
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks

Lucic, A.; ter Hoeve, M.; Tolomei, G.; de Rijke, M.; Silvestri, F.
DOI
10.1145/1122445.1122456
Publication date
2021
Document Version
Final published version
Published in
DLG-KDD’21

Link to publication

Citation for published version (APA):
Lucic, A., ter Hoeve, M., Tolomei, G., de Rijke, M., & Silvestri, F. (2021). CF-GNNExplainer:
Counterfactual Explanations for Graph Neural Networks. In DLG-KDD’21: Deep Learning on
Graphs, August 14–18, 2021, Online [3] ACM. https://doi.org/10.1145/1122445.1122456

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://doi.org/10.1145/1122445.1122456
https://dare.uva.nl/personal/pure/en/publications/cfgnnexplainer-counterfactual-explanations-for-graph-neural-networks(f47c70a8-04d9-40c2-9f2b-e692a1adb684).html
https://doi.org/10.1145/1122445.1122456


CF-GNNExplainer: Counterfactual Explanations for Graph
Neural Networks

Ana Lucic
University of Amsterdam
Amsterdam, Netherlands

a.lucic@uva.nl

Maartje ter Hoeve
University of Amsterdam
Amsterdam, Netherlands
m.a.terhoeve@uva.nl

Gabriele Tolomei
Sapienza University of Rome

Rome, Italy
gabriele.tolomei@uniroma1.it

Maarten de Rijke
University of Amsterdam
Amsterdam, Netherlands

derijke@uva.nl

Fabrizio Silvestri
Sapienza University of Rome

Rome, Italy
fsilvestri@diag.uniroma1.it

ABSTRACT

Given the increasing promise of Graph Neural Networks (GNNs) in
real-world applications, several methods have been developed for
explaining their predictions. So far, these methods have primarily
focused on generating subgraphs that are especially relevant for
a particular prediction. However, such methods do not provide
a clear opportunity for recourse: given a prediction, we want to
understand how the prediction can be changed in order to achieve
a more desirable outcome. In this work, we propose a method for
generating counterfactual (CF) explanations for GNNs: the minimal
perturbation to the input (graph) data such that the prediction
changes. Using only edge deletions, we find that our method can
generate CF explanations for the majority of instances across three
widely used datasets for GNN explanations, while removing less
than 3 edges on average, with at least 94% accuracy. This indicates
that our method primarily removes edges that are crucial for the
original predictions, resulting in minimal CF explanations.

ACM Reference Format:

Ana Lucic, Maartje ter Hoeve, Gabriele Tolomei, Maarten de Rijke, and Fab-
rizio Silvestri. 2021. CF-GNNExplainer: Counterfactual Explanations for
Graph Neural Networks. In DLG-KDD’21: Deep Learning on Graphs, August
14–18, 2021, Online. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/1122445.1122456

1 INTRODUCTION

Advances in machine learning (ML) have led to breakthroughs in
several areas of science and engineering, ranging from computer
vision, to natural language processing, to conversational assistants.
Parallel to the increased performance of ML systems, there is an
increasing call for the “understandability” of ML models [7]. Un-
derstanding why an ML model returns a certain output in response
to a given input is important for a variety of reasons such as model
debugging, aiding decison-making, or fulfilling legal requirements
[5]. Having certified methods for interpreting ML predictions will
help enable their use across a variety of applications [18].

Explainable AI (XAI) refers to the set of techniques “focused on
exposing complex AI models to humans in a systematic and inter-
pretable manner” [21]. A large body of work on XAI has emerged
in recent years [2, 8]. Counterfactual (CF) explanations are used to
explain predictions of individual instances in the form: “If X had
been different, Y would not have occurred” [25]. CF explanations
are based on CF examples: modified versions of the input sample

that result in an alternative output response (i.e., prediction). If
the modifications recommended are also clearly actionable, this is
referred to as achieving recourse [12, 28].

To motivate our problem, we consider an ML application for
computational biology. Drug discovery is a task that involves gen-
erating new molecules that can be used for medicinal purposes
[26, 33]. Given a candidate molecule, a GNN can predict if this
molecule has a certain property that would make it effective in
treating a particular disease [9, 19, 32]. If the GNN predicts it does
not have this desirable property, CF explanations can help identify
the minimal change one should make to this molecule, such that it
has this desirable property. This could help us not only generate a
new molecule with the desired property, but also understand what
structures contribute to a molecule having this property.

Although GNNs have shown state-of-the-art results on tasks
involving graph data [3, 38], existing methods for explaining the
predictions of GNNs have primarily focused on generating sub-
graphs that are relevant for a particular prediction [1, 4, 14, 16, 20,
22, 30, 34, 36, 37]. However, none of these methods are able to iden-
tify the minimal subgraph automatically since they all require the
user to specify in advance the size of the subgraph, 𝑆 . We show that
even if we adapt existing methods to the CF explanation problem,
and try varying values for 𝑆 , such methods are not able to produce
valid, accurate explanations, and are therefore not well-suited to
solve the CF explanation problem. To address this gap, we propose
CF-GNNExplainer, which generates CF explanations for GNNs.

