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ABSTRACT
The new user coldstart problem arises when a recommender sys-

tem does not yet have any information about a user. A common

solution to it is to generate a profile by asking the user to rate a

number of items. Which items are selected determines the quality

of the recommendations made, and thus has been studied exten-

sively. We propose a new elicitation method to generate a static
preference questionnaire (SPQ) that poses relative preference ques-

tions to the user. Using a latent factor model, we show that SPQ

improves personalized recommendations by choosing a minimal

and diverse set of questions. We are the first to rigorously prove

which optimization task should be solved to select each question

in static questionnaires. Our theoretical results are confirmed by

extensive experimentation. We test the performance of SPQ on two

real-world datasets, under two experimental conditions: simulated,
when users behave according to a latent factor model (LFM), and

real, in which only real user judgments are revealed as the system

asks questions. We show that SPQ reduces the necessary length

of a questionnaire by up to a factor of three compared to state-of-

the-art preference elicitation methods. Moreover, solving the right

optimization task, SPQ also performs better than baselines with

dynamically generated questions.

CCS CONCEPTS
• Information systems → Recommender systems; Personal-
ization; Collaborative filtering;
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1 INTRODUCTION
Millions of online e-commerce websites are built around personal-

ized recommender systems (e.g., [5]). Together, they offer broad and

varied items, ranging from books and accommodation to movies

and dates. The main goal of recommender systems is to predict

unknown ratings or preferences based on historical user interac-

tions and information about items, such as past user ratings and

item descriptions. Collaborative filtering (CF) is one of the most

effective techniques to build personalized recommender systems.

They collect user item ratings and derive preference patterns. The

main advantage of approaches based on CF is that they do not

require domain knowledge and can easily be adapted to different

recommender settings.

However, CF-based approaches only work well for users with

substantial information about their preferences. When this infor-

mation is not available, as for new users, the recommender system

runs into the new user cold-start problem: it cannot produce reliable

personalized recommendations until the “cold” user is “warmed-up”

with enough information [11, 16].

Most well-known and effective approaches to the new user cold-

start problem are questionnaire-based [16, 26]. These elicit infor-

mation from new users via a questionnaire where users provide

absolute ratings for some items [9, 22, 24]. However, obtaining such

explicit ratings suffers from a calibration issue [17]: the same rat-

ing, of say three stars, may mean completely different things for

different people. Moreover, users may change their opinion about

an item after having seen other items. For instance, it has been

shown that a user is likely to give a lower rating to an item if the

preceding one deserved a very high rating [1, 20]. On top of that,

recommender systems typically provide ranked lists of items, but

for producing a good ranking pairwise preferences between items

are preferable to learning absolute relevance scores [4].

Finally, we note that recent research has shifted towards pre-

dicting relative preferences rather than absolute ones [18, 31]. For

such relative methods, it is natural to ask users to complete a ques-

tionnaire by answering relative questions rather than by providing

absolute ratings. Therefore, preference elicitation questionnaires

have been proposed [6, 26]. A preference elicitation method (PEM)

thus asks questions about pairwise preferences between items.

An example preference elicitation question is shown in Figure 1

below, where a user is asked to indicate which of two movies she

prefers. However, it is difficult to create these questionnaires, be-

cause it is unclear what criteria should be used to select items for

questions. Moreover, a greedy approach, which is common in elici-

tation procedures, is computationally expensive in PEMs, because

the cardinality of the preference question space is proportional to

the square of the number of items.
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Question: Which movie do you prefer to watch?

I prefer this 
one 

I prefer this 
one

I prefer them 
equally

? Movi

Figure 1: An example of a relative question in a question-
naire aimed at eliciting preferences.

In this work, we address some of these challenges with the fol-

lowing main research question:

How to optimally generate a preference questionnaire,
consisting of relative questions, for new users that will
help to solve the new user cold-start problem?

To answer this question, we develop a new preference elicitation

method, called static preference questionnaire (SPQ), that can be

used in several domains, such as book or movie recommendation. In

particular, inspired by [2], we formulate the elicitation procedure in

SPQ as an optimization problem. The advantage of static preference
questionnaires, like the approaches of [6, 26], is that they work

with relative rather than absolute questions. The main advantages

of our SPQ over previous work is the absence of any constraint

to the questions except that they should be informative, as was

done in [6], and the fact that it optimizes the expectation of the loss

function of the underlying latent factor model (LFM).

Thus, the proposedmethod SPQ is a preference elicitationmethod

that solves the following optimization problem: Select items for

relative questions to predict with maximum accuracy how the user

will respond to other relative questions.

Our contributions are three-fold: (1) We formulate the task of

generating preference questionnaires, consisting of relative ques-

tions for new users, as an optimization problem (Section 2). (2) We

show how to solve this optimization problem in a theoretically

optimal way (Section 3). (3) We verify that the theoretical results

are supported by experimental results on two datasets: By using

SPQ, the length of the questionnaire can be reduced independently

of the experimental conditions (Section 5).

2 PROBLEM FORMULATION
2.1 Assumptions
Suppose we have a system that contains a history of user feedback

for items in a rating matrix R ∈ Rn×m , where n is the number

of users and m is the number of items.
1
The value of entry rui

describes the feedback of user u on item i . The feedback can be

(a) explicit, e.g., a user rating (usually from 1 to 5) or a binary

value, or (b) implicit feedback like purchases or clicks. Usually, R is

sparse [27], since most users rate only a small portion of the items.

