to obtain a new mesh P`+1.

We will focus on isotropic and anisotropic adaptive strategies:

• In isotropic refinement, we requireMx
` = Mt

` in the marking step (iii),
so that (9.18) simplifies to θ2ηP`(Φ`)

2 ≤
∑
J×K∈M`

ηP`(Φ`, J × K)2.
In the refinement step (iv), we iteratively mark additional elements to
ensure that, after subdividing all marked elements into four congruent
rectangles, the new mesh P`+1 has only one hanging node per edge.

• In anisotropic refinement,webisect the elementsMx
` \Mt

` in space, bisect
the elementsMt

` \ Mx
` in time, and subdivide all elementsMx

` ∩Mt
`

into four congruent rectangles. Then, we iteratively bisect additional
elements in space and/or time to ensure that the level difference in space
and in time between elements sharing an edge in the new mesh P`+1 is
bounded by 1. Here, the level in space and the level in time of elements
are defined as the number of bisections in space and time, respectively,
to obtain the element from the initial mesh P0.

For comparison, we also include uniform refinement, where P`+1 is obtained
from P` by subdividing each element into four congruent rectangles. For
all considered refinement strategies, it is easy to see that the mesh constants
from (9.10)–(9.13) for to (P`)`∈N0

depend only on the initial mesh P0.
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9.4.2 Reference for exact error

As the exact error ‖φ − Φ‖H−1/2,−1/4(Σ) cannot be readily computed in the
examples below,we compare the error estimator ηP and theweightedL2-terms
ζP from Section 9.3.3 with the following (h − h/2)-estimator: For a mesh P ,
define the uniformly refined mesh as P̂ . With the the Galerkin approximation
Φ̂ from the refined trial space, we define the (h− h/2)-estimator as

‖Φ− Φ̂‖2V := 〈V (Φ− Φ̂) , Φ− Φ̂〉Σ.

Under the saturation assumption ‖φ − Φ̂‖V ≤ qsat‖φ − Φ‖V , the triangle
inequality shows that this estimator is equivalent to ‖φ − Φ‖V , and therefore
to the error ‖φ − Φ‖H−1/2,−1/4(Σ) by coercivity of V . Note that the saturation
assumption is indeed satisfied under the realistic (asymptotic) assumption that
‖φ− Φ‖V = O

(
(#P)−s

)
for some arbitrary rate s > 0.

9.4.3 Smooth problem

Let Ω = (0, 1)2 and prescribe u(t, x1, x2) := exp(−2π2t) sin(πx1) sin(πx2) with
initial condition u0(x1, x2) := sin(πx1) sin(πx2) and Dirichlet data uD ≡ 0. We
choose P0 :=

{
[0, 1] × K : K ∈ PΓ

}
with the uniform mesh PΓ of Γ being

aligned with the corners and consisting of four elements, as initial mesh of the
space-time boundary Σ.

Figure 9.1 displays the results in double-logarithmic plots so that the slopes
of the lines indicate the corresponding convergence rates. With the number of
degrees of freedomN = #P , we see the expected rateO(N−5/8) = O(N−0.625)
from (9.15) for both uniform refinement and isotropic refinement (with still
slightly worse rate for the L2-terms ζP(Φ) for uniform refinement), albeit
adaptive isotropic refinement offers quantitively better results. For anisotropic
refinement refinement, the rate is improved to O(N−15/22) ≈ O(N−0.68). Ac-
cording to (9.15), this coincides with the best possible rate that can be achieved
with uniform tensor-meshes, where the optimal scaling parameter in ht h hσx
is given by σ = 6/5. Note that we do not require setting an explicit scaling in
our anisotropic adaptive algorithm, it recovers the optimal rate automatically.

9.4.4 Mildly singular problem

Let Ω = (0, 1)2, with initial condition u0 ≡ 0 andDirichlet data uD(t, x1, x2) :=
t2. We expect the solution here to be only singular in the four corners of the
unit square as the initial condition is compatible with the Dirichlet data. The
initial mesh P0 is chosen as in Section 9.4.3. Figure 9.2 displays the results.
The assymptotic decay rate for all estimators under uniform refinement seems
to be O(N−1/3), which is improved to O(N−1/2) for isotropic refinement, and
finally, under anistriopic refinement this becomes the optimal rateO(N−15/22).
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Figure 9.1. Error estimators for the smooth problem of Section 9.4.3 plotted
double-logarithmically over the degrees of freedomN = #P : uniform refine-
ment (left), isotropic refinement (middle), and anisotropic refinement (right).
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Figure 9.2. Error estimators for the mildly singular problem of Section 9.4.4
plotted double-logarithmically over the degrees of freedomN = #P : uniform
refinement (left), isotropic refinement (middle), and anisotropic refinement
(right).

