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Abstract

Artificial, CNN-generated images are now of such high
quality that humans have trouble distinguishing them from
real images. Several algorithmic detection methods have
been proposed, but these appear to generalize poorly to
data from unknown sources, making them infeasible for
real-world scenarios. In this work, we present a frame-
work for evaluating detection methods under real-world
conditions, consisting of cross-model, cross-data, and post-
processing evaluation, and we evaluate state-of-the-art de-
tection methods using the proposed framework. Further-
more, we examine the usefulness of commonly used image
pre-processing methods. Lastly, we evaluate human perfor-
mance on detecting CNN-generated images, along with fac-
tors that influence this performance, by conducting an on-
line survey. Our results suggest that CNN-based detection
methods are not yet robust enough to be used in real-world
scenarios.

1. Introduction
Recently, state-of-the-art CNN-based generative models

have radically improved the visual quality of generated im-
ages [21, 22]. Combined with an increasing ease of us-
ing such models by non-experts through user friendly ap-
plications (e.g. [8, 10, 39]), there is sufficient reason to be
cautious about its use by people with harmful intents. The
malicious use of technologies employing generative models
has been demonstrated with DeepFakes in the form of (re-
venge) pornography, where faces of women are mapped to
pornographic videos [8], and with DeepNude by undress-
ing women [10]. The potential of DeepFakes for political
purposes has also been demonstrated in [9, 15, 36], and has
the capability to become a significant problem in terms of
fake news and propaganda. Current state-of-the-art gener-
ative models [21, 22] go one step further and are capable
of creating fully-generated realistic images of human faces.
The development of image generation techniques will likely
have ethical, moral, and legal consequences.

1Left four are real (from the FFHQ dataset), and right four are gener-
ated by StyleGAN (trained on the FFHQ dataset).

Figure 1: Can you distinguish fake from real images? The answers
are shown below.1

Generative Adversarial Networks (GANs) [16] could be
regarded as the most promising and widely used type of
generative models for image creation and manipulation.
In only a few years of existence, many features such as:
visual image quality; image resolution; range of control
over the output; and ease of training these models have
been improved. Recently, [21] proposed StyleGAN, which
is able to generate nearly photo-realistic facial images of
1024x1024 resolution, along with some stylistic control
over the output, as presented in Figure 1. [22] has proposed
an improved version with reduced visual artefacts. To coun-
teract the development of generative models, automatic fake
imagery detection methods have gained increasing interest.
Many works focus on learning-based detection, using Con-
volutional Neural Networks (CNNs). They work well on
data similar to that seen during training, but often fail when
images are generated by other GANs [13] or when images
are post-processed [28].

Deviations in data sources and post-processing tech-
niques are inconvenient in real-world scenarios. In this
work, we refer to real-world scenarios as scenarios where
an image encountered has an unknown source and possi-
bly underwent unknown forms of post-processing after its
creation. Furthermore, an image should be of reasonable
size and should have no clearly visible alterations that low-
ers its credibility of being authentic. An example of such a
real-world scenario is a forensic setting where the authen-
ticity of an image must be determined. It is desirable that a
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Figure 2: Overview of our experimental pipeline. Two state-of-the-art detection models are evaluated under real-world scenarios with a
focus on cross-model, cross-data and post-processing scenarios. Pre-processing techniques are examined for generalizability.

detection method works well, independently of the type of
model that generated or manipulated the encountered im-
age. Another example is images encountered on social me-
dia pages, which may be unintentionally or deliberately al-
tered. Examples of unintentional alterations are compres-
sion and resampling (or resizing), which often happen when
uploading images onto social media or viewing images in a
web browser. Blurring, adding noise, and adjusting colors
are examples of deliberate alterations. We also assume that
in real-world scenarios, the majority of users that encounter
these images are not trained to detect fake images. Based on
the trend of applications using DeepFakes and the advanced
techniques to create realistic fully-generated images, we ex-
pect that the use of fully-generated images will be the next
trend for new applications. For this reason, it is important to
take both real-world conditions and fully-generated images
into consideration when evaluating detection methods.

In this work, we aim to evaluate state-of-the-art image
generation models under an approximation of real-world
conditions, using the following three categories: 1) a cross-
model scenario, where the type of model used to gener-
ate an image is unknown, 2) a cross-data scenario, where
the data used to train a generative model is unknown, and
3) a post-processing scenario, where an image is modified
with an unknown type of post-processing. For each cate-
gory we examine whether the generalizability of learning-
based methods could be improved using commonly used
pre-processing methods. Our work focuses on facial im-
ages, since most applications are targeted on facial genera-
tion or manipulation.

Our main contributions are the following:
1) We propose a framework, presented in Figure 2, consist-
ing of three types of evaluation required for robust evalua-
tion under real-world conditions: cross-model, cross-data,
and post-processing evaluation;

2) We evaluate the most promising state-of-the-art model
architectures and pre-processing methods;
3) We perform a user study with 496 participants and mea-
sure human performance of detecting state-of-the-art gener-
ated images and factors that influence this performance.

2. Related work
In this section, we review methods for CNN-generated

image detection, image pre-processing and human detec-
tion of image forgery. GANs [16] have recently emerged as
the state-of-the-art in generating realistic imagery, in terms
of image resolution and visual quality. Recent works have
been able to generate nearly photo-realistic facial images
[21, 22]. Other works focus on more control over the out-
put images, mainly in the fields of stylistic manipulation
[6, 18, 55] or semantic manipulation [17, 35, 37, 50]. Our
work includes models capable of unconditional generation
[20, 21] and conditional stylistic manipulation [6, 21, 23] of
human faces.
CNN-generated image detection Early work of CNN-
generated image detection uses handcrafted features based
on domain knowledge. Two examples of domain knowl-
edge that could be exploited are image color information
and human facial appearances [24, 30, 31, 49]. While these
methods have reasonable performance, such handcrafted
features are less applicable in real-world scenarios, where
images often do not adhere to some of the assumptions
made for these methods e.g. when faces are partially cov-
ered. In this case, the methods of [30, 49] might not work.

