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Abstract. This paper strives to localize the temporal extent of an action
in a long untrimmed video. Where existing work leverages many exam-
ples with their start, their ending, and/or the class of the action during
training time, we propose few-shot common action localization. The start
and end of an action in a long untrimmed video is determined based on
just a hand-full of trimmed video examples containing the same action,
without knowing their common class label. To address this task, we intro-
duce a new 3D convolutional network architecture able to align represen-
tations from the support videos with the relevant query video segments.
The network contains: (i) a mutual enhancement module to simultane-
ously complement the representation of the few trimmed support videos
and the untrimmed query video; (ii) a progressive alignment module
that iteratively fuses the support videos into the query branch; and (iii)
a pairwise matching module to weigh the importance of different support
videos. Evaluation of few-shot common action localization in untrimmed
videos containing a single or multiple action instances demonstrates the
effectiveness and general applicability of our proposal.
Code: https://github.com/PengWan-Yang/commonLocalization

Keywords: Common action localization · Few-shot learning

1 Introduction

The goal of this paper is to localize the temporal extent of an action in a long
untrimmed video. This challenging problem [8,32] has witnessed considerable
progress thanks to deep learning solutions, e.g. [12,26,37], fueled by the avail-
ability of large-scale video datasets containing the start, the end, and the class
of the action [3,6,17]. Recently, weakly-supervised alternatives have appeared,
e.g. [1,18,24,25,31,34,43,47]. They avoid the need for hard to obtain start and
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Fig. 1. Common action localization in an untrimmed query video from three
trimmed support videos during inference. The action is localized in the query video
based on the common action in the support videos.

end time annotations, but still require hundreds of videos labeled with their
action class. In this paper, we also aim for a weakly-supervised setup, but we
avoid the need for any action class labels. We propose few-shot common action
localization, which determines the start and end of an action in a long untrimmed
video based on just a hand-full of trimmed videos containing the same action,
without knowing their common class label.

We are inspired by recent works on few-shot object detection [7,16,35,36].
Dong et al. [7] start from a few labeled boxes per object and a large pool of unla-
beled images. Pseudo-labels for the unlabeled images are utilized to iteratively
refine the object detection result. Both Shaban et al. [36] and Hu et al. [16] fur-
ther relax the labeling constraint by only requiring a few examples to contain a
common object, without the strict need to know their class name. Hu et al. [16]
introduce two modules to reweigh the influence of each example and to leverage
spatial similarity between support and query images. We also require that our
few examples contain a common class and we adopt a reweighting module. Dif-
ferent from Hu et al., we have no module to focus on masking objects spatially in
images. Instead, we introduce three alternative modules optimized for localizing
actions temporally in long untrimmed videos, as illustrated in Fig. 1.

We make three contributions in this work. First, we consider common action
localization from the few-shot perspective. All we require is that the few trimmed
video examples share a common action, which may be obtained from social tags,
hash tags or off-the-shelve action classifiers. Second, we propose a network archi-
tecture for few-shot common action localization, along with three modules able
to align representations from the support videos with the relevant query video
segments. The mutual enhancement module strengthens the representations of
the query and support representations simultaneously by building upon non-local
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blocks [44]. The progressive alignment module iteratively integrates the support
branch into the query branch. Lastly, the pairwise matching module learns to
weigh the importance of different support videos. As a third contribution, we
reorganize the videos in ActivityNet1.3 [3] and Thumos14 [17] to allow for exper-
imental evaluation of few-shot common action localization in long untrimmed
videos containing a single or multiple action instances.

2 Related Work

Action Localization from Many Examples. Standard action localization
is concerned with finding the start and end times of actions in videos from
many training videos with labeled temporal boundaries [2,9,37]. A common
approach is to employ sliding windows to generate segments and subsequently
classify them with action classifiers [5,11,37,42,46]. Due to the computational
cost of sliding windows, several approaches model the temporal evolution of
actions and predict an action label at each time step [9,27,38,48]. The R-C3D
action localization pipeline [45] encodes the frames with fully-convolutional 3D
filters, generates action proposals, then classifies and refines them. In this paper,
we adopt the proposal subnet of R-C3D to obtain class-agnostic action pro-
posals. In weakly-supervised localization, the models are learned from training
videos without temporal annotations. They only rely on the global action class
labels [30,31,43]. Different from both standard and weakly-supervised action
localization, our common action localization focuses on finding the common
action in a long untrimmed query video given a few (or just one) trimmed
support videos without knowing the common action class label, making our
task class-agnostic. Furthermore, the videos used to train our approach contain
actions that are not seen during testing.

