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1. Introduction
A significant part of the global terrestrial freshwater is stored in the soil. Green water, or plant-available soil 
moisture, enables vegetation growth and determines vegetation form and functioning (Eagleson, 2002). In 
turn, vegetation cover governs many green water processes, such as infiltration capacity, evaporation, and 
percolation (Figure 1). Vegetation changes can affect green water dynamics that subsequently affect mois-
ture recycling patterns by altering the magnitude and timing of evaporation and transpiration (Wang-Er-
landsson et al., 2014). Terrestrial moisture recycling (TMR) is referred to as the “process of terrestrial evap-
oration entering the atmosphere, traveling with the prevailing winds, and eventually falling out as rain” 
(Keys et al., 2017: 15). Globally, 57% of the rainfall over land returns to the atmosphere via evaporation or 
transpiration (Eagleson, 2003; Tuinenburg et al., 2020), of which 70% rains back again over land (Tuinen-
burg et al., 2020). Subsequently, terrestrial evaporation and transpiration comprise 40% of the total rainfall 
falling over land globally (Van Der Ent et al., 2010). TMR thus represents a significant hydrological pathway 
for the global distribution of water.

Anthropogenic land-use change (LUC) following increasing demand for food, fuel, fiber, and timber (Schyns 
et al., 2019) might affect TMR patterns. Some studies suggest that deforestation and vegetation reduction 
can disturb TMR and affect local to regional rainfall patterns (Keune & Miralles, 2019; Savenije, 1995; Zemp 
et al., 2014; Zemp, Schleussner, Barbosa, & Rammig, 2017; Zemp, Schleussner, Barbosa, Hirota, et al., 2017). 
Deforestation and land degradation lead to the loss of natural ecosystems and could further reduce the resil-
ience of remaining forests by affecting TMR patterns (Zemp, Schleussner, Barbosa, & Rammig, 2017; Zemp, 
Schleussner, Barbosa, Hirota, et al., 2017). Simultaneously, there is a growing interest in afforestation for 
biological capture-biological storage (BCSC) of carbon for climate mitigation (UN,  2015), and restoring 
ecosystems in general for various other Nature's Contributions to People (NCP) (Ellis et al., 2019). Bastin 
et al. (2019) estimate the global tree restoration potential to cover 0.9 billion ha of canopy cover, which can 
store 205 Gt of carbon. Between 2000 and 2012, 80 million hectares were reforested or afforested (Bentley 
& Coomes, 2020). Forest plantations can change regional (Branch & Wulfmeyer, 2019) to global (Swann 
et al., 2012) climate via land-atmosphere interactions, but also run the risk of distorting basin hydrology and 
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sediment dynamics (Farley et al., 2005), as has occurred in many forestry projects worldwide (e.g., introduc-
tion of exotic Eucalyptus in South Africa) (Albaugh et al., 2013). Accordingly, the impact of both deforesta-
tion and reforestation on the hydrological cycle should be addressed given scarce water resources (Sterling 
et al., 2013). There is lack of clarity concerning the effects of LUC on TMR patterns (Spracklen et al., 2018) 
and whether they can be distorted or intensified through deforestation or reforestation, respectively. There-
fore, this research aims to synthesize our current understanding on the role of vegetation by addressing the 
question: How does land use and LUC affect precipitation patterns via the process of TMR? Drawing from 
observation-based and simulation-based studies from across the globe, we answer this question through a 
scoping literature review to provide a state-of-the-art synthesis on the effect of LUC on TMR.

We first provide a historical and theoretical background, describe the methodology for the review, and pres-
ent the results, including global and regional assessments of the empirical effects of LUC and implications 
for LUC governance.

2. Historical and Theoretical Background
Historically, human-induced patterns of vegetation change have altered large areas of the Earth's surface 
and hydrology. The debate on the effect of forests on hydrology centers around the question whether trees 
are net water users or net water producers (Andréassian, 2004; Ellison et al., 2012). Forests use water via tran-
spiration and evaporation (reducing local water availability), but they also enhance infiltration and the wa-
ter retention capacity of the soil (increasing local water availability). The trade-offs between these processes 
in specific contexts determine whether vegetation is a water user or producer (Peña-Arancibia et al., 2019). 
To address the effect of forests on a catchment level, many hydrological studies using paired-catchment 
approaches have been performed since 1970s (Bosch & Hewlett,  1982). Forest removal generally shows 
increases in streamflow, whereas forest establishment reduces streamflow (on average 23% over 5 years and 
38% over 25 years) (Farley et al., 2005; Filoso et al., 2017). Yet, forest increase also reduces peak flows and 
damaging floods as it increases infiltration capacity, and in some cases, streamflow has partially recovered 
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Figure 1. An overview of relevant properties and processes of moisture recycling dynamics. (LAI = Leaf Area Index; 
WUE = Water Use Efficiency). Microscale interactions occur at the land surface between the vegetation-soil-water 
system. Macroscale interactions occur between the land surface and the regional climate and are represented by 
exchanges of moisture, energy, and momentum. Interactions with groundwater also affect blue and green water (Lo & 
Famiglietti, 2010).



Water Resources Research

(Bentley & Coomes,  2020). The hydrological effects of forest removal and restoration on catchment hy-
drology remain variable due to many different landscape variables at work (Andréassian,  2004; Filoso 
et al., 2017).

