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A B S T R A C T

The In-Stent Restenosis 2D model is a full y coupled multiscale simulation of post-stenting tissue growth, in
which the most costly submodel is the blood flow simulation. This paper presents uncertainty estimations of
the response of this model, as obtained by both non-intrusive and semi-intrusive uncertainty quantification.
A surrogate model based on Gaussian process regression for non-intrusive uncertainty quantification takes
the whole model as a black-box and maps directly the three uncertain inputs to the quantity of interest,
the neointimal area. The corresponding uncertain estimates matched the results from quasi-Monte Carlo
simulations well. In the semi-intrusive uncertainty quantification, the most expensive submodel is replaced with
a surrogate model. We developed a surrogate model for the blood flow simulation by using a convolutional
neural network. The semi-intrusive method with the new surrogate model offered efficient estimates of
uncertainty and sensitivity while keeping a relatively high accuracy. It outperformed the results obtained with
earlier surrogate models. It also achieved the estimates comparable to the non-intrusive method with a similar
efficiency. Presented results on uncertainty propagation with non-intrusive and semi-intrusive metamodelling
methods allow us to draw some conclusions on the advantages and limitations of these methods.
1. Introduction

Numerical simulations of real-world phenomena contribute to a
better understanding of these phenomena and to predicting the dy-
namics of the underlying systems. Many natural phenomena occur
across scales in space and time [1–5]. As a result, multiscale models
and simulations are widely used [1,6–9]. These multiscale models
couple mathematical models of relevant processes on different spatial
or temporal scales together using suitable scale bridging methods [10].
However, multiscale simulations can suffer from substantial compu-
tational cost because of the high computational demands of, usually,
the microscale simulations [9]. Uncertainty quantification (UQ) anal-
ysis [11] applied to multiscale simulations adds additional substantial
computational burden since thousands of runs are required for good
estimates of the uncertainties. Therefore simulations can become ex-
tremely time-consuming or impractical, even on current state-of-the-art
supercomputing infrastructure.

Surrogate modelling is a common non-intrusive way to resolve the
computational intensity problem under the UQ scenario. The motiva-
tion for this technique stems from the large number of samples needed
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in the UQ estimates or from frequently required numerical integration
in global sensitivity analysis with the Monte Carlo method [12]. A
non-intrusive surrogate model takes the complete model as a black
box, mimics the behaviour of the original computational model from
a limited amount of existing data and evaluates the corresponding
responses of the model based on specific inputs [13]. By replacing the
original model with a surrogate model, this allows conducting UQ or
sensitivity analysis at an acceptable computational cost. Gaussian pro-
cess regression [14,15] is one of the state of art methods for surrogate
modelling. It is a non-parametric Bayesian regression method and its
predictive distribution can be efficiently used in UQ and sensitivity
analysis [16–20]. There are several other popular methods for surrogate
modelling, including polynomial chaos expansion [21,22] and neural
networks [23,24].

As opposed to the traditional non-intrusive UQ method which takes
the whole simulation as a black box, we have recently proposed a set
of semi-intrusive algorithms for multiscale UQ [25] and demonstrated
their effectiveness for several multiscale UQ scenarios [25,26]. The
vailable online 4 May 2021
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Fig. 1. Diagram of the ISR2D model: the initial conditions (IC) submodel provides the initial geometry to the smooth muscle cells (SMC) single scale model where the geometry
is further updated. SMC model calls the blood flow (BF) simulation, which provides the wall shear stress (WSS) for the updated geometry. The cycle continues until the final time
step is reached, when the SMC model yields the final output of the cross-sectional area.
term ‘‘semi-intrusive’’ refers to additional interventions into the code of
the model compared to non-intrusive approaches: one ‘‘opens up’’ the
black box and considers the coupled structure of the multiscale model
while the single scale models are still viewed as black boxes. Usually the
output of a multiscale model is derived from a macroscale submodel,
which in turn is implicitly determined by microscale dynamics to which
it is coupled. One approach from [25] relies on performing a Monte
Carlo UQ on the macroscale submodel while replacing the most costly
microscale submodel by a surrogate model. Replacing the expensive
part of a model with a relatively cheap surrogate can often significantly
improve computational efficiency, but comes at the cost of reduced
accuracy.

In [26], a physics-based and an interpolation-based surrogate model
were constructed to implement the semi-intrusive UQ for the in-stent
restenosis multiscale model [27–29]. In that research, the flow solver
submodel was replaced with these surrogates. The flow solver takes
blood vessel geometry and blood flow velocity as the inputs and outputs
the corresponding wall shear stress. The physics-based surrogate model
simplified the fluid simulation to an ideal Poiseuille flow, hence the
shear stress could be computed analytically. The interpolation-based
surrogate model applied the nearest neighbour method and approxi-
mated the shear stress based on a training dataset. We estimated how
the three uncertain inputs: blood flow velocity, endothelium regener-
ation time and maximum deployment depth of the stent, contributed
to the quantity of interest (QoI), the neointimal area. All the semi-
intrusive UQ were implemented with a quasi Monte Carlo method
based on a Sobol sequence [30,31]. The results were compared to black-
box Monte Carlo results to demonstrate the efficiency improvement.
However, a comparison between the semi-intrusive algorithm and non-
intrusive UQ with a surrogate model replacing the complete multiscale
model were not explored in that study. In this work, we first improve
the surrogate model of micro-scale model (the blood flow simulation)
from [26] by using a convolutional neural network (CNN), because
of its capability of pattern recognition and feature extraction [32,33].
Additionally, a surrogate model for non-intrusive UQ is designed to
directly map the input parameters to the quantity of interest. The
uncertainty estimations with both these methods are then carried out
and compared in terms of the estimation accuracy and computational
efficiency.
2

The paper is arranged as follows. The two-dimensional multiscale
model of in-stent restenosis is shortly introduced in Section 2. The new
surrogate model for the blood flow simulation and a surrogate model
for the whole in-stent restenosis model are described in Sections 2.2
and 2.3. The approach to estimating and analysing the uncertainty of
the response of the in-stent restenosis model is explained in Section 3.
The results of surrogate modelling, uncertainty quantification and sen-
sitivity analysis are presented in Section 4. Sections 5 and 6 compare
and discuss the UQ performance and summarize the obtained results.

