
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

PACE solver description: tdULL

Brokkelkamp, R.; van Venetië, R.; de Vries, M.; Westerdiep, J.
DOI
10.4230/LIPIcs.IPEC.2020.29
Publication date
2020
Document Version
Final published version
Published in
15th International Symposium on Parameterized and Exact Computation
License
CC BY

Link to publication

Citation for published version (APA):
Brokkelkamp, R., van Venetië, R., de Vries, M., & Westerdiep, J. (2020). PACE solver
description: tdULL. In Y. Cao, & M. Pilipczuk (Eds.), 15th International Symposium on
Parameterized and Exact Computation: IPEC 2020, December 14–18, 2020, Hong Kong,
China (Virtual Conference) [29] (Leibniz International Proceedings in Informatics; Vol. 180).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
https://doi.org/10.4230/LIPIcs.IPEC.2020.29

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://doi.org/10.4230/LIPIcs.IPEC.2020.29
https://dare.uva.nl/personal/pure/en/publications/pace-solver-description-tdull(537497fd-dfe1-4a8e-ac42-dd0cef889da1).html
https://doi.org/10.4230/LIPIcs.IPEC.2020.29


PACE Solver Description: tdULL
Ruben Brokkelkamp
Centrum Wiskunde & Informatica (CWI), The Netherlands
ruben.brokkelkamp@cwi.nl

Raymond van Venetië
Korteweg–de Vries Institute, University of Amsterdam, The Netherlands
r.vanvenetie@uva.nl

Mees de Vries
University of Amsterdam, The Netherlands
meesdevries@protonmail.com

Jan Westerdiep
Korteweg–de Vries Institute, University of Amsterdam, The Netherlands
j.h.westerdiep@uva.nl

Abstract
We describe tdULL, an algorithm for computing treedepth decompositions of minimal depth. An
implementation was submitted to the exact track of PACE 2020. tdULL is a branch and bound
algorithm branching on inclusion-minimal separators.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Algorithm design techniques; Theory of computation → Graph algorithms analysis

Keywords and phrases PACE 2020, treedepth, treedepth decomposition, vertex ranking, minimal
separators, branch and bound

Digital Object Identifier 10.4230/LIPIcs.IPEC.2020.29

Supplementary Material The source code can be found on https://github.com/mjdv/tdULL and
https://doi.org/10.5281/zenodo.3881472

1 Introduction

The treedepth of an undirected graph is a measure of the complexity of the graph. Informally,
it measures how resistant the graph is to being disconnected by removing vertices. All graphs
have a treedepth between 1 and their number of vertices. Star graphs Kn,1, which can
be completely disconnected by removing a single vertex, have treedepth 2. Trees have a
treedepth at most logarithmic in their size. Complete graphs Kn have full treedepth of n. In
general, computing the treedepth of a graph is NP-complete.

The PACE 2020 challenge consists of implementing an algorithm that is capable of
computing treedepth. In the exact track, to which the solver tdULL was submitted, the
goal was to compute the exact treedepth of 100 graphs from an unknown set, with a time
limit of 30 minutes per graph. In order to test implementations, a set of 100 different but
representative graphs was published at the start of the contest.

There are many equivalent definitions of treedepth. The following is useful for our
purposes. For S a set of vertices of G, we write G \ S for the graph obtained from G by
removing the vertices from S and any incident edges. For a graph G, we write cc(G) for the
set of its connected components.

© Ruben Brokkelkamp, Raymond van Venetië, Mees de Vries, and Jan Westerdiep;
licensed under Creative Commons License CC-BY

15th International Symposium on Parameterized and Exact Computation (IPEC 2020).
Editors: Yixin Cao and Marcin Pilipczuk; Article No. 29; pp. 29:1–29:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1223-4616
mailto:ruben.brokkelkamp@cwi.nl
https://orcid.org/0000-0002-5118-911X
mailto:r.vanvenetie@uva.nl
mailto:meesdevries@protonmail.com
https://orcid.org/0000-0002-7028-5676
mailto:j.h.westerdiep@uva.nl
https://doi.org/10.4230/LIPIcs.IPEC.2020.29
https://github.com/mjdv/tdULL
https://doi.org/10.5281/zenodo.3881472
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


29:2 PACE Solver Description: tdULL

I Definition 1 (Treedepth). The treedepth td(G) of a connected graph G = (V, E) is recurs-
ively defined as

td(G) :=

1 if |V | = 1,
min
v∈V

max
H∈cc(G\{v})

1 + td(H) else.