9.4.5 Singular problem

Let Ω = (0, 1)2 with initial condition u0 ≡ 0 and Dirichlet data uD ≡ 1.
The solution to this problem is known to have a strong singularity for t = 0
due to the incompatibility of initial and boundary conditions, in addition to
singularities in the four corners of the unit square. The initial mesh P0 is
chosen as in Section 9.4.3.

Figure 9.3 displays the results. The Faermann estimator ηP(Φ) and the (h−
h/2)-estimator ‖Φ−Φ̂‖V showboth the same sensible convergence behavior for
this problem. For uniform refinement, they display the rate O(N−1/8), which
is then improved by isotropic refinement to O(N−1/4). Finally, for anistropic
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Figure 9.3. Error estimators for the singular problem of Section 9.4.5 plotted
double-logarithmically over the degrees of freedomN = #P : uniform refine-
ment (left), isotropic refinement (middle), and anisotropic refinement (right).

refinement, they achieve the best possible rate O(N−15/22), recovering the
rate for a smooth problem. Looking at Figure 9.4, we see strong anisotropic
refinement towards t = 0 with elements of size hx = 1, ht = 2−18, and some
mild refinement towards the corners of the unit square.

On the other hand, the weighted L2-terms ζP(Φ) do not seem to decay
for uniform or isotropic refinement, and seem to degenerate for anisotropic
refinement. This is problematic for the reliability bound in Corollary 9.3.5.
Further inspection suggests that this is a theoretical shortcoming rather than
a practical one. This is hinted by the (h− h/2)-estimator, which one generally
assumes to be reliable. Note that this does not contradict the theoretical results
from Corollary 9.3.5, which states ζP(Φ) . ηP(Φ) . ‖φ−Φ‖H−1/2,−1/4(Σ) only
under the additional parabolic scaling assumption ht h h2

x for all space-time
elements.

Under this parabolic scaling assumption, the optimal error decay rate for
smooth problems becomesO(N−1/2); see (9.15). Figure 9.5 displays the results
of uniform and adaptive refinement, with meshes that satisfy this scaling con-
straint2, providing convergence rates O(N−0.18) and O(N−0.4), respectively,
for all considered estimators.

9.4.6 Singular L-shape problem
We consider the L-shaped domain Ω := (−1, 1)2 \ [−1, 0]2 with data u0 ≡ 1
and uD ≡ 0. The solution has a strong singularity for t = 0, in addition to

2 For uniform refinement, all elements are bisected once in space-direction and three times in
time-direction. For adaptive refinement, we assumeMx

` =Mt
`. All these marked elements are

subdivided into four congruent rectangles, where we use additional bisections in space and/or
time to guarantee that the level differences between elements sharing an edge is bounded by 1
and that 1

2
h2x ≤ ht ≤ 2h2x.
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Figure 9.4. Mesh with
N = 1391 elements, generated
by anisotropic refinement
for the singular problem of
Section 9.4.5.
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Figure 9.5. Error estimators for the singu-
lar problem of Section 9.4.5 plotted double-
logarithmically over the degrees of freedom
N = #P : uniform refinement (left) and
adaptive refinement (right) with parabolic
scaling ht h h2

x.
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Figure 9.6. Error estimators for the singular L-shape problem of Section 9.4.6
plotted double-logarithmically over the degrees of freedomN = #P : uniform
refinement (left), isotropic refinement (middle), and anisotropic refinement
(right).

a singularity at the re-entrant corner (0, 0). We choose P0 :=
{

[0, 1] × K :

K ∈ PΓ

}
, with the uniform mesh PΓ of Γ being aligned with the corners and

consisting of eight elements, as initial mesh of the space-time boundary Σ.
Figure 9.6 displays the results, which are similar to those of Section 9.4.5 with
a better behavior of the L2-terms ζP(Φ) for anisotropic refinement.

Enforcing the parabolic scaling ht h h2
x as in Section 9.4.5, all estimators

converge again with the same rates, being O(N−0.18) for uniform refinement
and O(N−0.45) for adaptive refinement (not displayed).
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Summary

Partial differential equations are used for the modeling of many (natural) phe-
nomena such as fluid flow, heat dissipation, sound propagation, chemical
reactions and the weather. Typically, it is impossible to find closed-form solu-
tions to these differential equations. Instead, one may use numerical methods
to construct approximations of the solution to these differential equations.
Ideally, these numerical methods provide us with high quality approximations
and do so quickly.

In this thesis we look at such numerical methods for approximating linear
partial differential equations. This thesis is structured into two parts. In
the first part we study preconditioning, a technique used to accelerate iterative
solvers for systems of linear equations arising in our approximation schemes.
In the second part we focus on (adaptive) numerical methods for parabolic
evolution equations in a simultaneous space-time approach.