2. Model

2.1. In-stent restenosis

An arterial stenosis is the abnormal narrowing of an artery, usu-
ally due to accumulation of fatty material in the walls and intimal
thickening (atherosclerosis). In ischaemic heart disease, a stenosis in a
coronary artery limits blood flow to the heart muscle, which can result
in reduced heart function, shortness of breath, chest pains or a heart
attack. Coronary stenosis can be treated using balloon angioplasty, in
which a balloon is inserted into the artery via a catheter and inflated,
which compresses the fatty plaque against the arterial wall. During
this procedure, a wire-mesh stent is deployed to keep the artery from
recoiling back to the narrowed state. This procedure damages the
vessel wall, and in particular the endothelium, the innermost lining of
the artery. This triggers a healing response involving (amongst other
processes) growth and proliferation of smooth muscle cells (SMCs) on
the inside of the artery. In some cases, an excessive growth response
occurs, leading to a significant renewed narrowing of the artery inside
of the stent. This is known as an in-stent restenosis (ISR), and is
considered an adverse treatment outcome [34–36].

The ISR2D model is a two-dimensional simulation of the post-
stenting healing response of an artery [28,29], which is used here to
test the proposed semi-intrusive multiscale UQ algorithm. Note that a
more realistic, but also computationally much more expensive three
dimensional version of the model is available [37,38]. The ISR2D
model used in this paper consists of three submodels: the IC submodel,
which simulates initial conditions in the form of the state of the artery
immediately after stenting, the SMC submodel, which is an agent-based
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Fig. 2. Input and output of blood flow simulation. Left plot: 150 × 150 binary geometry
map as the input for blood flow simulation. The black part is the vessel wall and the
white part is the lumen (the fluid domain). Right plot: simulated shear stress in the
domain (in 𝑃𝑎).

simulation of smooth muscle cell growth and endothelium recovery,
and the blood flow submodel, which uses the Lattice Boltzmann method
(LBM) to simulate blood flow through the artery. The structure of
ISR2D is shown in Fig. 1.

Sufficiently high wall shear stress (WSS) at the arterial wall triggers
any present endothelium to produce nitric oxide, which in turn inhibits
the growth of the SMCs if it crosses a threshold value. Blood flow
thus affects SMC growth, but in turn is also affected by it, as the
proliferating SMCs change the geometry of the artery. Note that due
to random placement of daughter cells when the growing SMCs divide,
variability in the length of the cell cycle, and a random spatial pattern
of endothelium recovery, the SMC model is stochastic. The main output
of the model is the cross-sectional area of the neointima (the new
tissue formed due to SMC proliferation) as a function of time after
stenting. A clinically recognized in-stent restenosis occurs if more than
50% of the original cross-sectional area of the artery is covered by the
neointima [39].

The SMC growth occurs over a period of weeks, while blood flow
adapts much more rapidly to the changing geometry. ISR2D is therefore
a multiscale model exhibiting time-scale separation. For every time step
of the SMC model (one time step simulates one hour resulting in 1440
steps per 60 days of the total simulation time), the BF simulation is run
to convergence for the current geometry, and the resulting WSS values
are sent back to the SMC model, which uses those in the model of nitric
oxide production by endothelial cells.

Fig. 2 shows an input (domain map) and corresponding output
(shear stress field) of the BF submodel. The domain map represents the
geometry of the artery in the form of a binary grid, with 1 (shown in
black) representing a solid grid cell, and 0 (shown in white) represent-
ing a fluid grid cell. The output of the BF simulation is a corresponding
grid of shear stress values, which are set to 0 for solid domain cells,
and set to the shear stress values computed by LBM for fluid domain
cells. The shear stresses at the fluid–solid boundary layer are taken as
the wall shear stresses and passed to the SMC model.

The blood flow simulation is the computationally most expensive
component of the ISR2D model. It takes around 80% of the com-
putational time, and the potential gain in performance obtained by
replacing it with a surrogate model in the semi-intrusive UQ scenario is
therefore highest. Nikishova et al. [26] performed a semi-intrusive UQ
analysis for the same model, comparing surrogates based on nearest-
neighbour interpolation and on simplified physics to a non-intrusive
black box quasi Monte Carlo approach. The UQ estimate with physics
surrogate has improved computational efficiency but the means of the
cross-sectional area of the neointima resulting from the surrogate mod-
els were substantially lower than the black-box Monte Carlo results.
On the other hand, the uncertainty estimates with nearest-neighbour
interpolation were better but the corresponding speedup was relatively
poor. In this paper, an accurate surrogate model using a convolutional
3

neural network is proposed and demonstrated to be a good represen-
tation of the blood flow model, while at the same time leading to the
desired reduction in computational cost for the multiscale UQ.

2.2. Surrogate model for blood flow simulation

As mentioned in the previous section, the blood flow simulation in
the ISR2D model is computationally expensive. To reduce the compu-
tational cost of the model, a surrogate model to compute the required
wall shear stresses is used to replace the original blood flow model.
Convolutional neural networks have been applied to fetch the features
from irregular geometries in fluid dynamics prediction [32,33,40]. In
the ISR2D application, the aim is to learn the wall shear stress as a
nonlinear function of the vessel wall geometry and the blood flow
velocity.

