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BORDER RANK NONADDITIVITY FOR HIGHER ORDER
TENSORS\ast 

M. CHRISTANDL\dagger , F. GESMUNDO\ddagger , M. MICHA\LEK\S , \mathrm{A}\mathrm{N}\mathrm{D} J. ZUIDDAM\P 

Abstract. Whereas matrix rank is additive under direct sum, in 1981 Sch\"onhage showed that
one of its generalizations to the tensor setting, tensor border rank, can be strictly subadditive for
tensors of order three. Whether border rank is additive for higher order tensors has remained open.
In this work, we settle this problem by providing analogues of Sch\"onhage's construction for tensors of
order four and higher. Sch\"onhage's work was motivated by the study of the computational complexity
of matrix multiplication; we discuss implications of our results for the asymptotic rank of higher order
generalizations of the matrix multiplication tensor.
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1. Introduction. Let V1, . . . , Vk be finite dimensional complex vector spaces,
and let T \in V1 \otimes \cdot \cdot \cdot \otimes Vk be a tensor. The tensor rank of T is defined as

R(T ) = min
\Bigl\{ 
r : T =

\sum r
i=1v

(i)
1 \otimes \cdot \cdot \cdot \otimes v

(i)
k for some v

(i)
j \in Vj

\Bigr\} 
.

Tensor rank generalizes matrix rank: indeed, if k = 2, the tensor rank of T \in V1 \otimes V2

coincides with the rank of the corresponding linear map T : V \ast 
1 \rightarrow V2.

The tensor border rank (or simply border rank) of T is defined as

R(T ) = min
\Bigl\{ 
r : T = lim

\varepsilon \rightarrow 0
T\varepsilon with R(T\varepsilon ) = r for \varepsilon \not = 0

\Bigr\} 
,

where the limit is taken in the Euclidean topology of V1 \otimes \cdot \cdot \cdot \otimes Vk. One immediately
has R(T ) \leq R(T ); for k \geq 3, there are examples where the inequality is strict.

The study of geometric properties of tensor rank and border rank has a long
history dating back to more than a century ago [31]. In the last decades, tensor rank
was studied in the case of tensors of order three in connection with the computational
complexity of matrix multiplication [24, 26] and, more recently, in the higher order
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504 CHRISTANDL, GESMUNDO, MICHA\LEK, ZUIDDAM

setting, in connection with the circuit complexity of certain families of polynomials
[20]. In quantum information theory, tensor rank is used as a measure of entanglement
in a quantum system [35, 11]. The notion of border rank is more geometric as it
corresponds to membership into secant varieties of Segre varieties, objects that have
been studied in algebraic geometry since the early twentieth century [33]. It is known
that asymptotic behaviors of tensor rank and tensor border rank of a given tensor
are equivalent. In particular, upper bounds on border rank can be converted into
upper bounds on rank which hold asymptotically [2]. We refer to [16, 3] for more
information on the geometry of tensor spaces and their applications.

A natural question regarding tensor rank and border rank concerns their additiv-
ity properties under direct sum. Given T \in V1 \otimes \cdot \cdot \cdot \otimes Vk and S \in W1 \otimes \cdot \cdot \cdot \otimes Wk,
let T \oplus S denote their direct sum, which is a tensor in (V1 \oplus W1)\otimes \cdot \cdot \cdot \otimes (Vk \oplus Wk).
Subadditivity of tensor rank

R(T \oplus S) \leq R(T ) + R(S)

and border rank
R(T \oplus S) \leq R(T ) + R(S)

follow directly from the definitions. It is natural to ask whether equality holds.
For k = 3, examples where the inequality for border rank is strict were given

by Sch\"onhage in [21]: this construction is reviewed in section 2.4; briefly, for every
m,n \geq 1, Sch\"onhage provided two tensors,

T \in \BbbC m+1 \otimes \BbbC n+1 \otimes \BbbC (m+1)(n+1) with R(T ) = (m+ 1)(n+ 1),
S \in \BbbC nm \otimes \BbbC nm \otimes \BbbC 1 with R(S) = mn,

where R(T \oplus S) = (m+1)(n+1)+1. In particular, whenever either m \geq 2 or n \geq 2,
one obtains an example of strict subadditivity.

The additivity problem for tensor rank of third order tensors was the subject of
Strassen's additivity conjecture [25]. This conjecture stated that tensor rank additiv-
ity under direct sum always holds. A great deal of work was devoted to this problem
(see, e.g., [12, 15, 6, 32]) until 2017 when Shitov gave a counterexample [22].

A tensor of order three can be regarded as a tensor of higher order by tensoring
it with a tensor product of single vectors. For instance, a tensor T \in V1 \otimes V2 \otimes V3

can be identified with a tensor of order four T \prime = T \otimes e0 \in V1 \otimes \cdot \cdot \cdot \otimes V4, where
V4 = \langle e0\rangle is a one-dimensional space. Na\"{\i}vely, one would expect that Sch\"onhage's
and Shitov's examples generalize to higher order settings via this identification. This
is not the case, and intuitively the reason is that if T \prime = T \otimes e0 and S\prime = S\otimes e0, then
T \prime \oplus S\prime \not = (T \oplus S)\otimes e0.

The problem of nonadditivity for rank and border rank of higher order tensors is
therefore open to our knowledge.

In this work, we settle the question for the case of border rank by providing
examples of strict subadditivity for tensors of order four and higher. Our constructions
are largely inspired by Sch\"onhage's.

Sch\"onhage constructed his examples in order to provide new upper bounds on the
asymptotic rank of the matrix multiplication tensor and thereby upper bounds on the
exponent of matrix multiplication. We review this construction in section 2.4. The
two key elements are the strictly subadditive upper bound R(T \oplus S) < R(T ) + R(S)
and the fact that the Kronecker product T\boxtimes S is a matrix multiplication tensor. Using
these two facts, Sch\"onhage determined an upper bound on the direct sum of copies
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BORDER RANK NONADDITIVITY 505

of the matrix multiplication tensor, exploiting the binomial expansion of (T \oplus S)\boxtimes N

and the upper bound on its border rank. Strict subadditivity of tensors can therefore
deliver nontrivial exponent bounds. At the time, this strategy gave the best bounds for
the exponent of matrix multiplication and provided a sandbox example of Strassen's
laser method, which is the technique used to obtain all subsequent upper bounds on
the exponent [28, 10, 23, 34, 18, 1].

In our setting, the tensors T \boxtimes S will be higher order generalizations of the matrix
multiplication tensor. Some of these tensors were considered in [9, 8], and our work
provides a new approach to the study of their exponents. The bounds presented
here do not improve the best known upper bounds on the exponent of these tensors.
However, the new technique provides nontrivial upper bounds, and the strategies
presented in this paper provide new and different types of tensor decompositions that
are in many ways simpler or more direct when compared to the ones providing better
bounds.

The results of this work hold over arbitrary fields as long as the characteristic is
``large enough."" We will not enter into details, and we will work over the complex
numbers for simplicity. We refer to [5, section 15.4] for the formal definition of border
rank and the details to extend the results over arbitrary fields.

The article is structured as follows. In section 2, we provide mathematical pre-
liminaries to our study as well as a review of Sch\"onhage's construction. The new
examples of strict subadditivity of border rank are presented in section 3. The conse-
quences on the asymptotic rank of generalizations of the matrix multiplication tensor
are presented in section 4.

2. Preliminaries. In this section we discuss basic notions that will be used
throughout the paper.

2.1. Flattening maps of tensors and their image. Every tensor naturally
defines a collection of linear maps, called flattening maps. We will discuss here a
characterization of tensor rank and border rank in terms of the image of a flattening
map.

Let T \in V1 \otimes \cdot \cdot \cdot \otimes Vk be a tensor of order k. The tensor T naturally induces a
linear map

T : V \ast 
j \rightarrow V1 \otimes \cdot \cdot \cdot \otimes Vj - 1 \otimes Vj+1 \otimes \cdot \cdot \cdot \otimes Vk

for every j = 1, . . . , k. We call these linear maps the flattening maps of T . We say
that T is concise if all its flattening maps are injective. Each of the flattening maps
uniquely determines T . In fact, the image of any of them, say, T (V \ast 

k ) \subseteq V1\otimes \cdot \cdot \cdot \otimes Vk - 1,
already uniquely determines T up to the natural action of the general linear group
GL(Vk).

The following is a characterization of tensor rank and border rank via the geom-
etry of the subspace T (V \ast 

k ). We refer to [4, Theorem 2.5] and [13, Lemma 2.4] for the
proof and additional information.

