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Abstract:We propose a multi-level type operator that can be used in the framework of operator (or Caldéron)

preconditioning to construct uniform preconditioners for negative order operators discretized by piecewise

polynomials on a family of possibly locally refined partitions. The cost of applying this multi-level opera-

tor scales linearly in the number of mesh cells. Therefore, it provides a uniform preconditioner that can be

applied in linear complexity when used within the preconditioning framework from our earlier work [Uni-

form preconditioners for problems of negative order,Math. Comp. 89 (2020), 645–674].

Keywords: Operator Preconditioning, Uniform Preconditioners, Operators of Negative Order, Finite and

Boundary Elements

MSC 2010: 65F08, 65N38, 65N30, 45Exx

1 Introduction

In this work, we construct amulti-level type preconditioner for operators of negative orders−2s ∈ [−2, 0] that
can be applied in linear time and yields uniformly bounded condition numbers. The preconditioner will be

constructed using the framework of “operator preconditioning” studied earlier in e.g. [3, 6, 10, 12]. The role

of the “opposite order operator” will be fulfilled by a multi-level type operator, based on the work of Wu and

Zheng in [14].

For some d-dimensional domain (or manifold) Ω, a measurable, closed, possibly empty γ ⊂ ∂Ω and an

s ∈ [0, 1], we consider the Sobolev spaces

W := [L
2
(Ω), H1

0,γ(Ω)]s,2, V := W ,

with H1

0,γ(Ω) being the closure in H1(Ω) of the smooth functions on Ω that vanish at γ. Let (VT)T∈𝕋 ⊂ V

be a family of piecewise or continuous piecewise polynomials of some fixed degree w.r.t. uniformly shape

regular, possibly locally refined partitions. With, for T ∈ 𝕋, AT : VT → V T being some boundedly invertible

linear operator,we are interested in constructing apreconditioner GT : V T → VT such that the preconditioned

operator GTAT : VT → VT is uniformly boundedly invertible, and an application of GT can be evaluated in

O(dimVT) arithmetic operations.

In order to create such a preconditioner, we will use the framework described in our earlier work [10].

Given VT, we constructed an auxiliary space WT ⊂ W with dimWT = dimVT such that, for DT defined by

(DTv)(w) := ⟨v, w⟩L
2
(Ω)(v ∈ VT , w ∈ WT) and some suitable “opposite order” operator BW

T : WT → W T, a pre-

conditionerGT of the formGT := D−1T BW
T (D

T)
−1
is found. The spaceWT is equippedwith a basis that,modulo

a scaling, is biorthogonal to the canonical basis for VT so that the representation of DT is an invertible

diagonal matrix.
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WithS 0,1

T,0 ⊂W being the spaceof continuouspiecewise linearsw.r.t.T, zero on γ, the aboveprecondition-
ing approach hinges on the availability of a uniformly boundedly invertible operator BS

T : S 0,1

T,0 → (S
0,1

T,0)

,

which is generally themost demanding requirement. For example, if s = 1

2

and γ = 0, a viable option is to take
BS
T as the discretized hypersingular operator. While this induces a uniform preconditioner, the application

of BS
T cannot be evaluated in linear complexity.

In this work, we construct a suitable multi-level type operator BS
T that can be applied in linear com-

plexity. For this construction, we require 𝕋 to be a family of conforming partitions created by newest vertex

bisection [7, 13]. In the aforementioned setting of having an arbitrary s ∈ [0, 1], this multi-level operator BS
T

induces a uniform preconditioner GT, i.e., GTAT is uniformly well-conditioned, where the cost of applying

GT scales linearly in dimVT .We also show that the preconditioner extends to themore generalmanifold case,
where Ω is a d-dimensional (piecewise) smooth Lipschitz manifold, and the trial space VT is the parametric

lift of a space of piecewise or continuous piecewise polynomials.

Finally, we remark that commonmulti-level preconditioners based on overlapping subspace decomposi-

tions are known not to work well for operators of negative order. A solution is provided by resorting to direct

summulti-level subspace decompositions. Examples are given bywavelet preconditioners, or closely related,

the preconditioners from [2], for the latter assuming quasi-uniform partitions.

For −s = −1
2

, an optimal multi-level preconditioner based on a non-overlapping subspace decomposition

for operators defined on the boundary of a 2- or 3-dimensional Lipschitz polyhedronwas recently introduced

in [4].

1.1 Outline

In Section 2, we summarize the (operator) preconditioning framework from [10]. In Section 3, we provide the

multi-level type operator that can be used as the “opposite order” operator inside the preconditioner frame-

work. In Section 4, we comment on how to generalize the results to the case of piecewise smooth manifolds.