Action Localization from Few Examples. Yang et al. [46] pioneered few-
shot labeled action localization, where a few (or at least one) positive labeled
and several negative labeled videos steer the localization via an end-to-end meta-
learning strategy. It relies on sliding windows to swipe over the untrimmed query
video to generate fixed boundary proposals. Rather then relying on a few pos-
itive and many negative action class labels, our approach does not require any
predefined positive nor negative action labels, all we require is that the few sup-
port videos have the same action in common. Moreover, we propose a network
architecture with three modules that predicts proposals of arbitrary length from
commonality only.

Action Localization from One Example. Closest to our work is video re-
localization by Feng et al. [10], which introduces localization in an untrimmed
query video from a single unlabeled support video. They propose a bilinear
matching module with gating functions for the localization. Compared to video
relocalization, we consider a more general and realistic setting, where more than
one support video can be used. Furthermore, we consider untrimmed videos of
longer temporal extent and we consider action localization from a single frame.
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To enable action localization under these challenging settings, we introduce mod-
ules that learn to enhance and align the query video with one or more support
videos, while furthermore learning to weigh individual support videos. We find
that our proposed common action localization formulation obtains better results,
both in existing and in our new settings.

Action Localization from No Examples. Localization has also been inves-
tigated from a zero-shot perspective by linking actions to relevant objects [19,
20,29]. Soomro et al. [39] tackle action localization in an unsupervised setting,
where no annotations are provided overall. While zero-shot and unsupervised
action localization show promise, current approaches are not competitive with
(weakly-)supervised alternatives, hence we focus on the few-shot setting.

3 Method

3.1 Problem Description

For the task of few-shot common action localization, we are given a set of
trimmed support videos SN

c , where N is small, and an untrimmed query video
Qc. Both the support and query videos contain activity class c, although its
label is not provided. The goal is to learn a function f(SN

c , Qc) that out-
puts the temporal segments for activity class c in the query video. The func-
tion f(·, ·) is parametrized by a deep network consisting of a support and
query branch. During training, we have access to a set of support-query tuples
T = {(SN

l , Ql)}l∈Ltrain . During both validation and testing, we are only given
a few trimmed support videos with corresponding long untrimmed query video.
The data is divided such that Ltrain ∪ Lval ∪ Ltest = ∅.

3.2 Architecture

We propose an end-to-end network to solve the few-shot common action local-
ization problem. A single query video and a few support videos are fed into the
backbone, a C3D network [40], to obtain video representations. The weights of
the backbone network are shared between the support and query videos. For the
query video, a proposal subnet predicts temporal segments of variable length
containing potential activities [45]. Let FQ ∈ R

R×C denote the feature represen-
tation of the query video for R temporal proposal segments, each of dimension-
ality C. Let FS ∈ R

ST×C denote the representations of the S support videos,
where we split each support video into T fixed temporal parts. The main goal
of the network is to align the support representations with the relevant query
segment representation:

F = φ(FQ,FS). (1)

In Eq. 1, F ∈ R
R×C denotes the temporal segment representations after align-

ment with the support representations through φ. In our common localization
network, representations F are fed to fully-connected layers that perform a
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Fig. 2. Modules for aligning representations from the support videos with the
relevant query video segments. The mutual enhancement module augments the support
and query representations simultaneously through message passing. Then, the progres-
sive alignment module fuses the support into the query branch through recursive use
of the basic block. Finally, the pairwise matching module reweighs the fused features
according to the similarity between the enhanced query segments and the enhanced
support videos.

binary classification to obtain the likelihood that each proposal segment matches
with the support actions, which is followed by a temporal regression to refine
the activity start- and end-times for all segments.