On a planetary scale, the biophysical properties of vegetation regulate the hydrological cycle and climate. 
Interactions between the biosphere and atmosphere include exchanges of water, energy, momentum (bi-
ophysical interaction), and gases (biogeochemical interaction), which co-produce observed climate pat-
terns. Exploring these interactions with computational models has increased our understanding of land 
cover effects on the global climate. The illustrative model Daisyworld (Watson & Lovelock, 1983) shows 
the self-regulating properties of vegetation (daisy flowers) that stabilize atmospheric temperature via radia-
tive feedbacks. A similar computational thought experiment by Kleidon et al. (2000) investigates the effect 
of vegetation on the climate system by conceptualizing two contradicting worlds: a “desert world” and a 
“green planet,” accounting for both radiative and hydrological feedbacks. The simulation shows that a green 
planet produces three times more continental evaporation and transpiration, two times more precipita-
tion, and results in a decrease in surface temperature. TMR increases due to the higher energy availability 
through absorbed radiation and due to increased soil moisture retention capacity associated with tree cover. 
Although such extreme models are unrealistic, they illustrate the significant climatic effect of interactions 
within the biosphere-atmosphere system.

2.1. Theory of Moisture Recycling and Land-Use Change

The theory of forest-rainfall connections dates back to the 15th century (see Bennett & Barton, 2018). Ob-
servations during the European colonization of the Americas have led naturalists to argue that rainfall over 
dense continental forests derived from forest evaporation itself. Furthermore, deforestation on colonized 
islands, such as the Azores, led to observations of reduced rainfall, but without tools to quantify such dy-
namics, these theories remained unverified (Bennett & Barton, 2018). Biogeographers generally assumed 
that observed vegetation patterns were a consequence of assuming more-or-less stable weather patterns 
(e.g., rainfall is an external variable that is not influenced by the vegetation itself) (van Noordwijk & Elli-
son, 2019). In 1970s, rainfall reductions in the Sahel were linked to reduced vegetation cover resulting from 
overgrazing and landscape degradation (Charney & Stone,  1975). Savenije  (1995) developed a moisture 
recycling theory based on hydrological processes, confirming the mechanistic role of vegetation reductions 
on drought spells. More recent TMR studies show a strong dependency on recycled rainfall in wet trop-
ical regions (i.e., the Amazon and Congo basin) (Wang-Erlandsson et  al.,  2018). Advances in computer 
models and the availability of global climate data reinforced a revival of the inquiry into TMR (Brubaker 
et al., 1993), questioning the extent to which the earth surface, and particularly vegetation, contributes to 
rainfall patterns via the exchange of mass, energy, and momentum (Bennett & Barton, 2018; Bonan, 2008; 
Eltahir & Bras, 1996). The biotic pump theory (Makarieva & Gorshkov, 2007) suggests that continental for-
ests are crucial to transport atmospheric moisture of oceanic origin over the continents. These new insights 
gave rise to the idea that forests influence the climate and generate rainfall. As such, deforestation would 
result in rainfall reductions via interacting feedbacks at the microscale and macroscale (Figure 2). However, 
many references show that deforestation produces more complex local to regional effects on the climate 
and atmosphere (Boers et al., 2017; Chen et al., 2019; Ruiz-Vásquez et al., 2020; Silva et al., 2016; Zemp, 
Schleussner, Barbosa, & Rammig, 2017; Zemp, Schleussner, Barbosa, Hirota, et al., 2017), which makes 
predictions on rainfall patterns difficult.

2.2. Approaches, Tools, and Methods to Address Moisture Recycling

The hydrological toolbox to assess the effect of LUC on rainfall comprises of computational, statistical, 
and chemical methods (Gimeno et al., 2012). Computational methods use coupled land surface and veg-
etation models to climate models as to represent relevant interactions between the biosphere and atmos-
phere. On global scales, General Circulation Models (GCMs) and dynamic vegetation models have been 
coupled to simulate interactions between climate and vegetation (e.g., see Foley et al., 1998). Furthermore, 
mechanistic models that partition the observed upward moisture flux into different fluxes can induce the 
relative contribution of vegetation-regulated fluxes (Wang-Erlandsson et al., 2014), or use the vertically in-
tegrated atmospheric moisture budget to understand the impact throughout the atmospheric layers (Chen 
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et al., 2019). Subsequently, atmospheric moisture tracking models that are forced with meteorological data 
can identify source and sinks of these upward moisture fluxes, which allows tracking of moisture forward 
and backward in time (Keune & Miralles, 2019; van der Ent et al., 2014; Zemp et al., 2014). Subsequently, 
such simulations can be summarized into metrics representing regional dependency on recycled moisture. 
The precipitation recycling ratio , for example, is defined as the fraction of precipitation that derives from 
land surface evaporation (PE) over the fraction deriving from oceanic sources (PO) (van der Ent et al., 2014):

  E

O

P
P 

Vice versa, the evaporation recycling ratio describes the fraction of regional evaporation which returns as 
precipitation over land. However, the effect of LUC on moisture recycling patterns remains difficult to pre-
dict due to uncertainties regarding processes of scale operating in the atmosphere: both moisture tracking 
models (Keune & Miralles, 2019; Keys et al., 2012; Tuinenburg et al., 2020; Van Der Ent et al., 2010) and 
static partitioning models (Wang-Erlandsson et al., 2014) address mostly “first-order” hydrological process-
es (e.g., evaporation fluxes, source-sink relationships). “Second-order” effects may occur when first-order 
processes affect atmospheric properties and processes, such as on the moist static energy of the boundary 
layer (Eltahir, 1998), gross moist stability and convection (Kooperman et al., 2018), and continental to glob-
al circulation patterns (Makarieva et al., 2009, 2014). Furthermore, model assumptions regarding vertical 
mixing of the atmosphere pose the most prominent uncertainty of moisture tracking models (Tuinenburg 
et al., 2020).