In Section 5, we conclude with numerical results.

1.2 Notation

In this work, by λ ≲ μ, wemean that λ can be bounded by amultiple of μ, independently of parameters which

λ and μ may depend on, with the sole exception of the space dimension d, or in the manifold case, on the

parametrization of the manifold that is used to define the finite element spaces on it. Obviously, λ ≳ μ is

defined as μ ≲ λ, and λ ≂ μ as λ ≲ μ and λ ≳ μ.
For normed linear spaces Y and Z , in this paper, for convenience over ℝ, L(Y ,Z ) will denote the

space of bounded linearmappingsY → Z endowedwith the operator norm ‖ ⋅ ‖L(Y ,Z ). The subset of invert-

ible operators in L(Y ,Z )with inverses in L(Z ,Y )will be denoted as Lis(Y ,Z ). The condition number of
a C ∈ Lis(Y ,Z ) is defined as κY ,Z (C) := ‖C‖L(Y ,Z )‖C−1‖L(Z ,Y ).

For Y a reflexive Banach space and C ∈ L(Y ,Y ) being coercive, i.e.,

inf

0 ̸=y∈Y

(Cy)(y)
‖y‖2Y
> 0,

both C andℜ(C) := 1

2

(C + C) are in Lis(Y ,Y ) with

‖ℜ(C)‖L(Y ,Y ) ≤ ‖C‖L(Y ,Y ), ‖C−1‖L(Y 
,Y ) ≤ ‖ℜ(C)−1‖L(Y 

,Y ) = ( inf

0 ̸=y∈Y

(Cy)(y)
‖y‖2Y
)
−1
.

The set of coercive C ∈ Lis(Y ,Y ) is denoted as Lisc(Y ,Y ). If C ∈ Lisc(Y ,Y ), then C−1 ∈ Lisc(Y ,Y )
and ‖ℜ(C−1)−1‖L(Y ,Y ) ≤ ‖C‖2L(Y ,Y )‖ℜ(C)−1‖L(Y 

,Y ).

Given a family of operators Ci ∈ Lis(Yi ,Zi) (Lisc(Yi ,Zi)), we will write Ci ∈ Lis(Yi ,Zi) (Lisc(Yi ,Zi))
uniformly in i, or simply “uniform”, when

sup

i
max(‖Ci‖L(Yi ,Zi), ‖C−1i ‖L(Zi ,Yi)) <∞ or sup

i
max(‖Ci‖L(Yi ,Zi), ‖ℜ(Ci)−1‖L(Zi ,Yi)) <∞.
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2 Preconditioning

Let (T)T∈𝕋 be a family of conforming partitions of a domain Ω ⊂ ℝd into (open) uniformly shape regular
d-simplices, where we assume that γ is the (possibly empty) union of (d − 1)-faces of T ∈ T. For d ≥ 2, such
partitions automatically satisfy a uniform K-mesh property, and for d = 1, we impose this as an additional

condition. The discussion of the manifold case is postponed to Section 4.

Recalling that VT ⊂ V is a family of piecewise or continuous piecewise polynomials of some fixed degree

w.r.t. T, let AT ∈ Lis(VT , V

T) uniformly in T ∈ 𝕋. A common setting is that (ATv)( ̃v) := (Av)( ̃v) (v, ̃v ∈ VT) for

some A ∈ Lisc(V , V ). We are interested in finding optimal preconditioners GT for AT, i.e., GT ∈ Lis(V T , VT)
uniformly in T ∈ 𝕋, whose application moreover requires O(dimVT) arithmetic operations.

Recall the space

S 0,1

T,0
:= {u ∈ H1

0,γ(Ω) : u|T ∈ P1
(T ∈ T)} ⊂ W

(thus equipped with ‖ ⋅ ‖W ). In [10], using operator preconditioning, we reduced the issue of constructing

suchpreconditionersGT to the issue of constructing BS
T ∈ Lisc(S

0,1

T,0 , (S
0,1

T,0)
)uniformly. In thenext section,

we summarize this reduction.

2.1 Construction of Optimal Preconditioners

For the moment, consider the lowest order case of VT being either the space of piecewise constants or con-

tinuous piecewise linears. In [10], a space WT ⊂ W was constructed with dimWT = dimVT and

inf

T∈𝕋
inf

0 ̸=v∈VT

sup

0 ̸=w∈WT

⟨v, w⟩L
2
(Ω)

‖v‖V ‖w‖W
> 0. (2.1)

Moreover, WT ⊂ W was equipped with a locally supported basis ΨT that, modulo a scaling, is L
2
(Ω)-bi-

orthogonal to the canonical basis ΞT of VT .