Following these works, learning-based methods have
been proposed, using CNNs to automatically learn features
of real and generated images [1, 3, 7, 12, 13, 40]. [13]
presents ForensicTransfer and achieves state-of-the-art re-
sults on detecting CNN-inpainted images [17, 51] and fully
CNN-generated images [6, 19, 20, 23]. Another commonly



used architecture for CNN-generated image detection is the
Xception model [7], originally proposed as image classi-
fication model trained on ImageNet [43]. [28, 42] both
evaluate several models and show that Xception yields the
best overall performance across regular and compressed im-
ages in detecting fully-generated images [28] and CNN-
manipulated images [42]. Futhermore, the evaluation of
[13] shows good performance of Xception, in some evalua-
tion setups outperforming the ForensicTransfer model. [48]
proposes a model, along with several data augmentation
procedures, to detect fully-generated images of unknown
sources. The results suggest that increasing the number
of image classes, as well as randomly blurring and com-
pressing images during training, increases the robustness of
CNN-based detectors, yielding good results in cross-model
and post-processing scenarios. [27] finds that real and fake
images have textural differences and exploit this by propos-
ing a Gram-Net model architecture to focus on global image
textures, yielding good results in cross-model, cross-data,
and post-processing scenarios.

We select ForensicTransfer [13] and Xception [7] for our
evaluation. We did not take the architectures of [27] and
[48] into account, since they were not published yet at the
time this research was conducted. Given that these works
are extensions of the state-of-the-art models we expect our
results are still valid since our work focuses on different
types of pre-processing techniques and datasets. We also
evaluate an in the wild scenario exclusively for facial im-
ages. Additionally, we are the first to perform a large scale
user study that compare human performance under realistic
conditions to model performance.
Image pre-processing Pre-processing an image before
passing it to a CNN-based model is not uncommon in the
field of image forgery detection and has been studied by
several works [5, 11, 12, 13, 24, 25, 33, 41]. The motiva-
tion is to enrich or focus on specific information in the im-
age, such that learning the difference between real and gen-
erated (or manipulated) might be more fruitful. As shown
by [2, 29, 52], CNN-generated images have pixel patterns
dissimilar to real images, which might become more dis-
tinctive by learning more intrinsic (pixel-level) image fea-
tures, such that detection models might generalize better to
unseen (e.g. model-unaware) fake images.

Several works on image forgery detection [12, 13, 25,
32, 41] include high-pass filters as a way to accentuate
the high-frequency structure of an image. Another type
of pre-processing is color transformation, where non-RGB
color information is used to detect forgeries. [24] has
shown the effectiveness of detecting generated images, us-
ing HSV (hue, saturation, value) and YCbCr (luma, red-
chroma difference, and blue-chroma difference) color in-
formation along with a feature-based approach. Lastly,
several works use co-occurrence matrices to focus on ir-

regularities in pixel-patterns, for example in steganalysis
[12, 14, 38, 45, 46] and detection of forged images [11, 12].
Recently, [33] has used this approach for detecting CNN-
generated images, suggesting good performance in several
evaluation scenarios. Most works seem to evaluate one type
or class of pre-processing method(s) with one model archi-
tecture [13, 32, 33]. The interaction between pre-processing
methods and model architectures remains unclear as well as
the benefits of pre-processing methods. In our work, we fo-
cus on these interactions by examining three common types
of pre-processing: 1) high-pass filters, 2) co-occurrence ma-
trices, and 3) color transformations.
Human detection of image forgery Humans have trouble
distinguishing forged images from authentic images, espe-
cially when no comparison material is provided to them
[34, 44, 53]. Examples include detection of erase-fill, copy-
move, cut-paste, and changes in reflections. [42] shows that
humans have trouble detecting CNN-modified images.

Recent work by [54] addresses human performance on
fully-generated GAN-images specifically. However, their
aim is to evaluate the quality of GAN-images, not the hu-
man detection capabilities. Their results show that Style-
GAN images generated using the truncation trick are per-
ceived as more realistic [54]. The truncation trick refers
to how far away a latent style vector is sampled from the
average latent style vector, which determines the amount
of variety in the generated image. Furthermore, images of
64x64 resolution are harder to distinguish from real than
1024x1024 images. However, images of this small size do
not occur often in real-world scenarios. Lastly, [27] ex-
amines human performance of detecting GAN-generated
images as a direct comparison with algorithmic detection.
Therefore, they train humans by showing many examples,
and then test them with novel examples, resulting in an
average classification score of 63.9% for the FFHQ vs
StyleGANFFHQ scenario. While this yields an indication
for upper bound performance of humans, it does not ex-
amine performance of untrained humans, and factors that
influence performance, making it difficult to project the re-
sults to real-world scenarios.

This work attempts to determine human performance
under an approximation of real-world conditions. It dif-
fers from [27] since we do not pre-train participants, and
measure the performance related to intermediate feedback.
Moreover, it differs from [54] since we do not include any
time constraints or training phase and evaluate more logical
image resolutions. Lastly, we examine the influence of AI-
experience on human performance, and image cues humans
use to recognise generated images.

3. Methods & Experimental Setup
Figure 2 gives an overview of our method. Each compo-

nent will be discussed next.



3.1. Datasets

Real images CelebA-HQ (CAHQ) [20] and Flickr-Faces-
HQ (FFHQ) [21] are selected as datasets for real images.
The first is a high-quality version of the original CelebA
dataset [26], consisting of 30K front view facial pictures
of celebrities. Note that high-quality refers to several pro-
cessing steps as discussed by [20], yielding high-resolution
and visually appealing images. The second is a dataset with
70K high-quality front view pictures of ordinary people, of
which the first 30K are selected.
Generated (fake) images We use five datasets of gener-
ated images for evaluation under real-world conditions: 1)
StarGANCAHQ [6], 2) GLOWCAHQ [23], 3) ProGANCAHQ

[20], 4) StyleGANCAHQ [21], and 5) StyleGANFFHQ [21].
The first two datasets are provided by [13]. StarGAN and

GLOW are conditional generative models that transform the
style of an input image to some desired style. The datasets
are created by taking a CAHQ image as input, randomly se-
lecting a facial attribute out of a small set of attributes (e.g.
hair color), and generating the corresponding image with
either the StarGAN or GLOW model. GLOW is not a GAN
but a flow-based deep generative model. The third dataset
consists of images generated by ProGAN, an unconditional
GAN that generates high-resolution facial images. We use
the dataset provided by [20].