In Part I we study the construction of preconditioners for discretized operators
using the concept of operator preconditioning. The idea is to precondition the
discretized operator by a discretized operator of opposite order. It turns
out that in order to get a uniformly well-conditioned system, as well as a
preconditioner that can be implemented efficiently, the second discretization
has to be carefully chosen dependent on the first one.

In Chapter 2 we apply this idea to construct uniform preconditioners for
operators of negative order discretized by (dis)continuous piecewise polynomi-
als, of any degree, with respect to some mesh. The application cost of the
preconditioner is the cost of the opposite order operator discretized by contin-
uous piecewise linears on the same mesh, plus minor cost that scales linearly
in the number of mesh cells. Compared to earlier proposals, our approach has
the advantages that it does not require a (barycentric) refinement of the mesh,
nor the inversion of a non-diagonal matrix, and that it applies without any
mildly grading assumption on the mesh.

InChapter 3wepropose amulti-level typeoperator that both fulfills the role
of the opposite order operator and can be applied in optimal linear complexity.
So, when it is usedwithin the framework fromChapter 2, it provides a uniform
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preconditioner for operators of negative order that can be applied in linear
complexity.

In Chapter 4 we investigate the operator preconditioning framework for
positive order operators, discretized by continuous piecewise polynomials with
respect to some mesh. We obtain uniform preconditioners with similar ad-
vantages as those found in Chapter 2. That is, we construct uniform precondi-
tioners whose application cost equals the cost of the opposite order operator
discretized with discontinuous or continuous finite elements on the same
mesh, plus minor cost of linear complexity.

In Chapter 5 we study the preconditioning framework in a more restric-
tive setting. We build uniform preconditioners for operators discretized by
continuous piecewise polynomials as the composition of an opposite order
operator, discretized on the same ansatz space, and two identical diagonal
scaling operators, whose matrix representation is the lumped mass matrix.

InPart II of this thesis,wediscuss the (adaptive) numerical solutionofparabolic
evolution equations, e.g. the heat equation, written in a simultaneous space-
time variational formulation. The ‘natural’ weak formulation of these prob-
lems is not coercive, making it hard to discretize the problem. We consider a
minimal residual discretization, which leads to quasi-optimal approximations
under an inf-sup stability condition on the pairs of trial- and test spaces.

In Chapter 6 we propose an r-linearly converging adaptive method for
parabolic evolution equations that is able to resolve singularities locally in
space and time. We achieve this by using trial- and test spaces that are given as
the spans of wavelets-in-time tensorized with (locally refined) finite element
spaces-in-space. Thanks to this tensor product ansatz, we are able to solve
the whole time evolution at the cost of solving the corresponding stationary
problem. We also introduce optimal preconditioners, allowing one to solve
the discrete problem efficiently. Numerical results illustrate our theoretical
findings.

In Chapter 7we discuss an implementation of the aforementioned adaptive
method in which every step is of linear complexity. In particular, we propose a
matrix-free algorithm that can apply the systemmatrices in linear complexity,
even though their matrix representation is not sparsely populated.

In Chapter 8we consider a (time-)parallel algorithm for parabolic evolution
equations using trial- and test spaces that are tensor products of temporal and
spatial spaces. We present large parallel computations showing the effective-
ness of the method in practice.

Finally, in Chapter 9 we propose an adaptive space-time boundary element
method for the solution of the homogeneous heat equation with prescribed
initial condition and Dirichlet data. We introduce an a posteriori error esti-
mator, and use it to drive an adaptive loop with anisotropic refinement. In all
our numerical experiments, the adaptive algorithm recovers the optimal error
decay rate.
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Samenvatting

Partiële differentiaalvergelĳkingen worden gebruikt voor het modelleren van
veel (natuurlĳke) verschĳnselen, zoals de stroming van vloeistoffen, de ver-
spreiding van warmte, de voortplanting van geluid, het verloop van chemi-
sche reacties en het weer. In veel realistische gevallen is het onmogelĳk om een
expliciet functievoorschrift voor de oplossing van de differentiaalvergelĳking
te vinden. Daarom gebruikt men numerieke methoden om benaderingen van
de oplossing uit te rekenen. Idealiter geven deze numerieke methoden snel
een goede benadering.

In dit proefschrift doen we onderzoek naar dergelĳke numerieke metho-
den. Het proefschrift is opgebouwd uit twee delen. In het eerste deel be-
studeren we preconditionering, een techniek voor het versnellen van iteratieve
methoden die gebruikt worden om de stelsels lineaire vergelĳkingen in de nu-
merieke methoden op te lossen. In het tweede deel bekĳken we het (adaptief)
benaderen van parabolische evolutieproblemen, zoals de warmtevergelĳking,
met ruimte-tĳd methoden.