Proposition 2.1. Let T \in V1 \otimes \cdot \cdot \cdot \otimes Vk be a tensor. Let E = T (V \ast 
k ) \subseteq V1 \otimes 

\cdot \cdot \cdot \otimes Vk - 1 be the image of the last flattening map. Then

R(T ) = min \{ r : E \subseteq \langle Z1, . . . , Zr\rangle , lin. indep. Zi \in V1 \otimes \cdot \cdot \cdot \otimes Vk - 1, R(Zi) = 1\} ,
R(T ) = min \{ r : E \subseteq lim

\varepsilon \rightarrow 0
\langle Z1(\varepsilon ), . . . , Zr(\varepsilon )\rangle ,

lin. indep. Zi(\varepsilon ) \in V1 \otimes \cdot \cdot \cdot \otimes Vk - 1, R(Zi(\varepsilon )) = 1\} ,

where the limit is taken in the Grassmannian of r-planes in V1 \otimes \cdot \cdot \cdot \otimes Vk - 1.
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506 CHRISTANDL, GESMUNDO, MICHA\LEK, ZUIDDAM

Example 2.2. Consider the tensor T = e0 \otimes e0 \otimes e1 + e0 \otimes e1 \otimes e0 + e1 \otimes e0 \otimes e0 \in 
\BbbC 2 \otimes \BbbC 2 \otimes \BbbC 2. It is known that R(T ) = 3 and R(T ) = 2. Since T is symmetric, the
three flattening maps are equal. We have T (\BbbC 2\ast ) = \langle e1\otimes e0+e0\otimes e1, e0\otimes e0\rangle \subseteq \BbbC 2\otimes \BbbC 2.
The rank upper bound is immediate since T (\BbbC 2\ast ) \subseteq \langle e0\otimes e1, e1\otimes e0, e0\otimes e0\rangle showing
R(T ) \leq 3. If R(T ) \leq 2, then T (\BbbC 2\ast ) is spanned by two rank-one elements of \BbbC 2\otimes \BbbC 2,
but T (\BbbC 2\ast ) only contains one rank-one element, up to scaling. This shows that R(T ) =
3. The border rank lower bound follows from the flattening lower bound: the border
rank of T is at least the rank of any of the flattening maps T : \BbbC 2 \rightarrow \BbbC 2 \otimes \BbbC 2, each of
which equals 2. As for the border rank upper bound, let E\varepsilon = \langle e\otimes 2

0 , (e0+\varepsilon e1)
\otimes 2\rangle , and

let E0 = lim\varepsilon \rightarrow 0 E\varepsilon . Note that E0 = T (\BbbC 2\ast ). Indeed e0\otimes e0 \in E\varepsilon for every \varepsilon ; therefore
e0\otimes e0 \in E0 as well. Moreover, 1

\varepsilon [(e0+\varepsilon e1)
\otimes 2 - e\otimes 2

0 ] = e0\otimes e1+e1\otimes e0+\varepsilon e1\otimes e1 \in E\varepsilon for
every \varepsilon , so its limit as \varepsilon \rightarrow 0 is an element of E0. This shows that e0\otimes e1+e1\otimes e0 \in E0.
Hence we have the inclusion E0 \subseteq T (\BbbC 2\ast ), and equality follows by dimension reasons.

2.2. Degeneration, unit tensor and Kronecker product. We now discuss
a relation on tensors called degeneration and its connection to border rank and the
asymptotic version of tensor rank.

The product group G = GL(V1)\times \cdot \cdot \cdot \times GL(Vk) naturally acts on the tensor space
V1 \otimes \cdot \cdot \cdot \otimes Vk. Given two tensors T, S \in V1 \otimes \cdot \cdot \cdot \otimes Vk, we say that S is a degeneration
of T , and write S \trianglelefteq T , if

S \in G \cdot T ,

that is, S belongs to the closure (equivalently in the Zariski or Euclidean topology) of
the G-orbit of T . By re-embedding vector spaces in a larger common space, we may
always assume that our tensors belong to the same space V1 \otimes \cdot \cdot \cdot \otimes Vk. We will often
tacitly identify tensors that are in the same G-orbit.

The notion of an identity matrix extends to k-tensors as follows. For r \in \BbbN , let
Vj = \BbbC r, and define the k-tensor

uk(r) :=

r\sum 
i=1

e
(1)
i \otimes \cdot \cdot \cdot \otimes e

(k)
i \in V1 \otimes \cdot \cdot \cdot \otimes Vk,

where e
(j)
1 , . . . , e

(j)
r is a fixed basis of Vj . The tensor uk(r) is sometimes called the

rank-r unit tensor.
The fundamental relation between degeneration, unit tensors, and border rank is

that, for every k-tensor T , we have

(2.1) R(T ) \leq r if and only if T \trianglelefteq uk(r).

The Kronecker product of two k-tensors T \in V1\otimes \cdot \cdot \cdot \otimes Vk and S \in W1\otimes \cdot \cdot \cdot \otimes Wk

is the tensor T \boxtimes S \in (V1 \otimes W1)\otimes \cdot \cdot \cdot \otimes (Vk \otimes Wk) obtained from T \otimes S \in V1 \otimes \cdot \cdot \cdot \otimes 
Vk \otimes W1 \otimes \cdot \cdot \cdot \otimes Wk by grouping together the spaces Vj and Wj for each j. Tensor
rank and border rank are submultiplicative under the Kronecker product, that is, we
have R(T \boxtimes S) \leq R(T )R(S) and R(T \boxtimes S) \leq R(T )R(S). Both inequalities may be
strict.

In the context of the study of the arithmetic complexity of matrix multiplication,
Strassen introduced an asymptotic notion of tensors rank [29], called asymptotic rank,
and developed the theory of asymptotic spectra of tensors to gain a deep understand-
ing of its properties [27, 30] (see also [7]). The asymptotic rank of T \in V1 \otimes \cdot \cdot \cdot \otimes Vk

is defined as
R
\sim 
(T ) = lim

N\rightarrow \infty 
(R(T\boxtimes N ))1/N .
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BORDER RANK NONADDITIVITY 507

It will often be convenient to take the logarithm of the asymptotic rank,

\omega (T ) := log(R
\sim 
(T )),

which is called the exponent of T . We write log := log2, the logarithm in base 2.
The limit in the definition of asymptotic rank exists by Fekete's lemma (see, e.g.,
[19, page 189]), via submultiplicativity of tensor rank. The notion of asymptotic rank
does not depend on whether one uses tensor rank R(T ) or border rank R(T ) in the
definition [2, 28]. Because of the submultiplicative property of tensor rank and border
rank, we have that R

\sim 
(T ) \leq R(T ) \leq R(T ).

The importance of asymptotic rank in the study of the arithmetic complexity of
matrix multiplication comes from the following connection (we refer to [3] for more in-
formation). Form1,m2,m3 \in \BbbN thematrix multiplication tensor MaMu(m1,m2,m3)
is defined as
(2.2)

MaMu(m1,m2,m3) :=

m1\sum 
i1=1

m2\sum 
i2=1

m3\sum 
i3=1

ei1,i2 \otimes ei2,i3 \otimes ei3,i1 \in \BbbC m1m2 \otimes \BbbC m2m3 \otimes \BbbC m3m1 .

This tensor defines the bilinear map \BbbC m1m2 \times \BbbC m2m3 \rightarrow \BbbC m3m1 which multiplies a
matrix of size m1 \times m2 with one of size m2 \times m3. It is a fundamental result that the
tensor rank of MaMu(m1,m2,m3) characterizes the arithmetic complexity (i.e., the
minimal number of scalar additions and multiplications in any arithmetic algorithm)
of matrix multiplication. In particular, for every \varepsilon > 0 the arithmetic complexity of
n\times n matrix multiplication is \scrO (n\omega +\varepsilon ), where \omega = \omega (MaMu(2, 2, 2)). It is a major
open problem whether \omega equals 2 or is strictly larger than 2 [5].

The notion of the exponent of a tensor naturally extends to a relation on tensors
called relative exponent or rate of asymptotic conversion [8, Definition 1.7]. Follow-
ing that terminology, the exponent of a k-tensor T equals the asymptotic rate of
conversion from the unit tensor uk(2) to T .

2.3. Graph tensors. Graph tensors are a natural generalization of matrix mul-
tiplication tensors. They are defined as a Kronecker product of unit tensors of lower
order according to the structure of a hypergraph [9].

Let G be a hypergraph with vertex set V (G) = \{ 1, . . . , k\} and edge set E(G),
that is, E(G) is a set of subsets of V (G). For every hyperedge I \in E(G), let nI \in \BbbN 
be integer weight.

For every hyperedge I = \{ i1, . . . , ip\} , define the k-tensor

u(I)(nI) :=

\Biggl[ 
nI\sum 
j=1

e
(i1)
j \otimes \cdot \cdot \cdot \otimes e

(ip)
j

\Biggr] 
\otimes 

\Biggl[ \bigotimes 
i\prime /\in I

e
(i\prime )
0

\Biggr] 
\in 

\Biggl( \bigotimes 
i\in I

\BbbC nI

\Biggr) 
\otimes 

\Biggl( \bigotimes 
i\prime /\in I

\BbbC 1

\Biggr) 
,

where e
(i)
1 , . . . , e

(i)
nI is a fixed basis of \BbbC nI for every i \in I, and e

(i\prime )
0 is a fixed basis

element of \BbbC 1 for i\prime /\in I.
The graph tensor associated to the hypergraph G with weights n = (nI : I \in 

E(G)) is defined as
T (G,n) := \boxtimes I\in E(G) u(I)(nI),

where \boxtimes denotes the Kronecker product. Thus T (G,n) is a k-tensor in V1 \otimes \cdot \cdot \cdot \otimes Vk

whose jth factor has a local structure Vj = (
\bigotimes 

I\ni j \BbbC nI ) \otimes (
\bigotimes 

I \not \ni j \BbbC 1). In particular,
dimVj =

\prod 
I\ni j dimnI .
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508 CHRISTANDL, GESMUNDO, MICHA\LEK, ZUIDDAM

In the language of tensor networks, T (G) is the generic tensor in the tensor
network variety associated to the graph G, as long as the local dimensions are at least
as large as dimVj ; see, e.g., [14, Chapter 12], [17].

An important feature of graph tensors is their self-reproducing property: if G is
a hypergraph with weights n = (nI : I \in E(G)) and T = T (G,n) is the associated
graph tensor, then T\boxtimes N = T (G,n\odot N ), where n\odot N is the tuple of weights obtained
from n by raising every entry to the Nth power.