Statistical approaches use LUC measurements to observed changes in rainfall (Sterling et al., 2013). Chang-
es in total evaporation and transpiration (TET) can also be measured using flux towers or satellite image-
ry and climate data (Shivers et al., 2019). Yet, causality between LUC and changes in rainfall patterns is 
difficult to prove due to the influence of many other biophysical and climatic factors which may explain 
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Figure 2. Conceptual diagram of the multi-level hydrological feedbacks in relation to vegetation cover. (A) On the microlevel, vegetation cover enhances 
the infiltration capacity due to changes in the soil (e.g., rooting structure). This enhances soil moisture availability and subsequently increases vegetation 
productivity. On the macro-level, increased water retention of the landscape increases evaporation and transpiration, which could subsequently lead to 
increased rainfall. The positive feedback cycle on the micro-level is linked to the macro-level as both cycles positively reinforce each other. Deforestation 
may affect these positive feedback cycles and lead to reduced rainfall patterns. Through climate change, these feedbacks can also be distorted as rainfall 
intensification may change infiltration and water retention in the landscape (Huang et al., 2014). (B, C) Panel B shows the nonlinear relation (and sometimes 
discontinuous relation, Panel C) between precipitation and vegetation (Panels B and C from Keys et al. [2019]).
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precipitation changes (e.g., mesoscale atmospheric circulations) (Spracklen et al., 2018). Furthermore, sta-
tistical methods fall short in providing estimations of precipitation or evaporation recycling metrics.

Chemical approaches use isotope measurements that allow backtracking of different moisture sources and 
their contribution to local rainfall (Zhao et al., 2019). Stable isotope ratios of hydrogen and oxygen (i.e., the 
isotopic compositions) vary between different sources of moisture (e.g., advection, evaporation, or transpi-
ration) hence reflect information about the source of atmospheric moisture (Gat, 1996).

Precipitation and evaporation recycling ratios are measures of strength of hydrological land surface-atmos-
phere coupling and are used to identify local, regional or distant rainfall responses of surface evaporation 
and transpiration (Goessling & Reick, 2011). They are shape-dependent and scale-dependent: the evapo-
ration of an infinitely small area has negligible contribution to precipitation while the whole earth has a 
moisture recycling ratio of 1 (Trenberth, 1999). The relation between scale and recycling follows a nonlinear 
relationship due to the spatial heterogeneity encountered with scaling up or down (Dominguez et al., 2006). 
Besides shape and scale, the specific location on the Earth's surface also strongly affects the magnitude of 
precipitation and evaporation ratios (Ma et al., 2019; Tuinenburg et al., 2020). The precipitationshed (Keys 
et al., 2012) captures the spatial dependence between source and sink regions of atmospheric moisture. It 
is “the upwind atmosphere and upwind terrestrial land surface that contributes evaporation to a specific 
location's precipitation (e.g., rainfall)” (Keys et al., 2012: 734), similar to the hydrological connections rep-
resented in upstream and downstream regions of a watershed. Thus, it represents an analytical framework 
to identify the source area of precipitation in a region of interest (i.e., sink region). Vice versa, the evapo-
rationshed (Van der Ent et al., 2013) identifies the sink area of evaporation from a given area. Contrary to 
watersheds, precipitationsheds are statistically defined in the sense that they do not have fixed borders, and 
are subjected to inter and intra-annual variation (Keys et al., 2012). Similarly, the concept of a watershed 
precipitation recycling network establishes atmospheric moisture connections on a watershed level, to iden-
tify how evaporation from one watershed contributes to precipitation in another (Keune & Miralles, 2019). 
Although TMR estimates are limited predictors of the effect of changes in evaporation to precipitation due 
to a sequence of processes occurring in the atmosphere (Goessling & Reick, 2011), they are useful to exam-
ine a region's vulnerability to changes in evaporation within the precipitationshed.

3. Methodology
As there was no existing systematic review paper, a scoping review of the literature on moisture recycling 
patterns in relation to LUC was carried out with the following search criteria on Scopus: "Terrestrial mois-
ture recycling" OR "Moisture Recycling" AND "Atmospheric" OR "Land-Atmosphere" OR "Land-atmosphere 
dynamics" OR Land-use change" AND "moisture recycling" (1,106 search results on 5-10-2020). Relevant 
literature was selected and subsequently, using backtracking and hand searching, additional literature was 
added. The references were analyzed for (1) relevant mechanistic relations and feedbacks in the soil-vege-
tation-climate system, specifically microscale and macroscale dynamics and (2) empirical observations and 
modeling simulations of quantitative hydrological change in relation to LUC. We distinguished observa-
tion-based and simulation-based studies based on whether the presented outcomes are ex-post or ex-ante: 
empirical studies are data-driven and reconstruct past or current observations; model simulations test fu-
ture scenarios. Studies that used observation data to feed mechanistic models to understand past or current 
processes were classified as “mixed.” Furthermore, empirical studies were classified based on the biomes of 
the area of interest. In case study regions were transcontinental (e.g., de Vrese et al., 2016), the sink region 
was selected as the main biome; if the case study region crossed biomes (e.g., Syktus & McAlpine, 2016), the 
largest surface area was selected as the main biome. Predominantly theoretical or review studies were not 
included in this frequency analysis (Figure 3).

4. Results
This chapter represents the findings from the literature review and is divided into a section describing the 
general spatial and temporal patterns of moisture recycling (see Section 4.1), and an empirical section ad-
dressing simulated and observed evidence of the impact of LUC on precipitation patterns (see Section 4.2) 
and instruments for governance (see Section 4.3).
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4.1. Patterns of Moisture Recycling

