University of Amsterdam

UvA-DARE (Digital Academic Repository)

Border rank nonadditivity for higher order tensors

Christandl, M.; Gesmundo, F.; Michałek, M.; Zuiddam, J.

DOI
10.1137/20M1357366

Publication date
2021

Document Version

Final published version
Published in
SIAM Journal on Matrix Analysis and Applications

Link to publication

Citation for published version (APA):

Christandl, M., Gesmundo, F., Michałek, M., \& Zuiddam, J. (2021). Border rank nonadditivity for higher order tensors. SIAM Journal on Matrix Analysis and Applications, 42(2), 503-527. https://doi.org/10.1137/20M1357366

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

BORDER RANK NONADDITIVITY FOR HIGHER ORDER TENSORS*

M. CHRISTANDL ${ }^{\dagger}$, F. GESMUNDO ${ }^{\ddagger}$, M. MICHAEEK ${ }^{\S}$, AND J. ZUIDDAM ${ }^{〔}$

Abstract

Whereas matrix rank is additive under direct sum, in 1981 Schönhage showed that one of its generalizations to the tensor setting, tensor border rank, can be strictly subadditive for tensors of order three. Whether border rank is additive for higher order tensors has remained open. In this work, we settle this problem by providing analogues of Schönhage's construction for tensors of order four and higher. Schönhage's work was motivated by the study of the computational complexity of matrix multiplication; we discuss implications of our results for the asymptotic rank of higher order generalizations of the matrix multiplication tensor.

Key words. tensor rank, border rank, matrix multiplication
AMS subject classifications. 14N07, 15A69

DOI. 10.1137/20M1357366

1. Introduction. Let V_{1}, \ldots, V_{k} be finite dimensional complex vector spaces, and let $T \in V_{1} \otimes \cdots \otimes V_{k}$ be a tensor. The tensor rank of T is defined as

$$
\mathrm{R}(T)=\min \left\{r: T=\sum_{i=1}^{r} v_{1}^{(i)} \otimes \cdots \otimes v_{k}^{(i)} \text { for some } v_{j}^{(i)} \in V_{j}\right\} .
$$

Tensor rank generalizes matrix rank: indeed, if $k=2$, the tensor rank of $T \in V_{1} \otimes V_{2}$ coincides with the rank of the corresponding linear map $T: V_{1}^{*} \rightarrow V_{2}$.

The tensor border rank (or simply border rank) of T is defined as

$$
\underline{\mathrm{R}}(T)=\min \left\{r: T=\lim _{\varepsilon \rightarrow 0} T_{\varepsilon} \text { with } \mathrm{R}\left(T_{\varepsilon}\right)=r \text { for } \varepsilon \neq 0\right\},
$$

where the limit is taken in the Euclidean topology of $V_{1} \otimes \cdots \otimes V_{k}$. One immediately has $\underline{\mathrm{R}}(T) \leq \mathrm{R}(T)$; for $k \geq 3$, there are examples where the inequality is strict.

The study of geometric properties of tensor rank and border rank has a long history dating back to more than a century ago [31]. In the last decades, tensor rank was studied in the case of tensors of order three in connection with the computational complexity of matrix multiplication $[24,26]$ and, more recently, in the higher order

[^0]setting, in connection with the circuit complexity of certain families of polynomials [20]. In quantum information theory, tensor rank is used as a measure of entanglement in a quantum system [35, 11]. The notion of border rank is more geometric as it corresponds to membership into secant varieties of Segre varieties, objects that have been studied in algebraic geometry since the early twentieth century [33]. It is known that asymptotic behaviors of tensor rank and tensor border rank of a given tensor are equivalent. In particular, upper bounds on border rank can be converted into upper bounds on rank which hold asymptotically [2]. We refer to [16, 3] for more information on the geometry of tensor spaces and their applications.

A natural question regarding tensor rank and border rank concerns their additivity properties under direct sum. Given $T \in V_{1} \otimes \cdots \otimes V_{k}$ and $S \in W_{1} \otimes \cdots \otimes W_{k}$, let $T \oplus S$ denote their direct sum, which is a tensor in $\left(V_{1} \oplus W_{1}\right) \otimes \cdots \otimes\left(V_{k} \oplus W_{k}\right)$. Subadditivity of tensor rank

$$
\mathrm{R}(T \oplus S) \leq \mathrm{R}(T)+\mathrm{R}(S)
$$

and border rank

$$
\underline{\mathrm{R}}(T \oplus S) \leq \underline{\mathrm{R}}(T)+\underline{\mathrm{R}}(S)
$$

follow directly from the definitions. It is natural to ask whether equality holds.
For $k=3$, examples where the inequality for border rank is strict were given by Schönhage in [21]: this construction is reviewed in section 2.4 ; briefly, for every $m, n \geq 1$, Schönhage provided two tensors,

$$
\begin{array}{ll}
T \in \mathbb{C}^{m+1} \otimes \mathbb{C}^{n+1} \otimes \mathbb{C}^{(m+1)(n+1)} & \text { with } \underline{\mathrm{R}}(T)=(m+ \\
S \in \mathbb{C}^{n m} \otimes \mathbb{C}^{n m} \otimes \mathbb{C}^{1} & \text { with } \underline{\mathrm{R}}(S)=m n,
\end{array}
$$

where $\underline{\mathrm{R}}(T \oplus S)=(m+1)(n+1)+1$. In particular, whenever either $m \geq 2$ or $n \geq 2$, one obtains an example of strict subadditivity.

The additivity problem for tensor rank of third order tensors was the subject of Strassen's additivity conjecture [25]. This conjecture stated that tensor rank additivity under direct sum always holds. A great deal of work was devoted to this problem (see, e.g., $[12,15,6,32]$) until 2017 when Shitov gave a counterexample [22].

A tensor of order three can be regarded as a tensor of higher order by tensoring it with a tensor product of single vectors. For instance, a tensor $T \in V_{1} \otimes V_{2} \otimes V_{3}$ can be identified with a tensor of order four $T^{\prime}=T \otimes e_{0} \in V_{1} \otimes \cdots \otimes V_{4}$, where $V_{4}=\left\langle e_{0}\right\rangle$ is a one-dimensional space. Naïvely, one would expect that Schönhage's and Shitov's examples generalize to higher order settings via this identification. This is not the case, and intuitively the reason is that if $T^{\prime}=T \otimes e_{0}$ and $S^{\prime}=S \otimes e_{0}$, then $T^{\prime} \oplus S^{\prime} \neq(T \oplus S) \otimes e_{0}$.

The problem of nonadditivity for rank and border rank of higher order tensors is therefore open to our knowledge.

In this work, we settle the question for the case of border rank by providing examples of strict subadditivity for tensors of order four and higher. Our constructions are largely inspired by Schönhage's.

Schönhage constructed his examples in order to provide new upper bounds on the asymptotic rank of the matrix multiplication tensor and thereby upper bounds on the exponent of matrix multiplication. We review this construction in section 2.4. The two key elements are the strictly subadditive upper bound $\underline{\mathrm{R}}(T \oplus S)<\underline{\mathrm{R}}(T)+\underline{\mathrm{R}}(S)$ and the fact that the Kronecker product $T \boxtimes S$ is a matrix multiplication tensor. Using these two facts, Schönhage determined an upper bound on the direct sum of copies
of the matrix multiplication tensor, exploiting the binomial expansion of $(T \oplus S)^{\boxtimes N}$ and the upper bound on its border rank. Strict subadditivity of tensors can therefore deliver nontrivial exponent bounds. At the time, this strategy gave the best bounds for the exponent of matrix multiplication and provided a sandbox example of Strassen's laser method, which is the technique used to obtain all subsequent upper bounds on the exponent $[28,10,23,34,18,1]$.

In our setting, the tensors $T \boxtimes S$ will be higher order generalizations of the matrix multiplication tensor. Some of these tensors were considered in [9, 8], and our work provides a new approach to the study of their exponents. The bounds presented here do not improve the best known upper bounds on the exponent of these tensors. However, the new technique provides nontrivial upper bounds, and the strategies presented in this paper provide new and different types of tensor decompositions that are in many ways simpler or more direct when compared to the ones providing better bounds.

The results of this work hold over arbitrary fields as long as the characteristic is "large enough." We will not enter into details, and we will work over the complex numbers for simplicity. We refer to [5, section 15.4] for the formal definition of border rank and the details to extend the results over arbitrary fields.

The article is structured as follows. In section 2, we provide mathematical preliminaries to our study as well as a review of Schönhage's construction. The new examples of strict subadditivity of border rank are presented in section 3. The consequences on the asymptotic rank of generalizations of the matrix multiplication tensor are presented in section 4.
2. Preliminaries. In this section we discuss basic notions that will be used throughout the paper.
2.1. Flattening maps of tensors and their image. Every tensor naturally defines a collection of linear maps, called flattening maps. We will discuss here a characterization of tensor rank and border rank in terms of the image of a flattening map.

Let $T \in V_{1} \otimes \cdots \otimes V_{k}$ be a tensor of order k. The tensor T naturally induces a linear map

$$
T: V_{j}^{*} \rightarrow V_{1} \otimes \cdots \otimes V_{j-1} \otimes V_{j+1} \otimes \cdots \otimes V_{k}
$$

for every $j=1, \ldots, k$. We call these linear maps the flattening maps of T. We say that T is concise if all its flattening maps are injective. Each of the flattening maps uniquely determines T. In fact, the image of any of them, say, $T\left(V_{k}^{*}\right) \subseteq V_{1} \otimes \cdots \otimes V_{k-1}$, already uniquely determines T up to the natural action of the general linear group $\mathrm{GL}\left(V_{k}\right)$.

The following is a characterization of tensor rank and border rank via the geometry of the subspace $T\left(V_{k}^{*}\right)$. We refer to [4, Theorem 2.5] and [13, Lemma 2.4] for the proof and additional information.

Proposition 2.1. Let $T \in V_{1} \otimes \cdots \otimes V_{k}$ be a tensor. Let $E=T\left(V_{k}^{*}\right) \subseteq V_{1} \otimes$ $\cdots \otimes V_{k-1}$ be the image of the last flattening map. Then

$$
\begin{aligned}
& \mathrm{R}(T)=\min \left\{r: E \subseteq\left\langle Z_{1}, \ldots, Z_{r}\right\rangle, \text { lin. indep. } Z_{i} \in V_{1} \otimes \cdots \otimes V_{k-1}, \mathrm{R}\left(Z_{i}\right)=1\right\}, \\
& \underline{\mathrm{R}}(T)=\min \left\{r: E \subseteq \lim _{\varepsilon \rightarrow 0}\left\langle Z_{1}(\varepsilon), \ldots, Z_{r}(\varepsilon)\right\rangle\right. \\
& \left.\quad \text { in. indep. } Z_{i}(\varepsilon) \in V_{1} \otimes \cdots \otimes V_{k-1}, \mathrm{R}\left(Z_{i}(\varepsilon)\right)=1\right\},
\end{aligned}
$$

where the limit is taken in the Grassmannian of r-planes in $V_{1} \otimes \cdots \otimes V_{k-1}$.

Example 2.2. Consider the tensor $T=e_{0} \otimes e_{0} \otimes e_{1}+e_{0} \otimes e_{1} \otimes e_{0}+e_{1} \otimes e_{0} \otimes e_{0} \in$ $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$. It is known that $\mathrm{R}(T)=3$ and $\underline{\mathrm{R}}(T)=2$. Since T is symmetric, the three flattening maps are equal. We have $T\left(\mathbb{C}^{2 *}\right)=\left\langle e_{1} \otimes e_{0}+e_{0} \otimes e_{1}, e_{0} \otimes e_{0}\right\rangle \subseteq \mathbb{C}^{2} \otimes \mathbb{C}^{2}$. The rank upper bound is immediate since $T\left(\mathbb{C}^{2}\right) \subseteq\left\langle e_{0} \otimes e_{1}, e_{1} \otimes e_{0}, e_{0} \otimes e_{0}\right\rangle$ showing $\mathrm{R}(T) \leq 3$. If $\mathrm{R}(T) \leq 2$, then $T\left(\mathbb{C}^{2 *}\right)$ is spanned by two rank-one elements of $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$, but $T\left(\mathbb{C}^{2 *}\right)$ only contains one rank-one element, up to scaling. This shows that $\mathrm{R}(T)=$ 3. The border rank lower bound follows from the flattening lower bound: the border rank of T is at least the rank of any of the flattening maps $T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \otimes \mathbb{C}^{2}$, each of which equals 2. As for the border rank upper bound, let $E_{\varepsilon}=\left\langle e_{0}^{\otimes 2},\left(e_{0}+\varepsilon e_{1}\right)^{\otimes 2}\right\rangle$, and let $E_{0}=\lim _{\varepsilon \rightarrow 0} E_{\varepsilon}$. Note that $E_{0}=T\left(\mathbb{C}^{2 *}\right)$. Indeed $e_{0} \otimes e_{0} \in E_{\varepsilon}$ for every ε; therefore $e_{0} \otimes e_{0} \in E_{0}$ as well. Moreover, $\frac{1}{\varepsilon}\left[\left(e_{0}+\varepsilon e_{1}\right)^{\otimes 2}-e_{0}^{\otimes 2}\right]=e_{0} \otimes e_{1}+e_{1} \otimes e_{0}+\varepsilon e_{1} \otimes e_{1} \in E_{\varepsilon}$ for every ε, so its limit as $\varepsilon \rightarrow 0$ is an element of E_{0}. This shows that $e_{0} \otimes e_{1}+e_{1} \otimes e_{0} \in E_{0}$. Hence we have the inclusion $E_{0} \subseteq T\left(\mathbb{C}^{2}\right)$, and equality follows by dimension reasons.
2.2. Degeneration, unit tensor and Kronecker product. We now discuss a relation on tensors called degeneration and its connection to border rank and the asymptotic version of tensor rank.