Similar to other CF methods proposed in the literature [12, 29],
CF-GNNExplainer works by perturbing data at the instance-level.
In this work, the instances are nodes in the graph since we focus on
node classification. In particular, our method iteratively removes
edges from the original adjacency matrix based on matrix sparsi-
fication techniques, keeping track of the perturbations that lead
to a change in prediction, and returning the perturbation with
the smallest change w.r.t. the number of edges. We evaluate CF-
GNNExplainer on three public datasets for GNN explanations and
measure its effectiveness using four metrics: fidelity, explanation
size, sparsity, and accuracy. CF-GNNExplainer is able to generate
CF examples with at least 94% accuracy, while removing fewer than
three edges on average. In this work, we (i) formalize the problem
of generating CF explanations for GNNs, and (ii) propose a novel
method for generating CF explanations for GNNs.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


DLG-KDD’21, August 14–18, 2021, Online Ana Lucic, Maartje ter Hoeve, Gabriele Tolomei, Maarten de Rijke, and Fabrizio Silvestri

2 PROBLEM FORMULATION

Let 𝑓 (𝐴,𝑋 ;𝑊 ) be any GNN, where 𝐴 is the adjacency matrix, 𝑋 is
the feature matrix, and𝑊 is the learned weight matrix of 𝑓 (i.e.,
𝐴 and 𝑋 are the inputs of 𝑓 , and 𝑓 is parameterized by𝑊 ). We
define the subgraph neighbourhood of a node 𝑣 as a tuple of the
nodes and edges relevant for the computation of 𝑓 (𝑣) (i.e., those
in the ℓ-hop neighbourhood of 𝑓 ): G𝑣 = (𝐴𝑣, 𝑋𝑣 ), where 𝐴𝑣 is the
subgraph adjacency matrix and 𝑋𝑣 is the node feature matrix for
nodes that are at most ℓ hops away from 𝑣 . We define a node 𝑣 as a
tuple of the form 𝑣 = (𝐴𝑣, 𝑥), where 𝑥 is the feature vector for 𝑣 .

In general, a CF example 𝑥 for an instance 𝑥 according to a
trained classifier 𝑓 is found by perturbing the features of 𝑥 such that
𝑓 (𝑥) ̸= 𝑓 (𝑥) [31]. An optimal CF example 𝑥∗ is one that minimizes
the distance between the original instance and the CF example,
according to some distance function 𝑑 . The resulting optimal CF
explanation is ∆∗𝑥 = 𝑥∗ − 𝑥 [15].

For graph data, it may not be enough to simply perturb node
features, especially since they are not always available. This is why
we are interested in generating CF examples by perturbing the
graph structure instead. In other words, we want to change the
relationships between instances, rather than change the instances
themselves. Therefore, a CF example for graph data has the form
𝑣 = (𝐴𝑣, 𝑥), where 𝑥 is the feature vector and 𝐴𝑣 is a perturbed
version of 𝐴𝑣 . 𝐴𝑣 is obtained by removing some edges from 𝐴𝑣 ,
such that 𝑓 (𝑣) ̸= 𝑓 (𝑣).

Following Wachter et al. [31] and Lucic et al. [15], we generate
CF examples by minimizing a loss function of the form:

L = L𝑝𝑟𝑒𝑑 (𝑣, 𝑣 | 𝑓 , 𝑔) + 𝛽L𝑑𝑖𝑠𝑡 (𝑣, 𝑣), (1)

where 𝑣 is the original node, 𝑓 is the original model, 𝑔 is the CF
model that generates 𝑣 , and L𝑝𝑟𝑒𝑑 is a prediction loss that encour-
ages 𝑓 (𝑣) ̸= 𝑓 (𝑣). L𝑑𝑖𝑠𝑡 is a distance loss that encourages 𝑣 to be
close to 𝑣 , and 𝛽 controls how important L𝑑𝑖𝑠𝑡 is compared to
L𝑝𝑟𝑒𝑑 . The goal is to find 𝑣∗ that minimizes Equation 1: this is the
optimal CF example for 𝑣 .

3 METHOD

Here we propose CF-GNNExplainer, a method for generating CF
explanations of the form 𝑣 = (𝐴𝑣, 𝑥), given a node 𝑣 = (𝐴𝑣, 𝑥). Our
method can operate on any GNN model 𝑓 . To illustrate our method
and avoid cluttered notation, let 𝑓 be a standard, one-layer Graph
Convolutional Network [13] for node classification:

𝑓 (𝐴,𝑋 ;𝑊 ) = softmax
[
𝐷̃−1/2𝐴̃𝐷̃−1/2𝑋𝑊

]
, (2)

where 𝐴̃ = 𝐴 + 𝐼 , 𝐼 is the identity matrix, 𝐷̃𝑖𝑖 = ∑
𝑗 𝐴̃𝑖 𝑗 are entries

in the degree matrix 𝐷̃ , 𝑋 is the node feature matrix, and𝑊 is the
weight matrix [13].