The literature on TMR shows that there is a large spatial and temporal variation in the regional depend-
ence on recycled moisture. Gimeno et al. (2012) already reviewed the variation of moisture sources (i.e., 
oceanic and terrestrial) between regions around the globe. Some regions receive the majority of precip-
itation from oceanic sources (e.g., western Europe), while others depend on moisture from continental 
origin (e.g., inland regions such as the East African savanna and Mongolian steppe) (Miralles et al., 2016). 
Some regions depend largely on recycled moisture from the own water basin (i.e., 32% of rainfall over the 
Amazon derives from the basin itself) (Staal et al., 2018), whereas others are dependent on evaporation 
from other water basins (i.e., 89% of rainfall over the Nile Basin comes from sources outside of the basin) 
(Mohamed et al., 2005). “Hotspots” of regionally strong precipitation feedbacks are observed in transitional 
zones (grasslands and savannas), such as semi-arid and monsoonal regions (Green et al., 2017) and in re-
gions where orographic lift drives precipitation events (Van Der Ent et al., 2010), in sub-tropical highlands 
with high evaporation and small advective moisture fluxes, and in convergence zones (Trenberth, 1999). 
Gradients of increased moisture recycling dependency moving further away from the coast have also been 
observed (Njitchoua et al., 1999; Rios-Entenza et al., 2014).
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Figure 3. Overview of the number and type of studies executed for each biome. In total, 99 studies were included. Biomes such as the “rock and ice” and 
“inland waters” are excluded from the figure. Biomes are derived from Olson et al. (2001).
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Seasonal variation in TMR (Tuinenburg et al., 2012) is caused by the warmer land surface compared to the 
ocean during summer, resulting in higher continental precipitation recycling ratios (Dominguez et al., 2006; 
Szeto, 2002). Higher moisture availability at the land surface in the wet season increases the relative im-
portance of surface evaporation to precipitation (Van Der Ent et al., 2010). In summer, 74% of precipitation 
over watersheds in Europe derives from evaporated moisture supplied by other watersheds (Keune & Mi-
ralles, 2019). Some regions depend highly on recycled moisture to produce peak spring precipitation (Hol-
gate et al., 2020; Rios-Entenza et al., 2014).

Interannual variation in moisture recycling patterns can be caused by weather cycles, such as El Niño South-
ern Oscillation (Z.Yang et al., 2018), the North Atlantic Oscillation, and monsoonal cycles (Guo et al., 2019). 
Weather anomalies, such as extreme precipitation or drought events, can be traced back to high continental 
evaporation (Kelemen et al., 2016) or low advection (Bisselink & Dolman, 2009). In the Congo Basin, ex-
treme rainfall events were linked to moisture recycling reductions due to relative lower soil moisture avail-
ability and higher surface runoff (Saeed et al., 2013). In response to climate change, such extreme rainfall 
events and increasing precipitation intensity are expected to become more frequent (Emori & Brown, 2005; 
Seager et al., 2010; Sun et al., 2007; Trenberth et al., 2003), subsequently increasing the relative amount of 
runoff and reducing soil moisture infiltration (Lan et al., 2016) and propagate along atmospheric telecon-
nections (Boers et al., 2019).

As precipitation length scales vary between 500 and 7,000 km (Van Der Ent & Savenije, 2011), evaporated 
water is likely to precipitate outside the water basin it originates from. In northern China, 15%–50% of 
the precipitation is derived from local (i.e., within the water basin) terrestrial moisture (Zhao et al., 2019). 
Rainfall in forests in the southwest of the Amazon basin derives largely from transpiration and evaporation 
in other parts of the basin (Staal et al., 2018). The Congo basin depends largely on evaporated moisture 
from East Africa, and in turn supplies rainfall to the Sahel region. Moisture recycling cascades in this region 
appear established due to dominant continental wind patterns (Zemp et al., 2014). Moisture recycling cas-
cades over South America contribute around 10% of the total precipitation over the continent. In the La 
Plata basin, 17%–18% of the rainfall derives from such cascades, generally deriving from the Amazon due to 
the topography of the Andes mountains guiding the moist air from the Amazon downward to the La Plata 
basin. Local moisture recycling in mountainous regions (e.g., Tibetan Plateau, the Andes) is dominant due 
to orographic lift (Dominguez et al., 2006; Kong & Pang, 2016). Around the Tibetan plateau, 50%–80% of the 
precipitation derives from locally evaporated water (An et al., 2017; Kurita & Yamada, 2008). An observed 
increase in moisture recycling may be caused by climate change, which increases both evaporation and 
precipitation rates in the region (An et al., 2017).

In tropical regions, precipitation length scales are generally shorter (500–2,000 km). Precipitation events are 
strongly driven by diurnal (Giles et al., 2021) and monsoonal dynamics (Tuinenburg et al., 2012) character-
ized by strong soil moisture feedbacks (i.e., local evapotranspiration produces afternoon rainfall) and short 
atmospheric lifetimes. In the Amazon, roughly one-third of the rainfall derives from the basin itself, of 
which 60% comes from plant transpiration (Staal et al., 2018). The ability of these plants to access deeper soil 
moisture can be important to maintain transpiration flows in the dry season (Wang-Erlandsson et al., 2014) 
and sustain precipitation even when advection from the ocean is low (Staal et al., 2018). On average, 46% of 
the transpiration falls back as precipitation in the basin itself, while in the dry season this can amount up 
to 70% (Staal et al., 2018). In the Ganges basin, moisture recycling varies between 5% and 60% and is low in 
winter and high in summer during the monsoon. Spatial variation in the atmospheric water budget (70% in-
ter-basin difference) is most likely caused by irrigation schemes, increasing evaporation locally, even during 
the dry season (Tuinenburg et al., 2012). TET from Indian irrigation schemes alone may support 40% of the 
rainfall in regions in East Africa (de Vrese et al., 2016). When evaporation is high, the distance of moisture 
traveled is generally shorter which may be caused by convection triggering local precipitation.