The task for a recommender system is to predict missing ratings in

R and recommend to a user the most attractive item.

An important aspect of our work, as well as previous work [2, 6],

is the use of a latent factor model (LFM) [27] to solve this task.

We assume that LFM is already trained and that each rating rui

1
The notation we use is presented in Table 1.

Table 1: Notation used in the paper.

Symbol Gloss

I Set of all items

P Set of all pairs of items: I × I
B Seed set of questions

F Subset of questions from B
i , j Items

u User

q Question

VS Latent presentation of questions from set S
vi Latent factor vector of item i
v(i, j) Latent presentation of the question

v∗u True latent factor vector of user u
v̂u Predicted latent factor vector of user u
R Matrix of ratings provided by users

r̂ui j Predicted preference of user u of item i over item j
r∗ui j True preference of user u of item i over item j

complies with the following noisy model:

rui = µ + bi + bu +v
T
i vu + ϵui , (1)

where (1) µ is a global bias, (2)vi , bi are the latent factor vector and
bias of item i , (3) vu , bu are the latent factor vector and bias of user

u, and (4) ϵui is small random noise. The dimensions in the latent

vectors represent item’s characteristics. If the user likes particular

item’s attributes, the corresponding dimensions in her latent factor

vector are large. Large values in the item’s latent vector correspond

to the item’s most valuable characteristics. Thus, if an item satisfies

a user’s taste, the value of vTi vu in Eq. 1 is large. The user bias is
the rating that a user predominantly provides. The intuition behind

the item bias is its popularity. The LFM predicts that most users

will like popular items more, despite their diverse preferences. The

parameters listed above are assumed to be given to us; we refer to

them further as ground truth.
The main problem that we address is to solve the new user

cold-start problem, having ground truth parameters of all items

and of all users who have provided some feedback already.

2.2 Problem definition
To address the new user cold-start problem, we propose a preference
elicitationmethod (PEM) that produces a questionnaire with relative

questions; an example such question is in Fig. 1. We call our method

static preference questionnaire (SPQ). The main goal of SPQ is to

minimize the number of questions N that is required to derive a

ranked list of personalized recommendations. SPQ minimizes N

by generating a list of questions that maximize the gain that a

recommender system observes after adding answers for q.
The LFM uses SPQ as follows: (1) using the completed question-

naire, LFM gets v̂u while predicting the ground truth parameters

v∗u ; then (2) LFM uses v̂u to predict users’ relative preferences about

all pairs of the items. Thus, the performance of SPQ is measured

in terms of the binary classification quality of item pairs. For a

given user u and a pair of items (i, j) the classifier estimates a user

u’s preference of item i over item j. The quality of the classifier is

defined as the deviation of the predicted preference value r̂ui j from
the true preference value r∗ui j . We assume that r∗ui j can take the

values −1, 1, and 0: −1 and 1 reflect that the user prefers one item

over another, while 0 corresponds to the situation when she treats

them equally (again, for an example, see Fig. 1). Similar to Anava
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et al. [2], we define the preference elicitation task as an optimiza-

tion problem. Given a budget N , SPQ chooses a seed set B ⊆ P,
consisting of N pairs of items, that minimizes the expected loss of

the corresponding binary classifier:

argmin

B
E

©«
∑

(i, j)∈P

(r̂ui j − r∗ui j )
2ª®¬ . (2)

The intuition behind this optimization problem is to force amodel to

provide a high-quality list of recommendations, asking a predefined

number of questions. To provide a high-quality ranked list, a model

should correctly classify pairwise preferences between items [4].

That it is exactly what Eq. 2 expresses. In Section 5, we will prove

how minimizing Eq. 2 corresponds to improving the quality of the

final list of recommendations.

To summarize, we have introduced assumptions for our model

and formulated the task of finding a seed set of relative questions as

an optimization problem. Next, we will describe an iterative greedy

procedure to obtain a near-optimal solution for this problem.

3 METHOD
Eq. 2 is difficult to optimize directly, so we will reformulate it in Sec-

tion 3.2. To this end, we need two preliminary procedures: (1) one

that predicts users’ answers to preference questions, and (2) one

for modeling a user’s latent vector representation after receiving

their completed questionnaire. We provide these next.

3.1 Preliminaries
3.1.1 Predicting users’ answers. We aim to estimate a user u’s pref-
erence for item i over item j, given her predicted latent representa-

tion v̂u , using the equation:

r̂ui j = v̂u · v(i, j) + b(i, j), (3)

wherev(i, j) is the latent representation of the question,vi −vj , and
b(i, j) = bi − bj is a bias of the question. We rewrite this in matrix

form. The predicted answers to a set of preference questions S are:
r̂uS = v̂u · VS + bS, (4)

where the columns of matrix VS are the latent vector representa-
tions of the questions from S and bS is a column that consists of

the biases of the questions.

3.1.2 Modeling users’ latent vector presentations. To model the

user parameters after receiving a completed questionnaire, which

consists of a seed set B, we solve the following problem:

argmin

vu

∑
(i, j)∈B

(vu · v(i, j) + b(i, j) − r∗ui j )
2, (5)

where r∗ui j is an answer given by the user while completing the

questionnaire. This problem can be solved using linear regression.

