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ScienceDirect
The plant microbiome plays an essential role in supporting

plant growth and health, but plant molecular mechanisms

underlying its recruitment are still unclear. Multi-omics data

integration methods can be used to unravel new signalling

relationships. Here, we review the effects of plant genetics and

root exudates on root microbiome recruitment, and discuss

methodological advances in data integration approaches that

can help us to better understand and optimise the crop–

microbiome interaction for a more sustainable agriculture.
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Introduction
The current challenge in agriculture is to be able to

increase crop yield under sustainable conditions to feed

the growing world population without harming the envi-

ronment. The plant microbiome could play an essential

role in achieving this challenge, as it is becoming increas-

ingly clear that it plays an essential role in supporting

plant growth and health. Advances in data analysis – such

as multivariate analyses, differential abundance testing

methods and machine learning methods – now enable us

to link candidate microbes to a phenotype of interest (e.g.

plant growth, yield, nutrient uptake efficiency, tolerance

to disease) [1–3]. However, to be able to select plants that

recruit these beneficial microbes, it is essential that the
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molecular mechanisms underlying microbiome recruit-

ment are unravelled. With the advent of the omics

technologies, we can characterise plants in great detail

using (epi-)genomics, transcriptomics, proteomics and

metabolomics. Through the development of new data

analysis paradigms, in principle, these omics data could

be related to the associated microbiome (Figure 1). In this

review we will discuss the different advanced statistical

approaches that have been developed to analyse and

integrate plant omics with microbiome data to propose

new mechanistic hypotheses for root microbiome recruit-

ment and its effect on plant phenotype.

Plant genetics underlying plant microbiome
recruitment
Traditional Genome Wide Association Studies (GWAS)

Development of the next-generation sequencing tech-

nologies and their decreasing costs have allowed high-

throughput plant genotyping using large numbers of

single nucleotide polymorphisms (SNPs). This has

enabled the use of mapping approaches to identify genes

underlying plant traits of interest, through QTL mapping

and GWAS [4–6]. Since a number of years, also the plant

microbiome is being used as a quantitative plant trait in

GWAS to find plant genes underlying microbiome

recruitment using mixed linear models [1,7,8�,9,10]. This

confirmed the notion that the plant genotype drives its

associated microbial communities, and linked plant genes

involved in stress response, kinase activity, cell wall

integrity, root development and carbohydrate metabolism

to the occurrence of specific taxa [7,8�,9,10]. Interestingly,

in maize, the predicted bacterial metabolic functions

displayed a higher and more significant heritability than

the diversity and relative abundance of individual taxa

[1]. In future studies, the use of shotgun metagenomics

data will further improve the mapping of microbial func-

tions, as was recently demonstrated for the rice phyllo-

sphere microbiome [10].

Nevertheless, identifying the underlying plant loci

involved in the microbiome recruitment remains chal-

lenging. First, only a small percentage of the variation in

the microbiome is generally explained by the plant geno-

type and just few microbiome traits are usually heritable.

Moreover, microbiome recruitment seems to mostly be a
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Use of omics data to unravel plant microbiome recruitment.

Integration of multiple omics data sets, such as genomics, epigenetics, transcriptomics, proteomics, metabolomics (defined here as the metabolite

profile in an organism), exometabolomics (defined here as the metabolite profile secreted by an organism), metagenomics, metatranscriptomics,

metaproteomics and metabonomics (defined here as the metabolite profile from complex systems, such as microbial communities) to unravel the

plant–microbiome interaction.
polygenic trait. So, the current GWAS models, even with

enough power, often fail to detect the microbiome

recruitment loci, as discussed elsewhere in this issue

[11]. If candidate genes are identified, reproducibility

and validation of these candidates using plant mutants

and synthetic communities are challenging. In human-

microbiome GWAS, results are often difficult to compare

between studies [12,13]. For plants, Beilsmith et al. pro-

posed a workflow, including thorough quantification and

standardized protocols [14]. Also, as environmental con-

ditions are a major component of the variability, GWAS

will need to be done across different environmental

conditions to test the effect of the environment on

candidate genes. Recently, Brachi et al. were able to

identify heritable microbial hubs that are affected by

plant genomics traits across different environmental con-

ditions [15].

Perspectives

There are several recent methodological advances in

association studies. First, the use of k-mers instead of

the commonly used SNPs confirmed associations previ-

ously found, but also pinpointed new associations with

gene variants missing from reference genomes [16��].
Second, to increase the mapping power, Beilsmith et al.
proposed using multi-traits GWAS modelling SNP asso-

ciations with many traits rather than with each trait
Current Opinion in Biotechnology 2021, 70:255–261 
individually, although these models are computationally

challenging [14]. Third, to overcome the difficulties of

experimental validation, causal inference methods [17],

such as genetic structural equation model (GSEM), were

proposed, which might be applied as covariance models in

multi-traits GWAS to improve power [18��].