Example 2.3. Let G = K3 be the triangle graph, that is, G has vertex set V (G) =
\{ 1, 2, 3\} and edge set E(G) = \{ \{ 1, 2\} , \{ 2, 3\} , \{ 3, 1\} \} which we write shortly as E(G) =
\{ 12, 23, 31\} . Consider weights on G given by n = (n12, n23, n31). The graph tensor
associated to G is the tensor T (G,n) \in V1 \otimes V2 \otimes V3 with V1 = \BbbC n31 \otimes \BbbC n12 , V2 =
\BbbC n12 \otimes \BbbC n23 , and V3 = \BbbC n23 \otimes \BbbC n31 given by

T (G,n) =
\sum 

ei31i12 \otimes ei12i23 \otimes ei23i31 ,

where the sum ranges over the indices i12, i23, i31 with i12 = 1, . . . , n12 and similarly for
i23, i31. Thus T (G,n) equals the matrix multiplication tensorMaMu(n12, n23, n31) in
(2.2). In general, we may represent any graph tensor T (G,n) by the defining weighted
graph with vertices labeled by the appropriate vector spaces Vi. In this case,

T (G,n) =

n12

n23n31

V3

V2
V1

.

We will often drop the notation Vi from the picture.
More generally, the graph tensor associated to the cycle graph Ck of length k is

the iterated matrix multiplication tensor of order k.

Example 2.4 (unit tensors). For any k let G be the graph with vertex set V (G) =
\{ 1, . . . , k\} and edge set E(G) = \{ \{ 1, . . . , k\} \} . That is, G has a single hyperedge
containing all vertices. Consider the weight n = r \in \BbbN for this hyperedge. Then the
associated graph tensor T (G,n) equals the unit tensor uk(r) defined in subsection 2.2.
For the case k = 3, the graphical representation for this graph tensor is

T (G, r) =
r

V3

V2

V1

Back to the general setting, since border rank is submultiplicative under the
Kronecker product, we have a trivial upper bound for the asymptotic rank of graph
tensors given by the product of the rank of the factors from which they arise. In
particular, we have the asymptotic rank upper bound

(2.3) R
\sim 
(T (G,n)) \leq R(T (G,n)) \leq 

\prod 
I\in E(G)

nI .
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Consequently, the exponent of T (G,n) is bounded from above by the logarithm of the
right-hand side of (2.3), that is, \omega (T (G,n)) \leq 

\sum 
I\in E(G) log(nI).

2.4. Sch\"onhage's construction and the exponent of matrix multiplica-
tion. We review Sch\"onhage's construction of strict subadditivity of border rank of
3-tensors under the direct sum. The higher order examples in section 3 are largely
inspired by this construction.

Fix n1, n2 \geq 1, and consider the two tensors associated to the following graphs:

T1 =

n1 + 1

n2 + 1

V3

V2
V1

T2 =

W3

W2
W1

n1n2

It is immediate that R(T1) = (n1 + 1)(n2 + 1) and R(T2) = n1n2, so that one
obtains the trivial upper bound on the direct sum: R(T1 \oplus T2) \leq (n1 + 1)(n2 + 1) +
n1n2. Sch\"onhage proved R(T1 \oplus T2) = (n1 + 1)(n2 + 1) + 1 [21] (see also [3]). In
particular, whenever n1 \geq 2 or n2 \geq 2, this construction provides an example of strict
subadditivity of border rank.

Note that T1 \boxtimes T2 is the matrix multiplication tensor with edge weights n =
(n1 + 1, n2 + 1, n1n2). Using the strict subadditivity result Sch\"onhage provided an
upper bound on the exponent of matrix multiplication. We provide two key results
which are useful to reproduce Sch\"onhage's upper bound on the exponent of matrix
multiplication as well as the upper bounds on the exponent of certain graph tensors
in section 4. We refer to [3] and [36, section 2] for additional information.

Lemma 2.5. Let S, T, U be tensors such that S \boxtimes T \trianglelefteq S \boxtimes U . Then for every
N \in \BbbN we have

S \boxtimes T\boxtimes N \trianglelefteq S \boxtimes U\boxtimes N .

In particular, if uk(s)\boxtimes T \trianglelefteq uk(r) for some integers r, s, then for all N \in \BbbN we have

uk(s)\boxtimes T\boxtimes N \trianglelefteq uk(s)\boxtimes uk(
\bigl\lceil 
r
s

\bigr\rceil N
).

Proof. The proof is by induction. The base case S \boxtimes T \trianglelefteq S \boxtimes U is true by
assumption. The induction step is

S \boxtimes T\boxtimes n = S \boxtimes T \boxtimes T\boxtimes (n - 1) \trianglelefteq S \boxtimes U \boxtimes T\boxtimes (n - 1) \trianglelefteq S \boxtimes U \boxtimes U\boxtimes (n - 1) = S \boxtimes U\boxtimes n,

where we first use the assumption in the inequality S \boxtimes T \trianglelefteq S \boxtimes U and then we use
the inductive hypothsis in the inequality S \boxtimes T\boxtimes (n - 1) \trianglelefteq S \boxtimes U\boxtimes (n - 1).

If uk(s) \boxtimes T \trianglelefteq uk(r), then uk(s) \boxtimes T \trianglelefteq uk(s) \boxtimes uk(\lceil r/s\rceil ). Applying the first
part of the lemma with S = uk(s) and U = uk(\lceil r/s\rceil ) provides the desired result.

Proposition 2.6. Let T1 \in V1\otimes \cdot \cdot \cdot \otimes Vk and T2 \in W1\otimes \cdot \cdot \cdot \otimes Wk be two tensors.
Suppose R(T1 \oplus T2) \leq r. Let N \geq 0 be an integer, and let p \in (0, 1) such that pN is
an integer. Then

R(T\boxtimes Np
1 \boxtimes T

\boxtimes N(1 - p)
2 ) \leq 

\Bigl( r

2h(p)+o(1)

\Bigr) N
,

where h(p) is the binary entropy function h(p) =  - p log(p) - (1 - p) log(1 - p).
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510 CHRISTANDL, GESMUNDO, MICHA\LEK, ZUIDDAM

Proof. Consider the binomial expansion of (T1 \oplus T2)
\boxtimes N :

(T1 \oplus T2)
\boxtimes N =

N\bigoplus 
M=0

uk

\Bigl( \bigl( 
N
M

\bigr) \Bigr) 
\boxtimes (T\boxtimes M

1 \boxtimes T
\boxtimes (N - M)
2 ).

It is immediate that the right-hand side above degenerates to each direct summand:

in particular (T1 \oplus T2)
\boxtimes N \trianglerighteq 

\bigl( 
N
pN

\bigr) 
\boxtimes (T\boxtimes pN

1 \boxtimes T
\boxtimes (1 - p)N
2 ).

Moreover, since R(T1 \oplus T2) \leq r, from (2.1), we obtain T1 \oplus T2 \trianglelefteq uk(r), and
therefore (T1 \oplus T2)

\boxtimes N \trianglelefteq uk(r)
N . Thus,

uk(r
N ) \trianglerighteq uk

\Bigl( \bigl( 
N
pN

\bigr) \Bigr) 
\boxtimes (T\boxtimes pN

1 \boxtimes T
\boxtimes ((1 - p)N)
2 ).

Using Lemma 2.5, we have

uk

\Bigl( 
rN/

\Bigl( \bigl( 
N
pN

\bigr) \Bigr) \Bigr) 
\trianglerighteq uk

\Bigl( \bigl( 
N
pN

\bigr) \Bigr) 
\boxtimes (T\boxtimes pN

1 \boxtimes T
\boxtimes ((1 - p)N)
2 ) \trianglerighteq T\boxtimes pN

1 \boxtimes T
\boxtimes ((1 - p)N)
2 .

Recall that
\bigl( 
N
pN

\bigr) 
= 2Nh(p)+o(1), where h(p) is the binary entropy function. This gives

R(T\boxtimes pN
1 \boxtimes T

\boxtimes ((1 - p)N)
2 ) \leq 

\Bigl( r

2h(p)+o(1)

\Bigr) N
and concludes the proof.

Because of the self-reproducing property of graph tensors, it is convenient to allow
the weights of the graph to have fractional exponents. We will use this convention
in order to give asymptotic statements with the understanding that the statement
holds for the Kronecker powers for which the dimensions have integer values. More
precisely, given a tensor T and values q \in (0, 1) and \rho \geq 0, the statement R

\sim 
(T\boxtimes q) \leq \rho 

is to be read as R(T\boxtimes Nq) \leq \rho N+o(1) for all N for which qN is an integer. From this
point of view, after taking an Nth root in Proposition 2.6, we obtain the asymptotic
bound

R
\sim 

\Bigl( 
T\boxtimes p
1 \boxtimes T

\boxtimes (1 - p)
2

\Bigr) 
\leq r

2h(p)
.

After taking the logarithm, we have a bound on the exponent

(2.4) \omega 
\Bigl( 
T\boxtimes p
1 \boxtimes T

\boxtimes (1 - p)
2

\Bigr) 
\leq log(r) - h(p).

Sch\"onhage's construction provides tensors T1, T2 with R(T1\oplus T2) = (n1+1)(n2+1)+1
and T p

1 \boxtimes T 1 - p
2 = MaMu((n1 +1)p, (n2 +1)p, (n1n2)

1 - p). Applying Proposition 2.6,
one obtains

\omega 
\bigl( 
MaMu((n1 + 1)p, (n2 + 1)p, (n1n2)

1 - p)
\bigr) 
\leq log((n1 + 1)(n2 + 1) + 1) - h(p).

For n1 = n2 = 3, we obtain \omega (MaMu(4p, 4p, 91 - p)) \leq log(17)  - h(p). Cyclically
permuting the factors and using the self-reproducing property of the matrix multi-
plication tensor, one obtains an upper bound on the exponent of a square matrix
multiplication and, by passing to the asymptotic rank,

\omega (MaMu(2, 2, 2)) \leq 3(log(17) - h(p))

4p+ (1 - p) log(9)
.

