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Chapter 1

Introduction

Learning about causal relations is a central objective in science. Scientific explana-
tions of observed phenomena usually start with identifying the causes that produced
a certain effect (i.e. outcome). In agriculture, for instance, a failed harvest may be
explained by determining whether it was caused by heavy rainfall, drought, insects,
fungus, disease, or a lack of certain nutrients in the soil. A causal relation can be es-
tablished by varying the type of crops or controlling the soil conditions and recording
the changes in crop yield. This way, knowledge about the causes of a failed harvest
can be leveraged to adjust agricultural practices and reduce the chances of disappoint-
ing crop yields in future years. Moreover, understanding the causal mechanisms that
are involved with crop yield might even pave the way for the development of sustain-
able farming methods that maximize crop yields. It is imperative to be aware that
not all statistical associations are causal relations. For instance, a statistical depend-
ence between average wages and wheat yields in EU countries would not imply that
a farmer can increase crop yields by raising his own salary. Instead, a plausible causal
explanation of such a correlation would be that certain economic factors affect both
the wages and agricultural development. The task of learning causal relations thus
goes beyond making predictions based on mere statistical associations because they
allow us to make predictions about the effects of interactions with the world around
us. Additionally, awareness of the underlying causal mechanisms provides valuable
insights into the workings of complex real-world systems.

In many scientific disciplines, the gold standard for causal discovery is random-
ized controlled experimentation. Consider, for example, a clothing store that wants
to determine the effect of advertisement on profit. To estimate this, they could imple-
ment A/B testing on their website, i.e. they can try out various marketing strategies
and observe how this affects profits from customers that are randomly assigned to re-
ceive different types of advertisement compared to customers who received no mar-
keting at all. Similarly, during the trial period of newly developed medicine, patients
are randomly assigned to either the treatment or the control group so that treatment

1



2 1. Introduction

effects and potential side-effects can be estimated. On the other hand, scientists can-
not, for the sake of curiosity, vary fiscal policies to determine the effect of stimu-
lus on economic growth. Neither would it be ethical to assign newborn babies into
treatment and control groups to assess the effect of bonding on child development.
In many practical applications, randomized controlled trials are too expensive, time-
consuming, unethical, or otherwise infeasible. To remedy this, researchers have stud-
iedways inwhich causal relations can be learned frompurely observational data, pos-
sibly in combination with background knowledge and experimental data. This has
led to applications of causal inferencemethods in a variety of domains, e.g. sociology,
economics, and biology.

The novel methods and ideas for causal inference that we develop in this thesis
were inspired by a wish to understand causal pathways in protein signalling net-
works. In living organisms, cellular responses to external inputs are governed by
biochemical reaction networks that facilitate the flow of information within cells.
These signalling networks play a central role in cell activities such as immunity and
tissue repair. Since errors in theway that cells process informationmay cause autoim-
mune diseases or cancer, the hope is that a better understanding of protein signalling
pathways may help treat these diseases more effectively in the future. Therefore,
the design of methods that facilitate or automate causal discovery from experimental
protein expression data is a meaningful and far-reaching direction of research. Al-
though previous work along these lines is already impressive, the impact of many
causal inference methods in these and other areas remains limited due to remaining
issues regarding e.g. measurement error, feedback mechanisms, latent confounders,
and selection bias. In this thesis, we work towards bridging this gap between theory
and practice by considering how and when the presence of measurement error or
feedback mechanisms may affect the outcome of causal discovery algorithms.

The behaviour of complex systems that evolve over time and that consist of
many interacting particles, e.g. a protein signalling network, is oftenmodelled with a
(stochastic) dynamical model. The variables in such a model may influence one an-
other through the presence of feedback mechanisms. The properties of cyclic causal
models that arise from describing the stationary characteristics of a dynamical sys-
tem form a fascinating research topic. In this work, we take a closer look at a peculiar
phenomenon called perfect adaptation, which refers to the ability of variables in a
system to have a transient response to a persistent external input and then revert
back to their initial value. Systems that are able to achieve perfect adaptation possess
a particular type of feedback mechanism which occurs quite frequently in chemical
reaction networks, protein signalling networks, and control systems. To study their
behaviour, we extended the causal ordering framework of Simon (1953), allowing
us to deduce causality and independence from sets of (equilibrium) equations. This
way, we connect properties of the equilibrium distribution of stochastic dynamical
models to interventionist causal modelling frameworks and to the inputs of causal
discovery algorithms.
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Building on this theoretical framework, we obtained new insights into the be-
haviour of perfectly adapted dynamical systems and we discovered new approaches
to causal discovery. First, we propose the presence of perfect adaptation as a com-
pelling explanation for the apparent differences between the output of causal dis-
covery algorithms applied to protein expression data and the biological consensus
networks for the corresponding signalling pathways that have been reported in liter-
ature. Second, we formulate sufficient graphical conditions to identify the presence
of perfect adaptation in a model, and we demonstrate how it can be recognized in
data using a combination of experimental data and background knowledge. Third,
we show that perfect adaptation explains non-robustness of qualitative model pre-
dictions that is sometimes observed (e.g. in epidemiology or ecology) and we charac-
terize a large class of model extensions that preserve these predictions. Finally, we
propose a novel holistic approach to causal discovery andmodel selectionwhere data
for submodels is used to reason about unobserved feedback loops in a larger model.
It is our hope that the results in this thesis bring the world of causal discovery and
causal modelling one step closer to the world of dynamical models and their applic-
ation domains.

In Sections 1.1 to 1.3, we provide additional historical, philosophical, and math-
ematical background information to place the topics of this thesis into a broader sci-
entific context. These sections are optional reading and one can safely skip ahead to
Section 1.4 where we present a detailed overview of our main contributions, as well
as an outline of this thesis. In Section 1.1 we discuss some historical background on
certainmetaphysical and epistemological questions that philosophers have raised re-
garding the notion of causation. In Section 1.2we introduce recent advances inmath-
ematical frameworks for the representation of causal semantics and the relationship
to dynamical models. In Section 1.3 we provide a concise history of methodological
and practical scientific methods to establish causal relations.

1.1 Philosophical background

The notion of causation remains an elusive concept. Even though causal claims are
ubiquitous in everyday life and the discovery of causal relations is one of the primary
goals in countless scientific endeavours, finding an explicit definition of causation
or a universal method to establish causal relations has been a controversial topic
for many centuries. There are many thought-provoking metaphysical questions (e.g.
“How do causes bring about affects?”) and epistemological issues (e.g. “How can
causal knowledge be justified”) to think about. The contemporary debate on topics
of causation is ongoing in diverse scientific disciplines such as philosophy, physics,
statistics, economics, and artificial intelligence. In this section, wewill briefly discuss
different philosophical perspectives.
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1.1.1 Regularity accounts

Human beings are often able to tell the difference between causal and non-causal re-
lations through memories, reasoning, and by observing regularities in the world.
Consider, for instance, the following sequence of events: a player in a game of
snooker strikes a white ball with his cue, the white ball starts moving, the white
ball hits the black ball, the black ball starts moving. Intuitively, we know that the
white ball causes the movement of the black ball and that the process would play out
in the exact same way if it didn’t take place on a snooker table but on a billiard table.
Can this type of causal inference be justified? We will follow Reiss (2007) in an ex-
amination of Hume (1928), who attempted to construct a naturalistic and reductive
explanation of how people are able to empirically infer causal relations from regular-
ities that they experience. We then briefly discuss criticisms of regularity accounts
of causation.

According toDavidHume (1711-1776), causal knowledge includes neithermath-
ematical or logical truths that can be ascertained through reasoning alone (e.g. the
Pythagorean theorem 𝑎2 + 𝑏2 = 𝑐2) nor facts that can be established through obser-
vations andmemories alone (e.g. “There are two balls on the billiard table”). Instead,
he proposed three criteria that compel human beings to infer causal knowledge from
observing a black ball, formerly at rest, acquiring motion after it is hit by a white ball
on a billiard table. The first was contiguity in time and space, meaning that there is no
interval of space or time between the white ball striking the black ball and the black
ball acquiring motion. The second is temporal priority of causes, meaning that the
cause (i.e. the movement of the white ball) precedes the effect (i.e. the black ball ac-
quiring motion). The third and last is constant conjunction of cause and effect, mean-
ing that the impulse of one billiard ball will result in movement of the other billiard
ball in similar circumstances, so that like causes produce like effects. Together, these
criteria form a naturalistic explanation of how humans infer a causal relation from
observations.

Hume worried that although causal inference may arise from observing regu-
larities, there is actually nothing about the cause (a moving billiard ball) that ne-
cessitates the effect (a second ball acquiring motion). Indeed, for all we know, the
second billiard ball could be glued to the table or an earth quake may knock over the
table preventing the collision from ever occurring. The idea that notions of causa-
tion cannot be derived from observing regularities alone is known asHume’s critique.
Immanuel Kant (1724-1804) famously wrote that this interrupted him from his “dog-
matic slumber” and inspired him to conclude that the notion of causation is a priori
(Kant, 1783; Langsam, 1994). Roughly speaking, becausewe assume beforehand that
the black billiard ball acquiring motion must have a cause, we are able to infer from
observations that it must have been the collision with the white ball that caused the
black ball to move. From this viewpoint, we are able to infer causal relations from
observing regularities because we already presume that every event has a cause.
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Regularity accounts that define causation either in non-causal terms or as funda-
mental building blocks of nature have been developed much further over the years.
Dowe (1992), Mackie (1974), and Salmon (1984) described causation via causalmech-
anisms and used principles of invariance and the notion of conserved quantities to re-
cognize causal processes. However, regularity accounts of causation have beenwidely
criticized for not capturing our ordinary notion of causation (Cartwright, 2007; Lang-
sam, 1994).

First of all, Cartwright (2007) and Hoover (1988) pointed out that the notion
of contiguity in time and space is not always sensible for causal relations between
macro-economic or sociological variables. Consider, for instance, a macro-economic
model predicting that central banks printing money causes inflation. Obviously, it is
hard to imagine how abstract concepts like money and inflation are exactly connec-
ted in space and time. Secondly, the requirement that causes precede effects in time is
problematic in macro-economic models that allow for simultaneous causation (F. M.
Fisher, 1970). Finally, the idea that cause and effect are related to one another by ne-
cessity is contested in the work of Max Weber (1864-1920) (Ringer, 2002) and more
recently by Cartwright (2007), who regard causes as enablers or objective possibilities
that do not necessarily produce the effect. To see this, consider the following example.
Suppose your bicycle gets stolen after parking it in the city centre without locking it.
According to ordinary notions of causation, one might say that parking your bicycle
in the city centre caused it to get stolen because not parking it indoors enabled the
thief to steal it. Likewise, notions of probabilistic causation in Pearl (2009), Reichen-
bach (1956), and Suppes (1970) are also at odds with the requirement of necessity.
For instance, it is common to say that forgetting to lock your bicycle is a cause of it
getting stolen because it increases the probability of this event happening.

In pursuit of capturing the intuitive human notion of causation, philosophers
like Lewis (1973) and Mackie (1974) have dedicated their work to counterfactual ac-
counts of causation. From this viewpoint, a causal relation fromA (e.g. parking your
bicycle outdoors) to B (e.g. your bicycle getting stolen) relates to counterfactual claims
of the form “If A had not occurred, then Bwould not have followed” (i.e. if you hadn’t
parked your bicycle outside then it would not have been stolen). Counter-examples to
the counterfactual regularity account of causation has ledHitchcock (2003) to “aban-
don the attempt to characterize the causal relation” and Woodward (2003) to decide
against any reductive theory of causation.

1.1.2 Causal explanations

Perhaps the idea of a universal account of causation as amonolithic and fundamental
concept that intuitively explains phenomena in the world around us should be aban-
doned altogether, as Cartwright (2007), N. Hall (2004), and Hitchcock (2003) con-
tend. In practice, humans seek out causal explanations for particular phenomena of
interest by looking for answers to specific ‘why?’-questions. In this light, we can treat
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causation as an umbrella term for more explicit causal concepts and shift our focus
towards the goal of obtaining causal explanations.

Perhaps we should be seeking not theories of causality but rather causal
theories of the world. Cartwright, 2007

From the viewpoint that causal relations are effective instruments to explain
phenomena that only share “family resemblance” (Reiss, 2007), formalizing differ-
ent valid causal concepts is more fruitful than the quest for a universal account of
causation (Cartwright, 2007). According to Cartwright (2007), the use of the term
“cause” is warranted through an understanding of thick causal concepts. Consider,
for instance, a bimetallic thermostat consisting of a bimetallic strip (i.e. two strips
of different metals bolted together) that regulates the temperature. As temperature
increases, one type of metal expands more than the other so that the strip bends. If
the strip bends too far then an electrical circuit connected to a heater is broken so that
the heating switches off, after which the temperature decreases. With the help of very
specific causal concepts and knowledge of the way in which they operate we are able
to give a minute description of a thermostat controlling the temperature.

Adequate causal explanations were already contemplated by Aristotle (384 BC
- 322 BC), who posited four distinct types of causal explanations, all of which he
deemed necessary to wholly explain real-world phenomena (Moravcsik, 1974). For
the bimetallic thermostat, themetal of the strip is a substance that undergoes change
and is called a material cause. The design of the thermostat provides an account of
what it means to be a thermostat and is called the formal cause. Sources of change,
referred to as efficient causes, are the engineer who builds the thermostat and the
person who sets the temperature on the thermostat. The reason that the bimetallic
thermostat undergoes changes (to keep the temperature constant) is called the final
cause. Although Aristotle’s final cause (i.e. teleological causation) can be reduced to
the operations of efficient causes (Evans, 1959), discarding them may result in a re-
duction of explanatory power when phenomena that are shaped by selection must
be treated at a manageable level of description (e.g. efficient causes do not have the
explanatory power of the teleological statement “Birds have wings in order to fly”)
(Cartwright, 1983). Note that Aristotle’s four causes are more closely related to our
contemporary notion of explanation (Evans, 1959), while only the efficient cause re-
sembles contemporary notions of causation (Licata, 2019).

1.1.3 Interventionist perspective

We know that children not only learn about causal relations by asking for explana-
tions, but they also obtain causal knowledge by interacting with the world around
them and observing what happens (Piaget, 1930). This is very similar to the way that
interventionists think about causality:
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I suggest that the distinguishing feature of causal explanations, so con-
ceived, is that they are explanations that furnish information that is po-
tentially relevant to manipulation and control: they tell us how, if we
were able to change the value of one or more variables, we could change
the value of other variables. Woodward, 2003

Interventionists say that “A causes B” when B changes in a predictable manner if
the value of A is altered through an intervention. Although defining causes in terms
of interventions is circular (because the definition of an intervention relies on the
notion of causation) and anthropocentric (Woodward, 2003), the systematic devel-
opment of the interventionist approach has turned out to be particularly useful both
theoretically and practically (Pearl, 2009). This practical approach, popular among
statisticians, computer scientists, economists and experimentalists, has many suc-
cesses in medicine, economic, and the social sciences. In this thesis, we focus on the
interventionist perspective on causation.

1.2 Causal Models

In many cases, causal relations are easy to infer and simple to explain. For example,
we intuitively understand that heat causes ice to melt and that a moving billiard ball
causes another ball to acquire motion after impact. However, in many cases it is
much more complicated to get a good grasp of causal relations that contribute to an
outcome. For example, we do not (yet) have a full understanding of the underlying
causes of serious phenomena such as financial crises, climate, societal unrest, or the
development of disease in the human body. It turns out that dynamical models or
structural causal models have great explanatory power when it comes to making pre-
dictions about time-dependent or static behaviour of certain complex systems. This
way, (causal) modelling frameworks can help us to better understand the properties
of these systems.

Note that although explanatory power does not imply that a (causal) model
truly represents reality (Cartwright, 1983), this would be irrelevant to the question
of whether the concept of causality is admissible when all defined concepts refer to
the model and not to the real-world (Simon, 1952). From a purely mathematical per-
spective causation is simply a concept that is defined in terms of a causal model and
a mathematical operation called an intervention. In this section, we introduce dy-
namical models together with an intervention operation and explain how structural
causal models may arise through equilibration of a dynamical model.

1.2.1 Structural causal models

Structural causal models are a popular causal modelling framework that form the
basis of many statistical methods for causal inference (Pearl, 2009). Their origins can
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be traced back to early work in genetics (S. Wright, 1921), econometrics (Haavelmo,
1943; P. G.Wright, 1928), electrical engineering (Mason, 1953; Mason, 1956), and the
social sciences (Duncan, 1975; Goldberger et al., 1973).

To give a concrete example, consider a simple model for the grade that a student
receives on an exam. Suppose that the model takes into account the effect of prepar-
ation 𝑋𝑣𝑃 and the ability to concentrate 𝑋𝑣𝐶 on his final test score 𝑋𝑣𝑇. How well the
student is able to concentrate depends on the amount of time that he spent sleep-
ing 𝑋𝑣𝑆 during the previous night. A simple structural causal model would include
a set of independent exogenous random variables U = {𝑈𝑤𝑃, 𝑈𝑤𝑆, 𝑈𝑤𝐶, 𝑈𝑤𝑇} that de-
termine the values of endogenous variables X = {𝑋𝑣𝑃, 𝑋𝑣𝑆, 𝑋𝑣𝐶, 𝑋𝑣𝑇} via the structural
equations:

𝑋𝑣𝑃 = 𝑓𝑃(𝑈𝑤𝑃), (1.1)
𝑋𝑣𝑆 = 𝑓𝑆(𝑈𝑤𝑆), (1.2)
𝑋𝑣𝐶 = 𝑓𝐶(𝑋𝑣𝑆, 𝑈𝑤𝐶), (1.3)
𝑋𝑣𝑇 = 𝑓𝑇(𝑋𝑣𝑆, 𝑋𝑣𝐶, 𝑈𝑤𝑇), (1.4)

where 𝑓𝑃, 𝑓𝑆, 𝑓𝐶, and 𝑓𝑇 are measurable functions that represent causal mechanisms.
The functional dependences among the endogenous variables are represented by the
directed acyclic graph in Figure 1.1.

𝑣𝑆 𝑣𝐶 𝑣𝑇 𝑣𝑃

Figure 1.1: The causal graph associated with the structural equations (1.1) to (1.4).

The properties of acyclic SCMs (i.e. recursive SEMs) have been widely studied
and arewell-understood, see for example Lauritzen, Dawid, et al. (1990), Pearl (2009),
and Spirtes, Glymour, et al. (2000). Notably, SCMs with acyclic causal graphs have
an intuitive causal interpretation (e.g. the presence (absence) of directed paths in the
causal graph in Figure 1.1 correspond to the presence (absence) of causal relations.).
Furthermore, they induce a unique distribution over endogenous variables and they
obey a Markov property. Cyclic SCMs have been proposed to model systems that
contain causal cycles (Mooij, Janzing, and Schölkopf, 2013; Spirtes and Richardson,
1995). Although the convenient properties of acyclic SCMs also apply in linear and
discrete cyclic SCMs, they do not hold inmore general settings (Bongers, Forré, et al.,
2020; Forré et al., 2017; Spirtes and Richardson, 1995). Recently, Bongers, Forré, et
al. (2020) and Forré et al. (2017) showed thatmodular and simple SCMs retain many
of the attractive properties of acyclic SCMs. Here, we will closely follow Bongers,
Forré, et al. (2020) for a succinct but formal treatment of cyclic SCMs and their prop-
erties. In Section 1.2.3, we also discuss how cyclic SCMsmay arise from equilibrating
dynamical models.
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The definition of an SCM in Bongers, Forré, et al. (2020) slightly deviates from
previous notions of (acyclic) SCMs because it separates themodel from the (endogen-
ous) random variables that solve it. Due to this change, interventions on SCMs are
always well-defined, even if the resulting intervened SCM does not have a (unique)
solution. In Definition 1.1 below, we explicitly include exogenous random variables,
which may be observed or unobserved, and the graph of the SCM. The endogenous
random variables that solve an SCM are defined in Definition 1.2.

Definition 1.1. A structural causal model (SCM) is a tuple ⟨𝓧,ℙ𝑊, f, 𝒢⟩ where
(i) 𝓧 =⨂𝑣∈𝑉𝒳𝑣, with each𝒳𝑣 a standard measurable space and the domain of a

variable 𝑋𝑣,
(ii) ℙ𝑊 = ∏𝑤∈𝑊 ℙ𝑤 specifies the exogenous distribution, a product probability

measure on ⨂𝑤∈𝑊𝒳𝑤, where each ℙ𝑤 is a probability measure on 𝒳𝑤, with
𝑊 ⊆ 𝑉 a set of indices corresponding to exogenous variables,1

(iii) f ∶ 𝓧𝑉 →𝓧𝑉⧵𝑊 is a measurable function that specifies causal mechanisms.2
(iv) 𝒢 = ⟨𝑉, 𝐸⟩ is a directed graph with:

(i) a set of nodes 𝑉 corresponding to variables,
(ii) a set of edges 𝐸 = {(𝑣𝑖 → 𝑣𝑗) ∶ 𝑣𝑖 is a parent of 𝑣𝑗}.3

Definition 1.2. We say that a random variable X taking value in𝓧 is a solution to
an SCM ⟨𝓧,ℙ𝑊, f, 𝒢⟩ if ℙX𝑊 = ℙ𝑊 (i.e., if the marginal distribution of X on𝓧𝑊
equals the exogenous distribution specified by the SCM), and

X𝑉⧵𝑊 = f(X) a.s. (1.5)

The notion of unique solvability w.r.t. a subset is given in Definition 1.3 below.

Definition 1.3. An SCM ⟨𝓧,ℙ𝑊, f, 𝒢⟩ is uniquely solvable w.r.t. 𝑆 ⊆ 𝑉 ⧵ 𝑊 if there
exists a measurable function g𝑆 ∶ 𝓧pa𝒢(𝑆)⧵𝑆

→ 𝓧𝑆 such that for ℙ𝑊-almost every
x𝑊 ∈ 𝓧𝑊 and for all x𝑉⧵𝑊 ∈ 𝓧𝑉⧵𝑊

x𝑆 = g𝑆(xpa𝒢(𝑆)⧵𝑆) ⟺ x𝑆 = f𝑆(x). (1.6)

SCMs that are uniquely solvable w.r.t. every subset of variables are called simple
SCMs (Bongers, Forré, et al., 2020). It can be shown that SCMswith acyclic graphs are
simple SCMs (Proposition 3.6 in Bongers, Forré, et al. (2020)). Furthermore, SCMs
are uniquely solvable w.r.t. a single variable if and only if there is no self-cycle at
that variable (Proposition 3.9 in Bongers, Forré, et al. (2020)). The notion of (perfect)
interventions on an SCM is given in Definition 1.4.

1This means that the nodes 𝑉 ⧵𝑊 correspond to endogenous variables.
2The structural equations of the model are given by 𝑥𝑣 = 𝑓𝑣(x), x ∈ 𝓧 for 𝑣 ∈ 𝑉 ⧵𝑊.
3We say that 𝑣𝑖 is a parent of 𝑣𝑗 if and only if 𝑣𝑗 ∈ 𝑉 ⧵𝑊 and there does not exist a measurable function

̃𝑓𝑗 ∶ 𝓧𝑉⧵{𝑣𝑖} → 𝒳𝑗 such that for ℙ𝑊-almost every x𝑊 ∈ 𝓧𝑊 and for all x𝑉⧵𝑊 ∈ 𝓧𝑉⧵𝑊 we have
𝑥𝑗 = 𝑓𝑗(x) ⟺ 𝑥𝑗 = ̃𝑓𝑗(x𝑉⧵{𝑣𝑖}), see Definition 2.7 in Bongers, Forré, et al. (2020).
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Definition 1.4. Letℳ = ⟨𝓧,ℙ𝑊, f, 𝒢⟩ be an SCM, 𝐼 ⊆ 𝑉 an intervention target and
𝝃𝐼 ∈ 𝓧𝐼 the intervention value. A perfect intervention do(𝐼, 𝝃𝐼) on the SCM maps it
to an intervened SCMℳdo(𝐼,𝝃𝐼) = ⟨𝓧,ℙ𝑊, ̃f, 𝒢do(𝐼)⟩ with

𝑓𝑣(x) ∶= {
𝜉𝑣 𝑣 ∈ 𝐼
𝑓𝑣(x) 𝑣 ∈ 𝑉 ⧵ 𝐼.

(1.7)

Cyclic SCMs may have no solution, solutions with different distributions, or all
solutions may have the same distribution. This may even change as a result of a
perfect intervention. Because changes in the solution after an intervention may not
be compatible with the structure of the functional relations between variables, the
causal interpretation of cyclic SCMsmaynot be intuitive (Bongers, Forré, et al., 2020).
It can be shown that the graph of a simple SCMs, whose unique solvability is pre-
served under intervention (Proposition 8.2 in Bongers, Forré, et al. (2020)), has an in-
tuitive causal interpretation; direct and indirect causal effects can be read off from the
graph of the SCM by checking for the presence of directed edges and directed paths
between variables (Bongers, Forré, et al., 2020). For general cyclic models, Bongers,
Forré, et al. (2020) give a sufficient condition for detecting direct and indirect causes
in an SCM with cycles. Roughly speaking, an indirect cause 𝑣𝑖 of 𝑣𝑗 can be detected
if by controlling 𝑣𝑖 we can bring about a change in the distribution of 𝑣𝑗 and a direct
cause 𝑣𝑑 of 𝑣𝑗 can be detected if by controlling 𝑣𝑑 and keeping all other variables con-
stant we can bring about a change in the distribution of 𝑣𝑗. For the exact formulation
we refer to Proposition 7.1 in Bongers, Forré, et al. (2020).

1.2.2 Dynamical models

In application domains (e.g. mechanics, chemical kinetics, or economics) dynamical
models describe the time-dependent behaviour of a system. However, they are often
interpreted causally as well. Bertrand Russell (1872-1970), who was a vocal critic of
the notion of causation, supported the idea that dynamical models are not purely
descriptive because he believed that inferences from what occurs at some times to
what occurs at other times has to involve a relation that is causal in nature (Russell,
1903).4 This is in line with the view of Albert Einstein (1879-1955) on causality in
physics:

The differential law is the only form which completely satisfies the mod-
ern physicist’s demand for causality. Einstein, 1927

4At the start of the 20th century the notion of causation had been seriously discredited in the field of
physics. Russell (1903) contended that causation was an obsolete and archaic notion in a scathing critique
of causation as a fundamental building block in nature: “[...] the notion of ‘cause’ is so inextricably bound
up with misleading associations so as to make its complete extrusion from the philosophical vocabulary
desirable. [...] The law of causality, I believe, like much that passes muster among philosophers, is a relic
of a bygone age, surviving, like the monarchy, only because it is erroneously supposed to do no harm.”
Intriguingly, he did support the idea that dynamical models may represent causal relations.
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Here, we will discuss how the causal effect on a dynamical system of an interaction
with the system can bemodelled by an operation called intervention. To do so, wewill
first introduce the notion of first-order randomdifferential equations. For a thorough
analysis of causality in dynamical models we refer to Bongers and Mooij (2018).

Differential equations were invented by Isaac Newton (1643-1727) and Gottfried
Leibniz (1646-1716) after the invention of calculus. Throughout this thesis, we
consider systems of first-order ordinary differential equations that relate the time-
derivative of a function to other functions. The canonical form of a differential
equation is given by:

𝑑𝑋𝑣(𝑡)
𝑑𝑡 = 𝑓𝑣(𝑡,X(𝑡)),

where X(𝑡) = (𝑋𝑣(𝑡))𝑣∈𝑉 is a set of functions indexed by 𝑉 and taking value in ℝ|𝑉 |.
A set of ordinary differential equations (ODEs) for 𝑣 ∈ 𝑉, together with an initial
condition (𝑡0, x0) ∈ ℝ × ℝ|𝑉 | is called an initial value problem. For Lipschitz con-
tinuous functions f = (𝑓𝑣)𝑣∈𝑉 ∶ 𝒟 ⊂ ℝ × ℝ|𝑉 | → ℝ|𝑉 |, the Picard-Lindelöf theorem
guarantees that ∀𝑡 ≥ 0 the initial value problem has a unique solution of the form

X(𝑡) = x0 +∫
𝑡

𝑡0

f(X(𝑠))𝑑𝑠.

Uncertainty is a prominent feature in many dynamical systems.5 The solution to
a set of random first-order differential equations is a stochastic process. Formally, a
stochastic process is a function (𝑋𝑣)𝑣∈𝑉 ∶ 𝑇 × Ω → ℝ|𝑉 | where 𝑇 is an index set for
time so that for all 𝑡 ∈ 𝑇 we have that 𝑋𝑣(𝑡, ⋅) is a random variable on a probability
space (Ω,ℱ,ℙ). The endogenous stochastic process (𝑋𝑣)𝑣∈𝑉 ∶ 𝑇 × Ω → ℝ|𝑉 | is a
solution to first-order random differential equations

𝑑𝑋𝑣(𝑡, ⋅)
𝑑𝑡 = 𝑓𝑣(X(𝑡, ⋅),U(𝑡, ⋅)), ∀𝑣 ∈ 𝑉,

with (𝑓𝑣)𝑣∈𝑉 ∶ ℝ|𝑉 | × ℝ|𝑊| → ℝ|𝑉 | a measurable function and (𝑈𝑤)𝑤∈𝑊 ∶ 𝑇 × Ω →
ℝ|𝑊| an exogenous stochastic process if for almost all 𝜔 ∈ Ω

𝑑𝑋𝑣(𝑡, 𝜔)
𝑑𝑡 = 𝑓(X(𝑡, 𝜔),U(𝑡, 𝜔)), ∀𝑣 ∈ 𝑉.

The random fluctuations in many financial, biological, and physical models are nat-
urally modelled through random differential equations with initial conditions X(𝑡0)
that are determined by independent exogenous random variables U = (𝑈𝑤)𝑤∈𝑊
taking value in ℝ|𝑊|. These initial conditions can be modelled by an exogenous

5The inclusion of noise terms can be traced back to Albert Einstein and Paul Langevin (1872-1946),
who used it to explain Brownian motion in physical systems (Han et al., 2017).
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stochastic process that is constant in time. Under certain regularity conditions (see
(Kloeden et al., 1992) for more details) the solution for 𝑡 ≥ 0 and u(𝜔) ∈ ℝ|𝑊| for
𝜔 ∈ Ω to the initial value problem is then given by

X(𝑡,u(𝜔)) = X(𝑡0,u(𝜔)) +∫
𝑡

𝑡0

f(X(𝑠,u(𝜔)))𝑑𝑠.

We consider causal relations in a dynamical model that are defined through the
effects of interventions, see for example Bongers and Mooij (2018) and Mooij, Janz-
ing, and Schölkopf (2013). The options include fixing the value of targeted values
at one time-point by changing the initial conditions X𝐼(𝑡0, ⋅) and soft interventions
which alter parameter values in the model. A stochastic version of perfect interven-
tions, also known as ideal, hard, structural, or independent interventions, replace an
endogenous process X𝐼(𝑡, ⋅), with 𝐼 ⊆ 𝑉, that is targeted by an intervention do(𝐼, 𝝃𝐼)
by an independent process 𝝃𝐼 (Eberhardt et al., 2007). In this work, we are interested
in dynamical models that converge to an equilibrium, and therefore we mostly focus
on perfect interventions that fix the value of targeted variables X𝐼(𝑡, ⋅) to a constant
intervention value 𝝃𝐼 for all time. This is accomplished by setting the time-derivatives
of targeted variables equal to zero and replacing the initial conditions with the inter-
vention value (Mooij, Janzing, and Schölkopf, 2013). More formally, we consider an
operation do(𝐼, 𝝃𝐼) that set

𝑑𝑋𝑖(𝑡,𝜔)

𝑑𝑡
= 0 for 𝑖 ∈ 𝐼, for all 𝑡 ≥ 0, and for all 𝜔 ∈ Ω, while

putting X𝐼(𝑡0, 𝜔) = 𝝃𝐼. The causal effects of an intervention are the solution compon-
ents of the endogenous process that solves the (intervened) systemwhich are affected
by that intervention.6

1.2.3 Equilibrating dynamical models

Dynamicalmodels capture the time-dependent behaviour of systems that evolve over
time. By specifying the operation of equilibration, we can study the stationary be-
haviour of the dynamical model under certain stability assumptions. Additionally,
by specifying operations called interventions, we can model how the stationary and
dynamic solutions to a system react to certain actions. The causal semantics of an
equilibrated dynamical model are obtained by comparing the equilibrium state be-
fore and after an intervention.7

The stochastic process that solves a dynamical model may converge to a random

6Althoughmathematical analysis of the properties of causalmodels are of interest in and of themselves,
the hope is that these models resemble certain aspects of reality so that they can be used to make causal
predictions for physical systems. In other words, we would like to have that interventions relate to the
ways in which a variable can be controlled in an experiment in the real world that the dynamical model
purports to describe.

7In economics, comparative statics is a type of statistical analysis that compares equilibria before and
after adjustments to an exogenous parameter in a model are made. In this thesis, we consider other types
of interventions as well.
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variable that solves an associated structural causalmodel that preserves the causal se-
mantics. Under stability assumptions, an SCM can be obtained by equilibrating a dy-
namicalmodel (Bongers andMooij, 2018; Dash, 2005; Mooij, Janzing, and Schölkopf,
2013). In the deterministic setting, Mooij, Janzing, and Schölkopf (2013) showed that
a set of first-order differential equations in a globally asymptotically stable system
can be mapped to a set of labelled equilibrium equations by setting the time derivat-
ives of variables equal to zero and labelling them as belonging to the time derivative
of particular variables. If each labelled equilibrium equation can be solved for the
corresponding variable then the labelled equilibrium equations can be mapped to a
cyclic SCM without self-cycles. The idea that a dynamical model can be equilibrated
to an SCM was formalized in a general stochastic settingwith zeroth and higher order
differential equations by Bongers and Mooij (2018), who showed how to equilibrate
a causal dynamics model to an SCM that may contain self-cycles.

The approach is easily illustrated by a simple econometric model. Consider the
following dynamical model for the price 𝑋𝑃(𝑡), supply 𝑋𝑆(𝑡), and demand 𝑋𝐷(𝑡) of a
product:

𝑑𝑋𝑃(𝑡)
𝑑𝑡 = 𝛼𝑃(𝑋𝐷 − 𝑋𝑆) (1.8)

𝑑𝑋𝑆(𝑡)
𝑑𝑡 = 𝛼𝑆(𝑐𝑆𝑋𝑃 + 𝑈𝑆 − 𝑋𝑆) (1.9)

𝑑𝑋𝐷(𝑡)
𝑑𝑡 = 𝛼𝐷(𝑐𝐷𝑋𝑃 + 𝑈𝐷 − 𝑋𝐷), (1.10)

where𝑈𝑆, 𝑈𝐷 are independent exogenous random variables and 𝛼𝑃, 𝛼𝑆, 𝛼𝐷, 𝑐𝑆, and 𝑐𝐷
are constant parameters. From this, labelled equilibrium equations are obtained by
setting the time derivatives in (1.8)-(1.10) equal to zero. The equilibrium equations
obtained from (1.9) and (1.10) can easily be solved for supply and demand, resulting
in the structural equations in (1.12) and (1.13) below, respectively. If we set (1.8)
equal to zero then we are not able to solve for price. Bongers and Mooij (2018) show
that the equilibration of the dynamical model for price, supply, and demand is given
by the structural equations

𝑋𝑃 = 𝑋𝑃 + 𝑋𝐷 − 𝑋𝑆, (1.11)
𝑋𝑆 = 𝑐𝑆𝑋𝑃 + 𝑈𝑆, (1.12)
𝑋𝐷 = 𝑐𝐷𝑋𝑃 + 𝑈𝐷, (1.13)

with a self-cycle at 𝑋𝑃. This equilibration preserves the causal semantics of the dy-
namical model (Bongers andMooij, 2018). That is, the outcome of a perfect interven-
tion targeting an endogenous variable in the SCMof the equilibrated systemwould be
the same if these operations were applied in the reverse order (i.e. if the intervention
was first applied to the dynamical model which was then equilibrated).

Several (causal) models have been proposed that may arise from equilibration in
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a dynamical system. In economics, simultaneous equationmodels are used to model
equilibrium mechanisms induced by dynamical models (F. M. Fisher, 1970). By dis-
tinguishing between exogenous en endogenous variables in a simultaneous equations
model, a causal ordering of endogenous variables can be deduced from the symmet-
ric equations of the model (Berndsen, 1995; De Kleer et al., 1986; Iwasaki et al., 1994;
Simon, 1953). Another approach is given by Lauritzen and Richardson (2002), who
show that the dependence structure of the equilibrium distribution generated by a
dynamical model with feedback can be represented by (causal) chain graphs. Many
authors have noted how cyclic SCMs may represent the equilibrium distribution of
a dynamic process (Bongers and Mooij, 2018; Dash, 2005; Hyttinen et al., 2012; La-
cerda et al., 2008; Mooij, Janzing, Heskes, et al., 2011; Mooij, Janzing, and Schölkopf,
2013; Richardson, 1996; Spirtes and Richardson, 1995).

1.3 Causal discovery and the scientific method

The progress of scientific knowledge over the past centuries was achieved by means
of the scientific method. It is an empirical approach that usually starts out with a hy-
pothesis, which can be either stumbled upon by pure chance or which could be for-
mulated through several steps of abductive and inductive reasoning. Subsequently,
deductive reasoning is applied to generate predictions from the hypothesis so that an
experiment can be designed to either falsify or confirm the theory. When an experi-
ment confirms observations or predicts something that was previously not known it
is usually assigned greater credibility.

The strength of the scientific method is exemplified by the story of Ignaz Sem-
melweis (1818-1865) who discovered that bacteria are a cause of a deadly disease
called childbed fever but who was ridiculed by the medical community in Vienna at
the time (Semmelweis et al., 1983). Semmelweis noticed a large discrepancy between
themortality rates after childbirth in the clinic that was run bymidwives and the one
in which doctors were in charge. Moreover, women who gave birth to their babies in
the streets or at home, had an even smaller chance of contracting and dying of child-
bed fever. Semmelweis considered many hypothesis for causes leading to the disease
but discarded almost all of them because they were inconsistent with the data that he
had managed to gather. When a professor of forensic medicine died with symptoms
of the disease after sustaining a cut with a knife that was used on a cadaver, Semmel-
weis conjectured that cadaverous particles adhering to hands cause childbed fever
in maternity patients. To confirm his suspicions he mandated hand washing to des-
troy the cadaverous material before examinations, after which he observed a signific-
ant drop in mortality rate. At the time, a causal relation between hand-washing and
childbed fever did not fit in with the dominant narrative about the nature of diseases
and Semmelweis’ thoughtful analysis was met with scorn and derision. After suffer-
ing from depression he died in a psychiatric ward before his theory was confirmed
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by Louis Pasteur (1822-1895). Due to this careful deliberation of facts and diligent
application of the scientific method Semmelweis was able to save many lives.

1.3.1 Empirical discovery

The inductive-deductive method of Aristotle, who repeatedly applied induction to
derive general principles from observations and then deduction to test the result-
ing theory against further observations, has influenced many philosophers. Both
the physicist Alhazen (965-1040), who studied light, and mathematical scientist Al-
Biruni (973-1050), who studied mechanics and mineralogy, emphasized the role of
empiricism and experimentation in deriving universal truths from observations. The
philosopher Avicenna (980-1037), who was one of the first to describe some of the
crucial methods that are used in the scientific method, believed that experimenta-
tion follows from theories, instead of the other way around. In practice, scientific
knowledge is often acquired after many iterations of induction, deduction, and ex-
perimentation.

These days, Francis Bacon (1561-1626) is often regarded as pioneer of themodern
scientific method and sometimes he is even referred to as the ‘father of empiricism’.
Later, John Stuart Mill (1806-1873) developed four rules for experimental inquiry,
thereby significantly refining the Baconian method for the identification of causal
relations from observed regularities and experiments. It is easiest to explain Mill’s
rules with a practical example. Suppose you suffer from food poisoning after eating
at a buffet with a group of friends and youwish to identify which dish caused it. To do
so, youmake some calls to verify who ate fromwhich dish in order to construct Table
1.1. From this, you observe that everyone who did not eat fish remained healthy
while those that did eat fish got sick. Mill’s method of differences states that: “If
an instance in which the phenomenon under investigation occurs, and an instance
in which it does not occur, have every circumstance in common save one, that one
occurring in the former; the circumstances in which alone the two instances differ,
is the effect, or the cause, or an indispensable part of the cause of the phenomenon.”
From this early version of controlled experimentation, we can conclude that it was
the fish that caused the sickness. The method of agreement says that if everybody
who got sick ate fish while there is no other dish from which the people who got sick
all ate then fish can be identified as the cause.

If it turns out that themore fish people ate themore they suffered from symptoms
like nausea and stomach-ache then by the rule of concomitant variation the fish is
identified as a possible cause of the food poisoning. This method can be seen as
an early version of Reichenbach’s principle of common cause, which states that a
correlation between two variables points to either a causal relation between them
or that they share a common cause. Finally, the method of residues says that when
the influence of factors that do not fully explain a certain effect are subtracted from it
then the residual can be attributed to an unexamined cause. AlthoughMill’smethods



16 1. Introduction

Table 1.1: Overview of the dishes that a group of friends ate indicating who got sick and how
did not. Using themethod of differences or the method of agreement the fish can be identified
as a possible cause of the sickness.

Alice Bob Charlie Daniel

Fish � × × �

Chicken × � × �

Vegetables � � × ×
Soup × × � �

Sick? Yes No No Yes

play an important role in causal reasoning and evaluating hypothesis, they are neither
suitable for causal discovery nor for proving the existence of certain causal relations
because they can only help to find single likely causes from a set of predetermined
possibilities.

The most influential method for establishing causal relations is the randomized
controlled trial (R. A. Fisher, 1935). The method applies to systems with a context
variable 𝐶 and an outcome variable 𝑋, under the condition that the outcome is not
a cause of the context and the outcome and context do not share a common cause
(Mooij, Magliacane, et al., 2020). In drug trials, for example, the context 𝐶 indicates
whether a patient is in the treatment group (𝐶 = 1) or in the control group (𝐶 = 0).
When patients are randomly assigned to these groups, we can be sure that the out-
come 𝑋, e.g. blood pressure, does not cause the context nor does it share a common
causewith it. A statistical test can then confirmwhether there is a significant depend-
ence between the context and the outcome (whether blood pressure of patients in the
treatment group is significantly lower than that of patients in the control group). Us-
ing Reichenbach’s principle of common cause there must be a causal effect of the
context (i.e. treatment) on the outcome.

A variant of randomized controlled trials are natural experiments that do not re-
quire randomization, but instead rely on background knowledge to ensure that the
context variable is not caused by the outcome and does not share a common cause
with it. For instance, Angrist et al. (1998) aimed to estimated the effect of family
size on the career of the mother. For this they could not simply look at the correla-
tion between the two because they expected that lifestyle choiceswould be a common
cause of both family size and career prospects and that their would be a reverse causal
effect of career success on family size. It turns out that families with two children of
the same sex aremore likely to have a third child. This allowed them to interpret data
as an experiment where nature had randomly assigned some families to have two or
three children. Although these type of experiments are sometimes successfully ap-
plied in economics, epidemiology, and sociology, themethod is inmany cases difficult
or impossible to implement.
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1.3.2 Causal discovery from observational data

In the early 90s, researchers started to develop structure learningmethods for the pur-
pose of learning a graphical representation of the dependences and independences
in purely observational data. To do so, one typically assumes that the data was gen-
erated by a graphical model, which is a pair consisting of a probability distribution
and a graph that encodes exactly the conditional independences in the probability
distribution. Structure learning algorithm are able to recover an equivalence class of
that graph from data that was sampled from that probability distribution. Graphical
models originated in the work of (Gibbs, 1902), who studied the total energy of large
systems of locally interacting particles and the work of (S. Wright, 1921), who stud-
ied genetics using path-analysis. Nowadays, graphical models are commonly used in
Bayesian statistics and machine learning (e.g. for causal inference, automatic speech
recognition, modelling gene regulatory networks, computer vision).

Structure learning algorithms can be used for causal discovery if one assumes
that the directed edges in the learned graph correspond to stable and autonomous
mechanisms in the real-world that can be individually manipulated without disturb-
ing the others, see e.g. Pearl (2009) and Spirtes, Glymour, et al. (2000) for more de-
tails. In other words, under additional assumptions on the data-generating process
(e.g. the underlying model is an acyclic structural causal model), it can be shown
that the presence and absence of directed paths in the learned graph corresponds to
the absence or presence of causal relations. Although the phrase ‘correlation does
not imply causation’ is notorious in statistics, it can be shown that under certain as-
sumptions on the underlyingmodel, causal discovery algorithms can construct graphs
representing causal relations fromobservational data alone. Formore background on
causal discovery algorithms in the literature we refer to Section 5.2.1. If the causal
graph is known in advance, than do-calculus is a powerful technique to estimate the
strength of causal effects from observational data, see (Forré et al., 2019; Pearl, 2009).

1.4 Thesis outline

This thesis was inspired by a desire to understand the output of causal discovery
algorithms when they are applied to protein expression data. We believe that the
ideas presented here are promising steps towards bridging the gap between theory
and practice for causal discovery in the context of dynamical systems at equilibrium.
In the remainder of this section, we will discuss our contributions in more detail. We
also provide an outline of the thesis.

First, in Section 1.4.1, we discuss novel theoretical contributions to the tech-
nique of causal ordering. In Section 1.4.2, we present ways in which these techniques
may be used to study and identify models with feedback from both data and model
equations. In Section 1.4.3, we discuss how the Causal Constraints Models that we
propose overcome certain limitations of SCMs for systems with feedback that have
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reached equilibrium. Finally, in Section 1.4.4, we consider how we have contributed
to bridging the gap between theory and practice in causal discovery from protein ex-
pression data.

1.4.1 Extending the causal ordering technique

The causal ordering algorithm of Simon (1953) takes as input a self-contained set of
equations and returns an ordering of the endogenous variables that appear in these
equations. Our contributions are as follows:

⚫ We generalize the notion of perfect interventions to models consisting of a set of
symmetric (i.e. non-structural) equations.

⚫ Weextend the causal ordering algorithm so that it can be applied to sets of equa-
tions that are not self-contained. These arise, for example, from the equations
and constants of motion in certain dynamical systems.

⚫ We formalize the causal ordering algorithm by defining its output as a directed
cluster graph that we call the causal ordering graph. We prove that it represents
the effects of soft interventions and certain perfect interventions under mild
assumptions.

⚫ We show how to construct the Markov ordering graph from the output of the
causal ordering algorithm. We prove that it implies conditional independences
between variables. We demonstrate that the distinction between Markov or-
dering and causal ordering prevents ambiguous causal interpretations of the
model for a bathtub at equilibrium in Iwasaki et al. (1994).

These theoretical results will be presented and elaborated upon in Chapter 4.
Additionally, in Chapter 5 we consider applications of the causal ordering technique
to sets of equilibrium equations implied by first-order differential equations with ini-
tial conditions. We demonstrate how, under certain solvability assumptions, causal
relations and conditional independences are represented by the equilibrium causal
ordering graph and the Markov ordering graph respectively. We also use the causal
ordering algorithm to construct a dynamic causal ordering graph from dynamic equa-
tions that represents transient effects of interventions. This sheds new light on com-
mutation results regarding equilibration and intervention and a phenomenon called
perfect adaptation that frequently appears in biological models.

1.4.2 Causal discovery for perfectly adapted systems

Perfect adaptation in a dynamical system is the phenomenon that one or more vari-
ables have an initial transient response to a persistent change in one of the external
inputs but revert to their original value as the system converges to equilibrium. Feed-
back mechanisms ensure that the values of certain variables are robust against many
types of external disturbances. In Chapter 5, we study the causal and probabilistic
aspects of perfectly adapted systems with the help of the causal ordering algorithm:
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⚫ We provide a sufficient graphical criterion and mild assumptions under which
the presence of perfect adaptation can be identified from the dynamic and equi-
librium causal ordering graphs associated with the model.

⚫ We give a sufficient condition and assumptions under which the presence of
perfect adaptation can be tested for in experimental equilibriumdatawith back-
ground knowledge.

⚫ We apply these ideas to several simple examples of perfectly adapted dynamical
systems. We demonstrate that the presence of perfect adaptation explains the
reversal of edges when such a system reaches equilibrium.

In Chapter 6 we consider qualitative predictions for the equilibrium distribution.
This includes the implied presence or absence of causal relations and the presence
or absence of conditional independences. We show that these predictions strongly
depend on whether the model is extended with a feedback mechanism for perfect
adaptation or not, and we demonstrate how the technique of causal ordering is a
convenient tool to establish robustness of qualitative model predictions. We then
characterize a large class of model extensions that preserve qualitative model predic-
tions. We propose a holistic approach to causal discovery where model extensions
are selected or rejected based only on data for the submodel (i.e. the model without
extension). We discuss how this idea may also be used to reason about the presence
or absence of feedback loops that result in perfect adaptation.

1.4.3 Beyond structural causal models

In this thesis we explore the relationship between static causal models and dynam-
ical models at equilibrium. In Chapter 3, we show that (cyclic) SCMs have limita-
tions when it comes to modelling the causal semantics and equilibrium distribution
of perfectly adapted dynamical systems. Here, perfect interventions are modelled
as experiments where the targeted variables are held at a fixed value by intervening
on their causal mechanisms (i.e. by setting their time-derivatives equal to zero) and
then waiting until the system has reached equilibrium again. In a nutshell, we pro-
pose a more general framework, that we call causal constraints models, to overcome
the limitations of SCMs in this context. We consider the technique of causal order-
ing as a means to construct both a causal ordering graph that represents the effects
of a possibly different set of interventions and a Markov ordering graph that encodes
conditional independences from a set of active causal constraints. Our contributions
are as follows:

⚫ We provide a concrete example, corresponding to a simple biochemical reac-
tion, for which there exists no SCM that fully captures the causal semantics at
equilibrium. That is, the equilibrium distribution is not uniquely specified and
the presence or absence of certain causal effects are not implied by the struc-
tural equations of the SCM. We show that, under some stability assumptions,
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CCMs are capable of fully capturing the causal semantics and equilibrium dis-
tributions under intervention of dynamical models at equilibrium.

⚫ We also provide an example, corresponding to a filling bathtub, which shows
that the notion of perfect interventions on SCMs is too narrow to capture all rel-
evant causal concepts of the system. In other words, themore general notion of
interventions on symmetric equilibriumequationsmay reveal additional causal
structure. By construction, the CCM frameworkmodels all of the interventions
that are defined for SCMs. In Chapter 5 we show that the technique of causal
ordering may reveal additional causal structure if it is applied to the active con-
straints in a CCM.

⚫ We give examples where the equilibrium distribution of perfectly adapted dy-
namical systems is not faithful to the graph of its associated SCM in Chapter 5.
A perfectly adapted system contains a particular type of feedback loop that en-
sures such a faithfulness violation in a way that does not depend on specific
tuning of model parameters. We demonstrate that the Markov ordering graph
associated with active causal constraints may also reveal additional conditional
independences.

1.4.4 Bridging the gap between theory and practice

This PhD project started out with attempts to apply constraint-based causal discovery
algorithms to a dataset of protein expression levels in cells that were treated with
various stimuli. One issue that we encountered was that without knowing the true
underlying causal model, we were unable to verify the correctness of our graphical
outputs. Comparisons with biological consensus networks revealed that some of the
pathways that we detected were oriented in the opposite direction. From this point,
we set out to better understand how our observations in the data were related to the
biochemical reaction networks and dynamical models that are used in cell biology.
This led us to investigate causality and independence in dynamical models and how
they help us to understand the output of causal discovery algorithms. Summarizing,
the ideas that are presented in this thesis form an important step towards bringing
the world of causal discovery closer to dynamical modelling:

⚫ Initially, we identified the presence of unknown measurement error as a po-
tential cause for erroneous interpretations of the output of causal discovery al-
gorithms. More details are given in Chapter 2, where we also present a partial
solution, although its application is limited.

⚫ To fully capture certain causal semantics of dynamical systems at equilibrium,
we proposed a generalization of the SCM framework that we call Causal Con-
straintsModels (CCMs). The details of thismodelling class are given inChapter
3.

⚫ We extended the causal ordering algorithm so that we could analyse causality
and independence in sets of (equilibrium) equations and in CCMs. In particu-
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lar, this technique allowed us to investigate subtle differences between graphs
encoding conditional independences and those depicting the presence and ab-
sence of causal relations. These ideas are presented in Chapter 4.

⚫ We showed that the presence of perfect adaptation is a plausible explanation for
seeming differences between the direction of causal relations implied by causal
discovery algorithms and biological consensus networks for protein pathways.
Additionally, we outlined how this can be used to identify the presence of feed-
back loops that achieve perfect adaptation frommodel equations and from cer-
tain experiments. These results are given in Chapter 5.

⚫ Finally, we applied the technique of causal ordering to assess the robustness of
qualitative model predictions under extensions of a dynamical model at equi-
librium. We demonstrated how this idea can be used to reason about a larger
system, given only observations and a model for a subsystem. The details of
this novel approach to model selection can be found in Chapter 6.
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Chapter 2

Causal discovery in the presence
of measurement error

Adaptation based on:
An upper bound for random measurement error in causal discovery,

T. Blom, A. Klimovskaia, S. Magliacane, and J.M. Mooij,
Proceedings of the 34th Annual Conference on Uncertainty in Artificial Intelligence (UAI-18).

Causal discovery algorithms aim to infer causal relations from data. To do so,
they rely on several assumptions, including the absence of measurement error. This
assumption is most likely violated in practical applications, whichmay result in erro-
neous results that cannot be reproduced in independent experiments. In this chapter,
we propose a novel method to correct for measurement error, which relies on the
strong faithfulness assumption and makes use of an upper bound for the variance of
measurement error. We also show how to obtain such an upper bound for the vari-
ance of random measurement error from the covariance matrix of measured vari-
ables in a linear Gaussian model. We illustrate our method on both simulated data
and real-world protein expression data.

2.1 Introduction

The discovery of causal relations is a fundamental objective in science and the in-
terest in causal discovery algorithms has increased rapidly since they were estab-
lished in the 1990s (Pearl, 2009; Spirtes, Glymour, et al., 2000). In practice, it may
happen that their predictions are not reproducible in independent experiments. This
chapter focuses on the ramifications of the presence of measurement error for the re-
liability of causal discovery. In particular, we show howmeasurement error is a pos-
sible explanation for incorrect or inconsistent output of causal discovery algorithms

23
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on different datasets obtained from a single system. To mitigate adverse effects of
measurement error, we introduce a novel method to estimate an upper bound for the
variance of measurement error in linear Gaussianmodels and show how such an up-
per bound can be used as a partial solution to issues that are due to the presence of
measurement error.

Intuitively it is easy to understand why measurement error complicates causal
discovery. For example, the room temperaturemay cause ice-cream tomelt while the
reading on a thermometer is not a cause of melting ice-cream at all. Clearly, meas-
ured quantities themselves are not causes of one another even when the variables
that they represent are. Consider an experiment in a gymwhere the type and amount
of exercise 𝑋𝑣𝐸 of participants is controlled in an experiment and where weight loss
𝑋𝑣𝑊 at a later time is measured with great accuracy. Additionally, we have access to a
noisy measurement 𝑋 ̃𝑣𝐶 = 𝑋𝑣𝐶 +𝑀𝑣𝐶 of their amount of burned calories 𝑋𝑣𝐶 where
𝑀𝑣𝐶 is an independent exogenous random variable representing measurement error.
Suppose that the directed acyclic graph in Figure 2.1 is the causal graph associated
with this system. It can be seen that even though 𝑣𝐸 and 𝑣𝑊 are d-separated1 by 𝑣𝐶,
they are not d-separated by ̃𝑣𝐶, which implies that even though exercise and weight
loss are independent conditional on burned calories, they are not when we condi-
tion on the measurement ̃𝑣𝐶. In this chapter we will demonstrate that, for very large
measurement error, onemight even find that themeasurements of the calories are de-
pendent on both exercise and weight loss, but conditionally independent of exercise
given weight loss. Since constraint-based causal discovery algorithms rely on condi-
tional independences, they are not equipped to learn the underlying causal structure
of latent variables that are not corrupted by measurement error. A researcher who
is unaware of the measurement error could then draw incorrect conclusions (e.g.
weight loss causes the burning of calories).

𝑣𝐸 𝑣𝐶 𝑣𝑊

̃𝑣𝐶

Figure 2.1: Causal graph corresponding to a simple model for amount of exercise 𝑣𝐸, burned
calories 𝑣𝐶, and weight loss 𝑣𝑊, in the presence of measurement error on 𝑣𝐶. Notice that
the vertices 𝑣𝐸 and 𝑣𝑊 are d-separated by 𝑣𝐶 but not by ̃𝑣𝐶. Gray shaded nodes are observed
variables, white nodes are latent variables.

1D-separation is a relation between vertices in a graph, the formal definition will be given in Defini-
tion 4.14 in Section 4.A.2 of Chapter 4.
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2.1.1 Related work

A measurement process can be modelled in many different ways. Here, we follow
(Kuroki et al., 2014; Pearl, 2010; Scheines and Ramsey, 2016; K. Zhang et al., 2017)
and focus on randommeasurement error in structural causal models. In this case, an
independent exogenous random variable representing measurement noise is added
to the structural equation of a variable to obtain a structural equation for its measure-
ment. We propose a novel method that identifies an upper bound for the variance of
random measurement error in a linear Gaussian model using vanishing tetrad con-
straints. These results build upon previous work regarding the identification of sets
of variables that are d-separated by a common latent variable, see (Bollen, 1989; Pearl,
2010; Silva et al., 2006; Sullivant et al., 2010) for more details. We show that uncer-
tainty regarding the variance of measurement error can be propagated to an uncer-
tainty in the partial correlations of the latent variables that are unperturbed bymeas-
urement error, see also (Harris et al., 2013). This uncertainty can then be taken into
account when performing statistical tests so that we have outputs: dependent, inde-
pendent, or unknown. Although these types of outputs for independence tests have
been already used in previous work, e.g. (Triantafillou et al., 2017), in that case the
thresholds for the different decisions were hyper-parameters of the algorithm, while
we provide an adaptive and more principled way to set them. Similarly to previous
work, our approach relies on strong faithfulness (Kalisch et al., 2007; Maathuis et al.,
2010; Spirtes, Glymour, et al., 2000) but crucially it does not require causal sufficiency,
i.e. the absence of unmeasured confounders, as K. Zhang et al. (2018) do. Recently,
Saeed et al. (2020) used the method-of-moments to estimate the causal structure of
the unmeasured latent variables, although they require more detailed knowledge of
the measurement process.

In this work, we propose a practical correction method for measurement error
in the context of constraint-based causal discovery. We demonstrate the effective-
ness of our approach in identifying causal structures using Local Causal Discovery
(LCD) (Cooper, 1997) on simulated data. We discuss how measurement error pos-
sibly provides an explanation for apparent discrepancies between the output of causal
discovery algorithm applied to protein expression data and biological consensus net-
works. Furthermore, we apply the ideas that we develop in this chapter to real-world
protein expression data. Although we focus on one particular causal discovery al-
gorithm, our ideas can in principle be applied to other constraint-based causal dis-
covery algorithms as well.

2.1.2 Preliminaries

For the remainder of this chapter, variables will be denoted by capital letters and
sets of variables by bold capital letters. We will assume that the data-generating pro-
cesses described here can be modelled by an acyclic Structural Causal Model (SCM)
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with associated causal graph 𝒢 = ⟨𝑉, 𝐸, 𝐵⟩ where vertices 𝑉 represent latent or ob-
served variables and 𝐸, 𝐵 are sets of directed and bi-directed edges respectively. For
graphs without directed cycles we say that 𝑋𝑣 is a direct cause of 𝑋𝑤 (where 𝑣, 𝑤 ∈ 𝑉)
whenever there is a directed edge from 𝑣 to 𝑤 in 𝐸. When there is a sequence of dir-
ected edges from 𝑣 to 𝑤 in 𝒢 with all arrowheads pointing towards 𝑤 (i.e. a directed
path) then we say that 𝑋𝑣 is an ancestor or indirect cause of 𝑋𝑤. Bi-directed edges in
𝐵 between two vertices 𝑣 and 𝑤 are used to represent hidden confounders between
variables 𝑋𝑣 and 𝑋𝑤.

If 𝐶 ⊆ 𝑉 d-separates 𝐴 ⊆ 𝑉 from 𝐵 ⊆ 𝑉 then we write 𝐴 ⟂ 𝐵 | 𝐶 (see Defin-
ition 4.14 in Section 4.A.2 of Chapter 4 for a formal definition). In the absence of
measurement error, there are additional assumptions that allow us to relate condi-
tional (in)dependences between sets of variables X𝐴 and X𝐵 while controlling for
variables inX𝐶 to d-separation in the underlying causal graph 𝒢 (Pearl, 2009; Spirtes,
Glymour, et al., 2000). Throughout the remainder of this paper we will assume that
the following commonly made assumptions hold.

(i) There are no directed cycles in the causal graph.
(ii) Markov Property: For all disjoint sets of vertices 𝐴, 𝐵, 𝐶 ⊆ 𝑉 it holds that 𝐴 ⟂

𝐵 | 𝐶 ⟹ X𝐴 ⟂⟂ X𝐵 |X𝐶.
(iii) Faithfulness: For all disjoint sets of variablesX𝐴,X𝐵,X𝐶 ⊆ X it holds thatX𝐴 ⟂⟂

X𝐵 |X𝐶 ⟹ 𝐴⟂ 𝐵 |𝐶.
(iv) No selection bias is present.

The Local causal discovery (LCD) algorithm is a straightforward and efficient
search method to detect one specific causal structure from experimental data us-
ing dependence and independence relations between variables combined with back-
ground knowledge (Cooper, 1997). The algorithm looks in an (experimental) dataset
for triples of variables (𝑋𝑣𝑖, 𝑋𝑣𝑗, 𝑋𝑣𝑘) for which (a) it is known that 𝑋𝑣𝑖 is not caused
by any observed variable and (b) the following (in)dependences hold: 𝑋𝑣𝑖 ⟂⟂/ 𝑋𝑣𝑗,
𝑋𝑣𝑗 ⟂⟂/ 𝑋𝑣𝑘, and 𝑋𝑣𝑖 ⟂⟂ 𝑋𝑣𝑘 ∣ 𝑋𝑣𝑗. We will henceforth call such triples LCD triples.
Under the common assumptions, the causal graphs that correspond to this inde-
pendence pattern are shown in Figure 2.2. A conservative variant of LCD is given
by Triantafillou et al. (2017) who also require that 𝑋𝑣𝑖 ⟂⟂/ 𝑋𝑣𝑘, 𝑋𝑣𝑖 ⟂⟂/ 𝑋𝑣𝑗 | 𝑋𝑣𝑘, and
𝑋𝑣𝑗 ⟂⟂/ 𝑋𝑣𝑘 | 𝑋𝑣𝑖 and use it in a real-world application to protein expression data.

𝑣𝑖 𝑣𝑗 𝑣𝑘

Figure 2.2: An LCD triple has the above causal structure, with at least one of the dashed arrows
present.

In practice, constraint-based causal discovery algorithms rely on statistical tests
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to assess the (in)dependence relationships between variables and exploit this inform-
ation to construct a causal graph. For data that has a multivariate Gaussian distribu-
tion, a (conditional) independence corresponds to a vanishing (partial) correlation
coefficient. For random variables (𝑋1, … , 𝑋𝐷) ∼ 𝒩(𝝁, 𝜮), the Pearson partial correla-
tion can be calculated from the inverse covariance matrix, which we will henceforth
denote by𝜦 = 𝜮−1. Conventionally, one calculates a p-value 𝑝𝑇 for the (conditional)
dependence between variables 𝑋 and 𝑌 conditional on a set of variables Z, so that
dependence relations can be determined by

{
𝑋 ⟂⟂/ 𝑌 ∣ Z if 𝑝𝑇 < 𝛼
𝑋 ⟂⟂ 𝑌 ∣ Z if 𝑝𝑇 > 𝛽,

. (2.1)

where 𝛼 and 𝛽 are thresholds for dependence and independence respectively. The
nature of the relation is undecided when 𝛼 ≤ 𝑝𝑇 ≤ 𝛽. Usually only a single threshold
𝛼 = 𝛽 = 0.01 or 𝛼 = 𝛽 = 0.05 is used.

Especially in cases where many latent variables are present, e.g. when there is
measurement error, theremay be very few vanishing partial correlations between ob-
served variables. Additional information about the model structure may be provided
by vanishing tetrad differences (Scheines, Spirtes, et al., 1998). For linear SCMs these
are constraints on the covariancematrix of the variables in themodel that can be read
off from the causal graphs associatedwith the SCM. For linear SCMs these constraints
are graphically characterized by the Tetrad Representation Theorem (Spirtes, 1989).
The advantages of analysing tetrad constraints in under-identified SCMs is discussed
by Bollen and Ting (1993).

2.2 Effects of measurement error on local causal discovery

The aim of this section is to illustrate potential adverse effects on the output of
constraint-based causal discovery algorithms caused by the presence of (unknown)
random measurement error. To that end, we provide a detailed analysis of the beha-
viour of partial correlations in response to increasing measurement error in a partic-
ular SCM. We assume that observed variables are subject to random measurement
error, which is a vector of independent noise variables M = (𝑀𝑟1, … ,𝑀𝑟𝑛). Meas-
urements of a random vector X = (𝑋𝑣1, … , 𝑋𝑣𝑛) are then given by X̃ = (𝑋 ̃𝑣1, … 𝑋 ̃𝑣2) =
X +M, so that a measurement vertex 𝑋 ̃𝑣𝑖 is always childless and has precisely two
parents: 𝑋𝑣𝑖 and the source of its measurement error𝑀𝑟𝑖.

In many practical applications, it is reasonable to assume that the measurement
noise follows a Gaussian distribution. For instance, when the measurement noise
is the sum of many small independent sources of error, it approximates a normal
distribution.2 From here on, we will assume that measurement errors are independ-

2The central limit theorem in probability theory establishes that the sum of independent random vari-
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Figure 2.3: The causal graph and partial correlations of endogenous variables in the SCMwith
structural equations (2.2) to (2.5). There is random measurement error on 𝑋𝑣2. Gray shaded
vertices are observed variables (the others are latent) and dashed vertices represent independ-
ent exogenous random variables (the others are endogenous). The coefficients alongside the
arrows represent the coefficients in the model. The partial correlations in the random meas-
urement error model are given in Figure 2.3(b). The dotted lines represent the critical values
for the correlations at a significance level of 𝛼 = 5% for sample sizes 𝑛 = 100 and 𝑛 = 1000.
The partial correlations were calculated for noise variables following a standard normal distri-
bution and parameters 𝛽12 = 0.6, 𝛽23 = 1.2.

ent and follow a Gaussian distribution, i.e. the measurement noise variables satisfy
M = (𝑀𝑟1, … ,𝑀𝑟𝑛) ∼ 𝒩(0, 𝜮M), where 𝜮𝑀 is a diagonal covariance matrix.

2.2.1 Partial correlations

We illustrate the effects of measurement error on a structural causal model with ob-
served endogenous variables 𝑋𝑣1, 𝑋 ̃𝑣2, 𝑋𝑣3, latent variable 𝑋𝑣2, and independent exo-
genous random variables 𝑈𝑤1, 𝑈𝑤2, 𝑈𝑤3, 𝑀𝑟2 following a Gaussian distribution, with
the following structural equations:

𝑋𝑣1 = 𝑈𝑤2 (2.2)
𝑋𝑣2 = 𝛽12𝑋𝑣1 + 𝑈𝑤2 (2.3)
𝑋𝑣3 = 𝛽23𝑋𝑣2 + 𝑈𝑤3 (2.4)

𝑋 ̃𝑣2 = 𝑋𝑣2 +𝑀𝑟2, (2.5)

This model contains a latent variable 𝑋𝑣2 which is corrupted by independent random
measurement error 𝑀𝑟2, while both 𝑋𝑣1 and 𝑋𝑣3 are not affected by measurement
error. To be able to apply the LCD algorithm, we will consider the fact that 𝑋𝑣1 is not
caused by any of the endogenous variables in the SCM to be background knowledge
that can beused byLCD.The corresponding causal graph is displayed inFigure 2.3(a).

From this, we see that the triple (𝑋𝑣1, 𝑋𝑣2, 𝑋𝑣3) has the structure and properties of

ables tends to a normal distribution, regardless of the distribution of the original random variables.
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an LCD triple. Therefore we have that 𝑋𝑣1 ⟂⟂ 𝑋𝑣3 | 𝑋𝑣2 and the partial correlation for
the latent unmeasured variables satisfies 𝜌13|2 = 0. Let 𝜮 be the covariance matrix of
(𝑋𝑣1, 𝑋 ̃𝑣2, 𝑋𝑣3) and 𝜦 its inverse. By definition of partial correlation:

̃𝜌13|2 = −
Λ̃13

√Λ̃11Λ̃33

(2.6)

= −1

√Λ̃11Λ̃33

⋅
Σ̃12Σ̃23 − Σ̃13Σ̃22

||𝜮||
(2.7)

= −1

√Λ̃11Λ̃33

⋅
Σ12Σ23 − Σ13 (Σ22 + var (𝑀𝑟2))

||𝜮||
(2.8)

=
𝛽12𝛽23Σ̃11var (𝑀𝑟2)

||Σ̃||
⋅ −1

√Λ̃11Λ̃33

≠ 0, (2.9)

for non-zero parameters, so that 𝑋𝑣1 ⟂⟂/ 𝑋𝑣3 | 𝑋 ̃𝑣2. Therefore (𝑋𝑣1, 𝑋 ̃𝑣2, 𝑋𝑣3) is not an
LCD triple.

Remark 2.1. A statistical test with conventional thresholds would conclude that
𝑋𝑣1 and 𝑋𝑣3 are conditionally dependent conditional on the measurement 𝑋 ̃𝑣2, if the
measurement errorwould be large enough. If wewould incorrectly assume that there
is no measurement error, so that 𝑋𝑣2 = 𝑋 ̃𝑣2, then the Markov assumption would
appear to be violated. △

2.2.2 Empirical study

To better understand the way in which measurement error could impact the output
of causal discovery algorithms in real-world applications, we consider the effect of
varying the measurement error variance var(𝑀2) relative to the total variance of the
measurement 𝑋 ̃𝑣2 on the partial correlations in the SCM in the previous section.

The effects of increasing this relative randommeasurement error can be seen in
Figure 2.3(b). The dotted lines represent the 𝛼 = 0.05 threshold at different sample
sizes and (partial) correlations above this threshold are often considered to be de-
pendent. We see that for zero measurement error (so that 𝑋 ̃𝑣2 = 𝑋𝑣2), only the yellow
line is below the red and black dotted lines. In that case a conventional statistical
test would indicate that all variables are marginally dependent while 𝑋𝑣1 ⟂⟂ 𝑋𝑣3 | 𝑋 ̃𝑣2.
From this the LCD algorithm would conclude that (𝑋𝑣1, 𝑋 ̃𝑣2, 𝑋𝑣3) is an LCD triple,
and hence we would be able to detect the directed edge from 𝑋 ̃𝑣2 to 𝑋𝑣3. For relative
measurement errors larger than approximately 0.25 this conditional independence
would no longer be detected by testing for vanishing partial correlations at the 5%
level (because the yellow line is above the black-dotted line).
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From Figure 2.3(b) we also observe that for a sample size of 100 and a relat-
ive measurement error larger than approximately 0.3, a conventional statistical test
would indicate that 𝑋𝑣1 ⟂⟂ 𝑋 ̃𝑣2 | 𝑋𝑣3 since the partial correlation ̃𝜌12|3 ≈ 0 (i.e. below
the red dotted line) and all other (partial) correlations indicate a dependence (i.e.
above the red dotted line). From these constraints, the LCD algorithm would con-
clude that (𝑋𝑣1, 𝑋𝑣3, 𝑋 ̃𝑣2) is an LCD triple, suggesting the presence of a directed edge
from 𝑋𝑣3 to 𝑋 ̃𝑣2 in the reverse direction.

Remark 2.2. The results of constraint-based causal discovery algorithms like LCD
may depend on the sample size. This can be better understood by observing that
the dependences that are identified by a statistical test, depend both on the size of
the measurement error and the sample size. This way, we may obtain inconsistent
causal discoveries that cannot be reproduced on new datasets. △

This example showshowmeasurement error interfereswith detecting the correct
causal structures, whichmay lead to edge deletions, insertions or reversals. Note that
although we focused on the LCD algorithm here, the conclusions that we draw are
more generally applicable to constraint-based causal discovery algorithms.

Remark 2.3. For relative measurement error of approximately 0.25 a conflicting set
of (in)dependences arises for 𝑛 = 100. Since both the yellow and purple line are
below the red dotted line, a statistical test would indicate that 𝑋𝑣1 ⟂⟂ 𝑋𝑣3 | 𝑋 ̃𝑣2 and
𝑋𝑣1 ⟂⟂ 𝑋 ̃𝑣2 | 𝑋𝑣3, while all variables are marginally dependent. There is no model that
satisfies both the common assumptions and this set of (in)dependences, resulting in
a conflict of conditional independences. △

2.3 Upper bound for measurement error variance

In this section we show how, under certain conditions, an upper bound for the vari-
ance of random measurement error can be obtained from observational data with
random measurement error.