For the last two datasets, we use images generated by
StyleGAN. StyleGAN could be regarded as the state-of-the-
art GAN in terms of visual quality [54], strengthened by
high-resolution images and some stylistic control over the
output. We use two variants of StyleGAN images to eval-
uate cross-data performance. For the first variant, we use
the dataset by [21]. From the available sets of images gen-
erated with different amounts of truncation, we select the
set generated using ψ = 0.5. Note that these images are
generated by a model trained on FFHQ images. There is no
public StyleGANCAHQ dataset, thus we generate images us-
ing a model pre-trained on CAHQ images (with ψ = 0.5).
The motivation for selecting ψ = 0.5 and the creation of
StyleGANCAHQ are discussed in further detail in Section
A.1 of the supplementary material.

For each dataset, we use 30K images, split into training
(70%), validation (20%), and test (10%) sets. The amount
of real and fake images seen during training and testing is
equal. During training, images are rescaled to match the
corresponding input layer size of both models.

3.2. Pre-processing

For pre-processing techniques we use high-pass filters,
co-occurrence matrices, and color transformations, since
these have recently been demonstrated to work well in
CNN-generated image detection [13, 33, 24]. For each of
these three categories, one or multiple variants have been
experimented with. We select the best performing methods

Regular image Res1 filtered Res3 filtered Cooc filtered

Figure 3: Visualization of several pre-processing methods using a
StyleGANFFHQ image. Note that HSV is not visualized since it is not
meaningful to display using RGB color conventions.

to be included in the results. A visualization of these meth-
ods is shown in Figure 3. Res1 is a first-order derivative
filter: [1 −1] [4, 14]. It is included as baseline high-pass
filter. Similar to [13], this filter is applied in horizontal and
vertical direction in parallel and the resulting channels are
concatenated, yielding 6 image channels. Res3 is a third-
order derivative filter: [1 −3 3 −1] [12, 13]. Again, it is
applied similarly to Res1 and is equal to the RES filter used
by [13]. Note that we have experimented with other im-
plementations (i.e. applying the filter horizontally and ver-
tically in sequence, yielding three channels) but these per-
formed worse, thus choosing the implementation by [13].
Cooc calculates the co-occurrence matrix of an input im-
age, similar to [33]. This is done by a matrix multiplication
of the original image with its transpose, resulting in three
image channels. HSV converts to the hue, saturation, value
(HSV) color space, resulting in three image channels. This
is inspired by [24], who use HSV and YCbCr color spaces,
as discussed in Section 2. Our initial experiments showed
better performance of HSV, so YCbCr is not considered.

3.3. Model architectures

Based on the work of [13, 28, 42], we select Xception
[7] and ForensicTransfer [13] as state-of-the-art model ar-
chitectures for CNN-generated image detection. Xception
(X) [7] is a deep CNN with depth-wise separable convo-
lutions [7], inspired by Inception modules [47], and has
shown good performance in multiple image forgery detec-
tion tasks [13, 28, 42], both for regular and compressed
images. ForensicTransfer (FT) is a CNN-based encoder-
decoder architecture, which learns to encode the properties
of fake and real images in latent space, outperforming sev-
eral other methods when combined with high-pass filtering
the images, or using transfer learning for few-shot adapta-
tion to unknown classes [13]. Images are classified as real if
the real partition in latent space is more active than the fake
partition, and vice versa. The training procedures for both
models are described in Section A.2 of the supplementary
material.



3.4. Evaluation

To examine the performance of detection methods under
real-world conditions, we include five types of evaluation.
Default (fully aware) In the easiest setup, test images are
created by the same generative model as train images and
are from the same data distribution. These test images
are not further manipulated. This setup gives an upper
bound on the performance of a detection method, but has
no correspondence to a real-world scenario. We test this for
StyleGANCAHQ and StyleGANFFHQ.
Cross-model (model-unaware) In a real-world scenario,
many generative models exist and new models will be cre-
ated in the future. In this setup, test images are generated by
one or multiple different models than images in the training
set. The detection model has no examples of similar test im-
ages. In our work, we evaluate the performance of 1) detect-
ing StarGANCAHQ, GLOWCAHQ, and ProGANCAHQ when
trained on StyleGANCAHQ, and 2) detecting StyleGANFFHQ

with ψ ∈ [0.7, 1.0] when trained on ψ = 0.5.
Cross-data (data-unaware) In a real-world setting, numer-
ous different datasets could be used to train a generative
model, each with their own biases and pre-processing meth-
ods, which have a large impact on the generated images.
Thus, it is needed to evaluate how detection models can
generalize to unknown images used for training a generative
model. In this setup, the data used for generating training
images differs from the data used for generating test images.
The model may be equal or different. In our work, we evalu-
ate the performance of detecting StyleGANFFHQ test images
when trained on StyleGANCAHQ images and vice versa.
Post-processing(-unaware) When images are uploaded to
and downloaded from the internet, they are likely to un-
dergo several types of post-processing, such as compression
and resampling. On the other hand, images could be manip-
ulated to make them less detectable, for example with blur
and noise addition. In our work, we select two types of tech-
niques, JPEG compression and Gaussian blurring, and eval-
uate how different amounts of post-processing influence the
detection of StyleGANFFHQ images. We evaluate several
degrees ranging from hardly visible to clearly visible to the
human observer.
In the wild This mimics a real-world scenario where a
detection model has access to all currently known state-
of-the-art models and encounters images generated by a
newer model. In our case, one detection model is trained
on multiple known sources (StarGANCAHQ, GLOWCAHQ

and ProGANCAHQ), and evaluated on unknown sources of
higher visual quality (StyleGANCAHQ and StyleGANFFHQ).

4. Online survey

To examine how well humans can identify state-of-the-
art fake images, we conduct a user study with 496 partic-

Figure 4: Each participant is randomly assigned to the control-group or
feedback group. Then he/she sees 18 images sequentially of varying reso-
lutions and must decide for each image whether it is real or fake.

ipants. We also study what influences their performance.
A schematic overview of the survey is given in Figure 4.
Each participant is randomly assigned to the control-group
or feedback group. It then sees 18 images sequentially of
varying resolutions and must decide for each image if it
is real or fake. The whole process of survey design is de-
scribed in Section B of the supplementary material.