As a consequence of (2.1), DT defined by (DTv)(w) := ⟨v, w⟩L
2
(Ω) (v ∈ VT , w ∈ WT) is in Lis(VT ,W


T)

uniformly. We infer that, once we have constructed BW
T ∈ Lis(WT ,W


T) uniformly, then, by taking

GT := D−1T BW
T (D

T)
−1
, (2.2)

we have GT ∈ Lis(V T , VT) uniformly. Biorthogonality, modulo a scaling, of the basesΨT and ΞT implies that

the matrix representation of DT is diagonal so that D−1T and its adjoint can be applied in linear complexity.

The aforementioned space WT is a subspace of S 0,1

T,0 ⊕BT ⊂ W , where BT is a “bubble space” with

dimBT = O(#T), such that the projector IT on S 0,1

T,0 ⊕BT defined by ran IT = S 0,1

T,0 and ran(Id − IT) = BT

is “local” and uniformly bounded, and the canonical basis ΘT of “bubbles” for BT is, when normalized

in ‖ ⋅ ‖W , a uniformly Riesz basis for BT . Because of the latter, BB
T defined by

(BB
T c⊤ΘT)(d⊤ΘT) := β(∆Tc)⊤d

for some diagonal ∆T ≂ diag(⟨ΘT , ΘT⟩W ) and constant β > 0 is in Lisc(BT ,B

T) uniformly.

Given some “opposite order” operator BS
T ∈ Lisc(S

0,1

T,0 , (S
0,1

T,0)
), by taking

BW
T

:= ITB
S
T IT + (Id − IT)BB

T (Id − IT), (2.3)

it holds that BW
T ∈ Lisc(WT ,W


T) uniformly [11, Proposition 5.1], whichmakes GT a uniform preconditioner.

2.2 Implementation of GT

Recalling the aforementionedbases ΞT,ΨT andΘT forVT,WT andBT, respectively, equippingS 0,1

T,0 with the

nodal basisΦT and equippingV T,W

T,B

T and (S 0,1

T,0)

with the dual bases Ξ


T,Ψ

T,Θ

T andΦ


T, respectively,
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the representation of AT ∈ L(VT , V

T) is the stiffness matrix AT := (ATΞT)(ΞT) := [(ATη)(ξ)](ξ,η)∈ΞT

, and the

representation of GT ∈ L(V T , VT) is the matrix GT := (GΞT)(Ξ

T). It is given by

GT = D−1T (p
⊤
TB

S
T pT + q⊤TB

B
T qT)D−⊤T , (2.4)

where both

DT := (DTΞT)(ΨT), BB
T
:= (BB

T ΘT)(ΘT)

are diagonal, both
pT := (ITΨT)(ΦT), qT := ((Id − IT)ΨT)(ΘT)

are uniformly sparse and
BS
T

:= (BS
T ΦT)(ΦT). (2.5)

Note that the cost of the application of GT scales linearly in #T as soon as this holds true for the application

of BS
T .

The above preconditioning approach is summarized in the following theorem.

Theorem 2.1 ([10, Section 3]). Given a family BS
T ∈ Lisc(S

0,1

T,0 , (S
0,1

T,0)
) uniformly in T ∈ 𝕋, then for BW

T as
described in (2.3), the operator GT from (2.2) is a uniform preconditioner. Furthermore, if the matrix represen-
tation BS

T , cf. (2.5), can be applied in O(#T) operations, then the matrix representation of the preconditioner
GT , cf. (2.4), can be applied in O(#T) operations.

BecauseBW
T in (2.3) is givenas the sumof twooperators that “act” ondifferent subspaces ofWT, the condition

number of the preconditioned system depends on the relative scaling of both these operators which can be

steered by selecting the parameter β. A suitable β will be selected experimentally.

Alternatively, [11, Proposition 5.1] shows that a value of β is reasonable if it is chosen such that the inter-
val bounded by the coercivity and boundedness constants of BS

T is included in that interval corresponding

to BB
T or vice versa. Also these coercivity and boundedness constants can be approximated experimentally

or by making some theoretical estimates.

Constructions ofΨT,ΘT and ∆T, and resulting explicit formulas formatricesDT, BB
T , pT, qT are derived

in [10]. For ease of reading, we recall these formulas below for the case that VT is the space of piecewise
constants. For the continuous piecewise linear case, we refer to [10, Section 4.2].