2.3.1 Theoretical results

First, consider the definition of random measurement error, which implies that the
true covariance matrix 𝜮 of random variables 𝑋𝑣1, … , 𝑋𝑣𝑛, the covariance matrix 𝜮M
of random measurement errors 𝑀𝑟1, … ,𝑀𝑟𝑛, and the covariance matrix 𝜮 of meas-
urements 𝑋 ̃𝑣1, … , 𝑋 ̃𝑣𝑛 are related as follows:

ΣM = 𝜮 − 𝜮 = diag(𝜎2𝑟1, … , 𝜎
2
𝑟𝑛),

where 𝜎2𝑟1, … , 𝜎
2
𝑟𝑛 > 0 are the variances of random measurement errors associated

with each variable.
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Remark 2.4. Given an (unbiased) estimate of 𝜮M, we can simply adjust the covari-
ancematrix Σ̃ as suggested by Pearl (2010). In practical applications such an estimate
of the covariance matrix of measurement error might not be available. △

To detect an upper-bound for random measurement error, we consider a min-
imum of four latent random variables 𝑋𝑣1, … , 𝑋𝑣4 and their corresponding measure-
ments 𝑋 ̃𝑣1, … , 𝑋 ̃𝑣4 ∈ 𝑉 with covariance matrices 𝜮 and 𝜮 respectively. Our detection
method relies on Lemma 2.1 which is due to Silva et al. (2006) and gives conditions
under which there exists a latent variable that d-separates the measured variables
𝑋 ̃𝑣1, … , 𝑋 ̃𝑣4.

3

Lemma 2.1. Let𝑋𝑣1, … , 𝑋𝑣4 be variables in a linear Gaussianmodel and let𝑋 ̃𝑣1, … , 𝑋 ̃𝑣4
be theirmeasurements with randommeasurement error. If the correlations satisfy ̃𝜌𝑖𝑗 ≠
0 for all 𝑖, 𝑗 ∈ {1, … , 4} and Σ̃12Σ̃34 = Σ̃13Σ̃24 = Σ̃14Σ̃23, then there exists a vertex 𝑣𝑙 in
the true underlying DAG such that 𝑋 ̃𝑣𝑖 ⟂ 𝑋 ̃𝑣𝑗 | 𝑣𝑙 for all 𝑖 ≠ 𝑗 ∈ {1, … , 4}.

Proof. The proof can be found in Silva et al. (2006).

When there exists a vertex 𝑣𝑙 that d-separates 𝑋 ̃𝑣1, … , 𝑋 ̃𝑣4, then the causal graph
and latent structure are represented by the causal graph in Figure 2.4. This follows
from the fact that the variables with measurement error 𝑋 ̃𝑣𝑖 can only have incoming
arrows from 𝑋𝑣𝑖 and 𝑀𝑟𝑖 and hence they never have any outgoing arrows. Because
𝑣𝑙 d-separates all 𝑋 ̃𝑣𝑖 it follows that there is no collider at 𝑣𝑙 with arrow coming from
these vertices.

̃𝑣1 𝑣1

𝑣𝑙

𝑣3𝑣2 𝑣4

̃𝑣2 ̃𝑣3 ̃𝑣4

Figure 2.4: Causal graph of upper bound pattern for model with random measurement error,
where at least one of the dashed edges is present. Gray shaded vertices are observed, while
the other vertices are latent. The indices 1, … 4 can be permuted. Vertices representing exogen-
ous random variables 𝑈𝑤1, … , 𝑈𝑤4 that serve as noise variables are not drawn, neither are the
vertices representing random measurement errors𝑀𝑟1, … ,𝑀𝑟4.

3These conditions are known as tetrad conditions in the literature, see Bollen (1989), Drton et al. (2008),
and Sullivant et al. (2010) for more details.
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In Theorem 2.1 we will use Lemma 2.1 to obtain a necessary and sufficient con-
dition to detect the pattern in Figure 2.4 from the covariance matrix of the observed
variables. To do so, we first introduce the notion of an adjusted covariance matrix:

𝜮(𝑎, 𝑗) = 𝜮 − 𝑎 diag(𝑒𝑗),

where 𝑗 ∈ {1, 2, 3, 4} and 𝑒𝑗 is a standard basis vector. For all 𝑎 such that 𝜮(𝑎, 𝑗)
is a valid covariance matrix, the associated adjusted partial correlations ̃𝜌𝑎𝑖𝑘|𝑗 may be
calculated from 𝜦(𝑎, 𝑗) = (𝜮(𝑎, 𝑗))−1 as follows:

̃𝜌𝑎𝑖𝑘|𝑗 = −
(𝜦(𝑎, 𝑗))𝑖𝑘

√(𝜦(𝑎, 𝑗))𝑖𝑖(𝜦(𝑎, 𝑗))𝑘𝑘
. (2.10)

Theorem 2.1 shows how the adjusted partial correlation is related to the underlying
causal graph in Figure 2.4. Corollary 2.1 shows how we can use adjusted partial cor-
relations to find an upper bound for the measurement error on one variable.

Theorem 2.1. Let 𝑋𝑣1, … , 𝑋𝑣4, 𝑋 ̃𝑣1, … , 𝑋 ̃𝑣4 and ̃𝜌𝑖𝑗 be as in Lemma 2.1. The true under-
lying DAG is as in Figure 2.4 if and only if there exists 𝑎 > 0 such that ̃𝜌𝑎13|2 = ̃𝜌𝑎14|2 =
̃𝜌𝑎34|2 = 0.

Proof. Throughout the proof, we denote the covariance between variables𝑋 ̃𝑣𝑖 and𝑋 ̃𝑣𝑗
as Σ̃𝑖𝑗 for 𝑖, 𝑗 ∈ {1, 2, 3, 4}. We start with proving the direction ‘⟸ ’:

⎧

⎨
⎩

̃𝜌𝑎13|2 = 0 ⟺ Σ̃12Σ̃23 − Σ̃13(Σ̃22 − 𝑎) = 0
̃𝜌𝑎14|2 = 0 ⟺ Σ̃12Σ̃24 − Σ̃14(Σ̃22 − 𝑎) = 0
̃𝜌𝑎34|2 = 0 ⟺ Σ̃32Σ̃24 − Σ̃34(Σ̃22 − 𝑎) = 0

⟺ (Σ̃22 − 𝑎) =
Σ̃12Σ̃23
Σ̃13

= Σ̃12Σ̃24
Σ̃14

=
Σ̃23Σ̃24
Σ̃34

⟹
Σ̃23
Σ̃13

= Σ̃24
Σ̃14

, Σ̃12
Σ̃14

=
Σ̃23
Σ̃34

⟺ Σ̃12Σ̃34 = Σ̃13Σ̃24 = Σ̃14Σ̃23.

The result follows by applying Lemma 2.1 and observing that these are the only struc-
tures for a random measurement model where all d-separations hold.

Next we prove the direction ‘ ⟹ ’. If the true underlying causal graph is as
in Figure 2.4, we have that there exists 𝛼 ≠ 0 such that 𝑋 ̃𝑣2 = 𝛼𝑋𝑣𝑙 + 𝑈𝑤2 + 𝑀𝑟2,
where 𝑈𝑤2 is an independent noise variable with variance 𝜏 for 𝑋𝑣2 and 𝑀𝑟2 is an
independent random measurement error for 𝑋 ̃𝑣2. The covariance between 𝑋𝑣𝑙 and
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variables (𝑋𝑣1, 𝑋𝑣2, 𝑋𝑣3, 𝑋𝑣4) are denoted as Σ𝑙𝑖 and Σ𝑖𝑙 for 𝑖 ∈ {1, 2, 3, 4}. Hence

Cov(𝑋 ̃𝑣1, 𝑋 ̃𝑣2, 𝑋 ̃𝑣3) = (
Σ11 +𝑚1 𝛼𝜎𝑙1 Σ13
𝛼Σ𝑙1 𝛼2Σ𝑙𝑙 + 𝜏 +𝑚2 𝛼Σ𝑙3
Σ13 𝛼Σ𝑙3 Σ33 +𝑚3,

) .

where 𝑚1, 𝑚2, 𝑚3 are the variances of 𝑀𝑟1,𝑀𝑟2,𝑀𝑟3 respectively and Σ𝑙𝑙 denotes the
variance of the latent variable𝑋𝑣𝑙. By the definition of the adjusted partial correlation
we obtain:

̃𝜌𝑎13|2 = 0 ⟺ 𝛼2(Σ𝑙1Σ𝑙3 − Σ13Σ𝑙𝑙) − Σ13(𝜏 + 𝑚2 − 𝑎) = 0.

Since 𝑣𝑙 d-separates 𝑣1 and 𝑣3, the Markov assumption implies that ̃𝜌13|𝑙 = 0 and
hence we have that

Σ𝑙1Σ𝑙3 − Σ13Σ𝑙𝑙 = 0.

Because Σ13 ≠ 0 by assumption, we find that ̃𝜌𝑎13|2 = 0 if and only if 𝑎 = 𝜏 + 𝑚2.
Via a similar argument we can show that for this 𝑎 we also have that ̃𝜌𝑎14|2 = 0 and
̃𝜌𝑎34|2 = 0.

Corollary 2.1. Let 𝑋𝑣1, … , 𝑋𝑣4, 𝑋 ̃𝑣1, … , 𝑋 ̃𝑣4 and ̃𝜌𝑖𝑗 be as in Lemma 2.1, and 𝑚2 the
variance of the measurement error on 𝑋𝑣2. If ̃𝜌ᵆ∗13|2 = ̃𝜌ᵆ∗14|2 = ̃𝜌ᵆ∗34|2 = 0 for some 𝑢∗ > 0
then𝑚2 ≤ 𝑢∗.

Proof. This follows from the proof of Theorem 2.1, which shows that 𝑢∗ = 𝜏 + 𝑚2,
where 𝜏 is the variance of the latent variable 𝑋𝑣𝑙.

Corollary 2.1 shows that an adjustment on the covariance matrix that results in
vanishing tetrad constraints (i.e. the equalities in Lemma 2.1) is an upper bound for
the measurement error on the adjusted variable. In practical settings, we can test for
the constraints in Lemma 2.1 (see (Bollen, 1989; Silva et al., 2006; Thoemmes et al.,
2018)). When all variables are measured in a similar manner, it may be reasonable
to assume that the variance of the measurement error is the same for all variables.
Under this assumption, the upper bound for the measurement error can be extended
to an upper bound for the measurement error variance on all variables.

2.3.2 Data simulations

To empirically test the performance of the upper bound, we simulated 10000 data
points for 10000 randommodels with causal structures as in Figure 2.4 with paramet-
ers chosen uniformly from the interval [−1, 1] and error variances chosen uniformly
from the interval [0.5, 1]. We added randommeasurement error to each variable with
the same variance for all variables and minimized the sum of adjusted partial correl-
ations in Corollary 2.1 to obtain an upper bound. Figure 2.5 shows that this leads to
a correct upper bound on the variance of the measurement error.
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Figure 2.5: Detected upper bounds for measurement error in linear Gaussian models with a
structure as in Figure 2.4 where either no measurement error or measurement error with a
variance of 0.5 or 1.0 was applied.

2.4 Measurement error correction for independence testing

The following proposition shows that conditional independences between variables
cannot be reliably tested given only noisy observations that have been corrupted with
measurement error.

Proposition 2.1. LetX,Y and Z̃ be three sets of (disjoint) variables. If Z̃ has measure-
ment error with non-zero variance, then the (in)dependences

X ⟂⟂/ Y X ⟂⟂ Y|Z̃,

must be due to a violation of the faithfulness assumption.

Proof. A faithfulness violation occurs when X ⟂⟂ Y|Z̃ but Z̃ does not d-separate X
and Y. Since X and Y are dependent in the data there must be an open path between
them by the Markov assumption. By definition of random measurement error the
variables in Z̃ are leaf nodes. Therefore Z̃ cannot block the path between X and Y,
and hence X⟂̸Y|Z̃.

In this section we will discuss how, under the strong faithfulness assumption, an
upper-bound for the variance of measurement error can be propagated to refine con-
ventional independence testing for cases where only noisy measurements are avail-
able.

2.4.1 Strong faithfulness assumption

Proposition 2.2 shows that, under the assumption that all variables in the model
have the samemeasurement error variance (e.g. because they are subject to the same
source of measurement error), the variance of the measurement error must be zero
whenever a marginal dependence and a conditional independence is detected.
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Proposition 2.2. Let X̃, Ỹ and Z̃ be three sets of (disjoint) variables with measurement
errors that have equal (possibly zero) variances. Under the faithfulness assumption, if
X̃ ⟂⟂/ Ỹ and X̃ ⟂⟂ Ỹ|Z̃, then the measurement error on all variables has zero variance.

Proof. Follows directly from Proposition 2.1.

Constraint-based causal discovery algorithms rely both on the faithfulness as-
sumption and on the results of conditional independence tests and therefore poor
performance is to be expected when variables are measured with error. To remedy
this, we need to make additional assumptions and in this chapter we consider how
issues related to measurement error can be alleviated under the strong faithfulness
assumption (see e.g. Spirtes, Glymour, et al. (2000) for more details on strong faith-
fulness).

Definition 2.1. (Strong faithfulness) We assume that the data of the unobserved
measurement-error-free variables is 𝜆-strong faithful to the true underlying causal
graph that generated it. That is, for all disjoint sets of variables X,Y,Z:

|𝜌X,Y |Z| < 𝜆 ⟹ X ⟂ Y |Z.

The example in Section 2.2.2 and the correlations in Figure 2.3(b) illustrate how
the strong faithfulness assumption can be leveraged to adjust for the presence of
measurement error, although this could aggravate the risk of false negative test res-
ults. To see this, first note that 𝜆-faithful data is also 𝜇-faithful for all 0 < 𝜇 ≤ 𝜆,
so that 𝜇 can be treated as a tuning parameter. Figure 2.3(b) shows that for zero
measurement error all non-zero correlations are larger than approximately 0.25. We
conclude that the data is 𝜇-faithful to the causal graph, as long as 𝜇 does not exceed
0.25. If we would use 0.25 as a threshold for (partial) correlations to detect (con-
ditional) independences, then we would find that 𝑋𝑣1 ⟂⟂ 𝑋𝑣3 | 𝑋 ̃𝑣2 up to a relative
measurement error of approximately 0.3. But for even larger relative measurement
error, we would wrongly conclude that𝑋𝑣1 ⟂⟂ 𝑋 ̃𝑣2 | 𝑋𝑣3.

4 The tuning parameter 𝜇 thus
represents a trade-off between detecting as many as possible of the true conditional
independences and wrongfully detecting conditional independences.

2.4.2 Error propagation

In this section we consider propagation of an error bound on random measurement
error to partial correlations in the LCD setting. As we saw in the previous section, the
presence of measurement error may result in the failure to detect LCD triples from
noisy observations while relying on the strong faithfulness assumption may result in

4Small enough correlations correspond to d-separations in the underlying graph by the strong faith-
fulness assumption and by the causal Markov assumption d-separations correspond to conditional inde-
pendences. Therefore, a conditional independence between 𝑋𝑣1 and 𝑋 ̃𝑣2 given 𝑋𝑣3 would conflict with
the causal graph in Figure 2.3(a).
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wrongfully detecting LCD triples because of some false negatives. We aim to allevi-
ate the adverse effect of wrongfully detecting conditional independences by includ-
ing the possibility to adaptively assign ‘unknown’ to a statistical test result. In that
case we aim to get the best of both worlds by detecting both the true conditional inde-
pendences and by assigning either ‘unknown’ or ‘dependent’ to the true conditional
dependences.

To accomplish this, we start by defining an adjusted covariance matrix for three
variables. Letm = (𝑚1, 𝑚2, 𝑚3) be the variances of the randommeasurement errors
(𝑀𝑟1,𝑀𝑟2,𝑀𝑟3) on the latent (unmeasured) variables (𝑋𝑣1, 𝑋𝑣2, 𝑋𝑣3), and suppose that
u∗ = (𝑢∗1, 𝑢∗2, 𝑢∗3) is an upper bound such that m ⪯ u∗.5 Suppose that 𝜮 is the true
covariance matrix of the measured variables 𝑋 ̃𝑣1, 𝑋 ̃𝑣2, 𝑋 ̃𝑣3. The adjusted covariance
matrix is given by

𝜮(u) = 𝜮 − u𝑇I, (2.11)

where I denotes the identity matrix. For 0 ⪯ u ⪯ u∗ we can find minimal and
maximal absolute values of partial correlations based on𝜦(u) = (𝜮(u))−1, assuming
that 𝜮(u) has an inverse. We define

̃𝜌min12|3 = argmin
0⪯u⪯u∗

|
|
|
|
|

(Λ̃(u))12

√(Λ̃(u))11(Λ̃(u))22

|
|
|
|
|
, (2.12)

̃𝜌max12|3 = argmax
0⪯u⪯u∗

|
|
|
|
|

(Λ̃(u))12

√(Λ̃(u))11(Λ̃(u))22

|
|
|
|
|
. (2.13)

Under the 𝜆-strong faithfulness assumption, the conditional (in)dependence rela-
tions can be determined as follows:

{
𝑋𝑣1 ⟂⟂/ 𝑋𝑣2 | 𝑋𝑣3 if ̃𝜌min12|3 > 𝜆
𝑋𝑣1 ⟂⟂ 𝑋𝑣2 | 𝑋𝑣3 if ̃𝜌max12|3 < 𝜆,

. (2.14)

The nature of the relation is undecided when ̃𝜌min12|3 < 𝜆 and ̃𝜌max12|3 > 𝜆.6
Although we consider a measurement error correction in cases where only one

variable is conditioned upon, our ideas can be trivially extended to accommodate
larger conditioning sets when an upper bound on the measurement error is known
for all variables involved.7

5⪯ is the component-wise inequality between two vectors.
6In practical applications the covariance matrix 𝜮 is estimated from data. The added uncertainty can

be taken into account by using bootstrapping to obtain confidence intervals for 𝜌min12|3 and 𝜌
max
12|3.

7In that case one considers a larger adjusted covariance matrix, and since the partial correlations are
calculated from the covariance matrix one can use the same scheme to find minimal and maximal values
for the absolute partial correlation.
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2.4.3 Data simulations

To illustrate the effectiveness of measurement error correction for the identification
of conditional dependence relations between unobserved variables for whichwe only
have noisy measurements, we generated data for three variables (𝑋𝑣1, 𝑋𝑣2, 𝑋𝑣3) from
linear Gaussian acyclic causal structures, possibly with latent confounders. We gen-
erated random DAGs for 6 variables with a connection probability of 0.7, parameters
chosen uniformly at random from the interval [−1.0, 1.0], and error variances chosen
uniformly from the interval [0.5, 1.0]. We let three out of the six variables be ob-
served variables, and the other three were considered to be latent. We used rejection
sampling to select models for which the observed variables (𝑋𝑣1, 𝑋𝑣2, 𝑋𝑣3) satisfied:
the 𝜆-strong faithfulness assumption for 𝜆 = 0.1, 𝑋𝑣1 ⟂⟂/ 𝑋𝑣2, 𝑋𝑣2 ⟂⟂/ 𝑋𝑣3. We selec-
ted 2000 models with the conditional dependence 𝑋𝑣1 ⟂⟂/ 𝑋𝑣3 | 𝑋𝑣2 and 2000 models
with the conditional independence 𝑋𝑣1 ⟂⟂ 𝑋𝑣3 | 𝑋𝑣2. For each model, we generated
10000 data points and added normally distributed measurement error with mean
zero and varying variances. The conditional (in)dependence between 𝑋 ̃𝑣1 and 𝑋 ̃𝑣3
given 𝑋 ̃𝑣2 was tested in various ways: using a threshold on the p-value 𝛼 = 0.05, us-
ing a threshold 𝜆 = 0.1 on the partial correlation, and using the same threshold with
a measurement error correction with an upper bound on the measurement error of 𝑡
times the true variance. We then calculated the error rate as the number of incorrect
classifications relative to the total number of tests. Figure 2.6(a) shows that themeas-
urement error correction slightly reduces the error rate for conditional dependences,
and 2.6(b) shows that the error rate of detecting incorrect conditional independences
is greatly reduced. Figures 2.6(c) and 2.6(d) show that the rate of ‘unknowns’ com-
bined with false positives and false negatives respectively, increases with the size of
the measurement error and the looseness of the upper bound that is used. This in-
crease is mostly due to an increase in the number of assigned ‘unknowns’.

2.5 Experiments with local causal discovery

Both in theory and in practical simulations a measurement error correction on the
threshold for a conditional independence test may help to improve the accuracy of
testing for dependence and independence of variables from noisy measurements.
This comes at the price of introducing both a tuning parameter 𝜆 (which was de-
rived from the notion of the 𝜆-strong faithfulness condition) and having to deal with
‘unknown’ output of a conditional independence test in causal discovery. In this sec-
tion we will show how the measurement error correction may improve the accuracy
of local causal discovery in the presence of randommeasurement error in simulated
data and in real-world protein signalling data.
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(a) Fraction of detected conditional independ-
ences given noisy measurements of conditionally
dependent variables, i.e. false negatives.
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(b) Fraction of detected conditional dependences
given noisy measurements of conditionally inde-
pendent variables, i.e. false positives.
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(c) Rate of combined unknowns and false negat-
ives for noisy measurements of conditionally de-
pendent variables.
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(d) Rate of combined unknowns and false posit-
ives for noisy measurements of conditionally in-
dependent variables.

Figure 2.6: Error rates for different (adjusted) conditional independence tests applied to simu-
lated data with addedmeasurement noise. Figures (a) and (b) show the error rate for detecting
conditional dependences and independences, respectively, in the presence of measurement
error for 𝜆-strong faithful data (with 𝜆 = 0.1). Figure (c) shows the rate of conditional de-
pendences not detected from the noisy measurements by the adjusted partial correlation test
(i.e. the false negatives and unknowns). Similarly, Figure (d) shows the rate of conditional
independences that cannot be identified from noisy measurements.

2.5.1 Simulations with LCD triples

First, we generated data sets by sampling from random causal models for triples of
variables (𝑋𝑣1, 𝑋𝑣2, 𝑋𝑣3). Wemade sure that half of themodels had the graphical struc-
ture of an LCD triple. We generated parameter values as described in Section 2.4.3.
The other half of the random causal models was obtained by selecting models from
the ones that we constructed in Section 2.4.3, for which 𝑋𝑣1 can be treated as an inter-
vention variable. To do so, we selected those models in the previous section, where
𝑋𝑣1 was caused neither by 𝑋𝑣2 nor by 𝑋𝑣3. For each model, we generated 10000 data
points and added random measurement error with a fixed variance of 0.8. We then
applied the LCD algorithm to these data sets using different ways to evaluate a con-
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ditional independence test based on partial correlations: using a threshold 𝛼 on the
p-value, using a threshold of 𝜆 on the partial correlation, and using a measurement
error correction of 𝑡 times the true measurement error variance and the parameter
𝜆 to evaluate adjusted partial correlations. We treat both 𝛼 and 𝜆 as tuning paramet-
ers to obtain the precision recall curve in Figure 2.7(a). From this we see that LCD
based on measurement error corrected partial correlations outperforms more stand-
ard testing procedures. In particular, due to the possibility of letting a conditional
independence test output the value ‘unknown’, the method is able to achieve high
precision at low recall.

In practice, an upper bound for the variance of measurement error is rarely
known in advance and the data may not be 𝜆-strong faithful. To simulate a some-
what more realistic scenario we generated 200 random DAGs with 15 vertices and
a connection probability of 0.15. We made sure that there was one special interven-
tion vertex that was not caused by any of the other vertices. We sampled 10000 data
points from linear Gaussianmodels with these causal structures, where edge weights
were drawn uniformly at random from the interval [0.8, 1.2] and error variances were
chosen uniformly at random from the interval [0.5, 1.0]. The noisy measurements
of the 15 variables were obtained by adding randommeasurement error with a fixed
variance of 0.8. From these 200 data sets we tried to obtain upper bounds for the
variance of measurement error. To do so, we applied Wishart’s test (Wishart, 1928)
to test for vanishing tetrad constraints and then used Corollary 2.1 to estimate this
upper bound using the adjusted partial correlations amongst the four variables with
vanishing tetrad constraints. In 79% of case the detected upper bound was correct
(i.e. it exceeded the true measurement error variance of 0.8), while we were not able
to detect any upper bound in 18.5% of the cases, and in 1.5% of cases the estim-
ated upper bound was too small. When multiple upper bounds could be detected
we chose the median as an estimate of the upper bound of the measurement error
variance. Using the detected upper bound we then applied adjusted partial correla-
tions to test for conditional (in)dependences as in Section 2.4.2. If no upper bound
was detected then we assigned ‘unknown’ to every conditional independence test.
These conditional independences were then used in the LCD algorithm, where we
treated the variable that was not caused by any of the other endogenous variables in
the model as an intervention variable, and where marginal dependences were tested
using Pearson’s correlation test with an 𝛼 = 0.05 threshold on the 𝑝-value. Figure
2.7(b) shows the precision recall curves on these data sets for different methods to
evaluate conditional (in)dependence frompartial correlations. From this, we see that
causal discovery based on one of the three adjusted partial correlation tests to test
for conditional independences outperforms conditional independence tests based on
a threshold on the 𝑝-value of a partial correlation test. Furthermore, the LCD al-
gorithm performs significantly better than a random guessing baseline. Adjustment
with the detected upper bound or the upper bound of 1.5 times the truemeasurement
error variance outperforms adjustments with the true variance of the measurement
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(a) LCD application.
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(b) Upper bound detection and LCD application.

Figure 2.7: In (a) the precision-recall curve for detecting LCD triples from 𝜆-strong faithful
data subject to randommeasurement error with fixed variance and fixed upper bound is given.
The precision-recall curves are shown in cases where we evaluate conditional independence
by comparing the 𝑝-value of a partial correlation to a fixed threshold 𝛼, and by comparing
adjusted partial correlation (based on an upper bound for measurement error of either 1.0 or
1.5 times the true measurement error variance) to a threshold 𝜆. Both 𝛼 and 𝜆 are treated as
tuning parameters. Figure (b) shows the precision-recall curve for simulations of 15 variables.
Here the lightblue curve shows the precision-recall for an experiment where we first apply the
upper bound detection and then the measurement error corrections. The random baseline for
this scenario is drawn at 0.016.

error (i.e. the curve for 𝑡 = 1.0 lies below that of 𝑡 = 1.5 and that of the detected
upper bound). This suggests that it may be prudent to assign the outcome ‘unknown’
to the outcome of a partial correlation test.

2.5.2 Protein expression data

Our ideas can be applied to a real-world protein expression data-set in which the
measurements of protein abundances might have been corrupted by measurement
error. We used a dataset that was gathered by Lun et al. (2017) to study the influence
of protein abundances on signalling cascades in a protein network in human kidney
cells. Using Corollary 2.1 we were able to obtain an estimate for an upper bound of
randommeasurement error variance from this data set. Furthermore, we applied the
LCD algorithm in combination with the adjusted partial correlation test that we pro-
posed in Section 2.4.2. In absence of a reliable ground truth for this experiment, we
validated the results of ameasurement error correction applied to the LCD algorithm
by comparing it to a baseline derived from interventions in the data. LCD with ad-
justed partial correlations seemed to work well on this data set, although LCD with
standard conditional independence tests already gives good results on this data.

Data description The abundance of different proteins labelled (GFP)𝑗 with 𝑗 =
1, … , 20 were over-expressed in 20 different experiments and their abundance was
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measured using mass cytometry (Lun et al., 2017). In most experimental condi-
tions there were around 10000 single cells in which this abundance was measured.
Proteins may send signals through chemical alterations of the protein called phos-
phorylation. For each condition 𝑗 = 1, … , 20, the abundances of an additional 34
phosphorylated proteins 𝑃𝑖 (with 𝑖 = 1, … , 20) were measured after stimulation of
the network. We labelled the experimental conditions 𝑗 in such a way that the over-
expression of a protein (GFP)𝑗 corresponds to measurements of the abundance of
the corresponding phosphorylated protein 𝑃𝑗 (if it was measured). The abundance
of an over-expressed protein typically differed between cells and not every cell was
affected (Lun et al., 2017). Because of the experimental design, the abundance of an
over-expressed protein (GFP)𝑗 is not caused by the abundance of any of themeasured
phosphorylated proteins.

Data pre-processing To ensure that the data ismore similar to data generated by a
linear Gaussian model, we follow (Lun et al., 2017) and use the following data trans-
formation. Each raw data point 𝑥 is transformed by

̂𝑥 = arcsinh(𝑥/5). (2.15)

As a further preprocessing step we filtered out cells that are in the M cell cycle
phase according to the gating procedure described in (Behbehani et al., 2012). This
filtering step can be motivated as follows. Cells that are in the M phase form a dis-
tinct cluster and therefore strongly violate assumptions of linearity or Gaussianity, al-
though they can easily be filtered out. Secondly, cells that are in the M phase already
have doubled nuclei and other organelles so we cannot safely assume that the causal
mechanisms of cell signalling behave in the same way. The removal of these cells
from the data should therefore be seen as the removal of a contaminating popula-
tion. Practically, this came down to selecting only those single cell measurements
for which the abundance of the phosphorylated protein pHH3 was smaller than 3.0
(after application of equation (2.15)). We took into account the detection limit of
mass cytometry by only including single cell measurements for which all relevant
protein abundances exceeded a lower threshold of 0.5 (after application of the data
transformation).

For the purpose of validation, we only considered proteins that were over-
expressed in one of the experiments and for which the abundance of the corres-
ponding phosphorylated protein was measured as well. Furthermore, because we
assume strong faithfulness, we only considered the measurements that were ob-
tained 5minutes after stimulation, because at this time the signalling responses were
generally strong according to Figure 3 in Lun et al. (2017). We used data from the first
replica of the experiment which had the most measurements under each condition.
We analysed a subset of the available proteins, based on the recommendations in
Lun et al. (2017), and excluded proteins from the cause variables when spill-over ef-
fects were reported under the condition that they were over-expressed, see also Table
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2.1. We further excluded the S6 protein because over-expressing it induced no strong
signalling responses, and we also discarded the SHP2 protein because the meas-
urements of the abundance of the phosphorylated protein pSHP2 was affected by
spill-over effects in multiple experiments where other proteins were over-expressed.

Table 2.1: Proteins that are both over-expressed in one of the conditions and whose phos-
phorylated abundance is measured under all conditions, with an indication whether spillover
effects are present.

Over-expressed protein Phosphorylated protein Spill-over effect present?

JNK1 pJNK no
MKK6 pMKK3/6 no
PDPK1 pPDPK1 yes
P38 pP38 no
AKT1 pAKT no
ERK2 pERK no
SHP2 pSHP2 no
GSK3B pGSK3B yes
S6 pS6 no
P90RSK pP90RSK yes
MEK1 pMEK1/2 no
P70S6K pS6K no

Upper bound detection We used the available data to detect an upper bound
for the variance of measurement error, using the Corollary 2.1. To that end, we
considered all measurements under the condition that the SRC protein was over-
expressed and which resulted in the presence of strong signalling relations, see also
Lun et al. (2017). We looped over all triples (𝑃𝑖, 𝑃𝑗, 𝑃𝑘) and selected those that were
marginally dependent amongst each other and also on (GFP)SRC according to a t-test
on the 1%-level. We then tested whether all three tetrads vanished using a Wishart
test at the 5% level. We found that these constraintswere satisfied for the triple (pS6K,
pMAPKAPK2, pMAP2K3). The upper bounds for the variance of measurement er-
ror that we found were 0.10 for the adjustment on pS6K, 0.15 for an adjustment on
pMAPKAPK2, and 0.14 for adjustments on pMAP2K3. Other triples that satisfied the
constraints gave similar or (much) higher upper bounds for the measurement error.
Since all proteins weremeasuredwith the same device, we assumed that the variance
of the measurement error is the same for each variable, so that 0.14 was a suitable
upper bound for the measurement error on any variable. Although the detected up-
per bound was large for weak signals, the proteins with stronger signals typically had
variances > 1, so that the relative amount of measurement error for proteins with
strong signalling relations amounted to less than 10%.
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Validation To validate the results of LCD, we created a ‘ground truth’ from the in-
terventions (corresponding to over-expression of certain proteins) in the dataset. This
baseline starts from the assumption that the abundance (GFP)𝑗 of the over-expressed
protein 𝑗 is a direct cause of the abundance 𝑃𝑗 of phosphorylated protein 𝑗. The reas-
oning behind this assumption is that a higher abundance of a protein facilitates phos-
phorylation of that protein, while the mechanism of phosphorylation would not dir-
ectly lead to an increase in the abundance of the protein. Lun et al. (2017) show that
over-expression of a protein 𝑃𝑗 does not alter the network structure. Therefore, un-
der the additional assumption that (GFP)𝑗 does not directly cause any of the other
proteins 𝑃𝑖 (with 𝑖 ≠ 𝑗), we have that 𝑃𝑗 is a cause of 𝑃𝑘, whenever (GFP)𝑗 and 𝑃𝑘 are
dependent.

We constructed the ‘ground truth’ for cause-effect pairs (𝑃𝑗, 𝑃𝑘). We considered
the 7 phosphorylated proteins 𝑃𝑗 that were over-expressed in one of the conditions as
potential causes and effects, while we did not consider the effects of any on the other
measured proteins. We considered a pair (𝑃𝑗, 𝑃𝑘) a causal pair if a t-test indicated that
(GFP)𝑗 and 𝑃𝑘 were dependent at a conservative level of 10−4. Out of 231 possible
cause-effect pairs, we identified 164 causal relations using this method, correspond-
ing to a 71% rate of identified cause-effect pairs.

Methods and results We used the detected upper bound for random measure-
ment to adjust partial correlations used in the independence test for the LCD al-
gorithm. To apply LCD, we treated (GFP)𝑖 as an intervention variable for conditions
𝑖 ∈ {1, … , 20} and looked for LCD triples ((GFP)𝑖, 𝑃𝑗, 𝑃𝑘) with 𝑖 ≠ 𝑗 and 𝑖 ≠ 𝑘. To
make our our predictions of LCD triples more conservative and more robust we only
identified the triple if we were able to detect it under a minimum of 2 conditions.8
We applied three methods of (in)dependence testing in combination with the LCD
algorithm: a threshold 𝛼 on the p-value of t-tests, a threshold 𝜆 on the absolute value
of partial correlations, and a threshold 𝜆 on partial correlations with a measurement
error correction using the upper bound 𝑢 = 0.14. We treated 𝜆 and 𝛼 as tuning para-
meters and compared the output to the ‘ground truth’ that we obtained for validation.
Figure 2.8 shows that precision-recall curves for each method of conditional (in)de-
pendence testing significantly outperform a baseline of random guessing at lower re-
call. These curves appear somewhat unusual, because the recall initially increases
when the threshold for dependence increases (i.e. we find more LCD triples) but
starts to decrease as the threshold is raised further because we are then no longer
able to identify the marginal dependencies of LCD triples. Figure 2.8 shows that all
methods are able to significantly outperform a random baseline, although the adjust-
ment for measurement error does not significantly improve upon the results that can
be obtained with LCD using the usual (partial) correlation testing procedures.

8Since central proteins in the network were over-expressed, true causal pairs were expected to appear
under multiple conditions.
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Figure 2.8: LCD applied to protein signaling data with 𝛼 or 𝜆 as tuning parameter and a
measurement-error correction. The results are compared with the random baseline, the gray-
shaded areas represent one and two standard deviations from the random baseline. The
precision-recall curve circles back for high values of the tuning parameter, because the same
threshold is used to test for the dependences and conditional independences that are required
for the detection of an LCD triple.

2.6 Conclusion

In this chapter we have demonstrated that measurement error, when not taken into
account, may fool causal discovery methods into wrongfully inserting, deleting or
reversing edges in the predicted causal graph. We showed that regular statistical
tests with conventional thresholds would fail to detect conditional independences
between the uncorrupted variables from the datawhenmeasurement error is present.
The key result that we presented in this work is that, under certain conditions, we
can find an upper bound for the variance of random measurement error from noisy
measurements. We show how to propagate this uncertainty to adjust partial correl-
ations for the presence of measurement error, so that under the strong faithfulness
condition the test indicates a dependence for large correlations, an independence for
small correlations, and ‘unknown’ for correlations that cannot be decided either way.
We demonstrated in simulations that this may improve the accuracy of the LCD al-
gorithm. We also applied our ideas to a real-world protein signalling dataset, and
we found an upper bound for the variance of the measurement error in this data-
set. Although LCD with a measurement error correction yielded significant results
compared to a random baseline, it did not outperform conventional methods. Never-
theless, it is our belief that takingmeasurement error into account is a promising step
towards successful real-world applications of (constraint-based) causal discovery.



Chapter 3

Causal constraints models

Adaptation based on:
Beyond structural causal models: causal constraints models,

T. Blom, S. Bongers, and J.M. Mooij,
Proceedings of the 35th Annual Conference on Uncertainty in Artificial Intelligence (UAI-19).

Structural Causal Models (SCMs) provide a popular causal modelling frame-
work. In this work, we show that SCMs are not flexible enough to give a complete
causal representation of dynamical systems at equilibrium. Instead, we propose
a generalization of the notion of an SCM, that we call Causal Constraints Models
(CCMs), and prove that they do capture the causal semantics of such systems. We
show how CCMs can be constructed from differential equations and initial condi-
tions. We then illustrate our ideas further on a simple but ubiquitous (bio)chemical
reaction and demonstrate that our framework also allows to model functional laws,
such as the ideal gas law, in a sensible and intuitive way.

3.1 Introduction

Real-world processes are often complex and time-evolving. The dynamics of such
systems can be modelled by (random) differential equations, which offer a fine-
grained description of how the variables in the system change over time. A coarser
but more tractable approach is to model the system with a Structural Causal Model
(SCM), a modelling class that provides a framework that is used in many fields such
as biology, the social sciences, and economy (Pearl, 2009). Although SCMs have
been successfully applied to certain static systems, a pressing concern is whether
SCMs are able to completely model the causal semantics of the stationary behaviour
of a dynamical system. In this chapter, we prove that generally SCMs are not flex-
ible enough to completely model the equilibrium distribution of dynamical systems

45
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under certain interventions.
We generalize the notion of SCMs and introduce a novel type of causal model,

that we call Causal Constraints Models (CCMs). We prove that they give a complete
description of the causal semantics of dynamical systems at equilibrium and show
how a CCM can be derived from differential equations and initial conditions. We fur-
ther motivate our approach by pointing out that CCMs, contrary to SCMs, fully cap-
ture the causal semantics of functional laws (e.g. the ideal gas law), which describe
relations between variables that are invariant under all interventions. We illustrate
the benefits of CCMs on a simple but ubiquitous (bio)chemical reaction.

Causalmodels that arise from studying the behaviour of dynamical systems have
received much attention over the years. F. M. Fisher (1970), Mogensen et al. (2018),
Rubenstein et al. (2018), Sokol et al. (2014), and Voortman et al. (2010) consider
causal relations in systems that can be modelled by (stochastic) differential equa-
tions that have not (yet) reached equilibrium. In contrast, we consider the stationary
behaviour of dynamical systems, which does not require us to model the system’s
dependence on time. Bongers and Mooij (2018), Hyttinen et al. (2012), Lacerda et
al. (2008), Mooij, Janzing, Heskes, et al. (2011), and Mooij, Janzing, and Schölkopf
(2013) show how cyclic SCMs may arise from studying the stationary behaviour of
certain dynamical time-series or differential equations, and how in some cases cyclic
SCMs can be learned from equilibrium data. SCMs are well-understood and have re-
cently been extended to also include the cyclic case (Bongers, Forré, et al., 2020; Forré
et al., 2017). The drawback of the extension in Forré et al. (2017), with respect tomod-
elling equilibria of dynamical systems, is that it requires the model to have a globally
compatible solution under any intervention, which dynamical systems do not, in gen-
eral, possess. Another modelling approach for dynamical systems at equilibrium is
to construct a, possibly cyclic, SCM from the differential equations as Mooij, Janz-
ing, and Schölkopf (2013) and Bongers and Mooij (2018) do. In this work, we show
that these modelling approaches for the causal semantics of the stationary behaviour
in dynamical systems cannot accommodate the dependence of equilibria on initial
conditions of the system.

In previous work, researchers have come across subtleties regarding the relation
between the causal semantics and conditional independence properties of dynam-
ical systems at equilibrium (Dash, 2005; Iwasaki et al., 1994; Lacerda et al., 2008).
Previously, researchers have made additional assumptions about the underlying dy-
namical system to circumvent these. Although Rubenstein* et al. (2017) and Bongers
and Mooij (2018) do not make such restrictions, the price that one pays is that either
onemust limit the interventions that can bemodelled or the equilibrium is no longer
uniquely specified and one is limited to modelling the fixed points of the system. To
the best of our knowledge, Causal Constraints Models are the first models that can
completely capture the causal semantics of the stationary behaviour of dynamical
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systems in general.1

3.1.1 Structural causal models

A statistical model over random variables, taking value in a measurable space 𝓧,
usually is a pair (𝓧,ℙ𝓧) where ℙ𝓧 is a (parametrized) family of probability distri-
butions on𝓧. A causal model on the other hand, can be thought of as a family of
statistical models, one for each (perfect) intervention,

ℙ̄𝓧 = (ℙ𝓧
do(𝐼,𝝃𝐼)

∶ 𝐼 ∈ 𝒫(ℐ), 𝝃𝐼 ∈ 𝓧𝐼) , (3.1)

where ℐ is an index set and 𝒫(ℐ) denotes the power set of ℐ (i.e. the set of all subsets
of ℐ). 𝐼 represents the intervention target and 𝝃𝐼 a tuple of intervention values. The
null intervention do(∅) for 𝐼 = ∅ corresponds to the observed system.

SCMs are a special type of causal models that are specified by structural equa-
tions. Our formal treatment of SCMsmostly follows Bongers, Forré, et al. (2020) and
Pearl (2009). We deviate from the usual definition of SCMs by not requiring acyclicity
(i.e. recursiveness).2

Definition 3.1. Let ℐ and 𝒥 be index sets. A Structural Causal Model (SCM)ℳ is a
triple (𝓧, 𝐹,E), with:

⚫ a product of standard measurable spaces 𝓧 = ∏𝑖∈ℐ𝒳𝑖 representing the do-
mains of endogenous variables,

⚫ a tuple of independent exogenous random variables E = (𝐸𝑗)𝑗∈𝒥 taking value in
a product of standard measurable spaces𝓔 =∏𝑗∈𝒥 ℰ𝑗,

⚫ a family 𝐹 of measurable functions:3

𝑓𝑖 ∶ 𝓧pa(𝑖)∩ℐ ×𝓔pa(𝑖)∩𝒥 → 𝒳𝑖, ∀𝑖 ∈ ℐ.

Note that a cyclic structural causal model does not need to imply a unique joint
distribution ℙ𝓧

do(∅) on the space of endogenous variables in the observed system, al-
though acyclic and simple SCMs do (Bongers, Forré, et al., 2020). When there exists
a unique solution x ∈ 𝓧 to the structural equations

𝑥𝑖 = 𝑓𝑖(xpa(𝑖)∩ℐ, epa(𝑖)∩𝒥), ∀𝑖 ∈ ℐ

for almost all e ∈ 𝓔, we say that the model is uniquely solvable.
1It has been shown that simple SCMs have a graphical representation with an intuitive causal inter-

pretation (Bongers, Forré, et al., 2020). We will discuss graphical representations of the causal relations
and independence structure for CCMs in Chapter 4.

2In the original version of this article we did not assume independence of exogenous variables because
it is not neededwithin this chapter. For the sake of consistencywith the rest of the thesis, the independence
of exogenous variables is included in the definition.

3Here pa(𝑖) ⊆ ℐ ∪ 𝒥 denotes a subset of indices so that the values of (Xpa(𝑖),Epa(𝑖)) are sufficient to
determine the values of 𝑓𝑖.
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Definition 3.2. We say that a random variable X = (𝑋𝑖)𝑖∈ℐ is a solution to an SCM
ℳ = (𝓧,𝐹,E) if

𝑋𝑖 = 𝑓𝑖(Xpa(𝑖)∩ℐ,Epa(𝑖)∩𝒥) a.s., ∀𝑖 ∈ ℐ.

An SCM may have a unique (up to zero sets) solution, multiple solutions, or
there may not exist any solution at all. There are many types of interventions, corres-
ponding to different experimental procedures, that can be modelled in an SCM. For
the remainder of this chapter, we only consider perfect (also known as “surgical” or
“atomic”) interventions that force variables to take on a specific value through some
external force acting on the system.

Definition 3.3. A perfect intervention do(𝐼, 𝝃𝐼) with target 𝐼 ⊆ ℐ and value 𝝃𝐼 ∈ 𝓧𝐼
on an SCMℳ = (𝓧,𝐹,E)maps it to the intervened SCMℳdo(𝐼,𝝃𝐼) = (𝓧, 𝐹,E) with
𝐹 the family of measurable functions:

̃𝑓𝑖(xpa(𝑖)∩ℐ, epa(𝑖)∩𝒥) = {
𝜉𝑖 𝑖 ∈ 𝐼,
𝑓𝑖(xpa(𝑖)∩ℐ, epa(𝑖)∩𝒥) 𝑖 ∈ ℐ\𝐼.

Note that the solvability of an SCMmay change after a perfect intervention, e.g.
a uniquely solvable SCMmay no longer be so after certain interventions.

3.1.2 Dynamical systems

We consider dynamical systems𝒟 describing 𝑝 = |ℐ| (random) variables X(𝑡) taking
value in𝓧 = ℝ𝑝. They consist of a set of coupled first-order ordinary differential
equations (ODEs) where the initial conditions X(0) are determined by exogenous
random variables E = (𝐸𝑖)𝑖∈ℐ taking value in𝓔 = ℝ𝑝. That is,

̇𝑋𝑖(𝑡) = 𝑓𝑖(X(𝑡)), ∀𝑖 ∈ ℐ,
𝑋𝑖(0) = 𝐸𝑖, ∀𝑖 ∈ ℐ,

where we only consider systems for which each 𝑓𝑖 is a locally Lipschitz continuous
function.4 Throughout this chapter, we will assume for any dynamical system we
encounter that for ℙE-almost every e ∈ ℝ𝑝 the initial value problem with X(0) = e
has a unique solution X(𝑡, e) for all 𝑡 ≥ 0, given by

X(𝑡, e) = X(0, e) +∫
𝑡

0
f(X(𝑠, e))𝑑𝑠. (3.2)

This solution X(𝑡, e) can be trivially extended to𝓔 and it is measurable in e for all 𝑡
(Han et al., 2017).

4If the dynamics depends on (random) parameters, they can be modelled as additional endogenous
variableswith vanishing time derivatives and initial conditions corresponding to the (random) parameters.
Therefore, without loss of generality, we may assume that the functions 𝑓𝑖 only depend on X.
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A fixed point (or equilibrium point) of a dynamical system𝒟 is a point x∗ ∈ ℝ𝑝

for which f(x∗) = 0. For e ∈ ℝ𝑝, the dynamical system converges to an equilibrium
X∗(e) ∈ ℝ𝑝 if

lim
𝑡→∞

X(𝑡, e) = X∗(e). (3.3)

If for ℙE-almost every e the limit in equation (3.3) exists, then we say that 𝒟 con-
verges to the equilibrium solution X∗ = lim𝑡→∞X(𝑡,E).

Interventions on dynamical systems can be modelled in different ways. One
could for example fix the value of targeted values at one time-point. Alternatively,
one could fix the trajectory of the targeted values as in Rubenstein et al. (2018). Here,
we follow Mooij, Janzing, and Schölkopf (2013) and define interventions as opera-
tions that fix the value of the targeted variables to a constant (for all time).

Definition 3.4. A perfect intervention do(𝐼, 𝝃𝐼) where 𝐼 ⊆ ℐ and 𝝃𝐼 ∈ 𝓧𝐼 results in
the intervened dynamical system𝒟do(𝐼,𝝃𝐼) specified by

̇𝑋𝑖(𝑡) = 0, 𝑋𝑖(0) = 𝜉𝑖, ∀𝑖 ∈ 𝐼,
̇𝑋𝑖(𝑡) = 𝑓𝑖(X(𝑡)), 𝑋𝑖(0) = 𝐸𝑖, ∀𝑖 ∈ ℐ\𝐼,

and the independent exogenous random variables E are unaffected by the interven-
tion.

We say that a causal modelℳ completely captures the causal semantics of the
stationary behaviour of a dynamical system 𝒟 if for all 𝐼 ⊆ ℐ and all 𝝃𝐼 ∈ 𝓧𝐼: the
equilibrium solutions of 𝒟do(𝐼,𝝃𝐼) coincide with the solutions of ℳdo(𝐼,𝝃𝐼) (up to ℙE-
null sets).

The construction of SCMs from dynamical systems in Mooij, Janzing, and
Schölkopf (2013) relies on the fact that for systems that converge to a fixed point
independent of initial conditions (i.e. globally asymptotically stable systems), the
fixed point directly gives a complete description of its stationary behaviour. A much
weaker stability assumption is that of (global) semi-stability (Bhat et al., 1999; Camp-
bell et al., 1979), where solutions of a system converge to a stable equilibrium de-
termined by initial conditions. The following definition is adapted from Haddad et
al. (2010).

Definition 3.5. Let 𝒟 be a dynamical system and𝓤 ⊆ ℝ𝑝 an invariant subset (i.e.
if x(0) ∈ 𝓤 then x(𝑡) ∈ 𝓤 for all 𝑡 ≥ 0). Then
(i) A fixed point x∗ ∈ 𝓤 is Lyapunov stable with respect to𝓤 if for all 𝜖 > 0 there

exists 𝛿 > 0 such that for all x(0) ∈ 𝓤: if ‖x(0) − x∗‖ < 𝛿 then for all 𝑡 ≥ 0,
‖x(𝑡) − x∗‖ < 𝜖.

(ii) A fixed point x∗ ∈ 𝓤 is semistable w.r.t. 𝓤 if it is Lyapunov stable and, ad-
ditionally, there exists a relatively open subset5 𝓝 of 𝓤 that contains x∗ such
that x(𝑡) converges to a Lyapunov stable fixed point for all x(0) ∈ 𝓝.

5𝓝 is a relatively open subset of𝓤 if there is an open set𝓝′ ⊆ ℝ𝑝 such that𝓝=𝓝′ ∩𝓤.
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(iii) A semistable fixed point x∗ ∈ 𝓤 is globally semistable with respect to 𝓤 if
𝓝 =𝓤.

Finally, we say that a dynamical system𝒟 is globally semistable with respect to𝓤 if
all its fixed points are globally semistable with respect to𝓤.

In other words: 𝒟 is globally semistable with respect to an invariant subset𝓤
if all its fixed points are Lyapunov stable, lie in 𝓤, and for all initial conditions in
𝓤, the system converges to a fixed point. In Definition 3.6 we also take stability of
intervened systems into account.

Definition 3.6. A dynamical system𝒟 is structurally semistable if for all 𝐼 ⊆ ℐ there
exists𝓤 ⊆ ℝ𝑝 with ℙEℐ\𝐼(𝓤ℐ\𝐼) = 1 such that: 𝒟do(𝐼,𝝃𝐼) is globally semistable w.r.t.
𝓤 (for any 𝝃𝐼 ∈ 𝓧𝐼).

Whether a dynamical system converges to a certain fixed point depends on ini-
tial conditions. This dependence can often be described by constants of motion, and
there exists a vast literature on how and when these can be derived from differen-
tial equations. The notion of semi-stability is appropriate in many real-world applic-
ations in chemical kinetics, environmental, and economic systems (Haddad et al.,
2010). For chemical reaction networks, there exist convenient criteria on the net-
work structure that guarantee global semi-stability (Chellaboina et al., 2009), and for
mechanical systems semi-stability characterizes the motion of rigid bodies subject to
damping (Bhat et al., 1999).

3.2 Dynamical systems as SCMs

In this section, we consider SCM representations of the equilibria in a chemical reac-
tion and conclude that, generally, SCMs are not flexible enough to completely capture
the causal semantics of stationary behaviour in dynamical systems.

3.2.1 Basic enzyme reaction

The basic enzyme reaction is a well-known example of a biochemical reaction net-
work. It describes a system where a substrate 𝑆 reacts with an enzyme 𝐸 to form a
complex 𝐶 which is then converted into a product 𝑃 and the enzyme (Murray, 2002).
In the open enzyme reaction a constant influx of substrate and an efflux of product
are added (Belgacem et al., 2012). The process can be presented by a reaction graph
with strictly positive rate parameters k = [𝑘0, 𝑘−1, 𝑘1, 𝑘2, 𝑘3]:

𝑆 + 𝐸 𝐶 𝑃 + 𝐸
𝑘1

𝑘−1

𝑘2

𝑘3𝑘0
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(c) Intervention on 𝐸.

Figure 3.1: Temporal dependence of concentrations in the basic enzyme reaction in equations
(3.4) to (3.7) with random initial conditions and k = [0.4, 0.3, 1.0, 1.1, 0.5]. Other choices for
the rate parameters give qualitatively similar results. In Figure (a)we see that both 𝑆 and𝑃 con-
verge to an equilibrium that depends on initial conditions in the observed system. Figure (b)
shows that 𝐶, 𝐸, and 𝑃 converge to an equilibrium that depends on the initial conditions after
an intervention on 𝑆. Finally, from Figure (c) we conclude that 𝑆, 𝐶, and 𝑃 converge to an
equilibrium that is independent of the initial conditions after an intervention on 𝐸.

Differential equations that describe the concentrations of each molecule in the
system over time can be obtained by application of the law of mass-action, which
states that the rate of a reaction is proportional to the product of the concentrations
of the reactants (Murray, 2002), yielding:

̇𝑆(𝑡) = 𝑘0 − 𝑘1𝑆(𝑡)𝐸(𝑡) + 𝑘−1𝐶(𝑡), (3.4)
̇𝐸(𝑡) = −𝑘1𝑆(𝑡)𝐸(𝑡) + (𝑘−1 + 𝑘2)𝐶(𝑡), (3.5)
̇𝐶(𝑡) = 𝑘1𝑆(𝑡)𝐸(𝑡) − (𝑘−1 + 𝑘2)𝐶(𝑡), (3.6)
̇𝑃(𝑡) = 𝑘2𝐶(𝑡) − 𝑘3𝑃(𝑡), (3.7)
(𝑆(0), 𝐸(0), 𝐶(0), 𝑃(0)) = (𝑠0, 𝑒0, 𝑐0, 𝑝0). (3.8)

We simulated the system in equations (3.4) to (3.7) with random initial condi-
tions and also under interventions on 𝑆 and 𝐸. Figure 3.1 shows how and whether
the time trajectories of concentrations depend on initial conditions in different inter-
ventional settings.

3.2.2 Equilibrium solutions

By explicit calculation we can verify that given strictly positive initial conditions, the
dynamical system converges to an equilibrium (𝑆∗, 𝐶∗, 𝐸∗, 𝑃∗) if it exists, under any
perfect intervention (Belgacem et al., 2012). In the supplementary material of this
chapter (see Section 3.A) we give the details of this calculation and show that the
system is structurally semistable. The equilibria can be found by deriving constraints
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on solutions of the system:
(i) At equilibrium the system is at rest and therefore all time derivatives vanish.

From the equations of motion associated with the variables in the system we
can derive constraints that are invariant under all interventions that do not tar-
get the variable associated with the constraint. For example, the equations of
motion in (3.4) yields the equilibrium equation

𝑘0 − 𝑘1𝑆∗𝐸∗ + 𝑘−1𝐶∗ = 0,

which constrains the equilibrium state unless 𝑆 is targeted by an intervention.
(ii) Symmetries or (linear) dependences between the time derivatives lead to con-

servation laws (i.e. constants of motion), which are relations between variables
that are time-invariant but that are typically invariant under fewer interven-
tions than constraints of the first type. For example, since ̇𝐶(𝑡) + ̇𝐸(𝑡) = 0 for
all 𝑡, we have that

𝐶(𝑡) + 𝐸(𝑡) = 𝑐0 + 𝑒0, ∀ 𝑡, (3.9)

unless 𝐶, 𝐸 or both 𝐶 and 𝐸 are targeted by an intervention.
(iii) A system may contain (derived) variables whose time-derivative does not de-

pend on itself. Since
̇𝑆(𝑡) − ̇𝐸(𝑡) = 𝑘0 − 𝑘2𝐶(𝑡), (3.10)

the variable 𝐶 cannot be ‘freely manipulated’, in the sense that 𝑆(𝑡) − 𝐸(𝑡) does
not converge to equilibrium under interventions do(𝐶 = 𝜉𝐶) when 𝜉𝐶 ≠ 𝑘0/𝑘2.
For 𝜉𝐶 = 𝑘0/𝑘2 a new constant of motion is introduced so that 𝑆(𝑡)−𝐸(𝑡) = 𝑠0−𝑒0
unless 𝑆, 𝐸 or both 𝑆 and 𝐸 are targeted by an intervention.
It can be shown, through explicit calculations, that for any perfect intervention

these constraints have no solution when the dynamical system does not converge to
an equilibrium and they have a unique solution when the system does converge to
an equilibrium. A complete description of the equilibrium solutions of this system
under perfect interventions (if it exists) is given in Table 3.2 of the supplementary
material in Section 3.A. A subset of the results is presented in Table 3.1 which, to-
gether with Figure 3.1 in the previous section, illustrates the rich causal semantics
of this system at equilibrium (e.g. an intervention on 𝑆 makes 𝐶∗ dependent on the
initial conditions, while an intervention on 𝐸 makes 𝑆∗ independent of the initial
conditions).

3.2.3 SCM representation

Globally asymptotically stable dynamical systems converge to a unique fixed point
and for these systems Mooij, Janzing, and Schölkopf (2013) have shown that SCMs
can be constructed from ordinary differential equations by equilibration. For the ba-
sic enzyme reaction (which is not globally asymptotically stable) their construction
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Table 3.1: Equilibrium solutions 𝑆∗, 𝐶∗, and 𝐸∗ for the basic enzyme reaction dynamics in (3.4)

to (3.7) under various interventions. We let 𝑦 = 1

2√(𝑒0 − 𝑠0)2 + 4𝑘0(𝑘−1+𝑘2)
𝑘1𝑘2

.

Intervention 𝑆∗ 𝐶∗ 𝐸∗

do(∅)
𝑘0+𝑘−1

𝑘0
𝑘2

𝑘1(𝑒0+𝑐0−
𝑘0
𝑘2

)

𝑘0
𝑘2

𝑒0 + 𝑐0 −
𝑘0
𝑘2

do(𝑆 = 𝜉𝑆) 𝜉𝑠
𝑘1𝜉𝑠(𝑒0+𝑐0)
𝑘−1+𝑘2+𝑘1𝜉𝑠

(𝑘−1+𝑘2)(𝑒0+𝑐0)
𝑘−1+𝑘2+𝑘1𝜉𝑠

do(𝐶 = 𝑘0
𝑘2
) (𝑒0−𝑠0)

2
+ 𝑦 𝑘0

𝑘2

−(𝑒0−𝑠0)
2

+ 𝑦

do(𝐸 = 𝜉𝐸)
𝑘0+𝑘−1

𝑘0
𝑘2

𝑘1𝜉𝑒

𝑘0
𝑘2

𝜉𝑒

method would yield the structural equations:

𝑆∗ = 𝑘0+𝑘−1𝐶∗

𝑘1𝐸∗
, (3.11)

𝐸∗ = (𝑘−1+𝑘2)𝐶∗

𝑘1𝑆∗
, (3.12)

𝐶∗ = 𝑘1𝑆∗𝐸∗

𝑘−1+𝑘2
, (3.13)

𝑃∗ = 𝑘2
𝑘3
𝐶∗. (3.14)

While this SCM represents the causal semantics of the system’s fixed points, it would
be underspecified as an SCM for the stationary behaviour of the basic enzyme reac-
tion. Indeed, this SCM has multiple solutions, corresponding to different possible
initial conditions of the dynamical system and it does not contain any information
on which of its solutions is realized. Theorem 3.1 shows that a complete SCM rep-
resentation of the stationary behaviour in the basic enzyme reaction does not exist.

Theorem 3.1. The causal semantics of the stationary behaviour of the basic enzyme
reaction, and its dependence on initial states, cannot be completely represented by an
SCM with endogenous variables 𝑆∗, 𝐸∗, 𝐶∗, 𝑃∗.

Proof. In Section 3.A.2 of the supplementary material we show that the system con-
verges to an equilibrium under the intervention do(𝐸∗ = 𝑒, 𝐶∗ = 𝑐, 𝑃∗ = 𝑝). Setting
̇𝑆 = 0 in (3.4) and then solving for 𝑆, we find that 𝑆∗ = (𝑘0+𝑘−1𝑐)/(𝑘1𝑒) and therefore any
SCM thatmodels the effect of this intervention correctlymust have a structural equa-
tion that is equivalent to equation (3.11). Analogously, considering the remaining
three interventions on three out of four variables, we find that an SCM that correctly
models the effects of those interventions must have structural equations for 𝐸∗, 𝐶∗

and 𝑃∗ that are equivalent to the structural equations (3.12) to (3.14), respectively.
Table 3.1 shows that the system converges to an equilibrium that depends on the ini-
tial conditions 𝑐0 and 𝑒0 under the null intervention. This equilibrium is a solution
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of the structural equations in (3.11) to (3.14). However, these structural equations do
not depend on initial conditions and admit other solutions as well. Therefore they do
not completely represent the stationary behaviour of the system.

3.3 Causal constraints models

In this section, we first introduce Causal Constraints Models (CCMs) and then we
prove that they completely capture the causal semantics of the stationary behaviour
of dynamical systems that can be described in terms of continuous first-order differ-
ential equations and initial conditions.

Causal constraints models can be seen as a generalization of SCMs, which are
specified in terms of structural equations that constrain the solutions of the SCM un-
less the corresponding variable(s) are targeted by interventions. Analogously, CCMs
are specified in terms of causal constraints: relations between variables that constrain
the solutions of the model under a set of explicitly defined intervention targets.

Definition 3.7. Let ℐ, 𝒥 and𝒦 be index sets. A Causal Constraints Model (CCM) is
a triple (𝓧,Φ,E), with:
(i) 𝓧 representing the domain of endogenous variables andE a tuple of exogenous

random variables as in Definition 3.1,
(ii) a set Φ = {𝜙𝑘 ∶ 𝑘 ∈ 𝒦} of causal constraints, each of which is a triple 𝜙𝑘 =

(𝑓𝑘, 𝑐𝑘, 𝐴𝑘) where,
⚫ 𝑓𝑘 ∶ 𝓧pa(𝑘)∩ℐ × 𝓔pa(𝑘)∩𝒥 → 𝒴𝑘 is a measurable function, 𝒴𝑘 a standard
measurable space and pa(𝑘) ⊆ ℐ ∪ 𝒥,

⚫ 𝑐𝑘 ∈ 𝒴𝑘 is a constant,
⚫ 𝐴𝑘 ⊆ 𝒫(ℐ) specifies the set of intervention targets under which 𝜙𝑘 is act-
ive.

Example 3.1. Consider the price, supply, and demand of a certain product, denoted
by 𝑃, 𝑆, and 𝐷 respectively, related by the following causal constraint:

(𝑓, 𝑐, 𝐴) = (𝑆 − 𝐷, 0, {∅, {𝐷}, {𝑆}, {𝐷, 𝑆}}) . (3.15)

The constraint 𝑆 − 𝐷 = 0 is active in the observational setting because ∅ is in the
activation set 𝐴 = {∅, {𝐷}, {𝑆}, {𝐷, 𝑆}}. It is also active when either 𝐷, 𝑆 or both 𝐷 and
𝑆 are targeted by an intervention. The constraint becomes inactive after an interven-
tion on 𝑃. In other words, supply equals demand unless the price of the product is
intervened upon (e.g. through price fixing). △
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3.3.1 CCM solutions

The solution of a CCM is defined in complete analogy with that of SCM solutions.
Similar to SCMs, the solution of a CCMmay not always exist or there may exist mul-
tiple solutions with different distributions.

Definition 3.8. Letℳ = (𝓧,Φ,E) be a CCM and letΦ∅ ∶= {𝜙𝑘 = (𝑓𝑘, 𝑐𝑘, 𝐴𝑘) ∈ Φ ∶
∅ ∈ 𝐴𝑘}. A random variable X taking value in𝓧 is a solution ofℳ if

𝑓𝑘(Xpa(𝑘)∩ℐ,Epa(𝑘)∩𝒥) = 𝑐𝑘 a.s., ∀(𝑓𝑘, 𝑐𝑘, 𝐴𝑘) ∈ Φ∅.

3.3.2 CCM interventions

The notion of an intervention targeting the causal constraints in a CCM is a gener-
alization of interventions that act on the structural equations of an SCM. Roughly
speaking, the activation sets of the causal constraints in the model are updated and
additional causal constraints describe the intervention.

Definition 3.9. Letℳ = (𝓧,Φ,E) be a CCM and let 𝐼 ⊆ ℐ be the intervention target
and 𝝃𝐼 ∈ 𝓧𝐼 the target value. The intervened CCM is given byℳdo(𝐼,𝝃𝐼) = (𝓧, Φ̃,E)
where:

⚫ for each 𝑖 ∈ 𝐼we add a causal constraint describing the intervened value of the
targets, (𝑥𝑖, 𝜉𝑖, 𝒫 (ℐ\{𝑖})) ∈ Φ̃,

⚫ for each causal constraint (𝑓, 𝑐, 𝐴) ∈ Φ we get a modified causal constraint
(𝑓, 𝑐, 𝐴do(𝐼)) ∈ Φ̃ if 𝐴do(𝐼) ≠ ∅, where

𝐴do(𝐼) = {𝐴𝑖 ⧵ 𝐽 ∶ 𝐴𝑖 ∈ 𝐴, 𝐽 ⊆ 𝐼 ⊆ 𝐴𝑖}.

Definition 3.9 says that for any 𝐴𝑖 ∈ 𝐴, and for any combination of two sub-
sequent interventions such that 𝐼1 ∪ 𝐼2 = 𝐴𝑖, the constraint will be active. So after 𝐼1
(which needs to be a subset of 𝐴𝑖), any 𝐼2 that adds the remaining elements 𝐴𝑖 ⧵ 𝐼1
(plus possibly any elements that were already in 𝐼1) will activate the constraint. For
example, the effect of different interventions on a set 𝐴do(∅) = {∅, {1, 2}, {2, 3}}:

𝐴do(1) = {{2}, {1, 2}},
𝐴do(2) = {{1}, {1, 2}, {3}, {2, 3}},

𝐴do({1,2}) = 𝐴do(1)do(2) = 𝐴do(2)do(1)

= {∅, {1}, {2}, {1, 2}},
𝐴do({1,2,3}) = ∅.

Lemma 3.1 shows that the effect of multiple interventions on a CCM depends
neither on whether the interventions are performed simultaneously or sequentially
nor on the order in which they are performed.
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Lemma 3.1. Letℳ be a CCM for variables indexed by ℐ and let 𝐼, 𝐽 ⊆ ℐ be two disjoint
sets of intervention targets with intervention values 𝝃𝐼 ∈ 𝓧𝐼 and 𝝃𝐽 ∈ 𝓧𝐽 respectively.
Then

(ℳdo(𝐼,𝝃𝐼))do(𝐽,𝝃𝐽) = (ℳdo(𝐽,𝝃𝐽))do(𝐼,𝝃𝐼)
= ℳdo(𝐼∪𝐽,𝝃𝐼∪𝐽).

Proof. The result follows directly from Definition 3.9.

Example 3.1 (continuing from p. 54). Suppose that the supply of a product, if it is
not targeted by an intervention, is determined by a function 𝑓𝑆, which takes as in-
put the price of the product 𝑃 and an exogenous random variable 𝐸 (e.g. the cost of
production). The system for price, supply, and demand can be represented by an
(underspecified) CCMℳ = (ℝ3, Φ, 𝐸), where Φ consists of two causal constraints:

(𝑆 − 𝐷, 0, {∅, {𝐷}, {𝑆}, {𝐷, 𝑆}}),
(𝑆 − 𝑓𝑆(𝑃, 𝐸), 0, {∅, {𝐷}, {𝑃}, {𝐷, 𝑃}}).

After an intervention on 𝑃 we getℳdo(𝑃,𝜉𝑃) = (ℝ3, Φ̃, 𝐸), where the updated set of
causal constraints is given by

(𝑆 − 𝑓𝑆(𝑃, 𝐸), 0, {∅, {𝐷}, {𝑃}, {𝐷, 𝑃}}),
(𝑃, 𝜉𝑃, {∅, {𝐷}, {𝑆}, {𝐷, 𝑆}}).

Note that after an intervention on 𝑃, there would be no intervention under which the
causal constraint (𝑆 − 𝐷, 0, {∅, {𝐷}, {𝑆}, {𝐷, 𝑆}}) is still active (not even for the null
intervention), so it is discarded from Φ̃. △

3.3.3 From SCM to CCM

Structural equations in SCMs are constraints that are active as long as their corres-
ponding variables are not targeted by interventions. This can be used to demonstrate
how, for real-valued SCMs, an equivalent CCM with the same solutions under inter-
ventions can be constructed.6

Proposition 3.1. LetℳSCM = (ℝ𝑝, 𝐹,E) be a real-valued SCM and ℐ = {1, … , 𝑝} an
index set. The CCMℳCCM = (ℝ𝑝, Φ,E) with causal constraints Φ:

(𝑓𝑗(xpa(𝑗), epa(𝑗)) − 𝑥𝑗, 0, 𝐴𝑗 = 𝒫(ℐ\{𝑗})) , ∀𝑗 ∈ ℐ,

6The general case, where variables take value in a standard measurable space, requires an additive
structure on the variable domains with a zero-element.
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has the same solutions asℳSCM under any intervention.

Proof. The result follows from Definitions 3.8 and 3.9.

3.3.4 Equilibrium causal models

We have seen that SCMs may fail to completely capture the causal semantics of sta-
tionary behaviour in dynamical systems. Here we prove that CCMs can always com-
pletely represent the causal semantics of dynamical systems at equilibrium.

Theorem 3.2. Let 𝒟 be a dynamical system such that for all 𝐼 ⊆ ℐ and all 𝝃𝐼 ∈ 𝓧𝐼,
𝒟do(𝐼,𝝃𝐼) has a unique solution of the form (3.2). Then there exists a CCMℳ(𝒟) such
that for all 𝐼 ⊆ ℐ and all 𝝃𝐼 ∈ 𝓧𝐼:

⚫ the equilibrium solutions of𝒟do(𝐼,𝝃𝐼) coincidewith the solutions of (ℳ(𝒟))
do(𝐼,𝝃𝐼)

,
⚫ the following diagram commutes:

𝒟 ℳ(𝒟)

𝒟do(𝐼,𝝃𝐼) (ℳ(𝒟))
do(𝐼,𝝃𝐼).

Proof. By assumption, the intervened system𝒟do(𝐼,𝝃𝐼) has a unique solutionX𝑡(𝝃𝐼, eℐ⧵𝐼)
given by X(𝑡, (𝝃𝐼, eℐ⧵𝐼)) which is measurable in (𝝃𝐼, eℐ⧵𝐼) for all 𝑡. For 𝐼 ⊆ ℐ define:

C𝐼 = {(𝝃𝐼, eℐ\𝐼) ∈ ℝ|𝐼| × ℝ|ℐ\𝐼| ∶ X𝑡(𝝃𝐼, eℐ⧵𝐼) converges as 𝑡 → ∞}. (3.16)

Consider the measurable function g𝐼 ∶ ℝℐ × ℝℐ\𝐼 → ℝℐ defined by

g𝐼(x, eℐ\𝐼) ∶= X∗((x𝐼, eℐ⧵𝐼))1C𝐼((x𝐼, eℐ\𝐼)) + (x + 1) (1 − 1C𝐼((x𝐼, eℐ\𝐼))) − x, (3.17)

where X∗((x𝐼, eℐ⧵𝐼)) = lim𝑡→∞X𝑡(𝝃𝐼, eℐ⧵𝐼). The constraint g𝐼(x, eℐ\𝐼) = 0 gives a con-
tradiction if and only if (x𝐼, eℐ\𝐼) ∉ C𝐼, and reduces to the equation x = X∗((x𝐼, eℐ\𝐼))
otherwise. Therefore, the equilibrium solutions of 𝒟do(𝐼,𝝃𝐼) coincide with the solu-
tions of the equation g𝐼(x, eℐ\𝐼) = 0. The CCM ℳ(𝒟) ∶= (𝓧,Φ,E) with Φ =
{(g𝐼, 0, 𝐴𝐼 = {𝐼}) ∶ 𝐼 ⊆ ℐ} satisfies the properties of the theorem by construction.