3.1 Adjacency Matrix Perturbation

First, we define𝐴𝑣 = 𝑃⊙𝐴𝑣 , where 𝑃 is a binary perturbationmatrix
that sparsifies 𝐴𝑣 . Our aim is to find 𝑃 for a given node 𝑣 such that
𝑓 (𝐴𝑣, 𝑥) ̸= 𝑓 (𝑃 ⊙ 𝐴𝑣, 𝑥). To find 𝑃 , we build upon the method by
Srinivas et al. [24] for training sparse neural networks, where the
objective is to zero out weights in𝑊 . In contrast, our objective is to
zero out entries in the adjacency matrix (i.e., remove edges). That is,

we want to find 𝑃 that minimally perturbs𝐴𝑣 , and use it to compute
𝐴𝑣 = 𝑃 ⊙𝐴𝑣 . If an element 𝑃𝑖, 𝑗 = 0, this results in the deletion of the
edge between node 𝑖 and node 𝑗 . When 𝑃 is a matrix of ones, this
indicates that all edges in 𝐴𝑣 are used in the forward pass. Similar
to Srinivas et al. [24], we first generate an intermediate, real-valued
matrix 𝑃 with entries in [0, 1], apply a sigmoid transformation,
then threshold the entries to arrive at a binary 𝑃 : entries above 0.5
become 1, while those below 0.5 become 0. In the case of undirected
graphs (i.e., those with symmetric adjacency matrices), instead of
generating 𝑃 directly, we first generate a perturbation vector which
we then use to populate 𝑃 in a symmetric manner.

3.2 Counterfactual Generating Model

We want our perturbation matrix 𝑃 to only act on 𝐴𝑣 , not 𝐴𝑣 , in
order to preserve self-loops in the message passing of 𝑓 (i.e., we
always want a node representation update to include the node’s
representation from the previous layer). Therefore, we first rewrite
Equation 2 for our illustrative one-layer case to isolate 𝐴𝑣 :

𝑓 (𝐴𝑣, 𝑋𝑣 ;𝑊 ) = softmax
[
(𝐷𝑣 + 𝐼 )−1/2(𝐴𝑣 + 𝐼 )(𝐷𝑣 + 𝐼 )−1/2𝑋𝑣𝑊

]
(3)

To generate CFs, we propose a new function 𝑔, which is based on 𝑓 ,
but it is parameterized by 𝑃 instead of by𝑊 . We update the degree
matrix 𝐷𝑣 based on 𝑃 ⊙ 𝐴𝑣 , add the identity matrix to account for
self-loops (as in 𝐷𝑣 in Equation 2), and call this 𝐷𝑣 :

(𝐴𝑣, 𝑋𝑣,𝑊 ; 𝑃 ) = softmax
[
𝐷𝑣
−1/2(𝑃 ⊙ 𝐴𝑣 + 𝐼 )𝐷𝑣

−1/2
𝑋𝑣𝑊

]
. (4)

In other words, 𝑓 learns the weight matrix while holding the data
constant, while 𝑔 is optimized to find a perturbation matrix that
is then used to generate new data points (i.e., CF examples) while
holding the weight matrix (i.e., model) constant. Another distinc-
tion between 𝑓 and 𝑔 is that the aim of 𝑓 is to find the optimal
set of weights that generalizes well on an unseen test set, while
the objective of 𝑔 is to generate an optimal CF example, given a
particular node (i.e., 𝑣 is the output of 𝑔).

3.3 Loss Function Optimization

We generate 𝑃 by minimizing Equation 1. We adopt the negative
log-likelihood (NLL) loss for L𝑝𝑟𝑒𝑑 :

L𝑝𝑟𝑒𝑑 (𝑣, 𝑣 |𝑓 , 𝑔) = −1 [𝑓 (𝑣) = 𝑓 (𝑣)] · L𝑁𝐿𝐿(𝑓 (𝑣), 𝑔(𝑣)) (5)

Since we do not want 𝑓 (𝑣) to match 𝑓 (𝑣), we put a negative sign in
front of L𝑝𝑟𝑒𝑑 , and include an indicator function to ensure the loss
is active as long as 𝑓 (𝑣) = 𝑓 (𝑣). Note that 𝑓 and 𝑔 have the same
weight matrix𝑊 – the main difference is that 𝑔 also includes the
perturbation matrix 𝑃 . For L𝑑𝑖𝑠𝑡 , we take 𝑑 to be the element-wise
difference between 𝑣 and 𝑣 . Since we do not perturb the feature
values, this corresponds to the difference between 𝐴𝑣 and 𝐴𝑣 , i.e.,
the number of edges removed. For undirected graphs, we divide this
value by 2 to account for the symmetry in the adjacency matrices.
When updating 𝑃 , we take the gradient of Equation 1 with respect
to the intermediate 𝑃 , not the binary 𝑃 .