2.2.1 Piecewise Constant Trial Space VT

For T ∈ 𝕋, we define NT as the set of vertices of T, and N0

T as the set of vertices of T that are not on γ. For
ν ∈ NT, we set its valence dT,ν := #{T ∈ T : ν ∈ T}. For T ∈ T, and with NT denoting the set of its vertices, we

set N0

T,T := N
0

T ∩ NT .

If one considers VT as the space of discontinuous piecewise constants, i.e.

VT = S −1,0T
:= {u ∈ L

2
(Ω) : u|T ∈ P0(T ∈ T)} ⊂ V ,

equipped with the canonical basis ΞT := {𝟙T : T ∈ T}, then we find, for arbitrary constant β > 0,

DT = diag{|T| : T ∈ T}, (pT)νT =
{
{
{

d−1T,ν if ν ∈ N0

T,T ,

0 if ν ∉ N0

T,T ,

BB
T = βD

1− 2sd
T , (qT)TT = δTT − 1

d + 1 ∑
ν∈N0

T,T∩N
0

T,T d
−1
T,ν .

2.3 Higher Order Case

For higher order discontinuous or continuous finite element spaces VT, suitable preconditioners GT can be

built either from the current preconditioner GT for the lowest order case by application of a subspace correc-

tionmethod (most conveniently in the discontinuous case where, on each element, the space of polynomials
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of some fixed degree is split into the space of constants and its orthogonal complement), or by expand-

ing WT by enlarging the bubble space BT . While referring to [10] for details, we recall that, with either

option, the construction of an optimal preconditioner GT that can be applied in linear complexity hinges

on the availability of an operator BS
T ∈ Lisc(S

0,1

T,0 , (S
0,1

T,0)
) uniformly in T ∈ 𝕋, that can be applied in linear

complexity.

3 An Operator BS
T
of Multi-level Type

In this section, we will introduce an operator BS
T ∈ Lisc(S

0,1

T,0 , (S
0,1

T,0)
) of multi-level type. The operator BS

T

is based on a stable multi-level decomposition of S 0,1

T,0 given by Wu and Zheng [14]. Usually, such a stable

multi-level decomposition is used as a theoretical tool for proving optimality of an additive (ormultiplicative)

Schwarz type preconditioner for an operator in Lisc(S
0,1

T,0 , (S
0,1

T,0)
). In this work, however, we are going to

use their results for the construction of the operator BS
T ∈ Lisc(S

0,1

T,0 , (S
0,1

T,0)
) for which it is crucial that its

application can be implemented in linear complexity.

3.1 Definition and Analysis of BS
T

For d ≥ 2, let𝕋 be the family of all conforming partitions of Ω into d-simplices that can be created by newest

vertex bisection starting from some given conforming initial partition T⊥ that satisfies a matching condi-
tion [9].

With T := ⋃T∈𝕋{T : T ∈ T} andN := ⋃T∈𝕋 NT, for T ∈ T, let gen(T) be the number of bisections needed

to create T from its ancestor T ∈ T⊥, and for ν ∈ N, let gen(ν) := min{gen(T) : T ∈ T, ν ∈ NT}. Notice that
|T| ≂ 2− gen(T). For T ∈ T, let QT denote the L2(T)-orthogonal projector onto P1

(T).
The case d = 1 can be included by letting 𝕋 be the family of a partitions of Ω that can be constructed by

bisections from T⊥ = {Ω} such that the generations of any two neighboring subintervals in any T ∈ 𝕋 differ
by not more than one.

For T ∈ 𝕋, set L = L(T) := maxT∈T gen(T), and define

T⊥ = T0 ≺ T1 ≺ ⋅ ⋅ ⋅ ≺ TL = T ⊂ 𝕋

by constructingTj−1 fromTj by removing all ν ∈Nj :=NTj from the latter forwhich gen(ν)= j. For ν ∈N0

j :=N
0

Tj
,

we define ωj(ν) = ⋃{T ∈ Tj : ν ∈ NT}.
With this hierarchy of partitions, we define an averaging quasi-interpolator Πj ∈ L(S

0,1

T,0 ,S
0,1

Tj ,0
) by

(Πju)(ν) :=
∑{T∈Tj:ν∈NT }|T|(QTu)(ν)
∑{T∈Tj:ν∈NT }|T|

(u ∈ S 0,1

T,0 , ν ∈ N
0

j ). (3.1)

Since S 0,1

Tj ,0
is a space of continuous piecewise linears, it indeed suffices to define Πju at the vertices N0

j .