Theorem 3.2 proves that a CCM representation always exists that completely
characterizes the causal semantics of a dynamical system at equilibrium. Although
we construct a CCM in the proof of the theorem, it does not give a parsimonious rep-
resentation of the system.7 In the next section, we will outline an intuitive and more
convenient construction method in the context of ODEs.

7Interestingly, the CCM construction in the proof of Theorem 3.2 can be applied to dynamical systems
at finite time 𝑡.
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3.4 From ODE to CCM

We consider how and when parsimonious CCM representations can be derived from
ODEs and initial conditions in a dynamical system. We demonstrate how causal con-
straints, unlike SCMs can completely capture the stationary behaviour of the basic
enzyme reaction and that they have no solution if the system does not converge.

3.4.1 Causal constraints from differential equations

When modelling the stationary behaviour of a system of a set of first-order ODEs,
setting the time-derivatives equal to zero constrains the solution space of the equi-
librium model to the fixed points of the system. A CCM allows us to interpret such
constraints as causal by explicitly specifying under which interventions they put con-
straints on the equilibrium solutions of the system.

Example 3.2. For the basic enzyme reaction, some of the causal constraints are ob-
tained by setting the time derivatives of the four variables of the system in equations
(3.4) to (3.7) equal to zero. The resulting constraints are active as long as the cor-
responding variables are not targeted by an intervention. This leads to the causal
constraints in equations (3.18) to (3.21) below,

(𝑘0 + 𝑘−1𝐶∗ − 𝑘1𝑆∗𝐸∗, 0, 𝒫(ℐ\{𝑆})), (3.18)
(−𝑘1𝑆∗𝐸∗ + (𝑘−1 + 𝑘2)𝐶∗, 0, 𝒫(ℐ\{𝐸})), (3.19)
(𝑘1𝑆∗𝐸∗ − (𝑘−1 + 𝑘2)𝐶∗, 0, 𝒫(ℐ\{𝐶})), (3.20)
(𝑘2𝐶∗ − 𝑘3𝑃∗, 0, 𝒫(ℐ\{𝑃})), (3.21)

with ℐ = {𝑆, 𝐶, 𝐸, 𝑃}. At this stage, the CCM is equivalent to the underspecified SCM
of the dynamical system that we discussed in Section 3.2.3. We will proceed in the
next section by adding more causal constraints. △

Example 3.3. The Lotka-Volterra model (Murray, 2002) is a set of differential equa-
tions that is often used to describe the dynamics of a systemwhere prey (e.g. deer) and
predators (e.g. wolves), denoted by 𝑋1 and 𝑋2 respectively, interact. The dynamics of
the biological model are given by

̇𝑋1 = 𝑋1(𝑡)(𝑘11 − 𝑘12𝑋2(𝑡)), (3.22)
̇𝑋2 = −𝑋2(𝑡)(𝑘22 − 𝑘21𝑋1(𝑡)), (3.23)

with initial values 𝑋1(0) > 0, 𝑋2(0) > 0 and strictly positive rate parameters. The
system has two fixed points (𝑋∗

1 , 𝑋∗
2 ) = (0, 0) and (𝑋∗

1 , 𝑋∗
2 ) = (𝑘22/𝑘21, 𝑘11/𝑘12), which
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can be represented either by causal constraints,

(𝑋∗
1 (𝑘11 − 𝑘12𝑋∗

2 ), 0, {∅, {2}}), (3.24)
(𝑋∗

2 (𝑘22 − 𝑘21𝑋∗
1 ), 0, {∅, {1}}), (3.25)

or (equivalently) by structural equations:

𝑋∗
1 = 𝑋∗

1 + 𝑋∗
1 (𝑘11 − 𝑘12𝑋∗

2 ), (3.26)
𝑋∗
2 = 𝑋∗

2 − 𝑋∗
2 (𝑘22 − 𝑘21𝑋∗

1 ). (3.27)

These (structural) equations do not describe the stable steady state behavior of the
model, because the system displays undamped oscillations around the positive fixed
point, as was pointed out byMooij, Janzing, and Schölkopf (2013) andMurray (2002).
In the next section we proceed by adding additional relevant constraints to the CCM.

△

3.4.2 Causal constraints from constants of motion

For dynamical systems that admit a constant of motion (i.e. a conserved quantity),
the trajectories of its solutions are confined to a space that is constrained by its initial
conditions. Hence, the solutions for the equilibrium must be similarly constrained.
In a CCM we interpret these constraints as causal by specifying under which inter-
ventions they constrain the solution space.

Example 3.2 (continuing from p. 58). For the basic enzyme reaction, we include the
conservation law that results from the linear dependence between the time derivative
of the free enzyme 𝐸 and the complex 𝐶 in equation (3.9). Since this relation holds
as long as the ‘cycle’ between 𝐶 and 𝐸 is not broken, we obtain the following causal
constraint

(𝐶∗ + 𝐸∗ − (𝑐0 + 𝑒0), 0, 𝒫(ℐ\{𝐶, 𝐸})) . (3.28)

Another conservation law appeared after intervention on the variable 𝐶. The result-
ing conservation law 𝑆(𝑡)−𝐸(𝑡) = 𝑠0−𝑒0 applies as long as the ‘cycle’ between 𝑆 and
𝐸 is not broken by another intervention on the system. This leads to the final causal
constraint:

(𝑆∗ − 𝐸∗ − (𝑠0 − 𝑒0), 0, {{𝐶}, {𝐶, 𝑃}}) . (3.29)

Let Φ be the set of causal constraints in (3.18) to (3.21) and (3.28) and (3.29). In
Section 3.2.2 we showed that the active constraints inΦ have a unique solution under
any intervention. If E = (𝑠0, 𝑒0, 𝑐0, 𝑝0) is a set of exogenous random variables then
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the CCMℳ = (ℝ4
>0, Φ,E) completely captures the stationary behaviour of the basic

enzyme reaction. △

Remark 3.1. Interestingly, if we treat 𝐶 as a latent endogenous variable that cannot
be intervened upon, the equilibrium to which the dynamics of the basic enzyme re-
action converges can be completely described by the following marginal CCM (see
Section 3.A.3 for details):

(𝑘0+𝑘−1
𝑘0/𝑘2

𝑘1𝐸∗
− 𝑆∗, 0, 𝒫(ℐ′\{𝑆})) , (3.30)

( (𝑘−1+𝑘2)(𝑐0+𝑒0)
𝑘−1+𝑘2+𝑘1𝑆∗

− 𝐸∗, 0, 𝒫(ℐ′\{𝐸})) , (3.31)

(𝑘2
𝑘3

𝑘1𝑆∗𝐸∗

𝑘−1+𝑘2
− 𝑃∗, 0, 𝒫(ℐ′\{𝑃})) , (3.32)

where ℐ′ is an index set for {𝑆, 𝐸, 𝑃}. From Proposition 3.1 it can be seen that there
exists an equivalent SCM that does completely capture the causal semantics of 𝑆, 𝐸,
and 𝑃, as long as one does not intervene on 𝐶. △

Example 3.3 (continuing from p. 58). The Lotka-Volterra model provides an ex-
ample of a system that admits a non-linear conservation law:

− 𝑘21𝑋1 + 𝑘22 log(𝑋1) − 𝑘12𝑋2 + 𝑘11 log(𝑋2) = (3.33)
− 𝑘21𝑋1(0) + 𝑘22 log(𝑋1(0)) − 𝑘12𝑋2(0) + 𝑘11 log(𝑋2(0)),

which represents a constraint that is only active in the observational setting. If the
systemwould converge to an equilibrium (𝑋∗

1 , 𝑋∗
2 ) the causal constraints derived from

the differential equations should hold simultaneously. These constraints are only
satisfied when the system starts out in one of the fixed points (e.g. (𝑋1(0), 𝑋2(0)) =
(𝑘22/𝑘21, 𝑘11/𝑘12)). Otherwise the dynamical system exhibits steady-state oscillations
and the set of causal constraints has no solution.

A complete causal description of how the equilibrium behaviour changes under
perfect interventions can be obtained by adding the following two causal constraints:

(𝑋∗
1 − 𝑋1(0)1{𝑘11−𝑘12𝑋∗

2≥0}, 0, {{2}}), (3.34)

(𝑋∗
2 − 𝑋2(0)1{𝑘22−𝑘21𝑋∗

1≤0}, 0, {{1}}). (3.35)

Addition of the causal constraint in equation (3.34) ensures that after an interven-
tion on the amount of predators 𝑋2: a) when the amount of predators 𝑋2 is forced
to take on a constant value 𝑘11/𝑘12 the amount of prey 𝑋1 remains constant, b) the
amount of prey 𝑋1 goes extinct when there are more predators, and c) the model has
no solution if there are fewer predators. This can easily be verified by attempting to
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solve the active constraints in equations (3.26) and (3.34). The causal constraint in
equation (3.35) can be interpreted similarly. Together, the causal constraints in equa-
tions (3.24), (3.25), (3.33), (3.34), and (3.35) capture the stationary behaviour of the
predator-prey model.8 The SCM on the other hand has the fixed points of the system
as a solution and does not predict the non-convergent behaviour. △

3.4.3 Constructing CCMs

Causal constraints (or structural equations) derived fromdifferential equations result
in a causal description of the fixed points in a system. Clearly, the set of solutions to
a CCMwhich is constructed from the ODEs and constants of motion in a dynamical
system contains the fixed points of that system. For structurally semistable systems
the addition of causal constraints derived from constants of motion results in a com-
plete causal description of the system’s stationary behaviour when the constraints
specify the equilibria in terms of initial conditions, as can be seen from Theorem 3.3
and Corollary 3.1 below.

Theorem 3.3. Let𝒟 be a dynamical system that converges to a fixed point if it has at
least one. Letℳ be a CCM constructed from the ODEs and constants of motion in 𝒟
for which all solutions, if they exist, are unique up to ℙE-zero sets. 𝒟 converges to an
equilibrium X∗ if and only if X∗ is a solution ofℳ.

Proof. First assume that 𝒟 has a fixed point, so that 𝒟 converges to an equilibrium
X∗(e) for almost every e ∈ ℝ𝑝. We have that a)X∗(e) satisfies the constants of motion
in the dynamical system and b) forX∗(e) the time-derivatives appearing in the ODEs
are equal to zero. Hence if𝒟 converges toX∗ thenX∗ is a solution ofℳ. Sinceℳ has
no more than one solution (up to zero sets), the reverse statement is also true. Now
assume that 𝒟 has no fixed point. In that case ℳ has no solutions, and 𝒟 cannot
converge to an equilibrium.

Corollary 3.1. Let 𝒟 be structurally semistable andℳ a CCM constructed from the
ODEs and constants of motion in 𝒟 for which under any intervention, all solutions, if
they exist, are unique up to ℙE-zero sets. Then for all 𝐼 ⊆ ℐ and 𝝃𝐼 ∈ ℝ|𝐼|: 𝒟do(𝐼,𝝃𝐼)
converges to an equilibrium X∗(𝐼, 𝝃𝐼) if and only if X∗(𝐼, 𝝃𝐼) is a solution ofℳdo(𝐼,𝝃𝐼).

Proof. If ℳdo(𝐼,𝝃𝐼) has a solution then 𝒟do(𝐼,𝝃𝐼) has a fixed point with x
∗
𝐼 = 𝝃𝐼 and

it converges because 𝒟 is structurally semistable. If ℳdo(𝐼,𝝃𝐼) has no solution then
𝒟do(𝐼,𝝃𝐼) does not converge to a fixed point. The result follows from Theorem 3.3 and
Definition 3.9.

The basic enzyme reaction in Example 3.2 is structurally semistable, while the
Lotka-Volterra model in Example 3.3 is not. Corollary 3.1 tells us that for structurally

8This can be verified by explicitly calculating the solutions of the model under all interventions.
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semistable systems, if a CCM constructed from ODEs and constants of motions has
at most one solution under any intervention, then the CCM completely captures the
causal semantics of the stationary behaviour of the system.

3.5 Functional laws

CCMs can also represent functional laws, which are relations between variables that
are invariant under all interventions. Causal constraints allow one to explicitly state
under which interventions a constraint is active. Therefore a CCM never admits a
solution that violates the functional law, where an SCM would.

Example 3.4. It is well-known that the pressure 𝑃 and temperature 𝑇 for𝑁 particles
of an ideal gas in a fixed volume 𝑉 are related by the ideal gas law. In absence of
any knowledge about the environment, this system can be represented by the (un-
derspecified) CCMℳ = (ℝ2, {(𝑃𝑉 − 𝑁𝑘𝐵𝑇, 0, 𝒫(ℐ))},ℙ∅), where 𝑘𝐵 is Boltzmann’s
constant, and ℐ is an index set for the variables (𝑃, 𝑇) in the system. If we were to de-
scribe the same system using an SCM, then we would need two copies of this causal
constraint as structural equations:

𝑃 = 𝑁𝑘𝐵𝑇

𝑉
, 𝑇 = 𝑃𝑉

𝑁𝑘𝐵
.

Indeed, considering interventions on one of the variables leaves no choice for the
structural equation of the other one. Furthermore, a simultaneous intervention on
𝑃 and 𝑇 always has a solution in the SCM representation, even when this means
that the ideal gas law is violated. The CCM representation typically does not have
a solution under such an intervention (unless the target values satisfy the ideal gas
law constraint). Therefore, the CCM representation of functional laws like the ideal
gas law is more parsimonious and more natural than any SCM representation can
be. △

A functional law can be any relation that is invariant under all interventions. For
example, a transformation of a (set of) variables to another (set of) variables describ-
ing the same system can also be modelled as a functional law.

Example 3.5. Let ℐ be an index set of (𝑇, 𝑉, 𝑂). Suppose that the viscosity𝑇 of a salad
dressing, consisting of a certain amount of oil 𝑂 and a certain amount of vinegar
𝑉 is determined by a causal constraint 𝜙 = (𝑓, 0, 𝒫(ℐ\{𝑇})) where 𝑓 is a function
depending on the amount of oil and vinegar. By adding causal constraints

(𝑂𝑟 − 𝑂/(𝑂 + 𝑉), 0, 𝒫(ℐ)),
(𝑉𝑟 − 𝑉/(𝑂 + 𝑉), 0, 𝒫(ℐ)),
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a CCM allows us to have the relative amounts of oil and vinegar 𝑂𝑟 and 𝑉𝑟 in the
model without running into logical contradictions. △

3.6 Conclusion

While Structural Causal Models (SCMs) form a very popular modeling framework
in many applied sciences, we have shown that they are neither powerful enough to
model the rich equilibrium behavior of simple dynamical systems such as the basic
enzyme reaction, nor simple functional laws of nature like the ideal gas law. This
raises the question whether the common starting point in causal discovery—that the
data-generating process can be modeled with an SCM—is tenable in certain applica-
tion domains, for example, for biochemical systems.

We believe that the examples presented in this paper form a compelling motiv-
ation to extend the common causal modeling framework to potentially broaden the
impact of causal modeling in dynamical systems. In this work, we introduced Causal
ConstraintsModels (CCMs). We showedhow they can be ‘constructed’ fromdifferen-
tial equations and initial conditons and proved that they can completely capture the
causal semantics of functional laws and stationary behavior in dynamical systems.

One intuitively appealing aspect of SCMs is their graphical interpretation. In
Chapters 4 and 5, we investigate graphical representations of the causal and inde-
pendence structure implied by sets of (causal) constraints. This allows us to better
understand the causal and independence properties of certain dynamical systems at
equilibrium.

3.A Explicit calculations for the basic enzyme reaction

In this section we present additional results concerning the basic enzyme reaction
that were already highlighted throughout this chapter. First we present a table with
all fixed points of the basic enzyme reaction. We proceed with proving that the dy-
namical system of a basic enzyme reaction converges to a fixed point whenever a
fixed point exists. Finally, we derive a simple marginal model from the CCM repres-
entation of the basic enzyme reaction.

3.A.1 Fixed points

The fixed points of the basic enzyme reaction, for all intervened systems, are given in
Table 3.2. For any intervention, these are obtained by solving the system of equations
that one gets by considering the causal constraints of the CCM for the basic enzyme
reaction that are active under that specific intervention. In other words, we take all
equations for which a particular intervention is in the activation set.
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Table 3.2: Fixed points of the basic enzyme reaction, where 𝑦 = 1

2√(𝑒0 − 𝑠0)2 + 4𝑘0(𝑘−1+𝑘2)
𝑘1𝑘2

.

The symbol ∅ is used to indicate that the CCM has no fixed points.

intervention 𝑆∗ 𝐶∗ 𝐸∗ 𝑃∗

none
𝑘0+𝑘−1

𝑘0
𝑘2

𝑘1(𝑒0+𝑐0−
𝑘0
𝑘2
)

𝑘0
𝑘2

𝑒0 + 𝑐0 −
𝑘0
𝑘2

𝑘0
𝑘3

do(𝑆 = 𝑠) 𝑠 𝑘1𝑠(𝑒0+𝑐0)

𝑘−1+𝑘2+𝑘1𝑠

(𝑘−1+𝑘2)(𝑒0+𝑐0)

𝑘−1+𝑘2+𝑘1𝑠

𝑘2
𝑘3

𝑘1𝑠(𝑒0+𝑐0)

𝑘−1+𝑘2+𝑘1𝑠

do(𝐶 = 𝑐), 𝑐 = 𝑘0
𝑘2

(𝑠0−𝑒0)

2
+ 𝑦 𝑐 −(𝑠0−𝑒0)

2
+ 𝑦 𝑘2

𝑘3
𝑐

do(𝐶 = 𝑐), 𝑐 ≠ 𝑘0
𝑘2

∅ ∅ ∅ ∅

do(𝐸 = 𝑒)
𝑘0+𝑘−1

𝑘0
𝑘2

𝑘1𝑒

𝑘0
𝑘2

𝑒 𝑘0
𝑘3

do(𝑃 = 𝑝)
𝑘0+𝑘−1

𝑘0
𝑘2

𝑘1(𝑒0+𝑐0−
𝑘0
𝑘2
)

𝑘0
𝑘2

𝑒0 + 𝑐0 −
𝑘0
𝑘2

𝑝

do(𝑆 = 𝑠, 𝐶 = 𝑐) 𝑠 𝑐 𝑘−1+𝑘2
𝑘1

𝑐

𝑠

𝑘2
𝑘3
𝑐

do(𝑆 = 𝑠, 𝐸 = 𝑒) 𝑠 𝑘1
𝑘−1+𝑘2

𝑠𝑒 𝑒 𝑘2
𝑘3

𝑘1
𝑘−1+𝑘2

𝑠𝑒

do(𝑆 = 𝑠, 𝑃 = 𝑝) 𝑠 𝑘1𝑠(𝑒0+𝑐0)

𝑘−1+𝑘2+𝑘1𝑠

(𝑘−1+𝑘2)(𝑒0+𝑐0)

𝑘−1+𝑘2+𝑘1𝑠
𝑝

do(𝐶 = 𝑐, 𝐸 = 𝑒) 𝑘0+𝑘−1𝑐

𝑘1𝑒
𝑐 𝑒 𝑘2

𝑘3
𝑐

do(𝐶 = 𝑐, 𝑃 = 𝑝), 𝑐 = 𝑘0
𝑘2

(𝑠0−𝑒0)

2
+ 𝑦 𝑐 −(𝑠0−𝑒0)

2
+ 𝑦 𝑝

do(𝐶 = 𝑐, 𝑃 = 𝑝), 𝑐 ≠ 𝑘0
𝑘2

∅ ∅ ∅ ∅

do(𝐸 = 𝑒, 𝑃 = 𝑝)
𝑘0+𝑘−1

𝑘0
𝑘2

𝑘1𝑒

𝑘0
𝑘2

𝑒 𝑝

do(𝑆 = 𝑠, 𝐶 = 𝑐, 𝐸 = 𝑒) 𝑠 𝑐 𝑒 𝑘2
𝑘3
𝑐

do(𝑆 = 𝑠, 𝐶 = 𝑐, 𝑃 = 𝑝) 𝑠 𝑐 𝑘−1+𝑘2
𝑘1

𝑐

𝑠
𝑝

do(𝑆 = 𝑠, 𝐸 = 𝑒, 𝑃 = 𝑝) 𝑠 𝑘1
𝑘−1+𝑘2

𝑠𝑒 𝑒 𝑝

do(𝐶 = 𝑐, 𝐸 = 𝑒, 𝑃 = 𝑝) 𝑘0+𝑘−1𝑐

𝑘1𝑒
𝑐 𝑒 𝑝

do(𝑆 = 𝑠, 𝐶 = 𝑐, 𝐸 = 𝑒, 𝑃 = 𝑝) 𝑠 𝑐 𝑒 𝑝

3.A.2 Convergence results for the basic enzyme reaction

In this section, we show that the basic enzyme reaction always converges to its fixed
point, as long as it exists. We also show that the intervened basic enzyme reaction
has the same property. To prove this result we rely on both explicit calculations and
a convergence property of so-called cooperative systems that we obtained from Bel-
gacem et al. (2012). To prove convergence for the observed system and the system
after interventions on 𝑃 and 𝐸, we use the latter technique. Convergence to the equi-
librium solution after interventions on 𝑆 and 𝐶 can be shown by explicit calculation.
The convergence results for combinations of interventions can be obtained by a trivial
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extension of the arguments that were used in the other cases.

3.A.2.1 Cooperativity in the basic enzyme reaction

To show that the basic enzyme reaction converges to a unique equilibrium, if it exists,
wemake use of a result that we obtained fromBelgacem et al. (2012): cooperative sys-
tems (see Definition 3.10) have the attractive convergence property (see Proposition
3.2).

Definition 3.10. A system of ODEs ̇X is cooperative if the Jacobian matrix has non-
negative off-diagonal elements, or there exists an integer 𝑘 such that the Jabobian has
(𝑘 × 𝑘) and (𝑛 − 𝑘) × (𝑛 − 𝑘)main diagonal matrices with non-negative off-diagonal
entries and the rectangular off-diagonal sub-matrices have non-positive entries.

Proposition 3.2. Let ̇X = f(X) be a cooperative system with a fixed point x∗. If there
exist two points xmin, xmax ∈ 𝓧 such that xmin ≤ x∗ ≤ xmax and f(xmin) ≥ 0 and
f(xmax) ≤ 0, then the hyper-rectangle betweeen xmin and xmax is invariant9 and for al-
most all initial conditions inside this rectangle the solution converges to x∗.

3.A.2.2 Convergence of the observed system

Recall that the dynamics of the basic enzyme reaction are given by

̇𝑆(𝑡) = 𝑘0 − 𝑘1𝑆(𝑡)𝐸(𝑡) + 𝑘−1𝐶(𝑡), (3.36)
̇𝐸(𝑡) = −𝑘1𝑆(𝑡)𝐸(𝑡) + (𝑘−1 + 𝑘2)𝐶(𝑡), (3.37)
̇𝐶(𝑡) = 𝑘1𝑆(𝑡)𝐸(𝑡) − (𝑘−1 + 𝑘2)𝐶(𝑡), (3.38)
̇𝑃(𝑡) = 𝑘2𝐶(𝑡) − 𝑘3𝑃(𝑡), (3.39)

𝑆(0) = 𝑠0, 𝐸(0) = 𝑒0, 𝐶(0) = 𝑐0, 𝑃(0) = 𝑝0, (3.40)

where x0 = (𝑠0, 𝑒0, 𝑐0, 𝑝0) are the initial conditions of the system. The analysis in
Belgacem et al. (2012) applies to a slightly differentmodel that also includes feedback
from 𝑃 to 𝐶. Here, we will adapt their analysis which is based on Proposition 3.2.
Notice that the arguments that will be given in this section can be applied to the
dynamics of a system where 𝑃 is intervened upon as well.

We start by rewriting the system of ODEs in equation (3.36) to (3.39) by using
the fact that ̇𝐸(𝑡) + ̇𝐶(𝑡) = 0 so that 𝐸(𝑡) = 𝑒0 + 𝑐0 − 𝐶(𝑡):

̇𝑆(𝑡) = 𝑘0 − 𝑘1𝑆(𝑡)(𝑒0 + 𝑐0 − 𝐶(𝑡)) + 𝑘−1𝐶(𝑡), (3.41)
̇𝐶(𝑡) = 𝑘1𝑆(𝑡)(𝑒0 + 𝑐0 − 𝐶(𝑡)) − (𝑘−1 + 𝑘2)𝐶(𝑡), (3.42)
̇𝑃(𝑡) = 𝑘2𝐶(𝑡) − 𝑘3𝑃(𝑡). (3.43)

9An invariant set is a set with the property that once a trajectory of a dynamical set enters it, it cannot
leave.
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Cooperativity The corresponding Jacobian matrix is given by,

𝐽(𝑆, 𝐶, 𝑃) = (
−𝑘1(𝑒0 + 𝑐0 − 𝐶(𝑡)) 𝑘−1 + 𝑘1𝑆(𝑡) 0
𝑘1(𝑒0 + 𝑐0 − 𝐶(𝑡)) −(𝑘−1 + 𝑘2) − 𝑘1𝑆(𝑡) 0

0 𝑘2 −𝑘3
) . (3.44)

Since all off-diagonal elements in the Jacobian matrix are non-negative, the observa-
tional system is a cooperative system by Definition 3.10.

Convergence From Table 3.2 we find that the observed system has a unique (pos-
itive) fixed point as long as 𝑒0+ 𝑐0 >

𝑘0
𝑘2
. We want to use Proposition 3.2 to show that

the system converges to this fixed point, so we need to find xmin and xmax so that all
three derivatives are non-negative and non-positive respectively.

For xmin = (0, 0, 0), then ̇𝑆 = 𝑘0 > 0 and ̇𝐶 = ̇𝑃 = 0 so all derivatives are
nonnegative. The upper vertex must be chosen so that all derivative are non-positive:

̇𝑆 ≤ 0 ⟺ 𝑆 ≥
𝑘0 + 𝑘−1𝐶

𝑘1(𝑒0 + 𝑐0 − 𝐶)
,

̇𝐶 ≤ 0 ⟺ 𝑆 ≥ (𝑘−1 + 𝑘2)𝐶
𝑘1(𝑒0 + 𝑐0 − 𝐶)

,

̇𝑃 ≤ 0 ⟺ 𝑃 ≥ 𝑘2
𝑘3
𝐶.

The basic enzyme reaction only has a fixed point as long as 𝐶 < 𝑒0 + 𝑐0 (otherwise
̇𝑆(𝑡) > 0). If we let 𝐶 approach 𝑒0 + 𝑐0, then the inequality constraints on the deriv-
atives are satisfied as 𝑆 and 𝑃 go to infinity. More formally we can choose

xmax = (𝑆 = max (
𝑘0 + 𝑘−1𝐶

𝑘1(𝑒0 + 𝑐0 − 𝐶)
, (𝑘−1 + 𝑘2)𝐶
𝑘1(𝑒0 + 𝑐0 − 𝐶))

, 𝐶 = 𝑒0 + 𝑐0 − 𝜖, 𝑃 = 𝑘2
𝑘3
𝐶 + 1

𝜖 ) .

When 𝜖 approaches zero, both 𝑆 and 𝑃 go to infinity and all derivatives are non-
positive. Hence, by Proposition 3.2, the system converges to its fixed point for almost
all valid initial values of 𝑆, 𝐶, and 𝑃 (for which the fixed point exists).

3.A.2.3 Intervention on E

Similarly, we can also show that the systemwhere𝐸 is targeted by an intervention that
sets it equal to 𝑒, converges to the (unique) equilibrium in Table 3.2. The intervened
system of ODEs is given by

̇𝑆 = 𝑘0 − 𝑘1𝑒𝑆 + 𝑘−1𝐶,
̇𝐶 = 𝑘1𝑒𝑆 − (𝑘−1 + 𝑘2)𝐶,
̇𝑃 = 𝑘2𝐶 − 𝑘3𝑃.
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The Jacobian is given by

𝐽(𝑆, 𝐶, 𝑃) = (
−𝑘1𝑒 𝑘−1 0
𝑘1𝑒 −(𝑘−1 + 𝑘2) 0
0 𝑘2 −𝑘3

) . (3.45)

Since all off-diagonal elements are non-negative this is a cooperative systembyDefin-
ition 3.10.

All derivatives are non-negative at the point (𝑆, 𝐶, 𝑃) = (0, 0, 0), and all derivat-
ives are non-positive at the point (𝑠, 𝑐, 𝑝) where

𝑠 = max (
𝑘−1𝑐 + 𝑘0

𝑘1𝑒
, (𝑘−1 + 𝑘2)𝑐

𝑘1𝑒
) ,

𝑝 = 𝑘2
𝑘3
𝑐,

where 𝑐 → ∞. We then apply Proposition 3.2 to show that the intervened system
converges to the equilibrium value from all valid initial values.

3.A.2.4 Intervention on S

We show that the system converges to the equilibrium solution after an intervention
on 𝑆 by explicit calculation. The intervened system of ODEs is given by

̇𝑆(𝑡) = 0,
̇𝐸(𝑡) = −𝑘1𝑠𝐸(𝑡) + (𝑘−1 + 𝑘2)𝐶(𝑡),
̇𝐶(𝑡) = 𝑘1𝑠𝐸(𝑡) − (𝑘−1 + 𝑘2)𝐶(𝑡),
̇𝑃(𝑡) = 𝑘2𝐶(𝑡) − 𝑘3𝑃(𝑡).

Since ̇𝐶(𝑡) + ̇𝐸(𝑡) = 0, we can write 𝐸(𝑡) = 𝑒0 + 𝑐0 − 𝐶(𝑡), resulting in the following
differential equation

̇𝐶(𝑡) = 𝑘1𝑠(𝑒0 + 𝑐0 − 𝐶(𝑡)) − (𝑘−1 + 𝑘2)𝐶(𝑡), (3.46)
= −(𝑘1𝑠 + 𝑘−1 + 𝑘2)𝐶(𝑡) + 𝑘1𝑠(𝑒0 + 𝑐0). (3.47)

We take the limit 𝑡 → ∞ of the solution to the initial value problem to obtain

𝐶∗ = lim
𝑡→∞

𝑘1𝑠(𝑒0 + 𝑐0)
(𝑘1𝑠 + 𝑘1 + 𝑘2)

+ 𝑒−(𝑘1𝑠+𝑘−1+𝑘2)𝑡 =
𝑘1𝑠(𝑒0 + 𝑐0)

(𝑘1𝑠 + 𝑘−1 + 𝑘2)
. (3.48)

The result for 𝐸 follows from the fact that 𝐸(𝑡) = 𝑒0 + 𝑐0 − 𝐶(𝑡). The result for 𝑃
follows by explicitly solving the differential equation and taking the limit 𝑡 → ∞.
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3.A.2.5 Intervention on C

There is no equilibrium solution when the intervention targeting 𝐶 does not have
value 𝑘0

𝑘2
, as can be seen from Table 3.2. To show that the system converges when the

equilibrium solution exists, we can explicitly solve the initial value problem and take
the limit 𝑡 → ∞. The intervened system of ODEs after an intervention do(𝐶 = 𝑘0

𝑘2
) is

given by

̇𝑆(𝑡) = −𝑘1𝑆(𝑡)𝐸(𝑡) + (𝑘−1 + 𝑘2)𝑘0/𝑘2 = −𝑘1𝑆(𝑡)𝐸(𝑡) + 𝑘,
̇𝐸(𝑡) = −𝑘1𝑆(𝑡)𝐸(𝑡) + (𝑘−1 + 𝑘2)𝑘0/𝑘2 = −𝑘1𝑆(𝑡)𝐸(𝑡) + 𝑘,
̇𝐶(𝑡) = 0,
̇𝑃(𝑡) = 𝑘0 − 𝑘3𝑃(𝑡),

where we set 𝑘 = (𝑘−1 + 𝑘2)𝑘0/𝑘2 for brevity. The initial value problem for 𝑃 can be
solved explicitly, and by taking the limit 𝑡 → ∞ we obtain

𝑃∗ = lim
𝑡→∞

𝑃(𝑡) = lim
𝑡→∞

𝑘0
𝑘3

+ 𝑐 ⋅ 𝑒−𝑘3𝑡 =
𝑘0
𝑘3
,

which is the same as the equilibrium solution in Table 3.2. The solution for 𝑆 is more
involved. First we substitute 𝐸(𝑡) = 𝑆(𝑡) − (𝑠0 − 𝑒0) (since ̇𝑆(𝑡) − ̇𝐸(𝑡) = 0) which
gives us the following differential equation

̇𝑆(𝑡) = −𝑘1𝑆(𝑡)(𝑆(𝑡) − (𝑠0 − 𝑒0)) + 𝑘 = −𝑘1𝑆(𝑡)2 + (𝑠0 − 𝑒0)𝑘1𝑆(𝑡) + 𝑘.

To solve this differential equation we first divide both sides by (−𝑘1(𝑆(𝑡))2 + (𝑠0 −
𝑒0)𝑘1𝑆(𝑡) + 𝑘), and integrate both sides with respect to 𝑡,

∫ 𝑑𝑆(𝑡)/𝑑𝑡
−𝑘1𝑆(𝑡)2 + (𝑠0 − 𝑒0)𝑘1𝑆(𝑡) + 𝑘

𝑑𝑡 = ∫1𝑑𝑡 (3.49)

∫ 𝑑𝑆(𝑡)
−𝑘1𝑆(𝑡)2 + (𝑠0 − 𝑒0)𝑘1𝑆(𝑡) + 𝑘

= (𝑡 + 𝑐) (3.50)

To evaluate the left-hand side of this equation we want to apply the following
standard integral:

∫ 1
𝑎𝑥2 + 𝑏𝑥 + 𝑐𝑑𝑥 = {

− 2
√𝑏2−4𝑎𝑐

tanh−1 ( 2𝑎𝑥+𝑏
√𝑏2−4𝑎𝑐

) + 𝐶, if |2𝑎𝑥 + 𝑏| < √𝑏2 − 4𝑎𝑐,

− 2
√𝑏2−4𝑎𝑐

coth−1 ( 2𝑎𝑥+𝑏
√𝑏2−4𝑎𝑐

) + 𝐶, else.
(3.51)

for 𝑏2 − 4𝑎𝑐 > 0. We first check the condition:

𝑏2 − 4𝑎𝑐 = (𝑠0 − 𝑒0)2𝑘21 + 4𝑘1𝑘 > 0.
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We now take the first solution to the standard integral (the second solution gives the
same limiting result for 𝑆, as wewill see later on). We apply the first solution in (3.51)
to (3.50) to obtain the following equivalent equations:

2 tanh−1 ( 2𝑘1𝑆(𝑡)−(𝑠0−𝑒0)𝑘1

√4𝑘1𝑘+(𝑠0−𝑒0)2𝑘21
)

√4𝑘1𝑘 + (𝑠0 − 𝑒0)2𝑘21
= 𝑡 + 𝑐 (3.52)

tanh−1 (
2𝑘1𝑆(𝑡) − (𝑠0 − 𝑒0)𝑘1

√4𝑘1𝑘 + (𝑠0 − 𝑒0)2𝑘21
) = 1

2(𝑡 + 𝑐)√4𝑘1𝑘 + (𝑠0 − 𝑒0)2𝑘21 (3.53)

2𝑘1𝑆(𝑡) − (𝑠0 − 𝑒0)𝑘1

√4𝑘1𝑘 + (𝑠0 − 𝑒0)2𝑘21
= tanh (12(𝑡 + 𝑐)√4𝑘1𝑘 + (𝑠0 − 𝑒0)2𝑘21) , (3.54)

Solving (3.54) for 𝑆 gives,

𝑆(𝑡) = 1
2𝑘1

(tanh (12(𝑡 + 𝑐)√4𝑘1𝑘 + (𝑠0 − 𝑒0)2𝑘21)√4𝑘1𝑘 + (𝑠0 − 𝑒0)2𝑘21 + 𝑘1(𝑠0 − 𝑒0)) .

By taking the limit 𝑡 → ∞, plugging in 𝑘 = (𝑘−1+𝑘2)
𝑘0
𝑘2
, and rewriting we obtain the

equilibrium solution in Table 3.2:

lim
𝑡→∞

𝑆(𝑡) =
𝑘1(𝑠0 − 𝑒0) +√4𝑘1𝑘 + (𝑠0 − 𝑒0)2𝑘21

2𝑘1

=
𝑘1(𝑠0 − 𝑒0) +√4𝑘1(𝑘−1 + 𝑘2)

𝑘0
𝑘2
+ (𝑠0 − 𝑒0)2𝑘21

2𝑘1

= 1
2 ((𝑠0 − 𝑒0) +√

(𝑠0 − 𝑒0)2 + 4
𝑘0(𝑘−1 + 𝑘2)

𝑘1𝑘2
) .

Note that if we take the second solution to the standard integral in (3.51), then we
would have ended up with the same solution for 𝑆(𝑡)with tanh replaced by coth, but
the limit lim𝑡→∞ 𝑆(𝑡)would still be the same. The solution for 𝐸 follows from the fact
that 𝐸(𝑡) = 𝑆(𝑡) − (𝑠0 − 𝑒0). The solutions for all joint interventions were found by
combining the arguments that were given for the single interventions.

3.A.3 Marginal model

In the paper we presented a marginal model for the basic enzyme reaction. Here we
show how it can be derived from the causal constraints in the CCM, which are given
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by

𝑘0 + 𝑘−1𝐶 − 𝑘1𝑆𝐸 = 0, 𝒫(ℐ\{𝑆}), (3.55)
𝑘1𝑆𝐸 − (𝑘−1 + 𝑘2)𝐶 = 0, 𝒫(ℐ\{𝐶}), (3.56)

−𝑘1𝑆𝐸 + (𝑘−1 + 𝑘2)𝐶 = 0, 𝒫(ℐ\{𝐸}), (3.57)
𝑘2𝐶 − 𝑘3𝑃 = 0, 𝒫(ℐ\{𝑃}), (3.58)

𝐶 + 𝐸 − (𝑐0 + 𝑒0) = 0, 𝒫(ℐ\{𝐶, 𝐸}), (3.59)
𝑆 − 𝐸 − (𝑠0 − 𝑒0) = 0, {{𝐶}, {𝐶, 𝑃}}. (3.60)

We obtain the marginal model as follows:
(i) Reduce the number of variables that can be targeted by an intervention: ℐ′ =

{𝑆, 𝐸, 𝑃}.
(ii) Rewrite the causal constraint in (3.56) to 𝐶 = 𝑘1𝑆𝐸

𝑘−1+𝑘2
. Note that this equation

holds under any intervention in 𝒫(ℐ′) = 𝒫(ℐ\{𝐶}). Then substitute this expres-
sion for 𝐶 into equation (3.55) to obtain

𝑘0 + 𝑘−1
𝑘0
𝑘2

𝑘1𝐸
− 𝑆 = 0, 𝒫(ℐ′\{𝑆}),

where the activation set of the causal constraint is given by the intersection
𝒫(ℐ\{𝑆}) ∩ 𝒫(ℐ′). Then substitute this expression for 𝐶 into equation (3.58) to
obtain

𝑘2
𝑘3

𝑘1𝑆𝐸
𝑘−1 + 𝑘2

− 𝑃 = 0, 𝒫(ℐ′\{𝑃}),

where the activation set of the causal constraint is given by the intersection
𝒫(ℐ\{𝑃}) ∩ 𝒫(ℐ′).

(iii) Rewrite the causal constraint in (3.59) to𝐶 = 𝑒0+𝑐0−𝐸 and note that this equa-
tion holds under interventions in𝒫(ℐ′\{𝐸}). Then substitute this expression for
𝐶 into equation (3.57) to obtain

(𝑘−1 + 𝑘2)(𝑐0 + 𝑒0)
𝑘−1 + 𝑘2 + 𝑘1𝑆

− 𝐸 = 0, 𝒫(ℐ′\{𝐸}),

where the activation set of the causal constraint is given by the intersection
𝒫(ℐ\{𝐶, 𝐸}) ∩ 𝒫(ℐ′\{𝐸}).
This procedure results in the following marginal model

𝑘0 + 𝑘−1
𝑘0
𝑘2

𝑘1𝐸
− 𝑆 = 0, 𝒫(ℐ′\{𝑆}),
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(𝑘−1 + 𝑘2)(𝑐0 + 𝑒0)
𝑘−1 + 𝑘2 + 𝑘1𝑆

− 𝐸 = 0, 𝒫(ℐ′\{𝐸}),

𝑘2
𝑘3

𝑘1𝑆𝐸
𝑘−1 + 𝑘2

− 𝑃 = 0, 𝒫(ℐ′\{𝑃}).

Because we kept track of the interventions under which each equation is active when
we substituted 𝐶 into the equations of other causal constraints, we preserved the
causal structure of the model. That is, the marginal CCM model has the same solu-
tions as the original CCM under interventions in 𝒫(ℐ′).
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Chapter 4

Conditional independences and
causal relations implied by sets of

equations

Based on:
Conditional independences and causal relations implied by sets of equations,

T. Blom, M.M. van Diepen, and J.M. Mooij,
Journal of Machine Learning Research 22.178 (2021), pp. 1-62.

Real-world complex systems are often modelled by sets of equations with en-
dogenous and exogenous variables. What can we say about the causal and probab-
ilistic aspects of variables that appear in these equations without explicitly solving
the equations? We make use of Simon’s causal ordering algorithm (Simon, 1953) to
construct a causal ordering graph and prove that it expresses the effects of soft and
perfect interventions on the equations under certain unique solvability assumptions.
We further construct aMarkov ordering graph and prove that it encodes conditional
independences in the distribution implied by the equations with independent ran-
dom exogenous variables, under a similar unique solvability assumption. We discuss
how this approach reveals and addresses some of the limitations of existing causal
modelling frameworks, such as causal Bayesian networks and structural causal mod-
els.

4.1 Introduction

The discovery of causal relations is a fundamental objective in many scientific en-
deavours. The process of the scientific method usually involves a hypothesis, such
as a causal graph or a set of equations, that explains observed phenomena. Such

73
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a graph structure can be learned automatically from conditional independences in
observational data via causal discovery algorithms, e.g. the well-known PC and FCI
algorithms (Spirtes, Glymour, et al., 2000; J. Zhang, 2008). The crucial assumption
in causal discovery is that directed edges in this learned graph express causal rela-
tions between variables. However, an immediate concern is whether directed mixed
graphs actually can simultaneously encode the causal semantics and the conditional
independence constraints of a system.1 We explicitly define soft and perfect inter-
ventions on sets of equations and demonstrate that, for some models, a single graph
expressing conditional independences between variables via d-separations does not
seem to represent the effects of these interventions in an unambiguous way, while
graphs that also have vertices representing equations do encode both the dependence
and causal structure implied by these models. In particular, we show that the output
of the PC algorithm does not have a straightforward causal interpretation when it is
applied to data generated by a simple dynamical model with feedback at equilibrium.

It is often said that the “gold standard” in causal discovery is controlled exper-
imentation. Indeed, the main principle of the scientific method is to derive predic-
tions from a hypothesis, such as a causal graph or set of equations, that are then
verified or rejected through experimentation. We show how testable predictions can
be derived automatically from sets of equations via the causal ordering algorithm, in-
troduced by Simon (1953). We adapt and extend the algorithm to construct a directed
cluster graph that we call the causal ordering graph. From this, we can construct a dir-
ected graph that we call the Markov ordering graph. We prove that, under a certain
unique solvability assumption, the latter implies conditional independences between
variables which can be tested in observational data and the former represents the ef-
fects of soft and certain perfect interventions which can be verified through experi-
mentation. We believe that the technique of causal ordering is a useful and scalable
tool in our search for and understanding of causal relations.

In this work, we also shed new light on differences between the causal ordering
graph and the graph associated with a Structural Causal Model (SCM) (see Bongers,
Forré, et al. (2020) and Pearl (2009)), which are also commonly referred to as Struc-
tural Equation Models (SEMs).2 Specifically, we demonstrate that the two graphical
representations may model different sets of interventions. Furthermore, we show
that a stronger Markov property can sometimes be obtained by applying causal or-
dering to the structural equations of an SCM. By explicitly defining interventions and
by distinguishing between the Markov ordering graph and the causal ordering graph
we gain new insights about the correct interpretation of results in Dash (2005) and
Iwasaki et al. (1994). Throughout this work, we discuss an example in Iwasaki et al.

1See, for example, (Dawid, 2010) and references therein for a discussion.
2The latter term has been used by econometricians since the 1950s. Note that, in the past some econo-

metricians have used (cyclic/non-recursive) “structural models” without requiring that there is a specified
one-to-one correspondence between endogenous variables and equations; see e.g. Basmann (1963). Re-
cent usage is consistent with the implication that there is a specified variable on the left-hand side for each
equation as is common in the SCM framework.
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(1994) to illustrate our ideas. Here, we use it to highlight the contributions of this
paper and to provide an overview of its central concepts.

𝑣𝐼 𝑣𝑂 𝑣𝐷 𝑣𝑃 𝑣𝐾

𝑓𝐼 𝑓𝐷 𝑓𝑂 𝑓𝑃 𝑓𝐾

(a) Bipartite graph.

𝑣𝐼 𝑣𝐷 𝑣𝑃

𝑓𝐼 𝑓𝑃 𝑓𝑂

𝑣𝑂𝑓𝐷

𝑣𝐾𝑓𝐾

(b) Causal ordering graph.

𝑣𝐼 𝑣𝐷 𝑣𝑃

𝑣𝑂

𝑣𝐾

(c) Markov ordering graph.

Figure 4.1: Three graphical representations for the bathtub system in equilibrium. The bipart-
ite graph in Figure (a) is a representation of the structure of equations 𝐹 = {𝑓𝐾, 𝑓𝐼, 𝑓𝑃, 𝑓𝑂, 𝑓𝐷}
where the vertices 𝑉 = {𝑣𝐾, 𝑣𝐼, 𝑣𝑃, 𝑣𝑂, 𝑣𝐷} correspond to endogenous variables and there is an
edge (𝑣 − 𝑓) if and only if the variable 𝑣 appears in equation 𝑓. The outcome of the causal
ordering algorithm is the directed cluster graph in Figure (b), in which rectangles represent a
partition of the variable and equation vertices into clusters. The corresponding Markov order-
ing graph for the variable vertices is given in Figure (c).

Example 4.1. Let us revisit a physical model of a filling bathtub in equilibrium that
is presented in Iwasaki et al. (1994). Consider a system where water flows from a
faucet into a bathtub at a constant rate 𝑋𝑣𝐼 and it flows out of the tub through a drain
with diameter 𝑋𝑣𝐾. An ensemble of such bathtubs that have faucets and drains with
different (unknown) rates and diameters can be modelled by the equations 𝑓𝐾 and 𝑓𝐼
below:

𝑓𝐾 ∶ 𝑋𝑣𝐾 = 𝑈𝑤𝐾, (4.1)
𝑓𝐼 ∶ 𝑋𝑣𝐼 = 𝑈𝑤𝐼, (4.2)

where 𝑈𝑤𝐾 and 𝑈𝑤𝐼 are independent random variables both taking value in ℝ>0.
When the faucet is turned on the water level 𝑋𝑣𝐷 in the bathtub increases as long as
the inflow𝑋𝑣𝐼 of thewater exceeds the outflow𝑋𝑣𝑂 of water. The differential equation
̇𝑋𝑣𝐷(𝑡) = 𝑈𝑤1(𝑋𝑣𝐼(𝑡)−𝑋𝑣𝑂(𝑡)) defines the mechanism for the rate of change in 𝑋𝑣𝐷(𝑡),

where𝑈𝑤1 is a constant or a random variable taking value inℝ>0. At equilibrium the
rate of change is equal to zero, resulting in the equilibrium equation

𝑓𝐷 ∶ 𝑈𝑤1(𝑋𝑣𝐼 − 𝑋𝑣𝑂) = 0. (4.3)
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As the water level 𝑋𝑣𝐷 increases, the pressure 𝑋𝑣𝑃 that is exerted by the water in-
creases as well. The mechanism for the change in pressure is defined by the differen-
tial equation ̇𝑋𝑣𝑃(𝑡) = 𝑈𝑤2(𝑔𝑈𝑤3𝑋𝑣𝐷(𝑡)−𝑋𝑣𝑃(𝑡)), where 𝑔 is the gravitational constant
and𝑈𝑤2, 𝑈𝑤3 are constants or random variables both taking value inℝ>0. After equi-
libration, we obtain

𝑓𝑃 ∶ 𝑈𝑤2(𝑔𝑈𝑤3𝑋𝑣𝐷 − 𝑋𝑣𝑃) = 0. (4.4)

The higher the pressure 𝑋𝑣𝑃 or the bigger the size of the drain 𝑋𝑣𝐾, the faster the wa-
ter flows through the drain. The differential equation ̇𝑋𝑣𝑂(𝑡) = 𝑈𝑤4(𝑈𝑤5𝑋𝑣𝐾𝑋𝑣𝑃(𝑡) −
𝑋𝑣𝑂(𝑡))models the outflow rate of the water, where𝑈𝑤4, 𝑈𝑤5 are constants or random
variables both taking value in ℝ>0. The equilibrium equation 𝑓𝑂 is given by

𝑓𝑂 ∶ 𝑈𝑤4(𝑈𝑤5𝑋𝑣𝐾𝑋𝑣𝑃 − 𝑋𝑣𝑂) = 0. (4.5)

We will study the conditional independences that are implied by equilibrium equa-
tions (4.1) to (4.5). In Sections 4.5.1 and 4.5.2 we will define the notion of soft and
perfect interventions on sets of equations as a generalization of soft and perfect in-
terventions on SCMs. The causal properties of sets of equilibrium equations are ex-
amined by comparing the equilibrium distribution before and after an intervention.
Our approach is related to the comparative statics analysis that is used in economics
to study the change in equilibrium distribution after changing exogenous variables
or parameters in the model, see also Simon and Iwasaki (1988). In this work, we will
additionally consider the effects on the equilibrium distribution of perfect interven-
tions targeting endogenous variables in the equilibrium equations.

Graphical representations. A set of equations can be represented by a bipartite
graph. In the case of the filling bathtub, the structure of equilibrium equations
(4.1) to (4.5) is represented by the bipartite graph in Figure 4.1(a). The set 𝑉 =
{𝑣𝐾, 𝑣𝐼, 𝑣𝑃, 𝑣𝑂, 𝑣𝐷} consists of vertices that correspond to variables and the vertices
in the set 𝐹 = {𝑓𝐾, 𝑓𝐼, 𝑓𝑃, 𝑓𝑂, 𝑓𝐷} correspond to equations. There is an edge between
a variable vertex 𝑣𝑖 and an equation vertex 𝑓𝑗 if the variable labelled 𝑣𝑖 appears in
the equation with label 𝑓𝑗. A formal definition of a system of constraints and its
associated bipartite graph will be provided in Section 4.1.1. The causal ordering al-
gorithm, introduced by Simon (1953) and reformulated by us in Section 4.2, takes a
self-contained bipartite graph as input and returns a causal ordering graph. A causal
ordering graph is a directed cluster graph which consists of variable vertices 𝑣𝑖 and
equation vertices 𝑓𝑗 that are partitioned into clusters. Directed edges go from vari-
able vertices to clusters. For the filling bathtub, the causal ordering graph is given
in Figure 4.1(b). In Section 4.4 we will show how the Markov ordering graph can
be constructed from a causal ordering graph. For the equilibrium equations of the
filling bathtub, the Markov ordering graph is given in Figure 4.1(c). The causal or-
dering algorithm of Simon (1953) can only be applied to bipartite graphs that have



4.1. Introduction 77

the property that they are self-contained. In Section 4.3 we introduce an extended
causal ordering algorithm that can also be applied to bipartite graphs that are not
self-contained.

Markov property. The Markov ordering graph in Figure 4.1(c) encodes conditional
independences between the equilibrium solutions 𝑋𝑣𝐾, 𝑋𝑣𝐼, 𝑋𝑣𝑃, 𝑋𝑣𝑂, and 𝑋𝑣𝐷 of the
equilibrium equations. In particular, d-separations between variable vertices in the
Markov ordering graph imply conditional independences between the corresponding
variables under certain solvability conditions, as we will prove in Theorem 4.3 in
Section 4.4. In Figure 4.1(c), the variable vertices 𝑣𝐼 and 𝑣𝐷 are d-separated by 𝑣𝑂. It
follows that at equilibrium the inflow rate𝑋𝑣𝐼 and thewater level𝑋𝑣𝐷 are independent
given the outflow rate𝑋𝑣𝑂. In Sections 4.3 and 4.4.4we showhowwe can use a perfect
matching for a bipartite graph to construct a directed graph that implies conditional
independences between variables via 𝜎-separations.3

Soft interventions. The causal ordering graph in Figure 4.1(b) encodes the effects of
soft interventions targeting (equilibrium) equations. This type of intervention is often
also referred to as a mechanism change. We assume that the variables in each cluster
can be solved uniquely from the equations in their cluster both before and after the
intervention.4 A soft intervention has no effect on a variable if there is no directed
path from the intervention target to the cluster containing the variable, as we will
prove in Theorem 4.5 in Section 4.5.1. Consider an experiment where the value of the
gravitational constant 𝑔 is altered (e.g. by moving the bathtub to the moon) resulting
in an alteration of the equation 𝑓𝑃. This is a soft intervention on 𝑓𝑃. There is no
directed path from 𝑓𝑃 to clusters that contain the vertices {𝑣𝐾, 𝑣𝐼, 𝑣𝑃, 𝑣𝑂} in the causal
ordering graph in Figure 4.1(b). Since the conditions of Theorem 4.5 are satisfied, the
soft intervention on 𝑓𝑃 has no effect on {𝑋𝑣𝐾, 𝑋𝑣𝐼, 𝑋𝑣𝑃, 𝑋𝑣𝑂} but it may have an effect
on 𝑋𝑣𝐷 (depending on the precise functional form of the equations and the values of
the parameters).

Perfect interventions. The causal ordering graph in Figure 4.1(b) also encodes the
effects of perfect interventions on clusters, under the assumption that variables can
be solved uniquely from the equations of their clusters in the causal ordering graph
before and after intervention. We will formally prove this in Theorem 4.6 in Sec-
tion 4.5.2. Consider a perfect intervention on the cluster {𝑓𝐾, 𝑣𝐾} (i.e. fixing the dia-
meter 𝑋𝑣𝐾 of the drain by altering the equation 𝑓𝐾) in Figure 4.1(b). This intervention

3Forré et al. (2017) introduced the notion of 𝜍-separations to replace 𝑑-separations in directed graphs
that may contain cycles. See Section 1.2 in Chapter 1 for more details.

4For the underlying dynamical model this assumption means that we assume that the equations of the
model define a unique equilibrium to which the system converges and that the system also converges to a
unique equilibrium that is defined by the model equations after an intervention on one of the parameters
or exogenous variables in the model. For some dynamical systems (e.g., a biochemical reaction network)
extra equations are required that describe the dependence of the equilibrium distribution on initial con-
ditions and cannot be modelled in the standard SCM framework (Blom, Bongers, et al., 2019). For these
systems, Blom, Bongers, et al. (2019) introduced the more general class of Causal Constraints Models.
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generically changes the solution for {𝑋𝑣𝐾, 𝑋𝑣𝑃, 𝑋𝑣𝐷} because 𝑣𝐾 is targeted by the in-
tervention and there are directed paths from the cluster of 𝑣𝐾 to the clusters of 𝑣𝑃 and
𝑣𝐷. It has no effect on {𝑋𝑣𝐼, 𝑋𝑣𝑂} because there are no directed paths from the cluster
of 𝑣𝐾 to the clusters of 𝑣𝐼 and 𝑣𝑂. △

4.1.1 System of constraints

Our formal treatment of sets of equationsmirrors the definition of a structural causal
model in the sense thatwe separate themodel from the endogenous randomvariables
that solve it. An introduction to cyclic SCMs was provided in Section 1.2.1). The
related graph terminology and Markov properties can be found in Section 4.A.1 and
4.A.2. Here, we introduce a mathematical object that we call a system of constraints
to represent equations and their structure as a bipartite graph.

Definition 4.1. A system of constraints is a tuple ⟨𝓧,X𝑊, 𝜱,ℬ = ⟨𝑉, 𝐹, 𝐸⟩⟩ where
(i) 𝓧 =⨂𝑣∈𝑉𝒳𝑣, where each 𝒳𝑣 is a standard measurable space and the domain

of a variable 𝑋𝑣,
(ii) X𝑊 = (𝑋𝑤)𝑤∈𝑊 is a family of independent random variables taking value in

𝓧𝑊 with𝑊 ⊆ 𝑉 a set of indices corresponding to exogenous variables,5
(iii) 𝜱 = (Φ𝑓)𝑓∈𝐹 is a family of constraints, each of which is a tupleΦ𝑓 = ⟨𝜙𝑓, 𝑐𝑓, 𝑉(𝑓)⟩,

with:
(i) 𝑉(𝑓) ⊆ 𝑉
(ii) 𝑐𝑓 a constant taking value in a standard measurable space 𝒴𝑓,
(iii) 𝜙𝑓 ∶ 𝓧𝑉(𝑓) → 𝒴𝑓 a measurable function,

(iv) ℬ = ⟨𝑉, 𝐹, 𝐸⟩ is a bipartite graph with:
(i) 𝑉 a set of nodes corresponding to variables,
(ii) 𝐹 a set of nodes corresponding to constraints,
(iii) 𝐸 = {(𝑓 − 𝑣) ∶ 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉(𝑓)} a set of edges.

Henceforth we will use the terms ‘variables’ and ‘vertices corresponding to vari-
ables’ interchangeably. We will also use the terms ‘constraints’, ‘equations’, and ‘ver-
tices corresponding to constraints’ interchangeably. We will often refer to the bipart-
ite graph in a system of constraints as the ‘associated bipartite graph’. A constraint
is formally defined as a triple consisting of a measurable function, a constant, and a
subset of the variables. For the sake of convenience we will often write constraints
as equations instead. Note that the notation for adjacencies in the associated bipart-
ite graph is equivalent to the notation for the variables that belong to a constraint:
𝑉(𝑓) = adjℬ(𝑓). For a set 𝑆𝐹 ⊆ 𝐹, we will let adjℬ(𝑆𝐹) = 𝑉(𝑆𝐹) = ∪𝑓∈𝑆𝐹𝑉(𝑓) denote
the adjacencies of the vertices 𝑓 ∈ 𝑆𝐹.

When modelling some system with a system of constraints, we are implicitly
assuming that the constraints are reversible in the sense that the causal relations

5This means that the nodes 𝑉 ⧵𝑊 correspond to endogenous variables.
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between the endogenous variables are flexible and may depend in principle on the
entire set of constraints in the system. However, there is an important modelling
choice regarding which of the variables to consider as endogenous (“internal” to the
system) and which variables to consider as exogenous (“external” to the system). The
implicit assumption here is that the endogenous variables cannot cause the exogenous
variables. This is the (only) causal “background knowledge” that is expressed form-
ally by a system of constraints. As Simon (1953) showed, and as we will explicate
in later sections, the causal relations between the endogenous variables can then be
obtained by applying Simon’s causal ordering algorithm.

Example 4.2. Consider two variables: the temperature in a room (𝑋1) and the read-
ing of a thermometer in the same room (𝑋2). One can think of different systems of
constraints tomodel these variables. One possibility is the single constraint (𝑋1−𝑋2 =
0) in which both 𝑋1 and 𝑋2 are considered to be endogenous variables. As it turns
out, we will then not be able to draw any conclusion regarding the causal relation
between 𝑋1 and 𝑋2. Another possibility would be to use the same constraint, but
now considering 𝑋1 to be exogenous and 𝑋2 to be endogenous. Then, one will find
that 𝑋1 causes 𝑋2, but not vice versa, which may appear to be a realistic model. Yet
another possibilitywith the same constraintwould be to consider𝑋2 to be the exogen-
ous variable and 𝑋1 to be endogenous. This model would be considered less realistic
in most situations (except perhaps in somewhat unnatural settings where the ther-
mometer would be broken, but its reading would be used by some agent to adjust the
heating in order to control the room temperature).

Thus, the constraint 𝑋1 − 𝑋2 = 0 on its own does not lead to any conclusions
regarding the causal relations between variables 𝑋1 and 𝑋2; it is only through the ad-
ditional background knowledge (represented by the distinction between endogenous
and exogenous variables) that the causal directionality is fixed. In cases with more
than one endogenous variable (like in Example 4.1), the causal ordering algorithm
can be used to “propagate” the causal directionality from exogenous to endogenous
variables. △

4.1.2 Related work and contributions

Graphical models are a popular statistical tool to model probabilistic aspects of com-
plex systems. They represent a set of conditional independences between random
variables that correspond to vertices which allows us to learn their graphical struc-
ture from data (Lauritzen, 1996). These models are often interpreted causally, so that
directed edges between vertices are interpreted as direct causal relations between cor-
responding variables (Pearl, 2009). The strong assumptions that are necessary for this
viewpoint have been the topic of debate (Dawid, 2010). This work contributes to this
discussion by revisiting an example in Iwasaki et al. (1994), and discussing how it
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seems that, in this case, the presence of vertices representing equations is required to
simultaneously express both conditional independences and the effects of interven-
tions in a single graph.

Throughout this work, we discuss the application of the causal ordering al-
gorithm to the equilibrium equations of the bathtub model that we discussed in Ex-
ample 4.1. In the literature, feedback processes that have reached equilibrium have
been represented by e.g. chain graphs (Lauritzen and Richardson, 2002) and cyc-
lic directed graphs (Bongers and Mooij, 2018; Mooij, Janzing, and Schölkopf, 2013;
Spirtes andRichardson, 1995). For the latter it was shown that they imply conditional
independences in the equilibrium distribution via the d-separation criterion in the
linear or discrete case (Forré et al., 2017) but that the directed globalMarkov property
may fail if the underlying model is neither linear nor discrete (Spirtes and Richard-
son, 1995). The alternative criterion that Spirtes and Richardson (1995) formulated
for the “collapsed graph” was recently reformulated in terms of 𝜎-separations and
shown to hold in very general settings (Forré et al., 2017). Constraint-based causal
discovery algorithms for the cyclic setting under various assumptions are given in
Forré et al. (2018), Mooij and Claassen (2020), Mooij, Magliacane, et al. (2020),
Richardson (1996), and Strobl (2018). The causal properties of dynamical systems
at equilibrium were previously studied by Blom, Bongers, et al. (2019), Bongers and
Mooij (2018), F. M. Fisher (1970), Hyttinen et al. (2012), Lauritzen and Richard-
son (2002), Mooij, Janzing, Heskes, et al. (2011), and Mooij, Janzing, and Schölkopf
(2013) (see also Chapter 3), who consider graphical and causal models that arise
from studying the stationary behaviour of dynamical models. For the deterministic
case, Mooij, Janzing, and Schölkopf (2013) propose to map first-order differential
equations to labelled equilibrium equations and then to the structural equations of
an SCM. This idea was recently generalized to the stochastic case and higher or-
der differential equations (Bongers and Mooij, 2018). For certain systems, such as
the bathtub model in Example 4.1, this construction may lead to a cyclic SCM with
self-cycles (Bongers and Mooij, 2018). The causal and conditional independence
properties of cyclic SCMs (possibly with self-cycles) have been studied by Bongers,
Forré, et al. (2020). In other work assumptions on the underlying dynamical model
have been made to avoid the complexities of SCMs with self-cycles. Here, we will
consider potential benefits (e.g. obtaining a stronger Markov property) of applying
the technique of causal ordering to the structural equations of the cyclic SCM for the
equilibrium equations of dynamical systems such as the bathtub system.

Our work generalizes the causal ordering algorithmwhich was introduced by Si-
mon (1953). Following Dash and Druzdzel (2008), we formally prove that the causal
ordering graph that is constructed by the algorithm is unique. One of the novelties
of this work is that we also prove that it encodes the effects of soft and certain perfect
interventions and, moreover, we show how it can be used to construct a DAG that
implies conditional independences via the d-separation criterion. There also exists a
different, computationally more efficient, algorithm for causal ordering (Gonçalves
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et al., 2016; Nayak, 1995). We formally prove that this algorithm is equivalent to the
one in Simon (1953). This approach motivates an alternative representation of the
system as a directed graph that may contain cycles. We prove that the generalized
directed global Markov property, as formulated by Forré et al. (2017), holds for this
graphical representation. Using methods to determine the upper-triangular form of
a matrix in Pothen and Fan (1990), we further extend the causal ordering algorithm
so that it can be applied to any bipartite graph.

In Section 4.6wewill present a detailed discussion of howourwork relates to that
of Bongers, Forré, et al. (2020), Bongers andMooij (2018), Dash (2005), and Iwasaki et
al. (1994). We show that what Iwasaki et al. (1994) call the “causal graph” coincides
with the Markov ordering graph in our work. We take a closer look at the intrica-
cies of (possible) causal implications of the Markov ordering graph and notice that it
neither represents the effects of soft interventions nor does it have a straightforward
interpretation in terms of perfect interventions. Because Simon and Iwasaki (1988)
assume that a one-to-one correspondence between variables and equations is known
in advance, they can use the Markov ordering graph to read off the effects of soft in-
terventions. We argue that the causal ordering graph, and not the Markov ordering
graph, should be used to represent causal relations when the matching between vari-
ables and equations is not known before-hand. This sheds some new light on the
work of Dash (2005) on (causal) structure learning and equilibration in dynamical
systems. We further discuss the advantages and disadvantages of our causal ordering
approach compared to the SCM framework.

4.2 Causal ordering

In this section, we adapt the causal ordering algorithm of Simon (1953), rephrase it
in terms of self-contained bipartite graphs, and define the output of the algorithm as
a directed cluster graph.6 We then prove that Simon’s causal ordering algorithm is
well-defined and has a unique output.

Definition 4.2. A directed cluster graph is an ordered pair ⟨𝒱, ℰ⟩, where 𝒱 is a parti-
tion 𝑉 (1), 𝑉 (2), … , 𝑉 (𝑛) of a set of vertices 𝑉 and ℰ is a set of directed edges 𝑣 → 𝑉 (𝑖)

with 𝑣 ∈ 𝑉 and 𝑉 (𝑖) ∈ 𝒱. For 𝑥 ∈ 𝑉we let cl(𝑥) denote the cluster in 𝒱 that contains
𝑥. We say that there is a directed path from 𝑥 ∈ 𝑉 to 𝑦 ∈ 𝑉 if either cl(𝑥) = cl(𝑦)
or there is a sequence of clusters 𝑉1 = cl(𝑥), 𝑉2, … , 𝑉𝑘−1, 𝑉𝑘 = cl(𝑦) so that for all
𝑖 ∈ {1, … , 𝑘 − 1} there is a vertex 𝑧𝑖 ∈ 𝑉𝑖 such that (𝑧𝑖 → 𝑉𝑖+1) ∈ ℰ.

6The notion of a directed cluster graph corresponds to the box representation of a collapsed graph in
Richardson (1996), Chapter 4.
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4.2.1 Self-contained bipartite graphs

The causal ordering algorithm in Simon (1953) is presented in terms of a self-contained
set of equations and variables that appear in them. For bipartite graphs, the notion
of self-containedness corresponds to the conditions in Definition 4.3.

Definition 4.3. Let ℬ = ⟨𝑉, 𝐹, 𝐸⟩ be a bipartite graph. A subset 𝐹′ ⊆ 𝐹 is said to be
self-contained if
(i) |𝐹′| = |adjℬ(𝐹

′)|,
(ii) |𝐹″| ≤ |adjℬ(𝐹

″)| for all 𝐹″ ⊆ 𝐹′.7
The bipartite graph ℬ is said to be self-contained if |𝐹| = |𝑉| and 𝐹 is self-contained.
A non-empty self-contained set 𝐹′ ⊆ 𝐹 is said to be a minimal self-contained set8 if
all its non-empty strict subsets are not self-contained.

Example 4.3. In Figure 4.2 a bipartite graph is shown with self-contained sets

{𝑓1}, {𝑓1, 𝑓2, 𝑓3, 𝑓4}, {𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5}

where {𝑓1} is a minimal self-contained set. Since the set {𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5} is self-
contained and |𝑉| = |𝐹| = 5, we say that this bipartite graph is self-contained. △

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

Figure 4.2: A self-contained bipartite graph ℬ = ⟨𝑉, 𝐹, 𝐸⟩ with 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} and
𝐹 = {𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5}. The sets {𝑓1}, {𝑓1, 𝑓2, 𝑓3, 𝑓4}, and {𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5} are self-contained, and {𝑓1}
is the only minimal self-contained set.

Sets of equations that model systems in the real world often include both en-
dogenous and exogenous variables. The distinction is that exogenous variables are
assumed to be determined outside the system and function as inputs to the model,
whereas the endogenous variables are part of the system. The following example
illustrates that the associated bipartite graph for a set of equations with both endo-
genous and exogenous variables is usually not self-contained.

Example 4.4. Let 𝑉 = {𝑣1, 𝑣2, 𝑤1, 𝑤2} be an index set for endogenous and exogen-
ous variables X = (𝑋𝑖)𝑖∈𝑉, 𝑊 = {𝑤1, 𝑤2} a subset that is an index set for exogenous
variables only, and 𝐹 = {𝑓1, 𝑓2} an index set for equations:

Φ𝑓1 ∶ 𝑋𝑣1 − 𝑋𝑤1 = 0,
7This condition is also called the Hall Property (M. Hall, 1986).
8In this case the Strong Hall Property holds, that is |𝐹″| < |adjℬ(𝐹

″)| for all ∅  𝐹″  𝐹′ (M. Hall,
1986).
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Φ𝑓2 ∶ 𝑋𝑣2 − 𝑋𝑣1 − 𝑋𝑤2 = 0.

The associated bipartite graphℬ = ⟨𝑉, 𝐹, 𝐸⟩ is given in Figure 4.3(a). It has vertices𝑉
that correspond to both endogenous variables 𝑋𝑣1, 𝑋𝑣2 and exogenous variables 𝑋𝑤1,
𝑋𝑤2. The vertices 𝐹 correspond to constraints Φ𝑓1 and Φ𝑓2. Edges between vertices
𝑣 ∈ 𝑉 and 𝑓 ∈ 𝐹 are present whenever 𝑣 ∈ 𝑉(𝑓) (i.e. when the variable 𝑋𝑣 ap-
pears in the constraint Φ𝑓). Since |𝑉| ≠ |𝐹|, the associated bipartite graph is not
self-contained. △

𝑤1 𝑣1 𝑣2 𝑤2

𝑓1 𝑓2

(a) Bipartite graph.

𝑤1 𝑣1 𝑣2 𝑤2

𝑓1 𝑓2

(b) Directed cluster graph.

Figure 4.3: The bipartite graph in Figure (a) is associated with the constraints in Example 4.4.
Exogenous variables are indicated by dashed circles. The directed cluster graph that is obtained
by applying Algorithm 1 is shown in Figure (b).

4.2.2 Causal ordering algorithm

The causal ordering algorithm, as formulated by Simon (1953), has as input a self-
contained set of equations and as output it has an ordering on clusters of variables
that appear in these equations. We reformulate the algorithm in terms of bipartite
graphs and minimal self-contained sets. The input of the algorithm is then a self-
contained bipartite graph and its output a directed cluster graph that we call the
causal ordering graph.

The causal ordering algorithm below has been adapted for systems of constraints
with exogenous variables. The input is a bipartite graph ℬ = ⟨𝑉, 𝐹, 𝐸⟩ and a set
of vertices 𝑊 ⊆ 𝑉 (corresponding to exogenous variables) such that the subgraph
ℬ′ = ⟨𝑉 ′, 𝐹′, 𝐸′⟩ induced by (𝑉 ⧵ 𝑊) ∪ 𝐹 is self-contained. The algorithm starts
out by adding the exogenous vertices as singleton clusters to a cluster set𝒱 during an
initialization step. Subsequently, the algorithm searches for aminimal self-contained
set 𝑆𝐹 ⊆ 𝐹 in ℬ′. Together with the set of adjacent variable vertices 𝑆𝑉 = adjℬ′(𝑆𝐹) a
cluster 𝑆𝐹 ∪ 𝑆𝑉 is formed and added to 𝒱. For each 𝑣 ∈ 𝑉, an edge (𝑣 → (𝑆𝐹 ∪ 𝑆𝑉)) is
added to ℰ if 𝑣 ∉ 𝑆𝑉 and 𝑣 ∈ adjℬ(𝑆𝐹). In other words, the cluster has an incoming
edge from each variable vertex that is adjacent to the cluster but not in it. These steps
are then repeated for the subgraph induced by the vertices (𝑉 ′ ∪ 𝐹′) ⧵ (𝑆𝑉 ∪ 𝑆𝐹) that
are not in the cluster, as long as this is not the null graph. The order in which the
self-contained sets are obtained is represented by one of the topological orderings of
the clusters in the causal ordering graph CO(ℬ) = ⟨𝒱, ℰ⟩.
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Algorithm 1: Causal ordering using minimal self-contained sets.
Input: a set of exogenous vertices𝑊, a bipartite graph ℬ = ⟨𝑉, 𝐹, 𝐸⟩ such

that its subgraph induced by (𝑉 ⧵ 𝑊) ∪ 𝐹 is self-contained
Output: directed cluster graph CO(ℬ) = ⟨𝒱, ℰ⟩
ℰ ← ∅ // initialization
𝒱 ← {{𝑤} ∶ 𝑤 ∈ 𝑊} // initialization
ℬ′ ← ⟨𝑉 ′, 𝐹′, 𝐸′⟩ subgraph induced by (𝑉 ⧵ 𝑊) ∪ 𝐹 // initialization
while ℬ′ is not the null graph do

𝑆𝐹 ← a minimal self-contained set of 𝐹′
𝐶 ← 𝑆𝐹 ∪ adjℬ′(𝑆𝐹) // construct cluster
𝒱 ← 𝒱 ∪ {𝐶} // add cluster
for 𝑣 ∈ adjℬ(𝑆𝐹) ⧵ adjℬ′(𝑆𝐹) do

ℰ ← ℰ ∪ {(𝑣 → 𝐶)} // add edges to cluster

ℬ′ ← subgraph of ℬ′ induced by (𝑉 ′ ∪ 𝐹′) ⧵ 𝐶 // remove cluster

Theorem 4.1 shows that the output of causal ordering viaminimal self-contained
sets is well-defined and unique.