In water-limited regions, temporal variation in the fraction of TMR between the wet and dry seasons is 
generally small. In the Nile basin, the inter-annual moisture recycling variation is low (between 8% and 
14%). Annually, more than 89% of the water resources originate from outside the basin itself (Mohamed 
et al., 2005). Comparing wet season recycling ratios of water-limited regions shows that in the South Amer-
ican Pampas, recycling is only 3%, whereas in the Kalahari, it is 28%. In the dry season, recycling in the 
Kalahari reaches up to 34% (Miralles et al., 2016). In the Sahel, local moisture recycling appears strong in 
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the post-monsoon period due to wet soils and vegetation greening (Yu et al., 2017). Observations of high 
vegetation productivity in seasonally dry regions correlate with increases in evaporation and transpiration 
and lead to increasing precipitation (Green et al., 2017). This implies that in dry regions, retaining water 
locally (i.e., preventing quick run off), might result in an intensification of local precipitation in the wet sea-
son and post-monsoon period. Introducing water harvesting measures, such as half-moon pits (Figure 4), 
can enhance soil moisture retention in the landscape and affect meso-climate through surface temperature 
changes (Castelli et al., 2019). Many semi-arid regions are depending on recycled moisture for agricultural 
production during the growing season which also makes them socially economically vulnerable to changes 
in precipitation (Dominguez et  al.,  2006). Dry spells in these regions can facilitate positive land-atmos-
phere feedbacks that can amplify drought (Miralles et al., 2016). Thus, patterns of TMR in time and space 
appear highly variable and influenced by local geography, climate, topography, and vegetation properties. 
Gimeno et al. (2020) presents an in-depth review of atmospheric moisture transport and the establishment 
of source-sink relations, but do not explicitly address our understanding of how land cover changes affect 
source-sink relationships through vegetation-regulated moisture (Keys et al., 2016). Hence, the following 
paragraphs specifically review the existing knowledge on the impact of vegetation changes on atmospheric 
moisture transport and moisture recycling.

4.2. Effects of Land-Use Change on Precipitation Patterns

This section addresses simulated and observed evidence of the impact of LUC on TMR. Moisture recy-
cling metrics (e.g., evaporation recycling ratio) cannot be used directly to estimate the impact of LUC on 
precipitation, due to uncertainties in the effect of changes to the atmospheric moisture budget (Goessling 
& Reick, 2011) and water's active role in the climate system. Although temporal reductions in evaporation 
have shown significant precipitation effects (Keys et al., 2014), studies that specifically address the impact 
of LUC on precipitation are scarce. This is not surprising, as the processes of scale, data availability, and lack 
of clear causalities in complex systems present difficulties to find clear evidence (Spracklen et al., 2018). 
Here, we describe the role of vegetation in moisture recycling more generally. Subsequently, we specifically 
address the effects of deforestation and reforestation.
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Figure 4. Constructing half-moon pits to capture runoff in degraded landscapes in the Baviaanskloof Hartland, South 
Africa (Source: Living Lands, 2020).
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4.2.1. The Effect of Vegetation on Upward Moisture Fluxes

Vegetation regulates TET through various dynamics, that is, magnitudes, sources, and time scales (Wang-Er-
landsson et al., 2014). A global analysis that compares the current vegetative state to a hypothetical non-
vegetated scenario, shows that 22% of terrestrial rainfall on Earth's land surface is vegetation-regulated 
(Figure 5) (Keys et al., 2016). The spatial variation in the relative contribution is large. In some regions, such 
as Mato Grosso, Brazil, a vast region with different land uses and high rates of LUC, up to 45% of the evap-
oration is vegetation-regulated compared to a nonvegetated scenario characterized by less interannual rain-
fall variability and a strong reduction (−45%) in dry season rainfall. This implies that vegetation-regulated 
moisture recycling in this area is important to produce rainfall during the dry season (Keys et al., 2016). 
Other approaches present estimations of the relative contribution of vegetation-regulated fluxes such as 
transpiration and interception based on mechanistic partitioning models. For example, Wang-Erlandsson 
et al. (2014) apply a mechanistic approach to show that 59% of mean global TET composed of transpiration. 
Furthermore, different land-use conversions have been linked to specific effects on TET (Figure 6) (Sterling 
et al., 2013).

On the left, Figure 6 shows the relative contributions of specific land-use conversions to changes in TET. 
On the right, the contribution of land-use conversions to the total change in global TET is shown. Globally, 
it appears that conversion to nonirrigated cropland has reduced global TET by 3.5%. Hotspots of changes in 
TET following LUC are situated in Western Africa, South-East Asia, and Eastern Europe. These are regions 
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Figure 5. Source regions (left) percentage of vegetation-regulated evaporation that falls as precipitation on land 
Source: figure copied from Keys et al. (2016) and sink regions (right) percentage of precipitation that derives from 
vegetation-regulated evaporation. Data are generated using the Eulerian atmospheric moisture-tracking model Water 
Accounting Model-2 layers (WAM-2layers). Source: figure copied with the author's permission from Keys et al. (2016).
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that have experienced large-scale land-use conversion of forest and grasslands to irrigated and nonirrigated 
croplands (Sterling et al.,  2013). Furthermore, observations of the Earth “greening” (observed increases 
in leaf area index due to rising atmospheric carbon concentrations) has shown an increase in global TET 
(12 mm yr−1) and precipitation (12.1 mm yr−1), which is expected to significantly affect soil moisture in dry 
regions (Zeng et al., 2018).

LUC closer to the ocean might have a higher impact on precipitation patterns downwind due to the effect 
of moisture cascades moving inland (Schaefli et al., 2012). Precipitation and forest cover show a positive 
relationship along an atmospheric moisture transport trajectory in the tropics (Spracklen et al., 2012). Air 
moving over dense vegetation produces more than two times the amount of rain compared to air moving 
over sparse vegetation. However, the mechanisms behind the observation are disputed: one explanation 
postulates increasing TET over the forest canopy intensifies the hydrological cycle, assuming no change in 
atmospheric circulation (Spracklen et al., 2012), whereas another theory stipulates the “secondary” effect of 
forest evapotranspiration, creating a low-pressure system, subsequently drawing in atmospheric moisture 
from the oceans (Makarieva et al., 2014).