Recall that S 0,1

T,0 ⊂ W := [L
2
(Ω), H1

0,γ(Ω)]s,2 for some s ∈ [0, 1]. The next theorem shows that Πj induces

a stable multi-level decomposition of S 0,1

T,0 .

Theorem 3.1 ([14, Lemma 3.7]). For the averaging quasi-interpolator Πj from (3.1), and Π−1 := 0, it holds that

‖u‖2W ≂
L
∑
j=0

4

js/d‖(Πj − Πj−1)u‖2L
2
(Ω) (u ∈ S 0,1

T,0).

Proof. In [14], the inequality “≳” was proven for the case s = 1, d ∈ {2, 3} and γ = ∂Ω. The arguments, how-

ever, immediately extend to s ∈ [0, 1], d ≥ 1 and γ ⊊ ∂Ω.
The proof of the other inequality “≲” follows from well-known arguments. For some t ∈ (1, 3

2

), let
H rt

:= [L
2
(Ω), H1

0,γ(Ω) ∩ H t(Ω)]r,2 for r ∈ [0, 1]. ThenH s ≃ W by the reiteration theorem, and for r ∈ [0, 1],
‖ ⋅ ‖H rt ≲ 2jrt/d‖ ⋅ ‖L

2
(Ω) on S 0,1

Tj ,0
.
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Figure 1: For d = 3, a tetrahedron T ∈ Tj−1 and its bisection. The dots indicate all vertices in N0
j \ M

0
j .

Let u ∈ S 0,1

T,0 be written as∑
L
j=0 uj with uj ∈ S 0,1

Tj ,0
. Then, for ε ∈ (0, s), ε ≤ t − s, we have

‖u‖2H s(Ω) ≲
L
∑
j=0

L
∑
i=j
‖uj‖H s+ε(Ω)‖ui‖H s−ε(Ω)

≲
L
∑
j=0

L
∑
i=j

2

j(s+ε)/d
2

i(s−ε)/d‖uj‖L
2
(Ω)‖ui‖L

2
(Ω) ≲

L
∑
j=0

4

js/d‖uj‖2L
2
(Ω).

The relevance of the multi-level decomposition from Theorem 3.1 by Wu and Zheng lies in the fact that

(Πju)(ν) can only differ from (Πj−1u)(ν) in any ν ∈ N0

j \ N
0

j−1 as well as in only two¹ of its neighbors in N0

j−1
(the endpoints of the edge on which ν was inserted).

Proposition 3.2 ([14, Lemma 3.1]). With, for j ≥ 1,M0

j := {ν ∈ N
0

j−1 : ωj(ν) = ωj−1(ν)}, it holds that, for ν ∈ M0

j ,
((Πj − Πj−1)u)(ν) = 0; see Figure 1.

Remark 3.3. Theproof from [14] given for d ∈ {2, 3} generalizes to d ≥ 1. Indeed, the arguments that are used

are based on the fact that the basis for S
1
(T) that is dual to the nodal basis takes equal values in all but one

nodal point. This is a consequence of the fact that the mass matrix of the nodal basis for S
1
(T), and so its

inverse, is invariant under permutations of the barycentric coordinates, which holds true in any dimension.

As a consequence of Proposition 3.2, we have

‖(Πj − Πj−1)u‖2L
2
(Ω) ≂ 2

−j ∑
ν∈N0

j \M
0

j

|((Πj − Πj−1)u)(ν)|2.

From Theorem 3.1, we conclude that BS
T = (B

S
T )
 ∈ Lisc(S

0,1

T,0 , (S
0,1

T,0)
) defined by

(BS
T u)(v) :=

L
∑
j=0

2

j(2s/d−1) ∑
ν∈N0

j \M
0

j

((Πj − Πj−1)u)(ν)((Πj − Πj−1)v)(ν) (3.2)

is uniform, i.e.

sup

T∈𝕋
max(‖BS

T ‖L(S 0,1

T,0

,(S 0,1

T,0

)), ‖(BS
T )
−1‖L((S 0,1

T,0

) ,S 0,1

T,0

)) <∞.

3.2 Implementation of BS
T

Since the operator Πj is a weighted local L2(Ω) projection, it allows for a natural implementation by consid-

ering S −1,1T , the space of discontinuous piecewise linears w.r.t. T. Recall the nodal basis ΦT for S 0,1

T,0 , and

equip S −1,1T with the element-wise nodal basis.