In our network, we consider the following: i) the representations of the sup-
port videos need to be aligned with the representations of the activity in the
query video, ii) not all support videos are equally informative, and iii) common
action localization is a support-conditioned localization task, where the activi-
tyness of different query segments should be guided by the support videos. We
propose three modules, namely mutual enhancement module, progressive align-
ment module, and pairwise matching module to deal with these considerations.

Mutual Enhancement Module. Building on the recent success of the trans-
former structure [41] and the non-local block [44], which are forms of self-
attention, we propose a module which can simultaneously enhance the repre-
sentations of the support and query videos from each other. The basic block for
this module is given as:

m(I1, I2) = c1(soft(c2(I1) × c3(I T
2 )) × c4(I2)) + I1, (2)

where c1, c2, c3, c4 are fully-connected layers, soft denotes the softmax activation,
and × denotes matrix multiplication. I1 and I2 denote the two inputs. A detailed
overview and illustration of the basic block is provided in the supplementary
materials. Based on the basic block, we design a mutual enhancement module to
learn mutually-enforced representations, both for query proposals and support
videos, as shown in Fig. 2. The mutual enhancement module has two streams
ms→q, mq→s that are responsible for enhancing query proposals and support
videos respectively. The inputs to the mutual enhancement module, FQ and FS ,
will be enhanced by each other:

ms→q = m(FQ,FS), (3)

mq→s = m(FS ,FQ). (4)
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Progressive Alignment Module. We also propose a progressive alignment
module to achieve a better fusion of representations from query proposals and
support videos. The idea behind this module is to reuse the basic block from
the mutual enhancement module to integrate the support branch into the query
branch. Inspired by the successful application of residual learning [14,15], we
employ a residual block to make the progressive alignment effective:

r(I ) = c1(relu(c2(I ))) + I , (5)

where c1, c2 are fully-connected layers, relu denotes the ReLU activation. A
detailed overview and illustration of the residual block is provided in the supple-
mentary materials. We first take query proposal representations from the first
module ms→q as 0-depth outcome P0. On top, we adopt our basic block m to
integrate this outcome with mq→s which has been recalibrated by our residual
block r. We perform this operation multiple times in a recursive manner, i.e.:

P0 = ms→q, (6)

Pk = m(Pk−1, r(mq→s)), k = 1, 2, . . . , n. (7)

where we set n = 3 in practice. The advantage of a progressive design is that it
strengthens the integration of the support branch into the query branch as we
increase the number of basic block iterations. By using the same efficient basic
blocks as our first module, the computational overhead is small. An illustration
of the progressive alignment module is shown in Fig. 2.

Pairwise Matching Module. In common action localization, a small number
of support videos is used. Intuitively, not every support video is equally informa-
tive for the query segments. In addition, different query segments should not be
treated equally either. To address these intuitions, we add a means to weigh the
influence between each support video and each query segment, by introducing a
pairwise matching module.

The input for the matching module are all segments of the query video
and all support videos. The pair-wise matching is a mapping PMM :
(RR×C ,RS×T×C) �→ R

S×R×1. To align the two components, we first perform
an expansion operation e on the query segments, denoted as e(Pn) ∈ R

S×R×C .
Then a pooling p is applied over the support videos along the temporal dimen-
sion, denoted as p(mq→s) ∈ R

S×1×C . Afterwards, we perform an auto broadcast-
ing operation b on p(mq→s), which can broadcast the dimension of p(mq→s) from
R

S×1×C to R
S×R×C to align with the dimension of e(Pn). For query segments

Pn and for support videos mq→s, their match is given by the cosine similarity
(cos) and �2 Euclidean distance (d�2) along the segment axis:

M = cos(Pn,mq→s) =
<e(Pn), b(p(mq→s))>

‖e(Pn)‖ · ‖b(p(mq→s))‖ , (8)

N = d�2(Pn,mq→s) = ‖e(Pn) − b(p(mq→s))‖. (9)
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We combine both distance measures:

W = PMM(Pn,mq→s) = M � σ(−N), (10)

where σ denotes the Sigmoid operation. Tensor W ∈ R
S×R×1 can be interpreted

as a weight tensor to achieve attention over the R and S dimensions. W [i, j] is
a scalar depicting the similarity between the j-th query segment representation
and the i-th support representation. For the j-th query segment representation,
W [:, j] ∈ R

S×1 corresponds to the weight for different support videos, while for
the i-th support representation, W [i, :] ∈ R

R×1 resembles the weight for different
query segments. In the end, we enforce the pairwise matching weight W:

φ(FQ,FS) = Pn � AP(W), (11)

where AP denotes an average pooling operation along the support dimension,
in other words, AP : RS×R×1 �→ R

R×1.

3.3 Optimization

To optimize our network on the training set, we employ both a classification loss
and a temporal regression loss. Different than e.g., R-C3D [45], our classification
task is specifically dependent on the few support videos. Accordingly, the loss
function is given as:

L =
1

Ncls

∑

i

Lcls(ai, a
∗
i ) +

1
Nreg

∑

i

a∗
i Lreg(ti, t∗i ), (12)

where Ncls and Nreg stand for batch size and the number of proposal segments,
while i denotes the proposal segment index in a batch, ai is the predicted prob-
ability of the proposal segment, a∗

i is the ground truth label, and ti represents
predicted relative offset to proposals. In the context of this work, the ground
truth label is class-agnostic and hence binary (foreground/background), indi-
cating the presence of an action or not. Lastly, t∗i represents the coordinate
transformation of ground truth segments to proposals.

The above loss function is applied on two parts: the support-agnostic part and
the support-conditioned part. All losses for the two parts are optimized jointly.
In the support-agnostic part, the foreground/background classification loss Lcls

predicts whether the proposal contains an activity, or not, and the regression loss
Lreg optimizes the relative displacement between proposals and ground truths.
For the support-conditioned part, the loss Lcls predicts whether the proposal
has the same common action as the one among the few support videos. The
regression loss Lreg optimizes the relative displacement between activities and
ground truths. We note explicitly that this is done for the training set only.

During inference, the proposal subnet generates proposals for the query video.
The proposals are refined by Non-Maximum Suppression (NMS) with a threshold
of 0.7. Then the selected proposals are fused with the support videos through
the mutual enhancement, progressive alignment, and pairwise matching modules.
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Table 1. Overview of the common (multi-)instance datasets. The common
instance datasets contain a single target action per video, while the common multi-
instance datasets contain more frames and more actions per video, adding to the chal-
lenge of few-shot common action localization.

Common instance Common multi-instance

ActivityNet Thumos ActivityNet Thumos

Video statistics

number of instances 1 1 1.6 14.3

number of frames 266.9 284.6 444.5 5764.2

length (sec) 89.0 11.4 148.2 230.6

number of train videos 10035 3580 6747 1665

number of val+test videos 2483 775 1545 323

Class statistics

number of train actions 160 16 160 16

number of val+test actions 40 4 40 4

The obtained representation is fed to the classification subnet to again perform
binary classification and the boundaries of the predicted proposals are further
refined by the regression layer. Finally, we conduct NMS based on the confidence
scores of the refined proposals to remove redundant ones, and the threshold in
NMS is set a little bit smaller than the overlap threshold θ in evaluation (θ = 0.1
in this paper).

Optimizing for Long Videos. The longer the untrimmed query video, the
larger the need for common localization, as manual searching for the activity
becomes problematic. In our setup, the length of the input video is set to 768
frames to fit the GPU memory. When the query video is longer than 768 frames,
we employ multi-scale segment generation [37]. We apply temporal sliding win-
dows of 256, 512, and 768 frames with 75% overlap. Consequently, we generate a
set of candidates Φ = {(sh, ψh, ψ′

h)}H
h=1 as input for the proposal subnet, where

H is the total number of sliding windows, and ψh and ψ′
h are the starting time

and ending time of the h-th segment sh. All refined proposals of all candidate
segments together go through the NMS to remove redundant proposals.