Theorem 4.1. The output of Algorithm 1 is well-defined and unique.

The following example shows how the causal ordering algorithm works on the
self-contained bipartite graph in Figure 4.2 and the bipartite graph in Figure 4.3(a).

Example 4.5. Consider the set of equations in Example 4.4 and its associated bi-
partite graph in Figure 4.3(a). The subgraph induced by the endogenous variables
𝑣1, 𝑣2 and the constraints 𝑓1, 𝑓2 is self-contained. We initialize Algorithm 1 with ℰ the
empty set, 𝒱 = {{𝑤1}, {𝑤2}}, and ℬ′ the subgraph induced by {𝑣1, 𝑣2, 𝑓1, 𝑓2}. We then
first find theminimal self-contained set {𝑓1}. Its adjacencies are {𝑣1} inℬ′ and {𝑣1, 𝑤1}
inℬ. We add {𝑣1, 𝑓1} to𝒱 and add the edge (𝑤1 → {𝑣1, 𝑓1}) to ℰ. Finally, we add {𝑣2, 𝑓2}
to 𝒱 and the edges (𝑣1 → {𝑣2, 𝑓2}) and (𝑤2 → {𝑣2, 𝑓2}) to ℰ. The output of the causal
ordering algorithm is the directed cluster graph in Figure 4.3(b). This reflects how
one would solve the system of equations Φ𝑓1, Φ𝑓2 with respect to 𝑋𝑣1, 𝑋𝑣2 in terms of
𝑋𝑤1, 𝑋𝑤2 by hand. △

4.3 Extending the causal ordering algorithm

In this section we present an adaptation of an alternative, computationally less
expensive, algorithm for causal ordering which uses perfect matchings instead of
minimal self-contained sets, similar to the algorithm suggested by Nayak (1995).
Gonçalves et al. (2016) proved that Simon’s classic algorithm makes use of a sub-
routine that solves an NP-hard problem, whereas the computational complexity of
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Nayak’s algorithm is bounded by 𝒪 (|𝑉| |𝐸|), where |𝑉| is the number of nodes and
|𝐸| is the number of edges in the bipartite graph. Here, we provide a proof for the fact
that causal ordering via minimal self-contained sets is equivalent to causal ordering
via perfect matchings. There are many systems of equations with a unique solution
that consist of more equations than there are endogenous variables, most notably in
the case of non-linear equations, or in the presence of cycles. In that case the bipart-
ite graph associated with these equations may not be self-contained. In this section,
we show how Nayak’s algorithm can be extended using maximummatchings so that
it can be applied to any bipartite graph.

4.3.1 Causal ordering via perfect matchings

Given a bipartite graph ℬ, the associated directed graph can be constructed from a
matchingℳ by orienting edges. A directed cluster graph can then be constructed via
the operations that construct clusters andmerge clusters in Definition 4.4 below.

Definition 4.4. Let ℬ = ⟨𝑉, 𝐹, 𝐸⟩ be a bipartite graph andℳ a perfect matching for
ℬ.
(i) Orient edges: For each (𝑣 − 𝑓) ∈ 𝐸 the edge set 𝐸dir has an edge (𝑣 ← 𝑓) if

(𝑣 − 𝑓) ∈ ℳ and an edge (𝑣 → 𝑓) if (𝑣 − 𝑓) ∉ ℳ. 𝐸dir has no additional edges.
The associated directed graph is 𝒢(ℬ,ℳ) = ⟨𝑉 ∪ 𝐹, 𝐸dir⟩.

(ii) Construct clusters: Let𝒱′ be a partition of vertices𝑉∪𝐹 into strongly connected
components in 𝒢(ℬ,ℳ). For each (𝑥 → 𝑤) ∈ 𝐸dir the edge set ℰ′ has an edge
(𝑥 → cl(𝑤)) if 𝑥 ∉ cl(𝑤), where cl(𝑤) ∈ 𝒱′ is the strongly connected compon-
ent of 𝑤 in 𝒢(ℬ,ℳ). The edge set ℰ′ has no additional edges. The associated
clustered graph is clust(𝒢(ℬ,ℳ)) = ⟨𝒱′, ℰ′⟩.

(iii) Merge clusters: Let 𝒱 = {𝑆 ∪ ℳ(𝑆) ∶ 𝑆 ∈ 𝒱′}. For each (𝑥 → 𝑆) ∈ ℰ′
with 𝑥 ∉ ℳ(𝑆) the edge set ℰ contains an edge (𝑥 → 𝑆 ∪ 𝑀(𝑆)). The edge
set ℰ has no additional edges. The associated clustered and merged graph is
merge(clust(𝒢(ℬ,ℳ))) = ⟨𝒱, ℰ⟩.9

For causal ordering via perfect matching we require as input a set of exogenous
vertices 𝑊 and a bipartite graph ℬ = ⟨𝑉, 𝐹, 𝐸⟩, for which the subgraph ℬ′ induced
by the vertices (𝑉 ∪ 𝐹) ⧵ 𝑊 is self-contained. The output is a directed cluster graph.
The details can be found in Algorithm 2. We see that the algorithm starts out by
finding a perfect matching10 for ℬ′,11 which is then used to orient edges in the bi-
partite graph ℬ. The algorithm then proceeds by partitioning vertices in the result-
ing directed graph into strongly connected components to construct the associated

9In Theorem 4.2 we will show that this is the causal ordering graph CO(ℬ).
10Note that a bipartite graph has a perfect matching if and only if it is self-contained (M. Hall, 1986).

See also Theorem 4.7 and Corollary 4.2 in Appendix 4.B.4.
11The Hopcraft-Karp-Karzanov algorithm, which runs in𝒪(|𝐸|√|𝑉 ∪ 𝐹|), can be used to find a perfect

matching (Hopcroft et al., 1973; Karzanov, 1973).



86 4. Conditional independences and causal relations implied by sets of equations

clustered graph.12 Finally, the merge operation is applied to construct the causal or-
dering graph. Theorem 4.2 below shows that causal ordering via perfect matchings
is equivalent to causal ordering via minimal self-contained sets.

Algorithm 2: Causal ordering via perfect matchings.
Input: a set of exogenous vertices𝑊, a bipartite graph ℬ = ⟨𝑉, 𝐹, 𝐸⟩ such

that the subgraph induced by (𝑉 ∪ 𝐹) ⧵ 𝑊 is self-contained
Output: directed cluster graph ⟨𝒱, ℰ⟩
ℬ′ ← subgraph induced by (𝑉 ⧵ 𝑊) ∪ 𝐹 // initialization
ℳ ← perfect matching for ℬ′ // initialization
𝐸dir ← ∅ // orient edges
for (𝑣 − 𝑓) ∈ 𝐸with 𝑓 ∈ 𝐹 do

if (𝑣 − 𝑓) ∈ ℳ then
Add (𝑣 ← 𝑓) to 𝐸dir

else
Add (𝑣 → 𝑓) to 𝐸dir

𝒱′ ← strongly connected components of ⟨𝑉 ∪ 𝐹, 𝐸dir⟩ // clustering
ℰ′ ← ∅
for (𝑥 → 𝑤) ∈ 𝐸dir do

for 𝑆 ∈ 𝒱′ do
if 𝑤 ∈ 𝑆 and 𝑥 ∉ 𝑆 then

Add (𝑥 → 𝑆) to ℰ′

𝒱, ℰ ← ∅ // merge clusters
for 𝑆 ∈ 𝒱′ do

Add 𝑆 ∪ 𝑀(𝑆) to 𝒱
for (𝑥 → 𝑆) ∈ ℰ′ do

if 𝑥 ∉ 𝑀(𝑆) then
Add (𝑥 → 𝑆 ∪𝑀(𝑆)) to ℰ

Theorem 4.2. The output of Algorithm 2 coincides with the output of Algorithm 1.

The following example illustrates that the output of causal ordering via perfect
matchings does not depend on the choice of perfect matching and coincides with the
output of Algorithm 1.

Example 4.6. Consider the bipartite graphℬ in Figure 4.4(a). The subgraph induced
by the vertices 𝑉 = {𝑣1, … , 𝑣5} and 𝐹 = {𝑓1, … , 𝑓5} is the self-contained bipartite graph
in Figure 4.2. We will follow the steps in both Algorithm 1 and 2 to construct the
causal ordering graph.

12Tarjan’s algorithm, which runs in𝒪(|𝑉|+ |𝐸|) time, can be used to find the strongly connected com-
ponents in a directed graph (Tarjan, 1972).
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For causal ordering with minimal self-contained sets we first add the exogenous
variables to the cluster set 𝒱 as the singleton clusters {𝑤1}, {𝑤2}, {𝑤3}, {𝑤4}, {𝑤5}, and
{𝑤6}. The only minimal self-contained set in the subgraph induced by the vertices
𝑉 = {𝑣1, … , 𝑣5} and 𝐹 = {𝑓1, … , 𝑓5} is {𝑓1}. Since 𝑓1 is adjacent to 𝑣1 we add 𝐶1 = {𝑣1, 𝑓1}
to 𝒱. Since 𝑓1 is adjacent to 𝑤1 in ℬ we add (𝑤1 → 𝐶1) to ℰ. The subgraph ℬ′ =
⟨𝑉 ′, 𝐹′, 𝐸′⟩ induced by the remaining nodes 𝑉 ′ = {𝑣2, 𝑣3, 𝑣4, 𝑣5} and 𝐹′ = {𝑓2, 𝑓3, 𝑓4, 𝑓5}
has {𝑓2, 𝑓3, 𝑓4} as its onlyminimal self-contained set. Since the set {𝑓2, 𝑓3, 𝑓4} is adjacent
to {𝑣2, 𝑣3, 𝑣4} in ℬ′, we add 𝐶2 = {𝑣2, 𝑣3, 𝑣4, 𝑓2, 𝑓3, 𝑓4} to 𝒱. Since 𝑣1, 𝑤2, 𝑤3, 𝑤4, and
𝑤5 are adjacent to {𝑓2, 𝑓3, 𝑓4} in ℬ but not part of 𝐶2, we add the edges (𝑣1 → 𝐶2),
(𝑤2 → 𝐶2), (𝑤3 → 𝐶2), (𝑤4 → 𝐶2), and (𝑤5 → 𝐶2) to ℰ. The subgraph induced by
the remaining nodes 𝑣5 and 𝑓5 has {𝑓5} as its minimal self-contained subset. We add
𝐶3 = {𝑣5, 𝑓5} to 𝒱 and the edges (𝑣4 → 𝐶3) and (𝑤6 → 𝐶3) to ℰ. The directed cluster
graph CO(ℬ) = ⟨𝒱, ℰ⟩ is given in Figure 4.4(e).

For causal ordering via perfect matchings, we consider the following two perfect
matchings of the self-contained bipartite graph in Figure 4.2:

ℳ1 = {(𝑣1 − 𝑓1), (𝑣2 − 𝑓2), (𝑣3 − 𝑓3), (𝑣4 − 𝑓4), (𝑣5 − 𝑓5)},
ℳ2 = {(𝑣1 − 𝑓1), (𝑣2 − 𝑓4), (𝑣3 − 𝑓2), (𝑣4 − 𝑓3), (𝑣5 − 𝑓5)}.

We use these one-to-one correspondences between endogenous variable vertices and
constraint vertices in the orientation step in Definition 4.4 to obtain the associated
directed graphs 𝒢(ℬ,ℳ1) and 𝒢(ℬ,ℳ2) in Figures 4.4(b) and 4.4(c) respectively. Ap-
plication of the clustering step inDefinition 4.4 to either𝒢(ℬ,ℳ1) or𝒢(ℬ,ℳ2) results
in the clustered graph clust(𝒢(ℬ,ℳ2)) = clust(𝒢(ℬ,ℳ1)) in Figure 4.4(d). The final
step is to merge clusters in this directed cluster graph. We find that the causal order-
ing graph merge(clust(𝒢(ℬ,ℳ1))) = merge(clust(𝒢(ℬ,ℳ2))) in Figure 4.4(e) does
not depend on the choice of perfect matching, as is implied by Theorem 4.2. Note
that the output of causal ordering with minimal self-contained sets coincides with
the output of causal ordering via perfect matchings. △

4.3.2 Coarse decomposition via maximummatchings

The extension that we propose relies on the coarse decomposition of bipartite graphs
in Pothen and Fan (1990), which was originally proposed by Dulmage et al. (1958).
The main idea is that a set of equations (i.e. a system of constraints) can be divided
into an incomplete part that has fewer equations than variables, an over-complete part
that has more equations than variables, and a part that is self-contained. The coarse
decomposition in Definition 4.5 below uses the notions of amaximummatching and
an alternating path for a maximummatching. The former is a matching so that there
are no matchings with a greater cardinality, while the latter is a sequence of distinct
vertices and edges (𝑣1, 𝑒1, 𝑣2, 𝑒2, … , 𝑒𝑛−1, 𝑣𝑛) so that edges 𝑒𝑖 are alternately in and out
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𝑤1 𝑣1 𝑤2 𝑣2 𝑤3 𝑣3 𝑤4 𝑣4 𝑤5 𝑣5 𝑤6

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

(a) Bipartite graph ℬ where dashed vertices indicate exogenous variables.

𝑤1 𝑣1 𝑤2 𝑣2 𝑤3 𝑣3 𝑤4 𝑣4 𝑤5 𝑣5 𝑤6

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

(b) Associated directed graph 𝒢(ℬ,ℳ1).

𝑤1 𝑣1 𝑤2 𝑣2 𝑤3 𝑣3 𝑤4 𝑣4 𝑤5 𝑣5 𝑤6

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

(c) Associated directed graph 𝒢(ℬ,ℳ2).

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6

(d) Clustered graph clust(𝒢(ℬ,ℳ1)).

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6

(e) Causal ordering graph CO(ℬ).

Figure 4.4: Causal ordering with two different perfect matchings 𝑀1 and 𝑀2 applied to the
bipartite graph inFigure (a). The results of subsequently orienting edges, constructing clusters,
and merging clusters as in Definition 4.4 are given in Figures (b) to (e). The edges in𝑀1 that
are oriented from variables to equations in Figure (b) are indicated with blue edges. Likewise,
edges in 𝑀2 are indicated with orange edges in Figure (c). The clustered graph in Figure (d)
coincides with clust(𝒢(ℬ,ℳ2)) and for the causal ordering graph in Figure (e) we have that
CO(ℬ) = merge(clust(𝒢(ℬ,ℳ1))) = merge(clust(𝒢(ℬ,ℳ2))).
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a maximum matching 𝑀. Proposition 4.1 by Pothen (1985) shows that the coarse
decomposition is unique.13 In this section we loosely follow the exposition of the
coarse decomposition in Van Diepen (2019) and Pothen and Fan (1990).

Definition 4.5. Let 𝑀 be a maximum matching for a bipartite graph ℬ = ⟨𝑉, 𝐹, 𝐸⟩
and let 𝑉un and 𝐹un denote the unmatched vertices in 𝑉 and 𝐹 respectively. The in-
complete set 𝑇𝐼 ⊆ 𝑉 ∪ 𝐹 and overcomplete set 𝑇𝑂 ⊆ 𝑉 ∪ 𝐹 are given by:

𝑇𝐼 ∶= {𝑥 ∈ 𝑉 ∪ 𝐹 ∶ there is an alternating path between 𝑥 and some 𝑦 ∈ 𝑉un},
𝑇𝑂 ∶= {𝑥 ∈ 𝑉 ∪ 𝐹 ∶ there is an alternating path between 𝑥 and some 𝑦 ∈ 𝐹un}.

The complete set is given by𝑇𝐶 = 𝑉∪𝐹⧵(𝑇𝐼∪𝑇𝑂). The coarse decompositionCD(ℬ,𝑀)
is given by ⟨𝑇𝐼, 𝑇𝐶, 𝑇𝑂⟩. The incomplete graph ℬ𝐼 is the subgraph of ℬ induced by
vertices 𝑇𝐼, the complete graph ℬ𝐶 is the subgraph of ℬ induced by vertices 𝑇𝐶, and
the overcomplete graph ℬ𝑂 is the subgraph of ℬ induced by vertices 𝑇𝑂.

Note that 𝑇𝐼 and 𝑇𝑂 are necessarily disjoint, for more details see Lemma 4.8 in
Appendix 4.B.2.

Proposition 4.1. [Pothen (1985)] The coarse decomposition of a bipartite graph ℬ is
independent of the choice of the maximummatching.

There exist fast algorithms that are able to find a maximum matching in a bi-
partite graph ℬ = ⟨𝑉, 𝐹, 𝐸⟩, such as the Hopcraft-Karp-Karzanov algorithm, which
runs in 𝒪(|𝐸|√|𝑉 ∪ 𝐹|) time (Hopcroft et al., 1973; Karzanov, 1973). In the follow-
ing example we manually searched for maximum matchings to illustrate the result
in Proposition 4.1 that the coarse decomposition is unique.

Example 4.7. Consider the bipartite graph ℬ′ in Figure 4.5(b), which has the fol-
lowing four maximummatchings.

𝑀1 = {(𝑣1 − 𝑓2), (𝑣2 − 𝑓3), (𝑣3 − 𝑓4), (𝑣4 − 𝑓5)}, (4.6)
𝑀2 = {(𝑣1 − 𝑓1), (𝑣2 − 𝑓3), (𝑣3 − 𝑓4), (𝑣5 − 𝑓5)}, (4.7)
𝑀3 = {(𝑣1 − 𝑓2), (𝑣2 − 𝑓3), (𝑣3 − 𝑓4), (𝑣5 − 𝑓5)}, (4.8)
𝑀4 = {(𝑣1 − 𝑓1), (𝑣2 − 𝑓3), (𝑣3 − 𝑓4), (𝑣4 − 𝑓5)}. (4.9)

By Proposition 4.1 we know that the coarse decomposition CD(ℬ′,𝑀), with 𝑀 ∈
{𝑀1,𝑀2,𝑀3,𝑀4}, does not depend on the choice of maximummatching. The coarse
decomposition is displayed in Figure 4.5(c). It is a straightforward exercise to verify
that applying Definition 4.5 to each of the maximum matchings results in the same
coarse decomposition. Note that if the vertices {𝑓1, … 𝑓5} are associated with equa-
tions, and the vertices {𝑣1, … , 𝑣5} are associated with variables, then the incomplete

13For completeness, we have included a proof of this theorem in Appendix 4.B.2.
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graph ℬ𝐼 has fewer equations than variables, whereas the over-complete graph ℬ𝑂
has more equations than variables. The complete graph ℬ𝐶 is self-contained. △

𝑤1 𝑣1 𝑤2 𝑣2 𝑤3 𝑣3 𝑤4 𝑣4 𝑣5 𝑤5

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

(a) Associated bipartite graph ℬ.

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

(b) Subgraph ℬ′ induced by 𝑉 ∪ 𝐹.

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

ℬ𝑂 ℬ𝐶 ℬ𝐼

(c) Coarse decomposition of ℬ′.

Figure 4.5: The bipartite graph ℬ associated with the system of equations in Example 4.8 is
given in Figure (a). Its subgraphℬ′ induced by 𝑉 = {𝑣1, … , 𝑣5} and 𝐹 = {𝑓1, … , 𝑓5} in Figure (b)
is not self-contained. The coarse decomposition of ℬ′ is given in Figure (c).

4.3.3 Causal ordering via coarse decomposition

Here we present the extended causal ordering algorithm. It relies on the unique
coarse decomposition of a bipartite graph into its incomplete, complete, and over-
complete parts. Lemma 4.1, due to Pothen (1985), shows that the complete graph
has a perfect matching. Together, Lemma 4.1 and Lemma 4.2 justify the steps in
Algorithm 3 to construct a causal ordering graph. The proofs are provided in Ap-
pendix 4.B.2.

Lemma 4.1. [Pothen (1985)] Let ℬ be a bipartite graph with coarse decomposition
⟨𝑇𝐼, 𝑇𝐶, 𝑇𝑂⟩. The subgraph ℬ𝐶 of ℬ induced by vertices in 𝑇𝐶 has a perfect matching
and is self-contained.

Lemma 4.2. [Pothen (1985)] Let ℬ = ⟨𝑉, 𝐹, 𝐸⟩ be a bipartite graph with a maximum
matching𝑀. Let CD(ℬ,𝑀) = ⟨𝑇𝐼, 𝑇𝐶, 𝑇𝑂⟩ be the associated coarse decomposition. No
edge joins a vertex in 𝑇𝐼 ∩ 𝑉 with a vertex in (𝑇𝐶 ∪ 𝑇𝑂) ∩ 𝐹 and no edge joins a vertex in
𝑇𝐶 ∩ 𝑉 with a vertex in 𝑇𝑂 ∩ 𝐹.
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Algorithm 3 takes a set of exogenous vertices 𝑊 ⊆ 𝑉 and a bipartite graph
ℬ = ⟨𝑉, 𝐹, 𝐸⟩ as input. The output is a causal ordering graph ⟨𝒱, ℰ⟩. The algorithm
first uses a maximummatching𝑀 for the subgraphℬ′ of ℬ induced by (𝑉 ⧵𝑊)∪𝐹 to
construct the coarse decomposition ⟨𝑇𝐼, 𝑇𝐶, 𝑇𝑂⟩ of ℬ′. Since the complete graph ℬ𝐶
is self-contained (by Lemma 4.1) the causal ordering algorithm for self-contained bi-
partite graphs can be applied to obtain the directed cluster graphCO(ℬ𝐶) = ⟨𝒱𝐶, ℰ𝐶⟩.
The cluster set 𝒱 consists of the clusters in 𝒱𝐶 and the connected components in ℬ𝐼
andℬ𝑂. The edge setℰ contains all edges inℰ𝐶. For edges between vertices 𝑣 ∈ 𝑇𝑂∩𝑉
and 𝑓 ∈ 𝑇𝐶∩𝐹 inℬ an edge (𝑣 → cl𝒱(𝑓)) is added to ℰ.14 Similarly, for edges between
vertices 𝑣 ∈ (𝑇𝑂 ∪ 𝑇𝐶) ∩ 𝑉 and 𝑓 ∈ 𝑇𝐼 ∩ 𝐹 an edge (𝑣 → cl𝒱(𝑓)) is also added to ℰ.
By Lemma 4.2 there are no other edges between the incomplete, complete, and over-
complete graphs. Finally, edges from exogenous vertices 𝑊 are added to the causal
ordering graph. The details can be found in Algorithm 3.

Algorithm 3: Causal ordering via coarse decomposition.
Input: a set of exogenous vertices𝑊, a bipartite graph ℬ = ⟨𝑉 ∪𝑊, 𝐹, 𝐸⟩.
Output: directed cluster graph ⟨𝒱, ℰ⟩
ℬ′ ← subgraph of ℬ induced by (𝑉 ⧵ 𝑊) ∪ 𝐹
ℳ ←maximummatching for ℬ′

⟨𝑇𝐼, 𝑇𝐶, 𝑇𝑂⟩ ← CD(ℬ′,ℳ) // coarse decomposition
ℬ𝐶 ← subgraph of ℬ′ induced by 𝑇𝐶
ℬ𝐼 ← subgraph of ℬ′ induced by 𝑇𝐼
ℬ𝑂 ← subgraph of ℬ′ induced by 𝑇𝑂
⟨𝒱𝐶, ℰ𝐶⟩ ← causal ordering graph for ℬ𝐶 // construct clusters
𝒱𝐼 ← partition of 𝑇𝐼 into connected components in ℬ𝐼
𝒱𝑂 ← partition of 𝑇𝑂 into connected components in ℬ𝑂
𝒱 ← 𝒱𝐼 ∪ 𝒱𝐶 ∪ 𝒱𝑂 ∪ {{𝑤} ∶ 𝑤 ∈ 𝑊}
ℰ ← ℰ𝐶 // find edges
for (𝑣 − 𝑓) ∈ 𝐸 do

if 𝑣 ∈ (𝑇𝑂 ∪ 𝑇𝐶) ∩ 𝑉 and 𝑓 ∈ 𝑇𝐼 ∩ 𝐹 then
Add (𝑣 → cl𝒱(𝑓)) to ℰ

else if 𝑣 ∈ 𝑇𝑂 ∩ 𝑉 and 𝑓 ∈ 𝑇𝐶 ∩ 𝐹 then
Add (𝑣 → cl𝒱(𝑓)) to ℰ

for 𝑤 ∈ 𝑊 do
add (𝑤 → cl𝒱(𝑓)) to ℰ for all 𝑓 ∈ adjℬ(𝑤) // exogenous vertices

Corollary 4.1. The output of Algorithm 3 is well-defined and unique.

Proof. This follows directly from Theorem 4.1 and Proposition 4.1.

14Note that cl𝒱(𝑥) denotes the cluster in the partition 𝒱 that contains the vertex 𝑥.
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Corollary 4.1 shows that the output of causal ordering via coarse decomposition
does not depend on the choice of the maximummatching (i.e. the output is unique).
The following example provides a manual demonstration of the causal ordering al-
gorithm via the coarse decomposition.

Example 4.8. We apply the causal ordering algorithm via coarse decomposition
(i.e. Algorithm 3) to the bipartite graph in Figure 4.5(a). Its subgraph induced by
endogenous variables and equations is the bipartite graph in Figure 4.5(b) and its
coarse decomposition is given in Figure 4.5(c). Since, by Lemma 4.1, ℬ𝐶 is self-
contained we can apply the causal ordering algorithm (Algorithm 1) to the com-
plete subgraph resulting in the directed cluster graph CO(ℬ𝐶) = ⟨𝒱𝐶, ℰ𝐶⟩ where
𝒱𝐶 = {{𝑣2, 𝑓3}, {𝑣3, 𝑓4}} and ℰ𝐶 = {(𝑣2 → {𝑣3, 𝑓4})}. The cluster set is then given by
𝒱 = 𝒱𝐶 ∪ {{𝑣4, 𝑣5, 𝑓5}} ∪ {{𝑣1, 𝑓1, 𝑓2}}. We then add singleton clusters {𝑤1}, {𝑤2}, {𝑤3},
{𝑤4}, {𝑤5} for each exogenous vertex. Next we add the edges ℰ𝐶, (𝑣1 → {{𝑣2, 𝑓3})
and (𝑣3 → {𝑣4, 𝑣5, 𝑓5}) to the edge set ℰ. Finally, we add edges (𝑤1 → {𝑣1, 𝑓1, 𝑓2}),
(𝑤2 → {𝑣1, 𝑓1, 𝑓2}), (𝑤3 → {𝑣2, 𝑓3}), (𝑤4 → {𝑣3, 𝑓4}) and (𝑤5 → {𝑣4, 𝑣5, 𝑓5}) to the edge
set ℰ. The resulting causal ordering graphCO(ℬ) = ⟨𝒱, ℰ⟩ is given in Figure 4.6. △

𝑤1

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5
𝑤5

𝑓1

𝑤2 𝑤3 𝑤4

𝑓2 𝑓3 𝑓4 𝑓5

Figure 4.6: Causal ordering graph for the bipartite graph in Figure 4.5(a).

4.4 Markov ordering graph

First we consider (unique) solvability assumptions for systems of constraints. Wewill
then construct theMarkov ordering graph and prove that it implies conditional inde-
pendences between variables that appear in constraints. We also apply our method
to the model for the filling bathtub in Example 4.1. Finally, we present a novel result
regarding the generalized directed global Markov property for solutions of systems
of constraints and an associated directed graph.

4.4.1 Solvability for systems of constraints

In this section, we consider (unique) solutions of systems of constraints with exogen-
ous random variables, and give a sufficient condition under which the output of the
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causal ordering algorithm can be interpreted as the order in which sets of (endogen-
ous) variables can be solved in a set of equations (i.e. constraints).

Definition 4.6. We say that a measurable mapping g ∶ 𝓧𝑊 ↦ 𝓧𝑉⧵𝑊 that maps
values of the exogenous variables to values of the endogenous variables is a solution
to a system of constraints ⟨𝓧,X𝑊, 𝜱,ℬ⟩ if

𝜙𝑓(g𝑉(𝑓)⧵𝑊(X𝑊),X𝑉(𝑓)∩𝑊) = 𝑐𝑓, ∀ 𝑓 ∈ 𝐹, ℙX𝑊-a.s.

We say that the system of constraints is uniquely solvable (or “has a unique solution”)
if all its solutions are ℙX𝑊-a.s. equal.

The system of constraints in the example below is solvable but not uniquely solv-
able. The example illustrates that the dependence or independence between solution
components (i.e. endogenous variables) is not the same for all solutions.

Example 4.9. Consider a system of constraints ⟨𝓧,X𝑊, 𝜱,ℬ⟩ with 𝓧 = ℝ4 and
independent exogenous random variables X𝑊 = (𝑋𝑤)𝑤∈{𝑤1,𝑤2} taking value in ℝ2.
Suppose that 𝜱 consists of the constraints

Φ𝑓1 = ⟨𝑋𝑉(𝑓1) ↦ 𝑋𝑣1 − 𝑋𝑤1, 0, {𝑣1, 𝑤1}⟩, (4.10)
Φ𝑓2 = ⟨𝑋𝑉(𝑓2) ↦ 𝑋2

𝑣2 − |𝑋𝑤2|, 0, {𝑣2, 𝑤2}⟩. (4.11)

This system of constraints has solutions with different distributions. One solu-
tion is given by (𝑋∗

𝑣1, 𝑋
∗
𝑣2) = (𝑋𝑤1,√|𝑋𝑤2|) and another solution is (𝑋 ′

𝑣1, 𝑋
′
𝑣2) =

(𝑋𝑤1, sgn(𝑋𝑤1)√|𝑋𝑤2|). Note that the solution components 𝑋∗
𝑣1 and 𝑋∗

𝑣2 are inde-
pendent, whereas the solution components 𝑋 ′

𝑣1 and 𝑋
′
𝑣2 may be dependent. △

Underspecified (and overspecified) systems of constraints can be avoided by the
requirement that it is uniquely solvable. In Definition 4.7 below we give a sufficient
condition under which a unique solution can be obtained by solving variables in
clusters from equations in these clusters.

Definition 4.7. A system of constraints ℳ = ⟨𝓧,X𝑊, 𝜱,ℬ⟩ is solvable w.r.t. con-
straints 𝑆𝐹 ⊆ 𝐹 and endogenous variables 𝑆𝑉 ⊆ 𝑉(𝑆𝐹) ⧵𝑊 if there exists a measurable
function g𝑆𝑉 ∶ 𝓧𝑉(𝑆𝐹)⧵𝑆𝑉 →𝓧𝑆𝑉 s.t. ℙX𝑊-a.s., for all x𝑉(𝑆𝐹)⧵𝑊 ∈ 𝓧𝑉(𝑆𝐹)⧵𝑊:

𝜙𝑓(x𝑉(𝑓)⧵𝑊,X𝑉(𝑓)∩𝑊) = 𝑐𝑓, ∀ 𝑓 ∈ 𝑆𝐹 ⟸ x𝑆𝑉 = g𝑆𝑉(x𝑉(𝑆𝐹)⧵(𝑆𝑉∪𝑊),X𝑉(𝑆𝐹)∩𝑊).

ℳ isuniquely solvablew.r.t. constraints𝑆𝐹 and endogenous variables𝑆𝑉 if the converse
implication also holds.

The following condition suffices for the existence of a unique solution that can
be obtained by solving for variables from equations in their cluster along a topolo-
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gical ordering of the clusters in the causal ordering graph. This weakens the assump-
tionsmade in Simon (1953) who requires both unique solvability w.r.t. every subset of
equations (and the endogenous variables that appear in them) and self-containedness
of the bipartite graph.

Definition 4.8. We say that ℳ is uniquely solvable w.r.t. the causal ordering graph
CO(ℬ) = ⟨𝒱, ℰ⟩ if it is uniquely solvable w.r.t. 𝑆 ∩ 𝐹 and 𝑆 ∩ 𝑉 for all 𝑆 ∈ 𝒱 with
𝑆 ∩𝑊 = ∅.

For systems of constraints for cyclic models or with non-linear equations, for
which the incomplete subgraph is not the empty graph, the condition of unique solv-
ability with respect to the causal ordering graph is not always satisfied. This is illus-
trated by Example 4.10 below.

Example 4.10. Let𝑉 = {𝑣1, … 𝑣5} be an index set for endogenous variables𝑋𝑣1, … , 𝑋𝑣5
taking value in ℝ,𝑊 = {𝑤1, … , 𝑤5} an index set for independent exogenous random
variables𝑈𝑤1, … , 𝑈𝑤5 taking value inℝ, and 𝑝1, 𝑝2 parameters with values inℝ. Con-
sider the following non-linear system of constraints:

Φ𝑓1 ∶ 𝑋2
𝑣1 − 𝑈𝑤1 = 0, (4.12)

Φ𝑓2 ∶ sgn(𝑋𝑣1) − sgn(𝑈𝑤2) = 0, (4.13)
Φ𝑓3 ∶ 𝑋𝑣2 − 𝑝1𝑋𝑣1 − 𝑈𝑤3 = 0, (4.14)
Φ𝑓4 ∶ 𝑋𝑣3 − 𝑝2𝑋𝑣2 − 𝑈𝑤4 = 0, (4.15)
Φ𝑓5 ∶ 𝑋𝑣3 + 𝑋𝑣4 + 𝑋𝑣5 − 𝑈𝑤5 = 0. (4.16)

The associated bipartite graph ℬ is given in Figure 4.5(a) and the corresponding
causal ordering graph is given in Figure 4.6. It is easy to check that the system of
constraints is uniquely solvable with respect to the clusters {𝑣1, 𝑓1, 𝑓2}, {𝑣2, 𝑓3}, and
{𝑣3, 𝑓4} in the causal ordering graph. Equation 𝑓5 does not provide a unique solution
for the variables 𝑣4 and 𝑣5 and hence the system is not uniquely solvable with respect
to the cluster {𝑣4, 𝑣5, 𝑓5}. △

Generally speaking, systems of constraints are not uniquely solvablewith respect
to the clusters in the incomplete set of vertices in the associated bipartite graph. In
order to derive a Markov property for the complete and overcomplete sets of vertices
in the associated bipartite graph, we use the condition in Definition 4.9 below, which
is slightly weaker than the one inDefinition 4.7. Since self-contained bipartite graphs
do not have an incomplete part there is no difference between the two conditions in
that case.

Definition 4.9. Letℳ = ⟨𝓧,X𝑊, 𝜱,ℬ⟩ be a system of constraints. Denote its coarse
decomposition by CD(ℬ) = ⟨𝑇𝐼, 𝑇𝐶, 𝑇𝑂⟩ and its causal ordering graph by CO(ℬ) =
⟨𝒱, ℰ⟩. We say thatℳ ismaximally uniquely solvable if it is
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(i) uniquely solvable w.r.t. 𝑆 ∩ 𝐹 and 𝑆 ∩ 𝑉 for all 𝑆 ∈ 𝒱 with 𝑆 ∩ 𝑊 = ∅ and
𝑆 ∩ 𝑇𝐼 = ∅, and

(ii) solvable with respect to 𝑇𝐼 ∩ 𝐹 and (𝑇𝐼 ∩ 𝑉) ⧵ 𝑊.

This condition suffices to guarantee the existence of a solution, and that it is
unique on the (over)complete part (𝑇𝑂 ∪ 𝑇𝐶) ∩ 𝑉 ⧵ 𝑊.

4.4.2 Directed global Markov property via causal ordering

TheMarkov ordering graph is constructed from a causal ordering graph by decluster-
ing and then marginalizing out the vertices that correspond to constraints.

Definition 4.10. Let 𝒢 = ⟨𝒱, ℰ⟩ be a directed cluster graph. The declustered graph
is given by 𝐷(𝒢) = ⟨𝑉, 𝐸⟩ with 𝑉 = ∪𝑆∈𝒱𝑆 and (𝑣 → 𝑤) ∈ 𝐸 if and only if (𝑣 →
cl(𝑤)) ∈ ℰ. For a system of constraintsℳ = ⟨𝓧,X𝑊, 𝜱,ℬ⟩ with ℬ = ⟨𝑉, 𝐹, 𝐸⟩, we
say that MO(ℬ) = 𝐷(CO(ℬ))mar(𝐹) is the Markov ordering graph, where MO(ℬ) =
𝐷(CO(ℬ))mar(𝐹) is the latent projection of 𝐷(CO(ℬ)) onto 𝑉 ⧵ 𝐹, see Section 4.A.1 for
more details.15

Under the assumption that systems of constraints are uniquely solvable with re-
spect to the (over)complete part of their causal ordering graph, Theorem 4.3 relates
d-separations between vertices in the Markov ordering graph to conditional inde-
pendences between the corresponding components of a solution of the system of
constraints.

Theorem 4.3. Let X∗ = h(X𝑊) with h ∶ 𝓧𝑊 → 𝓧𝑉⧵𝑊 be a solution of a system of
constraintsℳ = ⟨𝓧,X𝑊, 𝜱,ℬ⟩ with coarse decomposition CD(ℬ) = ⟨𝑇𝐼, 𝑇𝐶, 𝑇𝑂⟩. Let
MOCO(ℬ) denote the subgraph of the Markov ordering graph induced by 𝑇𝐶 ∪ 𝑇𝑂 and
let X∗

CO denote the corresponding solution components. If ℳ is maximally uniquely
solvable then the pair (MOCO(ℬ),ℙX∗CO) satisfies the directed global Markov property
(see Definition 4.15).

In particular, when the incomplete and overcomplete sets are empty (i.e. when
𝑇𝐼 = ∅ and 𝑇𝐶 = ∅) and the system is uniquely solvable with respect to the causal
ordering graph, Theorem 4.3 tells us that the pair (MO(ℬ),ℙX∗) satisfies the directed
global Markov property.

Example 4.11. Consider the system of constraints in Example 4.10. The Markov
ordering graph for the associated bipartite graph in Figure 4.5(a) can be constructed
from the causal ordering graph in Figure 4.6 and is given in Figure 4.7. One can check
that the system of constraints is uniquely solvable with respect to the clusters in the
complete and overcomplete sets. The Markov ordering graph can be used to read off

15Throughout this work, we sometimes add exogenous vertices in the Markov ordering graph to em-
phasize their presence. At other times, we exclude them for brevity.
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conditional independences from d-separations between vertices that are not in the
incomplete part. For example, since 𝑣1 is d-separated from 𝑣3 given 𝑣2, we deduce
that 𝑋𝑣1 ⟂⟂ 𝑋𝑣3 | 𝑋𝑣2, for any solution of the constraints. △

𝑤1 𝑣1 𝑣2 𝑣3 𝑣4

𝑣5

𝑤5

𝑤2 𝑤3 𝑤4

𝑇𝐼 ∩ 𝑉

(a)MO(ℬ).

𝑤1 𝑣1 𝑣2 𝑣3 𝑤5

𝑤2 𝑤3 𝑤4

(b)MOCO(ℬ).

Figure 4.7: (a) The Markov ordering graph associated with the system of constraints in Ex-
ample 4.10. It can be constructed from the causal ordering graph in Figure 4.6. The vertices
in the incomplete graph are indicated by the dashed rectangle. (b) Its subgraph induced by
𝑇𝐶∩𝑇𝑂. Theorem 4.3 shows that d-separations inMOCO(ℬ) imply conditional independences.

4.4.3 Application to the filling bathtub

In Example 4.1 we informally described an equilibrium model for a filling bathtub.
The endogenous variables of the system are the diameter𝑋𝑣𝐾 of the drain, the rate𝑋𝑣𝐼
at which water flows from the faucet, the water pressure 𝑋𝑣𝑃, the rate 𝑋𝑣𝑂 at which
the water goes through the drain and the water level 𝑋𝑣𝐷. The model is formally
represented by a system of constraintsℳ = ⟨𝓧,X𝑊, 𝜱,ℬ⟩ where:

(i) 𝓧 = ℝ12
>0 is a product of standard measurable spaces corresponding to the

domain of variables that are indexed by {𝑣𝐾, 𝑣𝐼, 𝑣𝑃, 𝑣𝑂, 𝑣𝐷, 𝑤𝐾, 𝑤𝐼, 𝑤1, … , 𝑤5},
(ii) X𝑊 = {𝑈𝑤𝐼, 𝑈𝑤𝐾, 𝑈𝑤1, … , 𝑈𝑤5} is a family of independent exogenous random

variables,
(iii) 𝜱 is a family of constraints:

Φ𝑓𝐾 = ⟨𝑋𝑉(𝑓𝐾) ↦ 𝑋𝑣𝐾 − 𝑈𝑤𝐾, 0, 𝑉(𝑓𝐾) = {𝑣𝐾, 𝑤𝐾}⟩,
Φ𝑓𝐼 = ⟨𝑋𝑉(𝑓𝐼) ↦ 𝑋𝑣𝐼 − 𝑈𝑤𝐼, 0, 𝑉(𝑓𝐼) = {𝑣𝐼, 𝑤𝐼}⟩,
Φ𝑓𝑃 = ⟨𝑋𝑉(𝑓𝑃) ↦ 𝑈𝑤1(𝑔𝑈𝑤2𝑋𝑣𝐷 − 𝑋𝑣𝑃), 0, 𝑉(𝑓𝑃) = {𝑣𝐷, 𝑣𝑃, 𝑤1, 𝑤2}⟩,
Φ𝑓𝑂 = ⟨𝑋𝑉(𝑓𝑂) ↦ 𝑈𝑤3(𝑈𝑤4𝑋𝑣𝐾𝑋𝑣𝑃 − 𝑋𝑣𝑂), 0, 𝑉(𝑓𝑂) = {𝑣𝐾, 𝑣𝑃, 𝑣𝑂, 𝑤3, 𝑤4}⟩,

Φ𝑓𝐷 = ⟨𝑋𝑉(𝑓𝐷) ↦ 𝑈𝑤5(𝑋𝑣𝐼 − 𝑋𝑣𝑂), 0, 𝑉(𝑓𝐷) = {𝑣𝐼, 𝑣𝑂, 𝑣5}⟩,

(iv) The associated bipartite graph ℬ = ⟨𝑉, 𝐹, 𝐸⟩ is as in Figure 4.8. The vertices
𝐹 = {𝑓𝐾, 𝑓𝐼, 𝑓𝑃, 𝑓𝑂, 𝑓𝐷} correspond to constraints and the vertices 𝑉 ⧵ 𝑊 =
{𝑣𝐾, 𝑣𝐼, 𝑣𝑃, 𝑣𝑂, 𝑣𝐷} and𝑊 = {𝑤𝐼, 𝑤𝐾, 𝑤1, … , 𝑤5} correspond to endogenous and
exogenous variables respectively. Note that the subgraph induced by the en-
dogenous vertices 𝑉 ⧵𝑊 is the self-contained bipartite graph presented in Fig-
ure 4.1(a).

Solvabilitywith respect to the causal ordering graph: ApplyingAlgorithm1 to
the bipartite graph results in the causal ordering graphCO(ℬ) in Figure 4.9. Since the
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𝑤𝐼 𝑣𝐼 𝑤5 𝑣𝑂 𝑤4 𝑣𝐷 𝑤3 𝑤2 𝑣𝑃 𝑤1 𝑣𝐾 𝑤𝐾

𝑓𝑂𝑓𝐼 𝑓𝐷 𝑓𝑃 𝑓𝐾

Figure 4.8: The bipartite graph associated with the equilibrium equations of the bathtub.

bipartite graph induced by the endogenous variables and equations is self-contained,
there is no incomplete or overcomplete subgraph. The assumption of maximal
unique solvability in Theorem 4.3 then reduces to the assumption of unique solv-
ability with respect to the causal ordering graph. Through explicit calculations, it
is easy to verify that ℳ is (maximally) uniquely solvable with respect to CO(ℬ),
whenever 𝑔 ≠ 0:
(i) For the cluster {𝑓𝐾, 𝑣𝐾} we have that 𝑋𝑣𝐾 − 𝑈𝑤𝐾 = 0 ⟺ 𝑋𝑣𝐾 = 𝑈𝑤𝐾.
(ii) For the cluster {𝑓𝐼, 𝑣𝐼} we have that 𝑋𝑣𝐼 − 𝑈𝑤𝐼 = 0 ⟺ 𝑋𝑣𝐼 = 𝑈𝑤𝐼.

(iii) For {𝑓𝑂, 𝑣𝑃} we have that 𝑈𝑤3(𝑈𝑤4𝑋𝑣𝐾𝑋𝑣𝑃 − 𝑋𝑣𝑂) = 0 ⟺ 𝑋𝑣𝑃 =
𝑋𝑣𝑂

𝑈𝑤3𝑋𝑣𝐾

.

(iv) For {𝑓𝐷, 𝑣𝑂} we have that 𝑈𝑤5(𝑋𝑣𝐼 − 𝑋𝑣𝑂) ⟺ 𝑋𝑣𝑂 = 𝑋𝑣𝐼.

(v) For {𝑓𝑃, 𝑣𝐷} we have that 𝑈𝑤1(𝑔𝑈𝑤2𝑋𝑣𝐷 − 𝑋𝑣𝑃) ⟺ 𝑋𝑣𝐷 =
𝑋𝑣𝑃

𝑔𝑈𝑤2

.

In practice, we do not always need to manually check the assumption of unique
solvability with respect to the causal ordering graph. For example, in linear systems
of equations of the formAX = Y, wemay use the fact that this assumption is satisfied
when the matrix of coefficients A is invertible. More generally, global implicit func-
tion theorems give conditions under which (non-linear) systems of equations have a
unique solution (Krantz et al., 2013).16 We consider detailed analysis of conditions
under which (maximal) unique solvability is guaranteed to be outside the scope of
this paper. Note that, under the assumption of (maximal) unique solvability, the con-
ditional independences can be read off from the Markov ordering graph without the
requirement of calculating explicit solutions.

Markov ordering graph: Application of declustering and marginalization of ver-
tices in 𝐹, as in Definition 4.10, to the causal ordering graph in Figure 4.9 results in
the Markov ordering graph in Figure 4.10(a). Sinceℳ is uniquely solvable with re-
spect to CO(ℬ), Theorem 4.3 tells us that the pair (MO(ℬ),ℙX∗) satisfies the directed
global Markov property, where X∗ is a solution ofℳ.17

16In particular, Hadamard’s global implicit function theorem in Krantz et al. (2013) states the following
(Hadamard, 1906). Let f ∶ ℝ𝑛 ↦ ℝ𝑛 be a 𝐶2 mapping. Suppose that f(0) = 0 and that the Jacobian
determinant is non-zero at each point. Further suppose that whenever 𝐾 ⊆ ℝ𝑛 is compact then f−1(𝐾)
is compact (i.e. f is proper). Then f is one-to-one and onto. In the literature, several conditions have been
formulated yielding global inverse theorems in different or more general settings, see for example Gutú
(2017) and Idczak (2016).

17Recall that there is no incomplete and overcomplete part of the bipartite graph. Therefore we have
thatMOCO(ℬ) = MO(ℬ).
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𝑤𝐼
𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤𝐾

𝑣𝐼 𝑣𝐷 𝑣𝑃

𝑓𝐼 𝑓𝑃 𝑓𝑂

𝑣𝑂𝑓𝐷

𝑣𝐾𝑓𝐾

Figure 4.9: The causal ordering graph for the equilibrium equations of the bathtub system.

𝑤𝐼

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤𝐾

𝑣𝐼 𝑣𝐷 𝑣𝑃

𝑣𝑂

𝑣𝐾

(a) Markov ordering graph.

𝑣𝐼 𝑣𝐷 𝑣𝑃

𝑣𝑂

𝑣𝐾

(b) Graph of the SCM.

Figure 4.10: The Markov ordering graph for the equilibrium equations of the filling bathtub
system, obtained by applying Definition 4.10 to the causal ordering graph in Figure 4.9 is given
inFigure 4.10(a). The d-separations in theMarkov ordering graph imply conditional independ-
ences between corresponding endogenous variables. Most of these conditional independences
cannot be read off from the graph for the SCM of the bathtub system in Figure 4.10(b), except
for 𝑋𝑣𝐼 ⟂⟂ 𝑋𝑣𝐾.

Encoded conditional independences: Since the assumption of unique solvabil-
ity with respect to the causal ordering graph holds for this particular example, we can
read off conditional independences between endogenous variables from the Markov
ordering graph. More precisely, the d-separations inMO(ℬ) between vertices in𝑉⧵𝑊
imply conditional independences between the corresponding endogenous variables.
For example:

𝑣𝐾
𝑑
⟂

MO(ℬ)
𝑣𝑂 ⟹ 𝑋𝑣𝐾 ⟂⟂ 𝑋𝑣𝑂,

𝑣𝐾
𝑑
⟂

MO(ℬ)
𝑣𝐷 | 𝑣𝑃 ⟹ 𝑋𝑣𝐾 ⟂⟂ 𝑋𝑣𝐷 | 𝑋𝑣𝑃,

𝑣𝐼
𝑑
⟂

MO(ℬ)
𝑣𝑃 | 𝑣𝑂 ⟹ 𝑋𝑣𝐼 ⟂⟂ 𝑋𝑣𝑃 | 𝑋𝑣𝑂,
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𝑣𝑂
𝑑
⟂

MO(ℬ)
𝑣𝐷 | 𝑣𝑃 ⟹ 𝑋𝑣𝑂 ⟂⟂ 𝑋𝑣𝐷 | 𝑋𝑣𝑃.

For 𝑔 > 0, every solution to the system of constraints has the same distribution, and
this distribution is d-faithful to theMarkov ordering graph. When 𝑔 = 0, the systemof
constraints only has a solution if𝑈𝑤𝐼 = 0 almost surely; in that case the corresponding
distribution is not d-faithful w.r.t. the Markov ordering graph in Figure 4.10(a).

Comparison to SCM representation: The (random) differential equations that
describe the system of a bathtub can be equilibrated to an SCM that has a self-cycle.
Bongers, Forré, et al. (2020) show that the model has the following structural equa-
tions:

𝑋𝑣𝐾 = 𝑈𝑤𝐾,
𝑋𝑣𝐼 = 𝑈𝑤𝐼,
𝑋𝑣𝑃 = 𝑔𝑈𝑤3𝑋𝑣𝐷,
𝑋𝑣𝑂 = 𝑈𝑤5𝑋𝑣𝐾𝑋𝑣𝑃,
𝑋𝑣𝐷 = 𝑋𝑣𝐷 + 𝑈𝑤1(𝑋𝑣𝐼 − 𝑋𝑣𝑂).

The graph of this SCM is depicted in Figure 4.10(b). Because the SCM is uniquely
solvable w.r.t. the strongly connected components {𝑣𝐼}, {𝑣𝐷, 𝑣𝑃, 𝑣𝑂} and {𝑣𝐾}, the 𝜎-
separations in this graph imply conditional independences (Theorem 6.3 in Bongers,
Forré, et al., 2020). Most of the conditional independences implied by the Markov
ordering graph cannot be read off from the graph of this SCM in Figure 4.10(b) via
the 𝜎-separation criterion, except for𝑋𝑣𝐼 ⟂⟂ 𝑋𝑣𝐾. Clearly the distribution of a solution
to the systemof constraints is not faithful to the graph of the SCMand causal ordering
on the equilibrium equations provides a strongerMarkov property than equilibration
to an SCM.

An important difference between SCMs and systems of constraints is that while
the former require a particular one-to-one correspondence between endogenous
variables and structural equations, the latter do not require a similar correspond-
ence between endogenous variables and constraints. Interestingly, in the case of
the bathtub model, a one-to-one correspondence between variables and constraints
is obtained automatically by the causal ordering algorithm. In general, the bipartite
graph of a set of structural equations is self-contained and perfect matchings connect
each variable to an equation. If the SCM is acyclic then the associated bipartite graph
has a unique perfect matching that retrieves the correspondence between variables
and equations in the SCM.We further discuss applications of the technique of causal
ordering to structural equations in Section 4.6.2.
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4.4.4 Generalized directed global Markov property

For systems of constraints with no over- or incomplete parts, the associated direc-
ted graph that is constructed in the causal ordering algorithm via perfect match-
ings also yields a Markov property. Theorem 4.4 below shows that for systems that
are uniquely solvable with respect to the causal ordering graph, the 𝜎-separations
between variable vertices in the directed graph 𝒢(ℬ,ℳ)mar(𝐹) imply conditional in-
dependences between the corresponding solution components.

Theorem 4.4. Let X∗ = g(X𝑊) be a solution of a system of constraints ⟨𝒳,X𝑊, 𝜱,ℬ⟩,
where the subgraph of ℬ = ⟨𝑉, 𝐹, 𝐸⟩ induced by (𝑉 ∪ 𝐹) ⧵ 𝑊 has a perfect matching
ℳ. If for each strongly connected component 𝑆 in 𝒢(ℬ,ℳ) with 𝑆 ∩𝑊 = ∅, the system
ℳ is uniquely solvable w.r.t. 𝑆𝑉 = (𝑆 ∪ ℳ(𝑆)) ∩ 𝑉 and 𝑆𝐹 = (𝑆 ∪ ℳ(𝑆)) ∩ 𝐹 then
the pair (𝒢(ℬ,ℳ)mar(𝐹),ℙX∗) satisfies the generalized directed global Markov property
(Definition 4.15).

Example 4.12. Consider a system of constraints ℳ = ⟨𝒳,X𝑊, 𝜱,ℬ⟩ with 𝑊 =
{𝑤1, … , 𝑤6}, 𝑉 ⧵𝑊 = {𝑣1, … , 𝑣5}, 𝐹 = {𝑓1, … , 𝑓5}, and ℬ = ⟨𝑉, 𝐹, 𝐸⟩ as in Figure 4.4(a).
Suppose that 𝒳 = ℝ11 and consists of constraints:

Φ𝑓1 ∶ 𝑋𝑣1 − 𝑋𝑤1 = 0,
Φ𝑓2 ∶ 𝑋𝑣2 − 𝑋𝑣1 + 𝑋𝑣3 + 𝑋𝑤2 − 𝑋𝑤3 = 0,
Φ𝑓3 ∶ 𝑋𝑤4 − 𝑋𝑣3 + 𝑋𝑣4 = 0,
Φ𝑓4 ∶ 𝑋𝑤5 + 𝑋𝑣2 − 𝑋𝑣4 = 0,
Φ𝑓5 ∶ 𝑋𝑤6 − 𝑋𝑣4 + 𝑋𝑣5 = 0.

It is easy to check that this linear system of equations can be uniquely solved in the
order prescribed by the causal ordering graph CO(ℬ) in Figure 4.4(e). Therefore, ac-
cording to Theorem 4.3 the d-separations among endogenous variables in the corres-
ponding Markov ordering graph MO(ℬ) imply conditional independences between
the corresponding endogenous variables. It follows that d-separations in the Markov
ordering graph MO(ℬ)mar(𝑊) for the endogenous variables in Figure 4.11(b) imply
conditional independences between the corresponding variables. For example, we
see that 𝑣1 and 𝑣5 are d-separated by 𝑣4 and deduce that for a solution X∗ to the sys-
tem of constraints it holds that 𝑋∗

𝑣1 ⟂⟂ 𝑋∗
𝑣5 | 𝑋

∗
𝑣4. One may note that d-separations

in MO(ℬ)mar(𝑊) coincide with 𝜎-separations in both associated directed graphs
𝒢(ℬ,ℳ1)mar(𝐹∪𝑊) and 𝒢(ℬ,ℳ2)mar(𝐹∪𝑊), which are depicted in Figures 4.11(c) and
4.11(d) respectively. It can be seen from the proof of Theorem 4.4 in Appendix 4.B.5
that this result holds in general. It follows fromTheorem 4.4 that the 𝜎-separations in
𝒢(ℬ,ℳ1)mar(𝐹∪𝑊) and 𝒢(ℬ,ℳ2)mar(𝐹∪𝑊) imply conditional independences between
the corresponding variables. For example, we see that 𝑣1 and 𝑣5 are 𝜎-separated by
𝑣4 in both graphs, and hence 𝑋∗

𝑣1 ⟂⟂ 𝑋∗
𝑣5 | 𝑋

∗
𝑣4 for a solution X

∗. △
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𝑣1

𝑤1

𝑣5

𝑣2

𝑣3

𝑣4

𝑤2

𝑤3

𝑤4

𝑤5
𝑤5

(a)MO(ℬ).

𝑣1 𝑣2

𝑣3

𝑣4

𝑣5

(b)MO(ℬ)mar(𝑊).

𝑣1 𝑣2

𝑣3

𝑣4

𝑣5

(c) 𝒢(ℬ,ℳ1)mar(𝐹∪𝑊).

𝑣1 𝑣2

𝑣3

𝑣4

𝑣5

(d) 𝒢(ℬ,ℳ2)mar(𝐹∪𝑊).

Figure 4.11: The Markov ordering graph of the causal ordering graph in Figure 4.4(e) is given
in Figure 4.11(a). Marginalization of the exogenous vertices 𝑊 results in the directed mixed
graph in Figure 4.11(b). The directed graphs in Figures 4.11(c) and 4.11(d) are obtained by
marginalizing out the constraint vertices 𝐹 and exogenous vertices𝑊 from the directed graphs
𝒢(ℬ,ℳ1) and 𝒢(ℬ,ℳ2) in Figures 4.4(b) and 4.4(c) respectively. Note that d-separations in
the Markov ordering graph correspond to 𝜎-separations in the associated directed graphs in
Figures 4.4(b) and 4.4(c).

4.5 Causal implications of sets of equations

Nowadays, it is common to relate causation directly to the effects of manipulation
(Pearl, 2009; Woodward, 2003). In the context of sets of equations there are many
ways to model manipulations on these equations. Assuming that the manipulations
correspond to feasible actions in the real world that is modelled by the equations,
the effects of manipulations correspond to causal relations. In order to derive causal
implications from systems of constraints, we explicitly define two types of manipu-
lation. We consider the notions of both soft and perfect interventions on sets of equa-
tions.18 We prove that the causal ordering graph represents the effects of both soft
interventions on equations and perfect interventions on clusters in the causal ordering
graph. We also show that these interventions commute with causal ordering.

4.5.1 The effects of soft interventions

A soft intervention, also known as a “mechanism change”, acts on a constraint. It
replaces the targeted constraint by a constraint in which the same variables appear

18Our definitions in the context of systems of constraints may deviate from conventional definitions
of interventions on SCMs. In an SCM, each variable is associated with a single structural equation. The
notion of a perfect intervention on an SCM does not carry over to systems of constraints because there is
no imposed one-to-one correspondence between equations and variables.
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as in the original one. This type of intervention does not change the bipartite graph
that represents the structure of the constraints.

Definition 4.11. Let ℳ = ⟨𝓧,X𝑊, 𝜱,ℬ⟩ be a system of constraints, let Φ𝑓 =
⟨𝜙𝑓, 𝑐𝑓, 𝑉(𝑓)⟩ ∈ 𝜱 be a constraint, 𝑐′𝑓 a constant taking value in a measurable space
𝓨, and 𝜙′𝑓 ∶ 𝓧𝑉(𝑓) → 𝓨 a measurable function. A soft intervention si(𝑓, 𝜙′𝑓, 𝑐

′
𝑓)

targeting Φ𝑓 results in the intervened system ℳsi(𝑓,𝜙′𝑓,𝑐
′
𝑓)

= ⟨𝓧,X𝑊, 𝜱si(𝑓,𝜙′𝑓,𝑐
′
𝑓)
, ℬ⟩

where 𝜱si(𝑓,𝜙′𝑓,𝑐
′
𝑓)
= (𝜱 ⧵ {Φ𝑓}) ∪ {Φ′

𝑓} with Φ
′
𝑓 = ⟨𝜙′𝑓, 𝑐

′
𝑓, 𝑉(𝑓)⟩.

For systems of constraints that are maximally uniquely solvable w.r.t. the causal
ordering graph, both before and after a soft intervention, Theorem 4.5 shows that
such a soft intervention does not have an effect on variables that cannot be reached
by a directed path from that constraint in the causal ordering graph, while it may
have an effect on other variables.19

Theorem 4.5. Let ℳ = ⟨𝓧,X𝑊, 𝜱,ℬ⟩ be a system of constraints with coarse de-
composition CD(ℬ) = ⟨𝑇𝐼, 𝑇𝐶, 𝑇𝑂⟩. Suppose that ℳ is maximally uniquely solvable
w.r.t. the causal ordering graph CO(ℬ) and let X∗ = g(X𝑊) be a solution of ℳ. Let
𝑓 ∈ (𝑇𝐶 ∪𝑇𝑂) ∩ 𝐹 and assume that the intervened systemℳsi(𝑓,𝜙′𝑓,𝑐

′
𝑓)
is also maximally

uniquely solvable w.r.t. CO(ℬ). Let X′ = h(X𝑊) be a solution ofℳsi(𝑓,𝜙′𝑓,𝑐
′
𝑓)
. If there is

no directed path from 𝑓 to 𝑣 ∈ (𝑇𝐶 ∪ 𝑇𝑂) ∩ 𝑉 in CO(ℬ) then 𝑋∗
𝑣 = 𝑋 ′

𝑣 almost surely.
On the other hand, if there is a directed path from 𝑓 to 𝑣 in CO(ℬ) then 𝑋∗

𝑣 may have a
different distribution than 𝑋 ′

𝑣, depending on the details of the modelℳ.

Example 4.13 shows that the presence of a directed path in the causal ordering
graph for the equilibrium equations of the bathtub system implies a causal effect for
almost all parameter values. This illustrates that non-effects and generic effects can
be read off from the causal ordering graph.20

Example 4.13. Recall the systemof constraints for thefilling bathtub in Section 4.4.3.
Think of an experiment where the gravitational constant 𝑔 is changed so that it takes
on a different value 𝑔′ without altering the other equations that describe the bathtub
system. Such an experiment is, at least in theory, feasible. For example, it can be
accomplished by accelerating the bathtub system or by moving the bathtub system
to another planet. We can model the effect on the equilibrium distribution in such
an experiment by a soft intervention targeting 𝑓𝑃 that replaces the constraint Φ𝑓𝑃 by

⟨𝑋𝑉(𝑓𝑃) ↦ 𝑈𝑤1(𝑔
′𝑈𝑤2𝑋𝑣𝐷 − 𝑋𝑣𝑃), 0, 𝑉(𝑓𝑃) = {𝑣𝐷, 𝑣𝑃, 𝑤1, 𝑤2}⟩. (4.17)

19Our result generalizes Theorem 6.1 in Simon (1953) for linear self-contained systems of equations.
The proof of our theorem is similar.

20If a directed path from an equation vertex 𝑓 to a variable vertex 𝑣 implies that an intervention on 𝑓
changes the distribution of the solution component 𝑋𝑣 for almost all values (w.r.t. Lebesgue measure) of
the parameters, then we say that there is a generic causal effect of 𝑓 on 𝑣.
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Table 4.1: The effects of soft interventions on constraints in the causal ordering graph for the
bathtub system in Figure 4.9.

target generic effect non-effect

𝑓𝐾 𝑋𝑣𝐾, 𝑋𝑣𝑃, 𝑋𝑣𝐷 𝑋𝑣𝐼, 𝑋𝑣𝑂
𝑓𝐼 𝑋𝑣𝐼, 𝑋𝑣𝑃, 𝑋𝑣𝑂, 𝑋𝑣𝐷 𝑋𝑣𝐾
𝑓𝑃 𝑋𝑣𝐷 𝑋𝑣𝐾, 𝑋𝑣𝐼, 𝑋𝑣𝑃, 𝑋𝑣𝑂
𝑓𝑂 𝑋𝑣𝑃, 𝑋𝑣𝐷 𝑋𝑣𝐾, 𝑋𝑣𝐼, 𝑋𝑣𝑂
𝑓𝐷 𝑋𝑣𝑃, 𝑋𝑣𝑂, 𝑋𝑣𝐷 𝑋𝑣𝐾, 𝑋𝑣𝐼

Which variables are andwhich are not affected by this soft intervention? We can read
off the effects of this soft intervention from the causal ordering graph in Figure 4.9.
There is no directed path from 𝑓𝑃 to 𝑣𝐾, 𝑣𝐼, 𝑣𝑃 or 𝑣𝑂. Therefore, perhaps surprisingly,
Theorem 4.5 tells us that the soft intervention targeting 𝑓𝑃 neither has an effect on the
pressure 𝑋𝑣𝑃 at equilibrium nor on the outflow rate 𝑋𝑣𝑂 at equilibrium. Since there
is a directed path from 𝑓𝑃 to 𝑣𝐷, the water level 𝑋𝑣𝐷 at equilibrium may be different
after a soft intervention on 𝑓𝑃. If the gravitational constant 𝑔 is equal to zero, then
the system of constraints for the bathtub is not maximally uniquely solvable w.r.t.
the causal ordering graph (except if 𝑈𝑤𝐼 = 0 almost surely). For all other values
of the parameter 𝑔 the generic effects and non-effects of soft interventions on other
constraints of the bathtub system can be read off from the causal ordering graph and
are presented in Table 4.1. △

4.5.2 The effects of perfect interventions

A perfect intervention acts on a variable and a constraint. Definition 4.12 shows that
it replaces the targeted constraint by a constraint that sets the targeted variable equal
to a constant. Note that this definition of perfect interventions is very general and
allows interventions for which the intervened system of constraints is not maximally
uniquely solvable w.r.t. the causal ordering graph. In this work, wewill only consider
the subset of perfect interventions that target clusters in the causal ordering graph,
for which the intervened system is also maximally uniquely solvable w.r.t. the causal
ordering graph. We consider an analysis of necessary conditions on interventions for
the intervened system to be consistent beyond the scope of this work.

Definition 4.12. Letℳ = ⟨𝓧,X𝑊, 𝜱,ℬ = ⟨𝑉, 𝐹, 𝐸⟩⟩ be a system of constraints and
let 𝜉𝑣 ∈ 𝒳𝑣. A perfect intervention do(𝑓, 𝑣, 𝜉𝑣) targeting the variable 𝑣 ∈ 𝑉 ⧵ 𝑊
and the constraint 𝑓 ∈ 𝐹 results in an intervened system, denoted as ℳdo(𝑓,𝑣,𝜉𝑣) =
⟨𝒳,X𝑊, 𝜱do(𝑓,𝑣,𝜉𝑣), ℬdo(𝑓,𝑣)⟩ where
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(i) 𝜱do(𝑓,𝑣,𝜉𝑣) = (𝜱 ⧵ Φ𝑓) ∪ {Φ′
𝑓} with Φ

′
𝑓 = ⟨𝑋𝑣 ↦ 𝑋𝑣, 𝜉𝑣, {𝑣}⟩,

(ii) ℬdo(𝑓,𝑣) = ⟨𝑉, 𝐹, 𝐸′⟩ with 𝐸′ = {(𝑖 − 𝑗) ∈ 𝐸 ∶ 𝑖, 𝑗 ≠ 𝑓} ∪ {(𝑣 − 𝑓)}.

Perfect interventions on a set of variable-constraint pairs {(𝑓1, 𝑣1), … , (𝑓𝑛, 𝑣𝑛)} in
a system of constraints are denoted by do(𝑆𝐹, 𝑆𝑉, 𝝃𝑆𝑉) where 𝑆𝐹 = ⟨𝑓1, … , 𝑓𝑛⟩ and
𝑆𝑉 = ⟨𝑣1, … , 𝑣𝑛⟩ are tuples. For a bipartite graph ℬ so that its subgraph induced by
(𝑉 ∪ 𝐹) ⧵𝑊 is self-contained, Lemma 4.3 shows that the subgraph of the intervened
bipartite graph ℬdo(𝑆𝐹,𝑆𝑉) induced by (𝑉 ∪ 𝐹) ⧵ 𝑊 is also self-contained when 𝑆 =
(𝑆𝐹 ∪ 𝑆𝑉) is a cluster in CO(ℬ) with 𝑆 ∩𝑊 = ∅.

Lemma 4.3. Let ℬ = ⟨𝑉, 𝐹, 𝐸⟩ be a bipartite graph and𝑊 ⊆ 𝑉, so that the subgraph
of ℬ induced by (𝑉 ∪𝐹)⧵𝑊 is self-contained. Consider an intervention do(𝑆𝑉, 𝑆𝐹) on a
cluster 𝑆 = 𝑆𝐹 ∪𝑆𝑉 with 𝑆 ∩𝑊 = ∅ in the causal ordering graphCO(ℬ). The subgraph
of ℬdo(𝑆𝐹,𝑆𝑉) induced by (𝑉 ∪ 𝐹) ⧵ 𝑊 is self-contained.

Theorem 4.6 shows how the causal ordering graph can be used to read off the
(generic) effects and non-effects of perfect interventions on clusters in the complete
and overcomplete sets of the associated bipartite graph under the assumption of
unique solvability with respect to the complete and overcomplete sets in the causal
ordering graph.

Theorem 4.6. Let ℳ = ⟨𝓧,X𝑊, 𝜱,ℬ = ⟨𝑉, 𝐹, 𝐸⟩⟩ be a system of constraints with
coarse decomposition CD(ℬ) = ⟨𝑇𝐼, 𝑇𝐶, 𝑇𝑂⟩. Assume that ℳ is maximally uniquely
solvable w.r.t. CO(ℬ) = ⟨𝒱, ℰ⟩ and let X∗ be a solution of ℳ. Let 𝑆𝐹 ⊆ (𝑇𝐶 ∪ 𝑇𝑂) ∩ 𝐹
and 𝑆𝑉 ⊆ (𝑇𝐶 ∪ 𝑇𝑂) ∩ (𝑉 ⧵ 𝑊) be such that (𝑆𝐹 ∪ 𝑆𝑉) ∈ 𝒱. Consider the intervened
systemℳdo(𝑆𝐹,𝑆𝑉,𝝃𝑆𝑉)

with coarse decomposition CD(ℬdo(𝑆𝐹,𝑆𝑉)) = ⟨𝑇 ′
𝐼 , 𝑇 ′

𝐶, 𝑇 ′
𝑂⟩. Let X′

be a solution of ℳdo(𝑆𝐹,𝑆𝑉,𝝃𝑆𝑉)
. If there is no directed path from any 𝑥 ∈ 𝑆𝑉 to 𝑣 ∈

(𝑇𝐶 ∪ 𝑇𝑂) ∩ 𝑉 in CO(ℬ) then 𝑋∗
𝑣 = 𝑋 ′

𝑣 almost surely. On the other hand, if there is
𝑥 ∈ 𝑆𝑉 such that there is a directed path from 𝑥 to 𝑣 ∈ (𝑇𝐶 ∪ 𝑇𝑂) ∩ 𝑉 in CO(ℬ), then
𝑋∗
𝑣 may have a different distribution than 𝑋 ′

𝑣.

One way to determine whether a perfect intervention has an effect on a certain
variable is to explicitly solve the system of constraints before and after the interven-
tion and check which solution components are altered. In particular, when the dis-
tribution of a solution component is different for almost all parameter values, then
we say that there is a generic effect. This way, we can establish the generic effects
of a perfect intervention without solving the equations by relying on a solvability
assumption. Example 4.14 illustrates this notion of perfect intervention on the sys-
tem of constraints for the filling bathtub that we first introduced in Example 4.1 and
shows how the generic effects and non-effects of perfect interventions on clusters can
be read off from the causal ordering graph.