Note that our experiments aim to estimate how well hu-
mans would perform in real-world scenarios, by examining
several real-world factors that could influence this perfor-
mance. These include 1) image resolution (measured with
three resolutions), 2) how well people are trained (measured
with a feedback and control group), and 3) AI-experience
(measured with a question after completing the survey).

5. Results

5.1. Algorithmic detection

Table 1 shows results of training on StyleGANCAHQ (left)
and StyleGANFFHQ (right) images, along with cross-model
and cross-data performance. It is important to note that we
show the accuracy per dataset, and not the average accu-
racy of real and fake images combined. For this reason, the
performance on the real and fake datasets do not add up to
100%. For example, when a model is not able to detect fake
images and classifies every image as real, the accuracy we
report for the dataset with fake images will be 0%. This is
done to get a better understanding of how well each model
can detect generated images, since real images are, with few
exceptions, detected with high accuracies.
Default (fully aware) In the Default columns of Ta-
ble 1 we see that both Xception and ForensicTrans-
fer have a nearly perfect performance for both fake
images (StyleGANCAHQ/StyleGANFFHQ) and real images



Model Default Cross-model Cross-data Default Cross-model Cross-data

Pre-
process Arch.

StyleG
(CAHQ)

CAHQ GLOW
(CAHQ)

ProG
(CAHQ)

StarG
(CAHQ)

StyleG
(FFHQ)

FFHQ StyleG
(FFHQ)

FFHQ StyleG
ψ = 0.7

StyleG
ψ = 1.0

StyleG
(CAHQ)

CAHQ

– X 99.6 99.8 0.3 1.0 0.2 5.9 99.8 99.9 100 97.3 84.1 0.2 100
FT 98.3 99.3 0.3 88.9 97.5 44.7 60.7 99.2 100 97.8 94.3 0.01 100

Res1 X 91.6 96.8 0.9 65.2 37.8 37.8 69.2 91.2 100 91.8 84.5 0.2 99.9
FT 99.5 95.4 31.2 88.9 100 90.2 28.4 91.3 90.9 89.1 83.5 8.8 93.9

Res3 X 72.2 45.6 49.9 65.7 57.8 62.1 39.8 54.5 98.6 54.4 51.2 2.5 98.7
FT 93.3 89.9 36.6 65.2 99.5 87.8 36.7 72.5 75.4 70.4 67.1 30.8 84.0

Cooc X 95.0 96.4 2.1 12.9 2.8 31.2 95.3 93.6 97.4 63.5 18.6 13.7 98.7
FT 79.6 77.8 2.3 37.3 26.8 32.4 83.8 80.4 91.5 52.9 23.7 20.6 91.8

HSV X 99.9 99.8 3.0 63.6 12.2 44.7 87.6 99.9 99.9 98.3 87.9 0.2 99.9
FT 93.7 97.9 33.0 79.5 81.8 46.8 56.8 98.7 99.9 96.7 91.3 0.1 100

Table 1: Evaluation of default, cross-model, and cross-data performance. The first setup uses StyleGANCAHQ (ψ = 0.5) as a training dataset
and tests on 1) StyleGANCAHQ images (default evaluation), 2) GLOWCAHQ, ProGANCAHQ and StarGANCAHQ images (cross-model), and 3)
StyleGANFFHQ images (cross-data). The second setup uses StyleGANFFHQ (ψ = 0.5) as a training dataset and tests on 1) StyleGANFFHQ
images (default evaluation), 2) StyleGANFFHQ (ψ = 0.7 and ψ = 1.0) images (cross-model), and 3) StyleGANCAHQ images (cross-data).
On the left side, we denote the type of pre-processing and model architecture, where X denotes Xception and FT denotes ForensicTransfer.
We have also abbreviated StyleG(AN)CAHQ, ProG(AN)CAHQ, and StarG(AN)CAHQ for visualization purposes. Real image datasets are
cursive (CAHQ and FFHQ). Best accuracies per dataset (i.e. column) are bold. Accuracies are averaged over 5 runs.

(CAHQ/FFHQ). The third-order derivative filter seems to
harm the performance the most for both model architectures
and both datasets.
Cross-model (model-unaware) For the cross-model setup,
we see in Table 1 that ForensicTransfer retrieves high
performance for detecting ProGANCAHQ (88.9%) and
StarGANCAHQ (100%) images. For ProGANCAHQ and
StarGANCAHQ, the first order derivative filter yields slightly
better results than using no filter. In our second setup, we
train on StyleGANFFHQ and evaluate cross-model (parame-
ter) evaluation. Note that this type of cross-model evalua-
tion refers to the same model (ψ = 0.5), but using another
truncation (ψ = 0.7 and ψ = 1.0) for generating images,
results in differences between training and testing images.
The larger the difference between the ψ values for train-
ing and testing, the lower the accuracy for detecting fake
images. We also see this trend for different pre-processing
techniques. For example, the performance for using the co-
occurence matrix results in a drop of 45% for Xception and
29% for ForensicTransfer.
Cross-data (data-unaware) In Table 1 for both Xception
as well as ForensicTransfer there is a trade-off between
detecting fake and real images. Xception labels all im-
ages (99.8%) as true when no pre-processing is used. In
the same scenario, ForensicTransfer is able to detect fake
StyleGANFFHQ images in 45% of the cases, but as a conse-
quence detecting FFHQ as real drops to 60%. Using first or
third order derivative filters for ForensicTransfer increases
the performance for generated images, but decreases the
performance for real images. For cross-data performance
in our second setup, there is a an increase in performance
of detecting StyleGANCAHQ images, when using Forensic-
Transfer together with third order derivative filters or the co-
occurrence matrix. This increase from 0 to 20-30% is still