Denote ET for the representation of the embedding S 0,1

T,0 into S −1,1T . For 0 ≤ j ≤ L, let Rj be the repre-

sentation of the L
2
(Ω)-orthogonal projector ofS −1,1T ontoS −1,1Tj

, and let R−1 := 0. For 0 ≤ j ≤ L, letH j be the

1 As pointed out in [14], for d ≥ 3, the number of such neighbors will be larger when employing the Scott–Zhang quasi-

interpolator. Moreover, this interpolator is not suited for s ≤ 1

2

.
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Figure 2: Numbering of the vertices of the parent and that of both children for d = 2, and the resulting matrix representation of
the orthogonal projection of the space of piecewise linears on the children to the space of linears on the parent.

representation of the averaging operator Hj : S −1,1Tj
→ S 0,1

Tj ,0
defined by

(Hju)(ν) =
∑{T∈Tj:ν∈NT }|T| u|T(ν)
∑{T∈Tj:ν∈NT }|T|

(ν ∈ N0

T), (3.3)

and let H−1 := 0. For 1 ≤ j ≤ L, let Pj be the representation of the embedding S 0,1

Tj−1 ,0 → S 0,1

Tj ,0
(often called

prolongation), and let P
0
:= 0.

Then the representation BS
T of BS

T from (3.2) is given by

BS
T = E

⊤
T(

L
∑
j=0
(H jRj − PjH j−1Rj−1)⊤2j(2s/d−1)(H jRj − PjH j−1Rj−1))ET .

Applying ET amounts to duplicating values at any internal node with a number equal to the valence of that

node.

By representing T as the leaves of a binary tree with roots being the simplices of T⊥, computing for

⃗x ∈ ran ET the sequence (Rj ⃗x)0≤j≤L amounts to computing, while traversing from the leaves to the root, for

any parent and both its children the orthogonal projection of a piecewise linear function on the children to

the space of linears on the parent. For d = 2, the matrix representation of the latter projection is given in

Figure 2.

Proposition 3.4. The application of BS
T can be computed in O(#T) operations.

Proof. Because the number of nodes in a binary tree is less than 2 times the number of its leaves, for

⃗x ∈ ℝdimS 0,1

T,0 , the computation of the sequence (RjET ⃗x)0≤j≤L takes O(#T) operations. From Proposition 3.2,

recall that any vector in ranH jRj − PjH j−1Rj−1 vanishes at M0

j so that the number of its non-zero entries

is bounded by #(N0

j \M
0

j ) ≤ 3#(N
0

j \ N
0

j−1). Knowing already RjET ⃗x and Rj−1ET ⃗x, computing any non-zero

entry of (H jRj − PjH j−1Rj−1)ET ⃗x requires O(1) operations.

We conclude that the operator BS
T , with above matrix representation BS

T , satisfies the requirements of The-

orem 2.1.

4 Manifold Case

Let Γ be a compact d-dimensional Lipschitz, piecewise smooth manifold in ℝd

for some d ≥ d with or

without boundary ∂Γ. For some closed measurable γ ⊂ ∂Γ and s ∈ [0, 1], let

W := [L
2
(Γ), H1

0,γ(Γ)]s,2, V := W .

We assume that Γ is given as the essentially disjoint union of ⋃pi=1 χi(Ωi), with, for 1 ≤ i ≤ p, χi : ℝd → ℝd


being some smooth regular parametrization andΩi ⊂ ℝd anopenpolytope.Without loss of generality, assum-

ing that, for i ̸= j, Ωi ∩ Ωj = 0, we define

χ : Ω :=
p
⋃
i=1

Ωi →
p
⋃
i=1

χi(Ωi) by χ|
Ωi = χi .



476 | R. Stevenson and R. van Venetië, Uniform Preconditioners of Linear Complexity

Let 𝕋 be a family of conforming partitions T of Γ into “panels” such that, for 1 ≤ i ≤ p, χ−1(T) ∩ Ωi is

a uniformly shape regular conforming partition of Ωi into d-simplices (that, for d = 1, satisfies a uniform
K-mesh property). We assume that γ is a (possibly empty) union of “faces” of T ∈ T (i.e., sets of type χi(e),
where e is a (d − 1)-dimensional face of χ−1i (T)).

We set

VT := {u ∈ L
2
(Γ) : u ∘ χ|χ−1(T) ∈ P0

(T ∈ T)} ⊂ V

or

VT := {u ∈ C(Γ) : u ∘ χ|χ−1(T) ∈ P1
(T ∈ T)} ⊂ V ,

equipped with canonical basis ΞT, and, for the construction of a preconditioner,

S 0,1

T,0
:= {u ∈ H1

0,γ(Γ) : u ∘ χ|χ−1(T) ∈ P1
(T ∈ T)} ⊂ W ,

equipped with canonical basis ΦT .