4.2.2. Deforestation

The effect of deforestation on moisture recycling patterns is influenced by (1) direct changes in the magni-
tude and timing of moisture fluxes, and (2) indirect changes in atmospheric circulation due to exchanges 
in energy, moisture, and momentum. Vegetation cover loss can severely affect infiltration, interception, 
and moisture storage at the land surface (van Luijk et al., 2013), triggering a “soil erosion feedback” that 
gradually result in the loss of ecosystem resilience (Flores et al., 2019) and reduces upward moisture fluxes 
which can produce self-propagating droughts and heatwaves via land feedbacks (Miralles et al., 2019). In 
many regions where TET reductions following agricultural expansion occurred, downwind reductions in 
precipitation were observed (Wang-Erlandsson et  al.,  2018). In most cases, effects occurred outside the 
river basin, which implies that LUC is less likely to produce local effects. Such remote effects can propa-
gate through shifts in the location of the ITCZ, affecting monsoonal precipitation patterns along this belt 
(Devaraju et al., 2015). However, in the Amazon basin, local feedbacks are unusually strong and expand 
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Figure 6. Contributions of various LUC to changes in TET. The horizontal graph on the left shows the relative contributions of land-use conversions (from 
initial to anthropogenic land cover) to changes in global total evaporation and transpiration (TET). For example, converting barren land to inundated land 
increases TET over that area by >900%. The vertical graph on the right shows the normalized contributions of the different land-use conversions to the global 
change in TET (%). It shows that conversion to nonirrigated croplands has reduced global TET by nearly 4% (data derived from Sterling et al. [2013]).
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the geographical range of tropical forests (Staal, Fetzer, et al., 2020; Staal, Flores, et al., 2020). Significant 
deforestation-rainfall relations were found on a scale of 30–50 km—anticipating stronger local effects of 
deforestation (Spracklen et al., 2018). A meta-analysis of climate models shows a negative relation between 
rainfall and deforestation, which have led to a 12% mean annual rainfall reduction in the Amazon basin 
(Spracklen & Garcia-Carreras,  2015). In dry seasons and years—when oceanic inflow is low—the rela-
tive importance of moisture recycling increases, which implies that reduced forest cover can result in a 
self-amplified forest loss during drought events (Bagley et al., 2014; Zemp et al., 2014). This “reinforcing 
drought-deforestation feedback” is expected to increase in strength in the future with accumulating forest 
loss (Staal, Fetzer, et al., 2020; Staal, Flores, et al., 2020). For Amazonian deforestation, a tipping point is 
proposed (Boers et al., 2017), referring to the westward moisture cascade in which some regions are de-
pending on precipitation from forest evaporation elsewhere. Crossing the tipping point would significant-
ly reduce rainfall in regions downwind, thereby also putting agricultural production in the region at risk 
(Lawrence & Vandecar, 2015). Using observation-based moisture recycling networks, Zemp, Schleussner, 
Barbosa, and Rammig (2017) and Zemp, Schleussner, Barbosa, Hirota, et al. (2017) show that Amazon de-
forestation can reduce dry-season rainfall in the southward La Plata basin with up to 20%. Subsequent loss 
of forest resilience suggests that it can trigger further climatological effects resulting in permanent forest re-
duction along the moisture recycling cascade (Zemp, Schleussner, Barbosa, & Rammig, 2017; Zemp, Schle-
ussner, Barbosa, Hirota, et al., 2017). Deforestation along the cascade affects the monsoonal circulation that 
is initially driven by latent heat released from precipitation over the rainforest, which creates a pressure 
gradient between the ocean and continent that enhances the inflow of moist air from the Atlantic (Boers 
et al., 2017). Deforestation reduces transpiration up to a moment in which atmospheric moisture is insuf-
ficient to release latent heat and accordingly draws in atmospheric moisture from the ocean. Furthermore, 
air moving over deforested land loses more moisture relatively, due to lower evapotranspiration rates (intact 
Amazonian forest on average adds 3–4 mm of transpiration to the air). The cascading effect (Zemp, Schle-
ussner, Barbosa, & Rammig, 2017; Zemp, Schleussner, Barbosa, Hirota, et al., 2017) might therefore result 
in lower downwind precipitation. Increasing scales of Amazonian deforestation trigger changes in surface 
roughness (Spracklen et al., 2018) and thermal circulations (Ruiz-Vásquez et al., 2020), on the boundary 
layer and the atmospheric stability (Bagley et al., 2014) and the upward motion intensity (Silva et al., 2016). 
In deforested lands wider than 10 km, changes in surface roughness and sensible heat can already trigger 
mesoscale circulation changes resulting in redistribution of rainfall. On very large scales, 100–1,000 km, de-
forestation can change atmospheric properties that result in macroscale hydroclimatic changes (Spracklen 
et al., 2018). Lawrence and Vandecar (2015) underline a nonlinear relation may exist between the scale of 
tropical deforestation and changes in rainfall, referring to a “critical patch size” of forests to sustain precipi-
tation patterns. In regions that experienced large-scale deforestation, delays in the onset of the rainy season 
have been observed (Butt et al., 2011).

Some deforested areas show an increase in total precipitation. In the South-West of Brazil, satellite-derived 
evidence suggests an increase in dry-season cumulus and convective clouds over deforested areas (Negri 
et al., 2004). This may be due to increased surface heating over deforested regions, producing an upward air 
motion that draws atmospheric moisture from neighboring areas. Fragmented deforestation patterns may 
also lead to increased rainfall: tropical forest edges produce more transpiration compared to its interior due 
to micro-climatic effects, which may result in increased rainfall. Deforestation increases energy transfers 
between the land surface and the atmosphere which drive thermal circulations, leading to an observed 
increase in precipitation patterns in parts of the Amazon (Chagnon & Bras, 2005). A modeling study over 
the Maritime continent shows that deforestation increases atmospheric instability, leading to ascending air 
motions and increased moisture convergence, subsequently resulting in increased precipitation and surface 
temperatures (Chen et al., 2019).