3.2 Static Preference Questionnaire (SPQ)
Anava et al. [2] show that if the procedure for predicting a user’s

answers and modeling their latent presentation is exactly like we

describe above in Eq. 4 and Eq. 5, then the optimization problem

Eq. 2 can be formulated as a simpler yet equivalent task:

argmin

B
tr[(VBV

T
B + ϵ · E)

−1]. (6)

Here, tr(M) denotes the trace of matrix M and E is the identity

matrix. We propose a greedy iterative algorithm that chooses the

next question by minimizing Eq. 6 in each iteration. More precisely,

given the subset F of B consisting of questions that have already

been chosen for our questionnaire, the procedure selects the next

question q that minimizes the following:

tr[(VF∪{q }V
T
F∪{q } + ϵ ∗ E)

−1]. (7)

The proposed optimization problem can be reduced to a simpler

one, which is stated and proven in Theorem 1 below.

Before presenting Theorem 1, we need to introduce some ad-

ditional notation used in Theorem 1 and our algorithm. Define

A = (VFVF
T + ϵ ∗ E)−1. Also, e1, e2, . . . , en are orthonormal eigen-

vectors of A with eigenvalues: λ1, λ2, . . . , λn , where λi > ϵ−1.
We assume that the number of questions in the questionnaire is

less than the dimension of the latent space; as a consequence, the

subspace of eigenvectors with eigenvalues ϵ−1 is non-empty; we

denote it as Eϵ .

Theorem 1. Let ϵ > 0 be arbitrarily small. The optimization prob-
lem (7) is equivalent to finding a question q with latent representation
vq =

∑
aiei + eϵ that minimizes

λ1a
2

1
+ · · · + λna

2

n + 1

∥eϵ ∥2
, (8)

where eϵ ∈ Eϵ and ai is a coordinate ofv in the basis ⟨e1, · · · , en , eϵ ⟩.
Proof. To begin, note that VF∪{q }V

T
F∪{q } + ϵ ∗ E =

VFV
T
F +vq ∗vTq + ϵ ∗ E = A

−1 +vq ∗vTq . (9)

Since vq is a column vector, using the Sherman-Morrison for-

mula [14] we obtain:

tr(VF∪{q }V
T
F∪{q } + ϵ ∗ E)

−1 = tr

(
A −

Avqv
T
q A

1 + tr(Avqv
T
q )

)
= tr(A) −

tr(Avqv
T
q A)

1 + tr(Avqv
T
q )
= trA −

∑n
i=1 λ

2

i a
2

i + ϵ
−2∥eϵ ∥

2

1 +
∑n
i=1 λia

2

i + ϵ
−1∥eϵ ∥2

.

(10)

Thus minimizing (7) is equivalent to maximizing the following:

max

( ∑n
i=1 λ

2

i a
2

i + ϵ
−2 ∥eϵ ∥2

1 +
∑n
i=1 λia

2

i + ϵ
−1 ∥eϵ ∥2

)
∼ max

(
ϵ−1 +

∑n
i=1 λi (λi − ϵ−1)a2i − ϵ−1

1 +
∑n
i=1 λia

2

i + ϵ
−1 ∥eϵ ∥2

)
∼ max

(
ϵ−1 +

∑n
i=1 λi (λi · ϵ − 1)a2i − 1

ϵ (1 +
∑n
i=1 λia

2

i ) + ∥eϵ ∥2

)
∼ max

(
ϵ · (

∑n
i=1 λ

2

i a
2

i ) − (
∑n
i=1 λia

2

i + 1)

ϵ (1 +
∑n
i=1 λia

2

i ) + ∥eϵ ∥2

)
∼ϵ→0

max

(
−(

∑n
i=1 λia

2

i + 1)

∥eϵ ∥2

)
∼ min

(
(
∑n
i=1 λia

2

i + 1)

∥eϵ ∥2

)
. □

To understand the intuition behind optimizing Eq. 8, we need to

understand the connection between the eigenvectors of A and the

questions in F, which we address next.

Lemma 3.1. If the questions in F are represented by linearly inde-
pendent vectors v(i1, j1), . . . ,v(im, jm ), then e1, e2, . . . , en are vectors
from a subspace U = ⟨v(i1, j1), . . .v(im, jm )⟩. Also, the number of
eigenvalues that are different from ϵ is n. That is, n =m.

Proof. Eigenvectors are the same for A and A−1, so we prove

this lemma forA−1. To prove the first part of the lemma it is enough

to show that U and U⊥
are invariant subspaces for A−1 and U⊥ ⊆

Eϵ , whereU
⊥
is the subspace that consists of vectors orthogonal

toU . Note that U⊥
is a subspace of Eϵ . Indeed, if v ∈ U⊥

, then

A−1v =
(
VFVF

T + ϵ · E
)
v =

(∑
l

v(il , jl )v
T
(il , jl )

+ ϵ · E

)
v
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=
∑
l

v(il , jl )v
T
(il , jl )

v + ϵ · v =
∑
l

⟨v(il , jl ),v⟩v(il , jl ) + ϵ · v

= ϵ · v . (11)

Also, U is an invariant subspace of A−1
. To see this, assume that

u =
∑
l xlv(il , jl ) is a vector from U . Then A−1 =(∑

l

v(il , jl )v
T
(il , jl )

+ ϵ ∗ E

)
u =

∑
l

v(il , jl ) ⟨v(il , jl ), u ⟩ + ϵu ∈ U . (12)

To prove the last part of the lemma, it is enough to show that

A−1 |U is non-degenerate. A−1 |U : U → U is an operator that

changes the vectors from U in the same way as A−1 : A−1 |U ·

u = A−1 · u for any vector u ∈ U . From Eq. 12 it follows that

A−1 |U is a Gram matrix [29] of the vectorsv(i1, j1), . . . ,v(in, jn ). But
v(i1, j1), . . . ,v(in, jn ) are independent vectors and consequently their
Gram matrix is non-degenerate. □

One implication of Lemma 3.1 is that Eϵ is equal to U⊥
. Also, if

we choose the basis of U to be {
√
λ1e1, . . . ,

√
λnen } = {e ′

1
, . . . , e ′n }

and decompose the latent presentation of the new question by this

basis vq =
∑
l ale

′
l + eϵ , then the numerator of Eq. 8 will simply be∑

l al
2 + 1, (13)

which is the length of the part of vq that is parallel to U in this

basis, increased by one.