4 Experimental Setup

4.1 Datasets

Existing video datasets are usually created for classification [17,22], temporal
localization [3], captioning [4], or summarization [13]. To evaluate few-shot com-
mon action localization, we have revised two existing datasets, namely Activi-
tyNet1.3 [3] and Thumos14 [17]. Both datasets come with temporal annotations
suitable for our evaluation. We consider both common instance and common
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Table 2. Module evaluation on ActivityNet and Thumos in the common instance
setting. All three modules have a positive mAP effect on the localization performance
with only a slight increase in parameters.

ActivityNet Thumos

MEM PAM PMM one-shot five-shot one-shot five-shot

42.4 42.5 37.5 38.4

� 49.7 52.0 42.3 44.5

� � 51.3 53.6 44.8 46.0

� � 52.5 55.3 47.6 49.6

� � � 53.1 56.5 48.7 51.9

multi-instance, where the latter deals with query videos containing multiple
instances of the same action.

Common Instance. For the revision of ActivityNet1.3, we follow the organi-
zation of Feng et al. [10]. We divide videos that contain multiple actions into
independent videos, with every newly generated video consisting of just one
action and background. Next we discard videos longer than 768 frames. We split
the remaining videos into three subsets, divided by action classes. We randomly
select 80% of the classes for training, 10% of the classes for validation, and the
remaining 10% of the classes for testing. Besides ActivityNet, we also revise the
Thumos dataset using the same protocol.

Common Multi-instance. Query videos in real applications are usually uncon-
strained and contain multiple action segments. Therefore, we also split the origi-
nal videos of ActivityNet1.3 and Thumos14 into three subsets according to their
action classes without any other video preprocessing. As a result, we obtain long
query videos with multiple action instances. The support videos are still trimmed
action videos.

During training, the support videos and query video are randomly paired,
while the pairs are fixed for validation and testing. The differences between the
common instance and common multi-instance video datasets are highlighted in
Table 1.

4.2 Experimental Details

We use PyTorch [33] for implementation. Our network is trained with Adam [23]
with a learning rate of 1e−5 on one Nvidia GTX 1080TI. We use 40k training
iterations and learning rate is decayed to 1e−6 after 25k iterations. To be con-
sistent with the training process of our baselines [10,49], we use the same C3D
backbone [40]. The backbone is pre-trained on Sports-1M [21] and is fine-tuned
with a class-agnostic proposal loss on the training videos for each dataset. The
batch size is set to 1. The proposal score threshold is set as 0.7. The proposal
number after NMS is 128 in training and 300 in validation and testing.
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Fig. 3. Module evaluation by t-SNE visualization of support and query representa-
tions. Colors of query proposals indicate their overlap with the ground truth action, the
darker the better. Without our modules (left), both relevant and irrelevant query pro-
posals are near the support videos. Afterwards (right), only relevant proposals remain
close to the support videos, highlighting the effectiveness of our modules for localizing
common actions among a few videos.

4.3 Evaluation

Following [10,37], we measure the localization performance using (mean)
Average Precision. A prediction is correct when it has the correct fore-
ground/background prediction and has a ground truth overlap larger than the
overlap threshold. The overlap is set to 0.5 unless specified otherwise.

5 Experimental Results

5.1 Ablation Study

Module Evaluation. We evaluate the effect of the mutual enhancement module
(MEM), the progressive alignment module (PAM), and the pairwise matching
module (PMM) for our task on the common instance datasets. We report results
using one and five support videos in Table 2. To validate the effectiveness of our
modules, we compare to our baseline system without any modules. Here the
support representations are averaged and added to the query representations.
We observe that the progressive alignment module increases over the baseline
considerably, showing its efficacy. Adding the pairwise matching on top of the
progressive alignment or using the mutual enhancement before the progressive
alignment further benefits few-shot common action localization. Combining all
three modules works best.