The minimizing vertex v in the recursion can be taken as the root of a tree, with the connected
components of G \ {v} its children; this way, the computation of treedepth gives rise to a
tree, the treedepth decomposition of G. The depth of this tree is the treedepth of G.

If removal of v does not cause the graph to be disconnected, the next (recursive) step is
again the removal of a single vertex, until enough vertices have been removed to disconnect
the graph. This leads to the following alternative definition. A set S of vertices of a connected
graph G is called a separator of G if G \ S is disconnected. Such a set S is called inclusion
minimal if there is no S′ ( S which separates G. Write sep(G) for the inclusion-minimal
separators of a graph G.

I Definition 2 (Treedepth). The treedepth td(G) of a connected graph G = (V, E) is recurs-
ively defined as

td(G) :=

|V | if G ∼= K|V |,
min

S∈sep(G)
max

H∈cc(G\S)
|S|+ td(H) else.

With this definition, tdULL can be described in one sentence as a branch-and-bound algorithm
based on Definition 2, with heuristics, clever data structures and exact special cases used for
speed-up. The advantage of recurring on separators rather than on single vertices is avoiding
duplicate branches: if we recur on a separator of size n, a vertex-based recursion may have
n! branches leading to that same point.

2 Algorithm

2.1 Branch and bound
To prune the search tree we use branch and bound. If we have found a treedepth decomposition
of depth d for a particular graph, then any further search for a treedepth decomposition of
that graph need not continue with any attempt that will have treedepth at least d. Similarly,
if we have picked a separator S, and for H ∈ cc(G \ S) we have that td(H) = d, then there
is no need for us to find a treedepth decomposition for H ′ ∈ cc(G \ S) of depth lower than d,
since it will not make the depth of the full decomposition any lower.

To this end, the main component of tdULL is a function treedepth, whose arguments
are a graph G, as well as a search lower bound (SLB) and a search upper bound (SUB). The
interval between these two bounds is the interval of treedepths dat are still relevant. The
function treedepth returns a lower bound l and an upper bound u on the treedepth of G,
for which at least one of the following three things is true:

u < SLB: the treedepth of G is so low we do not need the exact value;
l > SUB: the treedepth of G is so high we do not need the exact value;
u = l: the treedepth of G is equal to u = l.

The main loop of treedepth generates the separators of the graph G, and recursively calls
itself on the components left after removing the separator. The search bounds allow us to
skip computation that is provably not going to improve the treedepth of the graph.



R. Brokkelkamp, R. van Venetië, M. de Vries, and J. Westerdiep 29:3

2.1.1 Lower bounds
Upper bounds on the treedepth of the graph G can be found directly, by completing branches
of the recursion. Lower bounds are harder to find: the only sure way to find a lower bound is
to recur on all possible separators, and conclude that a smaller treedepth cannot be realized.

To skip as many of the branches as possible, it is therefore important that we obtain
good lower bounds as quickly as possible. Our main tool is the fact that the treedepth of a
graph is minor monotone: if H is a graph that can be obtained from G by removing vertices
and edges and contracting edges, then td(H) ≤ td(G). We apply this principle in a number
of ways.

Any lower bound on the treedepth of a subgraph returned by the recursion is also a lower
bound on td(G). In rare cases, this lower bound may actually be equal to the treedepth of
G, allowing us to short-circuit the rest of the computation.

We pick specific subgraphs of G of which we compute the treedepth. The most important
of these is a core: we take the vertex of lowest degree of G, and iteratively remove all vertices
from G that have at most that degree. In the resulting graph every vertex has higher degree.
Heuristically, this core should be the “toughest subset” of G, and thus provide good lower
bounds.

If this core is empty, then we compute a contraction of the graph G instead, and try to
find its treedepth to use as a lower bound. Specifically, we contract the edge between a vertex
of minimal degree and a neighboring vertex for which the overlap of common neighbors is
minimal. We experimented with other contraction strategies, but they proved less effective.

2.2 Separators
In order to use the recursion suggested by Definition 2, we need to be able to generate
inclusion-minimal separators of the graph G. Analysis of the runtime of tdULL suggests that
most of the runtime is spent on this generation process.