Finally, a recent promising method development in

plant–microbe interaction association studies is the

addition of the plant phenotype. Since the microbiome

can be considered as a host phenotype but also contrib-

ute to the host phenotype, Oyserman et al. recently

proposed an extended model that includes the micro-

biome into the traditional GE model, that is, GEM

[19��]. While the traditional GE model considers the

effect of the genotype (G), the environment (E) and

their interaction (G:E) on the phenotype (Y or here M

for the microbiome), that is, M = G + E + G:E + e, the

new GEM model considers the effect of the genotype,

the microbiome, the environment and their interaction

to determine the plant phenotype (Y), that is, Y = G+E +

M + G:E + G:M + E:M + G:E:M + e. A future challenge

will be to apply this model to complex natural commu-

nities, consisting of hundreds to thousands of species,

and taking into consideration also covariance between

host genotype, environment and microbiome. Finally, a

method called SICOMORE (Selection of Interaction
www.sciencedirect.com
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Figure 2
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Metabolomics and metagenomics data integration approaches.

A graphical summary of the main approaches for metabolomics and metagenomics data integration, including: (a) variable-by-variable analyses,

such as Pearson, Spearman correlations, sparCC, or neural network approaches, where the outputs can be represented as heatmap and/or

networks; (b) supervised and unsupervised ordination methods, for which an ordination plot can be rendered and/or features explaining variance

extracted.

Abbreviations: n, number of samples; p, number of microbiome variables; q, number of root exudate variables; l, number of latent variables for the

microbiome data; m, number of latent variables for the root exudates data; Mic: microbe; Met: root exudate metabolite.
effects in COmpressed Multiple Omics REpresenta-

tions) was recently developed and applied in a plant–

microbiome study. The authors detected interactions

between plant genomic markers (SNPs) in Medicago
trunctula and rhizosphere bacterial genera that are

linked to a plant phenotype (e.g. specific nitrogen

uptake) [20].

Root exudates shape the root and rhizosphere
microbiome
In a number of studies, it was shown that metabolites in

the root exudate play a role in shaping the composition of

the root and rhizosphere microbiome [21–28]. We postu-

late that the discovered relationships between root exu-

dates and the microbiome represent just the tip of the

iceberg and propose that data integration methods can be

used to unravel new signalling relationships. Pang et al.
reviewed the integration of plant specialized metabolites

and microbiome data [29��]. Many methods have been

suggested, but most do not take into account the zero-
www.sciencedirect.com 
inflated count distribution nor the compositional aspect of

these microbiome data. Solutions for these problems

include using transformation, imputation and normaliza-

tion of the data, or using distance-based models. M2IA

(automated microbiome and metabolome integrative

analysis pipeline), a web-based application combines

such pre-processing with standard data integration meth-

ods [30].

Figure 2 illustrates two different integration approaches

of which one uses a variable-by-variable analysis, in which

correlations between variables of both data sets are com-

pared for their linear (Pearson), rank (Spearman), or other

types of correlations or co-occurrence. As an example,

calculating Pearson correlations, Huang et al. [31] identi-

fied and linked rhizosphere bacterial OTUs and flavo-

noids that could explain bitterness in sugarcane. Using

Pearson correlation on log transformed data sets, Cha-

parro et al. found that root exudates phenolics and amino

acids correlated to bacterial communities composition
Current Opinion in Biotechnology 2021, 70:255–261
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Figure 3
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Multi-omics data integration to unravel plant microbiome recruitment.

A graphical summary showing potential direct and indirect

relationships among plant genetics, root exudates, microbiome and

plant phenotype.
and transcriptional changes in Arabidopsis thaliana [32].

Korenblum et al. [33�] used self-organizing maps to cluster

metabolites and OTUs that highly correlate in 16 clusters

and revealed that abundance of specific taxa are related to

systemic root metabolome and root exudate changes.

However, Morton et al. [34] showed that these standard

correlation approaches provide a huge number of false

high correlations. An alternative approach is to consider

co-occurrence probabilities instead of correlations. A new

neural network approach method was recently developed,

mmvec (microbe–metabolite vectors), which is able to

identify microbe–metabolome pairs based on co-occur-

rence while considering compositionality of the data.

While mmvec was shown to be superior to other correlation

approaches, the statistical significance of the interactions

remains unclear. For datasets with compositional restric-

tions, Fang et al. [35] introduced CCLasso (Correlation

inference for Compositional data through Lasso) that uses

the concept of sparsity to find relevant interactions

between variables.