The product group $G=\mathrm{GL}\left(V_{1}\right) \times \cdots \times \mathrm{GL}\left(V_{k}\right)$ naturally acts on the tensor space $V_{1} \otimes \cdots \otimes V_{k}$. Given two tensors $T, S \in V_{1} \otimes \cdots \otimes V_{k}$, we say that S is a degeneration of T, and write $S \unlhd T$, if

$$
S \in \overline{G \cdot T}
$$

that is, S belongs to the closure (equivalently in the Zariski or Euclidean topology) of the G-orbit of T. By re-embedding vector spaces in a larger common space, we may always assume that our tensors belong to the same space $V_{1} \otimes \cdots \otimes V_{k}$. We will often tacitly identify tensors that are in the same G-orbit.

The notion of an identity matrix extends to k-tensors as follows. For $r \in \mathbb{N}$, let $V_{j}=\mathbb{C}^{r}$, and define the k-tensor

$$
\mathbf{u}_{k}(r):=\sum_{i=1}^{r} e_{i}^{(1)} \otimes \cdots \otimes e_{i}^{(k)} \in V_{1} \otimes \cdots \otimes V_{k}
$$

where $e_{1}^{(j)}, \ldots, e_{r}^{(j)}$ is a fixed basis of V_{j}. The tensor $\mathbf{u}_{k}(r)$ is sometimes called the rank-r unit tensor.

The fundamental relation between degeneration, unit tensors, and border rank is that, for every k-tensor T, we have

$$
\begin{equation*}
\underline{\mathrm{R}}(T) \leq r \text { if and only if } T \unlhd \mathbf{u}_{k}(r) . \tag{2.1}
\end{equation*}
$$

The Kronecker product of two k-tensors $T \in V_{1} \otimes \cdots \otimes V_{k}$ and $S \in W_{1} \otimes \cdots \otimes W_{k}$ is the tensor $T \boxtimes S \in\left(V_{1} \otimes W_{1}\right) \otimes \cdots \otimes\left(V_{k} \otimes W_{k}\right)$ obtained from $T \otimes S \in V_{1} \otimes \cdots \otimes$ $V_{k} \otimes W_{1} \otimes \cdots \otimes W_{k}$ by grouping together the spaces V_{j} and W_{j} for each j. Tensor rank and border rank are submultiplicative under the Kronecker product, that is, we have $\mathrm{R}(T \boxtimes S) \leq \mathrm{R}(T) \mathrm{R}(S)$ and $\underline{\mathrm{R}}(T \boxtimes S) \leq \underline{\mathrm{R}}(T) \underline{\mathrm{R}}(S)$. Both inequalities may be strict.

In the context of the study of the arithmetic complexity of matrix multiplication, Strassen introduced an asymptotic notion of tensors rank [29], called asymptotic rank, and developed the theory of asymptotic spectra of tensors to gain a deep understanding of its properties $\left[27,30\right.$] (see also [7]). The asymptotic rank of $T \in V_{1} \otimes \cdots \otimes V_{k}$ is defined as

$$
\underset{\sim}{\mathrm{R}}(T)=\lim _{N \rightarrow \infty}\left(\mathrm{R}\left(T^{\boxtimes N}\right)\right)^{1 / N} .
$$

It will often be convenient to take the logarithm of the asymptotic rank,

$$
\omega(T):=\log (\underset{\sim}{\mathrm{R}}(T)),
$$

which is called the exponent of T. We write $\log :=\log _{2}$, the logarithm in base 2 . The limit in the definition of asymptotic rank exists by Fekete's lemma (see, e.g., [19, page 189]), via submultiplicativity of tensor rank. The notion of asymptotic rank does not depend on whether one uses tensor rank $\mathrm{R}(T)$ or border rank $\underline{\mathrm{R}}(T)$ in the definition [2,28]. Because of the submultiplicative property of tensor rank and border rank, we have that $\underset{\sim}{\mathrm{R}}(T) \leq \underline{\mathrm{R}}(T) \leq \mathrm{R}(T)$.

The importance of asymptotic rank in the study of the arithmetic complexity of matrix multiplication comes from the following connection (we refer to [3] for more information). For $m_{1}, m_{2}, m_{3} \in \mathbb{N}$ the matrix multiplication tensor $\mathbf{M a M u}\left(m_{1}, m_{2}, m_{3}\right)$ is defined as
$\mathbf{M a M u}\left(m_{1}, m_{2}, m_{3}\right):=\sum_{i_{1}=1}^{m_{1}} \sum_{i_{2}=1}^{m_{2}} \sum_{i_{3}=1}^{m_{3}} e_{i_{1}, i_{2}} \otimes e_{i_{2}, i_{3}} \otimes e_{i_{3}, i_{1}} \in \mathbb{C}^{m_{1} m_{2}} \otimes \mathbb{C}^{m_{2} m_{3}} \otimes \mathbb{C}^{m_{3} m_{1}}$.
This tensor defines the bilinear map $\mathbb{C}^{m_{1} m_{2}} \times \mathbb{C}^{m_{2} m_{3}} \rightarrow \mathbb{C}^{m_{3} m_{1}}$ which multiplies a matrix of size $m_{1} \times m_{2}$ with one of size $m_{2} \times m_{3}$. It is a fundamental result that the tensor rank of $\mathbf{M a M u}\left(m_{1}, m_{2}, m_{3}\right)$ characterizes the arithmetic complexity (i.e., the minimal number of scalar additions and multiplications in any arithmetic algorithm) of matrix multiplication. In particular, for every $\varepsilon>0$ the arithmetic complexity of $n \times n$ matrix multiplication is $\mathcal{O}\left(n^{\omega+\varepsilon}\right)$, where $\omega=\omega(\mathbf{M a M u}(2,2,2))$. It is a major open problem whether ω equals 2 or is strictly larger than 2 [5].

The notion of the exponent of a tensor naturally extends to a relation on tensors called relative exponent or rate of asymptotic conversion [8, Definition 1.7]. Following that terminology, the exponent of a k-tensor T equals the asymptotic rate of conversion from the unit tensor $\mathbf{u}_{k}(2)$ to T.
2.3. Graph tensors. Graph tensors are a natural generalization of matrix multiplication tensors. They are defined as a Kronecker product of unit tensors of lower order according to the structure of a hypergraph [9].

Let G be a hypergraph with vertex set $V(G)=\{1, \ldots, k\}$ and edge set $E(G)$, that is, $E(G)$ is a set of subsets of $V(G)$. For every hyperedge $I \in E(G)$, let $n_{I} \in \mathbb{N}$ be integer weight.

For every hyperedge $I=\left\{i_{1}, \ldots, i_{p}\right\}$, define the k-tensor

$$
\mathbf{u}_{(I)}\left(n_{I}\right):=\left[\sum_{j=1}^{n_{I}} e_{j}^{\left(i_{1}\right)} \otimes \cdots \otimes e_{j}^{\left(i_{p}\right)}\right] \otimes\left[\bigotimes_{i^{\prime} \notin I} e_{0}^{\left(i^{\prime}\right)}\right] \in\left(\bigotimes_{i \in I} \mathbb{C}^{n_{I}}\right) \otimes\left(\bigotimes_{i^{\prime} \notin I} \mathbb{C}^{1}\right)
$$

where $e_{1}^{(i)}, \ldots, e_{n_{I}}^{(i)}$ is a fixed basis of $\mathbb{C}^{n_{I}}$ for every $i \in I$, and $e_{0}^{\left(i^{\prime}\right)}$ is a fixed basis element of \mathbb{C}^{1} for $i^{\prime} \notin I$.

The graph tensor associated to the hypergraph G with weights $\mathbf{n}=\left(n_{I}: I \in\right.$ $E(G))$ is defined as

$$
T(G, \mathbf{n}):=\boxtimes_{I \in E(G)} \mathbf{u}_{(I)}\left(n_{I}\right)
$$

where \boxtimes denotes the Kronecker product. Thus $T(G, \mathbf{n})$ is a k-tensor in $V_{1} \otimes \cdots \otimes V_{k}$ whose j th factor has a local structure $V_{j}=\left(\otimes_{I \ni j} \mathbb{C}^{n_{I}}\right) \otimes\left(\otimes_{I \not \supset j} \mathbb{C}^{1}\right)$. In particular, $\operatorname{dim} V_{j}=\prod_{I \ni j} \operatorname{dim} n_{I}$.

In the language of tensor networks, $T(G)$ is the generic tensor in the tensor network variety associated to the graph G, as long as the local dimensions are at least as large as $\operatorname{dim} V_{j}$; see, e.g., [14, Chapter 12], [17].

An important feature of graph tensors is their self-reproducing property: if G is a hypergraph with weights $\mathbf{n}=\left(n_{I}: I \in E(G)\right)$ and $T=T(G, \mathbf{n})$ is the associated graph tensor, then $T^{\boxtimes N}=T\left(G, \mathbf{n}^{\odot N}\right)$, where $\mathbf{n}^{\odot N}$ is the tuple of weights obtained from \mathbf{n} by raising every entry to the N th power.

Example 2.3. Let $G=K_{3}$ be the triangle graph, that is, G has vertex set $V(G)=$ $\{1,2,3\}$ and edge set $E(G)=\{\{1,2\},\{2,3\},\{3,1\}\}$ which we write shortly as $E(G)=$ $\{12,23,31\}$. Consider weights on G given by $\mathbf{n}=\left(n_{12}, n_{23}, n_{31}\right)$. The graph tensor associated to G is the tensor $T(G, \mathbf{n}) \in V_{1} \otimes V_{2} \otimes V_{3}$ with $V_{1}=\mathbb{C}^{n_{31}} \otimes \mathbb{C}^{n_{12}}, V_{2}=$ $\mathbb{C}^{n_{12}} \otimes \mathbb{C}^{n_{23}}$, and $V_{3}=\mathbb{C}^{n_{23}} \otimes \mathbb{C}^{n_{31}}$ given by

$$
T(G, \mathbf{n})=\sum e_{i_{31} i_{12}} \otimes e_{i_{12} i_{23}} \otimes e_{i_{23} i_{31}}
$$

where the sum ranges over the indices i_{12}, i_{23}, i_{31} with $i_{12}=1, \ldots, n_{12}$ and similarly for i_{23}, i_{31}. Thus $T(G, \mathbf{n})$ equals the matrix multiplication tensor $\mathbf{M a M u}\left(n_{12}, n_{23}, n_{31}\right)$ in (2.2). In general, we may represent any graph tensor $T(G, \mathbf{n})$ by the defining weighted graph with vertices labeled by the appropriate vector spaces V_{i}. In this case,

We will often drop the notation V_{i} from the picture.
More generally, the graph tensor associated to the cycle graph C_{k} of length k is the iterated matrix multiplication tensor of order k.

Example 2.4 (unit tensors). For any k let G be the graph with vertex set $V(G)=$ $\{1, \ldots, k\}$ and edge set $E(G)=\{\{1, \ldots, k\}\}$. That is, G has a single hyperedge containing all vertices. Consider the weight $\mathbf{n}=r \in \mathbb{N}$ for this hyperedge. Then the associated graph tensor $T(G, \mathbf{n})$ equals the unit tensor $\mathbf{u}_{k}(r)$ defined in subsection 2.2. For the case $k=3$, the graphical representation for this graph tensor is

Back to the general setting, since border rank is submultiplicative under the Kronecker product, we have a trivial upper bound for the asymptotic rank of graph tensors given by the product of the rank of the factors from which they arise. In particular, we have the asymptotic rank upper bound

$$
\begin{equation*}
\underset{\sim}{\mathrm{R}}(T(G, \mathbf{n})) \leq \underline{\mathrm{R}}(T(G, \mathbf{n})) \leq \prod_{I \in E(G)} n_{I} . \tag{2.3}
\end{equation*}
$$

Consequently, the exponent of $T(G, \mathbf{n})$ is bounded from above by the logarithm of the right-hand side of (2.3), that is, $\omega(T(G, \mathbf{n})) \leq \sum_{I \in E(G)} \log \left(n_{I}\right)$.
2.4. Schönhage's construction and the exponent of matrix multiplication. We review Schönhage's construction of strict subadditivity of border rank of 3 -tensors under the direct sum. The higher order examples in section 3 are largely inspired by this construction.

Fix $n_{1}, n_{2} \geq 1$, and consider the two tensors associated to the following graphs:

It is immediate that $\underline{\mathrm{R}}\left(T_{1}\right)=\left(n_{1}+1\right)\left(n_{2}+1\right)$ and $\underline{\mathrm{R}}\left(T_{2}\right)=n_{1} n_{2}$, so that one obtains the trivial upper bound on the direct sum: $\underline{\mathrm{R}}\left(T_{1} \oplus T_{2}\right) \leq\left(n_{1}+1\right)\left(n_{2}+1\right)+$ $n_{1} n_{2}$. Schönhage proved $\underline{\mathrm{R}}\left(T_{1} \oplus T_{2}\right)=\left(n_{1}+1\right)\left(n_{2}+1\right)+1$ [21] (see also [3]). In particular, whenever $n_{1} \geq 2$ or $n_{2} \geq 2$, this construction provides an example of strict subadditivity of border rank.

Note that $T_{1} \boxtimes T_{2}$ is the matrix multiplication tensor with edge weights $\mathbf{n}=$ $\left(n_{1}+1, n_{2}+1, n_{1} n_{2}\right)$. Using the strict subadditivity result Schönhage provided an upper bound on the exponent of matrix multiplication. We provide two key results which are useful to reproduce Schönhage's upper bound on the exponent of matrix multiplication as well as the upper bounds on the exponent of certain graph tensors in section 4. We refer to [3] and [36, section 2] for additional information.