The mapping between input and output of the BF simulation can
be considered as a function 𝑓 , which takes the geometry matrix 𝜻 and
the inlet blood velocity 𝑣in as input and produces a 2 × 𝑘-dimensional
vector of WSS magnitudes, 𝜏wss as the output:

𝜏𝑤𝑠𝑠 = 𝑓 (𝜻 , 𝑣in), (2.1)

where 𝑘 = 150 is the grid size along x axis, 𝜻 = (𝜁𝑖𝑗 ) ∈ R𝑘×𝑘.
The geometry matrix 𝜻 was used for CFD simulation. The surrogate
model 𝑓 replaces the original blood flow model 𝑓 (𝜻 , 𝑣in) and offers
an approximate prediction of wall shear stress in a reduced amount
of time.

The CNN model follows the network structure proposed by [32] and
was optimized to fit our application. The model consists of three parts:
shape encoding, nonlinear mapping and stress decoding, as shown in
Fig. 3. The shape encoding layers extract the features of the geometry
to the shape code. A fully connected (FC) layer then maps the shape
code together with the blood flow velocity to the stress code. The
stress decoding part is responsible for a mapping from the stress code
to wall shear stress. In this surrogate model, the geometry input was
transformed from a binary map to a 2 × 𝑘 array which indicates the
locations of upper and lower fluid–solid boundaries. The convolution
layers then take the information from both boundaries into account
and predict the shear stress on these boundaries. There are three
convolution layers, a fully connected layer and four deconvolution
layers deployed between the input layer and output layer. Each of them
is followed by a rectifier linear unit (ReLU) as the activation function.
Additionally, the output of each convolution layer is concatenated
to the corresponding deconvolution layer to help with the decoding
process. The output of the surrogate model represents the shear stresses
on the wall surface on one side of the channel. The sequence of the
two rows in the input decides which side is predicted. Therefore, a
prediction of the WSS on both boundaries requires the surrogate model
to be run twice.

The training data for the surrogate model comes from the runs of the
ISR2D model [41]. One run of ISR2D calls the LBM solver 1440 times
(once per hour of simulated time). This means that with only a few
runs of the simulation, a considerable amount of flow data for training
is already available. We trained the surrogate model with the data from
four runs of the ISR2D simulation, hence 5760 blood vessel geometries
and wall shear stress distributions were used for training. A validation
dataset was generated from an additional run of the ISR2D simulation.
These five runs of simulation for training and validation are the results
from previous experiments using the quasi Monte Carlo method [41].
The training optimization was based on the mean squared error loss
function:

(𝜏𝑤𝑠𝑠) =
1
𝑛

𝑛
∑

𝑖=1
‖𝜏(𝑖)𝑤𝑠𝑠 − 𝜏(𝑖)𝑤𝑠𝑠‖

2, (2.2)

where 𝑛 denotes the number of samples of the training set. The Adam
optimizer [42] was used to optimize the model parameters. A test
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Fig. 3. Diagram of the CNN model. Arrows with different colours denotes different kind of operation layers. The numbers in each light blue box denote the dimensions of the
output after each operation layer (Height × Width × Feature maps). K and S denote the size of kernel and the stride in each convolution and deconvolution layer. Padding setting
‘same’ is applied to remove the influence of kernel size on the dimension of output in each convolution and deconvolution layer.
against the validation dataset was carried out during the training
process to prevent the model from overfitting. The epoch was set to
80 as the loss does not decrease significantly after that. The surrogate
model was implemented in Keras [43].

2.3. Surrogate model for ISR2D

This surrogate model is constructed to replace the whole ISR2D mul-
tiscale model for uncertainty quantification and sensitivity analysis. Let
the multiscale model function be defined by 𝑔(𝜉) with 𝜉 denoting an 𝑛-
dimensional vector consisting of the stochastic variables and uncertain
inputs of the model. The response of the model is:

𝑦 = 𝑔(𝜉). (2.3)

As mentioned before, the ISR2D model is a stochastic model and thus
includes both aleatory uncertainty and epistemic uncertainty. In the
surrogate model for non-intrusive UQ, we assume that the aleatory
uncertainty can be separated from the function 𝑔, hence the expression
for the surrogate model can be written as:

�̂� = ℎ(𝜉∼𝜉∗ ) + 𝜖(𝜉∗), (2.4)

where �̂� denotes the response of the surrogate model, 𝜉∗ is the random
variable containing aleatory uncertainty and 𝜉∼𝜉∗ is the parameter
vector without stochastic variable. Assuming that the stochasticity 𝜖
follows a normal distribution 𝑁(0, 𝜎∗2), such a stochastic model can
be quantified by Gaussian process regression (GPR). Note that ISR2D
is a time-evolving model, and that we are not only interested in the
response at the final timestep, but also in the dynamics of the process.
To avoid an extra dimension of input, more precisely, a time 𝑡 that
will significantly increase the computational cost of training and predic-
tion [14], a local surrogate model for each time step is constructed. An
alternative choice could be to apply sparse heteroscedastic GP [44,45]
and to adopt the time as an extra dimension of input. However,
this would require additional estimations for the variances of local
input noises and pseudo-inputs for the sparse Gaussian process in the
marginal likelihood optimization. Such high dimensional optimization
may result in a relatively poor inference of the hyperparameters. There-
fore we adopt the local surrogate models, and the expression can be
rewritten as:

�̂� = ℎ (𝜉 ) + 𝜖 (𝜉∗), 𝑡 = 1, 2,… , 𝑇 . (2.5)
4

𝑡 𝑡 ∼𝜉∗ 𝑡
GPR is based on the assumption of the joint Gaussian distribution
between training data and prediction mean:
(

𝑦train
𝑡

ℎpred
𝑡

)

∼ 𝑁

(

0,

[

𝐾𝑡 + 𝜎∗𝑡
2𝐼 �̃�𝑡

(�̃�𝑡)𝑇 ̃̃𝐾𝑡

])

, 𝑡 = 1, 2,… , 𝑇 , (2.6)

where covariance matrices 𝐾𝑡, ̃̃𝐾𝑡 and �̃�𝑡 denote the correlation within
training data, within new data, and between these two respectively at
each time step. Applying Bayesian inference, the posterior probability
distribution of ℎpred

𝑡 given training set(𝜉train
∼𝜉∗ , 𝑦train

𝑡 ) follows a Gaussian
process:

𝑃 (ℎpred
𝑡 |(𝜉train

∼𝜉∗ , 𝑦train
𝑡 ), 𝜉pred

∼𝜉∗ ) = (ℎ̄pred
𝑡 ,Var(ℎpred

𝑡 )), (2.7)

where

ℎ̄pred
𝑡 = �̃�𝑡(𝐾𝑡 + 𝜎∗𝑡

2𝐼)−1𝑦train
𝑡 ,

Var(ℎpred
𝑡 ) = ̃̃𝐾𝑡 − �̃�𝑡(𝐾𝑡 + 𝜎∗𝑡

2𝐼)−1(�̃�𝑡)𝑇 .

The mean value offers the prediction and the variance represents
the uncertainty of this prediction. The radial basis function kernel was
chosen for the computation of covariance matrices:

𝑘𝑡
(

𝑥𝑖, 𝑥𝑗
)

= 𝜎𝑓𝑡 exp

(

−
‖𝑥𝑖 − 𝑥𝑗‖2

2𝑙2𝑡

)

, (2.8)

where ‖𝑥𝑖−𝑥𝑗‖ denotes the 𝐿2 norm between two points in the Gaussian
process. In each local GPR model, there are three hyperparameters
associated with the kernel: length scale 𝑙𝑡, signal variance 𝜎𝑓𝑡 and
noise variance (stochasticity) 𝜎∗𝑡 . These hyperparameters are trained by
optimizing the log marginal likelihood function:

log 𝑝(𝑦train
𝑡 |𝜉∼𝜉∗ ) = − 1

2
(𝑦train

𝑡 )⊤(𝐾𝑡 + 𝜎∗2𝑡 𝐼)−1𝑦train
𝑡

− 1
2
log |𝐾𝑡 + 𝜎∗2𝑡 𝐼| − 𝑛

2
log 2𝜋.

(2.9)

The training data comes from the qMC result from [41] and the size
of the training data was chosen to match the speedup of semi-intrusive
UQ. The details of speedup calculation are introduced in Section 3.2.
As the semi-intrusive method gains a speedup of around 7 times, the
speedup of the non-intrusive method is also designed to be around
7 for comparison. Therefore, the results of 150 ISR2D simulations
from previous experiments using the quasi Monte Carlo method [41]
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are used for training. The Gaussian process surrogate model used in
non-intrusive UQ was built using GPy [46].

3. Methods

3.1. Uncertainty quantification and sensitivity analysis

Uncertainty Quantification is the analysis of uncertainty of a com-
putational model [47], including uncertainty in the model response
(forward problem), and its input (inverse problem). Sensitivity analysis
(SA) is an important part of UQ, that recognizes the effects of each
source of uncertainty on the model response variability. Here, the for-
ward propagation of uncertainty from inputs to the output of the ISR2D
model together with SA are studied. Three epistemic uncertain inputs
are considered in the estimation: blood flow velocity, endothelium
regeneration time and stent deployment depth. The blood flow velocity
is an input to the BF simulation, the endothelium regeneration time is
an uncertain parameter for the SMC model and the deployment depth
affects the computation in the IC model. The ranges of the uncertain
parameters are shown in Table 1 in Section 4.

Since ISR2D is a stochastic model, the estimates of the response
variance and partial variances in SA include the aleatory uncertainty
as well. In other words, the model stochasticity is treated as another
uncertainty source similar to the uncertain inputs. This approach was
adopted in our previous work [41, p. 764]. It is important to note
that there exist alternative approaches to deal with stochasticity in
uncertainty and sensitivity analysis, for instance [48,49].

The semi-intrusive metamodelling method involves replacing a com-
putationally expensive single-scale submodel with a surrogate which
produces an approximation to the original single scale model result in
a reduced time. The input uncertainty is propagated via the surrogate
model in the same way as for the non-intrusive method: an ensemble of
model outputs is obtained by running the model with different values
of the uncertain parameters sampled according to their distributions.
Using the obtained samples of the model response, uncertainty in the
model is estimated, analysing the probability density function, mean
and variance, as well as estimating the Sobol sensitivity indices [31,50].
The mean and the variance of the model responses at time 𝑡 are then
estimated by:

E
(

�̂�𝑡(𝜉)
)

≈ 1
𝑁

𝑁
∑

𝑗=1
�̂�𝑡(𝜉𝑗 ),

Var
(

�̂�𝑡(𝜉)
)

≈ 1
𝑁

𝑁
∑

𝑗=1
�̂�𝑡(𝜉𝑗 )2 −

(

1
𝑁

𝑁
∑

𝑗=1
�̂�𝑡(𝜉𝑗 )