As in the domain case, a space WT ⊂ W can be constructed with

dimWT = dim VT and inf

T∈𝕋
inf

0 ̸=v∈VT

sup

0 ̸=w∈WT

⟨v, w⟩L
2
(Γ)

‖v‖V ‖w‖W
> 0,

which can be equipped with a locally supported basis ΨT that, modulo a scaling, is L
2
(Γ)-biorthogonal

to ΞT . Now assuming that a family of BS
T ∈ Lisc(S

0,1

T,0 , (S
0,1

T,0)
) uniformly is available, the construction of

an optimal preconditioner GT follows exactly the same lines as outlined in Section 2 for the domain case.

For the case that Γ is not piecewise polytopal, a hidden problem is, however, that above construction

ofΨT requires exact integration of lifted polynomials over the manifold. To circumvent this problem, in [10],

we have relaxed the condition of L
2
(Γ)-biorthogonality of ΞT and ΨT to biorthogonality w.r.t. to a mesh-

dependent scalar product obtained from the L
2
(Γ)-scalar product by replacing the Jacobian on the pull back

of each panel by its mean. It was shown that the resulting preconditioner is still optimal and that the expres-

sion for its matrix representation (for the moment without the representation of BS
T ), that was recalled in

Section2.2.1 for the piecewise constant case, applies verbatimbyonly reading |T| as the volumeof the panel.²

It remains to discuss the construction of an operator BS
T ofmulti-level type, where it is now assumed that

𝕋 is a family corresponding to newest vertex bisection. An exact copy of the construction of BS
T given in the

domain case would require the application of the panel-wise L
2
(T)-orthogonal projector QT , cf. (3.1), which

generally poses a quadrature problem. Reconsidering the domain case, the proof of [14, Lemma 3.7] (which

provides the proof of the inequality “≳” in our Theorem 3.1) builds on the fact that, for T
0
≺ T

1
≺ ⋅ ⋅ ⋅ being

a sequence of uniformly refined partitions, the decomposition S 0,1

TL ,0
= ∑Lj=0 S 0,1

Tj ,0
∩ (S 0,1

Tj−1 ,0)⊥L2(Ω) , where
S 0,1

T−1 ,0 := {0}, is stable, uniformly in L, w.r.t. the norm on W . This stability holds also true when the orthog-

onal complements are taken w.r.t. a weighted L
2
(Ω)-scalar product for any weight w with w, 1/w ∈ L∞(Ω).

This has the consequence that, for the construction of the multi-level operator BS
T in the manifold case,

we may equip L
2
(Γ) with scalar product

p
∑
i=1
∫
Ωi

u(χi(x))v(χi(x)) dx,

which is constructed from the canonical L
2
(Γ)-scalar product by simply omitting the Jacobians |∂χi(x)|. With

this modified scalar product, the panel-wise orthogonal projector QT is the same as in the domain case. We

conclude that the resulting BS
T as in (3.2) is inLisc(S

0,1

T,0 , (S
0,1

T,0)
) uniformly and that its application can be

performed in linear complexity. Indeed, its implementation is equal as in the domain case as described in

Section 3.2 when |T| in (3.3) is read as |χ−1(T)|.

2 In order to avoid the exact computation of this volume, actually, it may read as |χ−1(T)||∂χ(z)| for arbitrary z ∈ χ−1(T).
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5 Numerical Experiments

Let Γ = ∂[0, 1]3 ⊂ ℝ3 be the two-dimensional manifold without boundary given as the boundary of the unit

cube, W := H1/2(Γ), V := H−1/2(Γ). We consider the trial space VT = S −1,0T ⊂ V of discontinuous piecewise

constants. We will evaluate preconditioning of the discretized single layer operator AT ∈ Lisc(VT , V

T).

The role of the opposite order operator in Lisc(S
0,1

T,0 , (S
0,1

T,0)
) from Section 2.1 will be fulfilled by the

multi-level operator BS
T from (3.2). Equipping S 0,1

T,0 with the nodal basis ΦT, the matrix representation of

the preconditioner GT from Section 2.1 reads as

GT = D−1T (p
⊤
TB

S
T pT + βq⊤TD

1/2
T qT)D−1T

for DT = diag{|T| : T ∈ T}, uniformly sparse pT and qT as given in Section 2.1, and with the representation

of the multi-level operator BS
T given by

BS
T = E

⊤
T(

L
∑
j=0
(H jRj − PjH j−1Rj−1)⊤2−j/2(H jRj − PjH j−1Rj−1))ET

for the representations ET ,H j , Rj and Pj as provided in Section 3.2 (the minor adaptations in the manifold

case described in Section 4 to the matrix representations from Sections 2.1 and 3.2 vanish in the current

simple case).