To understand the intuition behind the denominator of Eq. 8 we

need another piece of notation: we denote the projection of vector

v on Eϵ as vϵ . Suppose question q is about the preference of i over
j, then the denominator of Eq. 8 equals

∥vq,ϵ ∥
2 = ∥(vi −vj )ϵ ∥

2 = ∥vi,ϵ −vj,ϵ ∥
2. (14)

That means that the denominator of Eq. 8 is a Euclidean distance be-

tween the projection ofvi andvj or a length ofvq,ϵ . Consequently,
in order to add one more question to F, we should find a vector

with a large component fromU⊥
and with a small component from

U . Thus, if the questions from F are linearly independent, then the

question that will be added to F should be linearly independent of

all previous questions, and the extended questionnaire will consist

of linearly independent questions.

Now we are ready to present Algorithm 1, static preference ques-
tionnaire (SPQ), for generating preference questionnaires.

Algorithm 1 Static Preference Questionnaire (SPQ).

1: Input: {e ′
1
, . . . , e ′n } basis ofU ; E the set of all items and r > 0

2: for i ∈ I do
3: vi = v

′
i +vi,ϵ , where v

′
i ∈ U , vi,ϵ ∈ U⊥

4: S = {i ∈ E : ∥v ′
i ∥ < r }

5: S⊥ = {vi,ϵ for i ∈ S}
6: Find the farthest points (i, j) ∈ S⊥ by Euclidean distance.

7: return v(i, j)

To minimize the numerator of Eq. 8, we pick a small number r
(r = 1 in our experiments) and choose the set of itemsU<r on which
Eq. 13 is smaller than it. To maximize the denominator of Eq. 8, the

algorithm chooses amongU<r the question q withmax ∥vq,ϵ ∥
2
. As

pointed out above, this problem is equivalent to finding the diameter

of the projections of points fromU<r to Eϵ . The diameter finding

problem does not have an exact solution in linear time [8], thus we

use a well-known approximation to find it; see Algorithm 2 [7].

Algorithm 2 Computing the diameter of a set of points [7].

1: Input: The set of points S
2: Choose a random point p ∈ S
3: Find the farthest point from p: p1 by Euclidean distance

4: Find the farthest point from p1: p2 by Euclidean distance

5: return p1, p2

4 EXPERIMENTAL SETUP
4.1 Research questions
We assume that a good questionnaire consists of a small number of

questions in order not to bother the user toomuch. At the same time,

information received after completing the questionnaire should be

enough to provide good recommendations and to understand the

user’s preferences. Thus, our research questions are the following:

RQ1 The final goal of SPQ is to provide enough information to

build a high-quality list of personalized recommendations

for a new “cold” user. Does minimizing Eq. 2 correspond to a

better quality of the recommendations?

RQ2 What is the impact of the preference elicitation procedure

used on the final quality of recommendations?

4.2 Experimental methodology
4.2.1 Datasets. We conduct experiments on theMovieLens dataset,

with explicit ratings, and an Amazon book dataset, with implicit

feedback. As a ground-truth answer r∗ui j to the question of the

preference between two elements i and j, that have received differ-

ent ratings rui , ruj , we use 1 if rui < ruj and −1 otherwise. We

processed the datasets subject to the following constraints: (1) in

the dataset there is a sufficient amount of information in order for

LFM to be reliable; (2) personalization really improves the quality

of the recommendation of the items in the data set; (3) users in the

dataset tend to evaluate items they like and items they do not like .

MovieLens. The original MovieLens dataset [15] contains 27,000

movies, 20 million ratings, that are scored by 138,000 users. These

5-star ratings were collected between January 9, 1995 and March 31,

2015. The dataset is processed as follows. First, following [22] we

are interested in the ability of algorithms to distinguish good rec-

ommendations from bad ones. Therefore, we binarize the ratings as

in [22]: ratings that are scored by 4 stars and above become positive,

others become negative. Then, for the constructed dataset to satisfy

the first constraint mentioned above, we only retain movies that

have been rated by at least five users. In addition, for the created

dataset to satisfy the second constraint, we keep only movies for

which the ratio between the number of negative ratings and the

positive ratings received by these movies is less than three. Finally,

we keep only users for whom the ratio between the number of

negative and positive ratings given by each of these users is less

than three. Thereby the dataset satisfies the third constraint.

The final dataset consists of 10 million ratings, produced by

89,169 users, for 11,785 movies.