To get insight into the workings of our modules for common action localiza-
tion, we have analysed the feature distribution before and after the use of our
modules. In Fig. 3, we show the t-SNE embedding [28] before and after we align
the five support videos with the 300 proposals in one query video. We observe
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Table 3. Influence of noisy support videos on common-instance ActivityNet for
the five-shot setting. The result shows that our approach is robust to the inclusion of
noisy support videos, whether they come from the same or different classes.

No noise 56.5

1 noisy support video 53.5

2 noisy support videos of different class 51.9

2 noisy support videos of same class 50.6

that after the use of our modules, the proposals with high overlap are closer to
the support videos, indicating our ability to properly distill the correct action
locations using only a few support videos. Irrelevant proposals are pushed away
from the support videos, which results in a more relevant selection of action
locations.

Few-Shot Evaluation. Our common action localization is optimized to work
with multiple examples as support. To show this capability, we have measured
the effect of gradually increasing the number of support videos, we found that
the mAP gradually increases as we enlarge the number of support videos from
one to six on common-instance ActivityNet. We obtain an mAP of 53.1 (one
shot), 53.8 (two shots), 54.9 (three shots), 55.4 (four shots), 56.5 (five shots),
56.8 (six shots). The results show that our approach obtains high accuracy with
only a few support videos. Using more than one support video is beneficial for
common action localization in our approach, showing that we indeed learn from
using more than one support video. Results stagnate when using more than six
examples.

Effect of Support Video Length. We ablate the effect of the length of the
support videos on the localization performance in Fig. 4a. We sample 16, 32,
48 and 64 frames for each support video respectively. We find that the result
gradually increases with longer support videos, which indicates that temporal
information in the support videos is beneficial to our modules for common action
localization.

Influence of Action Proportion in Query Video. Figure 4b shows that
for query videos with a dominant action, we can obtain high scores. An open
challenge remains localizing very short actions in very long videos.

Influence of Noisy Support Videos. To test the robustness of our approach,
we have investigated the effect of including noisy support videos in the five-shot
setting. The results are shown in Table 3. When one out of five support videos
contains the wrong action, the performance drops only 3% from 56.5 to 53.5.
The performance drop remains marginal when replacing two of the five support
videos with noisy videos. When two noisy support videos are from the same
class, the drop is larger, which is to be expected, as this creates a stronger bias
towards a distractor class. Overall, we find that our approach is robust to noise
for common action localization.
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Fig. 4. Ablation studies on the length of the support videos and the action propor-
tion in the query video. Both studies are on common-instance ActivityNet. Left: The
longer the support videos, the better we perform, as we can distill more knowledge from
the limited provided supervision. Right: High scores can be obtained when the common
action is dominant, localization of short actions in long videos remains challenging.

Fig. 5. Qualitative result of predictions by our approach under 1-shot, 3-shot and 5-
shot settings. Correct predictions with an overlap larger than 0.5 are marked in green,
and incorrect predictions are marked in red. The length and start-end boundary of
segment are indicated in frame numbers. (Color figure online)
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Table 4. One-shot comparison on common instance ActivityNet. Results
marked with * obtained with author provided code. In both settings, our approach
is preferred across all overlaps, highlighting its effectiveness.

Overlap threshold

0.5 0.6 0.7 0.8 0.9 0.5:0.9

Common instance

Hu et al. [16] * 41.0 33.0 27.1 15.9 6.8 24.8

Feng et al. [10] 43.5 35.1 27.3 16.2 6.5 25.7

This paper 53.1 40.9 29.8 18.2 8.4 29.5

Common multi-instance

Hu et al. [16] * 29.6 23.2 12.7 7.4 3.1 15.2

Feng et al. [10] * 31.4 25.5 16.1 8.9 3.2 17.0

This paper 42.1 36.0 18.5 11.1 7.0 22.9

Qualitative Results. To visualize the result of our method, we show three
cases in Fig. 5. For the first example, we can find the common action location
from one support video. Adding more support videos provides further context,
resulting in a better fit. For the second one, our method can recover the correct
prediction only when five support videos are used. As shown in the third case,
our method can also handle the multi-instance scenario. We show a query video
with three instances. With only one support video, we miss one instance and
have low overlap with another. When more support videos are added, we can
recover both misses.