3.4 CF-GNNExplainer

We call our method CF-GNNExplainer and summarize its details
in Algorithm 1: given an instance in the test set 𝑣 , we first obtain
its original prediction from 𝑓 and initialize 𝑃 as a matrix of ones,



CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks DLG-KDD’21, August 14–18, 2021, Online

Algorithm 1 CF-GNNExplainer: given a node 𝑣 = (𝐴𝑣, 𝑥 ) where 𝑓 (𝑣) = 𝑦, generate the minimal perturbation, 𝑣 = (𝐴𝑣, 𝑥 ), such that 𝑓 (𝑣) ̸= 𝑦.

Input: node 𝑣 = (𝑥,𝐴𝑣 ), trained GNN model 𝑓 , CF model 𝑔, loss
function L, learning rate 𝛼 , trade-off parameter 𝛽 , number of
iterations 𝐾 , distance function 𝑑 .

𝑓 (𝑣) = 𝑦 # Get GNN prediction
𝑃 ← 𝐽𝑛 # Initialization

for 𝑘 ∈ 𝑟𝑎𝑛𝑔𝑒(𝐾 ) do
¯𝑣 (𝑘) = get_cf_example()
L ← L(𝑣, 𝑣 (𝑘)) # Eq 1 & Eq 5
𝑃 ← 𝑃 (𝑘) + 𝛼∇

𝑃
L # Update 𝑃

end for

Function get_cf_example()
𝑃 ← threshold(𝜎(𝑃 (𝑘)))
𝐴𝑣 ← 𝑃 ⊙ 𝐴𝑣

𝑣
(𝑘)
𝑐𝑎𝑛𝑑

← (𝐴𝑣, 𝑥)

if 𝑓 (𝑣) ̸= 𝑓 (𝑣 (𝑘)
𝑐𝑎𝑛𝑑

) then

𝑣 (𝑘) ← 𝑣
(𝑘)
𝑐𝑎𝑛𝑑

if L𝑑𝑖𝑠𝑡 (𝑣, 𝑣) ≤ L𝑑𝑖𝑠𝑡 (𝑣, 𝑣 (𝑘)) then
𝑣∗ ← 𝑣 (𝑘) # Keep track of best CF

end if

end if

return 𝑣∗

𝐽𝑛 , to initially retain all edges. Next, we run CF-GNNExplainer
for 𝐾 iterations. To find a CF example, we use Equation 4. First, we
compute 𝑃 by thresholding 𝑃 (see Section 3.1). Then we use 𝑃 to
obtain the sparsified adjacency matrix that gives us a candidate CF
example. This example is then fed to the original GNN, 𝑓 , and if 𝑓
predicts a different output than for the original node, we have found
a valid CF example, 𝑣 . We keep track of the “best” CF example (i.e.,
the most minimal according to 𝑑), and return this as the optimal CF
example 𝑣∗ after 𝐾 iterations. Between iterations, we compute the
loss following Equations 1 and 5, and update 𝑃 based on the gradient
of the loss. In the end, we retrieve the optimal CF explanation
∆∗𝑣 = 𝑣 − 𝑣∗.

4 EXPERIMENTAL SETUP

We use the tree-cycles, tree-grids, ba-shapes node classification
datasets from Ying et al. [34] to run our experiments for generating
CF examples. These datasets were created specifically for the task
of explaining predictions from GNNs. Each dataset consists of (i)
a base graph, (ii) motifs that are attached to random nodes of the
base graph, and (iii) additional edges that are randomly added to
the overall graph. They are all undirected graphs. The classification
task is to determine whether or not the nodes are part of the motif.
The purpose of these datasets is to have a ground-truth for the
“correctness” of an explanation: for nodes in the motifs, the expla-
nation is the motif itself [17]. tree-cycles consists of a binary tree
base graph with cycle-shaped motifs, tree-grids also has a binary
tree as its base graph, with 3×3 grids as the motifs. For ba-shapes,
the base graph is a Barabasi-Albert (BA) with house-shaped motifs,
where each motif consists of 5 nodes. Here there are 4 possible
classes: top of house, middle of house, bottom of house, or not part
of the house. We use the same dataset splits (80% train, 10% vali-
dation, 10% test) and training setup as Ying et al. to train a 3-layer
GCN (hidden size = 20) for each node classification task. Our GCNs
have at least 87% accuracy on the test set.

To evaluate our method, we compare against 4 baselines: ran-
dom, only-1hop, rm-1hop, and GNNExplainer. The random per-
turbation is meant as a sanity check. We randomly initialize the
entries of 𝑃 ∈ [−1, 1] and apply the same sigmoid transformation
and thresholding as described in Section 3.1. We repeat this 𝐾 times
and keep track of the most minimal perturbation resulting in a CF

example. Next, we compare against baselines that are based on the
1-hop neighbourhood of 𝑣 (i.e., its ego graph): only-1hop keeps all
edges in the ego graph of 𝑣 , while rm-1hop removes all edges in
the ego graph of 𝑣 .