Example 4.14. Recall the system of constraintsℳ for the filling bathtub at equilib-
rium in Section 4.4.3. Consider the perfect interventionsdo(𝑓𝑃, 𝑣𝐷, 𝜉𝐷), do(𝑓𝐷, 𝑣𝑂, 𝜉𝑂),
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Table 4.2: Solutions for system of constraints describing the bathtub system in Section 4.4.3
without interventions (i.e. the observed system) and after perfect interventions do(𝑓𝑃, 𝑣𝐷, 𝜉𝐷),
do(𝑓𝐷, 𝑣𝑂, 𝜉𝑂), and do(𝑓𝐷, 𝑣𝐷, 𝜉𝐷).

observed do(𝑓𝑃, 𝑣𝐷, 𝜉𝐷) do(𝑓𝐷, 𝑣𝑂, 𝜉𝑂) do(𝑓𝐷, 𝑣𝐷, 𝜉𝐷)

𝑋∗
𝑣𝐾 𝑈𝑤𝐾 𝑈𝑤𝐾 𝑈𝑤𝐾 𝑈𝑤𝐾

𝑋∗
𝑣𝐼 𝑈𝑤𝐼 𝑈𝑤𝐼 𝑈𝑤𝐼 𝑈𝑤𝐼

𝑋∗
𝑣𝑃

𝑈𝑤𝐼

(𝑈𝑤4𝑈𝑤𝐾)

𝑈𝑤𝐼

(𝑈𝑤4𝑈𝑤𝐾)

𝜉𝑂
(𝑈𝑤4𝑈𝑤𝐾)

𝑔𝑈𝑤2𝜉𝐷
𝑋∗
𝑣𝑂 𝑈𝑤𝐼 𝑈𝑤𝐼 𝜉𝑂 𝑈𝑤4𝑈𝑤𝐾𝑔𝑈𝑤2𝜉𝐷

𝑋∗
𝑣𝐷

𝑈𝑤𝐼

(𝑈𝑤4𝑈𝑤𝐾𝑔𝑈𝑤2)
𝜉𝐷

𝜉𝑂
(𝑈𝑤4𝑈𝑤𝐾𝑔𝑈𝑤2)

𝜉𝐷

Table 4.3: The effects of perfect interventions on clusters of variables and constraints in the
causal ordering graph for the bathtub system in Figure 4.9 obtained by Theorem 4.6. Since
{𝑓𝐷, 𝑣𝐷} is not a cluster in the causal ordering graph, the effects of this intervention cannot be
read off from the causal ordering graph.

target generic effect non-effect

𝑓𝐾, 𝑣𝐾 𝑋𝑣𝐾, 𝑋𝑣𝑃, 𝑋𝑣𝐷 𝑋𝑣𝐼, 𝑋𝑣𝑂
𝑓𝐼, 𝑣𝐼 𝑋𝑣𝐼, 𝑋𝑣𝑃, 𝑋𝑣𝑂, 𝑋𝑣𝐷 𝑋𝑣𝐾
𝑓𝑃, 𝑣𝐷 𝑋𝑣𝐷 𝑋𝑣𝐾, 𝑋𝑣𝐼, 𝑋𝑣𝑃, 𝑋𝑣𝑂
𝑓𝑂, 𝑣𝑃 𝑋𝑣𝑃, 𝑋𝑣𝐷 𝑋𝑣𝐾, 𝑋𝑣𝐼, 𝑋𝑣𝑂
𝑓𝐷, 𝑣𝑂 𝑋𝑣𝑃, 𝑋𝑣𝑂, 𝑋𝑣𝐷 𝑋𝑣𝐾, 𝑋𝑣𝐼
𝑓𝑃, 𝑓𝐷, 𝑓𝑂, 𝑣𝑃, 𝑣𝐷, 𝑣𝑂 𝑋𝑣𝑃, 𝑋𝑣𝑂, 𝑋𝑣𝐷 𝑋𝑣𝐾, 𝑋𝑣𝐼

and do(𝑓𝐷, 𝑣𝐷, 𝜉𝐷). These interventions model experiments that can, at least in prin-
ciple, be conducted in practice:
(i) The intervention do(𝑓𝑃, 𝑣𝐷, 𝜉𝐷) replaces the constraint 𝑓𝑃 by a constraint that

sets the water level 𝑋𝑣𝐷 equal to a constant and leaves all other constraints un-
affected. This could correspond to an experimental set-up where the constant 𝑔
in the constraintΦ𝑓𝑃 is controlled by accelerating and decelerating the bathtub
system precisely in such away that thewater level𝑋𝑣𝐷 is forced to take on a con-
stant value 𝜉𝐷 both in time and across the ensemble of bathtubs. We observe
the system once it has reached equilibrium.

(ii) The interventions do(𝑓𝐷, 𝑣𝑂, 𝜉𝑂) and do(𝑓𝐷, 𝑣𝐷, 𝜉𝐷) may correspond to an ex-
periment where a hose is added to the system that can remove or add water
precisely in such a way that either the outflow rate 𝑋𝑣𝑂 or the water level 𝑋𝑣𝐷 is
kept at a constant level both in time and across the ensemble of bathtubs. The
system is observed when it has reached equilibrium.
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Note that the cluster {𝑓𝐷, 𝑣𝐷} is not a cluster in the causal ordering graph in Figure
4.9. However, the system of constraintsℳdo(𝑓𝐷,𝑣𝐷,𝜉𝐷) is maximally uniquely solvable
with respect to the causal ordering graph CO(ℬdo(𝑓𝐷,𝑣𝐷)), and therefore the effects
of the intervention are well-defined.21 By explicit calculation we obtain the (unique)
solutions inTable 4.2 for the observed and intervened bathtub systems. By comparing
with the solutions in the observed column we read off that the perfect intervention
do(𝑓𝑃, 𝑣𝐷, 𝜉𝐷) does not change the solution for the variables 𝑋𝑣𝐾, 𝑋𝑣𝐼, 𝑋𝑣𝑃, 𝑋𝑣𝑂, but it
generically does change the solution for 𝑋𝑣𝐷. We further find that do(𝑓𝐷, 𝑣𝐷, 𝜉𝐷) and
do(𝑓𝐷, 𝑣𝑂, 𝜉𝐷) affect the solution for the variables𝑋𝑣𝑃, 𝑋𝑣𝑂, 𝑋𝑣𝐷 but not of 𝑋𝑣𝐾 and𝑋𝑣𝐼.

The causal ordering graphCO(ℬ) = ⟨𝒱, ℰ⟩ for the bathtub system is given in Fig-
ure 4.9. It has clusters 𝒱 = {{𝑓𝐾, 𝑣𝐾}, {𝑓𝐼, 𝑣𝐼}, {𝑓𝑃, 𝑣𝐷}, {𝑓𝑂, 𝑣𝑃}, {𝑓𝐷, 𝑣𝑂}}. Under the as-
sumption that the (intervened) system ismaximally uniquely solvable w.r.t. its causal
ordering graph, we can apply Theorem 4.6 and read off the generic effects and non-
effects of perfect interventions on clusters, which are presented in Table 4.3. This
illustrates the fact that we can establish the generic effects and non-effects of the per-
fect interventions do(𝑓𝑃, 𝑣𝐷, 𝜉𝐷) and do(𝑓𝐷, 𝑣𝑂, 𝜉𝑂), which act on clusters in the causal
ordering graph, without explicitly solving the system of equations. We will discuss
differences between causal implications of the causal ordering graph and the graph
of the SCM in Figure 4.10(b) in Section 4.6. △

4.5.3 Interventions commute with causal ordering

Given a system of constraints we can obtain the causal ordering graph after a perfect
intervention on one of its clusters in the original causal ordering graph by running
the causal ordering algorithm on the bipartite graph in the intervened system of con-
straints. In this section we will define an operation of “perfect intervention” directly
on the clusters in a causal ordering graph and show that the causal ordering graph
that is obtained after a perfect intervention coincides with the causal ordering graph
of the intervened system (i.e. perfect interventions on clusters in the causal ordering
graph commute with the causal ordering algorithm). Roughly speaking, a perfect
intervention on a cluster in a directed cluster graph removes all incoming edges to
that cluster and separates all variable vertices and constraint vertices in the targeted
cluster into separate clusters in a specified way.

Definition 4.13. Let ℬ = ⟨𝑉, 𝐹, 𝐸⟩ be a bipartite graph and 𝑊 a set of exogenous
variables. Let CO(ℬ) = ⟨𝒱, ℰ⟩ be the corresponding causal ordering graph and con-
sider 𝑆 ∈ 𝒱 with 𝑆 ∩ 𝑊 = ∅. Let 𝑆𝐹 = ⟨𝑓𝑖 ∶ 𝑖 = 1, … , 𝑛⟩ and 𝑆𝑉 = ⟨𝑣𝑖 ∶ 𝑖 = 1, … , 𝑛⟩

21The intervention on {𝑓𝐷, 𝑣𝐷} is interesting because it removes the constraint that the water flowing
through the faucet 𝑋𝑣𝐼 must be equal to the water flowing through the drain 𝑋𝑣𝑂. This can be accom-
plished by adding a hose to the system through which additional water can flow in and out of the bathtub
to ensure that 𝑋𝑣𝐷 remains at a constant level. Notice that, in this example, the total inflow and total
outflow of water remain equal, while the inflow through the faucet and the outflow through the drainmay
differ.
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with 𝑛 = |𝑆 ∩𝑉| = |𝑆 ∩𝐹| be tuples consisting of all the vertices in 𝑆∩𝐹 and 𝑆∩𝑉 re-
spectively. A perfect intervention do(𝑆𝐹, 𝑆𝑉) on a cluster {𝑆𝐹, 𝑆𝑉} results in the directed
cluster graph CO(ℬ)do(𝑆𝐹,𝑆𝑉) = ⟨𝒱′, ℰ′⟩ where22
(i) 𝒱′ = (𝒱 ⧵ {𝑆}) ∪ {{𝑣𝑖, 𝑓𝑖} ∶ 𝑖 = 1, … , 𝑛},
(ii) ℰ′ = {(𝑥 → 𝑇) ∈ ℰ ∶ 𝑇 ≠ 𝑆}.
A soft intervention on a systemof constraints has no effect on the bipartite graph-

ical structure of the constraints and the variables that appear in them. Since the bi-
partite graph of the system is the same before and after soft interventions, it trivially
follows that soft interventions commute with causal ordering. The following propos-
ition shows that perfect interventions on clusters also commutewith causal ordering.

Proposition 4.2. Let ℬ = ⟨𝑉, 𝐹, 𝐸⟩ be a bipartite graph and 𝑊 a set of exogenous
variables. Let CO(ℬ) = ⟨𝒱, ℰ⟩ be the corresponding causal ordering graph. Let 𝑆𝐹 ⊆ 𝐹
and 𝑆𝑉 ⊆ 𝑉 ⧵𝑊 be such that (𝑆𝐹 ∪ 𝑆𝑉) ∈ 𝒱. Then:

CO(ℬdo(𝑆𝐹,𝑆𝑉)) = CO(ℬ)do(𝑆𝐹,𝑆𝑉).

The bipartite graph in Figure 4.12 (a) has the causal ordering graph depicted
in Figure 4.12 (b). The perfect intervention do(𝑆𝐹, 𝑆𝑉) with 𝑆𝐹 = ⟨𝑓2, 𝑓3⟩ and 𝑆𝑉 =
{𝑣2, 𝑣3} on this causal ordering graph results in the directed cluster graph in Fig-
ure 4.12 (d). Since perfect interventions on clusters commute with causal ordering,
this graph can also be obtained by applying the causal ordering algorithm to the in-
tervened bipartite graph in Figure 4.12 (c). Proposition 4.2 shows that perfect inter-
ventions on the graphical level can be used to draw conclusions about dependencies
and causal implications of the underlying intervened system of constraints. We will
use this result in Section 4.6.3 to elucidate the commutation properties of equilibra-
tion and interventions in dynamical models as defined in Dash (2005) and Bongers
and Mooij (2018).

4.6 Discussion

In this section we give a detailed account of how our work relates to some of the
existing literature on causal ordering and causal modelling.

4.6.1 “The causal graph”: A misnomer?

Our work extends the work of Simon (1953) who introduced the causal ordering al-
gorithm. We extensively discussed the example of a bathtub that first appeared in
Iwasaki et al. (1994), in which the authors refer to theMarkov ordering graph as “the

22A perfect intervention do(𝑆𝐹, 𝑆𝑉, 𝝃𝑉) replaces constraints Φ𝑓𝑖 with causal constraints Φ′
𝑓𝑖

=
⟨𝑋𝑣𝑖 ↦ 𝑋𝑣𝑖, 𝜉𝑣𝑖, {𝑣𝑖}⟩. Notice that the labels 𝑓𝑖 of the constraints are unaltered, and therefore only the
edges in the bipartite graph and causal ordering graph change after an intervention, as well as the clusters
in the causal ordering graph, while the labels of vertices are preserved.
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𝑣1 𝑣2 𝑣3 𝑣4

𝑓1 𝑓2 𝑓3 𝑓4

(a) Bipartite graph ℬ.

𝑣1 𝑣2 𝑣3 𝑣4

𝑓1 𝑓2 𝑓3 𝑓4

(b) Causal ordering graph CO(ℬ).

𝑣1 𝑣2 𝑣3 𝑣4

𝑓1 𝑓2 𝑓3 𝑓4

(c) Intervened bipartite graph ℬdo(𝑆𝐹,𝑆𝑉).

𝑣1 𝑣2 𝑣3 𝑣4

𝑓1 𝑓2 𝑓3 𝑓4

(d) CO(ℬdo(𝑆𝐹,𝑆𝑉)) = CO(ℬ)do(𝑆𝐹,𝑆𝑉).

Causal Ordering

Causal Ordering

do(𝑆𝐹, 𝑆𝑉) do(𝑆𝐹, 𝑆𝑉)

Figure 4.12: The intervention do(𝑆𝐹, 𝑆𝑉) with ordered sets 𝑆𝐹 = ⟨𝑓2, 𝑓3⟩ and 𝑆𝑉 = ⟨𝑣2, 𝑣3⟩
commutes with causal ordering. Application of causal ordering and the intervention to the
bipartite graph (a) results in the causal ordering graph (b) and the intervened bipartite graph (c)
respectively. The directed cluster graph (d) can be obtained either by applying causal ordering
to the intervened bipartite graph or by intervening on the causal ordering graph.

causal graph” and claim that this graph represents the effects of “manipulations”. We
observe here that the Markov ordering graph in Figure 4.10(a) does not have an un-
ambiguous causal interpretation, contrary to claims in the literature. In this work
we have formalized soft and perfect interventions, which are two common types of
manipulation. This allows us to show that the Markov ordering graph, unlike the
causal ordering graph, neither represents the effects of soft interventions nor does it
have a straightforward interpretation in terms of perfect interventions. Iwasaki et al.
(1994) do not clarify what the correct causal interpretation of the Markov ordering
graph should be and therefore we believe that the term “causal graph” is a misnomer
from a contemporary perspective on interventions and causality.

Markov ordering. To support this claim, we consider the bathtub system in Iwa-
saki et al. (1994) that we presented in Example 4.1. The structure of the equations
and the endogenous variables that appear in them can be represented by the bipartite
graph in Figure 4.13(a). The corresponding Markov ordering graph in Figure 4.13(c)
corresponds to the graph that Iwasaki et al. (1994) call the “causal graph” for the
bathtub system. Note that Iwasaki et al. (1994) do not make a distinction between
variable vertices and equation vertices like we do. Their “causal graph” therefore has
vertices 𝐾, 𝐼, 𝑃, 𝑂, 𝐷 instead of 𝑣𝐾, 𝑣𝐼, 𝑣𝑃, 𝑣𝑂, 𝑣𝐷. An aspect that is not discussed at
all by Iwasaki et al. (1994), is that the Markov ordering graph implies conditional
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independences between components of solutions of equations.23

Soft interventions. We first consider the representation of soft interventions.
Table 4.1 shows that a soft intervention on 𝑓𝐷 has a generic effect on the solution
for the variables 𝑣𝑃, 𝑣𝑂, and 𝑣𝐷. This soft intervention cannot be read off from the
Markov ordering graph in Figure 4.13(c) because there is no vertex 𝑓𝐷. Since Iwasaki
et al. (1994) make no distinction between variable vertices and equation vertices, a
manipulation on𝐷 should perhaps be interpreted as a soft intervention on the vertex
𝐷 in the Markov ordering graph in Figure 4.13(c) instead. However, the graphical
structure would lead us to erroneously conclude that the soft intervention on 𝐷 only
has an effect on the variable 𝐷. In earlier work, Simon and Iwasaki (1988) assumed
that a matching between variable and equation vertices is known in advance, al-
lowing them to read off effects of soft interventions. We conclude that the Markov
ordering graph, by itself, does not represent the effects of soft interventions on equa-
tions in general.

Perfect interventions. In Example 4.14 we found that a perfect intervention
do(𝑓𝐷, 𝑣𝐷, 𝜉𝐷) has an effect on the solution of the variables 𝑣𝑃, 𝑣𝑂 and 𝑣𝐷. If we
would interpret this manipulation as a perfect intervention on 𝐷 in the Markov or-
dering graph in Figure 4.13(c) then we would mistakenly find that this intervention
only affects the variable 𝐷. Since Iwasaki et al. (1994) do not make a distinction
between variable vertices and equation vertices we could also interpret a manipula-
tion on 𝐷 as the perfect intervention do(𝑓𝑃, 𝑣𝐷, 𝜉𝐷) or do(𝑓𝐷, 𝑣𝑂, 𝜉𝑂). From Table 4.2
we see that these perfect interventions would change the solution of the variables
{𝑣𝐷} and {𝑣𝑃, 𝑣𝑂, 𝑣𝐷} respectively. Only the perfect intervention do(𝑓𝑃, 𝑣𝐷, 𝜉𝐷) which
targets the cluster containing 𝑣𝐷 corresponds to a perfect intervention on 𝐷 in the
Markov ordering graph in Figure 4.13(c). Since it is not clear from the Markov or-
dering graph what type of experiment a perfect intervention on one of its vertices
should correspond to, we conclude that the Markov ordering graph cannot be used
to read off the effects of perfect interventions.

Causal ordering graph. The causal ordering graph for the bathtub system is given
in Figure 4.1(b). We proved that the causal ordering graph, contrary to the Markov
ordering graph, represents the effects of soft interventions on equations and perfect
interventions on clusters (see Theorems 4.3 and 4.6). To derive causal implications
from sets of equations we therefore propose to use the notion of the causal ordering
graph instead. The distinction between variable vertices and equation vertices is also
made by Simon (1953) who shows how, for linear systems of equations, the principles
of causal ordering can be used to qualitatively assess the effects of soft interventions
on equations. A different, but closely related, notion of the causal ordering graph is

23Iwasaki et al. (1994) consider deterministic systems of equations and therefore it would not havemade
sense to consider Markov properties. In earlier work, the vanishing partial correlations implied by linear
systems with three variables and normal errors were studied by Simon (1954).
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used by Hautier et al. (2004) in the context of control systems modelling.

𝑣𝐼 𝑣𝑂 𝑣𝐷 𝑣𝑃 𝑣𝐾

𝑓𝐼 𝑓𝐷 𝑓𝑂 𝑓𝑃 𝑓𝐾

(a) The bipartite graph ℬ.

𝑣𝐼 𝑣𝑂 𝑣𝐷 𝑣𝑃 𝑣𝐾

𝑓𝐼 𝑓𝐷 𝑓𝑂 𝑓𝑃 𝑓𝐾

(b) The bipartite graph ℬdo(𝑓𝐷,𝑣𝐷).

𝐼 𝐷 𝑃

𝑂

𝐾

(c)MO(ℬ).

𝐼 𝐷 𝑃

𝑂

𝐾

(d)MO(ℬ)do(𝐷).

𝐼 𝐷 𝑃

𝑂

𝐾

(e)MO(ℬdo(𝑓𝐷,𝑣𝐷)).

Figure 4.13: The bipartite graph for the bathtub systemwithout exogenous variables is given in
Figure (a). The intervened bipartite graph is given in Figure (b). The Markov ordering graphs
for the observed and intervened bathtub system are given in Figures (c) and (e) respectively.
Figure (d) shows the graph that we obtain by intervening on the Markov ordering graph. Note
that this does not correspondwith theMarkov ordering graph of the intervened bathtub system
in Figure 4.13(e).

4.6.2 Relation to other causal models

The results in this work are easily applicable to other modelling frameworks, such as
the popular SCM framework (Bongers, Forré, et al., 2020; Pearl, 2009). Application of
causal ordering to the structural equations of an SCM with self-cycles may result in
a different ordering than the one implied by the SCM. In particular, causal ordering
may lead to a stronger Markov property and a representation of effects of a different
set of (perfect) interventions. Even though the causal ordering graph itself may not
allow us to read off non-effects of arbitrary perfect interventions, one can still obtain
those by first intervening on the bipartite graph, then applying the causal ordering
algorithm, and finally reading off the descendants of the intervention targets (under
appropriate maximal unique solvability conditions).

Structural Causal Models. In an SCM, each endogenous variable is on the left-
hand side of exactly one structural equation and perfect interventions always act on
a structural equation and its corresponding variable. In comparison, a system of
constraints consists of symmetric equations and the asymmetric relations between
variables are derived automatically by the causal ordering algorithm. Consider, for
example, the following structural equations:

𝑋1 = 𝑈1 (4.18)
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𝑋2 = 𝑎𝑋1 + 𝑈2, (4.19)

where 𝑋1, 𝑋2 are endogenous variables, 𝑈1, 𝑈2 are exogenous random variables, and
𝑎 is a constant. The ordering 𝑋1 → 𝑋2 can also be obtained by causal ordering of the
following set of equations:

𝑋1 − 𝑈1 = 0, (4.20)
𝑋2 − 𝑎𝑋1 − 𝑈2 = 0. (4.21)

Note that any set of structural equations implies a self-contained set of equations.24
We can thus always apply the causal ordering algorithm to structural equations. In-
terestingly, since the output of the causal ordering algorithm is unique (see The-
orem 4.1), the structure that is provided by the structural equations is actually re-
dundant if the structural equations contain no cycles.

SCM for the bathtub. Recall that at equilibrium, the bathtub system can be de-
scribed by the following structural equations:

𝑓𝐾 ∶ 𝑋𝑣𝐾 = 𝑈𝑤𝐾, 𝑓𝑂 ∶ 𝑋𝑣𝑂 = 𝑈𝑤5𝑋𝑣𝐾𝑋𝑣𝑃,
𝑓𝐼 ∶ 𝑋𝑣𝐼 = 𝑈𝑤𝐼, 𝑓𝐷 ∶ 𝑋𝑣𝐷 = 𝑋𝑣𝐷 + 𝑈𝑤1(𝑋𝑣𝐼 − 𝑋𝑣𝑂),
𝑓𝑃 ∶ 𝑋𝑣𝑃 = 𝑔𝑈𝑤3𝑋𝑣𝐷.

The graph of this SCM is depicted in Figure 4.10(b), and the descendants and non-
descendants of vertices are given inTable 4.4. Canwe use this table to read off generic
causal effects of perfect interventions targeting {𝑓𝐾, 𝑣𝐾}, {𝑓𝐼, 𝑣𝐼}, {𝑓𝑃, 𝑣𝑃}, {𝑓𝑂, 𝑣𝑂}, and
{𝑓𝐷, 𝑣𝐷}? The graph of the SCM contains (self-)cycles and the SCM does not have a
(unique) solution under each of these perfect interventions.25 Therefore, the graph
of this SCM may not have a straightforward causal interpretation. Indeed, Bongers,
Forré, et al. (2020) pointed out that for SCMs with cycles or self-cycles, the absence
(presence) of directed edges and directed paths between vertices may not correspond
one-to-one to the absence (generic presence) of direct and indirect causal effects, as
it does in DAGs. (Self-)cycles may even lead to (in)direct causal effects without a
corresponding directed edge or path being present in the graph of the SCM. For the
bathtub example, that unusual behaviour does not occur, but instead it illustrates an-
other behaviour: certain causal effects are absent, even though one would naïvely
expect these to be generically present based on the graph of the SCM.26 For example,

24In a set of structural equations each variable ismatched to a single equation. Since the set of equations
has a perfectmatching it is self-contained byHall’smarriage theorem (seeTheorem 4.7 inAppendix 4.B.4).

25There is no (unique) solution if one fixes the outflow rate of the system 𝑋𝑣𝑂 to a value that is not
equal to 𝑋𝑣𝐼 for the perfect interventions targeting {𝑓𝑂, 𝑣𝑂} and {𝑓𝑃, 𝑣𝑃}. In the dynamical model for
the bathtub, these perfect interventions would correspond with the water level becoming (plus or minus)
infinity.

26Such behaviour is a characteristic of perfectly adaptive dynamical systems Blom andMooij, 2021. The
causal and probabilistic properties of these systems are the topic of Chapter 5 of this thesis.
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Table 4.4 shows that 𝑣𝑂 is a descendant of 𝑣𝐾 in the graph of the SCMwhile the solu-
tion for the outflow rate𝑋𝑣𝑂 does not change after the perfect intervention do(𝑓𝐾, 𝑣𝐾).
That this causal relation is absent can actually be read off from the causal ordering
graph in Figure 4.1(b).

For the bathtub system, the causal ordering algorithm can exploit the fact that
equation 𝑓𝐷 can be replaced by 𝑓′𝐷 ∶ 0 = 𝑈𝑤1(𝑋𝑣𝐼 − 𝑋𝑣𝑂), which does not involve 𝑣𝐷,
whereas for the SCM this self-cycle cannot be removed. This causes the following
differences in the results of the two approaches:
(i) The d-separations in the Markov ordering graph in Figure 4.10(a) imply more

conditional independences than those implied by the 𝜎-separations in the
graph of the SCM in Figure 4.10(b) (as was discussed in detail in Section 4.4.3).

(ii) The graph of the SCM and the causal ordering graph represent different per-
fect intervention targets. In the graph of the SCM, we have minimal perfect
intervention targets of the form {𝑓𝑖, 𝑣𝑖} with 𝑖 ∈ {𝐾, 𝐼, 𝑃, 𝑂, 𝐷}, while the causal
ordering graph represents minimal perfect interventions on clusters {𝑓𝐾, 𝑣𝐾},
{𝑓𝐼, 𝑣𝐼}, {𝑓𝑃, 𝑣𝐷}, {𝑓𝑂, 𝑣𝑃}, and {𝑓𝐷, 𝑣𝑂}. In both cases, the set of all perfect inter-
vention targets that are represented by the graph are obtained by taking unions
of minimal perfect intervention targets.

(iii) The causal ordering graph of the bathtub has a straightforward causal interpret-
ation because the bathtub system still has a unique solutionunder interventions
on clusters in the causal ordering graph. In contrast, the graph of the SCM for
the bathtub system does not have a straightforward causal interpretation and
the bathtub system does not have a solution under each perfect intervention on
the SCM.

We conclude that the causal ordering approach yields a more “faithful” representa-
tion of the bathtub than the SCM framework.

Other frameworks. Since the causal ordering algorithm can be applied to any set
of equations, the results that we developed here are generally applicable to sets of
equations in other modelling frameworks. For example, we introduced Causal Con-
straint Models (CCMs) in Chapter 3 without a graphical representation for the in-
dependence structure between the variables. The causal ordering algorithm can be
directly applied to a set of active constraints to obtain a Markov ordering graph.

4.6.3 Equilibration in dynamical models

In this subsection we will discuss in more detail the relation between our work and
other closely related work, in particular to that of Dash (2005).

Dynamical models in terms of first order differential equations can be equilib-
rated to a set of equations by equating each time-derivative to zero (Bongers and
Mooij, 2018; Mooij, Janzing, and Schölkopf, 2013). They can be equilibrated and
mapped to a causal ordering graph by applying the causal ordering algorithm to the
resulting set of equilibrium equations. They can also be equilibrated and mapped to
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Table 4.4: The descendants and non-descendants of intervention targets in the graph of the
SCM for the bathtub system in Figure 4.10(b).

target descendants non-descendants

𝑓𝐾, 𝑣𝐾 𝑣𝐾, 𝑣𝑃, 𝑣𝑂, 𝑣𝐷 𝑣𝐼
𝑓𝐼, 𝑣𝐼 𝑣𝐼, 𝑣𝑃, 𝑣𝑂, 𝑣𝐷 𝑣𝐾
𝑓𝑃, 𝑣𝑃 𝑣𝑃, 𝑣𝑂, 𝑣𝐷 𝑣𝐾, 𝑣𝐼
𝑓𝑂, 𝑣𝑂 𝑣𝑃, 𝑣𝑂, 𝑣𝐷 𝑣𝐾, 𝑣𝐼
𝑓𝐷, 𝑣𝐷 𝑣𝑃, 𝑣𝑂, 𝑣𝐷 𝑣𝐾, 𝑣𝐼

a Markov ordering graph by subsequently applying Definition 4.10 to this causal or-
dering graph. The bathtub system provides an example of what Dash (2005) calls a
“violation of the Equilibration Manipulation Commutability property”.27

Consider the dynamical system version of the filling bathtub, with dynamical
equations

𝑓𝐾 ∶ 𝑋𝑣𝐾 = 𝑈𝑤𝐾,
𝑓𝐼 ∶ 𝑋𝑣𝐼 = 𝑈𝑤𝐼,
𝑓𝐷 ∶ ̇𝑋𝑣𝐷(𝑡) = 𝑈𝑤1(𝑋𝑣𝐼(𝑡) − 𝑋𝑣𝑂(𝑡)),
𝑓𝑃 ∶ ̇𝑋𝑣𝑃(𝑡) = 𝑈𝑤2(𝑔𝑈𝑤3𝑋𝑣𝐷(𝑡) − 𝑋𝑣𝑃(𝑡)),
𝑓𝑂 ∶ ̇𝑋𝑣𝑂(𝑡) = 𝑈𝑤4(𝑈𝑤5𝑋𝑣𝐾𝑋𝑣𝑃(𝑡) − 𝑋𝑣𝑂(𝑡)).

Equilibration yields the equilibrium equations 𝑓𝐾, 𝑓𝐼, 𝑓𝐷, 𝑓𝑃, and 𝑓𝑂 in equations (4.1)
to (4.5). It is clear in this particular case that any perfect intervention do(𝑆𝐹, 𝑆𝑉, 𝑉)
(where we extended Definition 4.12 to dynamical equations) commutes with equi-
libration (substituting zeroes for all first-order derivatives).28 This type of commut-
ation relation actually holds also in more general settings (see Mooij, Janzing, and
Schölkopf (2013) and Bongers and Mooij (2018)).

On the other hand, mapping a set of equations to the corresponding Markov or-
dering graph does not necessarily commute with perfect interventions. For example,
for the perfect intervention do(𝑓𝐷, 𝑣𝐷), the Markov ordering graphsMO(ℬ)do(𝑣𝐷) and

27We argue that this is confusing terminology in twoways. First, what Dash calls “equilibration” is what
we would call equilibration to a set of equations, composed with the mapping to the Markov ordering
graph. Second, Dash follows Iwasaki et al. (1994) in referring to the Markov ordering graph as the “causal
graph”. We argued in Section 4.6.1 that this is a misnomer, as in general there is no straightforward one-
to-one correspondence between the Markov ordering graph and the causal semantics of the system. This
terminological confusion explains the apparent contradiction with the result of Bongers andMooij (2018),
who prove that equilibration to an SCM commutes with manipulation (for perfect interventions).

28Note that it is crucially important here to ensure that the labelling of the equations is not changed by
the equilibration operation.
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MO(ℬdo(𝑓𝐷,𝑣𝐷)) are wildly different, as can be seen by comparing Figures 4.13(d) and
4.13(e) respectively. Since perfect interventions do commute with equilibration, one
can conclude that also the composition of equilibration followed by mapping to the
Markov ordering graph fails to commute with this perfect intervention. This is the
phenomenon that Dash (2005) pointed out.

This lack of commutability does not hold for all perfect interventions. For ex-
ample, one can easily check that the perfect intervention do(𝑓𝐾, 𝑣𝐾) commutes with
the composition of equilibration followed bymapping to theMarkov ordering graph.
More generally, Proposition 4.2 tells us that for the bathtub, the clusters in the causal
ordering graph ({𝑓𝐾, 𝑣𝐾}, {𝑓𝐼, 𝑣𝐼}, {𝑓𝑃, 𝑣𝐷}, {𝑓𝑂, 𝑣𝑃}, and {𝑓𝐷, 𝑣𝑂}) represent the min-
imal perfect interventions targets for which both operations do commute. This
means that of the perfect interventions that Dash (2005) considers (do({𝑣𝐾, 𝑓𝐾}),
do({𝑣𝐼, 𝑓𝐼}), do({𝑣𝐷, 𝑓𝐷}), do({𝑣𝑂, 𝑓𝑂}), do({𝑣𝑃, 𝑓𝑃}), and combinations thereof), exactly
three commutewith themapping to theMarkov ordering graph (namely do({𝑓𝐾, 𝑣𝐾}),
do({𝑓𝐼, 𝑣𝐼}), do({𝑓𝑃, 𝑣𝑃, 𝑓𝑂, 𝑣𝑂, 𝑓𝐷, 𝑣𝐷}), and combinations thereof). Hence, these are
also the three minimal perfect interventions in that set that commute with equilib-
ration followed by mapping to the Markov ordering graph.

As pointed out by Dash (2005), this lack of commutability has important implic-
ations when one tries to discover causal relations through structure learning, which
we will briefly discuss in the next subsection.

4.6.4 Structure learning

We have shown that, under a solvability assumption, d-separations in the Markov
ordering graph (or 𝜎-separations in the directed graph associated with a particular
perfect matching) imply conditional independences between variables in a system
of constraints (see Theorem 4.3 and Theorem 4.4). Constraint-based causal discov-
ery algorithms relate conditional independences in data to graphs under the Markov
condition and the corresponding d- or 𝜎-faithfulness assumption. Roughly speaking,
the equivalence class of the Markov ordering graph (or the directed graph associated
with a particular perfect matching) can be learned from data under the assumption
that all conditional independences in the data are implied by the graph. The bathtub
system in Example 4.1 is used by Dash (2005), who simulates data from the dynam-
ical model until it reaches equilibrium, and then applies the PC-algorithm to learn
the graphical structure of the system. It is no surprise that the learned structure is
the Markov ordering graph in Figure 4.13(c). The usual assumption is then that the
Markov ordering graph equals the causal graph, where directed edges express direct
causal relations between variables. In this work we have shown that this learned
Markov ordering graph does not have such a straightforward causal interpretation.
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4.7 Conclusion

In this work, we reformulated Simon’s causal ordering algorithm and demonstrated
that it is a convenient and scalable tool to study causal and probabilistic aspects of
models consisting of equations. In particular, we showedhow the technique of causal
ordering can beused to construct a causal ordering graph and aMarkov ordering graph
from a set of equations, without calculating explicit global solutions to the system of
equations. The novelties of this paper include an extension of the causal ordering
algorithm for general bipartite graphs, and proving that the corresponding Markov
ordering graph implies conditional independences between variables, whereas the
corresponding causal ordering graph encodes the effects of soft and perfect interven-
tions.

Tomodel causal relations between variables in sets of equations unambiguously,
we generalized existing notions of perfect interventions on SCMs. The main idea is
that a perfect intervention on a set of equations targets variables and specified equa-
tions, whereas a perfect intervention on a Structural Causal Model (SCM) targets
variables and their associated structural equations. We considered a simple dynam-
ical model with feedback and demonstrated that, contrary to claims in the literature,
the Markov ordering graph does not generally have any obvious causal interpreta-
tion in terms of soft or perfect interventions. We showed that the causal ordering
graph, on the other hand, does encode the effects of soft and certain perfect interven-
tions. The main take-away is that we need to make a distinction between variables
and equations in graphical representations of the probabilistic and causal aspects
of models with feedback. By making this distinction, we clarified the correct inter-
pretation of some existing results in the literature. Additionally, we shed new light
on discussions in causal discovery about the justification of using a single directed
graph with endogenous variables as vertices to simultaneously represent causal re-
lations and conditional independences. We believe that the phenomenon where the
Markov ordering graph does not encode causal semantics in the usual way manifests
itself in certain biological or econometric models with feedback at equilibrium. In
Chapter 5 and Chapter 6 we investigate these occurrences further.

4.A Preliminaries

4.A.1 Graph terminology

A bipartite graph is an ordered triple ℬ = ⟨𝑉, 𝐹, 𝐸⟩ where 𝑉 and 𝐹 are disjoint sets of
vertices and 𝐸 is a set of undirected edges (𝑣 − 𝑓) between vertices 𝑣 ∈ 𝑉 and 𝑓 ∈ 𝐹.
For a vertex 𝑥 ∈ 𝑉∪𝐹wewrite adjℬ(𝑥) = {𝑦 ∈ 𝑉∪𝐹 ∶ (𝑥−𝑦) ∈ 𝐸} for its adjacencies,
and for 𝑋 ⊆ 𝑉 ∪ 𝐹 we write adjℬ(𝑋) = ⋃𝑥∈𝑋 adjℬ(𝑥) to denote the adjacencies of 𝑋
in ℬ. A matching ℳ ⊆ 𝐸 for a bipartite graph ℬ = ⟨𝑉, 𝐹, 𝐸⟩ is a subset of edges
that have no common endpoints. We say that two vertices 𝑥 and 𝑦 arematchedwhen
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(𝑥 − 𝑦) ∈ ℳ. We letℳ(𝑥) denote the set of vertices to which 𝑥 is matched. Note
that if (𝑥 − 𝑦) ∈ ℳ thenℳ(𝑥) = {𝑦} and if 𝑥 is not matched thenℳ(𝑥) = ∅. We let
ℳ(𝑋) = ⋃𝑥∈𝑋ℳ(𝑥) denote the set of vertices to which the set of vertices 𝑋 ⊆ 𝑉 ∪𝐹
is matched. A matching is perfect if all vertices 𝑉 ∪ 𝐹 are matched.

A directed graph is an ordered pair 𝒢 = ⟨𝑉, 𝐸⟩ where 𝑉 is a set of vertices and
𝐸 is a set of directed edges (𝑣 → 𝑤) between vertices 𝑣, 𝑤 ∈ 𝑉. A directed mixed
graph is an ordered triple 𝒢 = ⟨𝑉, 𝐸, 𝐵⟩ where ⟨𝑉, 𝐸⟩ is a directed graph and 𝐵 is a
set of bi-directed edges between vertices in 𝑉. If a directed mixed graph ⟨𝑉, 𝐸, 𝐵⟩ has
an edge (𝑣 → 𝑣) ∈ 𝐸 then we say that it has a self-cycle. We say that a vertex 𝑣 is
a parent of 𝑤 if (𝑣 → 𝑤) ∈ 𝐸 and write 𝑣 ∈ pa𝒢(𝑤). Similarly we say that 𝑤 is a
child of 𝑣 if (𝑣 → 𝑤) ∈ 𝐸 and write 𝑤 ∈ ch𝒢(𝑣). A path is a sequence of distinct
vertices and edges (𝑣1, 𝑒1, 𝑣2, 𝑒2, … , 𝑒𝑛−1, 𝑣𝑛) where for 𝑖 = 1, … , 𝑛 − 1 we have that
𝑒𝑖 = (𝑣𝑖 → 𝑣𝑖+1), 𝑒𝑖 = (𝑣𝑖 ← 𝑣𝑖+1), or 𝑒𝑖 = (𝑣𝑖 ↔ 𝑣𝑖+1). The path is called open if there
is no 𝑣𝑖 ∈ {𝑣2, … 𝑣𝑛−1} such that there are two arrowheads at 𝑣𝑖 on the path (i.e. there
is no collider on the path). A directed path (𝑣 → … → 𝑤) from 𝑣 to 𝑤 is a path where
all arrowheads point in the direction of 𝑤. We say that 𝑣 is an ancestor of 𝑤 if there
is a directed path from 𝑣 to 𝑤 and write 𝑣 ∈ an𝒢(𝑤). We say that 𝑤 is a descendant of
𝑣 if there is a directed path from 𝑣 to 𝑤 and write 𝑤 ∈ de𝒢(𝑣).

Let 𝒢 = ⟨𝑉, 𝐸, 𝐵⟩ be a directed mixed graph and consider the relation:

𝑣 ∼ 𝑤 ⟺ 𝑤 ∈ an𝒢(𝑣) ∩ de𝒢(𝑣) = sc𝒢(𝑣).

Since the relation is reflexive, symmetric, and transitive this is an equivalence rela-
tion. The equivalence classes sc𝒢(𝑣) are called the strongly connected components of
𝒢. A directed graph without self-cycles is acyclic if and only if all of its strongly con-
nected components are singletons. A directed graph with no directed cycles is called
a Directed Acyclic Graph (DAG).

A perfect intervention do(𝐼) on a directed mixed graph 𝒢 = ⟨𝑉, 𝐸, 𝐵⟩ removes all
edges with an arrowhead at any of the nodes 𝑖 ∈ 𝐼 ⊆ 𝑉. That is, 𝒢do(𝐼) = ⟨𝑉, 𝐸′, 𝐵′⟩
where 𝐸′ = {(𝑥 → 𝑦) ∈ 𝐸 ∶ 𝑦 ∉ 𝐼} and 𝐵′ = {(𝑥 ↔ 𝑦) ∈ 𝐵 ∶ 𝑥 ∉ 𝐼, 𝑦 ∉ 𝐼}.
Marginalizing out a set of nodes 𝑊 ⊆ 𝑉 from a directed mixed graph 𝒢 = ⟨𝑉, 𝐸, 𝐵⟩
results in a directed mixed graph 𝒢mar(𝑊) = ⟨𝑉 ⧵ 𝑊, 𝐸mar(𝑊), 𝐵mar(𝑊)⟩ (also known
as the latent projection) where:
(i) 𝐸mar(𝑊) consists of edges (𝑥 → 𝑦) such that 𝑥, 𝑦 ∈ 𝑉 ⧵ 𝑊 and there exist

𝑤1, … , 𝑤𝑘 ∈ 𝑊 such that the directed path 𝑥 → 𝑤1 → … → 𝑤𝑘 → 𝑦 is in
𝒢.

(ii) 𝐵mar(𝑊) consists of edges (𝑥 ↔ 𝑦) such that 𝑥, 𝑦 ∈ 𝑉 ⧵ 𝑊 and there exist
𝑤1, … , 𝑤𝑘 ∈ 𝑊 such that at least one of the following paths is in 𝒢: (i) 𝑥 ↔ 𝑦, or
(ii) 𝑥 ← 𝑤1 ← … ← 𝑤𝑖 → … → 𝑤𝑘 → 𝑦, or (iii) 𝑥 ← 𝑤1 ← … ← 𝑤𝑖 ↔ 𝑤𝑖+1 →
… → 𝑤𝑘 → 𝑦.

The operations of marginalization and intervention commute (Forré et al., 2017).
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4.A.2 Graph separation andMarkov properties

In the literature, several versions of Markov properties for graphical models and
corresponding probability distributions have been put forward, see e.g. Forré et al.
(2017), Lauritzen, Dawid, et al. (1990), Pearl (2009), and Spirtes, Glymour, et al.
(2000). ForDAGs andAcyclicDirectedMixedGraphs (ADMGs), the d-separation cri-
terion is often used to relate conditional independences between variables in amodel
to the underlying (acyclic) graphical structure of the model (Pearl, 2009). For graphs
that contain cycles the ‘collapsed graph’ representation of Spirtes and Richardson
(1995) inspired Forré et al. (2017) to introduce the 𝜎-separation criterion.

Definition 4.14. For a directed mixed graph 𝒢 = ⟨𝑉, 𝐸, 𝐵⟩ we say that a path
(𝑣1, … , 𝑣𝑛) is 𝜎-blocked by 𝑍 ⊆ 𝑉 if
(i) 𝑣1 ∈ 𝑍 and/or 𝑣𝑛 ∈ 𝑍, or
(ii) there is a vertex 𝑣𝑖 ∉ an𝒢(𝑍) on the path such that the adjacent edges both have

an arrowhead at 𝑣𝑖, or
(iii) there is a vertex 𝑣𝑖 ∈ 𝑍 on the path such that: 𝑣𝑖 → 𝑣𝑖+1 with 𝑣𝑖+1 ∉ sc𝒢(𝑣𝑖), or

𝑣𝑖−1 ← 𝑣𝑖 with 𝑣𝑖−1 ∉ sc𝒢(𝑣𝑖), or both.
The path is 𝑑-blocked by 𝑍 if it is 𝜎-blocked or if there is a vertex 𝑣𝑖 ∈ 𝑍 on the path
such that at least one of the adjacent edges does not have an arrowhead at 𝑣𝑖. We say
that𝑋 ⊆ 𝑉 and 𝑌 ⊆ 𝑉 are 𝜎-separated by 𝑍 ⊆ 𝑉 if every path in 𝒢with one end-vertex
in 𝑋 and one end-vertex in 𝑌 is 𝜎-blocked by 𝑍, and write

𝑋
𝜍
⟂
𝒢
𝑌 | 𝑍.

If every such path is 𝑑-blocked by 𝑍 then we say that 𝑋 and 𝑌 are 𝑑-separated by 𝑍,
and write

𝑋
𝑑
⟂
𝒢
𝑌 | 𝑍.

It can be shown that 𝜎-separation implies d-separation and that the two are equi-
valent for acyclic graphs (Forré et al., 2017). In general, d-separation does not imply
𝜎-separation. The d-separations or 𝜎-separations in a probabilistic graphical model
may imply conditional independences via the Markov properties in Definition 4.15
below.

Definition 4.15. For a directedmixed graph 𝒢 = ⟨𝑉, 𝐸, 𝐵⟩ and a probability distribu-
tionℙX on a product𝓧 = ⊗𝑣∈𝑉𝒳𝑣 of standardmeasurable spaces𝒳𝑣, we say that the
pair (𝒢,ℙX) satisfies the directed globalMarkov property if for all subsets𝑊,𝑌, 𝑍 ⊆ 𝑉:

𝑊
𝑑
⟂
𝒢
𝑌 | 𝑍 ⟹ X𝑊 ⟂⟂

ℙX
X𝑌 |X𝑍.

The pair (𝒢,ℙX) satisfies the generalized directed globalMarkov property if for all sub-



118 4. Conditional independences and causal relations implied by sets of equations

sets𝑊,𝑌, 𝑍 ⊆ 𝑉:
𝑊

𝜍
⟂
𝒢
𝑌 | 𝑍 ⟹ X𝑊 ⟂⟂

ℙX
X𝑌 |X𝑍.

Since 𝜎-separations imply d-separations but not the other way around, the gen-
eralized directed global Markov property is strictly weaker than the directed global
Markov property (Bongers, Forré, et al., 2020). For acyclic SCMs the induced prob-
ability distribution on endogenous variables and the corresponding DAG satisfy the
directed global Markov property (Lauritzen, Dawid, et al., 1990). The variables that
solve a simple SCM obey the generalized directed global Markov property relative to
the graph of the SCM (Bongers, Forré, et al., 2020), while d-separation is limited to
more specific settings such as acyclic models, discrete variables, or continuous vari-
ables with linear relations (Forré et al., 2017). A comprehensive account of different
Markov properties for graphical models is provided by Forré et al. (2017).

Constraint-based causal discovery algorithms require some additional faithful-
ness assumption. A probability distribution is d-faithful to a directed mixed graph
when each conditional independence implies a d-separation in that graph. Sim-
ilarly, a probability distribution is 𝜎-faithful to a directed mixed graph when each
conditional independence implies a 𝜎-separation in that graph. In non-linear, non-
discrete, cyclic settings the 𝜎-faithfulness assumption is a natural extension of the
notion of the common 𝑑-faithfulness assumption with 𝜎-separation replacing 𝑑-
separation. Under the additional assumption of causal sufficiency (i.e., no latent
confounding variables), the NL-CCD algorithm was shown to be sound under the
generalized directed Markov property and the weaker d-faithfulness assumption
(Chapter 4 in Richardson (1996)). Recently, Forré et al. (2018), Mooij and Claassen
(2020), and Mooij, Magliacane, et al. (2020) proved soundness for a variety of causal
discovery algorithms under the generalized directed Markov property and the 𝜎-
faithfulness assumption. Strobl (2018) proved soundness of a causal discovery al-
gorithm under the directed Markov property and the d-faithfulness assumption,
allowing for latent confounding and selection bias.

4.B Proofs

In this section of the appendix, all proofs are provided.

4.B.1 Causal ordering via minimal self-contained sets

In this section we prove Theorem 4.1 below.

Theorem 4.1. The output of Algorithm 1 is well-defined and unique.

Lemma 4.4 below shows that the minimal self-contained sets in a self-contained
bipartite graph are disjoint. Lemma 4.5 shows that the induced subgraph after
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one iteration of Algorithm 1, with a self-contained bipartite graph as input, is self-
contained. The minimal self-contained sets in the graph which are not used in the
iteration are minimal self-contained sets of the induced subgraph. This shows that
the output of Algorithm 1 is well-defined. We then use Lemma 4.4 and 4.5 to prove
Lemma 4.6 which states that the output of Algorithm 1, with a self-contained bi-
partite graph as input, is unique. This implies that the output of Algorithm 1, which
has an initialization that is uniquely determined by the specification of exogenous
variables𝑊, must also be unique.

Lemma 4.4. Letℬ = ⟨𝑉, 𝐹, 𝐸⟩ be a self-contained bipartite graph. Let 𝒮𝐹 be the set of
minimal self-contained sets inℬ. The sets in 𝒮𝐹 are pairwise disjoint, and, likewise, the
sets of adjacent nodes

𝒮𝑉 = {adjℬ(𝑆) ∶ 𝑆 ∈ 𝒮𝐹},

of the minimal self-contained sets in 𝒮𝐹 are pairwise disjoint.

Proof. Let 𝑆1 ⊆ 𝐹 and 𝑆2 ⊆ 𝐹 be non-empty distinct minimal self-contained sets in
𝒮𝐹. For the sake of contradiction, assume that 𝑆1 ∩ 𝑆2 ≠ ∅. Since 𝑆1 is minimal self-
contained, we know that 𝑆1 ∩𝑆2 ⊂ 𝑆1 is not self-contained. Hence, by Definition 4.3,
we have that

|𝑆1 ∩ 𝑆2| < |adjℬ(𝑆1 ∩ 𝑆2)|. (4.22)

Consider the following equations:

|adjℬ(𝑆1)| + |adjℬ(𝑆2)| − |𝑆1 ∩ 𝑆2| (4.23)

= |𝑆1| + |𝑆2| − |𝑆1 ∩ 𝑆2| (4.24)
= |𝑆1 ∪ 𝑆2|
≤ |adjℬ(𝑆1 ∪ 𝑆2)| (4.25)

= |adjℬ(𝑆1) ∪ adjℬ(𝑆2)|

= |adjℬ(𝑆1)| + |adjℬ(𝑆2)| − |adjℬ(𝑆1) ∩ adjℬ(𝑆2)|

≤ |adjℬ(𝑆1)| + |adjℬ(𝑆2)| − |adjℬ(𝑆1 ∩ 𝑆2)|, (4.26)

where equality (4.24) holds by condition (i) of Definition 4.3, sinceℬ is self-contained
inequality (4.25) holds by condition (ii) of Definition 4.3, and inequality (4.26) holds
because adjℬ(𝑆1 ∩ 𝑆2) ⊆ adjℬ(𝑆1) ∩ adjℬ(𝑆2). It follows that

|𝑆1 ∩ 𝑆2| ≥ |adjℬ(𝑆1) ∩ adjℬ(𝑆2)| ≥ |adjℬ(𝑆1 ∩ 𝑆2)| ≥ 0.

This is in contradiction with equation (4.22), and hence 𝑆1 ∩ 𝑆2 = ∅. This implies
that |𝑆1 ∩ 𝑆2| = 0 and therefore by the inequalities above we have that |adjℬ(𝑆1) ∩
adjℬ(𝑆2)| = 0. Thus adjℬ(𝑆1) ∩ adjℬ(𝑆2) = ∅.
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Lemma 4.5. Letℬ = ⟨𝑉, 𝐹, 𝐸⟩ be a self-contained bipartite graph. Suppose that 𝐹 has
minimal self-contained sets 𝒮𝐹. Letℬ′ be the subgraph of ℬ induced by

𝑉 ′ ∶= 𝑉\adjℬ(𝑆), and 𝐹′ ∶= 𝐹\𝑆,

with 𝑆 ∈ 𝒮𝐹. Then the following two properties hold:
(i) ℬ′ is self-contained, and
(ii) the sets in 𝒮𝐹\{𝑆} are minimal self-contained inℬ′.

Proof. Let 𝑆 ∈ 𝒮𝐹 be a minimal self-contained subset in ℬ. Since ℬ and 𝑆 are self-
contained we have that |𝑉| = |𝐹| and |𝑆| = |adjℬ(𝑆)| respectively. Therefore

|𝑉 ′| = |𝑉 ⧵ adjℬ(𝑆)| = |𝑉| − |adjℬ(𝑆)| = |𝐹| − |𝑆| = |𝐹 ⧵ 𝑆| = |𝐹′|.

This shows that condition (i) of Definition 4.3 is satisfied forℬ′. Assume, for the
sake of contradiction, that 𝐹′ does not satisfy condition (ii) of Definition 4.3 in the
induced subgraphℬ′. Then there exists 𝑆′ ⊆ 𝐹′ such that |𝑆′| > |adjℬ′(𝑆′)|. Consider
the following equations:

|𝑆 ∪ 𝑆′| = |𝑆| + |𝑆′|
> |adjℬ(𝑆)| + |adjℬ′(𝑆′)|

= |adjℬ(𝑆)| + |adjℬ(𝑆
′)| − |adjℬ(𝑆) ∩ adjℬ(𝑆

′)|

= |adjℬ(𝑆) ∪ adjℬ(𝑆
′)|

= |adjℬ(𝑆 ∪ 𝑆
′)|

≥ |𝑆 ∪ 𝑆′|,

where the last inequality holds because ℬ is self-contained by assumption. This is
a contradiction, and we conclude that both conditions of Definition 4.3 are satisfied
for ℬ′. This shows that ℬ′ is self-contained.

Let 𝑆1 ∈ 𝒮𝐹 and 𝑆2 ∈ 𝑆𝐹 be two distinct minimal self-contained sets in ℬ. Sup-
pose that ℬ1 is a subgraph of ℬ induced by 𝑉 ⧵ adjℬ(𝑆1) and 𝐹 ⧵ 𝑆1. By Lemma 4.4
we know that 𝑆1 ∩ 𝑆2 = ∅ and adjℬ(𝑆1) ∩ adjℬ(𝑆2) = ∅. It follows that for all 𝑆′ ⊆ 𝑆2
we have that adjℬ(𝑆

′) = adjℬ1
(𝑆′). We find that

|𝑆2| = |adjℬ(𝑆2)| = |adjℬ1
(𝑆2)|,

|𝑆′| ≤ |adjℬ(𝑆
′)| = |adjℬ1

(𝑆′)|,

for all 𝑆′ ⊆ 𝑆2. This shows that 𝑆2 satisfies the conditions of Definition 4.3 in the
bipartite graph ℬ1. Since 𝑆2 has no non-empty strict subsets that are self-contained
in ℬ we have that 𝑆2 has no non-empty strict subsets that are self-contained in ℬ1.
We conclude that 𝑆2 is a minimal self-contained subset in ℬ1. This shows that the
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sets 𝒮𝐹 ⧵ {𝑆} are minimal self-contained in ℬ′.

Lemma 4.6. Letℬ = ⟨𝑉, 𝐹, 𝐸⟩ be a self-contained bipartite graph. The output CO(ℬ)
of Algorithm 1 is unique.

Proof. Suppose 𝒢1 = ⟨𝒱1, ℰ2⟩ and 𝒢2 = ⟨𝒱2, ℰ2⟩ are directed cluster graphs that are ob-
tained by running Algorithm 1. Let 𝐴 = (1, 2, … , |𝒱1|) be an ordered set that indicates
the order in which clusters 𝑆(𝑎) (with 𝑎 ∈ 𝐴) are added to 𝒱1 in the first run of the
algorithm. Similarly, 𝐵 = (1, 2, … , |𝒱2|) is an ordered set that indicates the order in
which clusters 𝑇 (𝑏) (with 𝑏 ∈ 𝐵) are added to 𝒱2 in the second run of the algorithm.
With a slight abuse of notation we defineℬ ⧵ (𝑆(𝑘))𝑘<𝑖 as the subgraph of ℬ induced
by the nodes (𝑆(𝑘))𝑘≥𝑖. Similarly,ℬ ⧵ (𝑇 (𝑘))𝑘<𝑖 denotes the subgraph of ℬ induced by
the nodes (𝑇 (𝑘))𝑘≥𝑖.

Intermediate result: We will prove that for 𝑖 ∈ (1, 2, … , |𝒱1|) there exists 𝑏𝑖 ∈ 𝐵 such
that 𝑆(𝑖) = 𝑇 (𝑏𝑖) by induction.

Base case: The algorithm adds the cluster 𝑆(1) to 𝒱1 in the first step of the first run.
Therefore, we know that the set of nodes 𝐹 ∩ 𝑆(1) must be minimal self-contained in
ℬ. Let 1 ≤ 𝑘 ≤ |𝒱2| be arbitrary. By Lemma 4.5 it follows that 𝐹 ∩ 𝑆(1) is minimal
self-contained in ℬ ⧵ (𝑇 (𝑗))𝑗<𝑘 provided 𝑆(1) ≠ 𝑇 (𝑗) for all 𝑗 < 𝑘. Since ℬ is finite,
theminimal self-contained set 𝑆(1)must be chosen eventually, and hence there exists
𝑏1 ∈ 𝐵 such that 𝑆(1) = 𝑇 (𝑏1).

Induction hypothesis: Let 1 ≤ 𝑖 < |𝒱1| be arbitrary and assume that for all 𝑗 ≤ 𝑖 there
exists 𝑏𝑗 ∈ 𝐵 such that 𝑆(𝑗) = 𝑇 (𝑏𝑗). We want to show that there exists 𝑏𝑖+1 ∈ 𝐵 such
that 𝑆(𝑖+1) = 𝑇 (𝑏𝑖+1).

Induction step: Let 𝐵′ = 𝐵 ⧵ (𝑏1, … , 𝑏𝑖) = (𝑏′1, … , 𝑏′|𝒱2|−𝑖) be an ordered set such that
𝑏′𝑗 ≺ 𝑏′𝑗+1 for all 𝑗 = 1, … , |𝒱2| − (𝑖 + 1).

(i) In the second run of the algorithm, the cluster𝑇 (𝑏′1) is added to𝒱2 right after the
clusters𝑇 (𝑏𝑗)with 𝑏𝑗 ≺ 𝑏′1 are added to𝒱2 and removed from the bipartite graph.
Therefore, the set 𝐹 ∩ 𝑇 (𝑏′1) is minimal self-contained in ℬ ⧵ (𝑇 (𝑏𝑗))𝑗≤𝑖,𝑏𝑗≺𝑏′1.
In the first run of the algorithm, the clusters 𝑆(1) = 𝑇 (𝑏1), … , 𝑆(𝑖) = 𝑇 (𝑏𝑖) are
subsequently added to 𝒱1 and removed from the bipartite graph. Therefore, by
Lemma 4.4 and Lemma 4.5, we have that 𝐹 ∩ 𝑇 (𝑏′1) is minimal self-contained
in ℬ′ = ℬ ⧵ (𝑇 (𝑏𝑗))𝑗≤𝑖 = ℬ ⧵ (𝑆(𝑘))𝑘≤𝑖. Hence, both 𝐹 ∩ 𝑇 (𝑏′1) and 𝐹 ∩ 𝑆(𝑖+1) are
minimal self-contained inℬ′. Therefore, by Lemma 4.4 and Lemma 4.5, either
𝑇 (𝑏′1) = 𝑆(𝑖+1) (inwhich casewe are done) or𝐹∩𝑆(𝑖+1) isminimal self-contained
in ℬ′ ⧵ 𝑇 (𝑏′1).

(ii) Let 𝑘 ≤ |𝒱2|−𝑖 be arbitrary. By iteration of the argument in the previous stepwe
find that 𝐹 ∩𝑇 (𝑏′𝑘) is minimal self-contained in (ℬ ⧵ (𝑇 (𝑏𝑗))𝑗≤𝑖,𝑏𝑗≺𝑏′𝑘) ⧵ (𝑇

(𝑏′𝑗))𝑗<𝑘
and hence inℬ′⧵(𝑇 (𝑏′𝑗))𝑗<𝑘, so that either 𝑇 (𝑏′𝑘) = 𝑆(𝑖+1) or 𝐹∩𝑆(𝑖+1) is minimal
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self-contained in ℬ′ ⧵ (𝑇 (𝑏′𝑗))𝑗≤𝑘. Since the bipartite graph is finite, there exists
𝑚 ∈ 1, … , |𝒱2| − 𝑖 such that 𝑇 (𝑏′𝑚) = 𝑆(𝑖+1). By definition of 𝐵′ there exists
𝑏𝑖+1 ∈ 𝐵 such that 𝑆(𝑖+1) = 𝑇 (𝑏𝑖+1).

This proves that the clusters in 𝒱1 are also clusters in 𝒱2. By symmetry we find
that the clusters 𝑆(𝑎) in𝒱1 and the clusters𝑇 (𝑏) in𝒱2 coincide. Since𝒱1 = 𝒱2 it follows
immediately from the construction of edges in the algorithm that ℰ1 = ℰ2 and hence
𝒢1 = 𝒢2.

4.B.2 Coarse decomposition

For completeness, we include the proofs of the results in Pothen and Fan (1990) that
are necessary to show that the output of the extended causal ordering algorithm (Al-
gorithm 3) is unique. The presentation in this section is based on the exposition
of Van Diepen (2019). In order to prove the statements in Lemma 4.2 and Propos-
ition 4.1, we require additional results. Lemma 4.7 and 4.8 show that the incomplete,
complete, and over-complete set are disjoint. The former uses the notion of an aug-
mented path for a bipartite graph ℬ and a matching𝑀, which is an alternating path
for𝑀 that starts and ends with an unmatched vertex.

Lemma 4.7. [Berge (1957)]𝑀 is a maximummatching for a bipartite graphℬ if and
only if ℬ does not contain any augmenting paths for𝑀.

Proof. The proof can be found in Berge (1957).

Lemma 4.8. [Pothen (1985)] Let ℬ = ⟨𝑉, 𝐹, 𝐸⟩ be a bipartite graph with a maximum
matching 𝑀. The incomplete set 𝑇𝐼 and the overcomplete set 𝑇𝑂 in Definition 4.5 are
disjoint.

Proof. For the sake of contradiction, assume that there is a vertex 𝑣 ∈ 𝑇𝐼 ∩ 𝑇𝑂. Then
there is an alternating path from an unmatched vertex in 𝑉 to 𝑣 and there is also an
alternating path from an unmatched vertex in 𝐹 to 𝑣. By sticking these two paths
together we obtain an augmented path. It follows from Lemma 4.7 that 𝑀 is not
maximum. This is a contradiction and therefore 𝑇𝐼 and 𝑇𝑂 must be disjoint.

Lemma 4.9 and Lemma 4.1 show that for a bipartite graph and a maximum
matchingwith coarse decompositionCD(ℬ,𝑀), the vertices in𝑇𝐼, 𝑇𝐶, 𝑇𝑂 arematched
to vertices in 𝑇𝐼, 𝑇𝐶, 𝑇𝑂 respectively. Furthermore the subgraph of ℬ induced by 𝑇𝐶
is self-contained, so that Algorithm 1 can be applied.

Lemma 4.9. [Pothen (1985)] Let ℬ = ⟨𝑉, 𝐹, 𝐸⟩ be a bipartite graph with a maximum
matching 𝑀. Let CD(ℬ,𝑀) = ⟨𝑇𝐼, 𝑇𝐶, 𝑇𝑂⟩ be the associated coarse decomposition. A
matched vertex in 𝑇𝐼 is matched to a vertex in 𝑇𝐼 and a matched vertex in 𝑇𝑂 is matched
to a vertex in 𝑇𝑂.
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Proof. For a matched vertex 𝑥 ∈ 𝑇𝐼 there is an alternating path starting from an un-
matched vertex 𝑢𝑣 ∈ 𝑉 to 𝑥. When 𝑥 ∈ 𝑉, this alternating path ends with a matched
edge and hence 𝑥 is matched to a vertex in 𝑇𝐼. When 𝑥 ∈ 𝐹 the alternating path ends
with an unmatched edge. Wemay extend the alternating path with the edge adjacent
to 𝑥 that is in𝑀, and hence is matched to a vertex in 𝑇𝐼. For a matched vertex 𝑥 ∈ 𝑇𝑂
there is an alternating path starting from an unmatched vertex 𝑢𝑓 ∈ 𝐹 to 𝑥. When
𝑥 ∈ 𝐹, this alternating path ends with a matched edge and hence 𝑥 is matched to a
vertex in 𝑇𝑂. When 𝑥 ∈ 𝑉, the alternating path ends with an unmatched edge. The
alternating path may be extended with the edge adjacent to 𝑥 that is in𝑀, and hence
𝑥 is matched to a vertex in 𝑇𝑂.

Lemma 4.1. [Pothen (1985)] Let ℬ be a bipartite graph with coarse decomposition
⟨𝑇𝐼, 𝑇𝐶, 𝑇𝑂⟩. The subgraph ℬ𝐶 of ℬ induced by vertices in 𝑇𝐶 has a perfect matching
and is self-contained.

Proof. By Lemma 4.9 we know that vertices in 𝑇𝐼 and 𝑇𝑂 can only be matched to a
vertex in 𝑇𝐼 and 𝑇𝑂, respectively. There are no unmatched vertices in 𝑇𝐶, so vertices
in 𝑇𝐶 ∩ 𝑉 are perfectly matched to vertices in 𝑇𝐶 ∩ 𝐹. It follows from Hall’s marriage
theorem that ℬ𝐶 is self-contained (M. Hall, 1986).

The following lemma restricts edges that can be present between the incomplete,
complete and overcomplete sets. This shows that clusters of the causal ordering
graph that are in the overcomplete set are never descendants of clusters in the in-
complete or complete set. Similarly, it also shows that clusters in the incomplete set
are never ancestors of the complete or overcomplete sets. Lemma 4.2 is then used to
prove Proposition 4.1.

Lemma 4.2. [Pothen (1985)] Letℬ = ⟨𝑉, 𝐹, 𝐸⟩ be a bipartite graph with a maximum
matching𝑀. Let CD(ℬ,𝑀) = ⟨𝑇𝐼, 𝑇𝐶, 𝑇𝑂⟩ be the associated coarse decomposition. No
edge joins a vertex in 𝑇𝐼 ∩ 𝑉 with a vertex in (𝑇𝐶 ∪ 𝑇𝑂) ∩ 𝐹 and no edge joins a vertex in
𝑇𝐶 ∩ 𝑉 with a vertex in 𝑇𝑂 ∩ 𝐹.

Proof. Suppose that there is an edge 𝑒 = (𝑣 − 𝑓) between a vertex 𝑣 ∈ 𝑇𝐼 ∩ 𝑉 to a
vertex 𝑓 ∈ (𝑇𝐶 ∪ 𝑇𝑂) ∩ 𝐹. By Lemma 4.9 the edge is not in the maximum matching.
Note that there is an alternating path from an unmatched vertex in 𝑇𝐼 ∩ 𝑉 to 𝑣 that
starts with an unmatched edge and ends with a matched edge. By adding the edge
(𝑣 − 𝑓), we obtain again an alternating path so that 𝑓 ∈ 𝑇𝐼. This is a contradiction,
and hence there is no edge between (𝑣 − 𝑓). The second part of the lemma follows
by symmetry.

Proposition 4.1. [Pothen (1985)] The coarse decomposition of a bipartite graph ℬ is
independent of the choice of the maximummatching.

Proof. Let𝑀 be an arbitrary matching and let CD(ℬ,𝑀) = ⟨𝑇𝐼, 𝑇𝐶, 𝑇𝑂⟩. Note that all
vertices in (𝑇𝐼 ∩ 𝑉) ⧵ 𝑈𝑉 are 𝑀-matched to vertices in 𝑇𝐼 ∩ 𝐹 (by construction and
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Lemma 4.9). Also, all vertices in (𝑇𝑂∩𝐹)⧵𝑈𝐹 are𝑀-matched with vertices in 𝑇𝑂∩𝑉.
Finally, all vertices in 𝑇𝐶 ∩𝑉 are𝑀-matched with vertices in 𝑇𝐶 ∩𝐹 and vice versa by
Lemma 4.1. By Lemma 4.2 we have adjℬ(𝑇𝐼 ∩𝑉) = 𝑇𝐼 ∩𝐹 and adjℬ(𝑇𝑂 ∩𝐹) = 𝑇𝑂 ∩𝑉,
so any matching for ℬ can only match vertices in 𝑇𝐼 ∩ 𝑉 with vertices in 𝑇𝐼 ∩ 𝐹 and
vertices in 𝑇𝑂 ∩ 𝐹 with vertices in 𝑇𝑂 ∩ 𝑉.

For the sake of contradiction, assume that there exists a maximummatching𝑀′

that matches a vertex in 𝑇𝐼 ∩ 𝐹 with a vertex in (𝑇𝐶 ∪ 𝑇𝑂) ∩ 𝑉. Write:

𝑀𝑉 = {𝑣 ∈ 𝑉 ∶ ∃𝑓 ∈ 𝐹 ∶ 𝑣 − 𝑓 ∈ 𝑀}, 𝑀′
𝑉 = {𝑣 ∈ 𝑉 ∶ ∃𝑓 ∈ 𝐹 ∶ 𝑣 − 𝑓 ∈ 𝑀′},

𝑀𝐹 = {𝑓 ∈ 𝐹 ∶ ∃𝑣 ∈ 𝑉 ∶ 𝑣 − 𝑓 ∈ 𝑀}, 𝑀′
𝐹 = {𝑓 ∈ 𝐹 ∶ ∃𝑣 ∈ 𝑉 ∶ 𝑣 − 𝑓 ∈ 𝑀′}.

Note that the number of edges in matching𝑀′ is bounded by

|𝑀′| = |𝑀′
𝑉|

= |𝑀′
𝑉 ∩ 𝑇𝐼| + |𝑀′

𝑉 ∩ 𝑇𝐶| + |𝑀′
𝑉 ∩ 𝑇𝑂|

≤ (|𝐹 ∩ 𝑇𝐼| − 1) + |𝑉 ∩ 𝑇𝐶| + |𝑉 ∩ 𝑇𝑂|
= (|𝑀𝑉 ∩ 𝑇𝐼| − 1) + |𝑀𝑉 ∩ 𝑇𝐶| + |𝑀𝑉 ∩ 𝑇𝑂|
= |𝑀𝑉| − 1 = |𝑀| − 1,

where we used that (i) vertices in 𝑇𝐼 ∩ 𝑉 can only be matched with vertices in 𝑇𝐼 ∩ 𝐹,
(ii) all nodes in 𝑇𝐼∩𝐹 are𝑀-matched with vertices in𝑀𝑉∩𝑇𝐼, (iii) all variable vertices
in 𝑇𝐶 are𝑀-matched, and (iv) all vertices in 𝑇𝑂 ∩ 𝑉 are𝑀-matched. This contradicts
the assumption that𝑀′ is a maximummatching.

In a similar way, one obtains a contradiction when assuming the existence of a
maximummatching𝑀″ that matches a vertex in 𝑇𝑂∩𝑉with a vertex in (𝑇𝐼∪𝑇𝐶)∩𝐹.
Hence any maximum matching of ℬ must match all vertices in 𝑇𝐼 ∩ 𝐹 with vertices
in 𝑇𝐼 ∩ 𝑉, and all vertices in 𝑇𝑂 ∩ 𝑉 with vertices in 𝑇𝑂 ∩ 𝐹. We conclude that 𝑇𝑂 and
𝑇𝐼 do not depend on the choice of maximum matching. By definition 𝑇𝐶 is uniquely
determined by 𝑇𝑂 and 𝑇𝐼. Therefore the coarse decomposition is independent of the
choice of maximummatching.

4.B.3 Markov property via d-separation

In this section we prove Theorem 4.3 below.

Theorem 4.3. Let X∗ = h(X𝑊) with h ∶ 𝓧𝑊 → 𝓧𝑉⧵𝑊 be a solution of a system of
constraintsℳ = ⟨𝓧,X𝑊, 𝜱,ℬ⟩ with coarse decomposition CD(ℬ) = ⟨𝑇𝐼, 𝑇𝐶, 𝑇𝑂⟩. Let
MOCO(ℬ) denote the subgraph of the Markov ordering graph induced by 𝑇𝐶 ∪ 𝑇𝑂 and
let X∗

CO denote the corresponding solution components. If ℳ is maximally uniquely
solvable then the pair (MOCO(ℬ),ℙX∗CO) satisfies the directed global Markov property
(see Definition 4.15).

Proof. Let 𝑣 ∈ (𝑇𝐶 ∪ 𝑇𝑂) ∩ (𝑉 ⧵ 𝑊) be arbitrary and define 𝑆𝑉 = cl(𝑣) ∩ 𝑉 and



4.B. Proofs 125

𝑆𝐹 = cl(𝑣) ∩ 𝐹. First, we will show that 𝑉(𝑆𝐹) ⧵ 𝑆𝑉 = paMO(ℬ)(𝑣). The following
equivalences hold for 𝑥 ∈ 𝑉:

𝑥 ∈ 𝑉(𝑆𝐹) ⧵ 𝑆𝑉 ⟺ 𝑥 ∈ adjℬ(𝑆𝐹) ⧵ 𝑆𝑉 (by Definition 4.1)

⟺ (𝑥 → cl(𝑣)) in CO(ℬ) (by definition of Algorithm 3)

⟺ (𝑥 → 𝑣) in 𝐷(CO(ℬ)) (by Definition 4.10)

⟺ (𝑥 → 𝑣) in 𝐷(CO(ℬ))mar(𝐹)
⟺ (𝑥 → 𝑣) inMO(ℬ) (by Definition 4.10)

⟺ 𝑥 ∈ paMO(ℬ)(𝑣).