A second approach uses restricted ordination methods

(Figure 2b) in which only the variation in the microbiome

data is explored that is due to variations in the metabolite

levels. Examples are Redundancy Analysis (RDA),

Canonical Correspondence Analysis (CCA), and, espe-

cially for count data, Constrained Analysis of Principal

coordinates analysis (CAP) [36]. The ordination is visual-

ized in a biplot or triplot, where the samples (as scores),

and the response variables of both datasets (as loadings)

have their respective position on the ordination axes.

Potential relationships between metabolites in the rhizo-

sphere and the associated microbial community were thus

highlighted using CCA in lettuce under different fertili-

zation regimes, using log10 transformed relative abun-

dance of bacterial/archaeal and fungal communities [37].

Likewise, in Phragmites australis relationships between

rhizosphere metabolites and associated fungal communi-

ties in polluted soils were determined using CCA [38].

Moreover, CAP was applied to centered log-ratio trans-

formed OTU counts with an Euclidean distance measure

using plant specialized metabolites as constraining vari-

ables and showed that the microbial community was

influenced by salicylic acid or its derivatives [39]. For

these ordination methods, model significance is com-

monly tested using permutation of the metabolite’s levels

over the different samples to break the sample to sample

relationship between the microbiome and the

metabolome.

Furthermore, a more advanced set of data fusion meth-

ods uses canonical variables of both data sets that opti-

mally correlate (Canonical Correlation Analysis CCorA)

or have maximum covariance (Diablo). New methods,

such as O2PLS (two-way orthogonal partial least

squares), JIVE (joint and individual variation explained),

DISCO (distinct and common simultaneous component
Current Opinion in Biotechnology 2021, 70:255–261 
analysis) not only focus on what is in common between

the datasets, but also what is systematic within each set.

Such methods are often used in medical metabolome–

microbiome integration studies [40], but not yet in

plants. Most of these methods can handle additional

phenotypic data, as nicely discussed by Chu et al.
[41], and so root exudates, microbiome and plant phe-

notype could be linked.

Finally, generalized linear models, which can model the

data taking into account their specific error distribution,

have been used for data fusion using generalized simul-

taneous component analysis methods. These methods are

available for many distribution functions such as Poisson

and (zero-inflated) negative binomial. R packages make

use of such models, such as edgeR, Deseq2 and pscl [42–

44]. Recently, Song [45,46] introduced generalized simul-

taneous component analysis to fuse binary copy number

aberration data with normally distributed gene expression

data to look for their common variation. A similar gener-

alization to include (zero-inflated) negative binomial

models in data fusion would be very useful for the

integration of metabolomics and microbiome data sets.

Plant genetics, root exudates and microbiome
data integration to predict plant phenotype
To model the relationship between multiple actors – such

as Plant Genetics (PG), Root Exudates (RE), Microbiome

(M) and Phenotype (Phe) – Structural Equation Models

(SEMs), introduced in the 1930s by Wright [47], can be

used.

These methods originated in the social sciences, but find

increasingly use in the natural science as well [48]. The

basic idea is to summarize blocks of manifest variables (e.
www.sciencedirect.com
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g. one block of microbiome data and one block of meta-

bolomics data) into latent variables. These latent vari-

ables are now connected through an assumed pathway

defining their connectivity. This part of the model is

called the inner model, and the part describing the

manifest variables in terms of their latent variables is

called the outer model. The elegance of SEMs is that

they can distinguish direct from indirect effects. Figure 3

shows that there is a direct effect from PG to Phe, but also

an indirect effect through the path PG, RE, M and Phe.

SEMs are capable of disentangling these effects. Such

SEMs can also be extended to deal with genetic effects

[18��]. Special versions of SEMs (called Structural Causal

Models) are used in causal analysis [49]. SEMs are starting

to be used in microbiome research, for example, in

ecological applications [50–53]. In some cases, summaries

of the microbiome (e.g. alpha-diversity measures) can be

used as the outer model, i.e. they are used as latent

variables in the SEM model. These examples show that

SEMs are indeed powerful models to study complex

systems.

The real challenge of the use of SEMs in microbiome

research is in keeping the notion of latent variables since

that allows for modelling simultaneously multiple blocks

of multivariate (manifest) variables. This may encom-

pass, for example, many SNPs for the PG, many OTUs/

ASVs (amplicon sequence variants) for the microbiome,

and many metabolites for the RE. There are (at least)