far from a good performance. Based on our results, there
is no clear model or pre-processing method that stands out
as best. ForensicTransfer has relatively high cross-model
and cross-data performance, and seems to benefit slightly
from high-pass filters, at the cost of a small drop in default
performance. However, high-pass filters decrease perfor-
mance for Xception, which seems to benefit slightly from
HSV transformation.
Post-processing(-unaware) This evaluation consists of
three levels of Gaussian blur, from a standard normal distri-
bution with different kernel sizes, and three levels of JPEG
compression using different quality factors. The results are
presented in Table 2. For each type of evaluation, the dif-
ference between training and testing images increases grad-
ually to the right (e.g. QF=90 is almost no compression,
and QF=10 is severe compression). Without pre-processing
techniques, Xception is much more robust to blur and com-
pression, and shows nearly no drop in performance for the
smallest amounts. For example, when using a 3x3 kernel
for Gaussian blur Xception is able to detect StyleGANFFHQ

images with 98.9% accuracy, while ForensicTransfer only
detects 18.1% of the cases. Again, ForensicTransfer seems
to benefit slightly from high-pass filters, while these dete-
riorate Xception performance. In this setup, HSV does not
benefit Xception as much, making performance on cross-
model and post-processing worse. Cooc shows no evident
pattern in performance.
In the wild As shown in Table 3, cross-model de-
tection is still low when training on images generated
by different models. When examining the average ac-
curacy of real images and unseen generated images
(StyleGANCAHQ/StyleGANFFHQ), we observe that Xception
without pre-processing performs best (62.4%), followed by
X-Cooc (61.2%) and FT-Res1 (60.5%). The other methods



Model Default Post-processing

Gaussian blur JPEG compression

Pre-
proc. Arch. StyleG

(FFHQ)

3x3
kernel

9x9
kernel

15x15
kernel QF=90 QF=50 QF=10

– X 99.9 98.9 1.7 0.0 99.5 95.8 28.4
FT 99.2 18.1 0.0 0.0 0.1 0.2 0.1

Res1 X 91.2 71.8 0.2 0.0 43.0 5.3 0.4
FT 91.3 79.5 21.9 12.4 8.0 1.4 0.9

Res3 X 54.5 11.0 0.8 1.3 16.9 6.3 5.7
FT 72.5 66.4 65.7 64.1 17.7 5.9 3.8

Cooc X 93.6 92.3 39.6 0.8 93.0 91.9 75.5
FT 80.4 79.1 60.4 56.1 72.9 51.3 6.4

HSV X 99.9 91.9 1.9 0.1 79.0 55.3 11.2
FT 98.7 17.7 0.0 0.0 0.1 0.0 0.0

Table 2: Evaluation of post-processing evaluation techniques using
StyleGANFFHQ as a training dataset and testing on 1) StyleGANFFHQ
images (default), 2) StyleGANFFHQ images with different amounts of
Gaussian blur (three kernel sizes), and 3) StyleGANFFHQ images with
different amounts of JPEG compression (three quality factors). The
layout is similar to the previous table.

yield an average accuracy close to 50% (with a balanced
amount of real and generated images). Lastly, some pre-
processing methods seem to decrease default performance.

5.2. Human performance

In Table 4, the results of our survey with 496 participants
are presented. Note that in all tables, real refers to an au-
thentic image from the FFHQ dataset, while fake refers to
a generated image from the StyleGANFFHQ dataset. Out of
all images, 70.1% are labelled correctly. For real images,
the average accuracy is 74.8%, while for fake images it is
65.3%. In the following, we examine the results of 1) in-
termediate feedback, 2) resolution, 3) AI-experience, and
4) upper and lower bound. The cues humans use to distin-
guish these images are analysed in Section C of the supple-
mentary results.
Feedback Table 4 shows the average results of the group
with intermediate feedback (N=233) and the group without
(N=263). As shown, performance on real images is nearly
identical, while performance on fake images is roughly 10%
higher, suggesting that participants can better learn to rec-
ognize fake images when receiving intermediate feedback.
This is supported by an independent samples t-test, yield-
ing a p-value of< 0.005 (with a t-statistic of 3.3). Note that
only 18 images are evaluated in total, and this effect might
be larger with more images. As a sanity check, the distri-
bution of AI-experience among both groups is examined,
which is nearly equal.
Image Resolution When comparing performance with dif-
ferent image resolutions, Table 4 shows that average detec-
tion accuracy of real and fake images decreases when im-
ages of lower resolution are presented. However, for real
images this decrease is small, while for fake images the
difference between highest and lowest resolution is 22.5%.
Note that each participant sees 3 real and 3 fake images of

Model Default Cross-model

Pre-
proc. Arch. FFHQ CAHQ StarG

(CAHQ)

GLOW
(CAHQ)

ProG
(CAHQ)

StyleG
(CAHQ)

StyleG
(FFHQ)

Avg*

– X 99.9 99.9 100 100 99.7 49.5 0.1 62.4
FT 89.3 99.1 100 99.9 78.8 7.9 10.4 51.7

Res1 X 99.6 99.7 97.6 98.5 97.6 2.9 0.2 50.6
FT 65.8 86.6 100 100 84.4 50.0 39.5 60.5

Res3 X 43.0 41.0 83.5 81.6 78.8 52.8 58.0 48.7
FT 49.7 43.6 100 100 76.3 76.3 45.6 53.8

Cooc X 97.3 96.4 99.2 99.6 94.3 50.1 0.8 61.2
FT 27.6 15.7 88.4 85.7 86.8 86.3 69.3 49.7

HSV X 99.9 100 100 100 99.7 12.5 0.02 53.1
FT 91.2 94.3 100 100 82.8 28.3 6.1 55.0

Table 3: Evaluation of ’in the wild’ scenario. The models are trained on
two datasets of real images (CAHQ and FFHQ) and three datasets of gen-
erated images (StarGANCAHQ, GLOWCAHQ, and ProGANCAHQ). They
are tested on two versions of StyleGAN images, that are not seen during
training. The layout is similar to the previous tables. * Average of FFHQ,
CAHQ, StyleGANCAHQ and StyleGANFFHQ, with an equal amount of
real and generated images.