Lemma 2.5. Let S, T, U be tensors such that $S \boxtimes T \unlhd S \boxtimes U$. Then for every $N \in \mathbb{N}$ we have

$$
S \boxtimes T^{\boxtimes N} \unlhd S \boxtimes U^{\boxtimes N}
$$

In particular, if $\mathbf{u}_{k}(s) \boxtimes T \unlhd \mathbf{u}_{k}(r)$ for some integers r, s, then for all $N \in \mathbb{N}$ we have

$$
\mathbf{u}_{k}(s) \boxtimes T^{\boxtimes N} \unlhd \mathbf{u}_{k}(s) \boxtimes \mathbf{u}_{k}\left(\left\lceil\frac{r}{s}\right\rceil^{N}\right)
$$

Proof. The proof is by induction. The base case $S \boxtimes T \unlhd S \boxtimes U$ is true by assumption. The induction step is

$$
S \boxtimes T^{\boxtimes n}=S \boxtimes T \boxtimes T^{\boxtimes(n-1)} \unlhd S \boxtimes U \boxtimes T^{\boxtimes(n-1)} \unlhd S \boxtimes U \boxtimes U^{\boxtimes(n-1)}=S \boxtimes U^{\boxtimes n}
$$

where we first use the assumption in the inequality $S \boxtimes T \unlhd S \boxtimes U$ and then we use the inductive hypothsis in the inequality $S \boxtimes T^{\boxtimes(n-1)} \unlhd S \boxtimes U^{\boxtimes(n-1)}$.

If $\mathbf{u}_{k}(s) \boxtimes T \unlhd \mathbf{u}_{k}(r)$, then $\mathbf{u}_{k}(s) \boxtimes T \unlhd \mathbf{u}_{k}(s) \boxtimes \mathbf{u}_{k}(\lceil r / s\rceil)$. Applying the first part of the lemma with $S=\mathbf{u}_{k}(s)$ and $U=\mathbf{u}_{k}(\lceil r / s\rceil)$ provides the desired result. $\quad \square$

Proposition 2.6. Let $T_{1} \in V_{1} \otimes \cdots \otimes V_{k}$ and $T_{2} \in W_{1} \otimes \cdots \otimes W_{k}$ be two tensors. Suppose $\underline{\mathrm{R}}\left(T_{1} \oplus T_{2}\right) \leq r$. Let $N \geq 0$ be an integer, and let $p \in(0,1)$ such that $p N$ is an integer. Then

$$
\underline{\mathrm{R}}\left(T_{1}^{\boxtimes N p} \boxtimes T_{2}^{\boxtimes N(1-p)}\right) \leq\left(\frac{r}{2^{h(p)+o(1)}}\right)^{N}
$$

where $h(p)$ is the binary entropy function $h(p)=-p \log (p)-(1-p) \log (1-p)$.

Proof. Consider the binomial expansion of $\left(T_{1} \oplus T_{2}\right)^{\boxtimes N}$:

$$
\left(T_{1} \oplus T_{2}\right)^{\boxtimes N}=\bigoplus_{M=0}^{N} \mathbf{u}_{k}\left(\binom{N}{M}\right) \boxtimes\left(T_{1}^{\boxtimes M} \boxtimes T_{2}^{\boxtimes(N-M)}\right) .
$$

It is immediate that the right-hand side above degenerates to each direct summand: in particular $\left(T_{1} \oplus T_{2}\right)^{\boxtimes N} \unrhd\binom{N}{p N} \boxtimes\left(T_{1}^{\boxtimes p N} \boxtimes T_{2}^{\boxtimes(1-p) N}\right)$.

Moreover, since $\underline{\mathrm{R}}\left(T_{1} \oplus T_{2}\right) \leq r$, from (2.1), we obtain $T_{1} \oplus T_{2} \unlhd \mathbf{u}_{k}(r)$, and therefore $\left(T_{1} \oplus T_{2}\right)^{\boxtimes N} \unlhd \mathbf{u}_{k}(r)^{N}$. Thus,

$$
\mathbf{u}_{k}\left(r^{N}\right) \unrhd \mathbf{u}_{k}\left(\binom{N}{p N}\right) \boxtimes\left(T_{1}^{\boxtimes p N} \boxtimes T_{2}^{\boxtimes((1-p) N)}\right) .
$$

Using Lemma 2.5, we have

$$
\mathbf{u}_{k}\left(r^{N} /\left(\binom{N}{p N}\right)\right) \unrhd \mathbf{u}_{k}\left(\binom{N}{p N}\right) \boxtimes\left(T_{1}^{\boxtimes p N} \boxtimes T_{2}^{\boxtimes((1-p) N)}\right) \unrhd T_{1}^{\boxtimes p N} \boxtimes T_{2}^{\boxtimes((1-p) N)} .
$$

Recall that $\binom{N}{p N}=2^{N h(p)+o(1)}$, where $h(p)$ is the binary entropy function. This gives

$$
\underline{\mathrm{R}}\left(T_{1}^{\boxtimes p N} \boxtimes T_{2}^{\boxtimes((1-p) N)}\right) \leq\left(\frac{r}{2^{h(p)+o(1)}}\right)^{N}
$$

and concludes the proof.
Because of the self-reproducing property of graph tensors, it is convenient to allow the weights of the graph to have fractional exponents. We will use this convention in order to give asymptotic statements with the understanding that the statement holds for the Kronecker powers for which the dimensions have integer values. More precisely, given a tensor T and values $q \in(0,1)$ and $\rho \geq 0$, the statement $\underset{\sim}{\mathrm{R}}\left(T^{\boxtimes q}\right) \leq \rho$ is to be read as $\underline{\mathrm{R}}\left(T^{\boxtimes N q}\right) \leq \rho^{N+o(1)}$ for all N for which $q N$ is an integer. From this point of view, after taking an N th root in Proposition 2.6, we obtain the asymptotic bound

$$
\underset{\sim}{\mathrm{R}}\left(T_{1}^{\boxtimes p} \boxtimes T_{2}^{\boxtimes(1-p)}\right) \leq \frac{r}{2^{h(p)}} .
$$

After taking the logarithm, we have a bound on the exponent

$$
\begin{equation*}
\omega\left(T_{1}^{\boxtimes p} \boxtimes T_{2}^{\boxtimes(1-p)}\right) \leq \log (r)-h(p) . \tag{2.4}
\end{equation*}
$$

Schönhage's construction provides tensors T_{1}, T_{2} with $\underline{\mathrm{R}}\left(T_{1} \oplus T_{2}\right)=\left(n_{1}+1\right)\left(n_{2}+1\right)+1$ and $T_{1}^{p} \boxtimes T_{2}^{1-p}=\mathbf{M a M u}\left(\left(n_{1}+1\right)^{p},\left(n_{2}+1\right)^{p},\left(n_{1} n_{2}\right)^{\overline{1-p}}\right)$. Applying Proposition 2.6, one obtains

$$
\omega\left(\operatorname{MaMu}\left(\left(n_{1}+1\right)^{p},\left(n_{2}+1\right)^{p},\left(n_{1} n_{2}\right)^{1-p}\right)\right) \leq \log \left(\left(n_{1}+1\right)\left(n_{2}+1\right)+1\right)-h(p)
$$

For $n_{1}=n_{2}=3$, we obtain $\omega\left(\mathbf{M a M u}\left(4^{p}, 4^{p}, 9^{1-p}\right)\right) \leq \log (17)-h(p)$. Cyclically permuting the factors and using the self-reproducing property of the matrix multiplication tensor, one obtains an upper bound on the exponent of a square matrix multiplication and, by passing to the asymptotic rank,

$$
\omega(\mathbf{M a M u}(2,2,2)) \leq \frac{3(\log (17)-h(p))}{4 p+(1-p) \log (9)}
$$

The right-hand side attains its minimum at $p \approx 0.61$, giving Schönhage's upper bound on the exponent $\omega(\mathbf{M a M u}(2,2,2)) \leq 2.55$.
3. Strict subadditivity of border rank. In this section we provide four families of examples of strict subadditivity of border rank for higher order tensors. The subadditivity results are recorded in Theorem 3.1, Theorem 3.2, Theorem 3.3, and Theorem 3.5.

All constructions are characterized by a structure similar to Schönhage's. We consider two graph tensors:

- The tensor T_{1} is a spider, that is, a graph tensor where the underlying graph has all edges incident to a single vertex. In this case, the graph tensor is, up to change of coordinates, the only concise tensor in its space.
- The tensor T_{2} is either a matrix, that is, a graph tensor with a single edge, or $\mathbf{u}_{3}(r)$, that is, a graph tensor with a single hyperedge of order three.
Constructions 1,2 , and 3 add a matrix to the spider. Construction 1 provides a construction for tensors of order 4 where the direct sum attains minimal border rank. For large edge dimensions, the border rank upper bound is roughly $2 / 3$ times the trivial additive upper bound. Construction 2 provides an improvement of Construction 1 for certain smaller edge dimensions. Construction 3 concerns tensors of all orders and gives an optimal savings of a factor of 2 for large edge dimensions. Construction 4 adds a unit tensor to the legs of a three-legged spider.

Construction 1: Adding a matrix. This first construction concerns tensors of order four. Fix $n_{1}, n_{2}, n_{3} \geq 2$ with n_{1} (or n_{2} or n_{3}) odd. Consider the following two tensors:

where $N=\frac{1}{2}\left(n_{1}-1\right)\left(n_{2}-1\right)\left(n_{3}-1\right)$. In this case, we have the following result.
Theorem 3.1. For every n_{1}, n_{2}, n_{3} with n_{1} odd, we have

$$
\begin{aligned}
& \underline{\mathrm{R}}\left(T_{1}\right)=\left(n_{1}+1\right)\left(n_{2}+1\right)\left(n_{3}+1\right), \\
& \underline{\mathrm{R}}\left(T_{2}\right)=N,
\end{aligned}
$$

and

$$
\underline{\mathrm{R}}\left(T_{1} \oplus T_{2}\right)=\left(n_{1}+1\right)\left(n_{2}+1\right)\left(n_{3}+1\right)+1
$$

Proof. For $p=1,2,3$, write $V_{p}=\mathbb{C}^{n_{p}+1}$, and let $V_{4}=\mathbb{C}^{\left(n_{1}+1\right)\left(n_{2}+1\right)\left(n_{3}+1\right)}$. Let $\left\{v_{j}^{p}: j=0, \ldots, n_{p}\right\}$ be a basis of V_{p} and $\left\{v_{i_{1}, i_{2}, i_{3}}^{4}: i_{p}=0, \ldots, n_{p}\right\}$ be a basis of V_{4}. We have $T_{1} \in V_{1} \otimes \cdots \otimes V_{4}$.

Similarly, for $p=1,2$, let $W_{p}=\mathbb{C}^{N}$, and for $p=3,4$ let $W_{p}=\mathbb{C}^{1}$. Write $m_{1}=\frac{1}{2}\left(n_{1}-1\right), m_{2}=n_{2}-1$, and $m_{3}=n_{3}-1$. For $p=1,2$ let $\left\{w_{j_{1}, j_{2}, j_{3}}^{p}: j_{p}=\right.$ $\left.1, \ldots, m_{p}\right\}$ be a basis of W_{p}, and let $W_{p}=\left\langle w^{p}\right\rangle$ for $p=3,4$; note that indeed these are $\frac{n_{1}-1}{2}\left(n_{2}-1\right)\left(n_{3}-1\right)=N$ vectors. We have $T_{2} \in W_{1} \otimes \cdots \otimes W_{4}$.

Regard $T_{1} \oplus T_{2}$ as a tensor in $\left(V_{1} \oplus W_{1}\right) \otimes \cdots \otimes\left(V_{4} \oplus W_{4}\right)$.
The values of $\underline{\mathrm{R}}\left(T_{1}\right)$ and $\underline{\mathrm{R}}\left(T_{2}\right)$ are immediate. The lower bound $\underline{\mathrm{R}}\left(T_{1} \oplus T_{2}\right) \geq$ $\left(n_{1}+1\right)\left(n_{2}+1\right)\left(n_{3}+1\right)+1$ follows by conciseness.

For the upper bound, we determine a set of $\left(n_{1}+1\right)\left(n_{2}+1\right)\left(n_{3}+1\right)+1$ rank-one elements $\mathcal{Z}_{\varepsilon} \subseteq\left(V_{1} \oplus W_{1}\right) \otimes\left(V_{2} \oplus W_{2}\right) \otimes\left(V_{3} \oplus W_{3}\right)$ such that $\left(T_{1} \oplus T_{2}\right)\left(V_{4}^{*} \oplus W_{4}^{*}\right) \subseteq$ $\lim \left\langle\mathcal{Z}_{\varepsilon}\right\rangle$. By Proposition 2.1, this provides the desired upper bound.

Note

$$
\left(T_{1} \oplus T_{2}\right)\left(V_{4}^{*} \oplus W_{4}^{*}\right)=V_{1} \otimes V_{2} \otimes V_{3} \oplus\langle\mathbf{u}(N)\rangle
$$

where

$$
\mathbf{u}(N):=\sum_{\substack{j_{p}=1, \ldots, m_{p} \\ p=1,2,3}} w_{j_{1}, j_{2}, j_{3}}^{1} \otimes w_{j_{1}, j_{2}, j_{3}}^{2} \otimes w^{3}=\mathbf{u}_{2}(N) \otimes w^{3} \in W_{1} \otimes W_{2} \otimes W_{3}
$$

We will denote the elements of $\mathcal{Z}_{\varepsilon}$ using indices $\left\{-1,(0,0,0), \ldots,\left(n_{1}, n_{2}, n_{3}\right)\right\}$; note that these are $\left(n_{1}+1\right)\left(n_{2}+1\right)\left(n_{3}+1\right)+1$ elements. We drop the dependency on ε from the notation.