Amazon books. This dataset contains ratings for books as part of
users’ reviews [23]. One drawback of collecting ratings this way is

that users rate and write reviews only for books that they bought

and read. So, the descriptions and genres of the negatively rated

books can potentially satisfy user’s preferences. Therefore, we cre-

ate a new dataset using the reviews from Amazon. In the con-

structed dataset a rating is positive if a user wrote a review about

the book, and consequently, bought and read it.
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Negative ratings are created by uniformly sampling from books

that the user did not read. For each user, the number of positive

ratings equals the number of negative ratings. In order for the data

set to satisfy the first constraint (that LFM is reliable), we only

include the 30,000 most popular books. We only keep users who

rated from 20 and 1,000 books. This leaves us with a dataset with

3,200,000 ratings, from 33,000 users for 30,000 books; all books

included in the dataset received at least 5 reviews. The dataset

satisfies the second and third constraint because users and items

have diverse ratings as the data was obtained by negative sampling.

4.2.2 Baselines. We are the first to propose a preference elicitation

method that creates a static questionnaire containing relative ques-

tions about user preferences. To the best of our knowledge, there

are no direct baselines to compare with. Therefore, we compare

SPQ with three baselines designed for solving a similar but not

identical task. However, they all optimize the Presicion@k measure,

which we also use to compare the methods. Moreover we use them

in the setting for which they were designed. As baselines we use

two state of the art methods that create a preference questionnaire,

and one method that creates an absolute questionnaire:

• Bandits [6] and Pair-Wise Decision Trees (PWDT) [26] that create

a dynamic questionnaire by asking relative questions;

• Forward Greedy [2] that creates a static questionnaire but con-

tains absolute questions.

In addition, we compare SPQ with a random baseline that selects

relative questions randomly.

Importantly, the main goal of this paper is to create a preference
questionnaire in an optimal way, thereby avoiding problems from

which absolute questionnaires suffer. Thus, the most appropriate

baselines for SPQ are methods that create preference questionnaires.

Bandits. Christakopoulou et al. [6] present a bandit-based method

for creating a dynamic questionnaire by asking relative questions in

an online setting. They propose the following algorithm for picking

two items for asking relative questions: (1) select the first item that

the recommender algorithm predicts to be the best for the user in

the current stage; (2) virtual observation and update: assume that

the user does not like the first item and virtually update the model

including this knowledge; (3) select a comparative item that the

algorithm, using the virtually updated model, predicted to be the

best for the user in the current stage.

PWDT. Rokach and Kisilevich [26] propose the PWDT algorithm,

which solves the same problem as Bandits, i.e., it creates a dy-

namic questionnaire asking relative questions. PWDT minimizes

the weighted generalized variance in each step. To this end, the

algorithm needs to brute force all pairs of items. To avoid this, the

authors suggest to first cluster items, using the k-means algorithm

with cosine similarity. Then they create artificial items, which are

the centroids of these clusters, and use only these artificial items to

choose the next question. The PWDT algorithm is dynamic, which

means that it must perform every step fast; it remembers all an-

swers and questions that it has received and asked earlier, using a

lazy decision tree [10].

Forward Greedy. Anava et al. [2] propose a Forward Greedy (FG)

approach that creates a static questionnaire consisting of absolute

questions. Users are asked to rate one item per question. FG has

the same assumptions as SPQ (listed in Section 2.1) and it also

solves optimization problem which similar to our formulation in

(2). Anava et al. [2] prove an upper bound on the error of the

Backward Greedy (BG) algorithm and show that FG and BG achieve

Algorithm 3 Evaluation of an elicitation procedure.

1: Input: Set of items I, the set of cold users Ucold
2: Loss = 0

3: divide I into two subsets of equal size randomly: Itest , Itrain
4: for each u ∈ Ucold do
5: create a questionnaire, consisting of questions about items

from Itrain
6: receive u’s completed questionnaire

7: predict vu : v̂u
8: choose test questions about items from Itest
9: using v̂u predict answers on test questions: Answersu
10: increase the loss Loss → Loss + Loss(Answersu )
11: return Loss

similar results on realistic datasets. Therefore, we only use FG

for comparisons. Our goal is to provide a method for creating a

static preference questionnaire in an optimal way, thereby avoiding

problems from which absolute questionnaires suffer. However, it is

useful to compare the proposed method with a reasonable absolute

baseline to understand if the quality of the preference questionnaire

is comparable to the quality of absolute questionnaires in terms of

the final list of recommendations.

Random. Finally, we compare SPQ with a baseline that randomly

picks pairs of items for questions. We include this comparison to

better understand the importance of carefully selecting questions.

4.2.3 Training latent factor models (LFMs). We stress that train-

ing LFM is not the task of this paper; instead, we just use its param-

eters: µ, vi , bi , vu , bu (presented in Eq. 1) for (1) the ground truth

and (2) our recommender system. We factorize users’ ratings matrix

R using LFM (Eq. 1), which is trained to minimize the Root Mean

Squared Error (RMSE) using Stochastic Gradient Descent (SGD).

We first randomly pick one thousand users as "cold start users".

Then we train LFM on all ratings by all other users, who are “warm”

users. To choose a combination of hyper-parameters, namely the

latent dimension and regularization, we create a validation set that

consists of ten random ratings for each “warm” user who has rated

at least twenty items. We set the hyper-parameters to the values

that achieve the best accuracy on the validation set.

In order to achieve statistically meaningful results, we perform

this procedure ten times. I.e., the following is repeated ten times:

(1) choose the subset of cold-start users randomly; (2) train LFM

using the ratings obtained from all other users; (3) create a ques-

tionnaire; and (4) measure its quality.