The BEM++ software package [8] is used to approximate the matrix representation of the discretized

single layer operator AT by hierarchical matrices based on adaptive cross approximation [1, 5].

Equipping VT and ℝdimVT
with “energy-norms” √(AT ⋅ ( ⋅ ) or ‖A1/2

T ⋅ ‖, respectively, we calculated the

(spectral) condition numbers κL(VT ,VT)(GTAT) = κL(ℝdimVT ,ℝdimVT )(GTAT) = ρ(GTAT)ρ((GTAT)−1), where
ρ( ⋅ ) is the spectral radius, using the Lanczos method.

As initial partition T⊥ = T1 of Γ, we take a conforming partition consisting of 2 triangles per side,

so 12 triangles in total, with an assignment of the newest vertices that satisfies the matching condition.

We fixed β = 5.3, being the value for which, for a relative small uniform refinement T of T⊥, we found

ρ(D−1T p⊤TB
S
T pTD−1T AT) = ρ(D−1T βq⊤TD

1/2
T qTD−1T AT).

5.1 Uniform Refinements

Here we let 𝕋 be the sequence {Tk}k≥1 of (conforming) uniform refinements, that is, Tk ≻ Tk−1 is found by

bisecting each triangle from Tk−1 into 2 subtriangles using newest vertex bisection.

Table 1 shows the condition numbers of the preconditioned system in this situation. The condition num-

bers are relatively small, and the timing results show that the implementation of the preconditioner is indeed

linear.

dofs κS(AT ) κS(GTAT ) sec / dof

12 14.5 2.6 2.6 ⋅ 10−5

48 31.0 2.7 1.4 ⋅ 10−5

192 59.9 2.8 4.9 ⋅ 10−6

768 118.7 3.3 1.4 ⋅ 10−6

3072 234.6 3.8 6.3 ⋅ 10−7

12288 450.4 4.1 3.3 ⋅ 10−6

49152 852.5 4.3 6.5 ⋅ 10−7

196608 1566.4 4.5 7.3 ⋅ 10−7

786432 2730.5 4.6 7.8 ⋅ 10−7

Table 1: Spectral condition numbers of the preconditioned single layer system discretized by piecewise constants S −1,0
T

using
uniform refinements. Preconditioner GT is constructed using the multi-level operator with β = 5.3. The last column indicates
the number of seconds per degree of freedom per application of GT .
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dofs hT ,min κS(GTAT ) sec / dof

12 1.4 ⋅ 100 2.63 2.5 ⋅ 10−5

336 8.8 ⋅ 10−2 2.73 2.4 ⋅ 10−6

720 5.5 ⋅ 10−3 2.91 1.8 ⋅ 10−6

1104 3.4 ⋅ 10−4 2.96 1.8 ⋅ 10−6

1488 2.1 ⋅ 10−5 2.99 2.2 ⋅ 10−6

1872 1.3 ⋅ 10−6 2.98 2.0 ⋅ 10−6

2256 8.4 ⋅ 10−8 3.00 2.3 ⋅ 10−6

2640 5.2 ⋅ 10−9 3.00 2.0 ⋅ 10−6

3024 3.2 ⋅ 10−10 3.01 2.3 ⋅ 10−6

3408 2.0 ⋅ 10−11 3.01 2.5 ⋅ 10−6

3696 2.5 ⋅ 10−12 3.01 2.6 ⋅ 10−6

Table 2: Spectral condition numbers of the preconditioned single layer system discretized by piecewise constants S −1,0
T

using local refinements at each of the eight cube corners. Operator GT is applied using the multi-level operator with β = 5.3.
The second column is defined by hT,min := minT∈T √|T|. The last column indicates the number of seconds per degree of freedom
per application of GT .

5.2 Local Refinements

Herewe take𝕋as a sequence {Tk}k≥1 of (conforming) locally refinedpartitions,whereTk ≻ Tk−1 is constructed
by applying newest vertex bisection to all triangles in Tk−1 that touch a corner of the cube.

Table 2 contains results for the preconditioned single layer operator discretized by piecewise constants

S −1,0T . The preconditioned condition numbers are nicely bounded, and the timing results confirm that our

implementation of the preconditioner is of linear complexity, also in the case of locally refined partitions.

Funding: The second author has been supported by the Netherlands Organization for Scientific Research
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