In deel I bekĳken we operatorpreconditionering: een methode om een gediscreti-
seerde operator te preconditioneren met een gediscretiseerde operator van te-
genovergesteldeorde. Omte zorgendatdit tot uniformgoed-geconditioneerde
systemen leidt en dat de preconditioneerder efficiënt kan worden toegepast,
moet de tweede discretisatieruimte zorgvuldig gekozen worden.

In hoofdstuk 2 passenwe dit concept toe omuniforme preconditioneerders
temakenvoor operatoren vannegatieve orde gediscretiseerdmet (dis)continue
stuksgewĳs polynomen, van een willekeurige graad, op een gegeven rooster.
De kosten van het toepassen van de preconditioneerder zĳn gelĳk aan de kos-
ten van de gediscretiseerde operator van tegenovergestelde orde op hetzelfde
rooster, plus lage kosten die lineair schalen in het aantal roosterelementen. In
vergelĳking met methoden uit de literatuur, heeft onze aanpak de voordelen
dat er geen (barycentrisch) verfijnd rooster nodig is, dat er geen niet-diagonaal
matrix geïnverteerd moet worden en we geen aanname nodig hebben over dat
het verschil in grootte van naastliggende roosterelementen voldoende klein is.

In hoofdstuk 3 construeren we een multischaaloperator die de rol van de
tegenovergestelde operator vervult én die in optimale (lineaire) complexiteit

221



Samenvatting

kan worden toegepast. In combinatie met de bevindingen uit hoofdstuk 2
geeft dit een uniforme preconditioneerder voor operators van negatieve orde
die in lineaire complexiteit kan worden toegepast.

In hoofdstuk 4 bekĳken we nogmaals het concept van operatorprecondi-
tionering, ditmaal voor operatoren van positieve orde gediscretiseerd door
continue stuksgewĳs polynomen op een rooster. We construeren uniforme
preconditioneerders met dezelfde voordelen als die uit hoofdstuk 2.

In hoofdstuk 5 bekĳken we het concept van operatorpreconditionering in
een beperkte setting. We maken uniforme preconditioneerders voor operato-
ren die gediscretiseerd zĳn met continue stuksgewĳze polynomen. De gevon-
den preconditioneerders bestaan uit de tegenovergestelde operator, gediscre-
tiseerd op dezelfde deelruimte, en twee gelĳke diagonale schaaloperatoren.

In deel II van dit proefschrift kĳken we naar parabolische evolutieproblemen
met ruimte-tĳd methoden. De natuurlĳke zwakke formulering die hoort bĳ
zulke vergelĳkingen is niet coercief, wat het lastigmaakt omdeze problemen te
discretiseren. We bekĳken een residu-minimalisatie formulering van het pro-
bleem die leidt tot quasi-optimale benaderingen onder een inf-sup aanname
op de paren van zoek- en testruimten.

In hoofdstuk 6 introduceren we een adaptieve numerieke methode voor
parabolischeproblemendie r-linear convergeert endie singulariteiten lokaal in
plaats en tĳd kan benaderen. We bereiken dit door gebruik temaken van zoek-
en testruimten die opgespannen zĳn door het tensorproduct van wavelets
in tĳd en (lokaal verfijnde) eindige elementenruimten in ruimte. Door deze
ruimten te gebruiken, kunnenwedegehele tĳdsevolutie oplossenmet dezelfde
kosten als het oplossen vanhet bĳbehorende tĳdsonafhankelĳke probleem. We
introduceren ook optimale preconditioneerders, zodat het gediscretiseerde
probleem efficiënt opgelost kan worden. We illustreren onze theoretische
bevindingen met numerieke experimenten.

In hoofdstuk 7 bestuderen we een implementatie van de bovengenoemde
adaptieve methode, waarin elke stap in lineaire complexiteit kan worden uit-
gevoerd. In het bĳzonder geven we een algoritme om de systeemmatrices in
lineaire complexiteit toe te toepassen, hoewel deze matrices niet ĳl zĳn.

In hoofdstuk 8 geven we een parallel (in tĳd) algoritme voor parabolische
vergelĳkingenmet zoek- en testruimten die het tensorproduct zĳn van ruimten
in tĳd en ruimte. We laten de effectiviteit van de methode in de praktĳk zien
middels grootschalige berekeningen op een supercomputer.

Tot slot, in hoofdstuk 9 introduceren we een adaptieve ruimte-tĳd randele-
mentenmethode voor de homogene warmtevergelĳking met gegeven begin-
en randvoorwaarden. We introduceren een a posteriori foutschatter, die we
vervolgens gebruiken om een adaptief algoritme te sturen met anisotrope
verfijning. In de door ons bekeken experimenten, behaalt deze methode de
optimale convergentiesnelheid, ook voor problemen die singulier in tĳd en
ruimte zĳn.
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