Total
avg

Intermediate
Feedback

Image
resolution AI-experience

No Yes 10242 5122 2562 Little Much

Real images 74.8 74.8 74.9 78.0 75.0 71.6 66.4 82.2
Fake images 65.3 60.4 70.9 76.5 65.5 54.0 57.1 72.6
All images 70.1 67.6 72.9 77.2 70.2 62.8 61.7 77.4

Table 4: Average accuracies of labelling real and fake images among 1) all
participants, 2) participants without/with intermediate feedback, 3) images
of different resolution, and 4) participants with little/much AI-experience.

each resolution, but the selected images and order of pre-
senting are completely random, excluding the possible in-
fluence of learning. The differences between resolution are
tested with a one-way ANOVA test, yielding a p-value of
<< 0.001 (with F-statistic 49.7). When performing post-
hoc evaluation, we see that all group means differ much
more than the standard error, suggesting that a lower image
resolution makes an image significantly harder to classify,
for the resolution tested in our survey. This is likely due to
details and artefacts being less visible on smaller scales.
AI-experience Table 4 shows the detection accuracies
among two groups of participants with different levels
of AI-experience. The first group (N=259) has much
AI-experience, and consists of AI-students, teachers, and
professionals. The second group (N=218) has little AI-
experience and consists of all others. As shown, the av-
erage level of AI-experience within a group seems to have
a large influence on detection performance. For real and
fake images combined, the difference between little and
much AI-experience is roughly 15%. This difference is sup-
ported by an independent samples t-test, yielding a p-value
of << 0.001 (with a t-statistic of 10.7). Note that people
with little AI-experience recognize fake images correctly in
57.1% of the cases, which is slightly better than random.
Upper and Lower Bound The upper and lower bound of
human performance is examined in Table 5. This is done



Upper bound Lower bound

Much AI
experience

Little AI
experience

Much AI
experience

Little AI
experience

Real images 85.4 69.6 78.9 61.0
Fake images 86.7 76.6 54.9 37.0
All images 86.0 73.1 66.9 49.0

Table 5: Average accuracies of labelling real and fake images in different
setups, ranging from the most easy setup (left columns), which denote av-
erage performance of participants with feedback for 1024x1024 images,
to the most difficult setup (right columns), which denote average perfor-
mance of participants without feedback for 256x256 images. Within both
groups, the performance of participants with little or much AI experience
is shown.

by evaluating the easiest scenario (i.e. with feedback and
1024-res. images) and hardest scenario (i.e. without feed-
back and 256-res. images). Within both scenarios, the dif-
ference between little and much AI-experience is examined.
As becomes clear in Table 5, the highest average detection
accuracy for fake images is 86.7% and the lowest is 37.0%.
Comparison to algorithmic performance A comparison
of algorithmic and human performance on StyleGANFFHQ

data is presented in Figure 5. The upper bound scenario
approximates the most easy setup for both. For algorith-
mic detection this is the case when the model is trained and
tested on the same dataset (StyleGANFFHQ). For humans
this is the upper bound as shown in Table 5. The real-
istic scenario approximates real-world conditions. For al-
gorithmic detection, we formulate this as the ’in the wild’
scenario as shown in Table 3, where only StyleGANFFHQ

results are used. For humans it includes three variants (dis-
played from left to right in Figure 5): 1) an optimistic realis-
tic scenario, assuming humans have average AI-experience,
learn to recognise fake images with feedback, and mainly
see high-resolution images (512 and 1024), 2) an average
realistic scenario (estimated by the average of all survey re-
sults), and 3) a pessimistic realistic scenario, assuming hu-
mans have low AI-experience, do not receive feedback, and
see images of all resolutions. Lastly, the lower bound sce-
nario presents the results of the most difficult setup. For
humans this is the lower bound as shown in 5. For algo-
rithmic detection, the lower bound is set at 50%, which is a
random guess in our two-class classification task with bal-
anced class sizes. Note that its performance in the realistic
scenario is already close to 50%.

6. Conclusion & Discussion
Our work has evaluated two state-of-the-art models for

detecting CNN-generated images, and has proposed three
types of evaluation, along with an ’in the wild’ setup, for
mimicking real-world conditions in which such detection
models will be used. Furthermore, we evaluated the benefits

Figure 5: Comparison of algorithm and human performance in different
scenarios.

of several commonly used pre-processing methods.
Based on our algorithmic experiments, we can conclude

that performance in the easiest (default) scenario doesn’t
generalize well to other evaluation scenarios. Forensic-
Transfer seems more robust in cross-model performance,
whereas Xception seems more robust in post-processing
performance. Unfortunately, there is no single type of pre-
processing that increases performance in multiple scenar-
ios, and an increase in one evaluation setup is often paired
with a decrease in other setups. Furthermore, the benefits of
pre-processing methods are not guaranteed for both models;
i.e. high-pass filters work much better for ForensicTransfer
than for Xception. Our results emphasize the importance of
evaluating multiple scenarios. We emphasize the need for
a benchmark dataset including images generated by multi-
ple models, such that these types of evaluation can be per-
formed and compared to related work.

The results of the survey suggest that humans have trou-
ble recognizing state-of-the-art fake images, which are cor-
rectly classified in roughly two-thirds of the cases. Our re-
sults suggest that the capability of detecting fake images
could be influenced by several factors that may be of impor-
tance in real-world scenarios, such as AI-experience, image
resolution, and feedback. When combining these factors,
we see large differences between the best and the worst case
(86.7% as opposed to 37.0% of fake images correctly rec-
ognized). These results emphasize the need for algorithmic
detection methods to support humans in recognizing such
images, as well as more research into the factors that in-
fluence human performance. Based on our comparison be-
tween algorithms and humans, we see that humans perform
better than our models in the realistic scenario. However,
from our upper bound performance we can conclude that
models can outperform humans when trained and employed
correctly. We encourage future work to pay more attention
to extensiveness of evaluation which will result in more ro-
bust models for real-world scenarios.
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This supplementary material discusses more implemen-
tation details of our algorithmic pipeline (Section A), addi-
tional information on how the survey is constructed (Sec-
tion B), and insights about image cues that participants use
to recognize fake images (Section C).