)2

,

(3.1)

where �̂�𝑡(𝜉𝑗 ) is the value of the model response obtained with the 𝑗th
ampled value of the uncertain inputs 𝜉𝑗 and 𝑁 is the total number of
amples. The total Sobol sensitivity index for the 𝑖th parameter together
ith the stochastic parameter 𝜉∗ is defined by:

𝑆𝑡𝑜𝑡𝑎𝑙
𝜉𝑖 ,𝜉∗

=
Var𝑡𝑜𝑡𝑎𝑙𝜉𝑖 ,𝜉∗

Var
(

�̂�𝑡(𝜉)
) , (3.2)

where the partial variance in the numerator is approximated by [51,
52]:

Var𝑡𝑜𝑡𝑎𝑙𝜉𝑖 ,𝜉∗
≈ 1

2𝑁

𝑁
∑

𝑗=1

(

�̂�𝑡(𝝃𝑗 ) − �̂�𝑡
(

(𝝃∼𝜉𝑖 ,𝜉∗ )𝑗 , (𝜉𝑖)𝑗+𝑁 , 𝜉∗𝑗+𝑁
))2

, (3.3)

where 𝝃∼𝜉𝑖 ,𝜉∗ is a vector of all uncertain parameters in 𝜉 except 𝜉𝑖 and
the stochastic parameter 𝜉∗, and �̂�𝑡

(

(𝝃∼𝜉𝑖 ,𝜉∗ )𝑗 , (𝜉𝑖)𝑗+𝑁 , 𝜉∗𝑗+𝑁
)

denotes the
model response at time 𝑡 with the same values of all inputs as for
�̂�𝑡(𝝃𝑗 ) except of the 𝑖th input 𝜉𝑖 and of the stochastic parameter 𝜉∗.
Since the interpretation of the total sensitivity indices is the portion of
uncertainty that would remain if all other parameters were known pre-
cisely [53] and the stochasticity is the irreducible part of uncertainty,
5

the effect of stochastic uncertainty is included in the estimator in (3.3).
3.2. Speedup

The main purpose of applying SI and NI methods is to speed up the
simulation and reduce the computational cost while getting accurate
enough estimates of the uncertainties. The speedup of the UQ analysis
of these advanced methods was computed as follows:

 =
𝑁ISR

𝑁 ∗
ISR + train + sample

, (3.4)

here 𝑁 is the number of runs of ISR2D simulation in the UQ analysis.
ISR is the execution time of an ISR2D simulation with the LBM solver.

 ∗
ISR is the execution time of either an ISR2D simulation with a blood

flow surrogate model or the execution time of the surrogate model
for the non-intrusive method. train denotes the training time for the
surrogate model. sample denotes the time to generate the data necessary
for the training process.

4. Results

First, the quality of the blood flow surrogate model is evaluated.
Then, the results of UQ and sensitivity analysis based on non-intrusive
and semi-intrusive methods are compared to a previously obtained
reference solution reported in [41].

4.1. Blood flow surrogate model

Before applying the blood flow surrogate model to semi-intrusive
UQ analysis, the quality of the surrogate model was evaluated. We used
normalized mean absolute error (NMAE) on a test dataset to evaluate
the quality of the surrogate model:

NMAE =
1
2𝑘‖𝜏𝑤𝑠𝑠 − 𝜏𝑤𝑠𝑠‖

𝑚𝑎𝑥{|𝜏𝑤𝑠𝑠|}
× 100%, (4.1)

here ‖ ⋅ ‖ denotes 𝐿1 norm and 𝑚𝑎𝑥{|𝜏𝑤𝑠𝑠|} is the peak stress in the
LBM. The test dataset was generated from a single additional run of the
ISR2D simulation in addition to the training dataset and the validation
dataset. Note that the test dataset is not considered in calculating the
computational cost of the training process since the test data is not used
for training the model. Here, the test dataset is used only to illustrate
the performance of the surrogate model. Fig. 4 visualizes the wall shear
stress prediction of the CNN surrogate model and the LBM solver on
the test dataset. The averaged NMAE of the surrogate model on the
whole test dataset is around 3.63%. The results show that the CNN
surrogate model approximates the wall shear stress well in most cases.
The prediction gets slightly worse close to the outlet of blood flow.
The relatively poor prediction may be caused by extrapolation, since
the growth is stochastic, and the lumen geometry may end up with a
previously unseen irregular shape which is not covered by the training
dataset.

4.2. Uncertainty quantification and sensitivity analysis

Uncertainty in the ISR2D model response is due to the model
stochasticity and uncertainty in three model parameters. The ranges of
the uncertain parameters are shown in Table 1. These three uncertain
inputs were assumed to be uniformly distributed within the given
ranges. The model output of interest was the neointimal area as a
function of time after stenting and its uncertainty was estimated using
the non-intrusive method (NI) and the semi-intrusive (SI) method with
surrogates of the blood flow micro model. We compared the uncertainty
quantification result and sensitivity analysis result for similar values
of UQ speedup. We also show the quasi-Monte Carlo (qMC) result
from [41] as the reference solution. The total number of model runs
in both qMC and SI experiments was 1024.

Fig. 5 shows the estimates of the mean and standard deviation with

the qMC, the SI and NI methods. The mean is approximated especially
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Fig. 4. (a)–(f) Predictions of wall shear stress distribution along the upper boundary by LBM and CNN surrogate models at 0, 5, 10, 15, 20, 30 days, respectively. The corresponding
NMAEs are 3.16%, 5.51%, 4.92%, 3.92%, 3.95% and 3.32%.
Table 1
List of UQ parameters of ISR2D and their min and max values.