The right-hand side attains its minimum at p \approx 0.61, giving Sch\"onhage's upper bound
on the exponent \omega (MaMu(2, 2, 2)) \leq 2.55.
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3. Strict subadditivity of border rank. In this section we provide four fam-
ilies of examples of strict subadditivity of border rank for higher order tensors. The
subadditivity results are recorded in Theorem 3.1, Theorem 3.2, Theorem 3.3, and
Theorem 3.5.

All constructions are characterized by a structure similar to Sch\"onhage's. We
consider two graph tensors:

\cdot The tensor T1 is a spider, that is, a graph tensor where the underlying graph
has all edges incident to a single vertex. In this case, the graph tensor is, up
to change of coordinates, the only concise tensor in its space.

\cdot The tensor T2 is either a matrix, that is, a graph tensor with a single edge,
or u3(r), that is, a graph tensor with a single hyperedge of order three.

Constructions 1, 2, and 3 add a matrix to the spider. Construction 1 provides a con-
struction for tensors of order 4 where the direct sum attains minimal border rank. For
large edge dimensions, the border rank upper bound is roughly 2/3 times the trivial
additive upper bound. Construction 2 provides an improvement of Construction 1 for
certain smaller edge dimensions. Construction 3 concerns tensors of all orders and
gives an optimal savings of a factor of 2 for large edge dimensions. Construction 4
adds a unit tensor to the legs of a three-legged spider.

Construction 1: Adding a matrix. This first construction concerns tensors
of order four. Fix n1, n2, n3 \geq 2 with n1 (or n2 or n3) odd. Consider the following
two tensors:

T1 =

n1 + 1

n2 + 1

n3 + 1

V3

V1

V2

V4
T2 =

N

W3

W1

W2

W4

where N = 1
2 (n1  - 1)(n2  - 1)(n3  - 1). In this case, we have the following result.

Theorem 3.1. For every n1, n2, n3 with n1 odd, we have

R(T1) = (n1 + 1)(n2 + 1)(n3 + 1),

R(T2) = N,

and
R(T1 \oplus T2) = (n1 + 1)(n2 + 1)(n3 + 1) + 1.

Proof. For p = 1, 2, 3, write Vp = \BbbC np+1, and let V4 = \BbbC (n1+1)(n2+1)(n3+1). Let
\{ vpj : j = 0, . . . , np\} be a basis of Vp and \{ v4i1,i2,i3 : ip = 0, . . . , np\} be a basis of V4.
We have T1 \in V1 \otimes \cdot \cdot \cdot \otimes V4.

Similarly, for p = 1, 2, let Wp = \BbbC N , and for p = 3, 4 let Wp = \BbbC 1. Write
m1 = 1

2 (n1  - 1), m2 = n2  - 1, and m3 = n3  - 1. For p = 1, 2 let \{ wp
j1,j2,j3

: jp =
1, . . . ,mp\} be a basis of Wp, and let Wp = \langle wp\rangle for p = 3, 4; note that indeed these
are n1 - 1

2 (n2  - 1)(n3  - 1) = N vectors. We have T2 \in W1 \otimes \cdot \cdot \cdot \otimes W4.
Regard T1 \oplus T2 as a tensor in (V1 \oplus W1)\otimes \cdot \cdot \cdot \otimes (V4 \oplus W4).
The values of R(T1) and R(T2) are immediate. The lower bound R(T1 \oplus T2) \geq 

(n1 + 1)(n2 + 1)(n3 + 1) + 1 follows by conciseness.
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512 CHRISTANDL, GESMUNDO, MICHA\LEK, ZUIDDAM

For the upper bound, we determine a set of (n1 +1)(n2 +1)(n3 +1)+1 rank-one
elements \scrZ \varepsilon \subseteq (V1 \oplus W1)\otimes (V2 \oplus W2)\otimes (V3 \oplus W3) such that (T1 \oplus T2)(V

\ast 
4 \oplus W \ast 

4 ) \subseteq 
lim\langle \scrZ \varepsilon \rangle . By Proposition 2.1, this provides the desired upper bound.

Note
(T1 \oplus T2)(V

\ast 
4 \oplus W \ast 

4 ) = V1 \otimes V2 \otimes V3 \oplus \langle u(N)\rangle ,

where

u(N) :=
\sum 

jp=1,...,mp

p=1,2,3

w1
j1,j2,j3 \otimes w2

j1,j2,j3 \otimes w3 = u2(N)\otimes w3 \in W1 \otimes W2 \otimes W3.

We will denote the elements of \scrZ \varepsilon using indices \{  - 1, (0, 0, 0), . . . , (n1, n2, n3)\} ;
note that these are (n1 + 1)(n2 + 1)(n3 + 1) + 1 elements. We drop the dependency
on \varepsilon from the notation.

For p = 1, 2, 3 and jp = 1, . . . ,mp, define

Zj1,j2,j3 = (v1j1 + \varepsilon w1
j1,j2,j3)\otimes (v2j2 + \varepsilon w2

j1,j2,j3)\otimes (v3j3 + \varepsilon w3).

Write Z1 =
\sum 

j1,j2,j3
Zj1,j2,j3 for the tensor obtained as sum of the m1m2m3 =

n1 - 1
2 (n2  - 1)(n3  - 1) rank-one tensors defined above. The component of degree 3

(with respect to \varepsilon ) in Z1 is exactly u(N).
For j1 = 1, . . . ,m1 (so that m1 + j1 = m1 + 1, . . . , n1  - 1), j2 = 1, . . . ,m2, and

j3 = 1, . . . ,m3, define

Zm1+j1,j2,j3 = (v1m1+j1 + \varepsilon w1
j1,j2,j3)\otimes (v2j2  - \varepsilon w2

j1,j2,j3)\otimes v3j3 .

Let Z110 be the sum of the tensors just defined.
For k1 = 1, . . . ,m1 and for k2 = 1, . . . ,m2 define the two sets of tensors

Zn1,k2,0 = (v1n1
+ \varepsilon 

\sum 
p=1,3

jp=1,...,mp

w1
j1,k2,j3)\otimes v2k2

\otimes (v30  - \varepsilon w3),

Zk1,n2,0 = v1k1
\otimes (v2n2

+ \varepsilon 
\sum 
p=2,3

jp=1,...,mp

w1
k1,j2,j3)\otimes (v30  - \varepsilon w3),

consisting, respectively, of n2 - 1 and n1 - 1
2 rank-one tensors. Write Z101 and Z011 for

the sum of the first and second sets of tensors just defined.
Now, the component of degree 2 in Z1 is opposite to the component of degree 2 in

Z110+Z101+Z011. Let S = Z1+Z110+Z101+Z011. We deduce that the component
of degree 2 in S is 0.

Therefore S can be written as S = S0 + \varepsilon S1 + \varepsilon 3u(N) and

S1 =
\sum 

i1=1,...,n1
i2=1,...,n2

v1i1 \otimes v2i2 \otimes \omega 3
i1,i2 +

\sum 
i1=1,...,n1
i3=1,...,n3

v1i1 \otimes \omega 2
i1,i3 \otimes v3i3

+
\sum 

i2=1,...,n2
i3=1,...,n3

\omega 1
i1,i2 \otimes v2i2 \otimes v3i3

for some vectors \omega 1
i2,i3

\in W1, \omega 
2
i1,i3

\in W2, and \omega 3
i1,i2

\in W3.
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Define

Z0,i2,i3 = (v10  - \varepsilon \omega 1
i2,i3)\otimes v2i2 \otimes v3i3 ,

Zi1,0,i3 = v1i1 \otimes (v20  - \varepsilon \omega 2
i1,i3)\otimes v3i3 ,

Zi1,i2,0 = v1i1 \otimes v2i2 \otimes (v30  - \varepsilon \omega 3
i1,i2).

Let Z0,0,0 be the sum of these three families of tensors. Then S+Z0,0,0 = R+\varepsilon 3u(N)
for some tensor R not depending on \varepsilon : in particular, if \Phi \subseteq [0, n1] \times [0, n2] \times [0, n3]
is the subset of indices (i1, i2, i3) for which a tensor Zi1,i2,i3 has been defined, then
R =

\sum 
(i1,i2,i3)\in \Phi Zi1,i2,i3 | \varepsilon =0.

Let \Omega \subseteq [0, n1] \times [0, n2] \times [0, n3] be the set of all the triples (i1, i2, i3) for which
a tensor Zi1,i2,i3 has not yet been defined; in other words \Omega is the complement of \Phi .
For (i1, i2, i3) \in \Omega , let Zi1,i2,i3 = v1i1 \otimes v2i2 \otimes v3i3 .

Finally, define Z - 1 = (
\sum n1

0 v1i1)\otimes (
\sum n2

0 v2i2)\otimes (
\sum n3

0 v3i3). Note

Z - 1 =
\sum 

(i1,i2,i3)\in [0,n1]\times [0,n2]\times [0,n3]

v1i1 \otimes v2i2 \otimes v3i3

equals the sum over the indices of \Phi and of \Omega .
Let \scrZ \varepsilon = \{ Z - 1, Z0,0,0, . . . , Zn1,n2,n3\} : then \scrZ \varepsilon has (n1 + 1)(n2 + 1)(n3 + 1) + 1

elements. Let E\varepsilon = \langle \scrZ \varepsilon \rangle \subseteq (V1 \oplus W1)\otimes (V2 \oplus W2)\otimes (V3 \oplus W3) and E0 = lim\varepsilon \rightarrow 0 E\varepsilon ,
where the limit is taken in the corresponding Grassmannian.

We show that (T1 \oplus T2)(V
\ast 
4 \oplus W \ast 

4 ) \subseteq E0 (and in fact equality holds).
For every (i1, i2, i3), we have Zi1,i2,i3 | \varepsilon =0 = v1i1\otimes v2i2\otimes v3i3 . This shows V1\otimes V2\otimes V3 \subseteq 

E0.
Moreover \varepsilon 3u(N) =

\sum 
i1,i2,i3

Zi1,i2,i3  - Z - 1; therefore u(N) \in E\varepsilon for every \varepsilon ;
hence u(N) \in E0.