4.3 Experimental conditions
We randomly divide all items into two equal subsets: (1) the training

items that are used to select questions; (2) the test items that are used

to measure performance. For all experimental conditions we use a

standard procedure to measure the performance [9], as described

in Algorithm 3: (1) we receive a completed questionnaire for each

user; (2) we receive predictions of the users’ latent presentation

using Eq. 3 and ground truth presentation of the question (v(i, j) and
b(i, j)); and (3) we use this presentation to predict the user’s ratings

on the chosen subset of the test items. We have two experimental

conditions, real (Section 4.3.1) and simulated (Section 4.3.2), which

differ in how they receive users’ answers and choose test questions.

4.3.1 Real condition. As described above, we first split all items

into two equal-sized subsets randomly: (1) training items that are
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Algorithm4Choosing a subset from the test items in the Simulated

condition.

1: Input: Set of test items Itest , user u’s ground truth vector vu
2: initialize subset from the test items ItestSubset = ∅

3: using (1) receive all ratings by u to Itest
4: get the extended recommendation list L = {i1, . . . , in } by sort-

ing items according to their ratings

5: divide items into 50 groups S1, . . . S50:
Sk = {i(k−1)∗(n/50)+1, . . . , i(k−1)∗(n/50)+n/50}

6: for each group S in S1, . . . S50 do
7: choose the random item i ∈ S
8: add i to ItestSubset
9: return ItestSubset

used to select questions; and (2) test items that are used to measure

the quality. In this condition, for each user, we create questions

only about items that she has rated. We also measure the quality of

the elicitation procedure using the subset of the test items that the

user has rated. Consequently, we can infer users’ answers using the

ratings that are available in the dataset. Thus, in this setup, we do

not simulate answers and do not need any assumptions to receive

users’ answers. However, optimal items may not be available. Also,

despite the fact that we use the same elicitation procedure for all

users, the questionnaires will be different for different users because

they rate different subset of items. To avoid this problem and ask all

users the same questions, we also perform a simulated experiment.

4.3.2 Simulated condition. In order to ask all users the same ques-

tions and to choose the questions in an optimal way we require the

mechanism for obtaining answers to the questions. However, we

cannot obtain this information directly from ratings in the datasets

that we use, because users rate different subsets of items and only

a small fraction of all items. Thus, following [6], in the simulated
condition we simulate users’ answers using Eq. 3. This way of ob-

taining users’ answers is motivated by the following assumption:

all ratings comply with the LFM model that is given to us. We use

this simulation procedure to get answers for both sets of questions

from (1) the questionnaire; and (2) the subset of test questions. It

is important to point out that, like SPQ, Bandits, PWDT, and FG

also rely on the assumptions about pretrained LFMs described in

Section 2.1. Thus, using the simulation condition does not favor

any method, baseline or otherwise.

Algorithm 4 provides detailed information on how to choose a

subset from the test items to generate the test questions. First, for

a given user we divide all test items into 50 groups according to

her preference. Then we pick one item per group. This procedure

picks only 50 items instead of thousands of test items; moreover,

the chosen 50 items are very diverse.

4.4 Evaluation methodology
To answer our research questions we use different metrics.

4.4.1 RQ1. To understand whether it is right to optimize Eq. 2, we

should provide two measures: (1) one that reflects how well Eq. 2 is

optimized; and (2) another one that reflects the quality of the final

personalized list of recommendations. We choose (1) Precision of

the classification of all preference questions (PCPF) between any

two test items: PCPF is equal to the fraction of correctly classi-

fied pairwise preferences between items; and (2) Precision@10 of

Figure 2: Results on the MovieLens movie dataset. (Top):
Simulated condition. (Bottom): Real condition. (Left): PCPF.
(Right): P@10.

Figure 3: Results on the Amazon books dataset. (Top): Sim-
ulated condition. (Bottom): Real condition. (Left): PCPF.
(Right): P@10.

the recommendation list (P@10). We would like to observe if the

algorithm with the lowest PCPF has the highest P@10.

4.4.2 RQ2. The goal of a recommender system is to provide to

a user the most relevant recommendations. That is why we use

ranking measures to evaluate all methods, specifically P@10, to

compare the quality of the final personalized lists. Precision@k is

the fraction of relevant items among the top-k recommendations.

It is one of the most popular measure for the recommender sys-

tems. Our final evaluation measures were computed by averaging

Precision@k over all users in the test set.

5 RESULTS
Our experimental results are shown in Fig. 2 and 3 for the Movie-

Lens movie dataset and the Amazon book dataset, respectively.

Importantly, the maximum Precision@10 score depends on the

dataset and LFM: for some users, there are fewer than 10 positive

ratings. We chose the range of the plots for Precision@10 measure

from (1) its minimum value for the non-personalized recommenda-

tion; (2) until its maximum value, the value achieved by calculating

the Precision@10 for the ideal ranking in which items that a user

likes are all on the top. The maximum value for Precision@10 in

the real condition for the MovieLens and Amazon Books datasets

are 0.71 and 0.90, respectively. And the maximum value for Preci-

sion@10 in the simulated condition for the MovieLens and Amazon

Books datasets are 0.75 and 0.89, respectively.

5.1 RQ1
To answer RQ1 we should understand if the property listed in

Section 4.4.1 holds for every pair of algorithms and all conditions.
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For pragmatic reasons we answer RQ1 by comparing methods that

achieve state of the art results in terms of Precision@10. Let’s turn

to the plots shown in the left and center columns of Fig. 2 and 3.

We observe that for every pair of methods A and B, and every

budget size N (≤ 29), if method A significantly outperforms B in

terms of PCPF, then method B does not significantly outperform A
in terms of P@10. Hence, we were correct in optimizing Eq. 2 to

produce better lists of recommendations for a user after receiving

her completed questionnaire.