Uncertain parameter Range (min) Range (max) Unit

Inlet blood flow velocity 0.432 0.528 m/s
Maximum deployment depth 0.09 0.13 mm
Endothelium regeneration time 15 23 days

well for the first 10 simulated days. After this point, slightly less
average growth is observed in both SI and NI estimates than in the qMC
results. The NI estimates slightly outperformed the SI estimates. The
shape of the mean value of the neointimal area is well approximated
by both SI method and NI method. The results of the standard deviation
from the SI and NI methods also show approximately similar value to
the qMC estimator.
6

The comparison of the histogram of obtained result with three UQ
methods at 5, 10, 15, 20 and 60 days after stenting are shown in Fig. 6.
A good fit of the histograms is obtained at the early time points. For day
5 and day 10, the two sample Kolmogorov–Smirnov (K–S) test for qMC
and SI distributions produces statistics of 0.04 and 0.07 respectively,
while qMC and NI give 0.05 in both cases. At later time points, the
K–S statistic is always smaller for the results of NI estimates than with
SI estimates, which means a better fit. These plots also indicate the
ratio of restenosis cases defined by 50% occlusion of the original lumen
area [39] (shown as the vertical line). Non-zero values of this ratio are
only observed at day 20 and 60. As expected, prediction of a smaller
growth in SI resulted in a relatively smaller predicted binary restenosis
rate. The NI’s prediction is closer to the qMC result. At the final
simulation time point, NI predicted 10.3% restenosis occurrence while
SI predicted 7.7% occurrence. A summary of uncertainty estimation at
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Fig. 5. Mean and standard deviation of the ISR2D model output on the neointimal area with quasi-Monte Carlo (qMC) and with the semi-intrusive (SI) method and non-intrusive
(NI) method.
Table 2
Comparison of the estimates of means and standard deviation of neointimal growth and restenosis ratio with qMC, SI and NI methods. The
indicated error is the absolute difference from the reference qMC value. The four surrogate models for SIUQ are data-driven model I (DD I),
data-driven model II (DD II), physics surrogate model (Phys) and convolutional neural network model (CNN). See [26] for details on the Phys,
and DD I and DD II surrogates.

UQ method Micro model Mean estimation × 10−1 (mm2) Standard deviation × 10−2 (mm2) Restenosis ratio(%)

Value Error Value Error Value Error

qMC LBMa 3.04 0 7.41 0 12.2 0
SI DD Ib 2.88 0.16 7.43 0.02 8.3 3.9
SI DD IIb 2.79 0.25 7.51 0.10 6.3 5.9
SI Physb 2.26 0.78 7.98 0.57 1.1 11.1
SI CNN 2.82 0.22 7.54 0.13 7.7 4.5
NI / 2.97 0.07 7.58 0.17 10.3 1.9

aFrom [41].
bFrom [26].
Table 3
Comparison of the computational time and corresponding speedup of different approaches. The time value indicates the mean computational
time obtained over 𝑁 = 1024 samples. micro is the execution time of the micro model (LBM/surrogate models) in one ISR2D simulation. The
computations were performed on the Distributed ASCI Supercomputer DAS5 [54] with Intel Haswell E5-2630-v3 CPU.

UQ method Micro model ISR (min) ISR∗ (min) micro (min) train (min) sample (min) N Speedup of UQ

qMC LBM a 89.4 / 74.9 / / 1024 1
SI DD I b / 50.9 37.8 / 894 1024 1.72
SI DD II b / 14.6 2.05 / 447 1024 5.94
SI Phys b / 11.9 0.08 / / 1024 7.51
SI CNN / 12.8 0.26 9.9 447 1024 6.75
NI / / 0.17 / 4.3 1.1 × 104 1024 6.82

aFrom [41].
bFrom [26].
he final time step by different methods is presented in Table 2. The NI
stimations have the smallest error in the estimation of the mean and
he restenosis ratio. The SI with CNN results have a smaller error than
ome other methods for each estimator. All the SI and NI results show
statistically significant underestimation of the mean value (two-value

-test, 𝑝 < 0.01).

Fig. 7 illustrates the overall and the partial variances and Sobol
ensitivity indices as quantified using SI, NI and qMC. These quantities
ere overestimated to a certain degree by the NI method but all the
stimates are still within the confidence interval of the qMC results and
he order of the partial variances is preserved. Since both the overall
nd the partial variances are overestimated, the error is significantly
maller in the estimation of the sensitivity indices, and the indices
btained by the NI method with GP are close enough to the one
stimated by qMC. The variances estimated by the SI method are also
lose to the qMC result and all within its confidence interval. As a
esult, the total sensitivity indices are also well approximated with this
ype of method.
7

4.3. Speedup

In Table 3, the execution times and resulting speedups of the SI
and NI methods relative to the qMC method are evaluated, including
previously reported SI results from [26] for comparison. Because of the
light surrogate model, the SI approach with CNN was approximately
seven times faster than black-box qMC, an improvement of more than
a factor three over the nearest-neighbour interpolation based surrogate
model. The simplified physics model was even faster, but was also
the least accurate one, while the SI with CNN based surrogate model
provided the best uncertainty quantification and sensitivity estimates
among the four surrogates (see [26] for details on the Phys, and DD I
and DD II surrogates).