This shows (T1 \oplus T2)(V
\ast 
4 \oplus W \ast 

4 ) \subseteq E0 and concludes the proof.

Construction 2: Adding a matrix, II. Construction 1 does not apply in the
case where the weights of the edges are 2. Construction 2 addresses this setting in a
particular case. Fix a \geq 2. Consider the two tensors

T1 =

2

2

a+ 2

V3

V1

V2

V4
T2 =

a

W3

W1

W2

W4

The result and its proof are similar to Theorem 3.1.

Theorem 3.2. Let a \geq 2. Then

R(T1) = 4(a+ 2),

R(T2) = a,

and
R(T1 \oplus T2) = 4(a+ 2) + 1.
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Proof. Let V1 = V2 = \BbbC 2, V3 = \BbbC a+2, and V4 = \BbbC 4(a+2) so that T1 \in V1\otimes \cdot \cdot \cdot \otimes V4.
For p = 1, 2, let \{ vp1 , v

p
2\} be a basis of Vp, and let \{ v3j : j =  - 1, . . . , a\} be a basis of

V3.
Similarly, let W1 = W2 = \BbbC a, W3 = W4 = \BbbC 1, so that T2 \in W1 \otimes \cdot \cdot \cdot \otimes W4. For

p = 1, 2, let \{ wp
\ell : \ell = 1, . . . , a\} be a basis of Wp, and let \{ w3\} be a basis of W3.

Regard T1 \oplus T2 as a tensor in (V1 \oplus W1)\otimes \cdot \cdot \cdot \otimes (V4 \oplus W4).
The values of R(T1) and R(T2) are immediate. The lower bound R(T1 \oplus T2) \geq 

4(a+ 2) + 1 follows by conciseness.
For the upper bound, we determine a set of 4(a+ 2) + 1 rank-one elements \scrZ \varepsilon \subseteq 

(V1\oplus W1)\otimes (V2\oplus W2)\otimes (V3\oplus W3) such that T (V \ast 
4 \oplus W \ast 

4 ) \subseteq lim\langle \scrZ \varepsilon \rangle . By Proposition
2.1, this provides the desired upper bound.

Note
T (V \ast 

4 \oplus W \ast 
4 ) = V1 \otimes V2 \otimes V3 + \langle u(a)\rangle ,

where, as in the proof of Theorem 3.1, u(a) =
\sum a

1 w
1
j \otimes w2

j \otimes w3 = u2(a)\otimes w3.
We will denote elements of \scrZ \varepsilon using indices \{  - 1, (1, 1, - 1), . . . , (2, 2, a)\} . We drop

the dependency from \varepsilon in the notation.
Define the following tensors:

Z1,1,i = (v11 + \varepsilon w1
i )\otimes (v21 + \varepsilon w2

i )\otimes (v3i + \varepsilon w3) for i = 1, . . . , a,

Z1,2,i = (v11 + \varepsilon w1
i )\otimes (v22  - \varepsilon w2

i )\otimes v3i for i = 1, . . . , a,

Z2,1,i = (v12  - \varepsilon w1
i )\otimes v21 \otimes v3i for i = 1, . . . , a,

Z2,2,i = (v12  - \varepsilon w1
i )\otimes v22 \otimes v3i for i = 1, . . . , a,

Z1,1, - 1 = v11 \otimes (v21 +
2\varepsilon 
a

\sum a
1w

2
j )\otimes (v3 - 1  - a\varepsilon 

2 w3),

Z1,1,0 = (v11 +
2\varepsilon 
a

\sum a
1w

1
j )\otimes v21 \otimes (v30  - a\varepsilon 

2 w3),

Z1,2, - 1 = v11 \otimes (v22  - 2\varepsilon 
a

\sum a
1w

2
j )\otimes v3 - 1,

Z2,1,0 = (v12  - 2\varepsilon 
a

\sum a
1w

1
j )\otimes v21 \otimes v30 ,

Z2,1, - 1 = v12 \otimes v21 \otimes v3 - 1, Z1,2,0 = v11 \otimes v22 \otimes v30 ,

Z2,2, - 1 = v12 \otimes v22 \otimes v3 - 1, Z2,2,0 = v12 \otimes v22 \otimes v30 .

Finally, let Z - 1 = (v11 + v12)\otimes (v21 + v22)\otimes (
\sum a

 - 1v
3
i ).

A direct calculation shows that
\sum 

(i1,i2,i3)\in \{ (1,1, - 1),...,(2,2,a)\} Zi1,i2,i3 = Z - 1 +

\varepsilon 3u(a), similarly to the proof of Theorem 3.1.
Let \scrZ \varepsilon = \{ Z - 1, Z1,1, - 1, . . . , Z2,2,a\} \subseteq (V1 \oplus W1) \otimes (V2 \otimes W2) \otimes (V3 \otimes W3): then

\scrZ \varepsilon contains 4a + 1 elements. Let E\varepsilon = \langle \scrZ \varepsilon \rangle and E0 = lim\varepsilon \rightarrow 0 E\varepsilon , where the limit is
taken in the corresponding Grassmannian.

We show that (T1 \oplus T2)(V
\ast 
4 \oplus W \ast 

4 ) \subseteq E0 (and in fact equality holds).
For every (i1, i2, i3) \in \{ (1, 1, - 1), . . . , (2, 2, a)\} , we have Zi1,i2,i3 | \varepsilon =0 = v1i1 \otimes v2i2 \otimes 

v3i3 . This shows V1 \otimes V2 \otimes V3 \subseteq E0.
Moreover \varepsilon 3u(a) =

\sum 
i1,i2,i3

Zi1,i2,i3 - Z - 1; therefore u(N) \in E\varepsilon for every \varepsilon ; hence
u(N) \in E0.

This shows (T1 \oplus T2)(V
\ast 
4 \oplus W \ast 

4 ) \subseteq E0 and concludes the proof.

Construction 3: Adding a matrix, III. This third construction deals with
tensors of any order. Furthermore, for large dimensions, it provides an upper bound
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which improves on the trivial additive upper bound by a factor of 2, as in Sch\"onhage's
construction, unlike Constructions 1 and 2 which provide a saving of a factor of 3/2
and 5/4, respectively.

Fix d \geq 2 and n1, . . . , nd. Let N \leq n1 \cdot \cdot \cdot nd. Consider the following two tensors:
(3.1)

T1 =
n1

n2

nd

V1

V2

Vd+1
V3

Vd

. . .

T2 =

N

W1

W2

Wd+1W3

Wd

. . .

For the sake of notation, we state and prove the following result in the special
case n := n1 = \cdot \cdot \cdot = nd. A similar upper bound holds in general.

Theorem 3.3. Let n,N, d \in \BbbN be integers with N \leq nd. Let T1, T2 be as in (3.1).
Then

R(T1) = nd,

R(T2) = N,

and
R(T1 \oplus T2) \leq nd + 2nd - 1 + n2(n+ 1)d - 3 + 1 = nd +\scrO (nd - 1).

Proof. We prove the result for N = nd. The general result follows by semiconti-
nuity of border rank.

For p = 1, . . . , d, let Vp = \BbbC n and \{ vpip : ip = 1, . . . , n\} be a basis of Vp. Let

Vd+1 = \BbbC nd

with basis \{ vd+1
i1,...,id

: ip = 1, . . . , n\} . Let W1 = W2 = \BbbC N with basis

\{ w1
j1,...,jd

: jp = 1, . . . , n\} of W1 and similarly for W2. For p = 3, . . . , d + 1, let

Wp = \BbbC 1, and let wp be a spanning vector of Wp.
Regard T1 \oplus T2 as a tensor in (V1 \oplus W1)\otimes \cdot \cdot \cdot \otimes (Vd+1 \oplus Wd+1).
The values of R(T1) and R(T2) are immediate.
We present a border rank decomposition of T1 \oplus T2 providing the desired upper

bound.
For i1, . . . , id, define

qi1,...,id(\varepsilon ) =(v1i1 + \varepsilon d - 1w1
i1,...,id

)\otimes (v2i2 + \varepsilon d - 1w2
i1,...,id

)\otimes 
(\varepsilon v3i3 + w3)\otimes \cdot \cdot \cdot \otimes (\varepsilon vdid + wd)\otimes (\varepsilon dvd+1

i1,...,id
+ wd+1).

Define Q(\varepsilon ) =
\sum 

i1,...,id
qi1,...,id(\varepsilon ), and note that R(Q(\varepsilon )) \leq nd. Expand Q(\varepsilon ) in

\varepsilon , writing Q(\varepsilon ) = Q0+ \varepsilon Q1+ \cdot \cdot \cdot + \varepsilon 2d - 2Q2d - 2+ h.o.t ., where h.o.t . denotes the sum
of higher order (in \varepsilon ) terms.

Claim 1. We have Q2d - 2 = T1 \oplus T2.

Proof of Claim 1. In each qi1,...,id(\varepsilon ), terms of degree 2d  - 2 in \varepsilon arise in two
possible ways:

\cdot the tensor product of all the w terms, having degree d  - 1 on the first and
second factor and degree 0 on other factors;
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\cdot the tensor product of all the v terms, having degree 0 on first and second
factor degree 1 on factors from 3 to d (total is degree d - 2) and degree d on
factor d+ 1.

All other combinations have degree different from 2d  - 2, and this proves the
claim.

We will provide the upper bound

R(
\sum 2d - 3

0 \varepsilon iQi) \leq 2nd - 1 + n2(n+ 1)d - 3 + 1.