5.2 RQ2
To answer RQ2 we turn to Fig. 2 and 3 (right-hand side).

5.2.1 MovieLens movie dataset. All algorithms provide the same

performance for questionnaires with a length less than 5: the dif-

ferences in performance in terms of P@10 between the elicitation

methods are not statistically significant (p > 0.1) for any pair of

methods. In all cases except one, SPQ works significantly better

than other methods if the budget is large (P@10; p < 0.01); only
FG achieves the same performance as SPQ in the Real condition for

a large budget (N > 20). In the Real condition with a medium size

budget SPQ significantly outperforms all other algorithms.

5.2.2 Amazon book dataset in the Real condition. SPQ achieves

near-perfect performance only with budgets that are larger than 15;

for the smaller budget it has a similar but statistically significantly

better performance than Bandits; for budgets larger than 15, SPQ

has a similar performance as FG. FG is statistically better than SPQ

when the budget is more than 25, but the difference with the quality

that is achieved by this algorithm in terms of Precision@10 is less

than 0.5%. This finding can be explained by the fact that for long

questionnaires (with N > 15), in the Real condition, the following

property holds: a completed absolute questionnaire provides the

same information that is contained in the dataset about a user.

Hence, for a long questionnaire the FG method achieves the best

result for this experimental condition. But this does not imply that

for real users it would lead to the same top performing results.

To conclude our answer to RQ2, the importance of the elicitation

method depends on the dataset. We distinguish two cases. The first

case is datasets like the MovieLens movie dataset, where a non-

personalized list of recommendations based on item popularity

achieves good results. In that case for a small budget, such as N = 5,

it is not important to carefully choose the questions. But for a larger

budget (5 < N ≤ 15), it is important to choose a method other than

Random. For long questionnaires (N > 15), SPQ is the best choice.

The second case is for datasets such as the Amazon book dataset,

for which a non-personalized recommendation list has far worse

quality than a personalized one. In this case, it is always beneficial

to use SPQ to create a questionnaire.

There are two important properties of the elicitation method that

should be considered when choosing a method. First, the function

the elicitation method minimizes to select a question. We concluded

that if the method directly optimizes the loss function, then it works

better than others. Moreover, the difference becomes noticeable

if the questionnaire is long enough: SPQ and FG achieve better

performance than PWDT, despite the fact that they are static, while

PWDT is dynamic. A possible explanation is that PWDT optimizes

a function that is different from the loss function, namely weighted

generalized variance. Second, constraints on selecting items to cre-

ate a question. The Bandits method selects items that, as it predicts,

will be liked by the user. This constraint affects performance, es-

pecially when the questionnaire is long (N > 15) because at this

time Bandits already predicts some user preferences (but not all)

and starts to ask questions about the elements that satisfy these

preferences. However, the problem that we solve in this paper has

no limitations on the choice of items. Instead, methods that do not

have this limitation still ask very informative questions and, there-

fore, achieve better performance: SPQ selects informative questions

and achieves better performance than Bandits, while being static.

5.2.3 Amazon book dataset in the Simulated condition. SPQ is sta-

tistically significantly better than others for a budget that is larger

than 3 (p < 0.01). Moreover, it achieves a high performance after

asking only 5 questions, while other algorithms achieve similar

results only for a budget that is larger than 15. Thus, compared to

other elicitation methods, the length of the questionnaire can be

reduced by a factor of three for the same recommendation perfor-

mance. In all other cases, LFM achieves a near perfect result (on

the validation set, RMSE < 0.45).

6 RELATEDWORK
6.1 Cold start problem
In collaborative filtering (CF), ratings and implicit information are

used to provide recommendations [28]. Unlike content-based meth-

ods, CF does not require feature engineering. Two popular ap-

proaches are clustering [32] and latent factor models (LFMs) [27].

In LFM, items and users are represented as vectors in a latent space

that is automatically inferred from observed data patterns. The di-

mensions of the space represent information about user preferences

and properties of items. The recommendation algorithm predicts

ratings using the representations. An influential realization of this

approach is matrix factorization (MF) [27]. MF, like all CF methods,

cannot provide reliable ratings for users with limited history and

we run into the new user cold-start problem [3, 19].

Previous research suggests different approaches to the new user

cold-start problem. Li et al. [21] suggest to model representative

vectors, not only recommending the best items (exploit), but also get-

ting information about user preferences (explore). Such approaches

are usually used for recommender domains that are dynamic: items

appear very fast, and usually, new items are relevant (for example,

news and ad recommendation). For a broader range of domains,

a popular method for solving the new user cold-start problem in-

volves questionnaire-based
2
approaches where new users are asked

a seed set of questions [6, 11, 24–26].

6.2 Questionnaire-based approaches to the new
user cold-start problem

6.2.1 Static questionnaire. The standard procedure for creating a

static questionnaire chooses seed items independently of new users,

and then users rate these items [24]. The underlying algorithmic

problem is how to build a seed set that can yield enough preference

information to build a good recommender system. One approach

is to formulate it as an optimization problem; Anava et al. [2] find

a mathematical expression for the expectation of the number of

wrong predictions of ratings after a user has answered a question-

naire. Rashid et al. [24]’s method selects questions that are not

only informative but also satisfy the constraint that users know the

2
In the literature, such methods are also called “interview-based.” To avoid ambiguity,

we stick with “questionnaire-based.”
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items in the questions and are therefore able to make fast decisions.