Seasonal shifts in precipitation have also been recorded in response to deforestation. In the tropics, LUC 
has a more severe effect on dry-season precipitation (Bagley et al.,  2014). In cold climates, the effect of 
snow cover is important: increased albedo following forest cover reduction in Russia elongates the snow 
season, reduces air temperature and transpiration, and results in lower moisture recycling rates (Notaro & 
Liu, 2008). In arid climates, such as the Sahel, vegetation reductions resulting in an increased albedo and re-
duced evapotranspiration, might have exacerbated drought duration in the 20th century extreme droughts 
occurring in these regions (Charney & Stone, 1975; Savenije, 1995). Recycling of evaporated moisture in the 
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Sahelian belt appeared to contribute significantly to rainfall patterns in the region during the wet season. 
Changing energy and moisture fluxes may have affected convection and circulation of the African Easterly 
Jet (Yu et al., 2018).

4.2.3. Reforestation and Afforestation

Although in theory, increasing vegetation cover can positively affect local rainfall patterns, there is little 
known about the bioclimatic conditions and spatial and temporal scale of reforestation required to increase 
moisture recycling. The Loess Plateau in China has experienced a long period of severe degradation from in-
tensive agriculture, followed by extensive reforestation since the year 2000s under the Grain for Green Pro-
ject which has doubled vegetation coverage on the Plateau from 31% in 1999 to 59% in 2013 (Bai et al., 2019). 
Sub-basin evapotranspiration trends show a significant increase in (mainly summer) TET of 3.45 mm year−1 
(Bai et al., 2019). Vegetation productivity contributed 93% to this increasing TET trend (Bai et al., 2019). Re-
forestation simulations using regional climate models for West Africa and the Sahel how that reforestation 
can enhance precipitation with +3.6% to 14.4% (Oguntunde et al., 2014) yet the location of the reforestation 
experiment has a significant role on macroscale climatic changes and the spatial distribution of predicted 
rainfall patterns (Bamba et al., 2019). Reforestation enhances surface roughness, weakening the atmospher-
ic temperature gradient, which can result in a delay in the onset of the monsoon (Oguntunde et al., 2014). 
A modeling scenario of potential restoration of Australia's woodlands on marginal lands shows an increase 
in evaporation, resulting in increased cloud formation and precipitation over the region. The ability of these 
woodlands to access deeper soil moisture would be the mechanism behind increased evaporation (Syktus 
& McAlpine, 2016). Branch and Wulfmeyer (2019) assess the possibilities for rainfall enhancement using 
bio-geoengineering approaches (i.e., forest plantations to deliberately enhance rainfall) in desert regions 
and conclude that agroforestry plantations enhance local wind convergence, increase cloud cover and pre-
cipitation. Yet, such conclusions should be interpreted with caution (see Section 4.3.2). Regional studies 
that address the effects of reforestation and afforestation remain scarce. Although in some cases there is 
evidence that it enhances local precipitation through increased TET, there are many climatic and geograph-
ic variables that determine final effects on local and regional rainfall patterns (Keys et al., 2012). Swann 
et al. (2012) show how forest expansion in the Northern midlatitudinal zone would increase relative evap-
oration and absorb more energy, subsequently affecting atmospheric circulation and precipitation patterns 
over the Amazon, the Sahel, and the oceans.

4.3. Instruments for Moisture Recycling Governance

Under certain conditions, LUC can affect local or regional rainfall and redistribute—either intentionally or 
unintentionally—water resources (Figure 7). To ensure equitable and sustainable water use, there is a need 
to address the governance aspects of land use-water interactions and prevent adverse local or regional ef-
fects. Keys et al. (2017) address the notion of transboundary moisture recycling governance as “the attempts 
for steering social and environmental processes among countries and their sometimes-conflicting objec-
tives,” evolving around the process of human interactions with moisture recycling patterns. From the liter-
ature, three governance instruments emerge: spatial planning, impact assessments, and boundary setting.

4.3.1. Spatial Planning Approaches

Through spatial planning, moisture recycling processes may be protected or intensified. The identification 
of hotspots of moisture recycling sources (Zemp, Schleussner, Barbosa, & Rammig, 2017; Zemp, Schleuss-
ner, Barbosa, Hirota, et al., 2017) can support the delineation of areas for forest protection. Furthermore, a 
recent study that investigates the potential to increase rainfall over a municipality in Bolivia with upwind 
“smart reforestation” reveals that 7.1 million hectares of reforested land could increase precipitation over 
the city by 1.25% (5.8 × 108 m3) annually (Weng et al., 2019). The authors estimate that aerial river manage-
ment—the practice of redistributing flows of atmospheric water through strategic LUC intentionally—has 
the potential to cover between 22% and 59% of the city's water demand in 2030 (Weng et al., 2019). Further-
more, considering moisture recycling trajectories, generally starting from the coastal area and moving inland, 
reforestation efforts could consider to be “build-up” incrementally along this trajectory to increase moisture 
recycling and also enhance the success rate of reforestation projects (Ellison & Ifejika Speranza, 2020; Fa-
gan et al., 2020). However, issues of temporal and spatial scale remain: interventions to enhance moisture 
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recycling would take decades to produce the significant effect (Keys & Falkenmark, 2018) and would re-
quire significant horizontal LUCs (although there is no research yet that addresses this scalar issue).

4.3.2. Impact Assessments

Nature's contribution to peoples (NCP) (Ellis et al., 2019) associated with TMR are “diffuse and spatially ex-
tensive” and pose challenges to governance (Keys et al., 2016). Precipitationshed analysis (Keys et al., 2017) 
can identify and quantify the exchanges of atmospheric moisture between countries and provides a frame-
work for impact assessments that address the effects of LUC on TMR, as well as the impact on various NCPs. 
Regional case studies are needed that address hydrological trade-off analyses that explicitly include land-at-
mosphere feedbacks and TMR patterns (Ellison & Ifejika Speranza, 2020; Wang & D'Odorico, 2019). For 
example, although bio-geoengineering can enhance rainfall in some regions (Branch & Wulfmeyer, 2019), 
it needs to be balanced against the potential negative effects on soil and groundwater hydrology (Wang & 
D'Odorico, 2019; L. Yang et al., 2012) and cascading effects on social-ecological systems. Accordingly, there 
is a need for a robust impact assessment framework that can address the (transboundary) social and envi-
ronmental trade-offs associated with interferences in TMR.