By assumption, the system of constraints is maximally uniquely solvable w.r.t.
CO(ℬ). Note that 𝑆𝑉 ⊆ 𝑉(𝑆𝐹). Hence, there exist measurable functions 𝑔𝑖 ∶
𝓧paMO(ℬ)(𝑣)

→ 𝒳𝑖 for all 𝑖 ∈ 𝑆𝑉 such that ℙX𝑊-a.s., for all x𝑉(𝑆𝐹)⧵𝑊 ∈ 𝓧𝑉(𝑆𝐹)⧵𝑊:

∀𝑓 ∈ 𝑆𝐹 ∶ 𝜙𝑓(x𝑉(𝑓)⧵𝑊,X𝑉(𝑓)∩𝑊) = 𝑐𝑓 ⟺

∀𝑖 ∈ 𝑆𝑉 ∶ 𝑥𝑖 = 𝑔𝑖 (xpaMO(ℬ)(𝑣)⧵𝑊,XpaMO(ℬ)(𝑣)∩𝑊
) .

Since 𝑣 ∈ (𝑇𝐶 ∪ 𝑇𝑂) ∩ (𝑉 ⧵ 𝑊) was chosen arbitrarily and X∗ = h(X𝑊) with h a
solution ofℳ, it follows that

𝑋∗
𝑣 = 𝑔𝑣 (X∗

paMO(ℬ)(𝑣)
) ℙX𝑊-a.s.,

for all 𝑣 ∈ (𝑇𝐶∪𝑇𝑂)∩(𝑉⧵𝑊). The directed globalMarkov propertywas already shown
to hold for pairs (𝒢,ℙX) where 𝒢 is a DAG and X is a solution to a set of structural
equations with functional dependences corresponding to the DAG (Lauritzen, 1996;
Pearl, 2009). Because the Markov ordering graphsMO(ℬ) andMOCO(ℬ) are acyclic
by construction, and MOCO(ℬ) is the graph corresponding to this set of structural
equations, this completes the proof.

4.B.4 Causal ordering via perfect matchings

In this section we prove Theorem 4.2 below.

Theorem 4.2. The output of Algorithm 2 coincides with the output of Algorithm 1.

The following result gives a necessary and sufficient condition for the existence
of a perfect matching for a bipartite graph and can be found in M. Hall (1986).

Theorem 4.7 (Hall’s Marriage Theorem). Letℬ = ⟨𝑉, 𝐹, 𝐸⟩ be a bipartite graph with
|𝑉| = |𝐹|. Thenℬ has a perfect matching if and only if |𝐹′| ≤ |adjℬ(𝐹)| for all 𝐹

′ ⊆ 𝐹.

From Hall’s Marriage Theorem it trivially follows that a bipartite graph has a
perfect matching if and only if it is self-contained.
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Corollary 4.2. Let ℬ = ⟨𝑉, 𝐹, 𝐸⟩ be a bipartite graph. Then ℬ has a perfect matching
if and only if ℬ is self-contained.

Proof. If ℬ has a perfect matching then |𝑉| = |𝐹|. By Definition 4.3 we know that if
ℬ is self-contained then |𝑉| = |𝐹|. Hence, the statement follows from Definition 4.3
and Theorem 4.7.

The following technical lemma is used to prove Lemma 4.11, which shows that
the output of Algorithm 1 coincides with that of Algorithm 2 in the case that the
input of the algorithm is a self-contained bipartite graph and𝑊 = ∅.

Lemma 4.10. Letℳ be a perfect matching for a self-contained bipartite graph ℬ =
⟨𝑉, 𝐹, 𝐸⟩. Let 𝑆(1)𝑉 , … , 𝑆(𝑛)𝑉 be a topological ordering of the strongly connected compon-
ents in the graph 𝒢(ℬ,ℳ)mar(𝐹). Letℬ(𝑖) be the subgraph of ℬ induced by⋃𝑛

𝑗=𝑖(𝑆
(𝑗)
𝑉 ∪

ℳ(𝑆(𝑗)𝑉 )). Then ℬ(𝑖) is self-contained and ℳ(𝑆(𝑖)𝑉 ) is a minimal self-contained set in
ℬ(𝑖).

Proof. We use the notation 𝒢(𝑘) ∶= 𝒢(ℬ(𝑘),ℳ(𝑘)) and 𝑆(𝑘)𝐹 ∶= ℳ(𝑘)(𝑆(𝑘)𝑉 ), where
ℳ(1) = ℳ (we will define ℳ(𝑖) with 𝑖 > 1 later). First we show that 𝑆(1)𝐹 is self-
contained in ℬ(1). We proceed by proving that 𝑆(1)𝐹 is minimal self-contained in ℬ(1)

and that ℬ(2) is a self-contained bipartite graph. Finally, we consider how these ar-
guments can be iterated to prove the lemma.

By definition of a perfect matching and the fact that ℬ(1) = ℬ is self-contained,
we know that:

|𝑆(1)𝑉 | = |𝑆(1)𝐹 | ≤ |adjℬ(1)(𝑆
(1)
𝐹 )|. (4.27)

By definition of topological ordering and the orientation step in Definition 4.4 we
know that:

adjℬ(1)(𝑆
(1)
𝐹 ) ⊆ 𝑆(1)𝑉 .

Together, these two inequalities show that |𝑆(1)𝐹 | = |adjℬ(1)(𝑆
(1)
𝐹 )|. Becauseℬ(1) is self-

contained, the set 𝑆(1)𝐹 satisfies both conditions of Definition 4.3. We conclude that
𝑆(1)𝐹 is self-contained in ℬ(1).

Assume, for the sake of contradiction, that 𝑆(1)𝐹 is not minimal self-contained.
Then there exists a non-empty strict subset 𝐹′ ⊂ 𝑆(1)𝐹 that is self-contained in ℬ(1).
First note that, by Definition 4.3, we have that |𝐹′| = |adjℬ(1)(𝐹′)| and |𝑆

(1)
𝑉 | = |𝑆(1)𝐹 |

so that 𝑆(1)𝑉 ⧵ adjℬ(1)(𝐹′) ≠ ∅ and adjℬ(1)(𝐹′) ≠ ∅. Furthermore, by Definition 4.4
(orientation step), we must have that:

pa𝒢(1)(adjℬ(1)(𝐹′)) = ℳ(1)(adjℬ(1)(𝐹′)) = 𝐹′. (4.28)
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Therefore there is no directed edge from any vertex in 𝐹 ⧵ 𝐹′ to any vertex in
adjℬ(1)(𝐹′). Clearly, there can be no edge in 𝒢(1) between any vertex 𝑣 ∈ 𝑆(1)𝑉 ⧵
adjℬ(1)(𝐹′) and any vertex 𝑓′ ∈ 𝐹′ and hence

pa𝒢(1)(𝑆
(1)
𝑉 ⧵ adjℬ(1)(𝐹′)) = ℳ(1)(𝑆(1)𝑉 ⧵ adjℬ(1)(𝐹′)) = 𝐹 ⧵ 𝐹′. (4.29)

Therefore, there can be no directed path from any 𝑣 ∈ 𝑆(1)𝑉 ⧵ adjℬ(1)(𝐹′) to any 𝑓 ∈ 𝐹′

in 𝒢(1). This contradicts the assumption that 𝑆(1)𝑉 is a strongly connected component
in 𝒢(1)mar(𝐹). We conclude that 𝑆

(1)
𝐹 is minimal self-contained in ℬ(1).

Clearly, the set ℳ(2) ∶= {(𝑖 − 𝑗) ∈ ℳ(1) ∶ 𝑖, 𝑗 ∉ 𝑆(1)𝑉 ∪ 𝑆(1)𝐹 } is a perfect
matching for ℬ(2). By Corollary 4.2 we therefore know that ℬ(2) is self-contained.
Since 𝑆(2)𝑉 , … , 𝑆(𝑛)𝑉 is a topological ordering for the strongly connected components
in 𝒢(2)mar(𝐹) the above argument can be repeated to show that 𝑆(2)𝐹 is minimal self-
contained in ℬ(2). For arbitrary 𝑖 ∈ {1, … , 𝑛} this entire argument can be iterated to
show that 𝑆(𝑖)𝐹 isminimal self-contained in the self-contained bipartite graphℬ(𝑖).

Lemma 4.11. Let ℳ be an arbitrary perfect matching for a self-contained bipartite
graph ℬ = ⟨𝑉, 𝐹, 𝐸⟩. The directed cluster graph 𝒢1 = ⟨𝒱1, ℰ1⟩ that is obtained by ap-
plication of Definition 4.4 coincides with the output 𝒢2 = ⟨𝒱2, ℰ2⟩ of Algorithm 1.

Proof. Let 𝑆(1), … , 𝑆(𝑛) be a topological ordering of the strongly connected compon-
ents in 𝒢(ℳ,ℬ)mar(𝐹). By Definition 4.4 the cluster set 𝒱1 consists of clusters 𝑆(𝑖) ∪
ℳ(𝑆(𝑖))with 𝑖 ∈ {1, … , 𝑛}. By Lemma 4.10, Algorithm 1 can be run in such a way that
the clusters 𝑆(𝑖) ∪ ℳ(𝑆(𝑖)) are added to 𝒱2 in the order specified by the topological
ordering. By Theorem 4.1 the output of Algorithm 1 is unique and therefore𝒱1 = 𝒱2.
By Definition 4.4 the following equivalences hold for 𝐶 ∈ 𝒱1 = 𝒱2 and 𝑣 ∈ 𝑉 ⧵ 𝐶:

(𝑣 → 𝐶) ∈ ℰ1 ⟺ ∃𝑤 ∈ 𝐶 s.t. (𝑣 → 𝑤) in 𝒢(ℳ,ℬ)
⟺ ∃𝑤 ∈ 𝐶 s.t. (𝑣 − 𝑤) ∈ 𝐸 and (𝑣 − 𝑤) ∉ ℳ
⟺ 𝑣 ∈ adjℬ(𝐶 ∩ 𝐹) ⧵ℳ(𝐶 ∩ 𝐹)

⟺ 𝑣 ∈ adjℬ(𝐶 ∩ 𝐹) ⧵ (𝐶 ∩ 𝑉)

⟺ (𝑣 → 𝐶) ∈ ℰ2.

Let 𝐶 ∈ 𝒱1 = 𝒱2 and 𝑓 ∈ 𝐹 ∩ (adjℬ(𝐶) ⧵ 𝐶). By definition of Algorithm 1 we
know that (𝑓 → 𝐶) ∉ ℰ2. Note thatℳ(𝐶 ∩ 𝐹) = 𝐶 ∩ 𝑉. By Definition 4.4 there is
no edge (𝑓 → 𝑣) with 𝑣 ∈ 𝐶 ∩ 𝑉 in 𝒢(ℬ,ℳ) and hence by Definition we know that
(𝑓 → 𝐶) ∉ ℰ2. By construction, edges (𝑥 → 𝐶) with 𝑥 ∈ 𝐶 are neither in ℰ1 nor in
ℰ2. We conclude that ℰ1 = ℰ2 and consequently 𝒢1 coincides with 𝒢2.

Lemma 4.11 shows that the output of Algorithm 1 coincides with the output
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of Algorithm 2 if the input is a self-contained bipartite graph. Otherwise, both Al-
gorithm 1 and 2 have an initialization that is determined by the specification of exo-
genous variables. The exogenous variables are placed into separate clusters and there
are directed edges from each exogenous variable to the clusters of its adjacencies for
both algorithms. The output of the two algorithms coincides for any valid input.

4.B.5 Markov property via 𝜎-separation

Here, we prove the following theorem.

Theorem 4.4. Let X∗ = g(X𝑊) be a solution of a system of constraints ⟨𝒳,X𝑊, 𝜱,ℬ⟩,
where the subgraph of ℬ = ⟨𝑉, 𝐹, 𝐸⟩ induced by (𝑉 ∪ 𝐹) ⧵ 𝑊 has a perfect matching
ℳ. If for each strongly connected component 𝑆 in 𝒢(ℬ,ℳ) with 𝑆 ∩𝑊 = ∅, the system
ℳ is uniquely solvable w.r.t. 𝑆𝑉 = (𝑆 ∪ ℳ(𝑆)) ∩ 𝑉 and 𝑆𝐹 = (𝑆 ∪ ℳ(𝑆)) ∩ 𝐹 then
the pair (𝒢(ℬ,ℳ)mar(𝐹),ℙX∗) satisfies the generalized directed global Markov property
(Definition 4.15).

The proof of this theorem relies on results by Forré et al. (2017), who define
the notion of an acyclic augmentation for a class of graphical models that they call
HEDGes. They define the augmentation of a HEDG as a directed graph where hyper-
edges are represented by vertices with additional edges. The acyclic augmentation of
a HEDG is obtained by acyclification of the edge set of it augmentation (Forré et al.,
2017). The acyclification of a directed graph is given in Definition 4.16.

Definition 4.16. Let 𝒢 = ⟨𝑉, 𝐸⟩ be a directed graph. The acyclification of 𝐸, denoted
by 𝐸acy, has edges (𝑖 → 𝑗) ∈ 𝐸acy if and only if 𝑖 ∉ sc𝒢(𝑗) and there exists 𝑘 ∈ sc𝒢(𝑗)
such that (𝑖 → 𝑘) ∈ 𝐸.

Lemma 4.12 shows that the clustering operation in Definition 4.4 on directed
graphs, followed by the declustering operation in Definition 4.10, results in the same
directed graph as the one that is obtained by applying the acyclification operation to
its edge set.

Lemma 4.12. Let 𝒢 = ⟨𝑉, 𝐸⟩ be a directed graph. It holds that 𝒢acy = ⟨𝑉, 𝐸acy⟩ =
𝐷(clust(𝒢))).

Proof. This follows from Definitions 4.10, 4.4, and 4.16.

The following proposition shows that 𝜎-separations in a directed graph coincide
with 𝑑-separations in the graph that is obtained by clustering and subsequently de-
clustering that directed graph.

Proposition 4.3. Let𝒢 = ⟨𝑉, 𝐸⟩ be a directed graphwith nodes𝑉 and𝒢acy = ⟨𝑉, 𝐸acy⟩.
Then for all subsets 𝐴, 𝐵, 𝐶 ⊆ 𝑉:

𝐴
𝜍
⟂
𝒢
𝐵 | 𝐶 ⟺ 𝐴

𝑑
⟂
𝒢acy

𝐵 | 𝐶 ⟺ 𝐴
𝑑
⟂

𝐷(clust(𝒢))
𝐵 | 𝐶.
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Proof. The first equivalence is Proposition A.19 in Bongers, Forré, et al. (2020). The
second equivalence follows directly from Lemma 4.12.

We now have all ingredients to finish the proof of Theorem 4.4. First note that,
since the subgraph of ℬ = ⟨𝑉, 𝐹, 𝐸⟩ induced by (𝑉 ∪ 𝐹) ⧵ 𝑊 has a perfect matching,
CO(ℬ) = ⟨𝒱, ℰ⟩ is well-defined by Corollary 4.2. Let 𝑆(1)𝑉 , … , 𝑆(𝑛)𝑉 be the strongly
connected components in 𝒢dir, where 𝒢dir ∶= 𝒢(ℬ,ℳ)mar(𝐹). By Lemma 4.10 and the
definition of Algorithm 1 we know that 𝒱 consists of the clusters 𝑆(𝑖)𝑉 ∪ℳ(𝑆(𝑖)𝑉 ) with
𝑖 = 1, … , 𝑛. Therefore,ℳ is uniquely solvable with respect toCO(ℬ). By Theorem 4.3
we have that for subsets 𝐴, 𝐵, 𝐶 ⊆ 𝑉 ⧵𝑊:

𝐴
𝑑
⟂

MO(ℬ)
𝐵 | 𝐶 ⟹ X𝐴 ⟂⟂

ℙX
X𝐵 |X𝐶. (4.30)

By Proposition 4.3 we have that:

𝐴
𝜍
⟂
𝒢dir

𝐵 | 𝐶 ⟺ 𝐴
𝑑
⟂
𝒢acydir

𝐵 | 𝐶 ⟺ 𝐴
𝑑
⟂

𝐷(clust(𝒢dir))
𝐵 | 𝐶. (4.31)

The desired result follows from implications (4.30) and (4.31) when 𝐷(clust(𝒢dir)) =
MO(ℬ). Consider the cluster set 𝒱mar(𝐹) = {𝑆 ∩ 𝑉 ∶ 𝑆 ∈ 𝒱} and note that edges in
CO(ℬ) go from vertices in 𝑉 to clusters in𝒱. By Definition 4.10 and 4.4 we have that:

𝐷(⟨𝒱mar(𝐹), ℰ⟩) = 𝐷(⟨𝒱, ℰ⟩)mar(𝐹) and clust(𝒢dir) = ⟨𝒱mar(𝐹), ℰ⟩, (4.32)

respectively. It follows that

𝐷(clust(𝒢dir)) = 𝐷(CO(ℬ))mar(𝐹) = MO(ℬ). (4.33)

Note that both d-separations and 𝜎-separations are preserved under marginalization
of exogenous vertices𝑊 (Bongers, Forré, et al., 2020; Forré et al., 2017). This finishes
the proof.

4.B.6 Effects of interventions

This section is devoted to the proofs of the results that were presented in Section 4.5.

Theorem 4.5. Let ℳ = ⟨𝓧,X𝑊, 𝜱,ℬ⟩ be a system of constraints with coarse de-
composition CD(ℬ) = ⟨𝑇𝐼, 𝑇𝐶, 𝑇𝑂⟩. Suppose that ℳ is maximally uniquely solvable
w.r.t. the causal ordering graph CO(ℬ) and let X∗ = g(X𝑊) be a solution of ℳ. Let
𝑓 ∈ (𝑇𝐶 ∪𝑇𝑂) ∩ 𝐹 and assume that the intervened systemℳsi(𝑓,𝜙′𝑓,𝑐

′
𝑓)
is also maximally

uniquely solvable w.r.t. CO(ℬ). Let X′ = h(X𝑊) be a solution ofℳsi(𝑓,𝜙′𝑓,𝑐
′
𝑓)
. If there is

no directed path from 𝑓 to 𝑣 ∈ (𝑇𝐶 ∪ 𝑇𝑂) ∩ 𝑉 in CO(ℬ) then 𝑋∗
𝑣 = 𝑋 ′

𝑣 almost surely.
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On the other hand, if there is a directed path from 𝑓 to 𝑣 in CO(ℬ) then 𝑋∗
𝑣 may have a

different distribution than 𝑋 ′
𝑣, depending on the details of the modelℳ.

Proof. The directed cluster graph CO(ℬ) is acyclic by construction and therefore
there exists a topological ordering of its clusters. When there is no directed path from
𝑓 to 𝑣 in CO(ℬ) then there exists a topological ordering 𝑉 (1), … , 𝑉 (𝑛) of the clusters
such that cl(𝑣) comes before cl(𝑓). Note that clusters of vertices in the incomplete set
𝑇𝐼 are never ancestors of clusters in 𝑇𝐶 ∪ 𝑇𝑂 by Lemma 4.2 (the proof of this lemma
was given inAppendix 4.B.2). Therefore there exists a topological ordering of clusters
so that no cluster in 𝑇𝐼 precedes a cluster in 𝑇𝐶 ∪ 𝑇𝑂. By the assumption of unique
solvability w.r.t. the clusters 𝑇𝐶 ∪𝑇𝑂 in CO(ℬ)we know that the solution component
for any variable 𝑣 ∈ 𝑉 (𝑖) ⊆ 𝑇𝐶 ∪ 𝑇𝑂 can be solved from the constraints in 𝑉 (𝑖) after
plugging in the relevant solution components⋃𝑖−1

𝑗=1 𝑉
(𝑗). By the solvability assump-

tion, the solution components 𝑋∗
𝑣 and 𝑋 ′

𝑣 are equal almost surely.
By assumption, the variables in cl(𝑓) can be solved from the constraints in cl(𝑓).

Hence, a soft intervention on a constraint in cl(𝑓) may change the distribution of
the solution components X∗

cl(𝑓)∩𝑉 that correspond to the variable vertices in cl(𝑓).
Suppose that there exists a sequence of clusters 𝑉1 = cl(𝑓), 𝑉2, … , 𝑉𝑘−1, 𝑉𝑘 = cl(𝑣)
such that for all 𝑉𝑖 ∈ {𝑉1, … , 𝑉𝑘−1} there is a vertex 𝑧𝑖 ∈ 𝑉𝑖 such that (𝑧𝑖 → 𝑉𝑖+1) in
CO(ℬ). In that case we know that 𝑉𝑖 ∪ 𝑇𝐼 = ∅ for 𝑖 = 1, … , 𝑘. By the assumption of
maximal unique solvability w.r.t.CO(ℬ) the solution components for the variables in
𝑉2, … 𝑉𝑘 may depend on the distribution of the unique solution components X∗

cl(𝑓)∩𝑉
that correspond to the variable vertices in cl(𝑓). It follows that the solution X∗

𝑣 may
be different from that of X′

𝑣, if there is a directed path from 𝑓 to 𝑣 in CO(ℬ).

Lemma 4.3. Let ℬ = ⟨𝑉, 𝐹, 𝐸⟩ be a bipartite graph and𝑊 ⊆ 𝑉, so that the subgraph
of ℬ induced by (𝑉 ∪𝐹)⧵𝑊 is self-contained. Consider an intervention do(𝑆𝑉, 𝑆𝐹) on a
cluster 𝑆 = 𝑆𝐹 ∪𝑆𝑉 with 𝑆 ∩𝑊 = ∅ in the causal ordering graphCO(ℬ). The subgraph
of ℬdo(𝑆𝐹,𝑆𝑉) induced by (𝑉 ∪ 𝐹) ⧵ 𝑊 is self-contained.

Proof. By definition of Algorithm 2 we know that the subgraph of ℬ induced by (𝑉 ∪
𝐹) ⧵ 𝑊 has a perfect matchingℳ such thatℳ(𝑆𝐹) = 𝑆𝑉. By definition of a perfect
intervention on the bipartite graph we know thatℳ is also a perfect matching for the
subgraph of ℬdo(𝑆𝐹,𝑆𝑉) induced by (𝑉 ∪𝐹)⧵𝑊. The result follows from Corollary 4.2.

Proposition 4.2. Let ℬ = ⟨𝑉, 𝐹, 𝐸⟩ be a bipartite graph and 𝑊 a set of exogenous
variables. Let CO(ℬ) = ⟨𝒱, ℰ⟩ be the corresponding causal ordering graph. Let 𝑆𝐹 ⊆ 𝐹
and 𝑆𝑉 ⊆ 𝑉 ⧵𝑊 be such that (𝑆𝐹 ∪ 𝑆𝑉) ∈ 𝒱. Then:

CO(ℬdo(𝑆𝐹,𝑆𝑉)) = CO(ℬ)do(𝑆𝐹,𝑆𝑉).

Proof. Let 𝑆𝑉 = ⟨𝑠1𝑣, … , 𝑠𝑚𝑣 ⟩ and 𝑆𝐹 = ⟨𝑠1𝑓, … 𝑠
𝑚
𝑓 ⟩ denote the targeted variables and

constraints. We consider the outputCO(ℬ) = ⟨𝒱, ℰ⟩ of the causal ordering algorithm.
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Suppose that the order in which clusters 𝑉 (𝑖) are added to 𝒱 is given by

𝑉 (1), … , 𝑉 (𝑘) = (𝑆𝐹 ∪ 𝑆𝑉), … , 𝑉 (𝑛). (4.34)

Consider CO(ℬdo(𝑆𝐹,𝑆𝑉)) = ⟨𝒱′, ℰ′⟩. It follows from Definition 4.12, Lemma 4.4,
Lemma 4.5, and the definition of Algorithm 3 (i.e. the extended causal ordering al-
gorithm) that

𝑉 (1), … , 𝑉 (𝑘−1), {𝑠1𝑓, 𝑠
1
𝑣}, … , {𝑠𝑚𝑓 , 𝑠

𝑚
𝑣 }, 𝑉 (𝑘+1), … 𝑉 (𝑛) (4.35)

is an order in which clusters could be added to 𝒱′. This shows that there are two dif-
ferences between CO(ℬ) = ⟨𝒱, ℰ⟩ and CO(ℬdo(𝑆𝐹,𝑆𝑉)) = ⟨𝒱′, ℰ′⟩: first (𝑆𝐹 ∪ 𝑆𝑉) ∈ 𝒱
whereas {{𝑠𝑖𝑓, 𝑠

𝑖
𝑣} ∶ 𝑖 = 1, … ,𝑚} ⊆ 𝒱′ and second the clusters (𝑆𝐹 ∪ 𝑆𝑉) may have

parents in CO(ℬ) but the clusters {𝑠𝑖𝑓, 𝑠
𝑖
𝑣} (with 𝑖 ∈ {1, … ,𝑚}) have no parents in

CO(ℬdo(𝑆𝐹,𝑆𝑉)). The result follows directly from Definition 4.13.

Theorem 4.6. Let ℳ = ⟨𝓧,X𝑊, 𝜱,ℬ = ⟨𝑉, 𝐹, 𝐸⟩⟩ be a system of constraints with
coarse decomposition CD(ℬ) = ⟨𝑇𝐼, 𝑇𝐶, 𝑇𝑂⟩. Assume that ℳ is maximally uniquely
solvable w.r.t. CO(ℬ) = ⟨𝒱, ℰ⟩ and let X∗ be a solution of ℳ. Let 𝑆𝐹 ⊆ (𝑇𝐶 ∪ 𝑇𝑂) ∩ 𝐹
and 𝑆𝑉 ⊆ (𝑇𝐶 ∪ 𝑇𝑂) ∩ (𝑉 ⧵ 𝑊) be such that (𝑆𝐹 ∪ 𝑆𝑉) ∈ 𝒱. Consider the intervened
systemℳdo(𝑆𝐹,𝑆𝑉,𝝃𝑆𝑉)

with coarse decomposition CD(ℬdo(𝑆𝐹,𝑆𝑉)) = ⟨𝑇 ′
𝐼 , 𝑇 ′

𝐶, 𝑇 ′
𝑂⟩. Let X′

be a solution of ℳdo(𝑆𝐹,𝑆𝑉,𝝃𝑆𝑉)
. If there is no directed path from any 𝑥 ∈ 𝑆𝑉 to 𝑣 ∈

(𝑇𝐶 ∪ 𝑇𝑂) ∩ 𝑉 in CO(ℬ) then 𝑋∗
𝑣 = 𝑋 ′

𝑣 almost surely. On the other hand, if there is
𝑥 ∈ 𝑆𝑉 such that there is a directed path from 𝑥 to 𝑣 ∈ (𝑇𝐶 ∪ 𝑇𝑂) ∩ 𝑉 in CO(ℬ), then
𝑋∗
𝑣 may have a different distribution than 𝑋 ′

𝑣.

Proof. First note that 𝑇𝐶 ∪ 𝑇𝑂 = 𝑇 ′
𝐶 ∪ 𝑇 ′

𝑂 by Definition 4.12. Let 𝑣 ∈ 𝑆𝑉. Since the
variable vertices 𝑆𝑉 are targeted by the perfect intervention, we have that 𝑋 ′

𝑣 = 𝜉𝑣,
which may be different from the solution component 𝑋∗

𝑣 . Consider 𝑣 ∈ 𝑉 ⧵ 𝑆𝑉 and
its cluster cl(𝑣) in CO(ℬ). Since the causal ordering graph is acyclic by construc-
tion, there exists a topological ordering 𝑉 (1), … , 𝑉 (𝑖) = cl(𝑣), …𝑉 (𝑛) of the clusters in
CO(ℬ) (where 𝑛 is the amount of clusters in CO(ℬ)) such that 𝑉 (𝑗) ≺ cl(𝑣) implies
that there is a directed path from some vertex in 𝑉 (𝑗) to the cluster cl(𝑣) in CO(ℬ).
Note that clusters in 𝑇𝐼 are never ancestors of clusters in 𝑇𝐶∪𝑇𝑂 and that the ordering
𝑉 (1), … , 𝑉 (𝑛) is such that no cluster in 𝑇𝐼 precedes a cluster in 𝑇𝐶 ∪ 𝑇𝑂. By assump-
tion, the solution component 𝑋∗

𝑣 can be solved from the constraints and variables in
𝑉 (𝑖) = cl(𝑣) by plugging in the solution for variables in 𝑉 (1), … , 𝑉 (𝑖−1). Let 𝑠1𝑓, … 𝑠

𝑚
𝑓

and 𝑠1𝑣, … 𝑠𝑚𝑣 denote the ordered vertices in 𝑆𝐹 and 𝑆𝑉 respectively and suppose that
𝑆𝑉 ∪ 𝑆𝐹 = 𝑉 (𝑘) for some 𝑘 ∈ {1, … , 𝑛}. By definition of a perfect intervention on
a cluster we know that 𝑉 (1), … , 𝑉 (𝑘−1), {𝑠1𝑓, 𝑠

1
𝑣}, … , {𝑠𝑚𝑓 , 𝑠

𝑚
𝑣 }, 𝑉 (𝑘+1), … 𝑉 (𝑛) is a topolo-

gical ordering of clusters in CO(ℬ)do(𝑆𝐹,𝑆𝑉) = CO(ℬdo(𝑆𝐹,𝑆𝑉)) (by Proposition 4.2).
Furthermore, maximal unique solvability w.r.t. CO(ℬ) implies maximal unique solv-
ability w.r.t. CO(ℬdo(𝑆𝐹,𝑆𝑉)).
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Suppose that 𝑉 (𝑘) ≻ cl(𝑣) in the topological ordering for CO(ℬ). By maximal
unique solvability w.r.t. CO(ℬ)do(𝑆𝐹,𝑆𝑉), 𝑋

′
𝑣 can be solved from the constraints and

variables in cl(𝑣) by plugging in the solution for variables in 𝑉 (1), … , 𝑉 (𝑖−1). It follows
that 𝑋∗

𝑣 = 𝑋 ′
𝑣 almost surely and by construction of the topological ordering there is

no directed path from any 𝑥 ∈ 𝑆𝑉 to 𝑣 in CO(ℬ). Suppose that 𝑉 (𝑘) ≺ cl(𝑣) in the
topological ordering for CO(ℬ). By maximal unique solvability w.r.t. CO(ℬ)do(𝑆𝐹,𝑆𝑉),
we know that 𝑋 ′

𝑣 can be solved from the constraints and variables in 𝑉 (𝑖) by plugging
in the solution for variables in 𝑉 (1), … , 𝑉 (𝑘−1), {𝑠1𝑓, 𝑠

1
𝑣}, … , {𝑠𝑚𝑓 , 𝑠

𝑚
𝑣 }, 𝑉 (𝑘+1), … 𝑉 (𝑖−1). It

follows that 𝑋∗
𝑣 and 𝑋 ′

𝑣 may have a different distribution, and by construction of the
topological ordering there is a directed path from a vertex in 𝑆𝑉 to the cluster cl(𝑣) in
CO(ℬ).
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Perfect adaptation in a dynamical system is the phenomenon that one or more
variables have an initial transient response to a persistent change in an external stim-
ulus but revert to their original value as the system converges to equilibrium. The
causal ordering algorithm can be used to construct an equilibrium causal ordering
graph that represents causal relations and aMarkov ordering graph that implies con-
ditional independences from a set of equilibrium equations. Based on this, we formu-
late sufficient graphical conditions to identify perfect adaptation from a set of first-
order differential equations. Furthermore, we give sufficient conditions to test for
the presence of perfect adaptation in experimental equilibrium data. We apply our
ideas to a simple model for a protein signalling pathway and test its predictions both
in simulations and on real-world protein expression data. We demonstrate that per-
fect adaptation in this model can explain why the presence and orientation of edges
in the output of causal discovery algorithms does not always appear to agree with the
presence and orientation of edges in biological consensus networks.
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5.1 Introduction

Understanding causal relations is an objective that is central to many scientific en-
deavours. It is often said that ‘the gold standard’ for causal discovery is a random-
ized controlled trial, but practical experiments can be too expensive, unethical, or
otherwise infeasible. The promise of causal discovery is that we can, under certain
assumptions, learn about causal relations by using a combination of data and back-
ground knowledge (Mooij, Magliacane, et al., 2020; Spirtes, Glymour, et al., 2000;
J. Zhang, 2008). Roughly speaking, causal discovery algorithms construct a graph-
ical representation that encodes certain aspects of the data, such as conditional in-
dependences in the case of constraint-based causal discovery, given some constraints
that are imposed by background knowledge. Under additional assumptions on the
underlying causal mechanisms (e.g. the causal Markov condition, faithfulness, acyc-
licity) these graphical representations have a causal interpretation as well (Lauritzen,
Dawid, et al., 1990; Mooij and Claassen, 2020; Mooij, Magliacane, et al., 2020; Spirtes,
Glymour, et al., 2000). In this work, we specifically consider the equilibrium distri-
bution of perfectly adapted dynamical systems that have the property that the class of
graphs that encode the conditional independences in the distribution does not have a
straightforward causal interpretation in terms of the changes in distribution induced
by soft or perfect interventions. Systems with this property were already discussed
in Chapter 4, but we will study them in more detail in the present chapter and in
Chapter 6.

Perfect adaptation in a dynamical system is the phenomenon that one or more
variables initially respond to a persistent external stimulus but ultimately revert to
their original value. As a consequence, variables in the system change due to an ex-
ternal input, but they become independent of the stimulus change after the system
reaches equilibrium again. We study the differences between the causal structure
implied by the dynamic equations and the conditional dependence structure of the
equilibrium distribution. To do so, we make use of the technique of causal ordering,
introduced by Simon (1953), which can be used to construct aMarkov ordering graph
that encodes conditional independences between variables, as well as a causal order-
ing graph that represents causal relations, as we proved in Chapter 4. We introduce
the notion of a dynamic causal ordering graph to represent transient causal effects in
a dynamical model. We use these graphs to provide a sufficient graphical condition,
for dynamical systems to achieve perfect adaptation, which does not require simula-
tions or explicit calculations. Furthermore, we provide sufficient conditions to test
for the presence of perfect adaptation in real-world data with the help of the Markov
ordering graph andwe elucidate the appropriate causal interpretation of the output of
causal discovery algorithms when applied to (perfectly adapted) dynamical systems
at equilibrium. Finally, we discuss how the notions of the causal Markov condition
and the causal faithfulness condition, which are often used to tie graphs that repres-
ent conditional independences in a probability distribution to the causal properties of
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the system that generated the data, become ambiguous in the case of perfectly adap-
ted dynamical systems where the equilibrium and dynamical causal ordering graph
are different.

We illustrate our ideas on three simple dynamical systems with feedback: the
bathtub model in Dash (2005) and Iwasaki et al. (1994), the viral infection model in
De Boer (2012) (a detailed presentation and analysis of this model will be presen-
ted in Chapter 6), and a chemical reaction network in Ma et al. (2009). We discuss
how perfect adaptation may also manifest itself in applications of causal discovery
algorithms to a popular protein expression data set (Sachs, Perez, et al., 2005). The
output of causal discovery algorithms applied to this data sometimes appears to be
at odds with the biological consensus presented in Sachs, Perez, et al. (2005), see
for example Mooij, Magliacane, et al. (2020) and Ramsey et al. (2018). We present
a model for the Ras-Raf-Mek-Erk signalling pathway, based on a model in Shin et
al. (2009), under saturation conditions and test its predictions both in simulations
and on real-world data. We demonstrate that perfect adaptation in this model can
explain why the presence and orientation of edges in the output of causal discovery
algorithms does not always appear to agree with the direction of edges in biological
consensus networks that are based on a partial representation of the underlying dy-
namical mechanisms.

5.2 Background

In this section we consider the assumptions underpinning popular constraint-based
causal discovery algorithms and give a brief description of a simple local causal dis-
covery algorithm, introduced by Cooper (1997). We proceed with a concise introduc-
tion to the causal ordering algorithm, which was first introduced by Simon (1953)
and conclude with a discussion of related work.

5.2.1 Causal discovery

The main objective in causal discovery is to infer causal relations from experimental
and observational data. The most common causal discovery algorithms can be
roughly divided into score-based and constraint-based approaches, where the lat-
ter are more generally applicable. The idea of constraint-based causal discovery
algorithms (e.g PC or FCI and variants thereof, see Colombo et al. (2012), Forré et al.
(2018), Spirtes, Glymour, et al. (2000), and J. Zhang (2008)), which we focus on in
the remainder of this section, is that causal relations can be inferred by exploiting
conditional independences in the data. These algorithms attempt to construct an
equivalence class of graphs that encode a set of conditional independence relations
in a probability distribution via a graphical separation criterion. A d-separation is
a relation between three sets of vertices in a graph that indicates whether all paths
between two sets of vertices are blocked by the vertices in a third, see Pearl (2009)
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or Spirtes, Glymour, et al. (2000) for more details. If every d-separation in a graph
implies a conditional independence in the probability distribution then we say that
it satisfies the directed global Markov property w.r.t. that graph. Conversely, if every
conditional independence in the probability distribution is due to a d-separation in
a graph then we say that it is d-faithful to that graph. When a probability distri-
bution satisfies the Markov property w.r.t. a graph and is also faithful to the graph,
then this graph is a compact representation of the conditional independences in the
probability distribution and we say that it encodes its independence relations.

A lot of work has been done to understand the various conditions (e.g. linear-
ity, Gaussianity, discreteness, causal sufficiency, acyclicity) under which a graph
that encodes all conditional independences and dependences in a probability dis-
tribution has a certain causal interpretation, see Colombo et al. (2012), Forré et
al. (2018), Hyttinen et al. (2012), Lacerda et al. (2008), Mooij and Claassen (2020),
Mooij, Magliacane, et al. (2020), Richardson and Spirtes (1999), Spirtes, Glymour,
et al. (2000), Strobl (2018), and J. Zhang (2008). Perhaps the simplest assumption
is that the data was generated by a causal DAG1 (Spirtes, Glymour, et al., 2000). In
that case, the causal Markov condition, which states that variables are independent
of their non-effects conditional on all their direct causes, and the causal faithfulness
condition, which states that there are no other conditional independences than those
implied by the causal Markov condition, ensure that there exists a single DAG that
represents both conditional independences and causal relations (Lauritzen, Dawid,
et al., 1990; Pearl, 2009). For the acyclic setting, powerful constraint-based causal dis-
covery algorithms such as PC (under the assumption of causal sufficiency) and FCI
(when latent confounders may be present) have been developed (Spirtes, Glymour,
et al., 2000).

However, many systems of interest in various scientific disciplines (e.g. biology,
econometrics, physics) include feedbackmechanisms. Cyclic Structural CausalMod-
els (SCMs) (Bongers, Forré, et al., 2020) can be used tomodel causal features and con-
ditional independence relations of systems that contain cyclic causal relationships.
For linear SCMs with causal cycles, several causal discovery algorithms have been
developed (Hyttinen et al., 2012; Lacerda et al., 2008; Richardson and Spirtes, 1999;
Strobl, 2018) that are based on d-separations. The d-separation criterion is applicable
to acyclic settings and to cyclic SCMs with either discrete variables or linear relations
between continuous variables, but it is too strong in general (Spirtes and Richardson,
1995). Forré et al. (2017), inspired by the ‘collapsed graph’ in Spirtes and Richardson
(1995), developed the alternative 𝜎-separation criterion for graphs that may contain
cycles. If every 𝜎-separation in a graph implies a conditional independence in the
probability distribution then we say that it satisfies the generalized directed global
Markov property w.r.t. that graph. Conversely, if every conditional independence in
the probability distribution is due to a 𝜎-separation in a graph then we say that it is 𝜎-

1A Directed Acyclic Graph (DAG) is a pair ⟨𝑉,𝐸⟩ where 𝑉 is a set of vertices and 𝐸 a set of directed
edges between vertices such that there are no directed cycles.
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faithful to that graph. Forré et al. (2018) propose a sound and complete causal discov-
ery algorithm based on 𝜎-separations and the assumption of 𝜎-faithfulness for data
that is generated by a cyclic SCMwith non-linear relations between continuous vari-
ables. Recently, Mooij and Claassen (2020) proved that the PC and FCI algorithms
are sound and complete in this setting and showed how to read off causal relations
and other features from the output of the algorithm. In earlier work, Richardson
(1996) proved soundness of a causal discovery algorithm under the generalized dir-
ected Markov property and the d-faithfulness assumption, under the additional as-
sumption of causal sufficiency. At the end of this section we will consider the LCD
(i.e. Local Causal Discovery) algorithm in Cooper (1997), which was proven to be
sound in both the 𝜎- and d-separation settings (Mooij, Magliacane, et al., 2020).

In this chapter, we consider equilibrium distributions that are generated by dy-
namical models. The causal relations in an equilibrium model are defined through
the effects of persistent interventions (i.e. interventions that are constant over time)
on the equilibrium solution of variables that are endogenous to the model, assuming
that the system again converges to equilibrium. In Chapter 4, we showed that direc-
ted graphs encoding the conditional independences between endogenous variables
in the equilibrium distribution of dynamical systems with feedback do not have a
straightforward and intuitive causal interpretation. As a consequence, the output of
algorithms such as LCD, PC, or FCI applied to equilibrium data of dynamical sys-
tems with feedback at equilibrium cannot always be interpreted causally in a naïve
way. One issue is that the equilibrium distribution of certain (perfectly adapted) dy-
namical systems can also be generated by a causal DAG (consider e.g. the bathtub
example in Chapter 4, (Dash, 2005; Iwasaki et al., 1994), or Section 5.3.1.1), while
the causal mechanisms of the true underlying system are provided by the dynam-
ics of a model that includes feedback. This example illustrates some of the argu-
ments made by Dawid (2010) against the use of causal DAGs. The in-depth analysis
of causality and independence in perfectly adapted dynamical systems in this paper
contributes to this discussion. Representations of dynamical systems at equilibrium
as cyclic SCMs may not have a unique solution under perfect interventions (Bongers
and Mooij, 2018) and in Chapter 3 we demonstrated that the causal semantics of the
systemmay not be fully captured by a cyclic SCM.Here, wewill presentmethods that
supplement existing methods for SCMs to study the properties of perfectly adapted
dynamical systems in more detail.

In this chapter we will, for the sake of simplicity, limit our attention to one of the
simplest causal ordering algorithms, LCD. This algorithm is a straightforward and
efficient search method to detect one specific (causal) structure from background
knowledge and observations or experimental data (Cooper, 1997). The algorithm
looks for triples of variables (𝐶, 𝑋, 𝑌) for which (a) 𝐶 is a context variable that is not
caused by any other observed variable and (b) the following (in)dependences hold:
𝐶 ⟂⟂/ 𝑋, 𝑋 ⟂⟂/ 𝑌, and 𝐶 ⟂⟂ 𝑌 ∣ 𝑋. Figure 2.2 shows the graphs that correspond to the
LCD triple (𝐶, 𝑋, 𝑌). Note that, in the absence of latent confounders, there are no bi-
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directed edges, and the graph structure of an LCD triple is a DAG. Under the causal
Markov and causal faithfulness assumptions, directed edges in the graph of an LCD
triple represent causal relations. For simplicity, we only consider DAGs to encode the
conditional independence relations in equilibrium distributions of dynamical mod-
els. The ideas in this paper can be extended to a settingwith latent variables andmore
advanced causal discovery algorithms.

𝑋 𝑌 𝑍 𝑋 𝑌 𝑍 𝑋 𝑌 𝑍

Figure 5.1: Possible graph structures of an LCD triple. In the absence of latent confounders
the triple has the structure of the DAG in the figure on the left.

5.2.2 Causal ordering

The causal ordering algorithm, which was first introduced by Simon (1953), applies
to sets of equations and returns an ordering of the variables and equations. A thor-
ough treatment of the causal ordering was already given in Chapter 4. To keep this
chapter self-contained, we give a brief introduction to the causal ordering algorithm
of Nayak (1995), which is based on the block triangular form of matrices in Pothen
and Fan (1990), as it was present in the previous chapter. This algorithm is equival-
ent but computationally more efficient than the original causal ordering algorithm
(Gonçalves et al., 2016). It is applicable to sets of equations that can be represented
by a bipartite graph with a perfect matching (i.e. there exists a subset 𝑀 ⊆ 𝐸 of the
edges in the bipartite graph ℬ = ⟨𝑉, 𝐹, 𝐸⟩ so that every vertex in 𝑉 ∪ 𝐹 is adjacent
to exactly one edge in 𝑀). Although we extended the causal ordering algorithm to
general bipartite graphs in the previous chapter, we will in the present chapter, for
the most part, assume that a perfect matching exists for the sake of simplicity.

The structure of a set of equations and the variables that appear in them can
be represented by a bipartite graphℬ = ⟨𝑉, 𝐹, 𝐸⟩, where vertices 𝐹 correspond to the
equations and vertices𝑉 correspond to the endogenous variables that appear in these
equations. For each endogenous variable 𝑣 ∈ 𝑉 that appears in an equation 𝑓 ∈ 𝐹
there is an edge (𝑣−𝑓) ∈ 𝐸. The output of the causal ordering algorithm is a directed
cluster graph ⟨𝒱, ℰ⟩, consisting of a partition 𝒱 of the vertices 𝑉 ∪𝐹 into clusters and
edges (𝑣 → 𝑆) ∈ ℰ that go from vertices 𝑣 ∈ 𝑉 to clusters 𝑆 ∈ 𝒱.

Application of the causal ordering algorithm to a bipartite graph ℬ = ⟨𝑉, 𝐹, 𝐸⟩
results in the directed cluster graph CO(ℬ) = ⟨𝒱, ℰ⟩, which we will call the causal
ordering graph. It is constructed in four steps:
(i) Find a perfect matching𝑀 ⊆ 𝐸 and let𝑀(𝑆) denote the vertices in 𝑉 ∪ 𝐹 that

are joined to vertices in 𝑆 ⊆ 𝑉 ∪ 𝐹 by an edge in𝑀.
(ii) For each (𝑣 − 𝑓) ∈ 𝐸 with 𝑣 ∈ 𝑉 and 𝑓 ∈ 𝐹: if (𝑣 − 𝑓) ∈ 𝑀 orient the edge as

(𝑣 ← 𝑓) and if (𝑣 − 𝑓) ∉ 𝑀 orient the edge as (𝑣 → 𝑓). Let 𝒢(ℬ,𝑀) denote the
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resulting directed graph.
(iii) Partition vertices 𝑉 ∪ 𝐹 into strongly connected components 𝒱′ of 𝒢(ℬ,𝑀).

Create the cluster set 𝒱 consisting of clusters 𝑆 ∪ 𝑀(𝑆) for each 𝑆 ∈ 𝒱′. For
each edge (𝑣 → 𝑓) ∈ 𝐸 add an edge (𝑣 → cl(𝑓)) to ℰ when 𝑣 ∉ cl(𝑓), where
cl(𝑓) denotes the cluster in 𝒱 that contains 𝑓.

(iv) Optionally, exogenous variables appearing in the equations can be added as
singleton clusters to 𝒱, with edges towards the clusters of the equations in
which they appear in ℰ.

Example 5.1. Consider the following set of equations with index set 𝐹 = {𝑓1, 𝑓2} that
contain endogenous variables with index set 𝑉 = {𝑣1, 𝑣2}:

𝑓1 ∶ 𝑋𝑣1 − 𝑈𝑤1 = 0, (5.1)
𝑓2 ∶ 𝑋𝑣2 + 𝑋𝑣1 − 𝑈𝑤2 = 0, (5.2)

where 𝑈𝑤1 and 𝑈𝑤2 are exogenous (random) variables indexed by𝑊 = {𝑤1, 𝑤2}. Fig-
ure 5.2(a) shows the associated bipartite graph ℬ = ⟨𝑉, 𝐹, 𝐸⟩. This graph has exactly
one perfect matching𝑀 = {(𝑣1−𝑓1), (𝑣2−𝑓2)}, which is used in step (ii) of the causal
ordering algorithm to construct the directed graph 𝒢(ℬ,𝑀) in Figure 5.2(b). The
causal ordering graph that is obtained after applying steps (iii) and (iv) of the causal
ordering algorithm is given in Figure 5.2(c). △

𝑣1 𝑣2

𝑓1 𝑓2

(a) Bipartite graph.

𝑣1 𝑣2

𝑓1 𝑓2

(b) Oriented graph.

𝑤1 𝑣1 𝑣2

𝑓1 𝑓2

𝑤2

(c) Causal ordering graph.

𝑣1 𝑣2

𝑤1 𝑤2

(d) Markov ordering graph.

Figure 5.2: The bipartite graph ℬ associated with equations (5.1) and (5.2) is given in Fig-
ure 5.2(a). The oriented graph 𝒢(ℬ,𝑀) obtained in step (ii) of the causal ordering algorithm,
with perfect matching 𝑀, in Example 5.1 is shown in Figure (b). The causal ordering graph
CO(ℬ), with added exogenous variables, is given in Figure (c). The corresponding Markov
ordering graphMO(ℬ) is displayed in Figure (d).

Throughout this chapter, we will assume that sets of equations are uniquely solv-
able with respect to the causal ordering graph, as in Definition 4.8. Roughly speaking,
this means that the endogenous variables in the model can be solved from the equa-
tions in their clusters along a topological ordering of the causal ordering graph. In
Chapter 4 we showed that the causal ordering graph represents the effects of soft
and certain perfect interventions under the assumption of unique solvability w.r.t.
the causal ordering graph, see Theorem 4.5 and Theorem 4.6 respectively. Soft in-
terventions target equations; they do not change which variables appear in the tar-
geted equation and may only alter the parameters or form of the equation. Perfect
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interventions target clusters in the causal ordering graph and replace the equations
in the targeted cluster with equations that set the variables in the cluster equal to
constant values. We say that there is a direct path from a vertex 𝑥 to a vertex 𝑦 in a
directed cluster graph ⟨𝒱, ℰ⟩ if either cl(𝑥) = cl(𝑦) or there is a sequence of clusters
𝑉1 = cl(𝑥), 𝑉2, … , 𝑉𝑘−1, 𝑉𝑘 = cl(𝑦) so that for all 𝑖 ∈ {1, … , 𝑘−1} there is a vertex 𝑧𝑖 ∈ 𝑉𝑖
such that (𝑧𝑖 → 𝑉𝑖+1) ∈ ℰ. A soft intervention on an equation or a perfect intervention
on a cluster has no effect on a variable in the causal ordering graph whenever there is
no directed path to that variable from the intervention target (i.e. the targeted equa-
tion or an arbitrary vertex in the targeted cluster, respectively). Since the equations
in Example 5.1 are uniquely solvable w.r.t. the causal ordering graph in Figure 5.2(c)
we can use it to read off that, for example, a soft intervention targeting 𝑓1may have an
effect on 𝑋𝑣2 and that a perfect intervention targeting the cluster {𝑣2, 𝑓2} has no effect
on 𝑋𝑣1.

Given the probability distribution of exogenous random variables, one gets a
unique probability distribution on the endogenous variables under the assumption
of unique solvability w.r.t. the causal ordering graph. The Markov ordering graph is
a directed graphMO(ℬ) that implies conditional independences between the endo-
genous random variables that solve the system via d-separations, see Theorem 4.3.
TheMarkov ordering graph ⟨𝑉, 𝐸⟩ is obtained from a causal ordering graphCO(ℬ) =
⟨𝒱, ℰ⟩ by putting 𝑉 = ⋃𝑆∈𝒱 𝑆 and constructing edges (𝑣 → 𝑤) ∈ 𝐸 if and only if
(𝑣 → cl(𝑤)) ∈ ℰ. The Markov ordering graph for the set of equations in Example 5.1
is given in Figure 5.2(d). The d-separations in this graph imply conditional inde-
pendences between the corresponding variables. For instance, since 𝑣1 and 𝑤2 are
d-separated we know that 𝑋𝑣1 and 𝑋𝑤2 are independent.

Assuming that the probability distribution is d-faithful to the Markov ordering
graph and that we have a conditional independence oracle, we know that the output
of the PC-algorithm is the Markov equivalence class of the Markov ordering graph.
However, as we already demonstrated in Chapter 4, for certain dynamical systems,
the directed edges in the Markov ordering graph should not be interpreted as causal
relations. Likewise, we will discuss three examples of perfectly adapted systems at
equilibrium for which the Markov ordering graph does not have a straightforward
causal interpretation in Section 5.3.3.2. In Section 5.6.1 we provide a brief discus-
sion about the ambiguity of the causal Markov and faithfulness conditions in these
examples.

5.2.3 Related work

Causal ordering is a technique that can be used to relate the (equilibrium) equations
in a dynamical model to causal properties and conditional independence relations
(Blom and Mooij, 2020; Blom, Van Diepen, et al., 2021; Simon and Iwasaki, 1988).
The relationship between dynamical models and causal models has already received
much attention over the years. The works of F. M. Fisher (1970), Mogensen et al.
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(2018), Rubenstein et al. (2018), Sokol et al. (2014), and Voortman et al. (2010) con-
sidered causal relations in dynamical systems that are not at equilibrium,while Blom,
Bongers, et al. (2019), Hyttinen et al. (2012), Lacerda et al. (2008), Lauritzen and
Richardson (2002), Mooij, Janzing, Heskes, et al. (2011), and Mooij, Janzing, and
Schölkopf (2013) considered graphical and causal models that arise from studying
the stationary behaviour of dynamical models. An adaptation of Blom, Bongers, et
al. (2019) can be found in Chapter 3 of this thesis. In Chapter 6, which is based on
Blom andMooij (2020), we study the robustness of model predictions when two sub-
systems in a dynamical model at equilibrium are combined, and consider opportun-
ities for using causal discovery to detect feedback loops and the presence of variables
that are not self-regulating using both models and experimental data for a subsys-
tem. The causal behaviour of dynamical models and their equilibration to an SCM is
studied by Bongers and Mooij (2018) and Dash (2005). In the previous chapters, we
have noted subtleties regarding the use of a single graphical model to represent both
conditional independence properties and causal properties of the variables in cer-
tain dynamical systems at equilibrium. This was also noted in Blom, Bongers, et al.
(2019), Dash (2005), Dawid (2010), Lacerda et al. (2008), and Lauritzen and Richard-
son (2002). Often, restrictive assumptions on the underlying dynamical models are
made to avoid these subtleties. In this thesis we directly address these issues by using
the causal ordering algorithm to construct separate graphical representations for the
causal properties and conditional independence relations implied by these systems.
Our approach can be used in the equilibrium setting, but can also be employed to
model transient causal effects in non-equilibrium settings, as we will discuss in Sec-
tion 5.3.2.1. In this chapter, we focus on using these ideas to study the properties
of perfectly adapted systems and applying this in particular to better understand the
causal mechanisms that drive protein signalling networks.

In Chapter 3, we showed that the popular SCM framework (Bongers, Forré, et
al., 2020; Pearl, 2009) is not flexible enough to fully capture the causal semantics
in terms of perfect interventions targeting variables of certain dynamical systems at
equilibrium. Therefore we proposed to use Causal Constraints Models (CCMs) in-
stead. The drawback of this approach is that the causal constraints do not possess
some of the attractive properties of SCMs, although this is greatly alleviated by the
causal ordering technique presented in Chapter 4, which can be used to construct
graphical representations of causal relations and conditional independences. In the
discussion section we consider how this technique can be used to obtain graphical
presentations and a Markov property for the dynamical model of the basic enzyme
reaction that we considered in Chapter 3.

The analysis of network topologies that can achieve perfect adaptation is a topic
of interest in cell biology, see for example (Araujo et al., 2018; Ferrell, 2016; Krishnan
et al., 2019; Ma et al., 2009; Muzzey et al., 2009). The present work provides amethod
that facilitates the analysis of perfectly adapted dynamical systems by providing a
principledmethod to identify perfect adaptation either frommodel equations or from
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experimental data and background knowledge. It is our hope that the ideas presented
in this paper contribute to increasing the impact of causal inference in cell biology
and dynamical modelling.

5.3 Perfect adaptation

The ability of a system to converge to its original state when a constant and persist-
ent external stimulus is added or changed is referred to as perfect adaptation. If the
adaptive behaviour does not depend on the precise setting of parameters then we say
that the adaptation is robust. In the literature, the most interesting of the two is ro-
bust perfect adaptation, which is also commonly referred to as perfect adaptation.
Henceforth, we will use the term perfect adaptation to refer to robust perfect adapta-
tion. In this section, we take a look at several examples of simple dynamical systems
that can achieve perfect adaptation and consider how we can identify models that
are capable of perfect adaptation. Finally, we discuss the correct interpretation of
the output of some constraint-based causal discovery algorithms applied to perfectly
adapted dynamical systems and possibilities for the identification of perfect adapta-
tion from (equilibrium) data.

5.3.1 Examples

In this section we present three dynamical systems and show that they are capable
of achieving perfect adaptation. The details of simulations that are presented in this
section are given in Appendix 5.A.

time t

O
u

tfl
ow

X
O

(t
)

IK = 0.8
IK = 1.0
IK = 1.3

(a) Filling bathtub model.

time t

In
fe
ct
ed

ce
ll
s
X
I
(t
)

Iσ = 1.1
Iσ = 1.3
Iσ = 2.0

(b) Viral infection model.

time t

C
on

ce
n
tr
a
ti
on

X
C
(t
)

I = 0.25
I = 1.00
I = 10.0

(c) Reaction network model.

Figure 5.3: Simulations of the outflow rate 𝑋𝑂(𝑡) in the bathtubmodel, the amount of infected
cells𝑋𝐼(𝑡) in the viral infectionmodel, and the concentration𝑋𝐶(𝑡) in the biochemical reaction
network with a negative feedback loop after a change in the input signal. The timing of this
change is indicated by a vertical dashed line. The three systems started with input signals
𝐼𝐾 = 1.2, 𝐼𝜍 = 1.6, and 𝐼 = 1.5. After a transient response 𝑋𝑂(𝑡), 𝑋𝐼(𝑡), and 𝑋𝐶(𝑡) all converge
to their original equilibrium value (i.e. they perfectly adapt to the input signal).



5.3. Perfect adaptation 143

5.3.1.1 Filling bathtub

We consider the example of a filling bathtub from Iwasaki et al. (1994), that was
discussed at length inChapter 4. Let 𝐼𝐾(𝑡) be an input signal that represents the size of
a drain in the bathtub. The inflow rate 𝑋𝐼(𝑡), water level 𝑋𝐷(𝑡), water pressure 𝑋𝑃(𝑡),
and outflow rate 𝑋𝑂(𝑡) are modelled by the following static and dynamic equations:

𝑋𝐼(𝑡) = 𝑈𝐼, (5.3)
̇𝑋𝐷(𝑡) = 𝑈1(𝑋𝐼(𝑡) − 𝑋𝑂(𝑡)), (5.4)
̇𝑋𝑃(𝑡) = 𝑈2(𝑔𝑈3𝑋𝐷(𝑡) − 𝑋𝑃(𝑡)), (5.5)
̇𝑋𝑂(𝑡) = 𝑈4(𝑈5𝐼𝐾(𝑡)𝑋𝑃(𝑡) − 𝑋𝑂(𝑡)), (5.6)

where 𝑔 is the gravitational constant, and 𝑈𝐼, 𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5 are independent exo-
genous random variables taking value inℝ>0. Let𝑋𝐷, 𝑋𝑃, and𝑋𝑂 denote the respect-
ive equilibrium solutions for the water level, water pressure, and outflow rate. The
equilibrium equations associated with this model can easily be constructed by set-
ting the time derivatives equal to zero and assuming the input signal 𝐼𝐾(𝑡) to have a
constant value 𝐼𝐾:

𝑓𝐼 ∶ 𝑋𝐼 − 𝑈𝐼 = 0, (5.7)
𝑓𝐷 ∶ 𝑈1(𝑋𝐼 − 𝑋𝑂) = 0, (5.8)
𝑓𝑃 ∶ 𝑈2(𝑔𝑈3𝑋𝐷 − 𝑋𝑃) = 0, (5.9)
𝑓𝑂 ∶ 𝑈4(𝑈5𝐼𝐾𝑋𝑃 − 𝑋𝑂) = 0, (5.10)

We call the labelling 𝑓𝐷, 𝑓𝑃, 𝑓𝑂 that we choose for the equilibrium equations that are
constructed from the time-derivatives the natural labelling for this dynamical sys-
tem, which means that the equilibrium equation constructed from ̇𝑋𝑖(𝑡) of variable
𝑣𝑖 is labelled as 𝑓𝑖. A solution (𝑋𝐼, 𝑋𝐷, 𝑋𝑃, 𝑋𝑂) to the system of equilibrium equations
satisfies 𝑋𝐼 = 𝑈𝐼 and 𝑋𝑂 = 𝑋𝐼 almost surely. From this we conclude that, at equilib-
rium, the outflow rate is independent of the size of the drain 𝐼𝐾, assuming that 𝑈𝐼 is
independent of 𝐼𝐾. We recorded the changes in the system after we changed the in-
put signal 𝐼𝐾 of the bathtub system in equilibrium. The results in Figure 5.3(a) show
that the outflow rate has a transient response to changes in the input signal 𝐼𝐾, but it
ultimately converges to its original value. The outflow rate 𝑋𝑂 in the bathtub model
perfectly adapts to changes in 𝐼𝐾.

5.3.1.2 Viral infection model

We consider the example of a simple dynamical model for a viral infection and im-
mune response in De Boer (2012). This example will be treated in more detail in
Chapter 6, which is based on Blom and Mooij (2020). The model describes target
cells 𝑋𝑇(𝑡), infected cells 𝑋𝐼(𝑡), and an immune response 𝑋𝐸(𝑡). We will treat 𝐼𝜍(𝑡)
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as an exogenous input signal that represents the production rate of target cells. The
system is defined by the following dynamic equations:

̇𝑋𝑇(𝑡) = 𝐼𝜍(𝑡) − 𝑑𝑇𝑋𝑇(𝑡) − 𝛽𝑋𝑇(𝑡)𝑋𝐼(𝑡), (5.11)
̇𝑋𝐼(𝑡) = (𝑓𝛽𝑋𝑇(𝑡) − 𝑑𝐼 − 𝑘𝑋𝐸(𝑡))𝑋𝐼(𝑡), (5.12)
̇𝑋𝐸(𝑡) = (𝑎𝑋𝐼(𝑡) − 𝑑𝐸)𝑋𝐸(𝑡). (5.13)

We have that 𝛽 = 𝑏𝑝

𝑐
where 𝑏 is the infection rate, 𝑝 is the number of virus particles

produced per infected cell, and 𝑐 is the clearance rate of viral particles. Furthermore,
𝑑𝑇 is the death rate of target cells, 𝑎 is an activation rate, 𝑑𝐸 and 𝑑𝐼 are turnover rates
and 𝑘 is a mass-action killing rate. We assume that 𝑎, 𝑘 are constants and that 𝑑𝑇, 𝑑𝐼,
𝑑𝐸, and 𝛽 are independent exogenous random variables. We use the natural labelling
for the equilibrium equations that are constructed from the differential equations:2

𝑓𝑇 ∶ 𝐼𝜍 − 𝑑𝑇𝑋𝑇 − 𝛽𝑋𝑇𝑋𝐼 = 0, (5.14)
𝑓𝐼 ∶ 𝑓𝛽𝑋𝑇 − 𝑑𝐼 − 𝑘𝑋𝐸 = 0, (5.15)
𝑓𝐸 ∶ 𝑎𝑋𝐼 − 𝑑𝐸 = 0, (5.16)

assuming a constant value 𝐼𝜍 of the input signal. We initialized the model in an equi-
librium state and simulated the response of themodel after changing the input signal
𝐼𝜍 to three different values. Figure 5.3(b) shows that the amount of infected cells𝑋𝐼(𝑡)
has a transient response to a change in the input signal, but then returns to its original
value, it perfectly adapts to changes in 𝐼𝜍.

5.3.1.3 Reaction networks with a negative feedback loop

The phenomenon of perfect adaptation is a common feature in biochemical reac-
tion networks and there exist many network topologies that can achieve (near) per-
fect adaptation (Araujo et al., 2018; Ferrell, 2016). For networks consisting of only
three nodes Ma et al. (2009) found by an exhaustive search that there exist two major
classes of network topologies that produce robust adaptive behaviour. The reaction
diagrams for these networks are given in Figure 5.4. Here we will only analyse Neg-
ative Feedback with a Buffer Node (NFBN), we will examine the other network in
the discussion section and in Appendix 5.D. The NFBN system can be described by
the following first-order differential equations:

̇𝑋𝐴(𝑡) = 𝐼(𝑡)𝑘𝐼𝐴
(1 − 𝑋𝐴(𝑡))

𝐾𝐼𝐴 + (1 − 𝑋𝐴(𝑡))
− 𝐹𝐴𝑘𝐹𝐴𝐴

𝑋𝐴(𝑡)
𝐾𝐹𝐴𝐴 + 𝑋𝐴(𝑡)

, (5.17)

2FollowingDeBoer (2012), we are only interested in strictly positive solutions of this dynamical system.
Therefore, we use the equilibrium equation 𝑓𝐼 instead of (𝑓𝛽𝑋𝑇 − 𝑑𝐼 − 𝑘𝑋𝐸)𝑋𝐼 = 0 and 𝑓𝐸 instead of
(𝑎𝑋𝐼 − 𝑑𝐸)𝑋𝐸 = 0.



5.3. Perfect adaptation 145

̇𝑋𝐵(𝑡) = 𝑋𝐶(𝑡)𝑘𝐶𝐵
(1 − 𝑋𝐵(𝑡))

𝐾𝐶𝐵 + (1 − 𝑋𝐵(𝑡))
− 𝐹𝐵𝑘𝐹𝐵𝐵

𝑋𝐵(𝑡)
𝐾𝐹𝐵𝐵 + 𝑋𝐵(𝑡)

, (5.18)

̇𝑋𝐶(𝑡) = 𝑋𝐴(𝑡)𝑘𝐴𝐶
(1 − 𝑋𝐶(𝑡))

𝐾𝐴𝐶 + (1 − 𝑋𝐶(𝑡))
− 𝑋𝐵(𝑡)𝑘𝐵𝐶

𝑋𝐶(𝑡)
𝐾𝐵𝐶 + 𝑋𝐶(𝑡)

, (5.19)

where 𝑋𝐴(𝑡), 𝑋𝐵(𝑡), 𝑋𝐶(𝑡) are concentrations of three compounds 𝐴, 𝐵, and 𝐶, while
𝐼(𝑡) represents an external input into the system. Assume that 𝑘𝐼𝐴, 𝑘𝐶𝐵, and 𝑘𝐴𝐶
are independent exogenous random variables, that we will denote as 𝑈𝐴, 𝑈𝐵, 𝑈𝐶 re-
spectively, and that the other parameters are constants. Ma et al. (2009) show that
perfect adaptation is achieved under saturation conditions, (1 − 𝑋𝐵(𝑡)) ≫ 𝐾𝐶𝐵 and
𝑋𝐵(𝑡) ≫ 𝐾𝐹𝐵𝐵, in which case the following approximation can be made:

̇𝑋𝐵(𝑡) ≈ 𝑋𝐶(𝑡)𝑘𝐶𝐵 − 𝐹𝐵𝑘𝐹𝐵𝐵. (5.20)

Under the assumption that 𝐼(𝑡) has a constant value, the system converges to an equi-
librium. We will denote the equilibrium equations that are associated with the time
derivatives ̇𝑋𝐴(𝑡) and ̇𝑋𝐶(𝑡) using the natural labelling 𝑓𝐴 and 𝑓𝐶. The equilibrium
equation 𝑓𝐵 is obtained by setting the approximation of the time derivative ̇𝑋𝐵(𝑡)
equal to zero. We initialized this model in an equilibrium state and then simulated
its response after changing the input signal 𝐼 to three different values. Figure 5.3(c)
shows that 𝑋𝐶(𝑡) perfectly adapts to changes in the input signal 𝐼.

Input𝐴

𝐶

𝐵

Output

(a) Negative feedback with a buffer node.

Input𝐴

𝐶

𝐵

Output

(b) Incoherent feedforward loop with proportioner node.

Figure 5.4: The two three-node network topologies that can achieve perfect adaptation inMa et
al. (2009). The motif in Figure 5.4(a) shows Negative Feedback with a Buffer Node (NFBN) 𝐵,
while Figure 5.4(b) shows an Incoherent Feedforward Loop with a Proportioner Node (IFFLP)
𝐵. Orange edges represent saturated reactions, blue edges represent linear reactions, and black
edges are unconstrained reactions. Arrowheads represent a positive influence and edges end-
ing with a circle represent negative influence.

5.3.2 Identification of perfect adaptation

In this section, we consider graphical representations of dynamical systems that can
achieve perfect adaptation. We use these representations to formulate a sufficient
graphical criterion to identify perfect adaptation in first-order dynamical models.
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5.3.2.1 Graphical representations

The functional graph is a compact representation of the structure of a set of first-order
differential equations that are written in canonical form (i.e. derivatives are on the
left-hand side of each equation and functions of variables on the right-hand side).
Vertices in this graph represent variables or derivatives of variables and directed
dashed edges from derivatives to their corresponding variables indicate integration
links. Additionally, there is an edge froma variable to a derivativewhenever that vari-
able appears in the corresponding differential equation. Figures 5.5(a), 5.5(b), and
5.5(c) show the functional graphs for the bathtub model, the viral infection model,
and the reaction network respectively.

𝑋𝐼

̇𝑋𝑂

𝑋𝑂

̇𝑋𝑃

𝑋𝑃

̇𝑋𝐷 𝑋𝐷

𝐼𝐾

(a) Filling bathtub model.

̇𝑋𝑇 𝑋𝑇

̇𝑋𝐼 𝑋𝐼

̇𝑋𝐸 𝑋𝐸

𝐼𝜍

(b) Viral infection model.

̇𝑋𝐴 𝑋𝐴

̇𝑋𝐵 𝑋𝐵

̇𝑋𝐶 𝑋𝐶

𝐼

(c) Reaction network model.

Figure 5.5: The functional graphs of the dynamics of the bathtub model, the viral infection
model, and the reaction network with negative feedback. The input vertices 𝐼𝐾, 𝐼𝜍, and 𝐼 are
represented by black dots.

Contrary to Iwasaki et al. (1994), we do not interpret the functional graphs in
Figure 5.5 causally, because they may not have an intuitive causal interpretation in
terms of regular interventions (e.g. we will not say that 𝑋𝑂 causes ̇𝑋𝑂 nor that ̇𝑋𝑂
causes𝑋𝑂 even though there are directed edges between these vertices in the graph).3
Here, we will consider a graphical representation that represents causal relations in a
system of first-order differential equations in canonical form. To do so, we associate
both the derivative ̇𝑋𝑖(𝑡) and the corresponding variable 𝑋𝑖(𝑡) with the same vertex
𝑣𝑖. We use the natural labelling for the differential equations, so that a vertex 𝑔𝑖 is
associated with the differential equation for ̇𝑋𝑖(𝑡). We then construct a dynamical
bipartite graph ℬdyn = ⟨𝑉, 𝐹, 𝐸⟩ with variable vertices 𝑣𝑖 in 𝑉 and the corresponding
dynamical equation vertices 𝑔𝑖 ∈ 𝐹 and additionally static equation vertices 𝑓𝑖 ∈ 𝐹.
The edge set 𝐸 has an edge (𝑣𝑖 − 𝑓𝑗) whenever 𝑋𝑖(𝑡) appears in the static equation 𝑓𝑗.
Furthermore, there are edges (𝑣𝑖−𝑔𝑗)whenever 𝑋𝑖(𝑡) or ̇𝑋𝑖(𝑡) appears in the dynamic
equation 𝑔𝑗 (which includes the cases 𝑖 = 𝑗 due to the natural labelling used).

The dynamical bipartite graphs for the dynamics of the bathtub model, the viral
infection, and the reaction network with feedback are given in Figures 5.6(a), 5.6(b),

3Bongers and Mooij (2018) provide an alternative notion of the functional graph that does have an
intuitive causal interpretation.
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and 5.6(c), respectively. Henceforth, we will assume that the dynamical bipartite
graph has a perfect matching that extends the natural labelling of the dynamic equa-
tions, i.e. such that all pairs (𝑣𝑖, 𝑔𝑖) are matched. Application of the causal order-
ing algorithm to the associated dynamical bipartite graph for the model of a filling
bathtub, the viral infection model, and the reaction network results in the dynamical
causal ordering graphs in Figures 5.7(a), 5.7(b), and 5.7(c), respectively.4

𝑣𝐼 𝑣𝐷 𝑣𝑃 𝑣𝑂

𝑓𝐼 𝑔𝐷 𝑔𝑃 𝑔𝑂

(a) Filling bathtub, dynamic bi-
partite graph.

𝑣𝑇 𝑣𝐼 𝑣𝐸

𝑔𝑇 𝑔𝐼 𝑔𝐸

(b) Viral infection, dynamic bipart-
ite graph.

𝑣𝐴 𝑣𝐵 𝑣𝐶

𝑔𝐴 𝑔𝐵 𝑔𝐶

(c) Reaction network, dynamic bi-
partite graph.

𝑣𝐼 𝑣𝐷 𝑣𝑃 𝑣𝑂

𝑓𝐼 𝑓𝐷 𝑓𝑃 𝑓𝑂

(d) Filling bathtub, equilibrium bi-
partite graph.

𝑣𝑇 𝑣𝐼 𝑣𝐸

𝑓𝑇 𝑓𝐼 𝑓𝐸

(e) Viral infection, equilibrium bi-
partite graph.