Our fourth baseline is based on GNNExplainer by Ying et al.
[34], which identifies the 𝑆 most relevant edges for the prediction
(i.e., the most relevant subgraph of size 𝑆). To generate CF explana-
tions, we remove the subgraph generated by GNNExplainer. We
include this method in our experiments in order to have a base-
line based on a prominent GNN XAI method, but we note that
such subgraph-retrieving methods are not meant for generating
CF explanations. Unlike our method, GNNExplainer cannot au-
tomatically find a minimal subgraph and therefore requires the
user to determine the number of edges to keep in advance (i.e.,
the value of 𝑆). As a result, we cannot evaluate how “minimal” its
CF explanations are, but we can compare it against our method in
terms of its ability to generate valid CF examples (Fidelity) and how
accurate those CF examples are (Accuracy). We perform a hyper-
parameter search over 𝑆 and choose the setting that produces the
most CF examples. Data and code for all experiments is available
at https://github.com/a-lucic/cf-gnnexplainer.

5 RESULTS

We evaluate these CF examples in terms of four metrics: (i) Fi-
delity, (ii) Explanation Size, (iii) Sparsity, and (iv) Accuracy. The
results are shown in Table 1. In almost all settings, we find that
CF-GNNExplainer outperforms the baselines in terms of Expla-
nation Size, Subgraph Impact, and Accuracy, which shows that
CF-GNNExplainer satisfies our objective of accurately finding
minimal CF examples. In cases where the baselines outperform
our method on a particular metric, these baselines either perform
poorly on the rest of the metrics, or on other datasets.

5.1 Fidelity

Fidelity is defined as the proportion of nodes where the original
predictions match the prediction for the explanations [36]. Since
we generate CF examples, we do not want the original prediction
to match the prediction for the explanation, so we want a low
value for Fidelity. CF-GNNExplainer outperforms only-1hop and
GNNExplainer across all three datasets, and outperforms rm-1hop

https://github.com/a-lucic/cf-gnnexplainer


DLG-KDD’21, August 14–18, 2021, Online Ana Lucic, Maartje ter Hoeve, Gabriele Tolomei, Maarten de Rijke, and Fabrizio Silvestri

Table 1: Results comparing our method to the baselines. Below each metric, ▼ indicates a low value is desirable, while ▲
indicates a high value is desirable.

tree-cycles tree-grid ba-shapes

Metric Fid. Size Spars. Acc. Fid. Size Spars. Acc. Fid. Size Spars. Acc.
▼ ▼ ▲ ▲ ▼ ▼ ▲ ▲ ▼ ▼ ▲ ▲

random 0.00 4.70 0.79 0.63 0.00 9.06 0.75 0.77 0.00 503.31 0.58 0.17
only-1hop 0.32 15.64 0.13 0.45 0.32 29.30 0.09 0.72 0.60 504.18 0.05 0.18
rm-1hop 0.46 2.11 0.89 — 0.61 2.27 0.92 — 0.21 10.56 0.97 0.99

GNNExplainer 0.55 6.00 0.57 0.46 0.34 8.00 0.68 0.74 0.81 6.00 0.81 0.27

CF-GNNExplainer 0.21 2.09 0.90 0.94 0.07 1.47 0.94 0.96 0.39 2.39 0.99 0.96

for tree-cycles and tree-grid in terms of Fidelity. We find that
random has the lowest Fidelity in all cases – it is able to find CF
examples for every single node. However, we will see that this
corresponds to poor performance on the other metrics.

5.2 Explanation Size

Explanation Size is the number of removed edges. It corresponds to
the L𝑑𝑖𝑠𝑡 term in Equation 1: the difference between the original
𝐴𝑣 and the counterfactual 𝐴𝑣 . Since we want to have minimal
explanations, we want a small value for this metric. Figures 1 to 5
show histograms of the Explanation Size for the five methods we
test. We see that across all three datasets, CF-GNNExplainer has
the smallest (i.e., most minimal) Explanation Sizes. This is especially
true when comparing to random and only-1hop for the ba-shapes
dataset, where we had to use a different scale for the x-axis due to
how different the Explanation Sizes were. We postulate that this
difference could be because ba-shapes is a much more densely
connected graph; it has fewer nodes but more edges compared
to the other two datasets, and the average number of nodes and
edges in the subgraph neighbourhood is order(s) of magnitude
larger. Therefore, when performing random perturbations, there
is substantial opportunity to remove edges that do not necessarily
need to be removed, leading to much larger Explanation Sizes. When
there are many edges in the subgraph neighbourhood, removing
everything except the 1-hop neighbourhood, as is done in only-
1hop, also results in large Explanation Sizes. In contrast, the loss
function used by CF-GNNExplainer ensures that only a few edges
are removed, which is the desirable behavior since wewant minimal
explanations.