5.2 Comparisons with Others

To evaluate the effectiveness of our proposed approach for common action local-
ization, we perform three comparative evaluations.

One-Shot Comparison. For the one-shot evaluation, we compare to the one-
shot video re-localization of Feng et al. [10] and to Hu et al. [16], which focuses
on few-shot common object detection. We evaluate on the same setting as Feng
et al. [10], namely the revised ActivityNet dataset using the one-shot setting
(common instance). Note that we both use the C3D base network. To evaluate
the image-based approach of Hu et al. [16], we use their proposed similarity
module on the temporal video proposals, rather than spatial proposals based on
author provided code [16]. The results in Table 4 show that across all overlap
thresholds, our approach is preferred. At an overlap threshold of 0.5, we obtain
an mAP of 53.1 compared to 41.0 for [16] and 43.5 for [10]. It is of interest to note
that without our three modules, we obtain only 42.4 (Table 2). This demonstrates
that a different training setup or a different model architecture by itself does not
benefit common action localization. We attribute our improvement to the better
alignment between the support and query representations as a result of our three
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Fig. 6. Five-shot comparison. We evaluate our method as well as modified versions
of Hu et al. [16] and Buch et al. [2] on all common instance and multi-instance datasets,
we obtain favourable results. Detailed numerical results are provided in supplementary
file to facilitate the comparison for the follow-up works. Best viewed in color. (Color
figure online)

Table 5. Localization from images on the common instance datasets. Our method
generalizes beyond videos as support input and outperforms Zhang et al. [49]

ActivityNet Thumos

one-shot five-shot one-shot five-shot

Zhang et al. 45.2 48.5 36.9 38.9

This paper 49.2 52.8 43.0 45.6

modules. Next to a comparison on the common instance dataset, we also perform
the same experiment on the longer multi-instance ActivityNet variant. In this
more challenging setting, our approach again outperforms the baselines. We note
that we are not restricted to the one-shot setting, where the baseline by Feng
et al. [10] is.

Five-Shot Comparison. Second, we evaluate the performance of our approach
on all datasets in the five-shot setting. We compare to a modified version of SST by
Buch et al. [2]. We add a fusion layer on top of the original GRU networks in SST
to incorporate the support feature, and then choose the proposal with the largest
confidence score. SST is used as baseline, because the approach of Feng et al. [10]
cannot handle more than one support video. We also include another comparison
to Hu et al. [16]. This time also using their feature reweighting module. The results
are shown in Fig. 6. We observe that our method performs favorably compared to
the two baselines on all datasets, reaffirming the effectiveness of our method. Also
note that even when our support videos are noisy (Table 3), we are still better than
the baselines without any noise based on Buch et al. [2] and Hu et al. [16] (39.7 and
45.4 for a threshold of 0.5 on common instance ActivityNet). The large amount of
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distractor actions in the long videos of common multi-instance Thumos results
in lower overall scores, indicating that common action localization is far from a
solved problem.

Localization from Images. Next to using videos, we can also perform common
action localization using images as support. This provides a challenging setting,
since any temporal information is lost. We perform localization from support
images by inflating the images to create static support videos. We perform a
common action localization on common instance ActivityNet and Thumos. We
compare to the recent approach of Zhang et al. [49], which focuses on video
retrieval from images. Results in Table 5 show we obtain favourable results on
both datasets, even though our approach is not designed for this setting.

6 Conclusion

In this paper we consider action localization in a query video given a few trimmed
support videos that contain a common action, without specifying the label of
the action. To tackle this challenging problem, we introduce a new network
architecture along with three modules optimized for temporal alignment. The
first module focuses on enhancing the representations of the query and support
representation simultaneously. The second module progressively integrates the
representations of the support branch into the query branch, to distill the com-
mon action in the query video. The third module weighs the different support
videos to deal with non-informative support examples. Experiments on reor-
ganizations of ActivityNet and Thumos dataset, both with settings containing
a single and multiple action instances per video, show that our approach can
robustly localize the action which is common amongst support videos in both
standard and long untrimmed query videos.
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