For $p=1,2,3$ and $j_{p}=1, \ldots, m_{p}$, define

$$
Z_{j_{1}, j_{2}, j_{3}}=\left(v_{j_{1}}^{1}+\varepsilon w_{j_{1}, j_{2}, j_{3}}^{1}\right) \otimes\left(v_{j_{2}}^{2}+\varepsilon w_{j_{1}, j_{2}, j_{3}}^{2}\right) \otimes\left(v_{j_{3}}^{3}+\varepsilon w^{3}\right) .
$$

Write $\mathbf{Z}_{1}=\sum_{j_{1}, j_{2}, j_{3}} Z_{j_{1}, j_{2}, j_{3}}$ for the tensor obtained as sum of the $m_{1} m_{2} m_{3}=$ $\frac{n_{1}-1}{2}\left(n_{2}-1\right)\left(n_{3}-1\right)$ rank-one tensors defined above. The component of degree 3 (with respect to ε) in \mathbf{Z}_{1} is exactly $\mathbf{u}(N)$.

For $j_{1}=1, \ldots, m_{1}\left(\right.$ so that $\left.m_{1}+j_{1}=m_{1}+1, \ldots, n_{1}-1\right), j_{2}=1, \ldots, m_{2}$, and $j_{3}=1, \ldots, m_{3}$, define

$$
Z_{m_{1}+j_{1}, j_{2}, j_{3}}=\left(v_{m_{1}+j_{1}}^{1}+\varepsilon w_{j_{1}, j_{2}, j_{3}}^{1}\right) \otimes\left(v_{j_{2}}^{2}-\varepsilon w_{j_{1}, j_{2}, j_{3}}^{2}\right) \otimes v_{j_{3}}^{3} .
$$

Let \mathbf{Z}_{110} be the sum of the tensors just defined.
For $k_{1}=1, \ldots, m_{1}$ and for $k_{2}=1, \ldots, m_{2}$ define the two sets of tensors

$$
\begin{aligned}
& Z_{n_{1}, k_{2}, 0}=\left(v_{n_{1}}^{1}+\varepsilon \sum_{\substack{p=1,3 \\
j_{p}=1, \ldots, m_{p}}} w_{j_{1}, k_{2}, j_{3}}^{1}\right) \otimes v_{k_{2}}^{2} \otimes\left(v_{0}^{3}-\varepsilon w^{3}\right), \\
& Z_{k_{1}, n_{2}, 0}=v_{k_{1}}^{1} \otimes\left(v_{n_{2}}^{2}+\varepsilon \sum_{\substack{p=2,3 \\
j_{p}=1, \ldots, m_{p}}} w_{k_{1}, j_{2}, j_{3}}^{1}\right) \otimes\left(v_{0}^{3}-\varepsilon w^{3}\right),
\end{aligned}
$$

consisting, respectively, of $n_{2}-1$ and $\frac{n_{1}-1}{2}$ rank-one tensors. Write \mathbf{Z}_{101} and \mathbf{Z}_{011} for the sum of the first and second sets of tensors just defined.

Now, the component of degree 2 in \mathbf{Z}_{1} is opposite to the component of degree 2 in $\mathbf{Z}_{110}+\mathbf{Z}_{101}+\mathbf{Z}_{011}$. Let $S=\mathbf{Z}_{1}+\mathbf{Z}_{110}+\mathbf{Z}_{101}+\mathbf{Z}_{011}$. We deduce that the component of degree 2 in S is 0 .

Therefore S can be written as $S=S_{0}+\varepsilon S_{1}+\varepsilon^{3} \mathbf{u}(N)$ and

$$
\begin{aligned}
S_{1}=\sum_{\substack{i_{1}=1, \ldots, n_{1} \\
i_{2}=1, \ldots, n_{2}}} v_{i_{1}}^{1} \otimes v_{i_{2}}^{2} \otimes \omega_{i_{1}, i_{2}}^{3} & +\sum_{\substack{i_{1}=1, \ldots, n_{1} \\
i_{3}=1, \ldots, n_{3}}} v_{i_{1}}^{1} \otimes \omega_{i_{1}, i_{3}}^{2} \otimes v_{i_{3}}^{3} \\
& +\sum_{\substack{i_{2}=1, \ldots, n_{2} \\
i_{3}=1, \ldots, n_{3}}} \omega_{i_{1}, i_{2}}^{1} \otimes v_{i_{2}}^{2} \otimes v_{i_{3}}^{3}
\end{aligned}
$$

for some vectors $\omega_{i_{2}, i_{3}}^{1} \in W_{1}, \omega_{i_{1}, i_{3}}^{2} \in W_{2}$, and $\omega_{i_{1}, i_{2}}^{3} \in W_{3}$.

Define

$$
\begin{aligned}
Z_{0, i_{2}, i_{3}} & =\left(v_{0}^{1}-\varepsilon \omega_{i_{2}, i_{3}}^{1}\right) \otimes v_{i_{2}}^{2} \otimes v_{i_{3}}^{3} \\
Z_{i_{1}, 0, i_{3}} & =v_{i_{1}}^{1} \otimes\left(v_{0}^{2}-\varepsilon \omega_{i_{1}, i_{3}}^{2}\right) \otimes v_{i_{3}}^{3} \\
Z_{i_{1}, i_{2}, 0} & =v_{i_{1}}^{1} \otimes v_{i_{2}}^{2} \otimes\left(v_{0}^{3}-\varepsilon \omega_{i_{1}, i_{2}}^{3}\right)
\end{aligned}
$$

Let $\mathbf{Z}_{0,0,0}$ be the sum of these three families of tensors. Then $S+\mathbf{Z}_{0,0,0}=R+\varepsilon^{3} \mathbf{u}(N)$ for some tensor R not depending on ε : in particular, if $\Phi \subseteq\left[0, n_{1}\right] \times\left[0, n_{2}\right] \times\left[0, n_{3}\right]$ is the subset of indices $\left(i_{1}, i_{2}, i_{3}\right)$ for which a tensor $Z_{i_{1}, i_{2}, i_{3}}$ has been defined, then $R=\left.\sum_{\left(i_{1}, i_{2}, i_{3}\right) \in \Phi} Z_{i_{1}, i_{2}, i_{3}}\right|_{\varepsilon=0}$.

Let $\Omega \subseteq\left[0, n_{1}\right] \times\left[0, n_{2}\right] \times\left[0, n_{3}\right]$ be the set of all the triples $\left(i_{1}, i_{2}, i_{3}\right)$ for which a tensor $Z_{i_{1}, i_{2}, i_{3}}$ has not yet been defined; in other words Ω is the complement of Φ. For $\left(i_{1}, i_{2}, i_{3}\right) \in \Omega$, let $Z_{i_{1}, i_{2}, i_{3}}=v_{i_{1}}^{1} \otimes v_{i_{2}}^{2} \otimes v_{i_{3}}^{3}$.

Finally, define $Z_{-1}=\left(\sum_{0}^{n_{1}} v_{i_{1}}^{1}\right) \otimes\left(\sum_{0}^{n_{2}} v_{i_{2}}^{2}\right) \otimes\left(\sum_{0}^{n_{3}} v_{i_{3}}^{3}\right)$. Note

$$
Z_{-1}=\sum_{\left(i_{1}, i_{2}, i_{3}\right) \in\left[0, n_{1}\right] \times\left[0, n_{2}\right] \times\left[0, n_{3}\right]} v_{i_{1}}^{1} \otimes v_{i_{2}}^{2} \otimes v_{i_{3}}^{3}
$$

equals the sum over the indices of Φ and of Ω.
Let $\mathcal{Z}_{\varepsilon}=\left\{Z_{-1}, Z_{0,0,0}, \ldots, Z_{n_{1}, n_{2}, n_{3}}\right\}$: then $\mathcal{Z}_{\varepsilon}$ has $\left(n_{1}+1\right)\left(n_{2}+1\right)\left(n_{3}+1\right)+1$ elements. Let $E_{\varepsilon}=\left\langle\mathcal{Z}_{\varepsilon}\right\rangle \subseteq\left(V_{1} \oplus W_{1}\right) \otimes\left(V_{2} \oplus W_{2}\right) \otimes\left(V_{3} \oplus W_{3}\right)$ and $E_{0}=\lim _{\varepsilon \rightarrow 0} E_{\varepsilon}$, where the limit is taken in the corresponding Grassmannian.

We show that $\left(T_{1} \oplus T_{2}\right)\left(V_{4}^{*} \oplus W_{4}^{*}\right) \subseteq E_{0}$ (and in fact equality holds).
For every $\left(i_{1}, i_{2}, i_{3}\right)$, we have $\left.Z_{i_{1}, i_{2}, i_{3}}\right|_{\varepsilon=0}=v_{i_{1}}^{1} \otimes v_{i_{2}}^{2} \otimes v_{i_{3}}^{3}$. This shows $V_{1} \otimes V_{2} \otimes V_{3} \subseteq$ E_{0}.

Moreover $\varepsilon^{3} \mathbf{u}(N)=\sum_{i_{1}, i_{2}, i_{3}} Z_{i_{1}, i_{2}, i_{3}}-Z_{-1} ;$ therefore $\mathbf{u}(N) \in E_{\varepsilon}$ for every ε; hence $\mathbf{u}(N) \in E_{0}$.

This shows $\left(T_{1} \oplus T_{2}\right)\left(V_{4}^{*} \oplus W_{4}^{*}\right) \subseteq E_{0}$ and concludes the proof.
Construction 2: Adding a matrix, II. Construction 1 does not apply in the case where the weights of the edges are 2. Construction 2 addresses this setting in a particular case. Fix $a \geq 2$. Consider the two tensors

The result and its proof are similar to Theorem 3.1.
Theorem 3.2. Let $a \geq 2$. Then

$$
\begin{aligned}
& \underline{\mathrm{R}}\left(T_{1}\right)=4(a+2) \\
& \underline{\mathrm{R}}\left(T_{2}\right)=a
\end{aligned}
$$

and

$$
\underline{\mathrm{R}}\left(T_{1} \oplus T_{2}\right)=4(a+2)+1
$$

Proof. Let $V_{1}=V_{2}=\mathbb{C}^{2}, V_{3}=\mathbb{C}^{a+2}$, and $V_{4}=\mathbb{C}^{4(a+2)}$ so that $T_{1} \in V_{1} \otimes \cdots \otimes V_{4}$. For $p=1,2$, let $\left\{v_{1}^{p}, v_{2}^{p}\right\}$ be a basis of V_{p}, and let $\left\{v_{j}^{3}: j=-1, \ldots, a\right\}$ be a basis of V_{3}.

Similarly, let $W_{1}=W_{2}=\mathbb{C}^{a}, W_{3}=W_{4}=\mathbb{C}^{1}$, so that $T_{2} \in W_{1} \otimes \cdots \otimes W_{4}$. For $p=1,2$, let $\left\{w_{\ell}^{p}: \ell=1, \ldots, a\right\}$ be a basis of W_{p}, and let $\left\{w^{3}\right\}$ be a basis of W_{3}.

Regard $T_{1} \oplus T_{2}$ as a tensor in $\left(V_{1} \oplus W_{1}\right) \otimes \cdots \otimes\left(V_{4} \oplus W_{4}\right)$.
The values of $\underline{\mathrm{R}}\left(T_{1}\right)$ and $\underline{\mathrm{R}}\left(T_{2}\right)$ are immediate. The lower bound $\underline{\mathrm{R}}\left(T_{1} \oplus T_{2}\right) \geq$ $4(a+2)+1$ follows by conciseness.

For the upper bound, we determine a set of $4(a+2)+1$ rank-one elements $\mathcal{Z}_{\varepsilon} \subseteq$ $\left(V_{1} \oplus W_{1}\right) \otimes\left(V_{2} \oplus W_{2}\right) \otimes\left(V_{3} \oplus W_{3}\right)$ such that $T\left(V_{4}^{*} \oplus W_{4}^{*}\right) \subseteq \lim \left\langle\mathcal{Z}_{\varepsilon}\right\rangle$. By Proposition 2.1, this provides the desired upper bound.

Note

$$
T\left(V_{4}^{*} \oplus W_{4}^{*}\right)=V_{1} \otimes V_{2} \otimes V_{3}+\langle\mathbf{u}(a)\rangle,
$$

where, as in the proof of Theorem 3.1, $\mathbf{u}(a)=\sum_{1}^{a} w_{j}^{1} \otimes w_{j}^{2} \otimes w^{3}=\mathbf{u}_{2}(a) \otimes w^{3}$.
We will denote elements of $\mathcal{Z}_{\varepsilon}$ using indices $\{-1,(1,1,-1), \ldots,(2,2, a)\}$. We drop the dependency from ε in the notation.