The set of questions can be chosen based on diversity and coverage

of the set [9, 22]. That is, latent vectors of the selected questions

should have the largest length yet be as orthogonal as possible to

each other, i.e., the parallelepiped spanned by these latent vectors

should have maximum volume. Fonarev et al. [9], Liu et al. [22]

propose to use Maxvol [13] to find such items.

In line with [2], we propose a method that creates a static ques-

tionnaire by solving an optimization problem. But SPQ is the first

one to do it for relative questions of the kind shown in Fig. 1.

6.2.2 Dynamic questionnaire. In a dynamic
3
questionnaire the next

question depends on previous questions and answers. A popular

way to adapt questions to users’ answers is to build a decision

tree [12, 16]. In each node of the tree, there is a question. The

children of the node are the next questions depending on the answer

to the question in the current node. Thus, each node has as many

children as there are answers to the current question. Consequently,

dynamic methods can be memory inefficient, but usually, they

provide better results than static ones. The method presented in

this paper, while static and memory efficient, achieves better results

than dynamic baselines. We leave a dynamic variant as future work.

6.2.3 Asking relative questions. Another way to solve the new user

cold-start problem is to ask relative questions. As stated in [17], this

approach has all the advantages of pairwise preference approaches:

it is faster and easier for a user to answer relative questions, and

users’ relative preferences are more stable over time. Jones et al.

[17] also show that relative questions can deal with the rating cali-

bration issue. However, the number of possible relative questions is

proportional to the square of the number of items and therefore it is

computationally expensive to select optimal preference questions.

Thus, only a few papers have so far used this approach [6, 26].

There are several solutions to avoid brute-forcing all pairs of

items. Rokach and Kisilevich [26] suggest to cluster items before

selecting questions. However, valuable information about items

may be lost in the clustering. Moreover, this algorithm can be

memory inefficient due to the need to memorize all answers of

all users. Christakopoulou et al. [6] present several bandit-based

algorithms for online recommendations, including asking relative

questions in an online setting.

To summarize, we propose a method that creates a static ques-

tionnaire consisting of relative questions, which allows us to build

a personalized list of recommendations for a new user. Similarly

to [2], we formulate our task as an optimization problem, but we

ask relative questions [6, 26] instead of absolute ones. Therefore,

we cannot perform the kind of brute-force search of all available

questions that is performed in [2]. Hence, we propose a new solu-

tion for the optimization task defined in [2]. Our method differs

from [26], as we offer a procedure that selects the most informative

questions without clustering items, thus avoiding losing any infor-

mation. Moreover, our method solves the optimization problem that

minimizes the expectation of misclassified personalized preferences

of one item over another, while the method in [26] minimizes the

weighted generalized variance, which is not directly related to the

loss that we minimize. The main advantage of SPQ over [6] is that

we optimize informativeness of questions without constraints.

3
In the literature, such methods are also called “interactive.” To avoid ambiguity, we

stick with the term “dynamic.”

7 CONCLUSION AND FUTUREWORK
We have proposed a static preference questionnaire generation

method, called SPQ, that extends earlier work [2, 6, 11, 24–26] on

approaching the new user cold-start problem for recommender sys-

tems by asking a set of seed questions. Our main research question

is How to optimally generate a preference questionnaire, consisting of
relative questions, for new users that will help to solve the new user
cold-start problem? Generating a short questionnaire that is suffi-

ciently informative so as to derive a high-quality list of personalized

recommendations, is crucial for a recommender system to be able

to engage new “cold” users. We are the first to address the problem

of generating a list of relative questions as an optimization problem.

The use of relative questions is beneficial [17] because: (1) users

find it easier to provide feedback through relative questions than

through absolute ratings; (2) absolute ratings suffer from calibration

issues; and (3) answers on relative questions are stable over time.

We have demonstrated theoretically how to solve the optimiza-

tion problem and how to avoid brute-forcing all possible questions

as is implemented in [2]. Also, we have shown experimentally that

minimizing the proposed SPQ objectives leads to a high-quality list

of personalized recommendations. We have performed experiments

on two datasets: the MovieLens movie dataset and the Amazon

book dataset. These datasets differ in the type of user feedback and

in the diversity of items. Also, we have considered two experimen-

tal conditions to evaluate elicitation procedures: (1) experiments in

Simulated shows results in the ideal situation when users behave

according to the latent factor model (LFM); and (2) experiments in

the Real condition do not rely on any user rating model. We have

compared SPQ with multiple state-of-the-art baselines [2, 6, 26]

that solve similar but different tasks. SPQ outperforms all baselines

on both datasets independently of the length of the questionnaire,

and it achieves a statistically better performance than the baselines

for questionnaires whose length exceeds 5. On the Amazon book

dataset in the real condition, SPQ was able to reduce the length

of the questionnaire by a factor of three. Moreover, SPQ, a static

method, has demonstrated better results than the dynamic base-

lines [6, 26]. SPQ outperforms the dynamic methods because it

optimizes the loss function and has no constraints on the questions,

while dynamic baselines either optimize a substitute function in-

stead of the LFM loss function or have constraints on the questions

that are not necessary for the problem solved in this paper.

In future work, we plan to work on the following important

aspect to improve a questionnaire. SPQ may ask very informative

questions about items that a user might not like. To overcome this

problem, we plan to make SPQ dynamic to make sure that we ask

attractive questions for the user while receiving almost the same

amount of information.

Code and data
To facilitate reproducibility of the results in this paper, we are

sharing the code to run our experiments at https://github.com/

Seplanna/pairwiseLearning.
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