5.3 Sparsity

Sparsity measures the proportion of edges in 𝐴𝑣 that are removed
[36]. A value of 0 indicates all edges in 𝐴𝑣 were removed. Since
we want minimal explanations, we want a value close to 1. CF-
GNNExplainer outperforms all four baselines for all three datasets
in terms of Sparsity. We note CF-GNNExplainer and rm-1hop
perform much better on this metric in comparison to the other
methods, which aligns with the results from Explanation Size.

5.4 Accuracy

Accuracy is the proportion of explanations that are “correct”. Follow-
ing Ying et al. [34] and Luo et al. [17], we only compute accuracy

for nodes that are originally predicted as being part of the mo-
tifs, since accuracy can only be computed on instances for which
we know the ground truth explanations. Since we want minimal
explanations, we consider an explanation to be correct if it exclu-
sively involves edges that are inside the motifs (i.e., only removes
edges that are within the motifs). We observe that our method has
the highest Accuracy for the tree-cycles and tree-grid datasets,
whereas rm-1hop has the highest Accuracy for ba-shapes. How-
ever, we are unable to calculate the accuracy of rm-1hop for the
other two datasets since it is unable to generate any CF examples
for the motif nodes, contributing to the undesirable high Fidelity
on those datasets. We observe Accuracy levels upwards of 94% for
our method across all datasets, indicating that it is consistent in
correctly removing edges that are crucial for the initial predictions.

5.5 Summary of Results

Evaluating on four distinct metrics for each dataset gives us a
more holistic view of the results. We find that for all three datasets,
CF-GNNExplainer can generate CF examples for the majority
of nodes in the test set, while only removing a small number of
edges. For nodes where we know the ground truth (i.e., those in the
motifs) we achieve at least 94% Accuracy. Although random can
generate CF examples for every node, they are not very minimal
or accurate. The latter is also true for only-1hop – in general, it
has the worst scores for Explanation Size, Sparsity and Accuracy.
GNNExplainer performs at a similar level, indicating that although
it is a prominent GNN XAI method, it is not well-suited for solving
the CF explanation problem. rm-1hop is competitive in terms of
Explanation Size, but it performs poorly in terms of Fidelity for the
tree-cycles and tree-grid datasets, and its Accuracy on these
datasets is unknown since it is unable to generate any CF examples
for nodes in the motifs. These results show that our method is
simple and extremely effective in solving the CF explanation task,
unlike existing GNN XAI methods.

6 RELATEDWORK

Several GNN XAI approaches have been proposed – a recent sur-
vey of the most relevant work is presented by Yuan et al. [36].
However, unlike our work, none of the methods in this survey
generate CF explanations. The vast majority of GNN explanation
methods are based on retrieving a relevant subgraph of the orig-
inal graph [1, 4, 14, 16, 20, 22, 30, 34, 37]. Other methods identify
important node features [10] or similar examples [6]. Kang et al.
[11] generate CF examples for GNNs, but their work focuses on a



CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks DLG-KDD’21, August 14–18, 2021, Online

different task: link prediction. Other GNN XAI methods identify
important node features [10] or similar examples [6]. Yuan et al.
[35] and Schnake et al. [23] generate model-level explanations for
GNNs, which differs from our work since we produce instance-level
explanations. Adversarial attacks [27] are also related to CF exam-
ples, but there is a distinction in the intent: adversarial examples are
meant to fool the model, while CF examples are meant to explain
the prediction [15]. In the context of graph data, adversarial attack
methods try to make minimal perturbations to the overall graph
with the intention of degrading model performance. In contrast, we
are interested in generating CF examples for individual nodes, as
opposed to identifying perturbations to the overall graph.

Existing work on CF explanations for tabular, image, and text
data is based on perturbing feature values to generate CF examples
[12, 29]. However, they are not equipped to handle graph data with
relationships (i.e., edges) between data points, unlike our method.

7 CONCLUSION

We propose CF-GNNExplainer, which generates CF explanations
for any GNN. Our simple and effective method is able to generate
CF explanations that are (i) minimal, and (ii) accurate, in terms of
removing edges that we know to be crucial for the initial predictions.
We evaluate our method on three commonly used datasets for
GNN explanation tasks and find that these results hold across all
three datasets. For future work, we plan to conduct a user study to
determine if humans find CF-GNNExplainer useful in practice.

REFERENCES

[1] Federico Baldassarre and Hossein Azizpour. 2019. Explainability Techniques for
Graph Convolutional Networks. arXiv preprint arXiv:1905.13686 (May 2019).

[2] Francesco Bodria, Fosca Giannotti, Riccardo Guidotti, Francesca Naretto, Dino Pe-
dreschi, and Salvatore Rinzivillo. 2021. Benchmarking and Survey of Explanation
Methods for Black Box Models. arXiv:2102.13076 [cs.AI]

[3] Andreea Deac, Yu-Hsiang Huang, Petar Veličković, Pietro Liò, and Jian Tang. 2019.
Drug-Drug Adverse Effect Prediction with Graph Co-Attention. arXiv:1905.00534
[cs, q-bio, stat] (May 2019). http://arxiv.org/abs/1905.00534 arXiv:
1905.00534.