Define the following tensors:

$$
\begin{array}{ll}
Z_{1,1, i}=\left(v_{1}^{1}+\varepsilon w_{i}^{1}\right) \otimes\left(v_{1}^{2}+\varepsilon w_{i}^{2}\right) \otimes\left(v_{i}^{3}+\varepsilon w^{3}\right) & \text { for } i=1, \ldots, a, \\
Z_{1,2, i}=\left(v_{1}^{1}+\varepsilon w_{i}^{1}\right) \otimes\left(v_{2}^{2}-\varepsilon w_{i}^{2}\right) \otimes v_{i}^{3} & \text { for } i=1, \ldots, a, \\
Z_{2,1, i}=\left(v_{2}^{1}-\varepsilon w_{i}^{1}\right) \otimes v_{1}^{2} \otimes v_{i}^{3} & \text { for } i=1, \ldots, a, \\
Z_{2,2, i}=\left(v_{2}^{1}-\varepsilon w_{i}^{1}\right) \otimes v_{2}^{2} \otimes v_{i}^{3} & \text { for } i=1, \ldots, a,
\end{array}
$$

$$
Z_{1,1,-1}=v_{1}^{1} \otimes\left(v_{1}^{2}+\frac{2 \varepsilon}{a} \sum_{1}^{a} w_{j}^{2}\right) \otimes\left(v_{-1}^{3}-\frac{a \varepsilon}{2} w^{3}\right),
$$

$$
Z_{1,1,0}=\left(v_{1}^{1}+\frac{2 \varepsilon}{a} \sum_{1}^{a} w_{j}^{1}\right) \otimes v_{1}^{2} \otimes\left(v_{0}^{3}-\frac{a \varepsilon}{2} w^{3}\right),
$$

$$
Z_{1,2,-1}=v_{1}^{1} \otimes\left(v_{2}^{2}-\frac{2 \varepsilon}{a} \sum_{1}^{a} w_{j}^{2}\right) \otimes v_{-1}^{3},
$$

$$
Z_{2,1,0}=\left(v_{2}^{1}-\frac{2 \varepsilon}{a} \sum_{1}^{a} w_{j}^{1}\right) \otimes v_{1}^{2} \otimes v_{0}^{3},
$$

$$
Z_{2,1,-1}=v_{2}^{1} \otimes v_{1}^{2} \otimes v_{-1}^{3}, \quad Z_{1,2,0}=v_{1}^{1} \otimes v_{2}^{2} \otimes v_{0}^{3}
$$

$$
Z_{2,2,-1}=v_{2}^{1} \otimes v_{2}^{2} \otimes v_{-1}^{3}, \quad Z_{2,2,0}=v_{2}^{1} \otimes v_{2}^{2} \otimes v_{0}^{3}
$$

Finally, let $Z_{-1}=\left(v_{1}^{1}+v_{2}^{1}\right) \otimes\left(v_{1}^{2}+v_{2}^{2}\right) \otimes\left(\sum_{-1}^{a} v_{i}^{3}\right)$.
A direct calculation shows that $\sum_{\left(i_{1}, i_{2}, i_{3}\right) \in\{(1,1,-1), \ldots,(2,2, a)\}} Z_{i_{1}, i_{2}, i_{3}}=Z_{-1}+$ $\varepsilon^{3} \mathbf{u}(a)$, similarly to the proof of Theorem 3.1.

Let $\mathcal{Z}_{\varepsilon}=\left\{Z_{-1}, Z_{1,1,-1}, \ldots, Z_{2,2, a}\right\} \subseteq\left(V_{1} \oplus W_{1}\right) \otimes\left(V_{2} \otimes W_{2}\right) \otimes\left(V_{3} \otimes W_{3}\right)$: then $\mathcal{Z}_{\varepsilon}$ contains $4 a+1$ elements. Let $E_{\varepsilon}=\left\langle\mathcal{Z}_{\varepsilon}\right\rangle$ and $E_{0}=\lim _{\varepsilon \rightarrow 0} E_{\varepsilon}$, where the limit is taken in the corresponding Grassmannian.

We show that $\left(T_{1} \oplus T_{2}\right)\left(V_{4}^{*} \oplus W_{4}^{*}\right) \subseteq E_{0}$ (and in fact equality holds).
For every $\left(i_{1}, i_{2}, i_{3}\right) \in\{(1,1,-1), \ldots,(2,2, a)\}$, we have $\left.Z_{i_{1}, i_{2}, i_{3}}\right|_{\varepsilon=0}=v_{i_{1}}^{1} \otimes v_{i_{2}}^{2} \otimes$ $v_{i_{3}}^{3}$. This shows $V_{1} \otimes V_{2} \otimes V_{3} \subseteq E_{0}$.

Moreover $\varepsilon^{3} \mathbf{u}(a)=\sum_{i_{1}, i_{2}, i_{3}} Z_{i_{1}, i_{2}, i_{3}}-Z_{-1}$; therefore $\mathbf{u}(N) \in E_{\varepsilon}$ for every ε; hence $\mathbf{u}(N) \in E_{0}$.

This shows $\left(T_{1} \oplus T_{2}\right)\left(V_{4}^{*} \oplus W_{4}^{*}\right) \subseteq E_{0}$ and concludes the proof.
Construction 3: Adding a matrix, III. This third construction deals with tensors of any order. Furthermore, for large dimensions, it provides an upper bound
which improves on the trivial additive upper bound by a factor of 2 , as in Schönhage's construction, unlike Constructions 1 and 2 which provide a saving of a factor of $3 / 2$ and $5 / 4$, respectively.

Fix $d \geq 2$ and n_{1}, \ldots, n_{d}. Let $N \leq n_{1} \cdots n_{d}$. Consider the following two tensors:

For the sake of notation, we state and prove the following result in the special case $n:=n_{1}=\cdots=n_{d}$. A similar upper bound holds in general.

Theorem 3.3. Let $n, N, d \in \mathbb{N}$ be integers with $N \leq n^{d}$. Let T_{1}, T_{2} be as in (3.1). Then

$$
\begin{aligned}
& \underline{\mathrm{R}}\left(T_{1}\right)=n^{d}, \\
& \underline{\mathrm{R}}\left(T_{2}\right)=N,
\end{aligned}
$$

and

$$
\underline{\mathrm{R}}\left(T_{1} \oplus T_{2}\right) \leq n^{d}+2 n^{d-1}+n^{2}(n+1)^{d-3}+1=n^{d}+\mathcal{O}\left(n^{d-1}\right)
$$

Proof. We prove the result for $N=n^{d}$. The general result follows by semicontinuity of border rank.

For $p=1, \ldots, d$, let $V_{p}=\mathbb{C}^{n}$ and $\left\{v_{i_{p}}^{p}: i_{p}=1, \ldots, n\right\}$ be a basis of V_{p}. Let $V_{d+1}=\mathbb{C}^{n^{d}}$ with basis $\left\{v_{i_{1}, \ldots, i_{d}}^{d+1}: i_{p}=1, \ldots, n\right\}$. Let $W_{1}=W_{2}=\mathbb{C}^{N}$ with basis $\left\{w_{j_{1}, \ldots, j_{d}}^{1}: j_{p}=1, \ldots, n\right\}$ of W_{1} and similarly for W_{2}. For $p=3, \ldots, d+1$, let $W_{p}=\mathbb{C}^{1}$, and let w^{p} be a spanning vector of W_{p}.

Regard $T_{1} \oplus T_{2}$ as a tensor in $\left(V_{1} \oplus W_{1}\right) \otimes \cdots \otimes\left(V_{d+1} \oplus W_{d+1}\right)$.
The values of $\underline{\mathrm{R}}\left(T_{1}\right)$ and $\underline{\mathrm{R}}\left(T_{2}\right)$ are immediate.
We present a border rank decomposition of $T_{1} \oplus T_{2}$ providing the desired upper bound.

For i_{1}, \ldots, i_{d}, define

$$
\begin{aligned}
q_{i_{1}, \ldots, i_{d}}(\varepsilon)= & \left(v_{i_{1}}^{1}+\varepsilon^{d-1} w_{i_{1}, \ldots, i_{d}}^{1}\right) \otimes\left(v_{i_{2}}^{2}+\varepsilon^{d-1} w_{i_{1}, \ldots, i_{d}}^{2}\right) \otimes \\
& \left(\varepsilon v_{i_{3}}^{3}+w^{3}\right) \otimes \cdots \otimes\left(\varepsilon v_{i_{d}}^{d}+w^{d}\right) \otimes\left(\varepsilon^{d} v_{i_{1}, \ldots, i_{d}}^{d+1}+w^{d+1}\right) .
\end{aligned}
$$

Define $Q(\varepsilon)=\sum_{i_{1}, \ldots, i_{d}} q_{i_{1}, \ldots, i_{d}}(\varepsilon)$, and note that $\mathrm{R}(Q(\varepsilon)) \leq n^{d}$. Expand $Q(\varepsilon)$ in ε, writing $Q(\varepsilon)=Q_{0}+\varepsilon Q_{1}+\cdots+\varepsilon^{2 d-2} Q_{2 d-2}+$ h.o.t., where h.o.t. denotes the sum of higher order (in ε) terms.

Claim 1. We have $Q_{2 d-2}=T_{1} \oplus T_{2}$.
Proof of Claim 1. In each $q_{i_{1}, \ldots, i_{d}}(\varepsilon)$, terms of degree $2 d-2$ in ε arise in two possible ways:

- the tensor product of all the w terms, having degree $d-1$ on the first and second factor and degree 0 on other factors;
- the tensor product of all the v terms, having degree 0 on first and second factor degree 1 on factors from 3 to d (total is degree $d-2$) and degree d on factor $d+1$.
All other combinations have degree different from $2 d-2$, and this proves the claim.

We will provide the upper bound

$$
\mathrm{R}\left(\sum_{0}^{2 d-3} \varepsilon^{i} Q_{i}\right) \leq 2 n^{d-1}+n^{2}(n+1)^{d-3}+1 .
$$

Claim 2. Let $P(\varepsilon)=\sum_{0}^{d-2} \varepsilon^{i} Q_{i}$. Then $\mathrm{R}(P(\varepsilon))=1$.
Proof of Claim 2. Observe $P(\varepsilon)=\sum p_{i_{1}, \ldots, i_{d}}(\varepsilon)$, where

$$
p_{i_{1}, \ldots, i_{d}}(\varepsilon)=v_{i_{1}}^{1} \otimes v_{i_{2}}^{2} \otimes\left(\varepsilon v_{i_{3}}^{3}+w^{3}\right) \otimes \cdots \otimes\left(\varepsilon v_{i_{d}}^{d}+w^{d}\right) \otimes w^{d+1} .
$$

Therefore

$$
P(\varepsilon)=\left(\sum_{i_{1}} v_{i_{1}}^{1}\right) \otimes\left(\sum_{i_{2}} v_{i_{2}}^{2}\right) \otimes\left(\sum_{i_{3}}\left(\varepsilon v_{i_{3}}^{3}+w^{3}\right)\right) \otimes \cdots \otimes\left(\sum_{i_{d-1}}\left(\varepsilon v_{i_{d}}^{d}+w^{d}\right)\right) \otimes w^{d+1}
$$

so that $\mathrm{R}(P(\varepsilon))=1$.
For $k=d-1, \ldots, 2 d-3$, write $Q_{k}=Q_{k}^{\prime}+Q_{k}^{\prime \prime}$, where $Q_{k}^{\prime} \in\left(V_{1} \oplus W_{1}\right) \otimes \cdots \otimes$ $\left(V_{d} \oplus W_{d}\right) \otimes W_{d+1}$ and $Q_{k}^{\prime \prime} \in\left(V_{1} \oplus W_{1}\right) \otimes \cdots \otimes\left(V_{d} \oplus W_{d}\right) \otimes V_{d+1}$. Note that $Q_{d-1}^{\prime \prime}=0$ because the component of the last factor of $q_{i_{1}, \ldots, i_{d}}$ on V_{d+1} is $\varepsilon^{d} v_{i_{1}, \ldots, i_{d}}^{d+1}$.

Claim 3. Let $P^{\prime}(\varepsilon)=\sum_{d-1}^{2 d-3} \varepsilon^{k} Q_{k}^{\prime}$. Then $\mathrm{R}\left(P^{\prime}(\varepsilon)\right) \leq 2 n^{d-1}$.
Proof of Claim 3. Observe

$$
\begin{aligned}
P^{\prime}(\varepsilon) & =\sum_{i_{1}, i_{3}, \ldots, i_{d}} v_{i_{1}}^{1} \otimes\left(\varepsilon^{d-1} \sum_{i_{2}} w_{i_{1}, \ldots, i_{d}}^{2}\right) \otimes\left(\varepsilon v_{i_{3}}^{3}+w^{3}\right) \otimes \cdots \otimes\left(\varepsilon v_{i_{d}}^{d}+w^{d}\right) \otimes w^{d+1} \\
& +\sum_{i_{2}, i_{3}, \ldots, i_{d}}\left(\varepsilon^{d-1} \sum_{i_{1}} w_{i_{1}, \ldots, i_{d}}^{1}\right) \otimes v_{i_{2}}^{2} \otimes\left(\varepsilon v_{i_{3}}^{3}+w^{3}\right) \otimes \cdots \otimes\left(\varepsilon v_{i_{d}}^{d}+w^{d}\right) \otimes w^{d+1} .
\end{aligned}
$$

This gives the upper bounds n^{d-1} for each one of the two summations above. Adding the two contributions together, we obtain the desired upper bound.

Claim 4. For every $k=0, \ldots, d-3, \mathrm{R}\left(Q_{d+k}^{\prime \prime}\right) \leq\binom{ d-3}{k} n^{k+2}$.
Proof of Claim 4. Every term of $Q_{d+k}^{\prime \prime}$ arises in $q_{i_{1}, \ldots, i_{d}}$ as the projection on $V_{1} \otimes V_{2} \otimes U_{3} \otimes \cdots \otimes U_{d} \otimes V_{d+1}$, where exactly k among U_{3}, \ldots, U_{d} are equal to the corresponding V_{j} and the other $d-3-k$ are equal to the corresponding W_{j}. In particular, we have

$$
Q_{d+k}^{\prime \prime}=\sum_{\substack{|J| \subseteq\{3, \ldots, d\} \\|J|=k}} \sum_{\substack{i_{1}, i_{2} \\\left(i_{j}=1, \ldots, n: j \in J\right)}} v_{i_{1}}^{1} \otimes v_{i_{2}}^{2} \otimes \bigotimes_{j \in J} v_{i_{j}}^{j} \otimes \bigotimes_{j^{\prime} \notin J} w^{j^{\prime}} \otimes\left(\sum_{\left(i_{j^{\prime}}: j^{\prime} \notin J\right)} v_{i_{1}, \ldots, i_{k}}\right) .
$$

From this expression, we deduce $\mathrm{R}\left(Q_{d+k}^{\prime \prime}\right) \leq\binom{ d-3}{k} n^{k+2}$.
Setting $P^{\prime \prime}(\varepsilon)=\sum_{k=d}^{2 d-3} \varepsilon^{k} Q_{k}^{\prime \prime}$, Claim 4 provides $\mathrm{R}\left(P^{\prime \prime}(\varepsilon)\right) \leq \sum_{\kappa=0}^{d-3}\binom{d-3}{\kappa} n^{\kappa+2}=$ $n^{2}(n+1)^{d-3}$.