Claim 2. Let P (\varepsilon ) =
\sum d - 2

0 \varepsilon iQi. Then R(P (\varepsilon )) = 1.

Proof of Claim 2. Observe P (\varepsilon ) =
\sum 

pi1,...,id(\varepsilon ), where

pi1,...,id(\varepsilon ) = v1i1 \otimes v2i2 \otimes (\varepsilon v3i3 + w3)\otimes \cdot \cdot \cdot \otimes (\varepsilon vdid + wd)\otimes wd+1.

Therefore

P (\varepsilon ) = (
\sum 

i1
v1i1)\otimes (

\sum 
i2
v2i2)\otimes (

\sum 
i3
(\varepsilon v3i3 + w3))\otimes \cdot \cdot \cdot \otimes (

\sum 
id - 1

(\varepsilon vdid + wd))\otimes wd+1,

so that R(P (\varepsilon )) = 1.

For k = d  - 1, . . . , 2d  - 3, write Qk = Q\prime 
k + Q\prime \prime 

k , where Q\prime 
k \in (V1 \oplus W1) \otimes \cdot \cdot \cdot \otimes 

(Vd\oplus Wd)\otimes Wd+1 and Q\prime \prime 
k \in (V1\oplus W1)\otimes \cdot \cdot \cdot \otimes (Vd\oplus Wd)\otimes Vd+1. Note that Q\prime \prime 

d - 1 = 0

because the component of the last factor of qi1,...,id on Vd+1 is \varepsilon dvd+1
i1,...,id

.

Claim 3. Let P \prime (\varepsilon ) =
\sum 2d - 3

d - 1 \varepsilon kQ\prime 
k. Then R(P \prime (\varepsilon )) \leq 2nd - 1.

Proof of Claim 3. Observe

P \prime (\varepsilon ) =
\sum 

i1,i3,...,id

v1i1 \otimes 
\bigl( 
\varepsilon d - 1\sum 

i2
w2

i1,...,id

\bigr) 
\otimes (\varepsilon v3i3 + w3)\otimes \cdot \cdot \cdot \otimes (\varepsilon vdid + wd)\otimes wd+1

+
\sum 

i2,i3,...,id

\bigl( 
\varepsilon d - 1\sum 

i1
w1

i1,...,id

\bigr) 
\otimes v2i2 \otimes (\varepsilon v3i3 + w3)\otimes \cdot \cdot \cdot \otimes (\varepsilon vdid + wd)\otimes wd+1.

This gives the upper bounds nd - 1 for each one of the two summations above. Adding
the two contributions together, we obtain the desired upper bound.

Claim 4. For every k = 0, . . . , d - 3, R(Q\prime \prime 
d+k) \leq 

\bigl( 
d - 3
k

\bigr) 
nk+2.

Proof of Claim 4. Every term of Q\prime \prime 
d+k arises in qi1,...,id as the projection on

V1 \otimes V2 \otimes U3 \otimes \cdot \cdot \cdot \otimes Ud \otimes Vd+1, where exactly k among U3, . . . , Ud are equal to
the corresponding Vj and the other d - 3 - k are equal to the corresponding Wj . In
particular, we have

Q\prime \prime 
d+k =

\sum 
| J| \subseteq \{ 3,...,d\} 

| J| =k

\sum 
i1,i2

(ij=1,...,n:j\in J)

v1i1 \otimes v2i2 \otimes 
\bigotimes 
j\in J

vjij \otimes 
\bigotimes 
j\prime /\in J

wj\prime \otimes 
\Bigl( \sum 

(ij\prime :j
\prime /\in J)vi1,...,ik

\Bigr) 
.

From this expression, we deduce R(Q\prime \prime 
d+k) \leq 

\bigl( 
d - 3
k

\bigr) 
nk+2.

Setting P \prime \prime (\varepsilon ) =
\sum 2d - 3

k=d \varepsilon kQ\prime \prime 
k , Claim 4 provides R(P \prime \prime (\varepsilon )) \leq 

\sum d - 3
\kappa =0

\bigl( 
d - 3
\kappa 

\bigr) 
n\kappa +2 =

n2(n+ 1)d - 3.
We conclude that

R(
\sum 2d - 3

0 \varepsilon iQi) =R(P (\varepsilon ) + P \prime (\varepsilon ) + P \prime \prime (\varepsilon ))

\leq R(P (\varepsilon )) + R(P \prime (\varepsilon )) + R(P \prime \prime (\varepsilon )) \leq 1 + 2nd - 1 + n2(n+ 1)d - 3.
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This concludes the proof, because T1 \oplus T2 = lim\varepsilon \rightarrow 0
1

\varepsilon 2d - 2

\bigl[ 
Q(\varepsilon )  - (P (\varepsilon ) + P \prime (\varepsilon ) +

P \prime \prime (\varepsilon ))
\bigr] 
, giving the upper bound on the border rank

R(T1 \oplus T2) \leq R(Q(\varepsilon )) + R(P (\varepsilon ) + P \prime (\varepsilon ) + P \prime \prime (\varepsilon ))

\leq nd + 1 + 2nd - 1 + n2(n+ 1)d - 3.

Construction 4: Adding a higher order tensor. The last construction deals
with tensors of order 4. Fix integers n1, n2, n3. For integers a, b let [a, b] = \{ a, a +
1, . . . , b\} . Consider the two tensors

T1 =

n1 + 1

n2 + 1

n3 + 1

V3

V1

V2

V4
T2 =

W3

W1

W2

W4

M

where M = M(n1, n2, n3) is the maximum possible integer such that the follow-
ing combinatorial independence condition holds. There exist four disjoint subsets
J,K1,K2,K3 of [n1]\times [n2]\times [n3], all of order M such that there are three bijections
si : J \rightarrow Ki fixing the ith component, in the sense that if si(j1, j2, j3) = (k1, k2, k3),
then ji = ki.

Lemma 3.4. Let n1, n2, n3 be even. Then M(n1, n2, n3) =
1
4n1n2n3.

Proof. Let mi =
1
2ni. Define

J \prime = [m1]\times [m2]\times [m3],

K \prime 
1 = [m1]\times [m2 + 1, n2]\times [m3 + 1, n3] s1(j1, j2, j3) = (j1,m2 + j2,m3 + j3),

K \prime 
2 = [m1 + 1, n1]\times [m2]\times [m3 + 1, n3] s2(j1, j2, j3) = (m1 + j1, j2,m3 + j3),

K \prime 
3 = [m1 + 1, n1]\times [m2 + 1, n2]\times [m3] s3(j1, j2, j3) = (m1 + j1,m2 + j2, j3),

J \prime \prime = [m1 + 1, n1]\times [m2 + 1, n2]\times [m3 + 1, n3],

K \prime \prime 
1 = [m1 + 1, n1]\times [m2]\times [m3] s1(j1, j2, j3) = (j1, - m2 + j2, - m3 + j3),

K \prime \prime 
2 = [m1]\times [m2 + 1, n2]\times [m3] s2(j1, j2, j3) = ( - m1 + j1, j2, - m3 + j3),

K \prime \prime 
3 = [m1]\times [m2]\times [m3 + 1, n3] s3(j1, j2, j3) = ( - m1 + j1, - m2 + j2, j3).

The position of J \prime ,K \prime 
1,K

\prime 
2,K

\prime 
3 is represented in Figure 1 as three subsets of the set

[n1]\times [n2]\times [n3]. Let J = J \prime \sqcup J \prime \prime and Ki = K \prime 
i \sqcup K \prime \prime 

i . It is immediate to verify that
this satisfies the required conditions. Moreover \#J = \#J \prime +\#J \prime \prime = 2 \cdot n1

2 \cdot n2

2 \cdot n3

2 =
2 \cdot n1n2n3

8 = n1n2n3

4 .

The proof of the following result is similar to the one of Theorem 3.1.

Theorem 3.5. Fix n1, n2, n3, and let M = M(n1, n2, n3). Then

R(T1) = (n1 + 1)(n2 + 1)(n3 + 1),

R(T2) = M,

and
R(T1 \oplus T2) = (n1 + 1)(n2 + 1)(n3 + 1) + 1.
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Fig. 1. Schematic representation of J \prime (green) and K\prime 
1,K

\prime 
2,K

\prime 
3 (gray) in the proof of Lemma

3.4. J \prime \prime ,K\prime \prime 
1 ,K

\prime \prime 
2 ,K

\prime \prime 
3 are represented by the three complementary cubes.

Proof. For p = 1, 2, 3, let Vp = \BbbC np+1 and V4 = \BbbC (n1+1)(n2+1)(n3+1) so that
T1 \in V1 \otimes \cdot \cdot \cdot \otimes V4. Let \{ vpj : j = 0, . . . , np\} be a basis of Vp, and let \{ v4j1,j2,j3 : jp =
0, . . . , np\} be a basis of V4. We have T1 \in V1 \otimes \cdot \cdot \cdot \otimes V4.

Similarly, for p = 1, 2, 3, let Wp = \BbbC M and W4 = \BbbC 1. Let \{ wp
\ell : \ell = 1, . . . ,M\} be

a basis of Wp, and let w4 be a spanning vector of W4. We have T2 \in W1 \otimes \cdot \cdot \cdot \otimes W4.
Regard T1 \oplus T2 as a tensor in (V1 \oplus W1)\otimes \cdot \cdot \cdot \otimes (V4 \oplus W4).
The values of R(T1) and R(T2) are immediate. The lower bound R(T1 \oplus T2) \geq 

(n1 + 1)(n2 + 1)(n3 + 1) + 1 follows by conciseness.
For the upper bound, we determine a set of (n1 +1)(n2 +1)(n3 +1)+1 rank-one

elements \scrZ \varepsilon \subseteq (V1 \oplus W1)\otimes (V2 \oplus W2)\otimes (V3 \oplus W3) such that T (V \ast 
4 \oplus W \ast 

4 ) = lim\langle \scrZ \varepsilon \rangle .
By Proposition 2.1, this provides the desired upper bound.