𝑣𝐴 𝑣𝐵 𝑣𝐶

𝑓𝐴 𝑓𝐵 𝑓𝐶

(f) Reaction network, equilibrium
bipartite graph.

Figure 5.6: The dynamical bipartite graphs for the bathtub model, the viral infection, and the
reaction network with negative feedback are presented in Figures (a), (b), and (c), respectively.
The equilibrium bipartite graphs for the bathtub model, the viral infection, and the reaction
network with negative feedback are given in Figures (d), (e), and (f), respectively. Comparing
the equilibrium bipartite graphs with the dynamic bipartite graphs we note that that there is
no edge (𝑣𝐷 −𝑓𝐷) in Figure (d) while (𝑣𝐷 −𝑔𝐷) is present in Figure (a), the edges (𝑣𝐼 −𝑓𝐼) and
(𝑣𝐸 − 𝑓𝐸) are not present in Figure (e) whilst the edges (𝑣𝐼 − 𝑔𝐼) and (𝑣𝐸 − 𝑔𝐸) are present in
Figure (b), and there is no edge (𝑣𝐵 − 𝑓𝐵) in Figure (f) while the edge (𝑣𝐵 − 𝑔𝐵) is present in
Figure (c).

The structure of the equilibrium equations can be used to construct an equilib-
rium causal ordering graph that represents the causal structure of dynamical models
at equilibrium. The equilibrium bipartite graphs for the equilibrium equations of the
filling bathtub, the viral infection, and the reaction network with feedback are given
in Figures 5.6(d), 5.6(e), and 5.6(f), respectively. Application of the causal ordering
algorithm to these equilibrium bipartite graphs results in the equilibrium causal or-
dering graphs in Figures 5.7(d), 5.7(e), and 5.7(f), respectively. Notice that variables
𝑣𝑖 do not always end up in the same cluster with the equilibrium equation 𝑓𝑖 of the
natural labelling. For example, we see in Figure 5.7(d) that a soft intervention target-
ing the equilibrium equation 𝑓𝑂 constructed from the time derivative of the outflow
rate 𝑋𝑂(𝑡) (e.g. a change in the value of 𝑈5) does not affect the value of the outflow

4Our approach here differs from dynamic causal ordering in Iwasaki et al. (1994), who include separ-
ate vertices for derivatives and variables that are linked by ‘definitional’ integration links. Their result is
similar to the functional graph in Figure 5.5(a).
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(a) Filling bathtub, dynamic causal
ordering graph.
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(b) Viral infection, dynamic causal
ordering graph.
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𝐼

(c) Reaction network, dynamic
causal ordering graph.
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(d) Filling bathtub, equilibrium
causal ordering graph.
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(e) Viral infection, equilibrium
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(f) Reaction network, equilibrium
causal ordering graph.

Figure 5.7: The dynamical causal ordering graphs for the bathtub model, the viral infection,
and the reaction network with negative feedback are given in Figures (a), (b), and (c), respect-
ively. The equilibrium causal ordering graphs for the equilibrium equations of the bathtub
model, the viral infection and the reaction network with negative feedback are given in Fig-
ures (d), (e), and (f), respectively. The input vertices 𝐼𝐾, 𝐼𝜍, and 𝐼 are denoted by black dots.
The absence or presence of a directed path from a cluster, equation vertex, or input vertex to a
variable vertex implies that a causal effect is absent or generically present, respectively.

rate 𝑋𝑂 at equilibrium. In Section 4.6 of the previous chapter we showed that, con-
sequently, equations and clusters that may be targeted by interventions should be
clearly distinguished from the variables that could be affected by those interventions
to preserve an unambiguous causal interpretation.

5.3.2.2 Identification of perfect adaptation via causal ordering

With the help of the dynamic causal ordering graph and the equilibrium causal order-
ing graphwe can identify perfect adaptationwithout requiring simulations or explicit
calculations. To do so, we require that Assumption 5.1 below holds.

Assumption 5.1. If there is a directed path from an input vertex to a variable vertex
in the dynamic causal ordering graph of a set of first-order differential equations in
canonical form, possibly with static equations as well, then there is a response of that
variable to changes in the input signal some (small) time-step later.

We believe that, at least for a large class of dynamical systems, this assumption
is satisfied for almost all parameter values w.r.t. the Lebesgue measure on a suitable
parameter space (i.e. the property holds generically). It seems reasonable to assume
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that a change in one of the variables or parameters that appear on the right-hand side
of a first-order differential equation in canonical form at time 𝑡 results in a generic
change in the value of the variable on the left-hand side of that differential equation
at a time 𝑡 + Δ𝑡. Consider a perfect matching 𝑀 for the dynamical bipartite graph
ℬdyn that extends the natural labelling. By construction, directed paths in𝒢(ℬdyn,𝑀),
which coincide with directed paths in the dynamic causal ordering graph CO(ℬdyn),
then correspond to transient causal effects (which may persist at equilibrium).

Under Assumption 5.1, a directed path from the input vertex to a variable vertex
in the dynamical causal ordering graph implies a response to a change in the input
signal. Lemma 5.1, which follows directly from Theorem 4.6, shows that at equilib-
rium, a change in the input signal has no effect on the value of a variable if there
is no directed path from the input vertex to that variable in the equilibrium causal
ordering graph. Theorem 5.1 then formulates sufficient graphical conditions for the
identification of perfect adaptation.

Lemma 5.1. Consider a model consisting of static equations, a set of first-order differ-
ential equations in canonical form, and an input signal. Assume that the equilibrium
bipartite graph has a perfect matching and that the static equations and equilibrium
equations derived from the first-order differential equations are uniquely solvable w.r.t.
the equilibrium causal ordering graph for all relevant values of the input signal. If there
is no directed path from an input vertex to a variable vertex in the equilibrium causal or-
dering graph then a change in the input signal has no effect on the equilibrium solution
of that variable.

These observations directly lead to our first main result. The apparent simplicity
of Theorem 5.1 is due to it relying on appropriate powerful definitions and concepts
such as causal ordering.

Theorem5.1. Consider amodel that satisfies the conditions of Lemma5.1 and assume
that the associated dynamic causal ordering graph has a perfect matching that extends
the natural labelling. Under Assumption 5.1, the presence of a direct path from the
input signal 𝐼 to a variable 𝑋𝑣 in the dynamical causal ordering graph and the absence
of such a path in the equilibrium causal ordering graph, implies that𝑋𝑣 perfectly adapts
to changes in the input signal 𝐼.

Wesee that there is a directed path from the input signal 𝐼𝐾 to 𝑣𝑂 in the dynamical
causal ordering graph in Figure 5.7(a), while no such path exists in the equilibrium
causal ordering graph in Figure 5.7(d). It follows fromTheorem 5.1 that 𝑋𝑂 perfectly
adapts to changes in the input signal 𝐼𝐾. This is in agreement with the simulation
in Figure 5.3(a). Similarly, we can verify that the amount of infected cells 𝑋𝐼 in the
viral infection model perfectly adapts to changes in the input signal 𝐼𝜍 and that 𝑋𝐶
perfectly adapts to 𝐼 in the reaction networkwith negative feedback. Clearly, it is easy
to verify that perfect adaptation in the bathtub model, the viral infection model, and
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the reaction network with negative feedback can be identified using the graphical
criteria in Theorem 5.1 using Figure 5.7.

In Section 5.6 we construct graphical representations for a dynamical model of
a basic enzymatic reaction that achieves perfect adaptation but does not satisfy the
conditions in Theorem 5.1. In Appendix 5.D we will show that the biochemical re-
action network in Figure 5.4(b), which Ma et al. (2009) identified as being capable of
achieving perfect adaptation, does not satisfy the conditions in Theorem 5.1 either.
This shows that these conditions are not necessary for the identification of perfect
adaptation in dynamical systems at equilibrium. The further development of meth-
ods to analyse perfectly adapted dynamical systems that do not satisfy the conditions
of Theorem 5.1 remains a challenge for future work. We believe that the methods
presented in this section are a useful tool for the characterization of a large class of
network topologies that are able to achieve perfect adaptation and for the automated
analysis of the behaviour of certain perfectly adapted dynamical systems.

5.3.3 Recognizing perfect adaptation in data

So far we have only considered how perfect adaptation can be identified in mathem-
atical models. In this section we focus onmethods for model selection from data that
is generated by perfectly adapted dynamical systems. We also discuss how the output
of certain constraint-based causal discovery algorithms can be correctly interpreted
for such systems.

5.3.3.1 Conditional independences

TheMarkov ordering graph can be used to derive conditional independences that are
implied by a model at equilibrium and that can be tested in equilibrium data. The
Markov ordering graphs for the equilibrium distribution of the dynamical models in
the previous sections are constructed after including independent exogenous random
variables to the equilibrium causal ordering graph. For the bathtubmodel, we let ver-
tices {𝑤𝐼, 𝑤1, … , 𝑤5} represent independent exogenous random variables𝑈𝐼, 𝑈1, … , 𝑈5.
For the viral infection model we let𝑤𝑇, 𝑤𝐼,𝑤𝐸,𝑤𝛽 represent independent exogenous
random variables 𝑑𝑇, 𝑑𝐼, 𝑑𝐸, and 𝛽 in equations (5.11), (5.12), and (5.13). Finally, for
the reaction network with negative feedback, we let 𝑤𝐴, 𝑤𝐵, and 𝑤𝐶 represent in-
dependent exogenous random variables that appear in the differential equations for
𝑋𝐴(𝑡), 𝑋𝐵(𝑡), and 𝑋𝐶(𝑡) respectively.

The Markov ordering graphs for the filling bathtub model, the viral infection
model, and the model of a reaction network with a negative feedback loop are given
in Figures 5.8(a), 5.8(b), and 5.8(c) respectively. Note that theMarkov ordering graph
for the bathtub model coincides with the result in Dash and Druzdzel (2008), who
simulated data from the bathtub model until the system reached equilibrium and
then applied the PC algorithm to the equilibrium data. Although Dash (2005) inter-
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(c) Reaction network model.

Figure 5.8: The Markov ordering graphs for the bathtub, the viral infection, and the reaction
network with a negative feedback loop are given in Figures 5.8(a), 5.8(b), and 5.8(c) respect-
ively. Exogenous variables are denoted by dashed circles and input vertices are denoted by
black dots.

prets the learned graphical representation as the ‘causal graph’, this graph does not
have a straightforward causal interpretation, see Section 5.3.3.2 and Section 4.6 in the
previous chapter for more details. Instead, the d-separations in these graphs imply
conditional independences in the equilibrium distribution between the correspond-
ing variables. For example, since 𝑣𝐼 is d-separated from 𝑣𝐷 given 𝑣𝑃 in the Markov
ordering graph of the bathtub model at equilibrium, 𝑋𝐼 will be independent of 𝑋𝐷
given 𝑋𝑃. The implied conditional independences can for instance be used in the
process of model selection. A demonstration of selecting immune responses for a
viral infection model using the Markov ordering graph will be given in Chapter 6.

5.3.3.2 Interpretation of the Markov ordering graph

In this section, we will demonstrate that the Markov ordering graphs in Figures
5.8(a), 5.8(b), and 5.8(c) do not have a straightforward causal interpretation in terms
of interventions, contrary to what is sometimes claimed (Dash, 2005; Iwasaki et al.,
1994). To see this, we first explicitly state what we mean when we talk about ‘causal
relations’. In contemporary literature, the common interpretation is that, in the
context of a model, an intervention on the cause brings about a change in the effect.

So let us consider an intervention on a dynamical model of a filling bathtub at
equilibrium that manipulates the time-derivative ̇𝑋𝐷(𝑡), and consequently the asso-
ciated equilibrium equation 𝑓𝐷 (e.g. by changing one of the parameters that appear in
that differential equation). Assuming that the system converges to equilibrium after
the intervention, the equilibrium causal ordering graph in Figure 5.7(d) tells us that
this intervention on 𝑓𝐷 generically changes the equilibrium distributions of 𝑋𝑂, 𝑋𝑃,
and 𝑋𝐷. Since 𝑓𝐷 is not included in Figure 5.8(a), it is not possible to read off the
effect of this intervention from the Markov ordering graph of the equilibrium distri-
bution. Clearly, if we would interpret a soft intervention on 𝑓𝐷 as an intervention on
𝑣𝐷 in theMarkov ordering graph, thenwewould wrongly conclude that the interven-
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tion has no effect on 𝑋𝑂 and 𝑋𝑃, if we were to interpret the Markov ordering graph
causally. Similarly, the equilibrium causal ordering graph in Figure 5.7(d) tells us
that an intervention targeting 𝑓𝑃 only affects 𝑋𝐷, whereas theMarkov ordering graph
in Figure 5.8(a) would incorrectly suggest that an intervention targeting 𝑣𝑃 affects
both 𝑋𝑃 and 𝑋𝐷, if we were to interpret it causally. We conclude that the directed
edges in the Markov ordering graph do not represent causal relations in terms of soft
interventions.

Analogously, we find that the Markov ordering graph cannot be interpreted in
terms of perfect (“surgical”) interventions either. The correct interpretation of a dir-
ected edge (𝑣𝑖 → 𝑣𝑗) in the Markov ordering graph for the equilibrium distribution of
a set of first-order differential equations is that an intervention targeting equations
in the cluster of 𝑣𝑖 (as encoded in the more informative equilibrium causal ordering
graph) has an effect on the equilibrium distribution of 𝑣𝑗. In many systems, equilib-
rium equations 𝑓𝑖 derived from differential equations for variables 𝑋𝑖(𝑡) end up in the
same cluster as the associated variable 𝑣𝑖. In that case, the Markov ordering graph
has an unambiguous causal interpretation. In the next chapter, which is based on
Blom andMooij (2020), we will show that theMarkov ordering graph for the equilib-
rium distribution of dynamical models in which each variable is self-regulating does
have this straightforward causal interpretation. However, perfectly adaptive systems
do not have this property.

5.3.3.3 Detecting perfect adaptation

The most straightforward approach to detect perfect adaptation is to collect time-
series data while experimentally changing the input signal to the system. One can
then simply observe whether the variables in the system revert to their original val-
ues. Unfortunately, this type of data is not always available. Another way to identify
feedback loops that achieve perfect adaptation uses a combination of observational
equilibrium data, background knowledge, and experimental data. Our second main
result, Theorem 5.2, gives sufficient conditions under which we can identify a system
that is capable of perfect adaptation from experimental equilibrium data.

Theorem5.2. Consider a set of first-order dynamical equations in canonical form, sat-
isfying the conditions of Theorem 5.1, for variables 𝑉 that has equilibrium equations 𝐹
with the natural labelling and consider a soft intervention targeting an equation 𝑓𝑖 ∈ 𝐹.
Assume that the system is uniquely solvable w.r.t. the equilibrium causal ordering graph
both before and after the intervention and that the intervention alters the equilibrium
distribution of all descendants of 𝑓𝑖 in the equilibrium causal ordering graph. If either
(i) the soft intervention does not change the equilibrium distribution of 𝑋𝑖, or
(ii) the soft intervention alters the equilibrium distribution of a variable correspond-

ing to a non-descendant of 𝑣𝑖 in the Markov ordering graph,
or both, then the system is capable of perfect adaptation.

Proof. If condition (i) holds there is no directed path in the causal ordering graph
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from 𝑓𝑖 to 𝑣𝑖 in the equilibrium causal ordering graph, by the assumption that the
soft intervention on 𝑓𝑖 changes the equilibrium distribution of all its descendants. By
definition of the dynamical bipartite graph there is a directed path from 𝑔𝑖 to 𝑣𝑖 in the
dynamical causal ordering graph, because 𝑔𝑖 and 𝑣𝑖 end up in the same cluster (note
that this follows by using the natural labelling as perfect matching and the result that
the causal ordering graph does not depend on the chosen perfect matching, see The-
orem 4.1 andTheorem 4.2). It follows fromTheorem 5.1 that𝑋𝑖 perfectly adapts to an
input signal 𝐼𝑓𝑖 on 𝑓𝑖 (i.e. a soft intervention targeting ̇𝑋𝑖(𝑡) and thus the equilibrium
equation 𝑓𝑖).

Suppose that (i) does not hold while (ii) does hold. By Theorem 4.5 (which
roughly states that the presence of a causal effect at equilibrium implies the pres-
ence of a corresponding directed path in the equilibrium causal ordering graph) we
have that 𝑓𝑖 is an ancestor of 𝑣𝑖 and some 𝑣ℎ in the equilibrium causal ordering graph,
while 𝑣𝑖 is not an ancestor of 𝑣ℎ in theMarkov ordering graph. For a perfectmatching
𝑀 of the equilibrium bipartite graph let 𝑣𝑗 = 𝑀(𝑓𝑖). Then 𝑣𝑗 is in the same cluster as 𝑓𝑖
in the equilibrium causal ordering graph by construction. Note that 𝑗 = 𝑖would give
a contradiction, as then 𝑣𝑖 would be an ancestor of 𝑣ℎ in the Markov ordering graph.
Suppose that the vertex 𝑓𝑗, that is associated with 𝑣𝑗 through the natural labelling, is
matched to a non-ancestor of 𝑣𝑗 in the equilibrium causal ordering graph. Because
of the edge (𝑔𝑗 − 𝑣𝑗) in the dynamical bipartite graph, it follows from Theorem 5.1
that 𝑋𝑗 perfectly adapts to an input signal 𝐼𝑓𝑗 on 𝑓𝑗. Therefore the system is able to
achieve perfect adaptation. Now suppose that 𝑓𝑗 is matched to an ancestor 𝑣𝑘 of 𝑣𝑗,
and consider the vertex 𝑓𝑘. The previous argument can be repeated to show perfect
adaptation for 𝑋𝑘 is present when 𝑓𝑘 is matched to a non-ancestor of 𝑣𝑘 in the equi-
librium causal ordering graph. Otherwise, 𝑓𝑘 must be matched to an ancestor of 𝑣𝑘.
Note that the ancestors of 𝑣𝑘 are a subset of the ancestors of 𝑣𝑗, which in turn are
a subset of the ancestors of 𝑣𝑖. In a finite system of equations, 𝑣𝑖 has a finite set of
ancestors and therefore we eventually find, by repeating our argument, a vertex 𝑓𝑚
that cannot be matched to an ancestor of 𝑣𝑚 because 𝑣𝑚 has no ancestors that are
not matched to one of the vertices 𝑓𝑖, 𝑓𝑗, 𝑓𝑘, … that were considered up to that point.
Because 𝑓𝑚 is matched to a non-ancestor we then find that 𝑋𝑚 perfectly adapts to an
input signal on 𝐼𝑓𝑚 as before.

Based on the result in Theorem 5.2 we can device the following scheme to de-
tect perfectly adapted dynamical systems from data and background knowledge. We
start by collecting observational equilibriumdata and use the PC or LCD algorithm to
learn a (partial) representation of the Markov ordering graph, assuming the observa-
tional distribution to be faithful w.r.t. theMarkov ordering graph. We then consider a
soft intervention that changes a known equation in the first-order differential equa-
tionmodel (i.e. it targets a known equilibrium equation). If this intervention does not
change the distribution of the variable corresponding to this target using the natural
labelling, or if it changes the distribution of identifiable non-descendants of the vari-
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able corresponding to the target according to the learned Markov equivalence class,
we can apply Theorem 5.2 to identify the perfectly adapted dynamical system. Note
that this procedure relies on several assumptions, including faithfulness.

5.4 Application to a protein signalling model

In cell biology, dynamical systems for protein signalling networks are used to model
processes where information is transmitted between and into cells. The underlying
dynamics of such models may have unexpected consequences for causal discovery
efforts using structure learning methods, see also (Sachs, Itani, et al., 2013). Here,
we specifically consider the phenomenon of perfect adaptation in a simple model of
a well-studied molecular pathway. Using the technique of causal ordering to analyse
the conditional independences and causal relations that are implied by themodel, we
elucidate the causal interpretation of the output of constraint-based causal discovery
algorithms like LCD when they are applied to protein expression data.

We do not claim that the model that we analyse here is a realistic model of the
protein signalling pathway. Although we will show that the model is able to explain
certain observations in real-world data, this is not that surprising for a model with
that many parameters.5 Instead, our goal is to demonstrate that in systems with per-
fect adaptation our standard intuitions regarding the output of causal discovery al-
gorithms might fail. Furthermore, we explain the discrepancies between the graph-
ical representations that are produced by causal ordering for equilibrium equations
and causal discovery from equilibrium data. In combination, these two techniques
help us to better understand causal properties of dynamical systems at equilibrium.

5.4.1 Dynamical model

We consider the mathematical model for the Ras-Raf-Mek-Erk signalling cascade in
Shin et al. (2009). Let 𝑉 = {𝑣𝑠, 𝑣𝑟, 𝑣𝑚, 𝑣𝑒} be an index set for endogenous variables
that represent the equilibrium concentrations 𝑋𝑠, 𝑋𝑟, 𝑋𝑚, and 𝑋𝑒 of active Ras, Raf,
Mek, and Erk proteins respectively. The dynamics are given by:

̇𝑋𝑠(𝑡) =
𝐼(𝑡)𝑘𝐼𝑠 (𝑇𝑠 − 𝑋𝑠(𝑡))

(𝐾𝐼𝑠 + (𝑇𝑠 − 𝑋𝑠(𝑡))) (1 + (𝑋𝑒(𝑡)

𝐾𝑒
)
3
2)

− 𝐹𝑠𝑘𝐹𝑠𝑠
𝑋𝑠(𝑡)

𝐾𝐹𝑠𝑠 + 𝑋𝑠(𝑡)
(5.21)

̇𝑋𝑟(𝑡) =
𝑋𝑠(𝑡)𝑘𝑠𝑟(𝑇𝑟 − 𝑋𝑟(𝑡))
𝐾𝑠𝑟 + (𝑇𝑟 − 𝑋𝑟(𝑡))

− 𝐹𝑟𝑘𝐹𝑟𝑟
𝑋𝑟(𝑡)

𝐾𝐹𝑟𝑟 + 𝑋𝑟(𝑡)
(5.22)

5As mathematician John von Neumann once put it: “With four parameters I can fit an elephant, and
with five I can make him wiggle his trunk”.
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̇𝑋𝑚(𝑡) =
𝑋𝑟(𝑡)𝑘𝑟𝑚(𝑇𝑚 − 𝑋𝑚(𝑡))
𝐾𝑟𝑚 + (𝑇𝑚 − 𝑋𝑚(𝑡))

− 𝐹𝑚𝑘𝐹𝑚𝑚
𝑋𝑚(𝑡)

𝐾𝐹𝑚𝑚 + 𝑋𝑚(𝑡)
(5.23)

̇𝑋𝑒(𝑡) =
𝑋𝑚(𝑡)𝑘𝑚𝑒(𝑇𝑒 − 𝑋𝑒(𝑡))
𝐾𝑚𝑒 + (𝑇𝑒 − 𝑋𝑒(𝑡))

− 𝐹𝑒𝑘𝐹𝑒𝑒
𝑋𝑒(𝑡)

𝐾𝐹𝑒𝑒 + 𝑋𝑒(𝑡)
, (5.24)

where we assume that 𝐼(𝑡) is an external stimulus or perturbation.6 Roughly speak-
ing, there is a signalling pathway that goes from 𝐼(𝑡) to 𝑋𝑠(𝑡) to 𝑋𝑟(𝑡) to 𝑋𝑚(𝑡) to 𝑋𝑒(𝑡)
with negative feedback from 𝑋𝑒(𝑡) on 𝑋𝑠(𝑡). As we did for the reaction network with
negative feedback in Section 5.3, we consider the systemunder saturation conditions.
For (𝑇𝑒 − 𝑋𝑒(𝑡)) ≫ 𝐾𝑚𝑒 and 𝑋𝑒(𝑡) ≫ 𝐾𝐹𝑒𝑒 the following approximation holds:

̇𝑋𝑒(𝑡) ≈ 𝑋𝑚(𝑡)𝑘𝑚𝑒 − 𝐹𝑒𝑘𝐹𝑒𝑒. (5.25)

We let 𝑓𝑠, 𝑓𝑟, 𝑓𝑚, and 𝑓𝑒 represent the equilibrium equations corresponding to the dy-
namical equations in (5.21), (5.22), (5.23), and (5.24) respectively, where we assume
the input signal to have a constant value 𝐼. We simulated the model under saturation
conditions until it reached equilibrium, and thenwe recorded the changes in the con-
centrations 𝑋𝑠(𝑡), 𝑋𝑟(𝑡), and 𝑋𝑚(𝑡) after a change in the input signal 𝐼. The results in
Figure 5.3 show that Ras, Raf, and Mek revert to their original values after an initial
response. Clearly the equilibrium concentrations 𝑋𝑠, 𝑋𝑟, and 𝑋𝑚 perfectly adapt to
the input signal 𝐼. The details of this simulation can be found in Appendix 5.A. In
the next section we will show that the concentration of active Erk does not perfectly
adapt to changes in the input signal.
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Figure 5.9: Perfect adaptation in the Ras-Raf-Mek-Erk signalling pathway. After an initial
response to a change of input signal the equilibrium concentrations of active Ras, Raf, and
Mek revert to their original values. The concentration of active Erk does not adapt to changes
in the input signal. The details of the simulation can be found in Appendix 5.A.

6For simplicity, we slightly adapted the model so that the feedback mechanism through Raf Kinase
Inhibitor Protein (RKIP) is not included. In the differential equation for activated Mek we therefore dis-
carded the dependence on RKIP. The goal here is not to give the most realistic model but to elucidate
the phenomenon of perfect interpretation and the causal interpretation of the Markov ordering graph for
perfectly adapted dynamical systems.
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5.4.2 Graphical representations

We consider graphical representations of the protein signalling pathway. A com-
pact representation of the structure of differential equations (5.21), (5.22), (5.23), and
(5.24) is given in Figure 5.10(a). Using the natural labelling, we construct the dynam-
ical bipartite graph in Figure 5.10(b) from the first-order differential equations. The
associated dynamic causal ordering graph, with the input signal 𝐼 included, is given
in Figure 5.10(c).

Under saturation conditions, the equilibrium equations𝑓𝑠, 𝑓𝑟, 𝑓𝑚, and𝑓𝑒 obtained
by setting equations (5.21), (5.22), (5.23), and (5.25) to zero have the bipartite struc-
ture in Figure 5.10(d). Note that there is no edge (𝑓𝑒 − 𝑣𝑒) in the equilibrium bi-
partite graph because 𝑋𝐸(𝑡) does not appear in the approximation (5.25) of (5.24).
The associated equilibrium causal ordering graph is given in Figure 5.10(e), where
the cluster {𝐼} is added with an edge towards the cluster {𝑣𝑒, 𝑓𝑠} because 𝐼 appears in
equation (5.21) and in no other equations. So far we have treated all symbols in equa-
tions (5.21), (5.22), (5.23), and (5.24) as deterministic parameters. Let𝑤𝑠,𝑤𝑟,𝑤𝑚, and
𝑤𝑒 represent independent exogenous random variables appearing in the equilibrium
equations 𝑓𝑠, 𝑓𝑟, 𝑓𝑚, and 𝑓𝑒 respectively. After adding them to the causal ordering
graph with edges to their respective clusters we construct theMarkov ordering graph
for the equilibrium distribution in Figure 5.10(f).

̇𝑋𝑠 𝑋𝑠 ̇𝑋𝑟 𝑋𝑟

̇𝑋𝑚𝑋𝑚̇𝑋𝑒𝑋𝑒

𝐼

(a) Functional graph.
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(b) Dynamic bipartite graph.
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(c) Dynamic causal ordering
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(d) Equilibrium bipartite graph.
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(e) Equilibrium causal ordering
graph.
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(f) Markov ordering graph.

Figure 5.10: Six graphs associated with the protein signalling pathway model under satura-
tion conditions where indices 𝑠, 𝑟,𝑚, 𝑒 correspond to concentrations of active Ras, Raf, Mek,
and Erk respectively. The functional graph, dynamic bipartite graph, and equilibrium bipartite
graph are compact representations of the model. The dynamic causal ordering graph encodes
the presence of transient (generic) causal effects. The equilibrium causal ordering graph rep-
resents the effects of manipulations to the equilibrium equations of the model. The Markov
ordering graph implies conditional independences in the equilibrium distribution of the vari-
ables in the model via d-separations.
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5.4.3 Model predictions and causal discovery

We discuss some of the predictions that can be read off from the equilibrium causal
ordering graph and the Markov ordering graph for the equilibrium distribution of
themodel. In Section 5.5 we will test these predictions in simulated equilibrium data
and real-world protein expression data.

5.4.3.1 Conditional independences and correlations

The d-separations in the Markov ordering graph imply conditional independences
between the corresponding variables (according to Theorem 4.3). From the graph in
Figure 5.10(f) we read off the following (implied) conditional independences:

𝐼 ⟂⟂ 𝑋𝑠, 𝐼 ⟂⟂ 𝑋𝑟, 𝐼 ⟂⟂ 𝑋𝑚, 𝑋𝑒 ⟂⟂ 𝑋𝑟 | 𝑋𝑠, 𝑋𝑒 ⟂⟂ 𝑋𝑚 | 𝑋𝑠, 𝑋𝑠 ⟂⟂ 𝑋𝑚 | 𝑋𝑟.

Amore extensive overviewof d-separations andpredicted conditional independences
can be found in Appendix 5.B. Under the faithfulness assumption, the vertices that
are not d-separated in the Markov ordering graph are dependent in the equilibrium
distribution. Both the noise that is introduced into the model by exogenous random
variables and the model parameters affect the strength of these dependencies. The
Markov ordering graph in Figure 5.10(f) suggests that the correlation between Mek
(i.e. 𝑋𝑚) and Raf (i.e. 𝑋𝑟) should be stronger than the correlation between Mek and
Erk (i.e. 𝑋𝑒) because extra noise is introduced along the longer pathway Mek-Raf-
Ras-Erk.

5.4.3.2 Inhibition of MEK activity

A common biological experiment that is used to study protein signalling pathways is
the use of an inhibitor that decreases the activity of a protein on the pathway. Such
an inhibitor slows down the rate at which the active protein is able to activate an-
other protein. Here, we consider inhibition of Mek activity. Therefore, an experiment
where the activity of Mek is inhibited has an effect on parameters in the differential
equations in which 𝑋𝑚(𝑡) appears. Since ̇𝑋𝑒 is the only child of 𝑋𝑚 in the functional
graph in Figure 5.10(a), we can interpret this experiment as a soft intervention on 𝑔𝑒
in the dynamic bipartite graph and on 𝑓𝑒 in the equilibrium causal ordering graph,
where the rate 𝑘𝑚𝑒 at which Erk is activated is decreased. Since there is a directed
path from 𝑓𝑒 to 𝑣𝑚, 𝑣𝑟, 𝑣𝑠, and 𝑣𝑒 in the causal ordering graph in Figure 5.10(e), we
expect that a change in an input signal 𝐼𝑒 on 𝑓𝑒 (e.g. a change in the parameter 𝑘𝑚𝑒)
affects the equilibrium concentrations of active Mek, Raf, Ras, and Erk respectively.
Note that Ras, Raf, and Mek are non-descendants of Erk in the Markov ordering
graph in Figure 5.10(f), so that under the assumptions in Theorem 5.2 we can use
this experiment to detect perfect adaptation in the protein pathway.
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5.4.3.3 Causal discovery

Suppose that we have observational equilibrium data from the protein signalling
pathway model and also experimental equilibrium data from a setting where Mek
activity is inhibited. The context variable 𝐶 that indicates from which setting the
data was collected (observation or experimental), is not caused by any observed vari-
able, since this variable is set externally by the experimenter at the start of the experi-
ment. This set-up satisfies the conditions of a context variable in the LCD algorithm.
In the case of Mek inhibition, this context variable represents a soft intervention on
the equation 𝑓𝑒 in the causal ordering graph in Figure 5.10(e). The Markov ordering
graph that includes the context variable𝐶 (butwhere the independent exogenous ran-
dom variables have been marginalized out) is given in Figure 5.11. To construct this
graph, the context variable 𝐶 is first added to the equilibrium causal ordering graph
in Figure 5.10(e) as a singleton cluster with an edge towards the cluster {𝑣𝑚, 𝑓𝑒}. The
Markov ordering graph is then constructed from the resulting directed cluster graph
in the usual way. From this, we can read off (conditional) independences to find
the LCD triples that are implied by the equilibrium equations of the model. We find
that (𝐶, 𝑣𝑚, 𝑣𝑟), (𝐶, 𝑣𝑚, 𝑣𝑠), (𝐶, 𝑣𝑚, 𝑣𝑒), (𝐶, 𝑣𝑟, 𝑣𝑠), (𝐶, 𝑣𝑟, 𝑣𝑒), and (𝐶, 𝑣𝑠, 𝑣𝑒) are all LCD
triples.

𝑣𝑒 𝑣𝑠 𝑣𝑟 𝑣𝑚

𝐼 𝐶

Figure 5.11: Markov ordering graph of the protein signalling pathwaywith the context variable
𝐶 included. This context variable indicates whether a cell was treated with a Mek inhibitor or
not. The input signal 𝐼 is taken to be constant over time, but is varied across experiments.

With a conditional independence oracle, and under the faithfulness assumption,
the output of complete causal discovery algorithms (like the PC algorithm if causal
sufficiency is assumed, or more generally, the FCI algorithm) would be the Markov
equivalence class of the Markov ordering graph. Here, it is important to note that
the Markov ordering graph does not have a straightforward causal interpretation for
this perfectly adapted dynamical system. The reasoning is similar to the discussion
in Section 5.3.3.2.

For the protein signalling model, the common biological understanding of the
underlying causal mechanism is that Raf activates Mek, Mek activates Erk, and that
it is very likely that there is negative feedback from a protein downstream of Erk on
Raf (Fritsche-Guenther et al., 2011). Therefore, even though Raf is a direct cause of
Mek (see Figure 5.10(c)), in line with the biological consensus, Mek is also an indir-
ect cause of Raf. At equilibrium, Raf is no longer a cause of Mek due to the perfect
adaptation. This leads to a situation where there is a directed path from Raf to Mek
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in biological consensus networks (like the one in Sachs, Perez, et al. (2005) where the
feedback loop fromErk to Raf has not been included) while there is a directed path in
the opposite direction in the Markov ordering graph for the equilibrium equations. If
we were to apply the LCD algorithm to the experimental Mek inhibition equilibrium
data, we would detect a directed path fromMek to Raf but not from Raf to Mek. The
conclusion that ‘Mek is a cause of Raf’ while no causal relation from Raf onMek can
be detected could, at first glance, appear to be at odds with expert knowledge. Similar
observations of an apparent “causal reversal” in protein interaction networks have
been observed more often, see also Mooij and Heskes (2013), Mooij, Magliacane, et
al. (2020), and Triantafillou et al. (2017). The phenomenon of perfect adaptation can
help to explain differences between biological consensus networks and the output of
causal discovery algorithms. We have shown that a simple model that is capable of
perfect adaptation can explain some of the differences between the output of stand-
ard constraint-based causal discovery algorithms and biological consensus networks
that represent other aspects of the underlying mechanisms. Confusion about causal
relations can be avoided by explicitly specifying the interventions that correspond to
the claimed causal effects, by distinguishing between statements about the equilib-
riumdistribution and the dynamicalmodel, and analysingmodels with our approach
based on the technique of causal ordering.

In Chapter 6, which is based on Blom and Mooij (2020), we will show that the
causal relations and conditional independences that are implied by the equilibrium
equations of a dynamical model may not be preserved when it is combined with an-
other model. They discuss how, for dynamical systems at equilibrium that are only
partially modelled and observed, one can reason about the presence of unobserved
feedback loops and variables that are not self-regulating in the whole system. In
Appendix 5.C, we show that these ideas can also be applied when only 𝑋𝑠(𝑡), 𝑋𝑟(𝑡),
and 𝑋𝑚(𝑡) are included as endogenous variables in the perfectly adapted protein sig-
nalling model that we presented in this section.

5.5 Experiments

In this section we present simulations to confirm the qualitative model predictions
for the protein signallingmodel in Section 5.4. We then consider data from real-world
experiments in order to test the validity of the protein signalling model.

5.5.1 Simulations

We took as input signal 𝐼(𝑡) = 𝑖, with 𝑖 sampled from a uniform distribution on the
interval (0.5, 1.5). We also drew random samples for the parameters 𝑘𝐼𝑠, 𝑘𝑠𝑟, 𝑘𝑟𝑚, and
𝑘𝑚𝑒 from uniform distributions on the intervals (1.2, 1.5), (2.4, 3.0), (1.7, 2.0), and
(0.7, 1.0) respectively. We then simulated the dynamical model in equations (5.21) to
(5.24) with parameter settings: 𝐾𝐼𝑠 = 1.0, 𝐾𝑒 = 1.5, 𝐹𝑠 = 1.0, 𝑘𝐹𝑠𝑠 = 1.0, 𝐾𝐹𝑠𝑠 = 0.9,
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𝐾𝑠𝑟 = 1.0, 𝐹𝑟 = 0.3, 𝑘𝐹𝑟𝑟 = 1.0, 𝐾𝐹𝑟𝑟 = 0.8, 𝐾𝑟𝑚 = 0.9, 𝐹𝑚 = 0.2, 𝑘𝐹𝑚𝑚 = 1.0, 𝐾𝐹𝑚𝑚 =
1.2, 𝐾𝑚𝑒 = 0.0001, 𝐹𝑒 = 0.7, 𝑘𝐹𝑒𝑒 = 1.2, and 𝐾𝐹𝑒𝑒 = 0.0001. The parameters were
chosen in such a way that the approximation in equation (5.25) of equation (5.24) is
valid and so that the system converges to an equilibriumwhere the concentrations of
active proteins are strictly between 0 and 𝑇𝑠 = 1.0, 𝑇𝑟 = 1.0, 𝑇𝑚 = 1.0, and 𝑇𝑒 = 5.0
respectively. We experimented with other parameter values as well, and observed
that the analysis of the qualitative behaviour of the model that we present here is
valid for many values of the parameters.

5.5.1.1 Conditional independences and correlation strength

To test whether the conditional independences in Section 5.4.3.1 hold when the sys-
tem is at equilibrium, we ran the simulation 𝑛 = 500 times until it reached equi-
librium and recorded the equilibrium concentrations 𝑋𝑠, 𝑋𝑟, 𝑋𝑚, and 𝑋𝑒. We tested
all (conditional) independences with a maximum of one conditioning variable us-
ing Spearman’s rank correlation test with a p-value threshold of 0.01. This way, we
retrieved all predicted (conditional) independences and all predicted (conditional)
dependences. Table 5.1 in Appendix 5.B provides a list of the estimated correlations
and the corresponding p-values.7

In Section 5.4.3 we discussed how the Markov ordering graph for the simple
model of a protein signalling pathway suggests that the correlation betweenMek and
Raf should be stronger than the correlation between Mek and Erk. The scatter plots
in Figure 5.12 below confirm this prediction.
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(b) Weaker correlation between active Mek and Erk.

Figure 5.12: Two scatter plots of the Mek-Raf and Mek-Erk concentrations of 100 samples
of the simulation experiment of the protein signalling pathway in Section 5.5.1.1. Note the
difference in the signal to noise ratio. The correlation betweenMek and Raf is clearly stronger
than the correlation betweenMek and Erk. The estimate of the rank correlation betweenMek
and Raf is 0.98 and between Mek and Erk it is −0.51.

7Because the LCD algorithm only uses conditional independence test with a maximum of one variable
in the conditioning test, we do not consider conditional independence tests with larger conditioning sets
in this work. We did experiment with larger conditioning sets but wewere not able to retrieve all predicted
conditional dependences with our parameter settings and only 𝑛 = 500 samples.
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Different parameter regimes correspond to different qualitative behaviour of the
protein pathway model. For example, when almost all of the Erk molecules are ac-
tivated we have that 𝑋𝑒 ≈ 𝑇𝑒. If we repeat the experiment in Section 5.5.1.1 with
𝐾𝑒 = 100 and with 𝐾𝐼𝑠 drawn from a uniform distribution on the interval (1.9, 2.5)
then we find that the correlation between 𝑋𝑚 and 𝑋𝑒 is 0.054with a p-value of 0.087.
The correlation between 𝑋𝑚 and 𝑋𝑟 is 0.76 with a p-value smaller than 2.2𝑒−16. The
dependence between the concentrations of activeMek andErk thus disappears under
saturation conditions for Erk, while the correlation between Mek and Raf remains
strong.

5.5.1.2 Inhibition of MEK activity and LCD

We assessed the effect of decreasing the activity of Mek on the equilibrium concen-
trations of Ras, Raf, Mek, and Erk. To that end, we simulated the model with fixed
parameters 𝐼 = 1.0, 𝑘𝐼𝑠 = 1.0, 𝑘𝑠𝑟 = 1.0, 𝑘𝑟𝑚 = 1.0, and 𝑘𝑚𝑒 = 1.1 until it reached
equilibrium. We then decreased the parameter that controls the activity of Mek to
𝑘𝑚𝑒 = 1.0. The recorded responses of the concentrations of active Ras, Raf, Mek,
and Erk are displayed in Figure 5.13. From this we confirm our prediction that in-
hibition of Mek activity affects the equilibrium concentrations of Ras, Raf, Mek, and
Erk.
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Figure 5.13: Simulation of the response of the concentrations of active Ras, Raf, Mek, and Erk
after inhibition of the activity of Mek. The system starts out in equilibrium with 𝑘𝑚𝑒 = 1.1.
The concentrations of Ras, Raf, Mek, and Erk are recorded after the parameter controllingMek
activity is decreased to 𝑘𝑚𝑒 = 1.0 from 𝑡 = 0 on.

We also simulated a scenario where the inhibition of Mek activity is treated as a
context variable, that can be used to apply the LCD algorithm. We ran the simulation
𝑛 = 500 times with 𝑘𝑚𝑒 = 𝐶, where the context variable 𝐶 is drawn from a uniform
distribution on the interval (0.98, 1.1). To avoid deterministic relations, we drew the
parameter 𝑘𝐹𝑒𝑒 from a uniformdistribution on (0.7, 1.0). We ran the simulations until
the system reached equilibrium and recorded the equilibrium values of the variables.
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We then applied the LCD algorithm to search for LCD triples in this equilibrium data
with context variable 𝐶. For the conditional independence tests we used Spearman’s
rank correlation with a p-value threshold of 0.01. We found the expected LCD triples
(𝐶, 𝑣𝑚, 𝑣𝑟), (𝐶, 𝑣𝑚, 𝑣𝑠), (𝐶, 𝑣𝑚, 𝑣𝑒), (𝐶, 𝑣𝑟, 𝑣𝑠), (𝐶, 𝑣𝑟, 𝑣𝑒), (𝐶, 𝑣𝑠, 𝑣𝑒) and no others.

5.5.2 Protein expression data

In this section we test the predictions of our model on protein signalling data from
real-world experiments. For a thorough description of these experiments we refer to
Sachs, Perez, et al. (2005) and Lun et al. (2017).

5.5.2.1 Correlation strength

In the simulations of the simple protein signalling pathway model we demonstrated
that, as predicted, the correlation between Raf and Mek was much stronger than the
correlation between Mek and Erk, and the latter correlation completely disappeared
in a setting where Erk was saturated. We test these correlations in a multivariate
single-cell protein expression dataset that was used in Sachs, Perez, et al. (2005).
We considered data that was pooled from different experimental settings, in which
cellswere exposed to stimulatory and/or inhibitory interventions.8 Using Spearman’s
rank correlation we found a correlation of 0.78 with a p-value smaller than 2.2𝑒−16
between Raf and Mek. The correlation between Mek and Erk was −0.023 with a
p-value of 0.065. The biological consensus according to Sachs, Perez, et al. (2005) is
that there is a signalling pathway fromRaf toMek to Erk. Note that the simplemodel
in Section 5.4.1 provides an explanation as to why we are not able to reject the null
hypothesis of zero correlation between Mek and Erk.

5.5.2.2 Inhibition of MEK activity

The experimental protein expression data used in Sachs, Perez, et al. (2005) includes
data from an experiment where cells were perturbed with U0126, which is a known
inhibitor of Mek activity. Figures 5.14(a) and 5.14(b) show the log-transformed con-
centrations of active Raf, Mek, and Erk proteins after treatment with and without
the U0126 perturbation. In both cases the sample was treated with anti-CD3 and
anti-CD28, see Sachs, Perez, et al. (2005) for more details on the dataset. These plots
clearly show that inhibition of Mek activity results in an increase in the concentra-
tions of active Raf and active Mek and a reduction in the concentration of active Erk.
This is in agreement with observations in the simulation study.

8In particular, we used specific perturbation conditions with the following reagents: 𝛽2cAMP, AKT
inhibitor, U0126, PMA, G06976, Psitectorigenin, LY294002. In some conditions the general perturbation
by the reagent anti-CD3/CD28 also was included. See Sachs, Perez, et al. (2005) for more details.
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Figure 5.14: Two scatter plots of the active Mek, Raf, and Erk concentrations in the Sachs
data. The red circles correspond to the sample treated with anti-CD3/CD28 and the Mek-
activity inhibitor U0126. The blue circles correspond to the sample treated only with anti-
CD3/CD28. The inhibition of Mek results in an increase in the concentration of active Mek
and Raf, whereas the concentration of active Erk is reduced.

5.5.2.3 Detecting LCD Triples

The perturbations with different inhibitors and stimulants in the data that was used
in Sachs, Perez, et al. (2005) can be treated as context variables (Mooij, Magliacane,
et al., 2020). For the context variable associatedwith a specific perturbation (e.g. AKT
inhibitor) data points collected from the condition with that perturbation were indic-
ated with a 1, while data points collected from other experimental conditions were
indicated with a 0. We then searched for LCD triples involving Raf, Mek, and Erk.
We detected the following LCD triples using Spearman’s rank correlation test with a
p-value threshold of 0.01: (AKT inhibitor, Raf, Mek), (LY294002, Raf, Mek), (Psitect-
origenin, Raf, Mek), (AKT inhbitor, Raf, Erk), and (𝛽2cAMP, Raf, Erk). This suggests
that, if the system was at equilibrium under saturation conditions, there should be
directed paths from Raf to Mek in the Markov ordering graph. Although this obser-
vation agrees with the biological consensus networks that include negative feedback
from Erk on Raf, there is no directed path from Raf to Mek in the Markov ordering
graph for the saturated equilibrium model in Figure 5.10(f). However, the results
of LCD seem to strongly depend on the implementation details. For example, both
Mooij, Magliacane, et al. (2020) and Boeken et al. (2020) report LCD triples in this
dataset that imply a directed path from Mek to Raf, as was predicted by the satur-
ated equilibriummodel. Furthermore, the assumption that the systemwas saturated
and at equilibrium may have been violated. We also found LCD triples that imply
a directed path from Raf to Erk in the Markov ordering graph, if the system was at
equilibrium under saturation conditions. Such LCD triples were also reported by
Boeken et al. (2020), but not by Mooij, Magliacane, et al. (2020). The detected LCD
triples agree with the direction of edges in the Markov ordering graph for the satur-
ated equilibrium model in Figure 5.10(f).
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We also searched for LCD triples involvingMek and Erk in the protein signalling
data in Lun et al. (2017). This data was collected at different time-points after the
abundance of certain proteins was over-expressed in an experiment. We treated the
measured expression levels of targeted proteins as context variables in the LCD al-
gorithm, as Blom, Klimovskaia, et al. (2018) do. We followed the pre-processing steps
in Blom, Klimovskaia, et al. (2018), and selected a subset of the perturbations for our
analysis. There were three replica’s of each experiment and we searched for LCD
triples that consistently appeared in all replicas, using Spearman’s rank correlation
test with a p-value threshold of 0.01. This way, we found the triple (p70RSK, Mek,
Erk) at 𝑡 = 5 from the data of experiments where p70RSK was over-expressed and
the triple (p38, Erk, Mek) at 𝑡 = 60 from the data of experiments where p38 was
over-expressed. The LCD triple (p38, Erk, Mek) suggests that, under saturation con-
ditions and at equilibrium, there is a directed path from Erk to Mek in the Markov
ordering graph. The fact that this does not agree with the Markov ordering graph in
Figure 5.10(f) could be due to a violation of the assumptions of saturation or equi-
librium. The LCD triple (p70RSK, Mek, Erk) suggests that there should be a directed
path from Mek to Erk in the Markov ordering graph. This is in agreement with the
predictions of the protein pathway model at equilibrium and under saturation con-
ditions.

In conclusion, LCD results on real-world data depend on implementation details.
In some cases, they agree with the Markov ordering graph in Figure 5.10(f), in other
cases they don’t.

5.6 Discussion

In this section, we will discuss that the notions of the causal Markov and faithful-
ness conditions, which are used to tie causal relations to conditional independences
in the setting of causal DAGs, are ambiguous in the context of perfectly adapted sys-
tems. We also give an example of a dynamical system for which rewriting of the
equilibrium equations reveals a stronger Markov property. We believe these are in-
teresting topics for future work, because understanding the conditions under which
the output of constraint-based causal discovery algorithms has a straightforward and
intuitive causal interpretation may increase the impact of causal discovery in applic-
ation domains where perfectly adapted systems frequently occur, if the observed lack
of robustness of these methods can be overcome.

5.6.1 Ambiguity of causal Markov and faithfulness conditions

The causal faithfulness condition and causal Markov condition can be used to relate
graphs that represent causal relations between variables to properties of the probabil-
ity distribution on the space of these variables. In thiswork, we explicitly differentiate
between causal relations in a dynamical model and in the equilibrium model. Fur-



5.6. Discussion 165

thermore, we also make a clear distinction between the Markov ordering graph (rep-
resenting conditional independences) and the causal ordering graph (which encodes
causal relations). In this context, the commonly used notions of causal faithfulness
and the causal Markov condition become ambiguous.

To see this, consider the dynamical causal ordering graph for the viral infection
model in Figure 5.7(b). Note that 𝑣𝑇, 𝑣𝐼, 𝑣𝐸 share a cluster and that 𝐼𝜍 is a cause of
𝑋𝑇(𝑡), 𝑋𝐼(𝑡), and 𝑋𝐸(𝑡). At the same time, the Markov ordering graph for the equi-
librium equations implies that 𝑋𝐼 is independent of 𝐼𝜍, see Figure 5.7(e). If we put a
probability distribution on 𝐼𝜍, we could say that the equilibrium distribution of the
variables in the viral infection model is not faithful to cause-effect relations implied
by the dynamic causal ordering graph.

Additionally, in the equilibrium causal ordering graph for the reaction network
with a feedback loop in Figure 5.7(f) we see that the only direct cause, in terms of
interventions on the equilibrium model, of 𝑋𝐴 is 𝐼 and that 𝑋𝐴 is not a cause of 𝑋𝐶.
However, the dynamical causal ordering graph in Figure 5.7(c) indicates that we can-
not expect 𝑋𝐴(𝑡) to be independent of 𝑋𝐶(𝑡) given 𝐼, when the system has not yet
reached equilibrium. Roughly speaking, the distribution of a system that is initial-
ized with certain initial conditions and that has not yet reached equilibrium at time
𝑡 is not Markov with respect to the cause-effect relations in the equilibrium model.
We consider a study into more generally applicable formulations of these concepts
that could be used also for perfectly adaptive systems to be outside the scope of the
current paper.

5.6.2 Rewriting equations may reveal additional structure

Theorem 5.1 specifies sufficient but not necessary conditions for the presence of
perfect adaptation. The equilibrium distribution of some systems is not faithful
to the Markov ordering graph associated with the equilibrium equations in the
model. Here, we will discuss the dynamical model for the basic enzymatic reac-
tion in Chapter 3 and we will demonstrate that this model is capable of perfect
adaptation, does not satisfy the conditions in Theorem 5.1, and that the presence of
directed paths in the equilibrium causal ordering graph does not imply the presence
of a causal effect at equilibrium. The basic enzyme reactionmodels a substrate 𝑆 that
reacts with an enzyme𝐸 to form a complex𝐶, which is converted into a product 𝑃 and
the enzyme 𝐸. The dynamical equations for the concentrations 𝑋𝑆(𝑡), 𝑋𝐸(𝑡), 𝑋𝐶(𝑡),
and 𝑋𝑃(𝑡) are given by:

̇𝑋𝑆(𝑡) = 𝑘0 − 𝑘1𝑋𝑆(𝑡)𝑋𝐸(𝑡) + 𝑘−1𝑋𝐶(𝑡), (5.26)
̇𝑋𝐶(𝑡) = 𝑘1𝑋𝑆(𝑡)𝑋𝐸(𝑡) − (𝑘−1 + 𝑘2)𝑋𝐶(𝑡), (5.27)
̇𝑋𝐸(𝑡) = −𝑘1𝑋𝑆(𝑡)𝑋𝐸(𝑡) + (𝑘−1 + 𝑘2)𝑋𝐶(𝑡), (5.28)
̇𝑋𝑃(𝑡) = 𝑘2𝑋𝐶(𝑡) − 𝑘3𝑋𝑃(𝑡), (5.29)
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where 𝑘−1, 𝑘0, 𝑘1, 𝑘2, 𝑘3 and the initial conditions are independent exogenous ran-
dom variables 𝑆0, 𝐶0, 𝐸0, and 𝑃0 taking value in ℝ>0 (Murray, 2002). We included
the parameter 𝑘1 into the functional graph of this system in Figure 5.15(a). Since
there is a path from 𝑘1 to 𝑋𝑃(𝑡) we would expect that a change in 𝑘1 would generic-
ally lead to a transient response of 𝑋𝑃(𝑡). We verified this by simulating this model
with 𝑘−1 = 1.0, 𝑘0 = 1.0, 𝑘1 = 1.0, 𝑘2 = 0.8, 𝑘3 = 2.5 and with initial conditions
𝑋𝑆(0) = 1.0, 𝑋𝐸(0) = 0.5, 𝑋𝐶(0) = 0.5, and 𝑋𝑃(0) = 1.0 until the system reached
equilibrium. We then recorded the response after changing the input signal 𝑘1. Fig-
ure 5.15(b) shows that 𝑋𝑃 perfectly adapts to changes in the input signal 𝑘1.

̇𝑋𝑆

𝑋𝑆

̇𝑋𝐶

𝑋𝐶

̇𝑋𝑃
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(a) Functional graph of basic enzyme reaction.
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(b) Perfect adaptation in basic enzyme reaction.

Figure 5.15: The functional graph of the basic enzyme reaction modelled by equations (5.26),
(5.27), (5.28), and (5.29) in Figure 5.15(a) shows that there is a directed path from an input sig-
nal that controls the parameter 𝑘1 to all endogenous variables 𝑋𝑆, 𝑋𝐶, 𝑋𝐸, 𝑋𝑃. Figure 5.15(b)
shows that the concentration 𝑋𝑃 perfectly adapts after an initial transient response to a per-
sistent change in the parameter 𝑘1.

The equilibrium equations of the model are given by:

𝑓𝑆 ∶ 𝑘0 − 𝑘1𝑋𝑆𝑋𝐸 + 𝑘−1𝑋𝐶 = 0, (5.30)
𝑓𝐶 ∶ 𝑘1𝑋𝑆𝑋𝐸 − (𝑘−1 + 𝑘2)𝑋𝐶 = 0, (5.31)
𝑓𝐸 ∶ − 𝑘1𝑋𝑆𝑋𝐸 + (𝑘−1 + 𝑘2)𝑋𝐶 = 0, (5.32)
𝑓𝑃 ∶ 𝑘2𝑋𝐶 − 𝑘3𝑋𝑃 = 0, (5.33)
𝑓𝐶𝐸 ∶ 𝑋𝐶 + 𝑋𝐸 − (𝐶0 + 𝐸0) = 0, (5.34)

where the last equation is derived from the constant of motion 𝑋𝐶(𝑡) + 𝑋𝐸(𝑡), as was
discussed in detail in Section 3.2.1. Via the extended causal ordering algorithm (see
Algorithm 3 in the previous chapter) the equilibrium causal ordering graph in Fig-
ure 5.16 can be constructed from the equilibrium equations in the model. There is a
directed path from 𝑘1 to 𝑣𝑃 in theMarkov ordering graph. Therefore, even though the
basic enzyme reaction does achieve perfect adaptation, we see that it does not satisfy
the conditions of Theorem 5.1. The simulation in Figure 5.15(b) indicates that there
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𝑣𝑆 𝑣𝐸 𝑣𝐶 𝑣𝑃

𝑓𝑆 𝑓𝐸 𝑓𝐶𝐸 𝑓𝐶 𝑓𝑃

𝑤𝐸

𝑤𝐶

𝑘0 𝑘−1 𝑘1 𝑘2 𝑘3

Figure 5.16: The equilibrium causal ordering graph constructed from the equilibrium equa-
tions of basic enzyme reaction modelled by equilibrium equations 𝑓𝑆, 𝑓𝐶, 𝑓𝐸, 𝑓𝑝, and 𝑓𝐶𝐸.

is no causal effect of 𝑘1 on 𝑋𝑃 at equilibrium. The basic enzyme reaction is an ex-
ample of a system for which directed paths in the equilibrium causal ordering graph
do not imply generic causal relations between variables.

By combining equilibrium equations we can achieve stronger conclusions for
this particular case. For instance, we could consider the equation 𝑓′𝐶, obtained from
summing equations 𝑓𝑆 and 𝑓𝐶:

𝑓′𝐶 ∶ 𝑘0 − 𝑘2𝑋𝐶 = 0, (5.35)

in combination with 𝑓𝑆, 𝑓𝑃, and 𝑓𝐶𝐸. The equilibrium equations 𝑓𝐶 and 𝑓𝐸 can be
dropped because they are linear combinations of the other equations. The equilib-
rium bipartite graph and equilibrium causal ordering graph associated with 𝑓𝑆, 𝑓𝐶𝐸,
𝑓′𝐶, and 𝑓𝑃 are given in Figure 5.17. An intervention targeting 𝑘1 would correspond to
a soft intervention targeting the equation 𝑓𝑆. Furthermore, in Figure 5.17(b) there is
no directed path from 𝑓𝑆 to 𝑣𝑃, while in Figure 5.16 such a path does exist. Using The-
orem 4.5 we conclude that this soft intervention has no effect on the concentration of
𝑣𝑃 are equilibrium. Clearly, the equilibrium causal ordering graph in Figure 5.17(b)
for the rewritten equilibrium equations reveals more structure than the one in Fig-
ure 5.16 for the original equilibrium equations. Furthermore, the two causal ordering
graphs do not model the same set of perfect interventions. For example, the (non)ef-
fects of an intervention targeting the cluster {𝑣𝑆, 𝑓𝑆} in the causal ordering graph in
Figure 5.17(b), where 𝑓𝑆 is replaced by an equation 𝑣𝑆 = 𝜉𝑆 setting 𝑣𝑆 equal to a con-
stant 𝜉𝑆 ∈ ℝ>0, cannot be read off from the equilibrium causal ordering graph in
Figure 5.16.

5.7 Conclusion

Perfect adaptation is the phenomenon that a dynamical system initially responds to a
change of input signal but reverts back to its original value as the system converges to
equilibrium. We used the technique of causal ordering to obtain sufficient graphical
conditions to identify perfect adaptation in a set of first-order differential equations.
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𝑣𝑆 𝑣𝐸 𝑣𝐶 𝑣𝑃

𝑓𝑆 𝑓𝐶𝐸 𝑓′𝐶 𝑓𝑃

(a) Equilibrium bipartite graph.

𝑣𝑃𝑣𝐶𝑣𝐸𝑣𝑆

𝑓𝑃𝑓′𝐶𝑓𝐶𝐸𝑓𝑆

(b) Equilibrium causal ordering graph.

Figure 5.17: The equilibrium bipartite graph and equilibrium causal ordering graph associated
with the basic enzyme reaction after rewriting the equilibrium equations. The absence of a
directed path from 𝑓𝑆 to 𝑣𝐸, 𝑣𝐶, 𝑣𝑃 indicates that a soft intervention targeting 𝑓𝑆 has no effect
on those variables at equilibrium.

The notion of a dynamical causal ordering graph was introduced to support our ex-
planation of the differences between the equilibrium and dynamical causal structure.
Moreover, we showed how perfect adaptation can be detected in equilibrium obser-
vational and experimental data of soft interventions with known targets.

Constraint-based causal discovery algorithms operate by constructing a graph-
ical representation of the conditional independences in data or a probability distri-
bution, and then reason back aboutwhat this implies for the causal relations between
variables. Under additional assumptions (such as the causalMarkov and faithfulness
conditions) the learned graph can be interpreted causally, but these assumptions can-
not generally be tested in real-world data. We demonstrated that for perfectly adapted
dynamical systems the output of causal discovery algorithms applied to equilibrium
data may appear to be at odds with our understanding of the mechanisms that drive
the system, suggesting that the standard causal Markov and causal faithfulness con-
ditions are not appropriate for such systems. Therefore, in practical applications of
causal discovery to equilibrium data, we should avoid ambiguous terminology that
obscures the possible differences between causal relations that manifest themselves
in dynamical and equilibrium settings.

We illustrated our ideas on a variety of dynamical models and corresponding
equilibrium equations. We applied the technique that we presented in this paper
to a model for a well-studied protein signalling pathway and tested our predictions
both in simulations and on real-world protein expression data. This turned out to
be beneficial for explanation of the differences between the causal interpretation of
the results of local causal discovery in real-world data and biological consensus net-
works. We hope that the results presented in this work will bring the world of causal
inference closer to application domains that use dynamical models, and vice versa.
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5.A Perfect adaptation simulations

For the simulations in Figures 5.3 and 5.9 of the model of a filling bathtub, the viral
infection model, the reaction network with a feedback loop, and the protein pathway
we used the settings listed below. Since we only simulated a single response, we used
constant values for the exogenous random variables as well.

(i) Filling bathtub: First we recorded the behaviour of the system for the paramet-
ers 𝐼𝐾 = 1.2, 𝑈𝐼 = 5.0, 𝑈1 = 1.1, 𝑈2 = 1.0, 𝑈3 = 1.2, 𝑈4 = 1.0, 𝑈5 = 0.8, 𝑔 = 1.0
until it reached equilibrium. We then changed the input parameter 𝐼𝐾 to 0.8,
1.0, and 1.3 and recorded the response until the system reverted to equilibrium.

(ii) Viral infection: For the parameter settings 𝐼𝜍 = 1.6, 𝑑𝑇 = 0.9, 𝛽 = 0.9, 𝑓 =
1.0, 𝑑𝐼 = 0.3, 𝑘 = 1.5, 𝑎 = 0.1, 𝑑𝐸 = 0.25, we simulated the model until it
reached equilibrium. We changed the input parameter 𝐼𝜍 to 1.1, 1.3, and 2.0
and recorded the response until equilibrium was reached.

(iii) Reaction Network: We simulated the model until it reached equilibrium with
parameters 𝐼 = 1.5, 𝑘𝐼𝐴 = 1.4, 𝐾𝐼𝐴 = 0.8, 𝐹𝐴 = 1.1, 𝑘𝐹𝐴𝐴 = 0.9, 𝐾𝐹𝐴𝐴 = 1.2,
𝑘𝐶𝐵 = 0.6, 𝐾𝐶𝐵 = 0.0001, 𝐹𝐵 = 0.7, 𝑘𝐹𝐵𝐵 = 0.7, 𝐾𝐹𝐵𝐵 = 0.0001, 𝑘𝐴𝐶 = 2.1,
𝐾𝐴𝐶 = 1.5, 𝑘𝐵𝐶 = 0.7, 𝐾𝐵𝐶 = 0.6. The settings were chosen in such a way
that the saturation conditions (1 − 𝑋𝐵(𝑡)) ≫ 𝐾𝐶𝐵 and 𝑋𝐵(𝑡) ≫ 𝐾𝐹𝐵𝐵 were
satisfied. We then changed the input signal to 0.25, 1.0, and 10.0 and recorded
the response.

(iv) Protein pathway: The parameter settings of the simulation were 𝐼 = 1.0, 𝑘𝐼𝑠 =
1.0, 𝑇𝑠 = 1.0, 𝐾𝐼𝑠 = 1.0, 𝐾𝑒 = 1.5, 𝐹𝑠 = 1.0, 𝑘𝐹𝑠𝑠 = 1.0, 𝐾𝐹𝑠𝑠 = 0.9, 𝑘𝑠𝑟 = 1.0,
𝐾𝑠𝑟 = 1.0, 𝑇𝑟 = 1.0, 𝐹𝑟 = 0.3, 𝑘𝐹𝑟𝑟 = 1.0, 𝐾𝐹𝑟𝑟 = 0.8, 𝑘𝑟𝑚 = 1.0, 𝐾𝑟𝑚 = 0.9,
𝑇𝑚 = 1.0, 𝐹𝑚 = 0.2, 𝑘𝐹𝑚𝑚 = 1.0, 𝐾𝐹𝑚𝑚 = 1.2, 𝑘𝑚𝑒 = 1.0, 𝐾𝑚𝑒 = 0.0001,
𝑇𝑒 = 1.0, 𝐹𝑒 = 0.7, 𝑘𝐹𝑒𝑒 = 1.2, 𝐾𝐹𝑒𝑒 = 0.0001. This ensured that the saturation
conditions (𝑇𝑒 − 𝑋𝑒(𝑡)) ≫ 𝐾𝑚𝑒 and 𝑋𝑒(𝑡) ≫ 𝐾𝐹𝑒𝑒 were satisfied. After the
system reached equilibrium we changed the input signal to 0.9, 1.1, and 1.5
and recorded the response.

The qualitative behaviour that we presented in Figure 5.3 can be observed for a
range of parameter values and does not require exact tuning of the parameters.

5.B Conditional independences

TheMarkov ordering graph in Figure 5.10(f) was derived from the equilibrium equa-
tions of the protein pathway model under saturation conditions. From this we can
read off the following d-separations:

𝐼
𝑑
⟂ 𝑣𝑠, 𝐼

𝑑
⟂ 𝑣𝑠 | 𝑣𝑟, 𝐼

𝑑
⟂ 𝑣𝑠 | 𝑣𝑚, 𝐼

𝑑
⟂ 𝑣𝑠 | {𝑣𝑟, 𝑣𝑚},
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𝐼
𝑑
⟂ 𝑣𝑟, 𝐼

𝑑
⟂ 𝑣𝑟 | 𝑣𝑠, 𝐼

𝑑
⟂ 𝑣𝑟 | 𝑣𝑚, 𝐼

𝑑
⟂ 𝑣𝑟 | {𝑣𝑠, 𝑣𝑚},

𝐼
𝑑
⟂ 𝑣𝑚, 𝐼

𝑑
⟂ 𝑣𝑚 | 𝑣𝑠, 𝐼

𝑑
⟂ 𝑣𝑚 | 𝑣𝑟, 𝐼

𝑑
⟂ 𝑣𝑚 | {𝑣𝑠, 𝑣𝑟},

𝑣𝑒
𝑑
⟂ 𝑣𝑟 | 𝑣𝑠, 𝑣𝑒

𝑑
⟂ 𝑣𝑟 | {𝑣𝑠, 𝑣𝑚}, 𝑣𝑒

𝑑
⟂ 𝑣𝑟 | {𝑣𝑠, 𝐼}, 𝑣𝑒

𝑑
⟂ 𝑣𝑟 | {𝑣𝑠, 𝑣𝑚, 𝐼},

𝑣𝑒
𝑑
⟂ 𝑣𝑚 | 𝑣𝑠, 𝑣𝑒

𝑑
⟂ 𝑣𝑚 | 𝑣𝑟, 𝑣𝑒

𝑑
⟂ 𝑣𝑚 | {𝑣𝑠, 𝑣𝑟},

𝑣𝑒
𝑑
⟂ 𝑣𝑚 | {𝑣𝑠, 𝐼}, 𝑣𝑒

𝑑
⟂ 𝑣𝑚 | {𝑣𝑟, 𝐼}, 𝑣𝑒

𝑑
⟂ 𝑣𝑚 | {𝑣𝑠, 𝑣𝑟, 𝐼},

𝑣𝑠
𝑑
⟂ 𝑣𝑚 | 𝑣𝑟, 𝑣𝑠

𝑑
⟂ 𝑣𝑚 | {𝑣𝑒, 𝑣𝑟}, 𝑣𝑠

𝑑
⟂ 𝑣𝑚 | {𝑣𝑟, 𝐼}, 𝑣𝑠

𝑑
⟂ 𝑣𝑚 | {𝑣𝑒, 𝑣𝑟, 𝐼}.

It is easy to check that the equilibrium equations and endogenous variables in
this model are uniquely solvable w.r.t. the causal ordering graph (see Definition 4.8).
Therefore, Theorem 4.3 tells us that the d-separations above imply conditional inde-
pendences between the variables in the model. Table 5.1 shows that the conditional
independences with a maximum conditioning set of size one that are implied by the
Markov ordering graph are also present in the simulated data.

5.C Reasoning about feedback loops

Consider the protein signalling model under saturation conditions that is defined by
equations (5.21), (5.22), (5.23), and (5.25). Suppose that the system is only partially
modelled and that 𝑋𝑒(𝑡) is treated as a latent exogenous variable 𝑈𝑒 in the submodel
for 𝑋𝑠(𝑡), 𝑋𝑟(𝑡), and 𝑋𝑚(𝑡) defined by equations:

̇𝑋𝑠(𝑡) =
𝐼(𝑡)𝑘𝐼𝑠 (𝑇𝑠 − 𝑋𝑠(𝑡))

(𝐾𝐼𝑠 + (𝑇𝑠 − 𝑋𝑠(𝑡))) (1 + (𝑈𝑒

𝐾𝑒
)
3
2)

− 𝐹𝑠𝑘𝐹𝑠𝑠
𝑋𝑠(𝑡)

𝐾𝐹𝑠𝑠 + 𝑋𝑠(𝑡)
, (5.36)

̇𝑋𝑟(𝑡) =
𝑋𝑠(𝑡)𝑘𝑠𝑟(𝑇𝑟 − 𝑋𝑟(𝑡))
𝐾𝑠𝑟 + (𝑇𝑟 − 𝑋𝑟(𝑡))

− 𝐹𝑟𝑘𝐹𝑟𝑟
𝑋𝑟(𝑡)

𝐾𝐹𝑟𝑟 + 𝑋𝑟(𝑡)
, (5.37)

̇𝑋𝑚(𝑡) =
𝑋𝑟(𝑡)𝑘𝑟𝑚(𝑇𝑚 − 𝑋𝑚(𝑡))
𝐾𝑟𝑚 + (𝑇𝑚 − 𝑋𝑚(𝑡))

− 𝐹𝑚𝑘𝐹𝑚𝑚
𝑋𝑚(𝑡)

𝐾𝐹𝑚𝑚 + 𝑋𝑚(𝑡)
. (5.38)

Application of the causal ordering technique to the equilibrium equations as-
sociated with these differential equations results in the Markov ordering graph in
Figure 5.18. Assuming faithfulness, the d-connections in this graph indicate that the
input signal 𝐼 is dependent on the equilibrium distributions of 𝑋𝑠, 𝑋𝑟, and 𝑋𝑚. How-
ever, if 𝑋𝑠, 𝑋𝑟, and 𝑋𝑚 were generated by the larger model with the Markov ordering
graph in Figure 5.10(f), we know that a statistical test would indicate that they are in-
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dependent. The discrepancy between theMarkov ordering graph for the equilibrium
equations of the submodel and these statistical testswould not be due to a faithfulness
violation but could be wholly explained by a holistic modelling approach (i.e. by not
assuming all unobserved causes to be exogenous to the observed variables). Accord-
ing to Corollary 6.1 and Proposition 6.1 in the next chapter, which is based on Blom
and Mooij (2020), the discrepancy between the observed and predicted conditional
independences implies the presence of a non-selfregulating variable and an unob-
served dynamical feedback loop involving 𝑋𝑠, 𝑋𝑟, and 𝑋𝑚, if we assume faithfulness.
This is in agreementwith the fact that the dynamic variable𝑋𝑒(𝑡) is not self-regulating
and that there is a feedback loop in the dynamical causal ordering graph (indicated
by the cluster {𝑣𝑠, 𝑣𝑟, 𝑣𝑚, 𝑣𝑒, 𝑓𝑠, 𝑓𝑟, 𝑓𝑚, 𝑓𝑒}) in the saturated protein signalling model in
Section 5.4. Interestingly, we can infer the presence of feedback without modelling
or observing 𝑋𝑒(𝑡).

𝑣𝑠 𝑣𝑟 𝑣𝑚

𝑤𝑠 𝑤𝑟 𝑤𝑚

𝐼

Figure 5.18: Markov ordering graph for the partial model of the protein signalling pathway
model given by equations (5.36), (5.37), and (5.38).