We conclude that

$$
\begin{aligned}
\mathrm{R}\left(\sum_{0}^{2 d-3} \varepsilon^{i} Q_{i}\right) & =\mathrm{R}\left(P(\varepsilon)+P^{\prime}(\varepsilon)+P^{\prime \prime}(\varepsilon)\right) \\
& \leq \mathrm{R}(P(\varepsilon))+\mathrm{R}\left(P^{\prime}(\varepsilon)\right)+\mathrm{R}\left(P^{\prime \prime}(\varepsilon)\right) \leq 1+2 n^{d-1}+n^{2}(n+1)^{d-3} .
\end{aligned}
$$

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

This concludes the proof, because $T_{1} \oplus T_{2}=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{2 d-2}}\left[Q(\varepsilon)-\left(P(\varepsilon)+P^{\prime}(\varepsilon)+\right.\right.$ $\left.\left.P^{\prime \prime}(\varepsilon)\right)\right]$, giving the upper bound on the border rank

$$
\begin{aligned}
\underline{\mathrm{R}}\left(T_{1} \oplus T_{2}\right) & \leq \underline{\mathrm{R}}(Q(\varepsilon))+\underline{\mathrm{R}}\left(P(\varepsilon)+P^{\prime}(\varepsilon)+P^{\prime \prime}(\varepsilon)\right) \\
& \leq n^{d}+1+2 n^{d-1}+n^{2}(n+1)^{d-3} .
\end{aligned}
$$

Construction 4: Adding a higher order tensor. The last construction deals with tensors of order 4. Fix integers n_{1}, n_{2}, n_{3}. For integers a, b let $[a, b]=\{a, a+$ $1, \ldots, b\}$. Consider the two tensors

where $M=M\left(n_{1}, n_{2}, n_{3}\right)$ is the maximum possible integer such that the following combinatorial independence condition holds. There exist four disjoint subsets J, K_{1}, K_{2}, K_{3} of $\left[n_{1}\right] \times\left[n_{2}\right] \times\left[n_{3}\right]$, all of order M such that there are three bijections $s_{i}: J \rightarrow K_{i}$ fixing the i th component, in the sense that if $s_{i}\left(j_{1}, j_{2}, j_{3}\right)=\left(k_{1}, k_{2}, k_{3}\right)$, then $j_{i}=k_{i}$.

Lemma 3.4. Let n_{1}, n_{2}, n_{3} be even. Then $M\left(n_{1}, n_{2}, n_{3}\right)=\frac{1}{4} n_{1} n_{2} n_{3}$.
Proof. Let $m_{i}=\frac{1}{2} n_{i}$. Define

$$
\begin{aligned}
& J^{\prime}=\left[m_{1}\right] \times\left[m_{2}\right] \times\left[m_{3}\right], \\
& K_{1}^{\prime}=\left[m_{1}\right] \times\left[m_{2}+1, n_{2}\right] \times\left[m_{3}+1, n_{3}\right] \\
& K_{2}^{\prime}=\left[s_{1}\left(m_{1}, j_{2}, j_{3}\right)=\left(n_{1}\right] \times\left[m_{2}\right] \times\left[m_{3}+1, m_{2}+n_{3}\right], m_{3}+j_{3}\right), \\
& K_{2}^{\prime}\left(j_{1}, j_{2}, j_{3}\right)=\left(m_{1}+j_{1}, j_{2}, m_{3}+j_{3}\right), \\
& J^{\prime \prime}=\left[m_{1}+1, n_{1}\right] \times\left[m_{2}+1, n_{2}\right] \times\left[m_{3}\right] \\
& s_{3}\left(j_{1}, j_{1}\right] \times\left[m_{2}+1, n_{2}\right] \times\left[m_{3}\right)=\left(m_{1}+j_{1}, m_{2}+j_{2}, j_{3}\right), \\
& K_{1}^{\prime \prime}=\left[m_{1}+1, n_{1}\right] \times\left[m_{2}\right] \times\left[m_{3}\right] \\
& K_{2}^{\prime \prime} s_{1}\left(j_{1}, j_{2}, j_{3}\right)=\left(j_{1}\right] \times\left[j_{1},-m_{2}+j_{2},-m_{3}+j_{3}\right), \\
& K_{3}^{\prime \prime}=\left[m_{1}\right] \times\left[m_{2}\right] \times\left[m_{3}\right] \times\left[m_{3}\right] \\
& s_{2}\left(j_{1}, j_{2}, j_{3}\right)=\left(-n_{3}\right] s_{3}\left(j_{1}, j_{2}, j_{3}\right)=\left(-m_{1}+j_{1}, j_{2},-m_{3}+j_{3}\right), \\
&\left.,-m_{2}+j_{2}, j_{3}\right) .
\end{aligned}
$$

The position of $J^{\prime}, K_{1}^{\prime}, K_{2}^{\prime}, K_{3}^{\prime}$ is represented in Figure 1 as three subsets of the set $\left[n_{1}\right] \times\left[n_{2}\right] \times\left[n_{3}\right]$. Let $J=J^{\prime} \sqcup J^{\prime \prime}$ and $K_{i}=K_{i}^{\prime} \sqcup K_{i}^{\prime \prime}$. It is immediate to verify that this satisfies the required conditions. Moreover $\# J=\# J^{\prime}+\# J^{\prime \prime}=2 \cdot \frac{n_{1}}{2} \cdot \frac{n_{2}}{2} \cdot \frac{n_{3}}{2}=$ $2 \cdot \frac{n_{1} n_{2} n_{3}}{8}=\frac{n_{1} n_{2} n_{3}}{4}$.

The proof of the following result is similar to the one of Theorem 3.1.
Theorem 3.5. Fix n_{1}, n_{2}, n_{3}, and let $M=M\left(n_{1}, n_{2}, n_{3}\right)$. Then

$$
\begin{aligned}
& \underline{\mathrm{R}}\left(T_{1}\right)=\left(n_{1}+1\right)\left(n_{2}+1\right)\left(n_{3}+1\right), \\
& \underline{\mathrm{R}}\left(T_{2}\right)=M,
\end{aligned}
$$

and

$$
\underline{\mathrm{R}}\left(T_{1} \oplus T_{2}\right)=\left(n_{1}+1\right)\left(n_{2}+1\right)\left(n_{3}+1\right)+1 .
$$

Fig. 1. Schematic representation of J^{\prime} (green) and $K_{1}^{\prime}, K_{2}^{\prime}, K_{3}^{\prime}$ (gray) in the proof of Lemma 3.4. $J^{\prime \prime}, K_{1}^{\prime \prime}, K_{2}^{\prime \prime}, K_{3}^{\prime \prime}$ are represented by the three complementary cubes.

Proof. For $p=1,2,3$, let $V_{p}=\mathbb{C}^{n_{p}+1}$ and $V_{4}=\mathbb{C}^{\left(n_{1}+1\right)\left(n_{2}+1\right)\left(n_{3}+1\right)}$ so that $T_{1} \in V_{1} \otimes \cdots \otimes V_{4}$. Let $\left\{v_{j}^{p}: j=0, \ldots, n_{p}\right\}$ be a basis of V_{p}, and let $\left\{v_{j_{1}, j_{2}, j_{3}}^{4}: j_{p}=\right.$ $\left.0, \ldots, n_{p}\right\}$ be a basis of V_{4}. We have $T_{1} \in V_{1} \otimes \cdots \otimes V_{4}$.

Similarly, for $p=1,2,3$, let $W_{p}=\mathbb{C}^{M}$ and $W_{4}=\mathbb{C}^{1}$. Let $\left\{w_{\ell}^{p}: \ell=1, \ldots, M\right\}$ be a basis of W_{p}, and let w^{4} be a spanning vector of W_{4}. We have $T_{2} \in W_{1} \otimes \cdots \otimes W_{4}$.

Regard $T_{1} \oplus T_{2}$ as a tensor in $\left(V_{1} \oplus W_{1}\right) \otimes \cdots \otimes\left(V_{4} \oplus W_{4}\right)$.
The values of $\underline{\mathrm{R}}\left(T_{1}\right)$ and $\underline{\mathrm{R}}\left(T_{2}\right)$ are immediate. The lower bound $\underline{\mathrm{R}}\left(T_{1} \oplus T_{2}\right) \geq$ $\left(n_{1}+1\right)\left(n_{2}+1\right)\left(n_{3}+1\right)+1$ follows by conciseness.

For the upper bound, we determine a set of $\left(n_{1}+1\right)\left(n_{2}+1\right)\left(n_{3}+1\right)+1$ rank-one elements $\mathcal{Z}_{\varepsilon} \subseteq\left(V_{1} \oplus W_{1}\right) \otimes\left(V_{2} \oplus W_{2}\right) \otimes\left(V_{3} \oplus W_{3}\right)$ such that $T\left(V_{4}^{*} \oplus W_{4}^{*}\right)=\lim \left\langle\mathcal{Z}_{\varepsilon}\right\rangle$. By Proposition 2.1, this provides the desired upper bound.

Note

$$
T\left(V_{4}^{*} \oplus W_{4}^{*}\right)=V_{1} \otimes V_{2} \otimes V_{3} \oplus\left\langle\mathbf{u}_{3}(M)\right\rangle
$$

where $\mathbf{u}_{3}(M)=\sum_{1}^{M} w_{\ell}^{1} \otimes w_{\ell}^{2} \otimes w_{\ell}^{3} \in W_{1} \otimes W_{2} \otimes W_{3}$.
We denote the elements of $\mathcal{Z}_{\varepsilon}$ using indices $\left\{-1,(0,0,0), \ldots,\left(n_{1}, n_{2}, n_{3}\right)\right\}$. We drop the dependency from ε in the notation.

Let J, K_{1}, K_{2}, K_{3} be the subsets determining $M=M\left(n_{1}, n_{2}, n_{3}\right)$, and let s_{p} : $J \rightarrow K_{p}$ be the three fixed bijections.

Define bijections $\mathbf{j}: J \rightarrow[1, M]$ and $\mathbf{k}_{p}: K_{p} \rightarrow[1, M]$ for $p=1,2,3$ commuting with the fixed s_{i} 's, namely, $\mathbf{j}=\mathbf{k}_{p} \circ s_{p}$.

If $\left(j_{1}, j_{2}, j_{3}\right) \in J$, define

$$
Z_{j_{1}, j_{2}, j_{3}}=\left(v_{j_{1}}^{1}+\varepsilon w_{\mathbf{j}\left(j_{1}, j_{2}, j_{3}\right)}^{1}\right) \otimes\left(v_{j_{2}}^{2}+\varepsilon w_{\mathbf{j}\left(j_{1}, j_{2}, j_{3}\right)}^{2}\right) \otimes\left(v_{j_{3}}^{3}+\varepsilon w_{\mathbf{j}\left(j_{1}, j_{2}, j_{3}\right)}^{3}\right)
$$

The component of degree 3 (with respect to ε) in $\sum_{\left(j_{1}, j_{2}, j_{3}\right) \in J} Z_{j_{1}, j_{2}, j_{3}}$ is exactly $\mathbf{u}_{3}(M)$.

If $\left(k_{1}, k_{2}, k_{3}\right) \in K_{1}$, define

$$
Z_{k_{1}, k_{2}, k_{3}}=v_{k_{1}}^{1} \otimes\left(v_{k_{2}}^{2}+\varepsilon w_{\mathbf{k}_{1}\left(k_{1}, k_{2}, k_{3}\right)}^{2}\right) \otimes\left(v_{k_{3}}^{3}-\varepsilon w_{\mathbf{k}_{1}\left(k_{1}, k_{2}, k_{3}\right)}^{3}\right)
$$

If $\left(k_{1}, k_{2}, k_{3}\right) \in K_{2}$, define

$$
Z_{k_{1}, k_{2}, k_{3}}=\left(v_{k_{1}}^{1}-\varepsilon w_{\mathbf{k}_{2}\left(k_{1}, k_{2}, k_{3}\right)}^{1}\right) \otimes v_{k_{2}}^{2} \otimes\left(v_{k_{3}}^{3}+\varepsilon w_{\mathbf{k}_{2}\left(k_{1}, k_{2}, k_{3}\right)}^{3}\right)
$$

If $\left(k_{1}, k_{2}, k_{3}\right) \in K_{3}$, define

$$
Z_{k_{1}, k_{2}, k_{3}}=\left(v_{k_{1}}^{1}+\varepsilon w_{\mathbf{k}_{3}\left(k_{1}, k_{2}, k_{3}\right)}^{1}\right) \otimes\left(v_{k_{2}}^{2}-\varepsilon w_{\mathbf{k}_{3}\left(k_{1}, k_{2}, k_{3}\right)}^{2}\right) \otimes v_{k_{3}}^{3}
$$