Note
T (V \ast 

4 \oplus W \ast 
4 ) = V1 \otimes V2 \otimes V3 \oplus \langle u3(M)\rangle ,

where u3(M) =
\sum M

1 w1
\ell \otimes w2

\ell \otimes w3
\ell \in W1 \otimes W2 \otimes W3.

We denote the elements of \scrZ \varepsilon using indices \{  - 1, (0, 0, 0), . . . , (n1, n2, n3)\} . We
drop the dependency from \varepsilon in the notation.

Let J,K1,K2,K3 be the subsets determining M = M(n1, n2, n3), and let sp :
J \rightarrow Kp be the three fixed bijections.

Define bijections j : J \rightarrow [1,M ] and kp : Kp \rightarrow [1,M ] for p = 1, 2, 3 commuting
with the fixed si's, namely, j = kp \circ sp.

If (j1, j2, j3) \in J , define

Zj1,j2,j3 = (v1j1 + \varepsilon w1
\bfj (j1,j2,j3)

)\otimes (v2j2 + \varepsilon w2
\bfj (j1,j2,j3)

)\otimes (v3j3 + \varepsilon w3
\bfj (j1,j2,j3)

).

The component of degree 3 (with respect to \varepsilon ) in
\sum 

(j1,j2,j3)\in J Zj1,j2,j3 is exactly

u3(M).
If (k1, k2, k3) \in K1, define

Zk1,k2,k3
= v1k1

\otimes (v2k2
+ \varepsilon w2

\bfk 1(k1,k2,k3)
)\otimes (v3k3

 - \varepsilon w3
\bfk 1(k1,k2,k3)

).

If (k1, k2, k3) \in K2, define

Zk1,k2,k3
= (v1k1

 - \varepsilon w1
\bfk 2(k1,k2,k3)

)\otimes v2k2
\otimes (v3k3

+ \varepsilon w3
\bfk 2(k1,k2,k3)

).

If (k1, k2, k3) \in K3, define

Zk1,k2,k3 = (v1k1
+ \varepsilon w1

\bfk 3(k1,k2,k3)
)\otimes (v2k2

 - \varepsilon w2
\bfk 3(k1,k2,k3)

)\otimes v3k3
.
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The component of degree 2 of
\sum 

(k1,k2,k3)\in K1\sqcup K2\sqcup K3
Zk1,k2,k3

is opposite to the

component of degree 2 of
\sum 

(j1,j2,j3)\in J Zj1,j2,j3 . Indeed, the term of the form v1j1 \otimes 
\varepsilon w2

\bfj (j1,j2,j3)
\otimes \varepsilon w3

\bfj (j1,j2,j3)
is opposite to v1k1

\otimes \varepsilon w2
\bfk 1(k1,k2,k3)

\otimes ( - \varepsilon w3
\bfk 1(k1,k2,k3)

) for

(k1, k2, k3) = s1(j1, j2, j3), etc. As a consequence, setting

S =
\sum 

(k1,k2,k3)\in K1\sqcup K2\sqcup K3

Zk1,k2,k3
+

\sum 
(j1,j2,j3)\in J

Zj1,j2,j3 ,

we deduce that the component of degree 2 of S is 0.
Write S = S0 + \varepsilon S1 + \varepsilon 3u3(M) and

S1 =
\sum 
i1,i2

v1i1 \otimes v2i2 \otimes \omega 3
i1,i2 +

\sum 
i1,i3

v1i1 \otimes \omega 2
i1,i3 \otimes v3i3 +

\sum 
i2,i3

\omega 1
i2,i3 \otimes v2i2 \otimes v3i3 ,

where \omega 1
i2,i3

\in W1, \omega 
2
i1,i3

\in W2, \omega 
3
i1,i2

\in W3.
For i1 = 1, . . . , n1, i2 \in 1, . . . , n2, i3 = 1, . . . , n3, define

Z0,i2,i3 = (v10  - \varepsilon \omega 1
i2,i3)\otimes v2i2 \otimes v3i3 ,

Zi1,0,i3 = v1i1 \otimes (v20  - \varepsilon \omega 2
i1,i3)\otimes v3i3 ,

Zi1,i2,0 = v1i1 \otimes v2i2 \otimes (v30  - \varepsilon \omega 3
i1,i2).

By construction, S +
\sum 

i2,i3
Z0,i2,i3 +

\sum 
i1,i3

Zi1,0,i3 +
\sum 

i1,i2
Zi1,i2,0 is 0 in degrees 1

and 2 and u3(M) in degree 3.
Define

\Omega = [0, n1]\times [0, n2]\times [0, n3] \setminus (J \sqcup K1 \sqcup K2 \sqcup K3 \sqcup L),

where L is the set of triples with exactly one zero. The triples in \Omega are the ones for
which a rank-one tensor Zi1,i2,i3 has yet to be defined.

For every (i1, i2, i3) \in \Omega , define Zi1,i2,i3 = v1i1 \otimes v2i2 \otimes v3i3 . It is immediate to verify\sum 
ip=0,...,np

p=1,2,3

Zi1,i2,i3 = Z - 1 + \varepsilon 3u3(M),

where Z - 1 = (
\sum n1

i1=0v
1
i1
)\otimes (

\sum n2

i2=0v
2
i2
)\otimes (

\sum n3

i3=0v
3
i3
).

Therefore \sum 
ip=0,...,np

p=1,2,3

Zi1,i2,i3  - Z - 1 = \varepsilon 3u3(M).

Let \scrZ \varepsilon = \{ Z - 1, Z0,0,0, . . . , Zn1,n2,n3
\} \subseteq (V1 \oplus W1)\otimes (V2 \oplus W2)\otimes (V3 \oplus W3): then

\scrZ \varepsilon has (n1+1)(n2+1)(n3+1)+1 elements. Let E\varepsilon = \langle \scrZ \varepsilon \rangle , and let E0 = lim\varepsilon \rightarrow 0 E\varepsilon ,
where the limit is taken in the corresponding Grassmannian.

We show that (T1 \oplus T2)(V
\ast 
4 \oplus W \ast 

4 ) \subseteq E0 (and in fact equality holds).
For every (i1, i2, i3) we have Zi1,i2,i3 | \varepsilon =0 = v1i1\otimes v2i2\otimes v3i3 . This shows V1\otimes V2\otimes V3 \subseteq 

E0.
Moreover, \varepsilon 3u3(M) =

\sum 
i1,i2,i3

Zi1,i2,i3  - Z - 1 \in E\varepsilon ; therefore u3(M) \in E\varepsilon for
every \varepsilon . Hence u3(M) \in E0.

This shows (T1 \oplus T2)(V
\ast 
4 \oplus W \ast 

4 ) \subseteq E0 and concludes the proof.
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4. Consequences on the exponent of certain graph tensors. In this sec-
tion, we use Construction 2, Construction 3, and Construction 4 to obtain upper
bounds on the exponent of the graph tensors obtained as Kronecker products of the
tensors T1 and T2 (or possibly their Kronecker powers) involved in the construction.
Following Sch\"onhage's technique, we use the border rank upper bound on the direct
sum (Theorem 3.2, Theorem 3.3, and Theorem 3.5) and Proposition 2.6 to determine
an upper bound on the asymptotic rank, and in turn on the exponent, of certain
tensors.

We benchmark our results comparing them with the trivial upper bound of (2.3).

4.1. Extended matrix multiplication. We use the result of Theorem 3.2 to
obtain an upper bound on the exponent of the tensor

EMaMu(n1, n2, n3;n4) =
n1

n2

n4

n3

for some instances of n1, . . . , n4. We call this tensor extended matrix multiplication
tensor because it can be realized as Kronecker product of the matrix multiplication
tensor and a dangling matrix; graphically:

EMaMu(n1, n2, n3;n4) =
n1

n2
n3

\boxtimes 

n4

The upper bound from (2.3) provides

\omega (EMaMu(n1, n2, n3;n4)) \leq log(n1n2n3n4) =
\sum 

log(ni).

The extended matrix multiplication tensor can be realized as a Kronecker product
of the tensor T1 and T2 of Construction 1 and Construction 2; indeed

EMaMu(n1, n2, n3;n4) =
n1

n2

n4

\boxtimes 

n3

Fix n1 = n2 = 2, and write T1(n4), T2(n3) for the two tensors above: in particular

EMaMu(2, 2, n3;n4) = T1(n4)\boxtimes T2(n3).

We are going to use the result of Theorem 3.2 to obtain an upper bound on the
exponent \omega (EMaMu(2, 2, n3;n4)).
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Theorem 4.1. Let a \geq 0 and let p \in (0, 1). Then

\omega 
\Bigl( 
EMaMu(2, 2, a

1 - p
p ; a+ 2)

\Bigr) 
\leq 1

p
[log(4(a+ 2) + 1) - h(p)] .

Proof. By Theorem 3.2, for every a \geq 2, we have R(T1(a+2)\oplus T2(a)) = 4(a+2)+1.
For every p \in (0, 1), we have

T1(a+ 2)\boxtimes p \boxtimes T2(a+ 2)\boxtimes (1 - p) = EMaMu(2p, 2p, a(1 - p); (a+ 2)p).

Therefore Proposition 2.6 provides the upper bound

\omega (EMaMu(2p, 2p, a(1 - p); (a+ 2)p)) \leq log(4(a+ 2) + 1) - h(p).

Considering the Kronecker power with exponent 1/p on the left-hand side, we obtain
the desired upper bound.