[4] Alexandre Duval and Fragkiskos D. Malliaros. 2021. GraphSVX: Shapley Value
Explanations for Graph Neural Networks. (2021). arXiv:2104.10482 [cs.LG]

[5] EU. 2016. Regulation (EU) 2016/679 of the European Parliament (GDPR). Official
Journal of the European Union L119 (2016), 1–88.

[6] Lukas Faber, Amin K Moghaddam, and Roger Wattenhofer. 2020. Contrastive
GraphNeural Network Explanation. ICML 2020Workshop on Graph Representation
Learning and Beyond (2020), 6.

[7] R. Goebel, A. Chander, K. Holzinger, F. Lecue, Z. Akata, S. Stumpf, P. Kieseberg,
and A. Holzinger. 2018. Explainable AI: The New 42?. In CD-Make 2018. 295–303.

[8] Riccardo Guidotti, Anna Monreale, Franco Turini, Dino Pedreschi, and Fosca
Giannotti. 2018. A Survey of Methods for Explaining Black Box Models. arXiv
preprint arXiv:1802.01933 (2018).

[9] Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng Jiang,
and Nitesh V. Chawla. 2021. Few-Shot Graph Learning for Molecular Property
Prediction. In Proceedings of The Web Conference. arXiv:2103.10432 [q-bio.BM]

[10] Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, Dawei Yin, and Yi
Chang. 2020. GraphLIME: Local Interpretable Model Explanations for Graph
Neural Networks. arXiv preprint arXiv:2001.06216 (Jan. 2020).

[11] Bo Kang, Jefrey Lijffijt, and Tijl De Bie. 2019. ExplaiNE: An Approach for Explain-
ing Network Embedding-based Link Predictions. arXiv preprint arXiv:1904.12694
(2019).

[12] Amir-Hossein Karimi, Gilles Barthe, Bernhard Schölkopf, and Isabel Valera.
2020. A survey of algorithmic recourse: definitions, formulations, solutions,
and prospects. arXiv preprint arXiv:2010.04050 (2020).

[13] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. arXiv preprint arXiv:1609.02907 (Feb. 2017).

[14] Wanyu Lin, Hao Lan, and Baochun Li. 2021. Generative Causal Explanations for
Graph Neural Networks. arXiv preprint arXiv:2104.06643 (April 2021).

[15] Ana Lucic, Harrie Oosterhuis, Hinda Haned, and Maarten de Rijke. 2020. FO-
CUS: Flexible Optimizable Counterfactual Explanations for Tree Ensembles.
arXiv:1911.12199 [cs.LG]

[16] Dongsheng Luo, Wei Cheng, Dongkuan Xu,Wenchao Yu, Bo Zong, Haifeng Chen,
and Xiang Zhang. 2020. Parameterized Explainer for Graph Neural Network.
(Nov. 2020). http://arxiv.org/abs/2011.04573

[17] Dongsheng Luo, Wei Cheng, Dongkuan Xu,Wenchao Yu, Bo Zong, Haifeng Chen,
and Xiang Zhang. 2020. Parameterized Explainer for Graph Neural Network.
NeurIPS (2020).

[18] Tim Miller. 2017. Explanation in artificial intelligence: Insights from the social
sciences. arXiv preprint arXiv:1706.07269 (2017).

[19] Cuong Q. Nguyen, Constantine Kreatsoulas, and Kim M. Branson. 2020. Meta-
Learning GNN Initializations for Low-Resource Molecular Property Prediction.
In ICML 2020 Workshop on Graph Representation Learning and Beyond (GRL+).
arXiv:2003.05996 [cs.LG]

[20] Phillip E. Pope, Soheil Kolouri, Mohammad Rostami, Charles E. Martin, and Heiko
Hoffmann. 2019. Explainability Methods for Graph Convolutional Neural Net-
works. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, Long Beach, CA, USA, 10764–10773.

[21] Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and
Klaus-Robert Müller. 2019. Explainable AI: Interpreting, Explaining and Visualizing
Deep Learning. Springer.

[22] Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. 2020. Interpreting
GraphNeural Networks for NLPWithDifferentiable EdgeMasking. arXiv preprint
arXiv:2010.00577 (Oct. 2020).

[23] Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T.
Schütt, Klaus-Robert Müller, and Grégoire Montavon. 2020. XAI for Graphs:
Explaining Graph Neural Network Predictions by Identifying Relevant Walks.
arXiv preprint arXiv:2006.03589 (June 2020).

[24] Suraj Srinivas, Akshayvarun Subramanya, and R. Venkatesh Babu. 2016. Training
Sparse Neural Networks. arXiv preprint arXiv:1611.06694 (Nov. 2016).

[25] Ilia Stepin, Jose M Alonso, Alejandro Catala, and Martín Pereira-Fariña. 2021. A
Survey of Contrastive and Counterfactual Explanation Generation Methods for
Explainable Artificial Intelligence. IEEE Access 9 (2021), 11974–12001.