The component of degree 2 of $\sum_{\left(k_{1}, k_{2}, k_{3}\right) \in K_{1} \sqcup K_{2} \sqcup K_{3}} Z_{k_{1}, k_{2}, k_{3}}$ is opposite to the component of degree 2 of $\sum_{\left(j_{1}, j_{2}, j_{3}\right) \in J} Z_{j_{1}, j_{2}, j_{3}}$. Indeed, the term of the form $v_{j_{1}}^{1} \otimes$ $\varepsilon w_{\mathbf{j}\left(j_{1}, j_{2}, j_{3}\right)}^{2} \otimes \varepsilon w_{\mathbf{j}\left(j_{1}, j_{2}, j_{3}\right)}^{3}$ is opposite to $v_{k_{1}}^{1} \otimes \varepsilon w_{\mathbf{k}_{1}\left(k_{1}, k_{2}, k_{3}\right)}^{2} \otimes\left(-\varepsilon w_{\mathbf{k}_{1}\left(k_{1}, k_{2}, k_{3}\right)}^{3}\right)$ for $\left(k_{1}, k_{2}, k_{3}\right)=s_{1}\left(j_{1}, j_{2}, j_{3}\right)$, etc. As a consequence, setting

$$
S=\sum_{\left(k_{1}, k_{2}, k_{3}\right) \in K_{1} \sqcup K_{2} \sqcup K_{3}} Z_{k_{1}, k_{2}, k_{3}}+\sum_{\left(j_{1}, j_{2}, j_{3}\right) \in J} Z_{j_{1}, j_{2}, j_{3}},
$$

we deduce that the component of degree 2 of S is 0 .
Write $S=S_{0}+\varepsilon S_{1}+\varepsilon^{3} \mathbf{u}_{3}(M)$ and

$$
S_{1}=\sum_{i_{1}, i_{2}} v_{i_{1}}^{1} \otimes v_{i_{2}}^{2} \otimes \omega_{i_{1}, i_{2}}^{3}+\sum_{i_{1}, i_{3}} v_{i_{1}}^{1} \otimes \omega_{i_{1}, i_{3}}^{2} \otimes v_{i_{3}}^{3}+\sum_{i_{2}, i_{3}} \omega_{i_{2}, i_{3}}^{1} \otimes v_{i_{2}}^{2} \otimes v_{i_{3}}^{3}
$$

where $\omega_{i_{2}, i_{3}}^{1} \in W_{1}, \omega_{i_{1}, i_{3}}^{2} \in W_{2}, \omega_{i_{1}, i_{2}}^{3} \in W_{3}$.
For $i_{1}=1, \ldots, n_{1}, i_{2} \in 1, \ldots, n_{2}, i_{3}=1, \ldots, n_{3}$, define

$$
\begin{aligned}
& Z_{0, i_{2}, i_{3}}=\left(v_{0}^{1}-\varepsilon \omega_{i_{2}, i_{3}}^{1}\right) \otimes v_{i_{2}}^{2} \otimes v_{i_{3}}^{3} \\
& Z_{i_{1}, 0, i_{3}}=v_{i_{1}}^{1} \otimes\left(v_{0}^{2}-\varepsilon \omega_{i_{1}, i_{3}}^{2}\right) \otimes v_{i_{3}}^{3} \\
& Z_{i_{1}, i_{2}, 0}=v_{i_{1}}^{1} \otimes v_{i_{2}}^{2} \otimes\left(v_{0}^{3}-\varepsilon \omega_{i_{1}, i_{2}}^{3}\right)
\end{aligned}
$$

By construction, $S+\sum_{i_{2}, i_{3}} Z_{0, i_{2}, i_{3}}+\sum_{i_{1}, i_{3}} Z_{i_{1}, 0, i_{3}}+\sum_{i_{1}, i_{2}} Z_{i_{1}, i_{2}, 0}$ is 0 in degrees 1 and 2 and $\mathbf{u}_{3}(M)$ in degree 3 .

Define

$$
\Omega=\left[0, n_{1}\right] \times\left[0, n_{2}\right] \times\left[0, n_{3}\right] \backslash\left(J \sqcup K_{1} \sqcup K_{2} \sqcup K_{3} \sqcup L\right),
$$

where L is the set of triples with exactly one zero. The triples in Ω are the ones for which a rank-one tensor $Z_{i_{1}, i_{2}, i_{3}}$ has yet to be defined.

For every $\left(i_{1}, i_{2}, i_{3}\right) \in \Omega$, define $Z_{i_{1}, i_{2}, i_{3}}=v_{i_{1}}^{1} \otimes v_{i_{2}}^{2} \otimes v_{i_{3}}^{3}$. It is immediate to verify

$$
\sum_{\substack{i_{p}=0, \ldots, n_{p} \\ p=1,2,3}} Z_{i_{1}, i_{2}, i_{3}}=Z_{-1}+\varepsilon^{3} \mathbf{u}_{3}(M)
$$

where $Z_{-1}=\left(\sum_{i_{1}=0}^{n_{1}} v_{i_{1}}^{1}\right) \otimes\left(\sum_{i_{2}=0}^{n_{2}} v_{i_{2}}^{2}\right) \otimes\left(\sum_{i_{3}=0}^{n_{3}} v_{i_{3}}^{3}\right)$.
Therefore

$$
\sum_{\substack{i_{p}=0, \ldots, n_{p} \\ p=1,2,3}} Z_{i_{1}, i_{2}, i_{3}}-Z_{-1}=\varepsilon^{3} \mathbf{u}_{3}(M)
$$

Let $\mathcal{Z}_{\varepsilon}=\left\{Z_{-1}, Z_{0,0,0}, \ldots, Z_{n_{1}, n_{2}, n_{3}}\right\} \subseteq\left(V_{1} \oplus W_{1}\right) \otimes\left(V_{2} \oplus W_{2}\right) \otimes\left(V_{3} \oplus W_{3}\right)$: then $\mathcal{Z}_{\varepsilon}$ has $\left(n_{1}+1\right)\left(n_{2}+1\right)\left(n_{3}+1\right)+1$ elements. Let $E_{\varepsilon}=\left\langle\mathcal{Z}_{\varepsilon}\right\rangle$, and let $E_{0}=\lim _{\varepsilon \rightarrow 0} E_{\varepsilon}$, where the limit is taken in the corresponding Grassmannian.

We show that $\left(T_{1} \oplus T_{2}\right)\left(V_{4}^{*} \oplus W_{4}^{*}\right) \subseteq E_{0}$ (and in fact equality holds).
For every $\left(i_{1}, i_{2}, i_{3}\right)$ we have $\left.Z_{i_{1}, i_{2}, i_{3}}\right|_{\varepsilon=0}=v_{i_{1}}^{1} \otimes v_{i_{2}}^{2} \otimes v_{i_{3}}^{3}$. This shows $V_{1} \otimes V_{2} \otimes V_{3} \subseteq$ E_{0}.

Moreover, $\varepsilon^{3} \mathbf{u}_{3}(M)=\sum_{i_{1}, i_{2}, i_{3}} Z_{i_{1}, i_{2}, i_{3}}-Z_{-1} \in E_{\varepsilon}$; therefore $\mathbf{u}_{3}(M) \in E_{\varepsilon}$ for every ε. Hence $\mathbf{u}_{3}(M) \in E_{0}$.

This shows $\left(T_{1} \oplus T_{2}\right)\left(V_{4}^{*} \oplus W_{4}^{*}\right) \subseteq E_{0}$ and concludes the proof.
4. Consequences on the exponent of certain graph tensors. In this section, we use Construction 2, Construction 3, and Construction 4 to obtain upper bounds on the exponent of the graph tensors obtained as Kronecker products of the tensors T_{1} and T_{2} (or possibly their Kronecker powers) involved in the construction. Following Schönhage's technique, we use the border rank upper bound on the direct sum (Theorem 3.2, Theorem 3.3, and Theorem 3.5) and Proposition 2.6 to determine an upper bound on the asymptotic rank, and in turn on the exponent, of certain tensors.

We benchmark our results comparing them with the trivial upper bound of (2.3).
4.1. Extended matrix multiplication. We use the result of Theorem 3.2 to obtain an upper bound on the exponent of the tensor
$\mathbf{E M a M u}\left(n_{1}, n_{2}, n_{3} ; n_{4}\right)=$

for some instances of n_{1}, \ldots, n_{4}. We call this tensor extended matrix multiplication tensor because it can be realized as Kronecker product of the matrix multiplication tensor and a dangling matrix; graphically:
$\mathbf{E M a M u}\left(n_{1}, n_{2}, n_{3} ; n_{4}\right)=$

The upper bound from (2.3) provides

$$
\omega\left(\mathbf{E M a M u}\left(n_{1}, n_{2}, n_{3} ; n_{4}\right)\right) \leq \log \left(n_{1} n_{2} n_{3} n_{4}\right)=\sum \log \left(n_{i}\right)
$$

The extended matrix multiplication tensor can be realized as a Kronecker product of the tensor T_{1} and T_{2} of Construction 1 and Construction 2; indeed

Fix $n_{1}=n_{2}=2$, and write $T_{1}\left(n_{4}\right), T_{2}\left(n_{3}\right)$ for the two tensors above: in particular

$$
\mathbf{E M a M u}\left(2,2, n_{3} ; n_{4}\right)=T_{1}\left(n_{4}\right) \boxtimes T_{2}\left(n_{3}\right)
$$

We are going to use the result of Theorem 3.2 to obtain an upper bound on the exponent $\omega\left(\mathbf{E M a M u}\left(2,2, n_{3} ; n_{4}\right)\right)$.

Theorem 4.1. Let $a \geq 0$ and let $p \in(0,1)$. Then

$$
\omega\left(\mathbf{E M a M u}\left(2,2, a^{\frac{1-p}{p}} ; a+2\right)\right) \leq \frac{1}{p}[\log (4(a+2)+1)-h(p)]
$$

Proof. By Theorem 3.2, for every $a \geq 2$, we have $\underline{\mathrm{R}}\left(T_{1}(a+2) \oplus T_{2}(a)\right)=4(a+2)+1$. For every $p \in(0,1)$, we have

$$
T_{1}(a+2)^{\boxtimes p} \boxtimes T_{2}(a+2)^{\boxtimes(1-p)}=\mathbf{E M a M u}\left(2^{p}, 2^{p}, a^{(1-p)} ;(a+2)^{p}\right)
$$

Therefore Proposition 2.6 provides the upper bound

$$
\omega\left(\mathbf{E M a M u}\left(2^{p}, 2^{p}, a^{(1-p)} ;(a+2)^{p}\right)\right) \leq \log (4(a+2)+1)-h(p)
$$

Considering the Kronecker power with exponent $1 / p$ on the left-hand side, we obtain the desired upper bound.

Now, for every $n_{3}, n_{4} \geq 2$, define

$$
a:=a\left(n_{3}, n_{4}\right)=n_{4}-2 \quad p:=p\left(n_{3}, n_{4}\right)=\frac{\log \left(n_{4}-2\right)}{\log \left(n_{3}\right)+\log \left(n_{4}-2\right)}
$$

so that $n_{3}=a^{\frac{1-p}{p}}$ and $n_{4}=a+2$. Let $\omega_{\mathrm{Sch}}\left(n_{3}, n_{4}\right)=\frac{1}{p}[\log (4(a+2)+1)-h(p)]$ be the upper bound of Theorem 4.1, and let $\omega_{\text {triv }}=2+\log \left(n_{3}\right)+\log \left(n_{4}\right)$ be the trivial upper bound from (2.3). We compare the two bounds in Figure 2 for $n_{3}=2, \ldots, 100$ and $n_{4}=4, \ldots, 100$. In particular, we observe that for $n_{4} \gg n_{3}$, the upper bound from Theorem 4.1 obtained via the nonadditivity construction is stronger than the trivial one.

We point out that one can obtain an upper bound on the exponent of the extended matrix multiplication tensor from upper bounds on the exponent of matrix multiplication. Indeed,

$$
\omega\left(\mathbf{E M a M u}\left(n_{1}, n_{2}, n_{3} ; n_{4}\right)\right) \leq \log \left(n_{4}\right)+\omega\left(\mathbf{M a M u}\left(n_{1}, n_{2}, n_{3}\right)\right)
$$

Applying the best known upper bounds on $\omega\left(\mathbf{M a M u}\left(n_{1}, n_{2}, n_{3}\right)\right)$, one obtains stronger bounds on $\omega\left(\mathbf{E M a M u}\left(n_{1}, n_{2}, n_{3} ; n_{4}\right)\right)$ than the one of Theorem 4.1. However, the method followed in this section is much simpler than the methods used to obtain upper bounds on $\omega\left(\mathbf{M a M u}\left(n_{1}, n_{2}, n_{3}\right)\right)$, and yet it delivers nontrivial bounds in a wide range, as one can observe in Figure 2.
4.2. Multiextended matrix multiplication. We use the result of Theorem 3.3 to obtain an upper bound on the exponent of the tensor

where the central vertex has degree d.

Fig. 2. Density graph of $\omega_{\text {triv }}-\omega_{\text {Sch }}$ as a function of n_{3} and n_{4}. The blue region corresponds to negative values (i.e., $\omega_{\text {triv }}<\omega_{S c h}$); the orange region corresponds to positive values (i.e., $\omega_{\text {triv }}>$ $\left.\omega_{S c h}\right)$. Darker shades correspond to more extreme values.

The tensor multiEMaMu $(d ; n, N)$ can be realized as Kronecker product of the tensors T_{1} and T_{2} of Construction 3 ; indeed

Write $T_{1}(n), T_{2}(N)$ for the two tensors above: in particular

$$
\operatorname{multiEMaMu}(d ; n, N)=T_{1}(n) \boxtimes T_{2}(N)
$$

We are going to use the result of Theorem 3.3 to obtain an upper bound on the exponent $\omega(\mathbf{m u l t i E M a M u}(d ; n, N))$.

Theorem 4.2. Let $n \geq 0, d \geq 3, p \in(0,1)$. Then

$$
\omega\left(\operatorname{multiEMaMu}\left(d ; n, n^{d \frac{1-p}{p}}\right)\right) \leq \frac{1}{p}\left[\log \left(n^{d}+2 n^{d-1}+n^{2}(n+1)^{d-3}+1\right)-h(p)\right]
$$

Proof. By Theorem 3.3, for every $d \geq 3$ and every n, we have the upper bound

$$
T_{1}(n) \oplus T_{2}\left(n^{d}\right) \leq n^{d}+2 n^{d-1}+n^{2}(n+1)^{d-3}+1
$$

For every $p \in(0,1)$,

$$
T_{1}(n)^{\boxtimes p} \boxtimes T_{2}\left(n^{d}\right)^{\boxtimes(1-p)}=\operatorname{multiEMaMu}\left(d ; n^{p}, n^{d(1-p)}\right) .
$$

Therefore Proposition 2.6 provides the upper bound

$$
\operatorname{multiEMaMu}\left(d ; n^{p}, n^{d(1-p)}\right) \leq \log \left[n^{d}+2 n^{d-1}+n^{2}(n+1)^{d-3}+1\right]-h(p)
$$

Considering the Kronecker power with exponent $1 / p$ on the left-hand side, we obtain the desired upper bound.