A. Implementation Details
A.1. Creation of StyleGANCAHQ dataset

We generate images using a model pre-trained on CAHQ
images, because there is no public dataset of such images.
For generation we make use of the truncation trick [19],
which refers to the stylistic sampling radius (denoted by ψ)
in the latent style vector. In other words, it refers to how
much the style of the image to be generated should be sim-
ilar to or divergent from the average style in the training
data, where style refers to the characteristics of the full im-
age, with a large focus on the person (i.e. facial area) in the
image, and a minor focus on the background. In our initial
experiments, this latent sampling radius is uniformly sam-
pled from [0, 1]. However, the set of images with ψ ≈ 0
appears to be very homogeneous and predictable, without
much geometrical variation. On the other hand, using a
large value (i.e. ψ ≈ 1) results in original but unrealistic im-
ages with many artefacts. This is demonstrated in Figure 1.
Both types of images do not represent real-world scenar-
ios, where images are realistic and varied. Based on visual
inspection of many images within the range of ψ ∈ [0, 1],
it seems that a good trade-off between quality and variety
seems to be somewhere around ψ ≈ 0.5. Thus, the dataset
is generated using ψ = 0.5, where each image is generated
by passing a random noise vector (i.e. no style transfer).

A.2. Training procedure

We train all models using the settings of [12], unless
otherwise specified. We use a batch size of 64 for Foren-
sicTransfer and 32 for Xception due to its higher memory
demands. We evaluate two optimizers (SGD and Adam)
and find that on average, SGD slightly outperforms Adam.
Thus, we use SGD using a learning rate of 0.01, momentum
of 0.9, and weight decay of 0.0001. We stop training after

(a) Generated with ψ ≈ 0.

(b) Generated with ψ ≈ 0.5.

(c) Generated with ψ ≈ 1.

Figure 1: Manually selected images generated by
StyleGANCAHQ with different quantities of the truncation
trick. Note that this results in a trade-off between visually
realistic (i.e. with ψ ≈ 0) and original/varied images (i.e.
with ψ ≈ 1).

3 epochs of no improvement, as we observe that overfitting
tends to be slightly higher when we use 30 epochs as done
by [12]. All models are trained on a single Nvidia Titan V
GPU and take roughly 1-3 hours of training time per model.

We evaluate the influence of a pre-trained Xception
model on Imagenet in combination with pre-processing
methods, and find that it performs worse with pre-trained
weights. This is likely due to the large difference between
images using for pre-training and our pre-processed images.
Thus, we choose Xception to be trained from scratch, using
weights randomly initialized from a normal distribution.

Lastly, we evaluate the influence of a random seed.
Based on initial experiments, we observed some models and
pre-processing methods to be unstable. For example, train-
ing with one random seed leads to a high test set accuracy,
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while another random seed leads to a much lower accuracy
on the same dataset. This effect is even stronger for cross-
model or cross-data test sets. To minimize the influence
of a random seed on the results, 5 instances of each model–
pre-processing pair are trained, each initialized with another
random seed. Then, the performance (i.e. accuracies, not
predictions) is averaged over the 5 instances. Every score
reported in the results section is therefore an average of 5
model instances.

B. Survey design
This section describes six important elements of the sur-

vey design, including 1) the selection of images, 2) the gath-
ering of participants, 3) the setup for testing the influence of
feedback, 4) the setup for testing the influence of image res-
olution, 5) the image-questions, and 6) the meta-questions.

First, participants get to see an instruction screen with a
motivation, the goal, and details of the survey, along with
the guiding definitions of fake and real in this survey, as
shown in Figure 2. These definitions are required since fake
is a vague definition and could also mean digitally edited
(i.e. photoshopped, or morphed together). Then, partici-
pants judge 18 images, and answer several meta-questions,
as discussed later. Lastly, there is an overview page where
participants see their total score (N out of 18 correct), and
each of the 18 images, along with their own answer and
the correct answers. Lastly, some information about the re-
search is provided.

Real image: taken with a camera, from a scene that re-
ally happened. Possibly post-processed, for example by
adjusting colors.
Fake image: a non-existing scene that is fully created by
a computer. In other words, the person in the image does
not exist.

Figure 2: Provided definitions of real and fake images in the
survey.

B.1. Selection of images

To achieve meaningful results, we use realistic and var-
ied images. Therefore, we use real images from the FFHQ
dataset, which is more varied and real-world than the
CAHQ dataset. For fake images, we use the state-of-the-
art StyleGANFFHQ images. Based on the findings of [51],
along with our earlier experiments (Subsection A.1), we se-
lect images generated using the truncation with ψ = 0.5.

We manually select 1000 good StyleGANFFHQ images
and exclude images with very obvious artefacts such as
large blobs, because these images would disturb the results.
As shown by [20], these blob-like artefacts are already van-
ished in newer versions of StyleGAN, and including them

would not give an accurate representation of how these im-
ages would be used in real-world scenarios (where images
with obvious artefacts would be excluded). Note that in the
selected survey, there are still smaller artefacts and other
cues present that could be detected if one knows where to
pay attention to.

Next, 1000 real images are randomly selected from the
FFHQ dataset, of which a handful of images of celebri-
ties is manually removed to avoid bias towards real, and
a handful of images that look really weird or obviously
photo-shopped is manually removed to avoid bias towards
fake. Furthermore, this helps preventing potential situations
where participants who do not fully understand the defi-
nition of fake (e.g. thinking it means photoshopped) label
a photoshopped image as fake. The resulting image pool
consists of 1000 fake and 1000 real images, of which each
participant sees 9 randomly selected images per class, in a
random order.

B.2. Participants

In order to evaluate the detection capabilities of humans,
a varied set of participants is tested. These participants
vary in age, ethnicity, residence, education, AI-experience,
etc. They are approached through several mediums such
as Facebook, Instagram, email, Reddit, and WhatsApp.
The survey is conducted during May 2019, and results in
591 participants. Of these participants, 496 completed the
whole survey, while 95 terminated early, which could be
at any point in the survey. The participants who termi-
nated early are excluded from all results. Participants who
have not answered meta-questions are only excluded from
results where that specific meta-question is relevant (e.g.
AI-experience). The amount of participants for different
groups are shown in Table 1. As shown, the distribution
of AI-experience (little or much) within the control group
and feedback group is roughly equal.

B.3. Intermediate feedback

To evaluate whether participants are able to learn how to
detect this type of fake images, two groups are constructed,
to which respondents were randomly assigned. The first
group is the control group and receives no intermediate
feedback. Participants only get to see their results at the
very end of the survey. The second group receives immedi-
ate feedback after labelling an image. This feedback is of
the form Correct, the image was indeed [real/fake] or In-
correct, the image was [real/fake] and is shown above an
image. Note that an image remains displayed in order to
encourage people to see why an image is real or fake, with-
out giving specific instructions on how to recognize fake
images.