[26] Jonathan M Stokes. 2020. A Deep Learning Approach to Antibiotic Discovery.
Cell (2020), 29.

[27] Lichao Sun, Yingtong Dou, Carl Yang, Ji Wang, Philip S. Yu, Lifang He, and Bo Li.
2018. Adversarial Attack and Defense on Graph Data: A Survey. arXiv preprint
arXiv:1812.10528 (2018).

[28] Berk Ustun, Alexander Spangher, and Yang Liu. 2019. Actionable Recourse in
Linear Classification. In Proceedings of the Conference on Fairness, Accountability,
and Transparency. 10–19.

[29] Sahil Verma, John Dickerson, and Keegan Hines. 2020. Counterfactual Explana-
tions for Machine Learning: A Review. arXiv preprint arXiv:2010.10596 (2020).

[30] Minh N. Vu and My T. Thai. 2020. PGM-Explainer: Probabilistic Graphical Model
Explanations for Graph Neural Networks. (2020).

[31] Sandra Wachter, Brent Mittelstadt, and Chris Russell. 2018. Counterfactual
Explanations without Opening the Black Box: Automated Decisions and the
GDPR. Harvard Journal of Law & Technology 31, 2 (2018), 841–888.

[32] Oliver Wieder, Stefan Kohlbacher, Mélaine Kuenemann, Arthur Garon, Pierre
Ducrot, Thomas Seidel, and Thierry Langer. 2020. A compact review of molec-
ular property prediction with graph neural networks. Drug Discovery Today:
Technologies (Dec. 2020), S1740674920300305. https://doi.org/10.1016/j.
ddtec.2020.11.009

[33] Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and
Lei Li. 2021. MARS: Markov Molecular Sampling for Multi-objective Drug Dis-
covery. In Proceedings of the International Conference on Learning Representations.
arXiv:2103.10432 [q-bio.BM]

[34] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. 2019.
GNNExplainer: Generating Explanations for Graph Neural Networks. arXiv
preprint arXiv:1903.03894 (Nov. 2019).

[35] Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. 2020. XGNN: Towards Model-
Level Explanations of Graph Neural Networks. arXiv preprint arXiv:2006.02587
(June 2020).

[36] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. 2020. Explainability in
Graph Neural Networks: A Taxonomic Survey. arXiv preprint arXiv:2012.15445
(2020).

[37] Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. 2021. On Explain-
ability of Graph Neural Networks via Subgraph Explorations. arXiv preprint
arXiv:2102.05152 (Feb. 2021).

[38] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. 2018. Modeling polyphar-
macy side effects with graph convolutional networks. Bioinformatics 34, 13 (July
2018), i457–i466. https://doi.org/10.1093/bioinformatics/bty294 arXiv:
1802.00543.

https://arxiv.org/abs/2102.13076
http://arxiv.org/abs/1905.00534
https://arxiv.org/abs/2104.10482
https://arxiv.org/abs/2103.10432
https://arxiv.org/abs/1911.12199
http://arxiv.org/abs/2011.04573
https://arxiv.org/abs/2003.05996
https://doi.org/10.1016/j.ddtec.2020.11.009
https://doi.org/10.1016/j.ddtec.2020.11.009
https://arxiv.org/abs/2103.10432
https://doi.org/10.1093/bioinformatics/bty294


DLG-KDD’21, August 14–18, 2021, Online Ana Lucic, Maartje ter Hoeve, Gabriele Tolomei, Maarten de Rijke, and Fabrizio Silvestri

Figure 1: Histograms showing Explanation Size from random. Note the x-axis for ba-shapes goes up to 1500. Left: tree-

cycles, Middle: tree-grid, Right: ba-shapes.

Figure 2: Histograms showing Explanation Size from only-1hop. Note the x-axis for ba-shapes goes up to 1500. Left: tree-

cycles, Middle: tree-grid, Right: ba-shapes.

Figure 3: Histograms showing Explanation Size from rm-1hop. Note the x-axis for ba-shapes goes up to 70. Left: tree-cycles,

Middle: tree-grid, Right: ba-shapes.

Figure 4: Histograms showing Explanation Size from GNNExplainer. Note that the y-axis goes up to 1. Left: tree-cycles,

Middle: tree-grid, Right: ba-shapes.

Figure 5: Histograms showing Explanation Size from our method, CF-GNNExplainer. Note the x-axis for ba-shapes goes up

to 70. Left: tree-cycles, Middle: tree-grid, Right: ba-shapes.


	Abstract
	1 Introduction
	2 Problem Formulation
	3 Method
	3.1 Adjacency Matrix Perturbation
	3.2 Counterfactual Generating Model
	3.3 Loss Function Optimization
	3.4 CF-GNNExplainer 

	4 Experimental Setup
	5 Results
	5.1 Fidelity
	5.2 Explanation Size
	5.3 Sparsity
	5.4 Accuracy
	5.5 Summary of Results

	6 Related Work
	7 Conclusion
	References