4.4. Convergence

A study of the effect of training sample size on convergence of
SIUQ and NIUQ is shown in Table 4. The mean estimation, standard
deviation and Kullback–Leibler (KL) divergence [56,57] are estimated
for the distributions at the last time step. The four semi-intrusive UQ
results are based on the surrogate models trained with the data from
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1
w

Fig. 6. Histogram of the neointimal area at different simulation times obtained with the quasi-Monte Carlo (qMC), the semi-intrusive method (SI) and non-intrusive method (NI).
Table 4
Comparison of the estimates of means and standard deviation of neointimal growth and Kullback–Leibler divergence with qMC, SI and NI
methods using different training sample size. SI/NI-X denotes a semi-intrusive or non-intrusive UQ with a surrogate model trained by the data
from X runs of ISR2D simulation. SI-1∗ denotes a semi-intrusive UQ with a surrogate model trained by the truncated data of one simulation.
The third column shows the NMAE of the surrogate model of the blood flow simulation on the validation dataset. The last column shows the
relative entropy of each output distribution compared to the output distribution of qMC result.

UQ method Micro model NMAE Mean estimation × 10−1 (mm2) Standard deviation × 10−2 (mm2) KL divergence × 10−2

Value Error Value Error

qMC LBMa 0 3.04 0 7.41 0 0
SI-1∗ CNN 6.06% 3.12 0.08 11.43 4.02 5.46
SI-1 CNN 4.49% 2.85 0.19 7.87 0.46 2.98
SI-2 CNN 3.89% 2.89 0.15 7.88 0.47 2.82
SI-4 CNN 3.63% 2.82 0.22 7.54 0.13 2.59
NI-20 / / 2.89 0.15 8.99 1.58 3.23
NI-50 / / 2.92 0.12 7.28 0.13 2.82
NI-150 / / 2.97 0.07 7.58 0.17 2.53

aFrom [41].
o
,2, and 4 ISR2D simulations respectively. SI-1∗ denotes a case in
hich the surrogate model is trained with only part of the data of
8

e

ne ISR2D simulation (the truncated data from day 0 to day 15). The
rror in standard deviation is reduced significantly with improvement
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Fig. 7. Partial and total variances (left column) and total Sobol sensitivity indices (right column) with qMC in solid lines and the SI (top row) and NI (bottom row) in dashed
lines. Each of the quantities for the uncertain inputs includes the aleatory uncertainty. The area around the qMC results is the 95% confidence interval obtained by bootstrap [55].
of the surrogate model, however the tendency in mean estimation is not
obvious. In SI-1∗, the surrogate model was trained with truncated data
of one simulation, which resulted in an overestimation of mean. When
the surrogate model was trained on complete data of one simulation
or more, the mean estimates are all shifted to minor underestimations
around 0.285 mm2. The KL divergence shows that the output distri-
bution of the SI models with a better CNN surrogate model has a
lower relative entropy compared to the qMC result, which means a
better output distribution approximation. It is important to note that
in semi-intrusive UQ, the quality of a surrogate model influences the
uncertainty estimation in a complicated way. The output of the sur-
rogate model is intermediate information in between submodels, and
the corresponding error introduced by the surrogate model might be
retained, alleviated or aggravated through other computations and fur-
ther iterations in a multiscale simulation. Therefore, the influence of the
quality of the surrogate model on the convergence of the semi-intrusive
method will be different for each multiscale model.

A significant improvement of uncertainty estimates was found when
the training sample size of the GPR surrogate model was increased from
20 to 50, especially for the standard deviation. However, adding even
more training data had limited impact on the uncertainty estimates, as
can be observed by comparing the results for NI-50 and NI-150. The
surrogate model of non-intrusive UQ is relative easier to control as the
QoIs are directly mapped from uncertain inputs. Typically, the more
information one has, the better surrogate model can be achieved.
9

5. Discussion

The CNN surrogate model performed well regarding the wall shear
stress prediction for the micro model. It takes advantage of convolution
layers to fetch latent features in the geometry input and then uses
the FC layer and deconvolution layers to map the features to the wall
shear stress prediction. Although the CNN surrogate model was able to
predict the wall shear stress quite accurately, a small error still exists.
This error introduced by the surrogate model then propagated through
the iteration and led to the error in the uncertainty estimation and
restenosis prediction as shown in Fig. 5 and Table 2. The accuracy of
the estimation with SIUQ method depends not only on the quality of the
surrogate model but also on the structure of the multiscale simulation.
However, the UQ result from the SI method suggests that the error is
small enough to produce uncertainty and sensitivity estimates close to
the ones obtained by qMC. Of course, the UQ result can be further
improved by a better CNN surrogate model, e.g by training with a larger
dataset or constructing a deeper CNN structure. But such improvement
in the surrogate model does not necessarily guarantee a significant
improvement in the uncertainty estimations. A trial experiment has
been performed on ISR2D with a better CNN surrogate model (NMAE
≈ 1%), but the improvement of the corresponding uncertainty estimates
was minuscule.

The UQ estimates with CNN surrogate model outperformed the
result of most previous surrogate models except DD I. The result with
DD I is still slightly better which may be due to the large training
dataset it used [25]. However the obtained speedup of DD I is much
lower than the CNN model, since the CNN model learned the latent
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pattern of the data, while DD I simply looked for similar cases among
all the training data. Because of this, the prediction cost of CNN is
significantly lower. The maximum expected speedup of SIUQ with a
surrogate model is limited by the computational cost of the macro
model in the multiscale simulation. It can be calculated by ISR∕macro,
which is around six times for ISR2D. However the speedup of the
SIUQ with CNN surrogate model (Table 3) is even higher than the
maximum expected value. This is because the computational cost of
the SMC (macro) model varies. It mainly depends on the number of
agents in the model. As the ISR2D with a surrogate model under-
estimates the neointimal growth which means fewer agents in the
SMC model, the corresponding computational time is reduced from
14 min to 12 min and even less. In the speedup calculation, sample
includes the data generation time for both training data and validation
data. The computational cost of this part can be further reduced by
applying a cross validation method, such as k-fold cross validation. The
cross validation requires no additional dataset but validates predictions
within the training data. However, the improvement is limited, as the
computational burden of the SIUQ method mainly comes from the
cost of the simulation multiplied by the number of samples. When the
number of samples required in UQ or sensitivity analysis is large (𝑁
n Eq. (3.4) tends to infinity), the speedup will not be affected visibly
y the cost of obtaining the surrogate model. Although the deployment
f the surrogate model reduces the computational cost, the maximum
peedup is still limited by the computational cost of the other parts of
he multiscale simulation.