Now, for every n3, n4 \geq 2, define

a := a(n3, n4) = n4  - 2 p := p(n3, n4) =
log(n4  - 2)

log(n3) + log(n4  - 2)

so that n3 = a
1 - p
p and n4 = a+ 2. Let \omega \mathrm{S}\mathrm{c}\mathrm{h}(n3, n4) =

1
p [log(4(a+ 2) + 1) - h(p)] be

the upper bound of Theorem 4.1, and let \omega \mathrm{t}\mathrm{r}\mathrm{i}\mathrm{v} = 2 + log(n3) + log(n4) be the trivial
upper bound from (2.3). We compare the two bounds in Figure 2 for n3 = 2, . . . , 100
and n4 = 4, . . . , 100. In particular, we observe that for n4 \gg n3, the upper bound
from Theorem 4.1 obtained via the nonadditivity construction is stronger than the
trivial one.

We point out that one can obtain an upper bound on the exponent of the ex-
tended matrix multiplication tensor from upper bounds on the exponent of matrix
multiplication. Indeed,

\omega (EMaMu(n1, n2, n3;n4)) \leq log(n4) + \omega (MaMu(n1, n2, n3)).

Applying the best known upper bounds on \omega (MaMu(n1, n2, n3)), one obtains stronger
bounds on \omega (EMaMu(n1, n2, n3;n4)) than the one of Theorem 4.1. However, the
method followed in this section is much simpler than the methods used to obtain up-
per bounds on \omega (MaMu(n1, n2, n3)), and yet it delivers nontrivial bounds in a wide
range, as one can observe in Figure 2.

4.2. Multiextended matrix multiplication. We use the result of Theorem
3.3 to obtain an upper bound on the exponent of the tensor

multiEMaMu(d;n,N) =
n

n

n

N

.. .

where the central vertex has degree d.
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Fig. 2. Density graph of \omega triv  - \omega \itS \itc \ith as a function of n3 and n4. The blue region corresponds
to negative values (i.e., \omega triv < \omega \itS \itc \ith ); the orange region corresponds to positive values (i.e., \omega triv >
\omega \itS \itc \ith ). Darker shades correspond to more extreme values.

The tensor multiEMaMu(d;n,N) can be realized as Kronecker product of the
tensors T1 and T2 of Construction 3; indeed
(4.1)

multiEMaMu(d;n,N) =
n

n

n
. . .

\boxtimes 

N

.. .

Write T1(n), T2(N) for the two tensors above: in particular

multiEMaMu(d;n,N) = T1(n)\boxtimes T2(N).

We are going to use the result of Theorem 3.3 to obtain an upper bound on the
exponent \omega (multiEMaMu(d;n,N)).

Theorem 4.2. Let n \geq 0, d \geq 3, p \in (0, 1). Then

\omega (multiEMaMu(d;n, nd 1 - p
p )) \leq 1

p
[log(nd + 2nd - 1 + n2(n+ 1)d - 3 + 1) - h(p)].

Proof. By Theorem 3.3, for every d \geq 3 and every n, we have the upper bound

T1(n)\oplus T2(n
d) \leq nd + 2nd - 1 + n2(n+ 1)d - 3 + 1.

For every p \in (0, 1),

T1(n)
\boxtimes p \boxtimes T2(n

d)\boxtimes (1 - p) = multiEMaMu(d;np, nd(1 - p)).
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Therefore Proposition 2.6 provides the upper bound

multiEMaMu(d;np, nd(1 - p)) \leq log
\bigl[ 
nd + 2nd - 1 + n2(n+ 1)d - 3 + 1

\bigr] 
 - h(p).

Considering the Kronecker power with exponent 1/p on the left-hand side, we obtain
the desired upper bound.

The trivial upper bound from (2.3) has the form

\omega (multiEMaMu(d;n, nd
(1 - p)

p )) \leq d log(n)(1 + 1 - p
p ).

In the case p = 1/2, for fixed d and n large, the bound in Theorem 4.2 is approximately
2d log(n)  - 2, providing a saving of 2 as compared to the trivial upper bound. Note
that this is far away from the lower bound obtained from the flattening lower bound
on the asymptotic rank, which is (2d - 1) log(n).

Let \omega \mathrm{S}\mathrm{c}\mathrm{h}(d, n, p) = 1
p (log(n

d + 2nd - 1 + n2(n + 1)d - 3 + 1)  - h(p)) be the upper

bound from Theorem 4.2, and let \omega \mathrm{t}\mathrm{r}\mathrm{i}\mathrm{v}(d, n, p) = d log(n)(1+ 1 - p
p ) be the trivial upper

bound from (2.3).
For d = 4, we compare the two upper bounds in Figure 3 for n = 4, . . . , 100 and

p \in ( 12 , 1). The new upper bound is nontrivial unless p is close to 1 as n grows. In
particular, we obtain a nontrivial bound for every value of p < 1/2.

For p = d
1+d , we have n

d
(1 - p)

p = n. In Figure 4, we compare the two upper bounds
for this value of p, for n = 4, . . . , 100 and d = 3, . . . , 15. For fixed d, we observe that
the new upper bound is nontrivial for n sufficiently large.

Note also that for fixed d and large n, the upper bound is approximately (d +
1) log(n) - log(1+1/d) \approx (d+1) log(n) - 1/(d \cdot ln(2)), which is strictly lower than the
trivial upper bound (d+1) log(n). However, it is not better than the bound obtained
when using the best bounds on the exponent of matrix multiplication, which gives
d - 2+\omega log(n), where \omega is the matrix multiplication exponent. If \omega = 2, this matches
the trivial flattening lower bound d log(n).

0.5
4

p

n

0.6

0.7

0.8

0.9

1

10020 40 60 80
-0.8

-0.4

0

0.6

1.2

1.8

Fig. 3. Density graph of \omega triv  - \omega \itS \itc \ith for d = 4 as a function of n and p. The blue region
corresponds to negative values (i.e., \omega triv < \omega \itS \itc \ith ); the orange region corresponds to positive values
(i.e., \omega triv > \omega \itS \itc \ith ). Darker shades correspond to more extreme values.
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Fig. 4. Density graph of \omega triv  - \omega \itS \itc \ith for p = d
d+1

as a function of n and d. The blue region

corresponds to negative values (i.e., \omega triv < \omega \itS \itc \ith ); the orange region corresponds to positive values
(i.e., \omega triv > \omega \itS \itc \ith ). Darker shades correspond to more extreme values.

4.3. Dome tensor. We use the result of Theorem 3.5 to obtain an upper bound
on the exponent of the tensor

Dome(n1, n2, n3;M) =
n1

n2

n3

M

Following [9], we call this tensor dome tensor. The upper bound from (2.3) provides

\omega (Dome(n1, n2, n3;M)) \leq log(n1) + log(n2) + log(n3) + log(M).

The dome tensor Dome(n1+1, n2+1, n3+1;M) can be realized as Kronecker product
of the tensors T1 and T2 of Construction 4; indeed

Dome(n1+1, n2+1, n3+1;M) =
n1 + 1

n2 + 1

n3 + 1

\boxtimes 

M

Fix n1 = n2 = n3 = n; let T1(n+ 1) and T2(M) be the two tensors above, and write
Dome(n + 1;M) := Dome(n + 1, n + 1, n + 1;M); moreover, restrict to the case
where n is even so that Lemma 3.4 holds. We have

Dome(n+ 1,M) = T1(n+ 1)\boxtimes T2(M).

For M = 1
4n

3, we are going to use the result of Theorem 3.5 to obtain an upper bound
on the exponent \omega (Dome(n+ 1,M)).
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Fig. 5. Density graph of \omega triv  - \omega \itS \itc \ith as a function of n and p. The blue region corresponds to
negative values (i.e., \omega triv < \omega \itS \itc \ith ); the orange region corresponds to positive values (i.e., \omega triv >
\omega \itS \itc \ith ). Darker shades correspond to more extreme values.

Theorem 4.3. Let n \geq 2 be even, and let p \in (0, 1). Let M = 1
4n

3. Then

\omega 
\bigl( 
Dome((n+ 1)p;M (1 - p))

\bigr) 
\leq log((n+ 1)3 + 1) - h(p).

Proof. By Theorem 3.5, we have the upper bound R(T1(n+ 1)\oplus T2(M)) = (n+
1)3 + 1.

For every p \in (0, 1), we have

T1(n+ 1)\boxtimes p \oplus T2(M)\boxtimes (1 - p) = Dome((n+ 1)p,M1 - p).

Therefore, Proposition 2.6 provides the desired upper bound.

The trivial upper bound from (2.3) has the form

(4.2)
\omega 
\bigl( 
Dome((n+ 1)p;M (1 - p))

\bigr) 
\leq 3p log(n+ 1) + (1 - p) log(M)

= 3p log(n+ 1) + 3(1 - p) log(n) - 2(1 - p),

where we use M = 1
4n

3.
Let \omega \mathrm{S}\mathrm{c}\mathrm{h}(n, p) = log((n + 1)3 + 1)  - h(p) and \omega \mathrm{t}\mathrm{r}\mathrm{i}\mathrm{v}(n, p) = 3p log(n + 1) + 3(1  - 

p) log(n) - 2(1 - p) be the upper bound from Theorem 4.3 and the trivial upper bound
from (2.3), respectively. We compare the two upper bounds in Figure 5 for n =
2, . . . , 50 and p \in (0, 1). In particular, we observe that for n sufficiently large and p >
1/2, the upper bound of Theorem 4.3 obtained via the nonadditivity construction is
stronger than the trivial one. In [9, section 4.1], strong upper bounds on the exponent
of some instances of \omega (Dome(n, n, n;N)) are provided, but this result relies on more
advanced methods. On the other hand, the method presented here is extremely simple,
and it already provides nontrivial bounds on the exponent, as shown in Figure 5.
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