5.D IFFLP Network

The IFFLP topology in Ma et al. (2009) that we discussed in Section 5.3.1.3 could be
a graphical representation of the following differential equations:

̇𝑋𝐴(𝑡) = 𝐼(𝑡)𝑘𝐼𝐴
(1 − 𝑋𝐴(𝑡))

𝐾𝐼𝐴 + (1 − 𝑋𝐴(𝑡))
− 𝐹𝐴𝑘𝐹𝐴𝐴

𝑋𝐴(𝑡)
𝐾𝐹𝐴𝐴 + 𝑋𝐴(𝑡)

, (5.39)

̇𝑋𝐵(𝑡) = 𝑋𝐴(𝑡)𝑘𝐴𝐵
(1 − 𝑋𝐵(𝑡))

𝐾𝐴𝐵 + (1 − 𝑋𝐵(𝑡))
− 𝐹𝐵𝑘𝐹𝐵𝐵

𝑋𝐵(𝑡)
𝐾𝐹𝐵𝐵 + 𝑋𝐵(𝑡)

, (5.40)

̇𝑋𝐶(𝑡) = 𝑋𝐴(𝑡)𝑘𝐴𝐶
(1 − 𝑋𝐶(𝑡))

𝐾𝐴𝐶 + (1 − 𝑋𝐶(𝑡))
− 𝑋𝐵(𝑡)𝑘𝐵𝐶

𝑋𝐶(𝑡)
𝐾𝐵𝐶 + 𝑋𝐶(𝑡)

, (5.41)

where 𝐼(𝑡) represents an external input into the system. This network is capable of
perfect adaptation if the first termof ̇𝑋𝐵(𝑡) is in the saturated region (1−𝑋𝐵(𝑡)) ≫ 𝐾𝐴𝐵
and the second term is in the linear region 𝑋𝐵(𝑡) ≪ 𝐾𝐹𝐵𝐵, which allows us to make
the following approximation:

𝑑𝑋𝐵(𝑡)
𝑑𝑡 ≈ 𝑋𝐴(𝑡)𝑘𝐴𝐵 −

𝐹𝐵𝑘𝐹𝐵𝐵
𝐾𝐹𝐵𝐵

𝑋𝐵(𝑡). (5.42)
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Therefore, a steady state solution 𝑋𝐵 for 𝐵 is proportional to the steady state solution
𝑋𝐴 for 𝐴. Since both terms in equation (5.41) are proportional to 𝑋𝐴 we find that the
steady state solution 𝑋𝐶 for 𝐶 is a function of only the parameters 𝑘𝐴𝐶, 𝐾𝐴𝐶, 𝑘𝐵𝐶,
𝐾𝐵𝐶, 𝑘𝐴𝐵, 𝐹𝐵, 𝑘𝐹𝐵𝐵, and 𝐾𝐹𝐵𝐵 (note that 𝑋𝐴 factors out of the equilibrium equation
corresponding to (5.41)), and hence it does not depend on the input parameter 𝐼.
Since a change in the input signal 𝐼 changes ̇𝑋𝐴(𝑡) there is a transient effect on 𝑋𝐴(𝑡).
Similarly there must also be a transient effect on both 𝑋𝐵(𝑡) and 𝑋𝐶(𝑡). It follows that
the system achieves perfect adaptation.

The equilibrium equations associated with equations (5.39), the approximation
(5.42) to (5.40), and (5.41) are given by:

𝑓𝐴 ∶ 𝐼𝑘𝐼𝐴
(1 − 𝑋𝐴)

𝐾𝐼𝐴 + (1 − 𝑋𝐴)
− 𝐹𝐴𝑘𝐹𝐴𝐴

𝑋𝐴
𝐾𝐹𝐴𝐴 + 𝑋𝐴

= 0, (5.43)

𝑓𝐵 ∶ 𝑋𝐴𝑘𝐴𝐵 −
𝐹𝐵𝑘𝐹𝐵𝐵
𝐾𝐹𝐵𝐵

𝑋𝐵 = 0, (5.44)

𝑓𝐶 ∶ 𝑋𝐴𝑘𝐴𝐶
(1 − 𝑋𝐶)

𝐾𝐴𝐶 + (1 − 𝑋𝐶)
− 𝑋𝐵𝑘𝐵𝐶

𝑋𝐶
𝐾𝐵𝐶 + 𝑋𝐶

= 0. (5.45)

The associated equilibrium causal ordering graph in Figure shows that there is a dir-
ected path from the input signal 𝐼 to the cluster {𝑣𝐴, 𝑣𝐵, 𝑣𝐶}. Therefore, the conditions
of Theorem 5.1 are not satisfied for the system with input signal 𝐼.

𝑣𝐴 𝑣𝐵 𝑣𝑉

𝑓𝐴 𝑓𝐵 𝑓𝐶

𝐼

Figure 5.19: The equilibrium causal ordering graph for the IFFLP network modelled by equa-
tions (5.43), (5.44), and (5.45).
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Table 5.1: The conditional independences in the simulation of the protein pathway described
in Section 5.5.1 were assessed using Spearman’s rank correlations. With a p-value threshold of
0.01, d-separations with a separating set of size 0 or 1 coincide with conditional independences
with conditioning sets of size 0 or 1.

Independence test Correlation p-value d-separation

𝐼 ⟂⟂ 𝑋𝑠 0.029 0.51 yes
𝐼 ⟂⟂ 𝑋𝑟 0.020 0.66 yes
𝐼 ⟂⟂ 𝑋𝑚 0.021 0.64 yes
𝐼 ⟂⟂ 𝑋𝑒 0.777 < 2.2𝑒−16 no
𝑋𝑠 ⟂⟂ 𝑋𝑟 0.957 < 2.2𝑒−16 no
𝑋𝑠 ⟂⟂ 𝑋𝑚 0.933 < 2.2𝑒−16 no
𝑋𝑠 ⟂⟂ 𝑋𝑒 −0.561 < 2.2𝑒−16 no
𝑋𝑟 ⟂⟂ 𝑋𝑚 0.977 < 2.2𝑒−16 no
𝑋𝑟 ⟂⟂ 𝑋𝑒 −0.542 < 2.2𝑒−16 no
𝑋𝑚 ⟂⟂ 𝑋𝑒 −0.524 < 2.2𝑒−16 no
𝐼 ⟂⟂ 𝑋𝑠 | 𝑋𝑟 0.037 0.83 yes
𝐼 ⟂⟂ 𝑋𝑠 | 𝑋𝑚 0.027 0.61 yes
𝐼 ⟂⟂ 𝑋𝑟 | 𝑋𝑠 −0.030 0.51 yes
𝐼 ⟂⟂ 𝑋𝑟 | 𝑋𝑚 −0.005 0.91 yes
𝐼 ⟂⟂ 𝑋𝑚 | 𝑋𝑠 −0.018 0.69 yes
𝐼 ⟂⟂ 𝑋𝑚 | 𝑋𝑟 0.010 0.83 yes
𝑋𝑒 ⟂⟂ 𝑋𝑟 | 𝑋𝑠 −0.019 0.67 yes
𝑋𝑒 ⟂⟂ 𝑋𝑚 | 𝑋𝑠 −2.1 ⋅ 10−4 0.99 yes
𝑋𝑒 ⟂⟂ 𝑋𝑚 | 𝑋𝑟 0.031 0.49 yes
𝑋𝑠 ⟂⟂ 𝑋𝑚 | 𝑋𝑟 −0.031 0.48 yes
𝐼 ⟂⟂ 𝑋𝑒 | 𝑋𝑠 0.959 6.0 ⋅ 10−275 no
𝐼 ⟂⟂ 𝑋𝑒 | 𝑋𝑟 0.937 1.6 ⋅ 10−229 no
𝐼 ⟂⟂ 𝑋𝑒 | 𝑋𝑚 0.925 1.2 ⋅ 10−211 no
𝐼 ⟂⟂ 𝑋𝑠 | 𝑋𝑒 0.894 4.7 ⋅ 10−175 no
𝐼 ⟂⟂ 𝑋𝑟 | 𝑋𝑒 0.832 1.5 ⋅ 10−129 no
𝐼 ⟂⟂ 𝑋𝑚 | 𝑋𝑒 0.799 1.1 ⋅ 10−111 no
𝑋𝑒 ⟂⟂ 𝑋𝑠 | 𝑋𝑟 −0.176 8.0 ⋅ 10−5 no
𝑋𝑒 ⟂⟂ 𝑋𝑠 | 𝑋𝑚 −0.236 9.3 ⋅ 10−8 no
𝑋𝑒 ⟂⟂ 𝑋𝑠 | 𝐼 −0.928 8.7 ⋅ 10−216 no
𝑋𝑒 ⟂⟂ 𝑋𝑟 | 𝑋𝑚 −0.164 2.2 ⋅ 10−4 no
𝑋𝑒 ⟂⟂ 𝑋𝑟 | 𝐼 −0.885 5.3 ⋅ 10−167 no
𝑋𝑒 ⟂⟂ 𝑋𝑚 | 𝐼 −0.859 2.8 ⋅ 10−146 no
𝑋𝑠 ⟂⟂ 𝑋𝑟 | 𝐼 0.957 1.7 ⋅ 10−269 no
𝑋𝑠 ⟂⟂ 𝑋𝑟 | 𝑋𝑒 0.939 5.3 ⋅ 10−232 no
𝑋𝑠 ⟂⟂ 𝑋𝑟 | 𝑋𝑚 0.590 3.2 ⋅ 10−48 no
𝑋𝑠 ⟂⟂ 𝑋𝑚 | 𝐼 0.933 3.0 ⋅ 10−223 no
𝑋𝑠 ⟂⟂ 𝑋𝑚 | 𝑋𝑒 −0.907 1.2 ⋅ 10−188 no
𝑋𝑟 ⟂⟂ 𝑋𝑚 | 𝐼 −0.977 0 no
𝑋𝑟 ⟂⟂ 𝑋𝑚 | 𝑋𝑒 0.968 2.8 ⋅ 10−302 no
𝑋𝑟 ⟂⟂ 𝑋𝑚 | 𝑋𝑠 0.807 1.1 ⋅ 10−115 no
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Chapter 6

Robustness of model predictions
under extension

Based on:
Robustness of model predictions under extension,

T. Blom, and J.M. Mooij,
To appear in: Proceedings of Causal Discovery & Causality-Inspired Machine LearningWorkshop at Neural

Information Processing Systems, 2020.
Arxiv preprint: 2012.04723v1

Often, mathematical models of the real world are simplified representations of
complex systems. A caveat to using models for analysis is that predicted causal ef-
fects and conditional independences may not be robust under model extensions, and
therefore applicability of suchmodels is limited. In thiswork, we consider conditions
under which qualitative model predictions are preserved when two models are com-
bined. We show how to use the technique of causal ordering to efficiently assess the
robustness of qualitative model predictions and characterize a large class of model
extensions that preserve these predictions. For dynamical systems at equilibrium, we
demonstrate how novel insights help to select appropriate model extensions and to
reason about the presence of feedback loops. We apply our ideas to a viral infection
model with immune responses.

6.1 Introduction

Key aspects of the scientific method include generating a model or hypothesis that
explains a phenomenon, deriving testable predictions from this model or hypothesis,
and designing an experiment to test these predictions in the real world. There are
quite some interesting statistical systems for which simple Structural Causal Models
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(Bongers, Forré, et al., 2020; Pearl, 2009) do not model all causal and Markov prop-
erties of the system, as we demonstrated in Chapter 3, Chapter 4, and Chapter 5. In
those cases the causal ordering algorithm, first introduced by Simon (1953), can be
used to better understand these properties. In this paper we consider what happens
when two systems are combined and we give conditions under which the properties
of the whole system can be understood in terms of properties of its parts. We discuss
how a holistic approach towards causal modelling may result in novel insights when
we derive and test the predictions of systems for which new properties emerge from
the combination of its parts.

We consider the practical issue of assessing whether qualitative model predic-
tions are robust under model extensions. We revisit the observations of De Boer
(2012) concerning a viral infectionmodel and demonstrate that the qualitative causal
predictions of this model can change dramatically when the model is extended with
extra equations describing simple immune responses. To assess the robustness of
predicted causal relations or conditional independences, it would be useful to gain a
better understanding of the class of model extensions that lead to changes in these
predictions. We propose the technique of causal ordering (Simon, 1953) as an effi-
cient method to assess the robustness of qualitative causal predictions. This allows
us to characterize a large class of model extensions under which these predictions are
preserved. We also consider the class of models that are obtained from the equilib-
rium equations of dynamical models where each variable is self-regulating. For this
class, we show that the predicted presence of causal relations and absence of condi-
tional independences is robust when the model is extended with new equations.

The promise of causal discovery algorithms is that they are able to learn causal
relations from a combination of background knowledge and data. The general idea
of many constraint-based approaches (e.g. PC or FCI and variants thereof (Colombo
et al., 2012; Mooij and Claassen, 2020; Spirtes, Glymour, et al., 2000; J. Zhang, 2008))
is to exploit information about conditional independences in a probability distribu-
tion to construct an equivalence class of graphs that encode certain aspects of the
probability distribution, and then draw conclusions about the causal relations from
the graphs. There is a large amount of literature concerning particular algorithms for
which the learned structure expresses causal relations under certain conditions (e.g.
linearity, causal sufficiency, absence of feedback loops), see for example (Colombo
et al., 2012; Forré et al., 2018; Hyttinen et al., 2012; Lacerda et al., 2008; Mooij and
Claassen, 2020; Mooij, Magliacane, et al., 2020; Richardson and Spirtes, 1999; Spirtes,
Glymour, et al., 2000; Strobl, 2018; J. Zhang, 2008). In this chapter, our main interest
is in dynamicalmodelswith the property that graphs of variables that encode the con-
ditional independences of their equilibrium distribution should not be interpreted
causally at all. Given a model for a subsystem, we present novel insights that enable
us to rejectmodel extensions based on conditional independences in equilibriumdata
of the subsystem. We demonstrate how, for the equilibrium distribution of certain
dynamical models, this approach allows us to reason about the presence of variables
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that are not self-regulating and feedback mechanisms that involve unobserved vari-
ables. We hope that, in future work, existing algorithms that are designed for causal
discovery could be useful for reasoning about appropriate model extensions from a
combination of partial models and observational data of a subsystem.

6.1.1 Causal ordering graph and the effects of interventions

To keep the contents of this chapter self-contained, we give a concise introduction
to the technique of causal ordering, introduced by Simon (1952), and presented in
Chapter 4.1 In short, the causal ordering algorithm takes a set of equations as input
and returns a causal ordering graph that encodes the effects of interventions and a
Markov ordering graph that implies conditional independences between variables in
the model, see Theorem 4.3. Compared with the popular framework of Structural
CausalModels (Pearl, 2009), the distinction between the causal ordering andMarkov
ordering graphs does not provide new insights for acyclic models but it results in
non-trivial conclusions for models with feedback, as suggested in the discussion in
Section 6.2.4 and Chapter 4.

We consider models consisting of equations 𝐹 that contain endogenous vari-
ables 𝑉, independent exogenous random variables 𝑊, and constant parameters 𝑃.
The structure of equations and the endogenous variables that appear in them can be
represented by the associated bipartite graph ℬ = ⟨𝑉, 𝐹, 𝐸⟩, where each endogenous
variable is associated with a distinct vertex in 𝑉, and each equation is associated with
a distinct vertex in 𝐹. There is an edge (𝑣 − 𝑓) ∈ 𝐸 if and only if variable 𝑣 ∈ 𝑉 ap-
pears in equation 𝑓 ∈ 𝐹. The causal ordering algorithm constructs a directed cluster
graph ⟨𝒱, ℰ⟩, where𝒱 is a partition of vertices 𝑉 into clusters and ℰ is a set of directed
edges from vertices in 𝑉 to clusters in𝒱. Given a bipartite graphℬ = ⟨𝑉, 𝐹, 𝐸⟩with a
perfect matching𝑀, the causal ordering algorithm proceeds with the following three
steps:2

(i) For 𝑣 ∈ 𝑉, 𝑓 ∈ 𝐹 orient edges (𝑣 − 𝑓) as (𝑣 ← 𝑓) when (𝑣 − 𝑓) ∈ 𝑀 and as
(𝑣 → 𝑓) otherwise; this yields a directed graph 𝒢(ℬ,𝑀).

(ii) Find all strongly connected components 𝑆1, 𝑆2, … , 𝑆𝑛 of 𝒢(ℬ,𝑀). Let 𝒱 be the
set of clusters 𝑆𝑖∪𝑀(𝑆𝑖) for 𝑖 ∈ {1, … , 𝑛}, where𝑀(𝑆𝑖) denotes the set of vertices
that are matched to vertices in 𝑆𝑖 in matching𝑀.

(iii) Let cl(𝑓) denote the cluster in 𝒱 containing 𝑓. For each (𝑣 → 𝑓) such that
𝑣 ∉ cl(𝑓) add an edge (𝑣 → cl(𝑓)) to ℰ.

Optionally, independent exogenous random variables and parameters can be ad-
ded as singleton clusters with edges towards the clusters of the equations in which
they appear. It was shown that the resulting directed cluster graph CO(ℬ) = ⟨𝒱, ℰ⟩,

1Actually, we consider an equivalent algorithm for causal ordering that was shown to be more compu-
tationally efficient by (Gonçalves et al., 2016; Nayak, 1995), see Chapter 4 for more details.

2A perfect matching𝑀 is a subset of edges in a bipartite graph so that every vertex is adjacent to exactly
one edge in𝑀. Note that not every bipartite graph has a perfect matching.
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which we refer to as the causal ordering graph, is independent of the choice of per-
fect matching, see Theorem 4.1. Example 6.1 shows how the algorithm works and a
graphical illustration of the algorithm for amore elaborate cyclic model can be found
in the supplement.

Example 6.1. Let 𝑉 = {𝑣1, 𝑣2}, 𝑊 = {𝑤1, 𝑤2}, and 𝑃 = {𝑝1, 𝑝2} be index sets. Con-
sider model equations 𝑓1 and 𝑓2 with endogenous variables (𝑋𝑣)𝑣∈𝑉, exogenous ran-
dom variables (𝑈𝑤)𝑤∈𝑊 and constant parameters 𝐶𝑝 with 𝑝 ∈ 𝑃 below.

𝑓1 ∶ 𝐶𝑝1𝑋𝑣1 − 𝑈𝑤1 = 0, (6.1)
𝑓2 ∶ 𝐶𝑝2𝑋𝑣2 + 𝑋𝑣1 + 𝑈𝑤2 = 0. (6.2)

The bipartite graphℬ = ⟨𝑉, 𝐹, 𝐸⟩ in Figure 6.1(a), with 𝐸 = {(𝑣1 −𝑓1), (𝑣1 −𝑓2), (𝑣2 −
𝑓2)} is a compact representation of the model structure. This graph has a perfect
matching 𝑀 = {(𝑣1 − 𝑓1), (𝑣2 − 𝑓2)}. By orienting edges in ℬ according to the rules
in step (i) of the causal ordering algorithm we obtain the directed graph ⟨𝑉 ∪ 𝐹, 𝐸dir⟩
with 𝐸dir = {(𝑓1 → 𝑣1), (𝑓2 → 𝑣2), (𝑣1 → 𝑓2)}. The clusters 𝐶1 = {𝑣1, 𝑓1} and 𝐶2 =
{𝑣2, 𝑓2} are added to 𝒱 in step (ii) of the algorithm, and the edge (𝑣1 → 𝐶2) is added
to ℰ in step (iii). Finally, we may add the parameters 𝑃 and independent exogenous
random variables𝑊 as singleton clusters to 𝒱, and the edges (𝑝1 → 𝐶1), (𝑤1 → 𝐶1),
(𝑝2 → 𝐶2), and (𝑤2 → 𝐶2) to ℰ. The resulting causal ordering graph is given in
Figure 6.1(b). △

Throughout this chapter, we will assume that models are uniquely solvable with
respect to the causal ordering graph, which roughly means that for each cluster,
the equations in that cluster can be solved uniquely for the endogenous variables
in that cluster (see Definition 4.8 for details). A perfect intervention on a cluster
that contains equation vertices represents a model change where the equations in
the targeted cluster are replaced by equations that set the endogenous variables in
that cluster equal to constant values. A soft intervention targets an equation, para-
meter, or exogenous variable, but does not affect which variables appear in the equa-
tions. We say that there is a directed path from a vertex 𝑥 to a vertex 𝑦 in a causal
ordering graph ⟨𝒱, ℰ⟩ if either cl(𝑥) = cl(𝑦) or there is a sequence of clusters 𝑉1 =
cl(𝑥), 𝑉2, … , 𝑉𝑘−1, 𝑉𝑘 = cl(𝑦) so that for all 𝑖 ∈ {1, … , 𝑘 − 1} there is a vertex 𝑧𝑖 ∈ 𝑉𝑖
such that (𝑧𝑖 → 𝑉𝑖+1) ∈ ℰ. It can be shown that a) the presence of a directed path
from a cluster, equation, parameter, or exogenous variable that is targeted by a soft
intervention towards a certain variable in the causal ordering graph implies that the
intervention has a generic effect on that variable and b) if no such path exists there is
no causal effect of the intervention on that variable, see Theorem 4.5 formore details.
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𝑣1 𝑣2

𝑓1 𝑓2

(a) Bipartite graph.

𝑤1

𝑝1

𝑣1 𝑣2

𝑓1 𝑓2

𝑤2

𝑝2

(b) Causal ordering graph.

𝑤1 𝑣1 𝑣2 𝑤2

(c) Markov ordering graph.

Figure 6.1: The bipartite graph in Figure (a) is a compact representation of the model in Ex-
ample 6.1. The corresponding causal ordering graph and Markov ordering graph are given in
Figures (b) and (c) respectively. Exogenous variables are denoted by dashed circles and para-
meters by black dots.

6.1.2 Markov ordering graph and causal discovery

The causal ordering graph CO(ℬ) = ⟨𝒱, ℰ⟩ of model equations 𝐹 with endogen-
ous variables 𝑉, exogenous random variables𝑊, constant parameters 𝑃, and bipart-
ite graph ℬ can be used to construct the Markov ordering graph, which is a DAG
MO(ℬ) = ⟨𝑉 ∪𝑊, 𝐸⟩, with (𝑥 → 𝑦) ∈ 𝐸 if and only if (𝑥 → cl(𝑦)) ∈ ℰ. The Markov
ordering graph for themodel equations in Example 6.1 is given in Figure 6.1(c). It has
been shown that, under the assumption of unique solvability w.r.t. the causal order-
ing graph, d-separations in the Markov ordering graph imply conditional independ-
ences between the corresponding variables (Blom, Van Diepen, et al., 2021). Hence-
forth, we will assume that the probability distribution of the solution (𝑋𝑣)𝑣∈𝑉 to a set
of model equations is faithful to the Markov ordering graph. In other words, each
conditional independence in the distribution implies a d-separation in the Markov
ordering graph. Under the assumption that data is generated from such a model,
some causal discovery algorithms, such as the PC algorithm (Spirtes, Glymour, et al.,
2000), aim to construct the Markov equivalence class of the Markov ordering graph.
In this work, we will specifically focus on feedback models for which the Markov or-
dering graph of the equilibrium distribution, and consequently the output of many
causal discovery algorithms, does not have a straightforward causal interpretation.

6.2 Causal ordering for a viral infection model

This work was inspired by a viral infection model in De Boer (2012), who showed
through explicit calculations that the predictions of the model are not robust under
addition of an immune response. This sheds doubt on the correct interpretation of
variables and parameters in the model. For many systems it is intrinsically difficult
to study their behaviour in detail. The use of simplified mathematical models that
capture key characteristics aids in the analysis of a certain properties of the system.
The hope is that the explanations inferred from model equations are legitimate ac-
counts of the true underlying system (De Boer, 2012). In reality, a modeller must
take into account that the outcome of these studies may be contingent on the specif-
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ics of the model design. Here, we demonstrate how causal ordering can be used as a
scalable tool to assess the robustness of model predictions without requiring explicit
calculations.

6.2.1 Viral infection without immune response

Let 𝑈𝜍 be a production term for target cells, 𝑑𝑇 the death rate for target cells, 𝑈𝑓
the fraction of successful infections, and 𝑈𝛿 the death rate of productively infected
cells. Define 𝛽 = 𝑏𝑝

𝑐
, where 𝑏 is the infection rate, 𝑝 the amount of virus produced

per infected cell, and 𝑐 the clearance rate of viral particles. The following first-order
differential equations describe how the amount of target cells 𝑋𝑇(𝑡) and the amount
of infected cells 𝑋𝐼(𝑡) evolve over time (De Boer, 2012):

̇𝑋𝑇(𝑡) = 𝑈𝜍 − 𝑑𝑇𝑋𝑇(𝑡) − 𝛽𝑋𝑇(𝑡)𝑋𝐼(𝑡), (6.3)
̇𝑋𝐼(𝑡) = (𝑈𝑓𝛽𝑋𝑇(𝑡) − 𝑈𝛿)𝑋𝐼(𝑡), (6.4)

Suppose that we want to use this simple viral infection model to explain why the
set-point viral load (i.e. the total amount of virus circulating in the bloodstream) of
chronically infected HIV-patients differs by several orders of magnitude, as De Boer
(2012) does. To analyse this problem we look at the equilibrium equations that are
implied by equations (6.3) and (6.4):3

𝑓𝑇 ∶ 𝑈𝜍 − 𝑑𝑇𝑋𝑇 − 𝛽𝑋𝑇𝑋𝐼 = 0, (6.5)
𝑓+𝐼 ∶ 𝑈𝑓𝛽𝑋𝑇 − 𝑈𝛿 = 0. (6.6)

Throughout the remainder of this work we will use this natural labelling of equi-
librium equations, where the equation derived from the derivative ̇𝑋𝑖(𝑡) is labelled
𝑓𝑖. For first-order differential equations that are written in canonical form, ̇𝑋𝑖(𝑡) =
𝑔𝑖(𝑋(𝑡)), the natural labelling always exists.

Suppose that 𝑈𝜍, 𝑈𝑓 and 𝑈𝛿 are independent exogenous random variables tak-
ing values in ℝ>0 and 𝑑𝑇, 𝛽 are strictly positive parameters. The associated bipartite
graph, causal ordering graph, and Markov ordering graph are given in Figure 6.2.
The causal ordering graph tells us that soft interventions targeting 𝑈𝜍, 𝑈𝑓, 𝑈𝛿, 𝑑𝑇, or
𝛽 generically have an effect on the equilibrium distribution of the amount of infected
cells 𝑋𝐼. From here on, we say that the causal ordering graph of a model predicts the
generic presence or absence of causal effects. The Markov ordering graph shows that
𝑣𝑇 and 𝑤𝜍 are d-separated. This implies that the amount of target cells 𝑋𝑇 should be
independent of the production rate 𝑈𝜍 when the system is at equilibrium. Hence-
forth, we will say that the Markov ordering graph predicts the generic presence or
absence of conditional dependences.

3Sincewe are only interested in strictly positive solutionswe removed𝑋𝐼 from the equilibriumequation
𝑓𝐼 ∶ (𝑈𝑓𝛽𝑋𝑇 −𝑈𝛿)𝑋𝐼 = 0 to obtain 𝑓+𝐼 .
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𝑣𝑇 𝑣𝐼

𝑓𝑇 𝑓+𝐼

(a) Bipartite graph.
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(b) Causal ordering graph.

𝑣𝑇 𝑣𝐼 𝑤𝜍

𝑤𝛿

𝑤𝑓

(c) Markov ordering graph.

Figure 6.2: Graphical representations of the viral infection model in equations (6.5) and (6.6).
Vertices 𝑣𝑖 and 𝑤𝑗 correspond to variables 𝑋𝑖 and 𝑈𝑗, respectively. The causal ordering graph
represents generic effects of interventions. The d-separations in Figure 6.2(c) imply condi-
tional independences.

6.2.2 Viral infection with a single immune response

The viral infection model in equations (6.3) and (6.4) can be extended with a simple
immune response 𝑋𝐸(𝑡) by adding the following dynamic and static equations:

̇𝑋𝐸(𝑡) = (𝑈𝑎𝑋𝐼(𝑡) − 𝑑𝐸)𝑋𝐸(𝑡), (6.7)
𝑋𝛿(𝑡) = 𝑑𝐼 + 𝑈𝑘𝑋𝐸(𝑡), (6.8)

where 𝑈𝑎 is an activation rate, 𝑑𝐸 and 𝑑𝐼 are turnover rates and 𝑈𝑘 is a mass-action
killing rate (De Boer, 2012). Note that the exogenous random variable 𝑈𝛿 is now
treated as an endogenous variable𝑋𝛿(𝑡) instead. We derive the following equilibrium
equations using the natural labelling provided by equations (6.7) and (6.8):4

𝑓+𝐸 ∶ 𝑈𝑎𝑋𝐼 − 𝑑𝐸 = 0, (6.9)
𝑓𝛿 ∶ 𝑋𝛿 − 𝑑𝐼 − 𝑈𝑘𝑋𝐸 = 0, (6.10)

Henceforth, we will call the addition of equations 𝐹+ to 𝐹 a model extension. Notice
that, when two sets of equations are combined, there may exist variables that were
exogenous in the submodel (i.e. the original model) but that are endogenous within
the whole model (i.e. the extended model). Generally, equations 𝐹+ may contain en-
dogenous variables in 𝑉 and exogenous variables in𝑊 but they may also contain ad-
ditional endogenous variables𝑉+ and additional exogenous variables𝑊+. Parameters
and exogenous variables that appear in equations 𝐹 can appear as endogenous vari-
ables in 𝑉+ and in the extended model 𝐹ext = 𝐹 ∪ 𝐹+. In that case, these variables are
no longer considered to be parameters of exogenous variables within the extended
model.

Suppose that𝑈𝑎 and𝑈𝑘 are independent exogenous random variables taking val-
ues inℝ>0 and 𝑑𝐸, 𝑑𝐼 are parameters taking value inℝ>0. The bipartite graph, causal
ordering graph, and Markov ordering graph associated with equations (6.5), (6.6),
(6.9), and (6.10) (with 𝑋𝛿 replacing 𝑈𝛿) are given in Figure 6.3. The causal ordering

4Analogous to changing 𝑓𝐼 to 𝑓+𝐼 for strictly positive solutions, we will look at 𝑓
+
𝐸 instead of 𝑓𝐸.
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𝑣𝑇 𝑣𝐼 𝑣𝐸 𝑣𝛿

𝑓𝑇 𝑓+𝐼 𝑓+𝐸 𝑓𝛿

(a) Bipartite graph.

𝑣𝑇 𝑣𝐼 𝑣𝐸 𝑣𝛿
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(b) Causal ordering graph.

𝑣𝑇 𝑣𝐼
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𝑤𝜍 𝑤𝑎

𝑤𝑘𝑤𝑓

(c) Markov ordering graph.

Figure 6.3: Graphical representations of the viral infection model with a single immune re-
sponse. The presence or absence of causal relations and d-connections implied by the graphs
in Figure 6.2 are not preserved if a single immune response is added.

graph predicts a causal effect of 𝑈𝜍 and 𝑑𝑇 on 𝑋𝑇 but not on 𝑋𝐼. By comparing with
the predictions of the causal ordering graph in Figure 6.2(b), we find that effects of
interventions targeting 𝑈𝜍 and 𝑑𝑇 are not robust under the model extension. The
Markov ordering graph of the extended model shows that 𝑤𝜍 is d-connected to 𝑣𝑇,
and hence𝑈𝜍 and𝑋𝑇 are dependent. We conclude that the independence between𝑈𝜍
and 𝑋𝑇 that was implied by the Markov ordering graph of the viral infection model
without immune response is not robust under the model extension.

The systematic graphical procedure followed here easily leads to the same causal
conclusions as De Boer (2012) obtained by explicitly solving the equilibrium equa-
tions. In addition, it leads to predictions regarding the conditional (in)dependences
in the equilibrium distribution.

6.2.3 Viral infection with multiple immune responses

The following static and dynamical equations describe multiple immune responses:

̇𝑋𝐸𝑖(𝑡) =
𝑝𝐸𝑋𝐸𝑖(𝑡)𝑈𝑎𝑖𝑋𝐼(𝑡)

ℎ + 𝑋𝐸𝑖(𝑡) + 𝑈𝑎𝑖𝑋𝐼(𝑡)
− 𝑑𝐸𝑋𝐸𝑖(𝑡), 𝑖 = 1, 2, … , 𝑛 (6.11)

𝑋𝛿(𝑡) = 𝑑𝐼 + 𝑈𝑘
𝑛

∑
𝑖
𝑈𝑎𝑖𝑋𝐸𝑖(𝑡), (6.12)

where there are 𝑛 immune responses, 𝑈𝑎𝑖 is the avidity of immune response 𝑖, 𝑝𝐸 is
the maximum division rate, and ℎ is a saturation constant (De Boer, 2012). For 𝑛 = 2
we can derive equilibrium equations 𝑓𝐸1, 𝑓𝐸2, and 𝑓𝛿 using the natural labelling as we
did for the equilibrium equations in the previous section. Together with the equilib-
rium equations (6.5) and (6.6) (with 𝑋𝛿 replacing 𝑈𝛿) for the viral infection model
this is another extended model. The bipartite graph of this extended model is given
in Figure 6.5(a), while the causal ordering graph can be found in Figure 6.4(a). By
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comparing the directed paths in this causal ordering graph with that of the original
viral infectionmodel (i.e. themodel without an immune response) in Figure 6.2(b), it
can be seen that the predicted presence of causal relations is preserved under exten-
sion of the model with multiple immune responses, while the predicted absence of
causal relations is not. Similarly, by comparing d-separations in theMarkov ordering
graphs in Figure 6.2(c) with those in Figure 6.4(b), we find that predicted conditional
dependences are preserved under the extensions, while the predicted conditional in-
dependences are not.

𝑣𝑇 𝑣𝐼 𝑣𝐸1 𝑣𝐸2 𝑣𝛿

𝑓+𝐼 𝑓𝑇 𝑓𝐸1 𝑓𝐸2 𝑓𝛿

𝑤𝜍 𝑤𝑘 𝑤𝑎1 𝑤𝑎2 𝑤𝑓

𝑑𝑇

𝛽

ℎ

𝑝𝐸

𝑑𝐸

𝑑𝐼

(a) Causal ordering graph.

𝑣𝑇 𝑣𝐼 𝑣𝐸1 𝑣𝐸2 𝑣𝛿

𝑤𝜍

𝑤𝑘

𝑤𝑎1

𝑤𝑎2

𝑤𝑓

(b) Markov ordering graph.

Figure 6.4: Graphical representations of the viral infection model with multiple immune re-
sponses. The presence of causal relations and d-connections in Figure 6.2 is preserved.

6.2.4 Markov ordering graphs and causal interpretations

Here, wewill demonstrate that theMarkov ordering graphs for the equilibrium equa-
tions of the viral infection models neither have a straightforward causal interpreta-
tion in terms of soft interventions targeting parameters, exogenous variables, or equa-
tions nor in terms of perfect interventions on variables in the dynamical model. To
see this, consider the Markov ordering graph in Figure 6.3(c) for the viral infection
with a single immune response. The edge (𝑣𝐼 → 𝑣𝑇) cannot correspond to the effect of
a soft intervention targeting 𝑓+𝐼 , because the causal ordering graph in Figure 6.3(b)
shows that there is no such effect. Clearly, directed paths in the Markov ordering
graph do not necessarily represent the effects of soft interventions. The natural way
to model a perfect intervention targeting a variable in the Markov ordering graph is
to replace the (differential) equation of that variable with an equation setting that
variable equal to a certain value in the underlying dynamical model (Mooij, Janzing,
and Schölkopf, 2013). By explicitly solving equilibrium equations it is easy to check
that replacing 𝑓𝛿 with an equation setting 𝑋𝛿 equal to a constant generically changes
the distribution of 𝑋𝐼. Since there is no directed path from 𝑣𝛿 to 𝑣𝐼 in the Markov
ordering graph, the effect of this perfect intervention would not have been predicted
by the Markov ordering graph, if it would have been interpreted causally. Therefore,
contrary to the causal ordering graph, the Markov ordering graph does not have a
causal interpretation in terms of soft or perfect interventions on the true underlying
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dynamical model.

6.3 Robust causal predictions under model extensions

One way to gauge the robustness of model predictions is to check to what extent they
depend on the model design. The example of a viral infection with different immune
responses in the previous section indicates that qualitative causal predictions entailed
by the causal ordering graph of a mathematical model may strongly depend on the
particulars of the model. Both the implied presence or absence of causal relations
at equilibrium and the implied presence or absence of conditional independences at
equilibriummay change under certainmodel extensions. Under what conditions are
these qualitative model predictions preserved under extensions? In this section, we
characterize a large class of model extensions under which qualitative equilibrium
predictions are preserved.

Theorem 6.1 gives a sufficient condition on model extensions under which the
predicted generic presence of causal relations and predicted generic presence of con-
ditional dependences at equilibrium is preserved. The proof is given in the supple-
ment.

Theorem 6.1. Consider model equations 𝐹 containing endogenous variables 𝑉 with
bipartite graph ℬ. Suppose 𝐹 is extended with equations 𝐹+ containing endogenous
variables in𝑉∪𝑉+, where𝑉+ contains endogenous variables that are added by themodel
extension.5 Let ℬext be the bipartite graph associated with 𝐹ext = 𝐹 ∪ 𝐹+ and 𝑉ext =
𝑉 ∪ 𝑉+, and ℬ+ the bipartite graph associated with the extension 𝐹+ and 𝑉+, where
variables in𝑉appearing in𝐹+ are treated as exogenous variables (i.e. they are not added
as vertices inℬ+). If ℬ andℬ+ both have a perfect matching then:
(i) ℬext has a perfect matching,
(ii) ancestral relations in CO(ℬ) are also present in CO(ℬext),
(iii) d-connections inMO(ℬ) are also present inMO(ℬext).

This result characterizes a large set of extensions under which the implied
causal effects and conditional dependences of a model are preserved. Consider again
the equilibrium behaviour of the viral infection models in Section 6.2. We already
showed explicitly that the extension of the viral infection model with multiple im-
mune responses preserved the predicted presence of causal relations and conditional
dependences, but with the help of Theorem 6.1 we only would have needed to check
whether the bipartite graph in Figure 6.5(c) has a perfect matching to arrive at the
same conclusion. The bipartite graph for the extension with a single immune re-
sponse in Figure 6.5(b) does not have a perfect matching and hence the conditions
of Theorem 6.1 do not hold. Recall that this model extension did not preserve the
predicted presence of causal relations.

5𝑉+ may also contain parameters or exogenous variables that appear in 𝐹 and become endogenous in
the extended model.
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The theorem below gives a stronger condition under which (conditional) inde-
pendence relations and the absence of causal relations that are implied by a model
are also predicted by the extended model. The proof is provided in the supplement.

Theorem 6.2. Let 𝐹, 𝐹+, 𝐹ext, 𝑉, 𝑉+, 𝑉ext, ℬ, ℬ+, and ℬext be as in Theorem 6.1. If ℬ
and ℬ+ both have perfect matchings and no vertex in 𝑉+ is adjacent to a vertex in 𝐹 in
ℬext then:6
(i) ancestral relations absent in CO(ℬ) are also absent in CO(ℬext),
(ii) d-connections absent inMO(ℬ) are also absent inMO(ℬext).

This result characterizes a large class of model extensions under which all qualit-
ativemodel predictions are preserved. Consider again the equilibriummodels for the
viral infection in Section 6.2. The bipartite graph for the extension with a single im-
mune response, which we obtain by adding equations (6.9) and (6.10), does not have
a perfect matching. In the bipartite graph associated with the viral infection model
with multiple immune responses the additional endogenous variable 𝑣𝛿 is adjacent
to 𝑓𝐼. Neither of the model extensions satisfies the conditions of Theorem 6.2. We
already demonstrated that neither of the model extensions preserves all qualitative
model predictions. An example of a model extension that does satisfy the conditions
in Theorem 6.1 and 6.2 is an acyclic structural causal model that is extended with
another acyclic structural causal model such that the additional variables are non-
ancestors of the original ones. Together, Theorem 6.1 and 6.2, can be used to under-
stand when the properties of a system can be understood by studying the properties
of its parts.

6.4 Selection of model extensions

So far, we have consideredmethods to assess the robustness of qualitative model pre-
dictions. In this section we will show how this idea results in novel opportunities
regarding causal discovery. In particular, if we assume that the systems that we ob-
serve are part of a larger partially observed system, then we can use the methods in
this paper to reason about causal mechanisms of unobserved variables. Consider,
for example, the viral infection model for which we have demonstrated that exten-
sions with different immune responses imply different (conditional) independences
between variables in the original model. The Markov ordering graphs in Figures
6.2(c), 6.3(c), and 6.4(b) imply the following (in)dependences:

(i) Viral infection without immune response: 𝑈𝜍 ⟂⟂ 𝑋𝑇, 𝑈𝜍 ⟂⟂/ 𝑋𝐼.
(ii) Viral infection with single immune response: 𝑈𝜍 ⟂⟂/ 𝑋𝑇, 𝑈𝜍 ⟂⟂ 𝑋𝐼.
(iii) Viral infection with multiple immune responses: 𝑈𝜍 ⟂⟂/ 𝑋𝑇, 𝑈𝜍 ⟂⟂/ 𝑋𝐼.

6Avertex in𝑉+ is considered adjacent to𝐹 if it correspondswith one of the exogenous randomvariables
or parameters in 𝐹 that become endogenous in the model extension.
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Given amodel for variables𝑋𝑇 and𝑋𝐼 only, we can reject model extensions based
on the (conditional) independences for variables 𝑋𝑇, 𝑋𝐼, and 𝑈𝜍. Using this holistic
modelling approach, we can reason about an unknownmodel extension without ob-
serving the newmechanisms or variables. In the remainder of this section, we further
discuss how this idea can be applied to equilibrium data of dynamical systems.

6.4.1 Reasoning about self-regulating variables

We say that a variable in a set of first-order differential equations in canonical form is
self-regulating if it can be solved uniquely from the equilibrium equation that is con-
structed from its derivative. For models in which every variable is self-regulating
there exists a perfect matching where each variable 𝑣𝑖 is matched to its associ-
ated equilibrium equation 𝑓𝑖 according to the natural labelling, for more details see
Lemma 6.1 in the supplement.7 It then follows from Theorem 6.1 that the presence
of ancestral relations and d-connections is robust under dynamical model extensions
in which each variable is self-regulating, as is stated more formally in Corollary 6.1
below.

Corollary 6.1. Consider a first-order dynamical model in canonical form for endogen-
ous variables 𝑉 and an extension consisting of canonical first-order differential equa-
tions for additional endogenous variables𝑉+. Let 𝐹 and 𝐹ext = 𝐹∪𝐹+ be the equilibrium
equations of the original and extended model respectively. If all variables in 𝑉 ∪𝑉+ are
self-regulating then (ii) and (iii) of Theorem 6.1 hold.

Corollary 6.1 characterizes a class of models under which qualitative predictions
for the equilibrium distribution are robust, but the result can also be interpreted from
a different angle. Suppose that we have equilibrium data that is generated by an ex-
tended dynamical model with equilibrium equations 𝐹ext, but we only have a partial
model consisting of equations in 𝐹 for a subset 𝑉 ⊆ 𝑉ext = 𝑉∪𝑉+ of variables that ap-
pear in 𝐹ext = 𝐹 ∪𝐹+. If we would find conditional independences between variables
in 𝑉 that do not correspond to d-separations in the Markov ordering graph of the
partial model, this does not necessarily mean that the model equations are wrong. It
could also be the case, for example, that we are wrong to assume that the system can
be studied in a reductionist manner and that themodel should be extended. Further-
more, under the assumption that data is generated from the equilibrium distribution

7Interestingly, the Markov ordering graph for the equilibrium equations of such a model always has
a causal interpretation. By construction of the causal ordering graph from the bipartite graph and the
perfect matching provided by the natural labelling, we know that a vertex 𝑣𝑖 always appears in a cluster
with 𝑓𝑖 in the causal ordering graph. The presence or absence of directed paths in the Markov ordering
graph can then easily be associated with the presence or absence of directed paths in the causal ordering
graph. Consequently, the Markov ordering graph can be interpreted in terms of both soft interventions
targeting equations and perfect interventions that set variables equal to a constant by replacement of the
associated dynamical and equilibrium equations. Note that dynamical systems with only self-regulating
variables were also considered by Mooij, Janzing, and Schölkopf (2013), where it was shown that their
equilibria can be modelled as Structural Causal Models without self-loops.
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of a dynamical model, Corollary 6.1 tells us that conditional independences in the
data that are not predicted by the equations of a partial model imply the presence
of variables that are not self-regulating, if we assume faithfulness. This shows that,
given amodel for a subsystem, we can reason about the properties of unobserved and
unknown variables in thewhole system. Consider, for example, themodel of the viral
infection without immune response and assume that this is a submodel of a larger
system. Suppose that we observe a conditional independence between𝑈𝜍 and 𝑋𝐼 and
assume that the model equations of the submodel are correct. Since the Markov or-
dering graph in Figure 6.2(c) implies that𝑈𝜍 and𝑋𝐼 are dependent, Corollary 6.1 tells
us that there must be variables that are not self-regulating in the extended system. If
the extended system can be described by the strictly positive solutions of the viral
infection model with a single immune response, so that 𝑈𝜍 and 𝑋𝐼 are independent,
then we see from equations (6.5), (6.6), (6.9), and (6.10) that both 𝑋𝐸(𝑡) and 𝑋𝐼(𝑡) are
not self-regulating.

6.4.2 Reasoning about feedback loops

We say that an extension of a dynamicalmodel introduces a new feedback loopwith the
original dynamical model when there is feedback in the extended dynamical model
that involves variables in both the original model and the model extension. To make
this definition more precise, consider the set 𝐸nat of edges (𝑣𝑖−𝑓𝑖) that are associated
with the natural labelling of the equilibrium equations of the extended dynamical
model. The feedback loops in the dynamical model coincide with cycles in the dir-
ected graph 𝒢(ℬnat,𝑀nat) that is obtained by applying step (i) of the causal ordering
algorithm to the bipartite graphℬnat = ⟨𝑉ext, 𝐹ext, 𝐸ext ∪ 𝐸nat⟩using the perfectmatch-
ing𝑀nat = 𝐸nat.8 The following proposition can be used to reason about the presence
of partially unobserved feedback loops given a model and observations for a subsys-
tem.

Proposition 6.1. Consider a first-order dynamical model in canonical form for en-
dogenous variables 𝑉 and an extension consisting of canonical first-order differential
equations for additional endogenous variables 𝑉+. Let 𝐹 and 𝐹ext = 𝐹 ∪ 𝐹+ be the equi-
librium equations of the original and extended model respectively. Let ℬ = ⟨𝑉, 𝐹, 𝐸⟩
be the bipartite graph associated with 𝐹 and ℬext = ⟨𝑉ext, 𝐹ext, 𝐸ext⟩ the bipartite graph
associated with 𝐹ext. Assume thatℬ andℬext both have perfect matchings. If the model
extension does not introduce a new feedback loop with the original dynamical model,
then d-connections inMO(ℬ) are also present inMO(ℬext).

Proposition 6.1 characterizes a class of model extensions underwhich qualitative
model predictions are robust, but it also shows howwe can reason about the existence

8Note that a feedback loop in the dynamical model does not imply a feedback loop in the equilibrium
equations as well. For example, there is feedback in the dynamical equations (6.3), (6.4), but there is no
feedback in the causal ordering graph of the equilibrium equations in Figure 6.2(b) nor in the directed
graph that is constructed in step (i) of the causal ordering algorithm.
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𝑣𝑇 𝑣𝐼 𝑣𝐸1 𝑣𝐸2 𝑣𝛿
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(a) Extended model.

𝑣𝐸 𝑣𝛿
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𝑓𝐸1 𝑓𝐸2 𝑓𝛿
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Figure 6.5: The bipartite graphs associated with the viral infec-
tion model with multiple immune responses, the single immune
response extension, and the multiple immune response extension
are given in Figures 6.5(a), 6.5(b), and 6.5(c), respectively.
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Figure 6.6: Causal order-
ing graph for positive and
non-positive solutions of
the viral infection model.

of unobserved feedback loops. To be more precise, it shows that, given a submodel
for a subsystem, the presence of conditional independences that are not predicted
by the submodel imply the existence of an unobserved feedback loop, if we assume
faithfulness. If, for example, we assume that the viral infectionmodel without an im-
mune response is a submodel of the system that is described by the strictly positive
equilibrium solutions of the viral infection model with a single immune response,
then we would observe an independence between 𝑈𝜍 and 𝑋𝑇 that is not predicted by
the model equations of the submodel. Proposition 6.1 would then imply that there
is an unobserved feedback loop. Indeed, it can be seen from equations (6.3), (6.4),
(6.7), (6.8) that there is an unobserved feedback loop from 𝑋𝐼(𝑡) to 𝑋𝐸(𝑡) to 𝑋𝛿(𝑡) and
back to 𝑋𝐼(𝑡), while the Markov ordering graphs in Figures 6.2(c) and 6.3(c) imply
that𝑈𝜍 and 𝑋𝐼 are dependent in the original model and independent in the extended
model. We consider the use of existing structure learning algorithms for the detec-
tion of feedback loops in models with variables that are not self-regulating from a
combination of background knowledge and observational equilibrium data to be an
interesting topic for future work.

6.5 Discussion

In this workwe revisited severalmodels of viral infections and immune responses. In
our treatment of thesemodelswe closely followed the approach inDeBoer (2012) and
therefore we only considered strictly positive solutions. If we would have modelled
all solutions then, for example, we would have considered the equilibrium equation
𝑓𝐼 ∶ (𝑈𝑓𝛽𝑋𝑇 − 𝑈𝛿)𝑋𝐼 = 0 instead of 𝑓+𝐼 in equation (6.6). In that case, we would
have obtained the causal ordering graph in Figure 6.6 instead of that in Figure 6.2(b).
Clearly, the model predictions of the causal ordering graph for the positive solutions
in Figure 6.2(b) are more informative. The choice of only modelling strictly positive
solutions depends on the application.

In many application domains mathematical models are used to predict the equi-
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librium behaviour of complex systems. An important issue is that (causal) predic-
tions may strongly depend on the specifics of the model design. We revisited an ex-
ample of a viral infection model (De Boer, 2012), in which implied causal relations
and conditional independences change dramatically when equations, describing im-
mune reactions, are added. Analysis of this behaviour through explicit calculations is
neither insightful nor scalable. We showed how the technique of causal ordering can
be used to efficiently analyse the robustness of implied causal effects and conditional
independences. Using key insights provided by this approach we characterized large
classes of model extensions under which predicted causal relations and conditional
independences are robust. We hope that the results presented in this paper are a step
towards bringing the world of causal inference closer to practical applications.

Our results for the characterization of the robustness of model extensions can
also be used to reason about the properties of models that are the combination of two
submodels. This way, we can study systems whose causal andMarkov properties can
be understood in a reductionistic manner by considering the properties of its parts.
When the properties of the whole model differ from those of its parts, a holistic mod-
elling approach would be required. For models of the equilibrium distribution of dy-
namical systems, we proved that extensions of dynamicalmodelswhere each variable
is self-regulating preserve the predicted presence of causal effects and d-connections
in the original model. Based on those insights, we proposed a novel approach to
model selection, where information about conditional independences can be used in
combination with model equations to reason about possible model extensions or the
presence of feedback mechanisms. For dynamical models with feedback, the output
of structure learning algorithms does not always have a causal interpretation in terms
of soft or perfect interventions for the equilibrium distribution. We have shown that
in dynamical systems where each variable is self-regulating the identifiable directed
edges in the learned graph do express causal relations between variables.

6.A Causal ordering algorithm applied to a cyclic model

In this section we demonstrate how the causal ordering algorithm works on a set of
equations for a cyclic model. The algorithm is also presented graphically. Consider
the following equations for endogenous variablesX and exogenous random variables
U:

𝑓1 ∶ 𝑔1(𝑋𝑣1, 𝑈𝑤1) = 0, (6.13)
𝑓2 ∶ 𝑔2(𝑋𝑣2, 𝑋𝑣1, 𝑋𝑣4, 𝑈𝑤2) = 0, (6.14)
𝑓3 ∶ 𝑔3(𝑋𝑣3, 𝑋𝑣2, 𝑈𝑤3) = 0, (6.15)
𝑓4 ∶ 𝑔4(𝑋𝑣4, 𝑋𝑣3, 𝑈𝑤4) = 0, (6.16)
𝑓5 ∶ 𝑔5(𝑋𝑣5, 𝑋𝑣4, 𝑈𝑤5) = 0. (6.17)
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The associated bipartite graph in Figure 6.7(a) consists of variable vertices 𝑉 =
{𝑣1, … , 𝑣5} and equation vertices 𝐹 = {𝑓1, … , 𝑓5}. There is an edge between a variable
vertex and an equation vertex whenever that variable appears in the equation. The
associated bipartite graph has exactly two perfect matchings:

𝑀1 = {(𝑣1 − 𝑓1), (𝑣2 − 𝑓2), (𝑣3 − 𝑓3), (𝑣4 − 𝑓4), (𝑣5 − 𝑓5)},
𝑀2 = {(𝑣1 − 𝑓1), (𝑣2 − 𝑓3), (𝑣3 − 𝑓4), (𝑣4 − 𝑓2), (𝑣5 − 𝑓5)}.

Application of the first step of the causal ordering algorithm results either in the
directed graph in Figure 6.7(b) or that in Figure 6.7(c), depending on the choice of
the perfect matching. The segmentation of vertices into strongly connected compon-
ents, which takes place in the second step of the algorithm, results in the clusters {𝑣1},
{𝑓1}, {𝑣2, 𝑣3, 𝑣4, 𝑓2, 𝑓3, 𝑓4}, {𝑣5}, and {𝑓5}. To construct the clusters of the causal order-
ing graph we add 𝑆𝑖 ∪ 𝑀(𝑆𝑖) to a cluster set 𝒱 for each 𝑆𝑖 in the segmentation. The
segmentation of vertices into strongly connected components is displayed in Figures
6.7(d) and 6.7(e). Notice that the segmentation in Figure 6.7(d) is the same as that
in Figure 6.7(e). It is known that the segmentation into strongly connected compon-
ents is unique (i.e. it does not depend on the choice of the perfect matching), a result
that can be found in Chapter 4. The cluster set 𝒱 for the causal ordering graph in
Figure 6.7(f) is constructed by merging clusters in the segmented graph whenever
two clusters contain vertices that are matched and by adding exogenous variables as
singleton clusters. The edge set ℰ for the causal ordering graph is obtained by adding
edges (𝑣 → 𝐶) from an endogenous vertex 𝑣 to a cluster 𝐶, whenever 𝑣 ∉ 𝐶 and
there is an edge from 𝑣 to 𝑓 ∈ 𝐶 in the directed graph. Finally, we also add edges
from exogenous vertices to clusters that contain equations in which the correspond-
ing exogenous random variables appear.

6.B Proofs

Theorem 6.1. Consider model equations 𝐹 containing endogenous variables 𝑉 with
bipartite graph ℬ. Suppose 𝐹 is extended with equations 𝐹+ containing endogenous
variables in𝑉∪𝑉+, where𝑉+ contains endogenous variables that are added by themodel
extension.9 Let ℬext be the bipartite graph associated with 𝐹ext = 𝐹 ∪ 𝐹+ and 𝑉ext =
𝑉 ∪ 𝑉+, and ℬ+ the bipartite graph associated with the extension 𝐹+ and 𝑉+, where
variables in𝑉appearing in𝐹+ are treated as exogenous variables (i.e. they are not added
as vertices inℬ+). If ℬ andℬ+ both have a perfect matching then:
(i) ℬext has a perfect matching,
(ii) ancestral relations in CO(ℬ) are also present in CO(ℬext),
(iii) d-connections inMO(ℬ) are also present inMO(ℬext).

9𝑉+ may also contain parameters or exogenous variables that appear in 𝐹 and become endogenous in
the extended model.
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𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

(a) Bipartite graph.

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

(b) Directed graph (𝑀1).

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

(c) Directed graph (𝑀2).

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

(d) Segmentation (𝑀1)

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

(e) Segmentation (𝑀2)

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5

(f) Causal ordering graph.

Figure 6.7: Graphical illustration of the causal ordering algorithm that was described in Sec-
tion 6.1.1. Figure 6.7(a) shows the bipartite graph that is associated with equations (6.13) to
(6.17). Application of the first step of the causal ordering algorithm results in the directed
graph in Figure 6.7(b) for perfect matching𝑀1 and that in Figure 6.7(c) for perfect matching
𝑀2. The blue and orange edges correspond to the edges in the perfect matchings𝑀1 and𝑀2,
respectively. Figures 6.7(d) and 6.7(e) show that the segmentation into strongly connected
components does not depend on the choice of the perfect matching. Exogenous vertices and
edges from these vertices to clusters were added to the causal ordering graph in Figure 6.7(f).

Proof. The causal ordering graph CO(ℬ) is constructed from a perfect matching 𝑀
for the bipartite graph ℬ = ⟨𝑉, 𝐹, 𝐸⟩. Let 𝑀+ be a perfect matching for ℬ+. Note
that𝑀ext = 𝑀∪𝑀+ is a perfect matching forℬext = ⟨𝑉 ∪ 𝑉+, 𝐹 ∪ 𝐹+, 𝐸ext⟩. Following
the causal ordering algorithm for ℬ,𝑀 and ℬext,𝑀ext, we note that 𝒢(ℬ,𝑀) is a sub-
graph of 𝒢(ℬext,𝑀ext) and hence clusters in CO(ℬ) are fully contained in clusters in
CO(ℬext). Therefore ancestral relations in CO(ℬ) are also present in CO(ℬext).

It follows directly from the definition (see Forré et al. (2017)) that 𝜎-connections
in a graph remain present if the graph is extended with additional vertices and edges.
The directed graphs 𝒢(ℬ,𝑀) and 𝒢(ℬext,𝑀ext) can be augmented with exogenous
variables by adding exogenous vertices to these graphs with directed edges towards
the equations in which they appear. The 𝜎-connections in the augmentation of
𝒢(ℬ,𝑀) must also be present in the augmentation of 𝒢(ℬext,𝑀ext). By Corollary
2.8.4 in Forré et al. (2017) and Lemma 4.12 in Blom, Van Diepen, et al. (2021) we
have that d-connections inMO(ℬ)must also be present inMO(ℬext).

Theorem 6.2. Let 𝐹, 𝐹+, 𝐹ext, 𝑉, 𝑉+, 𝑉ext, ℬ, ℬ+, and ℬext be as in Theorem 6.1. If ℬ
and ℬ+ both have perfect matchings and no vertex in 𝑉+ is adjacent to a vertex in 𝐹 in
ℬext then:10
(i) ancestral relations absent in CO(ℬ) are also absent in CO(ℬext),

10Avertex in𝑉+ is considered adjacent to𝐹 if it correspondswith one of the exogenous randomvariables
or parameters in 𝐹 that become endogenous in the model extension.
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(ii) d-connections absent inMO(ℬ) are also absent inMO(ℬext).

Proof. Sinceℬ andℬ+ both have perfect matchings the results of Theorem 6.1 hold.
Let 𝒢(ℬ,𝑀), and 𝒢(ℬext,𝑀ext) be as in the proof of Theorem 6.1. Note that in 𝑀ext
vertices in 𝐹+ are matched to vertices in 𝑉+ and therefore edges between 𝑓+ ∈ 𝐹+
and 𝑣 ∈ adjℬext

(𝐹+) ⧵ 𝑉+ are oriented as (𝑓+ ← 𝑣) in 𝒢(ℬext,𝑀ext). By assumption, we
therefore have that vertices in𝑉+ are non-ancestors of vertices in𝑉∪𝐹 in𝒢(ℬext,𝑀ext).
Since 𝑀 ⊆ 𝑀ext we know that the same directed edges between vertices in 𝑉 and 𝐹
appear in both 𝒢(ℬ,𝑀) and 𝒢(ℬext,𝑀ext). Notice that the subgraph of 𝒢(ℬext,𝑀ext)
induced by the vertices 𝑉 ∪ 𝐹 coincides with 𝒢(ℬ,𝑀). Hence CO(ℬ) is the induced
subgraph of CO(ℬext) andMO(ℬ) is the induced subgraph of MO(ℬext).

Lemma6.1. Consider a first-order dynamicalmodel in canonical form for endogenous
variables 𝑉 and let 𝐹 be the equilibrium equations of the model. If all variables in 𝑉 are
self-regulating thenℬ has a perfect matching.

Proof. Recall that the equilibrium equation constructed from the derivative of a vari-
able 𝑖 is labelled 𝑓𝑖 according to the natural labelling. When a variable in 𝑣𝑖 ∈ 𝑉 is
self-regulating then it can be matched to its equilibrium equation 𝑓𝑖. If this holds for
all variables in 𝑉 then ℬ has a perfect matching.

Lemma 6.2. Letℬ be a bipartite graph and let𝑀 and𝑀′ be two distinct perfect match-
ings. The associated directed graphs 𝒢(ℬ,𝑀) and 𝒢(ℬ,𝑀′) that are obtained in step (i)
of the causal ordering algorithm differ only in the direction of cycles.

Proof. This follows directly from the fact that the output of the causal ordering al-
gorithm does not depend on the choice of the perfect matching. This result is a direct
consequence of Theorem 1 and Theorem 3 in Blom, Van Diepen, et al. (2021).

Proposition 6.1. Consider a first-order dynamical model in canonical form for en-
dogenous variables 𝑉 and an extension consisting of canonical first-order differential
equations for additional endogenous variables 𝑉+. Let 𝐹 and 𝐹ext = 𝐹 ∪ 𝐹+ be the equi-
librium equations of the original and extended model respectively. Let ℬ = ⟨𝑉, 𝐹, 𝐸⟩
be the bipartite graph associated with 𝐹 and ℬext = ⟨𝑉ext, 𝐹ext, 𝐸ext⟩ the bipartite graph
associated with 𝐹ext. Assume thatℬ andℬext both have perfect matchings. If the model
extension does not introduce a new feedback loop with the original dynamical model,
then d-connections inMO(ℬ) are also present inMO(ℬext).

Proof. Let 𝐸nat be the set of edges (𝑣𝑖 − 𝑓𝑖) associated with the natural labelling of
the equilibrium equations of the extended dynamical model. Note that the feedback
loops in the dynamical model coincide with cycles in the directed graph 𝒢(ℬnat,𝑀nat)
that is obtained by applying step (i) of the causal ordering algorithm to the bipartite
graph ℬnat = ⟨𝑉ext, 𝐹ext, 𝐸ext ∪ 𝐸nat⟩ using the perfect matching𝑀nat = 𝐸nat.

By Theorem 6.1, we know that if ℬ and ℬ+ (the subgraph of ℬext induced by
𝑉+ ∪ 𝐹+) both have perfect matchings then d-connections in MO(ℬ) must also be
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present inMO(ℬext). Therefore, if there exists a perfect matching𝑀ext forℬext so that
each 𝑓 ∈ 𝐹 is𝑀ext-matched to a vertex 𝑣 ∈ 𝑉 and each 𝑓+ ∈ 𝐹+ is𝑀ext-matched to a
vertex 𝑣+ ∈ 𝑉+ in ℬext, d-connections inMO(ℬ) are also present inMO(ℬext).

We will prove the contrapositive of the proposition, so we start with the assump-
tion that the d-connections in MO(ℬ) are not preserved in MO(ℬext). In that case,
there must exist a perfect matching𝑀ext forℬext so that there is an 𝑓 ∈ 𝐹 that is𝑀ext-
matched to a 𝑣+ ∈ 𝑉+ and a 𝑣 ∈ 𝑉 that is𝑀ext-matched to a 𝑓+ ∈ 𝐹+. Note that since
ℬext is a subgraph of ℬnat, this perfect matching 𝑀ext is also a perfect matching for
ℬnat. Lemma 6.2 says that 𝒢(ℬnat,𝑀nat) and 𝒢(ℬnat,𝑀ext) only differ in the direction
of cycles. We know that vertices in 𝑉 are only 𝑀nat-matched to vertices in 𝐹, while
vertices in 𝑉+ are only𝑀nat-matched to vertices in 𝐹+. Therefore, the vertices 𝑣+ and
𝑓must be on a directed cycle in both directed graphs, as well as 𝑣 and 𝑓+. Hence the
model extension 𝐹+ introduced a new feedback loop that includes variables in the
original model.
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Summary

The technique of causal ordering is used to study causal and probabilistic aspects
of model equations. Causal discovery algorithms are used to learn causal and de-
pendence structure from data. In this thesis, Causality and independence in systems
of equations, we explored the relationship between the causal ordering and the out-
put of causal discovery algorithms. By combining these techniques we bridged the
gap between the world of dynamical systems at equilibrium and the literature about
causal methods for static systems. In a nutshell, this resulted in novel insights about
models with feedback which lead to a better understanding of observed phenomena
in certain biological systems. Based on these ideas, we also outlined a novel approach
towards causal discovery for dynamical systems at equilibrium.

This work was inspired by a desire to understand why the output of causal dis-
covery algorithms sometimes appears to be at odds with expert knowledge. In par-
ticular, we were interested in explaining the results of causal discovery methods ap-
plied to protein expression data. For this application we found that the orientation of
learned causal pathways is sometimes opposite to the causal directions in biological
consensus networks. Initially, we proposed the unknown presence of measurement
error as an explanation. We also presented a partial solution to this issue under addi-
tional assumptions on the true underlying causal mechanisms. We demonstrated
that a phenomenon called perfect adaptation provides another plausible explana-
tion for observed edge reversals in the context of dynamical systems at equilibrium.
Roughly speaking, this entails that there is a feedback loop that ensures that certain
transient causal effects are not observable at equilibrium. We proved that the applic-
ation of causal discovery methods to perfectly adapted dynamical systems may lead
to edge reversal in (protein signalling) models.

Additionally, our ideas can be applied to assess the robustness of qualitative
model predictions. We provided examples where dependences in a model change
dramatically after additional equations introduce a new feedback loop that achieves
perfect adaptation. Based on this, we outlined a holistic approach to model selec-
tion so that we can reason about the existence of feedback loops in a larger system
by only studying the model and observations for a subsystem. Furthermore, we pro-
posed conditions under which the presence of a perfectly adapting feedback loop can
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be detected from model equations or from a combination of experimental data and
background knowledge.

This line of research was made possible by novel theoretical results and inter-
pretations of the causal ordering algorithm. To formalize this technique we expli-
citly defined the notion of different types of interventions, and thereby the concept
of a certain kind of causation, in the context of a system of equations. Furthermore,
we extended the causal ordering algorithm so that it can be applied to a very gen-
eral class of models. We proved that its output, which we call the causal ordering
graph, encodes the effects of soft and certain perfect interventions. We introduced
the notion of theMarkov ordering graph, showed how it can be constructed from the
causal ordering graph, and proved that it represents conditional independences. We
demonstrated that theMarkov ordering graph does not have a straightforward causal
interpretation. Although graphs representing conditional independences also repres-
ent causality in static, acyclic systems, the examples in this work illustrate that the
distinction between the Markov ordering graph and causal ordering graph is needed
to avoid ambiguity in the context of dynamical systemswith feedback at equilibrium.

The key assumption of many causal discovery algorithms is that the underly-
ing system can be modelled by the well-known class of structural causal models.
We showed that this framework is not flexible enough to fully capture the causal
semantics of the equilibrium distribution of basic chemical reaction networks. To
overcome these limitations, we proposed a generalization that we call causal con-
straints models for which we prove that they do generally capture the equilibrium
distributions of dynamical systems under perfect interventions. Additional causal
structure and the dependence structure of these models can be obtained through ap-
plication of the causal ordering algorithm. In this thesis we looked beyond existing
causal modelling frameworks to establish a relationship between dynamical models
at equilibrium and causal discovery.



Samenvatting

De causale ordeningstechniek wordt gebruikt om de causale en probabilistische ei-
genschappen van vergelijkingsstelsel te bestuderen. Causale ontdekkingsalgoritmes
worden gebruikt om de causale afhankelijkheidsstructuur van een systeem te leren
uit data. In dit proefschrift, getiteld Causaliteit en onafhankelijkheid in stelsels van
vergelijkingen, verkennen we de relatie tussen causale ordening en de uitkomsten
van causale ontdekkingsalgoritmes. Door dezemethodes te combineren slaanwe een
brug tussen de wereld van dynamische systemen in evenwicht en de literatuur over
causale ontdekkingen voor statische systemen. Kortgezegd heeft dit geleid tot zowel
nieuwe inzichten over dynamische modellen met terugkoppelingsmechanismes als
ook tot een beter begrip van geobserveerde fenomenen in bepaalde biologische sys-
temen. Op basis van deze ideeën stippelen we ook een nieuwe benaderingswijze uit
voor causale ontdekkingen in dynamische systemen in evenwicht.

Dit proefschrift is geïnspireerd door onze wens om beter te begrijpen waarom de
uitkomsten van causale ontdekkingsalgoritmes soms niet overeen lijken te komen
met kennis van domeinexperts. We waren in het bijzonder geïnteresseerd in het ver-
klaren van uitkomsten van causale ontdekkingsalgoritmes toegepast op expressieda-
ta van eiwitten. In deze toepassing zagen we dat de oriëntatie van geleerde causale
paden soms tegenovergesteld was aan de causale richting in biologische consensus-
netwerken. In eerste instantie stellenwede verborgen aanwezigheid van onzekerheid
door metingen voor als mogelijke verklaring. Voor dit probleem presenteren we ook
een gedeeltelijke oplossing onder extra aannames over het werkelijke onderliggende
causale mechanisme. Daarnaast laten we zien dat een fenomeen genaamd perfecte
adaptatie een plausibele verklaring is voor de geobserveerde omkering van causa-
le richtingen in dynamische systemen in evenwicht. Ruwweg is er dan sprake van
een terugkoppeling die er voor zorgt dat kortstondige effecten niet te observeren zijn
wanneer het systeem naar een evenwichtstoestand is teruggekeerd. We bewijzen dat
de toepassing van causale ontdekkingsalgoritmes op perfect geadapteerde dynami-
sche systemen kan leiden tot omkering van causale richting inmodellen die gebruikt
worden voor the modelleren van eiwitexpressie.

Onze ideeën kunnen bovendien toegepast worden om de robuustheid van kwali-
tatieve modelvoorspellingen te beoordelen. We geven voorbeelden waarin de afhan-

197



198 Samenvatting

kelijkheden tussen variabelen in eenmodel in sterkemate veranderen wanneer extra
vergelijkingen worden toegevoegd die een terugkoppelingsmechanisme introduce-
ren dat voor perfecte adaptatie zorgt. In het verlengde hiervan stippelen we een ho-
listische methode uit die het mogelijk maakt om te redeneren over het bestaan van
een terugkoppelingsmechanisme in een groter systeem, gegeven een model en ob-
servaties van een kleiner subsysteem. Daarnaast stellen we condities op waaronder
de aanwezigheid van terugkoppeling en perfecte adaptatie gedetecteerd kan worden
ofwel in modelvergelijkingen dan wel uit een combinatie van experimentele data en
achtergrondkennis.

Deze onderzoeksrichting werd mogelijk gemaakt door nieuwe theoretische re-
sultaten en interpretaties op het gebied van de causale ordeningstechniek. Om deze
methode te formaliseren definiëren we expliciet de notie van verschillende types in-
terventies. Daarmee leggen we ook het concept van een specifiek soort causaliteit
vast in de context van een vergelijkingsstelsel. Om ervoor te zorgen dat de methode
toepasbaar is op een algemenere modelklasse, breiden we het bestaande causale or-
deningsalgoritme uit.We bewijzen dat de uitkomst, die we de causale ordeningsgraaf
noemen, de effecten van zachte en bepaalde perfecte interventiesweergeeft.We intro-
duceren ook de notie van eenMarkoviaanse ordeningsgraaf. We laten zien hoe deze
geconstrueerd kanworden uit de causale ordeningsgraaf en bewijzen dat deze condi-
tionele onafhankelijkheden tussen variabelen representeert. We geven voorbeelden
om te illustreren dat de Markoviaanse ordeningsgraaf niet altijd een eenduidige cau-
sale interpretatie heeft maar dat de causale ordeningsgraaf deze eigenschap wel be-
zit. Voor statische, acyclische systemen bestaan er grafen met variabelen als knopen
die ook causale relaties weergeven. Echter, de voorbeelden in dit proefschrift illu-
streren dat een onderscheid tussen de causale ordeningsgraaf en de Markoviaanse
ordeningsgraaf ambiguïteit wegneemt in de context van dynamische systemen met
terugkoppeling in evenwicht.

De cruciale aanname waar vele causale ontdekkingsalgoritmes op gestoeld zijn,
is dat de onderliggendemechanismes gemodelleerd kunnenworden door de bekende
klasse van structurele causalemodellen.We laten in dit proefschrift echter zien dat dit
raamwerk niet flexibel genoeg is om de causale semantiek van een simpel chemisch
reactie netwerk in evenwicht volledig te omvatten. Om deze beperkingen te omzei-
len, introducerenwe een generalisatie diewe causale vergelijkingsmodellen noemen.
We bewijzen dat deze in het algemeen wel de evenwichtsverdeling van dynamische
systemen onder perfecte interventies beschrijven, terwijl toepassing van causale or-
dening de afhankelijkheidsstructuur en een uitgebreidere causale structuur expliciet
maakt.

In dit proefschrift hebbenwe gepoogd om voorbij de bestaande causalemodellen
te kijken om de relatie tussen dynamische systemen in evenwicht en causale ontdek-
kingen in kaart te brengen.
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