three challenges to overcome. The first is to extend the

traditional SEMs to handle more than one latent variable

per block. This is not trivial, but some ideas on how to do

this are available, for example, using sequential and

orthogonalized partial least square regression for path

analysis (SO-PLS-Path) models [54,55]. Another chal-

lenge is to extend the SEMs to handle data of different

measurement types. In the example above, SNPs and

OTUs/ASVs consist of (limited) count data, while RE

consists of quantitative data. One avenue to explore may

be the use of nonlinear generalized structured compo-

nent analysis, which can handle both quantitative and

qualitative data [56] or extensions of generalized simul-

taneous component analysis [45]. Although both exten-

sions can handle high-dimensional blocks in the SEM

models, in each block there may still be variables/fea-

tures that are not important but may obscure the rela-

tions. Hence, the final challenge is to select variables to

overcome this problem. This may be done in each block

before any SEM modelling using techniques from

machine learning [57]. Alternatively, this can be done

by carefully studying the outcome of a SEM model and

interrogating the model for variable importance, for

example, by studying the loadings of the variables in

the outer relationships. If these challenges are tackled

then the rewards are high: a full description of the system

on the level of the measured variables relevant to the

biological system.
www.sciencedirect.com 
Conclusions and outlook
By now there is substantial evidence that plant genetics

affects the root microbiome although it often explains just

a small part of the total variation. It is becoming clear that,

to really expand our knowledge on the plant microbiome

interaction, the microbiome should not only be consid-

ered as a phenotype but should also be part of the

explanatory variables that predict the plant phenotype.

Moreover, there are many indications that specific metab-

olites in the root exudate drive microbiome selection and/

or assembly. Multi-omics data integration could help to

identify the molecular mechanisms underlying micro-

biome recruitment also considering metabolite–metabo-

lite, microbe–microbe, and metabolite–microbe interac-

tions. Furthermore, modelling, using SEM, could help us

to go beyond finding more associations and causation,

integrating all the drivers, including plant genetics, root

exudates and the microbiome to predict the plant phe-

notype, and identify direct and indirect effects among the

drivers. This knowledge will allow us to shape the micro-

biome through breeding, possibly through changes in the

root exudate, and optimise plant/crop growth under the

desired conditions.
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Gordon JI et al.: Genome-wide association study of
Arabidopsis thaliana leaf microbial community. Nat Commun
2014, 5:5320.

8.
�

Bergelson J, Mittelstrass J, Horton MW: Characterizing both
bacteria and fungi improves understanding of the Arabidopsis
root microbiome. Sci Rep 2019, 9:24

The authors showed that root microbiome is affected by plant candidate
genes involved not only in plant immunity but also plant physiology and
architecture, such as root hair development. This is the first GWAS study
on root microbiome including both bacterial and fungal communities.

9. Deng S, Caddell DF, Xu G, Dahlen L, Washington L, Yang J,
Coleman-Derr D: Genome wide association study reveals plant
loci controlling heritability of the rhizosphere microbiome.
ISME J 2021 http://dx.doi.org/10.1038/s41396-021-00993-z.
published online.

10. Roman-Reyna V, Pinili D, Borja FN, Quibod IL, Groen SC,
Mulyaningsih ES, Rachmat A, Slamet-Loedin IH, Alexandrov N,
Mauleon R et al.: The rice leaf microbiome has a conserved
community structure controlled by complex host-microbe
interactions. bioRxiv 2019 http://dx.doi.org/10.1101/615278.

11. Bergelson J, Brachi B, Roux F, Vailleau F: Assessing the potential
to harness the microbiome through plant genetics. Curr Opin
Biotechnol 2021, 70:167-173.

12. Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N,
Jansson JK, Dorrestein PC, Knight R: Microbiome-wide
association studies link dynamic microbial consortia to
disease. Nature 2016, 535:94-103.

13. Awany D, Allali I, Dalvie S, Hemmings S, Mwaikono KS,
Thomford NE, Gomez A, Mulder N, Chimusa ER: Host and
microbiome genome-wide association studies: current state
and challenges. Front Genet 2018, 9:637.

14. Beilsmith K, Thoen MPM, Brachi B, Gloss AD, Khan MH,
Bergelson J: Genome-wide association studies on the
phyllosphere microbiome: embracing complexity in host-
microbe interactions. Plant J Cell Mol Biol 2019, 97:164-181.

15. Brachi B, Filiault D, Darme P, Mentec ML, Kerdaffrec E, Rabanal F,
Anastasio A, Box M, Duncan S, Morton T et al.: Plant genes
influence microbial hubs that shape beneficial leaf
communities. bioRxiv 2017 http://dx.doi.org/10.1101/181198.

16.
��

Voichek Y, Weigel D: Identifying genetic variants underlying
phenotypic variation in plants without complete genomes. Nat
Genet 2020, 52:534-540

The authors compared the use of SNP and k-mers in GWAS, and
demonstrated that k-mer method allow to retrieve associations identified
with SNP approach, but also allow finding new associations regardless of
reference genome quality.

17. Hu P, Jiao R, Jin L, Xiong M: Application of causal inference to
genomic analysis: advances in methodology. Front Genet 2018,
9:238.

18.
��

Kruijer W, Behrouzi P, Bustos-Korts D, Rodrı́guez-Álvarez MX,
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