In NIUQ, these other parts are also emulated by the surrogate model,
ith the speedup converging to the ratio between the time taken to run

he original model and the time taken to evaluate the surrogate as 𝑁
oes to infinity. For finite 𝑁 , the total time taken by the surrogate-
ased model may be dominated by the collection of training data, and
inimizing the required amount of data (e.g. by applying GPR with

ctive learning [58,59]) may substantially improve performance. Of
ourse, the exact amount of data required to train a surrogate model for
IUQ depends not only on the dimensionality of the input but also on

he desired accuracy. Therefore, selecting which method to apply for
chieving an efficient UQ analysis has to take into consideration the
ultiscale model itself and the requirements of the UQ analysis.

By comparing the SI and NI results at the similar computational
fficiency, one can see that uncertainty and sensitivity analysis of SI
ere as good as the NI. SI has the additional advantage of granularity,

ince only part of the model is replaced by the surrogate. This means
hat the parameters of the submodels not replaced by the surrogate
an be varied and studied without changing the surrogate, as long
s the replaced micro model is not affected. For example, in case of
he ISR2D model, different parameters and rule sets for cell behaviour
an be used with the existing surrogate model for flow. On the other
and, using a NI model for a different biological ruleset would require
ssentially building a new NI surrogate, which would incur a significant
omputational cost.

In general, both SI and NI approaches performed well. The SI
pproach is more suitable for cyclic multiscale simulations as it retains
he framework of the simulation and can obtain the training data for
he surrogate model at a relatively low cost. Another semi-intrusive UQ
trategy is to run the simulations for UQ and build the surrogate model
n the fly. Such a dynamic system should be capable of constructing
nd updating the surrogate during the simulation process, for instance,
s done by Leiter et al. [60]. In the UQ scenario, the surrogate model
an also be validated dynamically [25]. We aim to apply these tech-
iques to the three-dimensional versions of the ISR model in future
ork.

. Conclusions and future work

In order to implement uncertainty quantification and sensitivity
nalysis efficiently for the ISR2D model, a new surrogate model based
10
n a convolutional neural network was developed and applied in semi-
ntrusive uncertainty quantification method. The UQ estimate with the
ew surrogate model was compared with the result of previous work
nd a non-intrusive UQ estimates based on Gaussian process regres-
ion. The result shows that SI with the convolutional neural network
urrogate model outperformed the previously developed semi-intrusive
urrogate models. The result is also comparable to non-intrusive esti-
ates. Both SI and NI are valid methods to perform UQ in an efficient
ay for the ISR2D model.

In this study, we applied standard quasi Monte Carlo method with a
urrogate model for both non-intrusive and semi-intrusive uncertainty
uantification studies. The surrogate model in both cases will inevitably
ntroduce errors into uncertainty estimation. A multi-fidelity Monte
arlo method [61,62] can be applied here for uncertainty analysis as
oth methods require to run a certain amount of original simulation
o generate training data. Therefore a multi-fidelity framework can
ombine both high fidelity data (training data) and low fidelity approx-
mation (generated by or with a surrogate model) together to further
mprove the accuracy of uncertainty estimation. This method has been
idely used in non-intrusive UQ analysis, but has not been applied

o semi-intrusive UQ methods yet. It would be helpful to include the
ethod to our further works.

In this study, we have taken ISR2D simulation as a case study
nd investigated how three uncertain parameters: blood flow velocity,
ndothelium regeneration time and deployment depth affect the neoin-
imal area of restenosis. However, ISR2D is a simplified model for the
estenosis process. We aim to apply the UQ techniques to our more
ealistic and complex model, ISR3D [37,38], and analyse uncertainty
arameters including not only the three mentioned in this paper but
lso other factors, such as fenestration percentage, maximum strain for
MCs and others that may influence the growth. Since ISR3D is suitable
or modelling restenosis in realistic geometries, it can eventually be
sed to perform in silico clinical trials or to design novel stents. These
irections of research would require many runs of the 3D model, and
his makes it essential to run each individual simulation as cheaply as
ossible, while retaining the validity of the model. The 3D flow calcula-
ion is much more expensive in 3D; for example, the 3D simulations of
estenosis done for the InSilc project1 take around 3000 core hours for

each artery reconstructed from optical coherence tomography (OCT)
images. Substituting the flow model with a surrogate may be essential
for reducing these costs.

Semi-intrusive methods for UQ of multiscale models require mod-
ifying those models by adding new submodels or other components,
and by changing the connections between them. If the codes are tightly
coupled using a low-level communication facility such as MPI, then this
entails changing the model code and maintaining multiple versions si-
multaneously, which is cumbersome and error-prone. We have recently
created a new implementation of the multiscale coupling framework,
MUSCLE3 [63,64]. With MUSCLE3, submodels are connected to the
framework once and can then be coupled in different ways based
on a simple configuration file. Advanced non- and semi-intrusive UQ
algorithms can be implemented as additional modules, and wired into
the multiscale model without changing the code of the submodels. We
have already ported ISR3D to MUSCLE3, and aim to implement non-
and semi-intrusive UQ with MUSCLE3.
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