Participant group Amount of participants

Started survey 591 -

Completed survey 496 100.0%

Control-group * 263 53.0%
Feedback-group * 233 47.0%

Filled in ’AI-experience’ 477 96.2%
Little AI-experience † 218 45.7%
Much AI-experience † 259 54.3%

Control-group - Little AI-exp. † 117 24.5%
Control-group - Much AI-exp. † 136 28.5%
Feedback-group - Little AI-exp. † 101 21.2%
Feedback-group - Much AI-exp. † 123 25.8%

Filled in ’image cues’ 481 97.0%

Table 1: Overview of participant amounts per group. *
randomly assigned, thus not precisely balanced. † cal-
culated as part of people who filled in ’AI-experience’
(477).

B.4. Image resolution

To evaluate whether image resolution influences the
detection performance, three resolutions are evaluated:
256x256, 512x512, and 1024x1024 (the original size).
They are resized using the standard interpolation method
in web browsers. Each of these image sizes is tested with
3 real and 3 fake images, randomly chosen from the image
pool, resulting in 18 images. Note that the random selection
is without replacement, such that one participant cannot see
the same image twice.

B.5. Labelling images

Each participant sees 18 images sequentially and an-
swers on a 5-point scale how certain it is that an image is
real or fake. The answers are the following: certainly fake,
probably fake, I don’t know, probably real, certainly real.
Note that in the results, an answer is marked as correct if
it is either the corresponding probably [real/fake] or cer-
tainly [real/fake] answer, and incorrect for the other three
answers. A screenshot of our survey displayed in a web
browser is shown in Figure 3.

There exists a website1 where people can distinguish
fake from real. On this website, a real and fake image are
displayed next to each other, and users must select the one
that is real. Such a setup is not appropriate for our survey,
since we want to approximate real-world scenarios (e.g. a
social media timeline or forensic applications) where one
would make a choice (consciously or unconsciously) based
on one image, and not a pair of images. Thus, we use an
experimental setup with single images.

1http://www.whichfaceisreal.com/

Figure 3: Screenshot taken from the online survey for a ran-
dom fake image. Note that ”Check answer” is only visi-
ble for participants from the feedback group, for the control
group participants see a ”Next” button. This image is gen-
erated by StyleGANFFHQ.

B.6. Meta-questions

After labelling all images, participants have the choice
to answer several meta-questions. Note that these questions
are posed after the experiment itself to prevent any biases,
and are not mandatory such that people can still finish the
survey when they do not want to answer these questions.
Most important are the questions about their AI-experience
and cues they use to label images.

In order to evaluate the impact of domain knowledge,
the amount of AI-experience is questioned using a 5-point
scale, with the following answers: 0 - none, 1 - heard of it,
2 - indirect experience, 3 - AI study, and 4 - AI-professional
(PhD or work). We expect that this gives more meaningful
results than having the answers little and much, since these
answers might be too subjective for the participants. Based
on their answers, we choose to group the first three into
little and the last two into much AI-experience, where much
refers to AI-experts and little refers to everyday people.

In order to find out how humans can distinguish fake
from real, respondents are posed the question: You have la-
beled 18 images on a scale from fake to real. What aspects
in the images contributed to your decisions? The choice
for an open instead of closed question is simple: it is not
desirable to bias the respondents towards certain answers.
For example, if a list of eyes, nose, hair, etc. would be
presented, they would easily reason further with that list in



Object cue Percentage

Background 26.6
Hair 12.3
Teeth 8.7
(A)symmetry 8.5
Eyes 7.7
Composition 7.3
Accessories / Context 7.3
Ears 6.1
’Other’ 6.1
Expression 5.4
(Im)perfections 5.0
Skin 4.4
Originality 2.4
Mouth 2.4

Table 2: Object view image cues, or-
dered from most to least occurring.
Percentage refers to how often the cue
is mentioned as part of total amount of
participants.

mind, resulting in, for example, a user input of mouth, teeth.
However, if the list would be too broad, such as eyes, nose,
background, lighting conditions, etc., the respondent might
select multiple aspects without having actually thought of
them during the experiment, resulting in biased backwards
reasoning. The choice for an open question leads to a varied
set of answers, as discussed in Section C.

C. Image cues

This final section discusses the image cues participants
use to label an image as real or fake, based on their own
answers after labelling all images. It becomes clear that the
answers are very varied, ranging from specific answers such
as blurry eyes to more abstract answers such as something
with the teeth or unoriginal.

Based on all answers, we decide to group them into two
categories. First, there are object cues, referring to physical
properties of the objects and background in the images. A
few examples of such cues are weird shape of nose, some-
thing with eye, originality of background, and expression.
The second category is referred to as display cues, referring
to how these objects are displayed in an image as if they
were captured by a camera. Several examples include arte-
facts, blurry nose, and lighting/shadows. Clustering each
of these cues is extremely difficult due to differences in jar-
gon and specificity. Thus, our results should be taken with
caution, since they approximate the distribution of image
cues used by humans. Furthermore, some participants only
answer with one example, while some answer with six ex-

Display cue Percentage

Blur 40.1
Artefacts 27.4
Transitions 10.5
Lighting / Shadow 9.3
Reflections 4.8
Details 4.0
Color 2.4
Focus / Depth of field 2.2
’Other’ 1.6

Table 3: Display view image cues,
ordered from most to least occurring.
Percentage refers to how often the cue
is mentioned as part of total amount of
participants.

amples, making this categorization even more difficult.
The results of our clustering are shown in Table Table 2

(’object cues’) and Table Table 3 (’display cues’). Lastly,
we provide one visual example (Figure 4) to refer to several
of the cues shown in these tables.



Figure 4: StyleGANFFHQ image with several unrealistic cues: 1) unnatural artefact (top-right), 2) blurry ear (right), 3)
unrealistic/blurry hair (left), 4) asymmetric eyes (center). To elaborate on the last aspect: the iris colors, sizes, and shapes are
slightly different between left and right eye. Furthermore, the pupil reflection only occurs at the left eye. When zooming in,
artefacts (or lack of details) are better visible.