We essentially use the algorithm from [1]. This is an algorithm that produces minimal
separators, which are subtly different from inclusion-minimal separators. A separator S is
called minimal if there are vertices v, w ∈ G \ S such that v, w are in different components
after removing S, and there are no S′ ( S which separate v, w. It is easy to check whether
a minimal separator S is also inclusion minimal: S is inclusion minimal if and only if each
vertex in S has an edge to each connected component of G\S. Thus we can use the algorithm
for minimal separators, and filter out those which are not inclusion minimal.

We do not generate all separators of a graph at once, but in batches of 10,000. This
occasionally helps us to avoid having to compute all the separators, by finding both an optimal
decomposition and an optimal lower bound early. We tried several batch size strategies, both
fixed and dynamic, and this one worked best.

A batch of separators is not tried in arbitrary order: we sort the separators by the size of
the largest component that remains after removing the separator. This prioritizes separators
that appear to be efficient at disconnecting the graph, which are heuristically more likely to
lead to optimal solutions. We tried several sorting strategies, this one appeared to work best.

If G has a leaf (degree one vertex), then the one neighbor of that leaf forms an inclusion-
minimal separator by itself. If a graph has a leaf attached to (nearly) every other vertex, our
inclusion-minimal separators are (almost) the same as the vertices of degree greater than one.
Then the recursion turns into the one from Definition 1, which is much less efficient. To avoid
this problem, we actually compute separators on the graph with all leaves removed. Since
leaves are never useful as the root of a treedepth decomposition, these separators suffice.

IPEC 2020



29:4 PACE Solver Description: tdULL

2.3 Special cases
There are a few cases in which we can quickly find an optimal treedepth decomposition of a
graph G. We can easily recognize these cases and apply the faster direct algorithm.

G ∼= Kn for some n;
G ∼= Cn for some n;
G is a tree (with the algorithm described in [2]).

2.4 Cache
Removing the same set of vertices in a different order results in the same graph. To avoid
double work we store all lower and upper bounds on the treedepth of subgraphs in a cache.
To quickly add, update and retrieve items from the cache we make use of a SetTrie data
structure, as described in [3]. Furthermore, this data structure allows for efficient retrieval of
subsets and hence can be used to compute lower bounds: because td(H) ≤ td(G) if H ⊆ G,
we can use a lower bound on the treedepth of H as a lower bound on the treedepth of G.

This cache also works with contractions: every vertex created by a contraction has a
canonical representation as the set of vertices which are contracted. When a new combination
of vertices is used for a contraction, it gets a new global index to use in the SetTrie cache.

3 Discussion

The above algorithm is the result of a trial-and-error process, where a big subset of the public
instances was used to compare versions. Comparing the number of cases solved by us and by
the submissions above us on both the public and private test sets, it seems we may have
suffered from some overfitting: we made algorithmic choices that performed better on the
public instances of the problem than on the hidden instances.

Many ideas did not make it to the final algorithm. One notable omission is using the
symmetry of a graph. Neither using graph automorphisms to reduce the number of separators
nor trying to use a cache that works up to isomorphism yielded any improvement.

tdULL spends a lot of time on generating separators. If a graph has many – in the
worst case, there may be exponentially many – this pushes us quickly over the time limit.
Small improvements such as only using separators of the graph where all leaves are removed
certainly helped, but we we have not found a way to substantially reduce the number of
separators. Switching from a single vertex recursion to a separator-based recursion has been
the biggest performance improvement, though.

Another improvement which yielded big performance improvements was finding better
subgraphs with which to compute lower bounds. Even when a graph has a lot of separators,
if for some separator the upper bound from the recursion matches the lower bound found
before, the algorithm finishes fast because of an early exit.

References
1 Anne Berry, Jean-Paul Bordat, and Olivier Cogis. Generating all the minimal separators of a

graph. In Graph-Theoretic Concepts in Computer Science, pages 167–172, Berlin, Heidelberg,
1999. Springer Berlin Heidelberg.

2 Ananth V. Iyer, H. Donald Ratliff, and G. Vijayan. Optimal node ranking of trees. Inf.
Process. Lett., 28(5):225–229, August 1988. doi:10.1016/0020-0190(88)90194-9.

3 Iztok Savnik. Index data structure for fast subset and superset queries. In International
Conference on Availability, Reliability, and Security, pages 134–148. Springer, 2013.

https://doi.org/10.1016/0020-0190(88)90194-9

	Introduction
	Algorithm
	Branch and bound
	Lower bounds

	Separators
	Special cases
	Cache

	Discussion