The trivial upper bound from (2.3) has the form

$$
\omega\left(\operatorname{multiEMaMu}\left(d ; n, n^{d \frac{(1-p)}{p}}\right)\right) \leq d \log (n)\left(1+\frac{1-p}{p}\right)
$$

In the case $p=1 / 2$, for fixed d and n large, the bound in Theorem 4.2 is approximately $2 d \log (n)-2$, providing a saving of 2 as compared to the trivial upper bound. Note that this is far away from the lower bound obtained from the flattening lower bound on the asymptotic rank, which is $(2 d-1) \log (n)$.

Let $\omega_{\text {Sch }}(d, n, p)=\frac{1}{p}\left(\log \left(n^{d}+2 n^{d-1}+n^{2}(n+1)^{d-3}+1\right)-h(p)\right)$ be the upper bound from Theorem 4.2, and let $\omega_{\text {triv }}(d, n, p)=d \log (n)\left(1+\frac{1-p}{p}\right)$ be the trivial upper bound from (2.3).

For $d=4$, we compare the two upper bounds in Figure 3 for $n=4, \ldots, 100$ and $p \in\left(\frac{1}{2}, 1\right)$. The new upper bound is nontrivial unless p is close to 1 as n grows. In particular, we obtain a nontrivial bound for every value of $p<1 / 2$.

For $p=\frac{d}{1+d}$, we have $n^{d \frac{(1-p)}{p}}=n$. In Figure 4, we compare the two upper bounds for this value of p, for $n=4, \ldots, 100$ and $d=3, \ldots, 15$. For fixed d, we observe that the new upper bound is nontrivial for n sufficiently large.

Note also that for fixed d and large n, the upper bound is approximately $(d+$ 1) $\log (n)-\log (1+1 / d) \approx(d+1) \log (n)-1 /(d \cdot \ln (2))$, which is strictly lower than the trivial upper bound $(d+1) \log (n)$. However, it is not better than the bound obtained when using the best bounds on the exponent of matrix multiplication, which gives $d-2+\omega \log (n)$, where ω is the matrix multiplication exponent. If $\omega=2$, this matches the trivial flattening lower bound $d \log (n)$.

Fig. 3. Density graph of $\omega_{\text {triv }}-\omega_{S c h}$ for $d=4$ as a function of n and p. The blue region corresponds to negative values (i.e., $\omega_{\text {triv }}<\omega_{S c h}$); the orange region corresponds to positive values (i.e., $\omega_{\text {triv }}>\omega_{S c h}$). Darker shades correspond to more extreme values.

FIG. 4. Density graph of $\omega_{\text {triv }}-\omega_{\text {Sch }}$ for $p=\frac{d}{d+1}$ as a function of n and d. The blue region corresponds to negative values (i.e., $\omega_{\text {triv }}<\omega_{S c h}$); the orange region corresponds to positive values (i.e., $\omega_{\text {triv }}>\omega_{S c h}$). Darker shades correspond to more extreme values.
4.3. Dome tensor. We use the result of Theorem 3.5 to obtain an upper bound on the exponent of the tensor

Following [9], we call this tensor dome tensor. The upper bound from (2.3) provides

$$
\omega\left(\operatorname{Dome}\left(n_{1}, n_{2}, n_{3} ; M\right)\right) \leq \log \left(n_{1}\right)+\log \left(n_{2}\right)+\log \left(n_{3}\right)+\log (M)
$$

The dome tensor $\operatorname{Dome}\left(n_{1}+1, n_{2}+1, n_{3}+1 ; M\right)$ can be realized as Kronecker product of the tensors T_{1} and T_{2} of Construction 4 ; indeed

Fix $n_{1}=n_{2}=n_{3}=n$; let $T_{1}(n+1)$ and $T_{2}(M)$ be the two tensors above, and write $\operatorname{Dome}(n+1 ; M):=\operatorname{Dome}(n+1, n+1, n+1 ; M)$; moreover, restrict to the case where n is even so that Lemma 3.4 holds. We have

$$
\operatorname{Dome}(n+1, M)=T_{1}(n+1) \boxtimes T_{2}(M)
$$

For $M=\frac{1}{4} n^{3}$, we are going to use the result of Theorem 3.5 to obtain an upper bound on the exponent $\omega(\operatorname{Dome}(n+1, M))$.

FIG. 5. Density graph of $\omega_{\text {triv }}-\omega_{S c h}$ as a function of n and p. The blue region corresponds to negative values (i.e., $\omega_{\text {triv }}<\omega_{S c h}$); the orange region corresponds to positive values (i.e., $\omega_{\text {triv }}>$ $\left.\omega_{S c h}\right)$. Darker shades correspond to more extreme values.

Theorem 4.3. Let $n \geq 2$ be even, and let $p \in(0,1)$. Let $M=\frac{1}{4} n^{3}$. Then

$$
\omega\left(\operatorname{Dome}\left((n+1)^{p} ; M^{(1-p)}\right)\right) \leq \log \left((n+1)^{3}+1\right)-h(p)
$$

Proof. By Theorem 3.5, we have the upper bound $\underline{\mathrm{R}}\left(T_{1}(n+1) \oplus T_{2}(M)\right)=(n+$ $1)^{3}+1$.

For every $p \in(0,1)$, we have

$$
T_{1}(n+1)^{\boxtimes p} \oplus T_{2}(M)^{\boxtimes(1-p)}=\mathbf{D o m e}\left((n+1)^{p}, M^{1-p}\right)
$$

Therefore, Proposition 2.6 provides the desired upper bound.
The trivial upper bound from (2.3) has the form

$$
\begin{align*}
\omega\left(\operatorname{Dome}\left((n+1)^{p} ; M^{(1-p)}\right)\right) & \leq 3 p \log (n+1)+(1-p) \log (M) \tag{4.2}\\
& =3 p \log (n+1)+3(1-p) \log (n)-2(1-p)
\end{align*}
$$

where we use $M=\frac{1}{4} n^{3}$.
Let $\omega_{\text {Sch }}(n, p)=\log \left((n+1)^{3}+1\right)-h(p)$ and $\omega_{\text {triv }}(n, p)=3 p \log (n+1)+3(1-$ p) $\log (n)-2(1-p)$ be the upper bound from Theorem 4.3 and the trivial upper bound from (2.3), respectively. We compare the two upper bounds in Figure 5 for $n=$ $2, \ldots, 50$ and $p \in(0,1)$. In particular, we observe that for n sufficiently large and $p>$ $1 / 2$, the upper bound of Theorem 4.3 obtained via the nonadditivity construction is stronger than the trivial one. In [9, section 4.1], strong upper bounds on the exponent of some instances of $\omega(\operatorname{Dome}(n, n, n ; N))$ are provided, but this result relies on more advanced methods. On the other hand, the method presented here is extremely simple, and it already provides nontrivial bounds on the exponent, as shown in Figure 5.

REFERENCES

[1] J. Alman and V. V. Williams, A Refined Laser Method and Faster Matrix Multiplication, preprint, arXiv:2010.05846 [cs.DS], 2020, https://arxiv.org/abs/2010.05846.
[2] D. Bini, Relations between exact and approximate bilinear algorithms. Applications, Calcolo, 17 (1980), pp. 87-97.
[3] M. BläSER, Fast matrix multiplication, Theory Comput. Grad. Surv., 5 (2013), pp. 1-60.
[4] J. Buczyński and J. M. Landsberg, Ranks of tensors and a generalization of secant varieties, Linear Algebra Appl., 438 (2013), pp. 668-689.
[5] P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity Theory, Grundlehren Math. Wiss. 315, Springer-Verlag, Berlin, 1997.
[6] E. Carlini, M. V. Catalisano, and L. Chiantini, Progress on the symmetric Strassen conjecture, J. Pure Appl. Alg., 219 (2015), pp. 3149-3157.
[7] M. Christandl, P. Vrana, and J. Zuiddam, Universal points in the asymptotic spectrum of tensors, in Proceedings of the 50th ACM SIGACT Symposium on Theory of Computing STOC'18, ACM, 2018, pp. 289-296.
[8] M. Christandl, P. Vrana, and J. Zuiddam, Asymptotic tensor rank of graph tensors: Beyond matrix multiplication, Comput. Complexity, 28 (2019), pp. 57-111.
[9] M. Christandl and J. Zuiddam, Tensor surgery and tensor rank, Comput. Complexity, 28 (2019), pp. 27-56.
[10] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic Comput., 9 (1990), pp. 251-280.
[11] W. Dür, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A, 62 (2000), 062314.
[12] E. Feig and S. Winograd, On the direct sum conjecture, Linear Algebra Appl., 63 (1984), pp. 193-219.
[13] F. Gesmundo, A. Oneto, and E. Ventura, Partially symmetric variants of Comon's problem via simultaneous rank, SIAM J. Matrix Anal. Appl., 40(4) (2019), pp. 1453-1477.
[14] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Ser. Comput. Math. 42, Springer Science \& Business Media, New York, 2012.
[15] J. JA'JA' and J. Takche, On the validity of the direct sum conjecture, SIAM J. Comput., 15 (1986), pp. 1004-1020.
[16] J. M. Landsberg, Tensors: Geometry and Applications, Grad. Stud. Math. 128, American Mathematical Society, Providence, RI, 2012.
[17] J. M. Landsberg, Y. Qi, and K. Ye, On the geometry of tensor network states, Quantum Inf. Comput., 12 (2012), pp. 346-254.
[18] F. Le Gall, Powers of tensors and fast matrix multiplication, in Proceedings of the 39th International Symposium on Symbolic and Algebraic Computating, ACM, 2014, pp. 296303.
[19] G. Pólya and G. Szegö, Problems and Theorems in Analysis I: Series. Integral Calculus. Theory of Functions, Classics Math., Springer, Berlin, 1997.
[20] R. RAZ, Tensor-rank and lower bounds for arithmetic formulas, in STOC'10-Proceedings of the 2010 ACM International Symposium on Theory of Computing, New York, 2010, ACM, pp. 659-666.
[21] A. SCHÖNHAGE, Partial and total matrix multiplication, SIAM J. Comput., 10 (1981), pp. 434455.
[22] Y. Shitov, Counterexamples to Strassen's direct sum conjecture, Acta Math., 222 (2019), pp. 363-379.
[23] A. Stothers, On the Complexity of Matrix Multiplication, Ph.D. thesis, University of Edinburgh, 2010.
[24] V. Strassen, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354-356.
[25] V. Strassen, Vermeidung von Divisionen, J. Reine Angew. Math., 264 (1973), pp. 184-202.
[26] V. Strassen, Rank and optimal computation of generic tensors, Linear Algebra Appl., 52/53 (1983), pp. 645-685.
[27] V. Strassen, The asymptotic spectrum of tensors and the exponent of matrix multiplication, in Proceedings of the 27 th Annual Symposium on Foundations of Computer Science, IEEE, 1986, pp. 49-54.
[28] V. Strassen, Relative bilinear complexity and matrix multiplication, J. Reine Angew. Math., 375/376 (1987), pp. 406-443.
[29] V. Strassen, The asymptotic spectrum of tensors, J. Reine Angew. Math., 384 (1988), pp. 102152.
[30] V. Strassen, Degeneration and complexity of bilinear maps: Some asymptotic spectra, J. Reine Angew. Math., 413 (1991), pp. 127-180.
[31] J. J. Sylvester, On the principles of the calculus of forms, Cambridge Dublin Math. J., 7 (1852), pp. 52-97.
[32] Z. TeITLER, Sufficient conditions for Strassen's additivity conjecture, Illinois J. Math., 59 (2015), pp. 1071-1085.
[33] A. Terracini, Sulle v_{k} per cui la varietà degli $s_{h}(h+1)$-seganti ha dimensione minore dell'ordinario, Rend. Circ. Mat., 31 (1911), pp. 392-396.
[34] V. V. Williams, Multiplying matrices faster than Coppersmith-Winograd, in Proceedings of the 44th ACM Symposium on Theory of Computing - STOC'12, ACM, 2012, pp. 887-898.
[35] N. Yu, E. Chitambar, C. Guo, and R. Duan, Tensor rank of the tripartite state $|W\rangle^{\otimes n}$, Phys. Rev. A, 81 (2010), 014301.
[36] J. Zuiddam, Algebraic Complexity, Asymptotic Spectra and Entanglement Polytopes, Ph.D. thesis, University of Amsterdam, 2018.

[^0]: *Received by the editors August 4, 2020; accepted for publication (in revised form) by L. De Lathauwer November 23, 2020; published electronically April 8, 2021.
 https://doi.org/10.1137/20M1357366
 Funding: The work of the first and second authors was supported by VILLUM FONDEN via the QMATH Centre of Excellence grant 10059 and the European Research Council grant 818761. The work of the fourth author was supported by the National Science Foundation grant DMS-1638352 and indirectly supported by the National Science Foundation grant CCF-1900460. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
 ${ }^{\dagger}$ QMATH, Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O., Denmark (christandl@math.ku.dk).
 \ddagger QMATH, Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O., Denmark. Current address: Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, 04103 Leipzig, Germany (fulvio.gesmundo@mis.mpg.de).
 $\S_{\text {Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, } 04103 \text { Leipzig, Germany. }}^{\text {K }}$ Current address: Department of Mathematics and Statistics, University of Konstanz, Konstanz, Germany (mateusz.michalek@uni-konstanz.de).

 『Institute for Advanced Study, Princeton, NJ, USA. Current address: Courant Institute of Mathematical Sciences, New York University, New York, NY 10012-1185 USA (jzuiddam@nyu.edu).