4.3.3. Boundary Setting

Advances in earth observation technologies allow for a detailed understanding of local to global water use. 
Measurements of TET and Net Plant Productivity (NPP) via satellite imagery allow for monitoring of green 
water use. For example, the FAO WaPOR project provides a monitoring platform using remote sensing data 
that tracks annual gross biomass productivity which shows the biomass production with respect to the actu-
al evapotranspiration. The provided data facilitates water accounting and enables green water management 
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Figure 7. Schematic summary of the evidence of land-use changes (deforestation and reforestation) on various processes governing moisture recycling 
patterns. Note that although there is sparse evidence that reforestation or ecological restoration increases rainfall patterns; yet, observed positive relations 
between vegetation greening (Yu et al., 2017) suggest that the positive vegetation-rainfall feedback may be strengthened when vegetation productivity increases. 
References: (1) van Luijk et al. (2013), (2) Sterling et al. (2013), (3) Butt et al. (2011), (4) Zemp, Schleussner, Barbosa, and Rammig (2017), Zemp, Schleussner, 
Barbosa, Hirota, et al. (2017), (5) Duveiller et al. (2018), (6) Charney and Stone (1975), (7) Peña-Arancibia et al. (2019), (8) Negri et al. (2004), (9) Spracklen 
et al. (2012), (10) Zemp, Schleussner, Barbosa, and Rammig (2017), Zemp, Schleussner, Barbosa, Hirota, et al. (2017), (11) Yu et al. (2017), (12) Cammeraat 
et al. (2010), (13) L. Yang et al. (2012), (14) Castelli et al. (2019), (15) Filoso et al. (2017), (16) Brown (2005), (17) Bentley and Coomes (2020), and (18) Weng 
et al. (2019).
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via targeted interventions, for example, when local vegetation growth is putting blue water resources at risk. 
In the Loess Plateau in China, a strong increase in NPP and TET following the Grain to Green reforestation 
program has come at the costs of river runoff that is potentially societally undesirable (Feng et al., 2016). 
Accordingly, a regional NPP plafond—a limit to the mean NPP to control trade-offs between vegetation wa-
ter use and river runoff—is proposed to prevent water shortages amongst the population (Feng et al., 2016). 
Alternatively, close monitoring of green water use and regional vulnerability also allows for measures re-
straining the use of high-water demanding species.

Governance of moisture recycling and land use-water interactions is in its infancy. Spatial planning ap-
proaches, impact assessments, and boundary setting are governance instruments that are proposed in 
response to the spatially extensive and diffuse nature of land use-water interactions via TMR. Further-
more, market-based and regulatory instruments, such as Payment for Ecosystem Services (PES) and trans-
boundary agreements and collaboration, could facilitate the implementation of such approaches. Yet, little 
is known considering their practical implementation in the context of TMR. Hence, besides the need for 
tools to address trade-offs in TMR governance, research on the advantages, disadvantages, and relation to 
international and transnational legal contexts (i.e., international water law and transboundary agreements) 
of market-based and regulatory approaches to moisture recycling is needed. Principles reflected in interna-
tional water law refer to the obligation not to cause significant harm (Rahaman, 2009) which implies that 
countries may be held accountable when LUC appear to negatively affect rainfall patterns via international 
agreements. A “one size fits all” approach to governance is likely to be undesirable due to (1) the spatial 
and temporal variance of land-atmosphere interactions and associated water circulation and (2) the issue of 
scalability associated with nonlinear responses of TMR to LUC.

5. Conclusions
Continuous global LUC, increasing understanding of biosphere-atmosphere interactions, and increasing 
water scarcity beg the question of how LUC affects dynamics and feedback mechanisms with respect to 
water and rainfall in the soil-vegetation-climate system. This scoping review addressed the state-of-the-art 
knowledge on moisture recycling in relation to LUC and leads to five main conclusions:

•  First, a significant part of global terrestrial rainfall is vegetation-regulated, which implies that LUC can 
greatly affect rainfall patterns. In the last decades, LUC has significantly reduced global TET across the 
globe.

•  Second, deforestation has reduced local precipitation, distorted moisture recycling cascades (reduce 
downwind precipitation), intensified drought, delayed the onset of the rain season, and in some cases 
increased local rainfall due to microclimatic effects. In general, effects on precipitation are more likely to 
be nonlocal and occur outside the basin.

•  Third, dominant feedback mechanisms and effects differ strongly between regions. In tropical wet re-
gions, stronger local effects of LUC on moisture recycling are expected which implies vegetation is more 
sensitive to drought and disturbance feedback mechanisms. In water-limited regions like the Sahel, the 
effects of the energy-feedback may be more prominent. Yet, relatively little research is done in temperate 
and dry regions.

•  Fourth, hotspots of moisture recycling may occur along gradients between the ocean and land surface, 
mountainous regions, and transitional zones. These hotspots might require protection to prevent disrup-
tion of continental moisture recycling patterns.

•  Finally, the effects of reforestation on moisture recycling patterns appear sensitive to the scale and the 
spatial location of the reforestation project. Overall, the effects remain largely unexplored. Although 
this is sensible due to the complex nature of the question, there is a need to further explore the potential 
hydrological multi-scalar trade-offs of reforestation.

Coupled land surface and climate models have the potential to explore specific LUC scenarios to identify 
the change in rainfall patterns following different spatial locations and scales of LUC. Analytical tools that 
allow for atmospheric water network analysis such as moisture recycling cascades (Schaefli et al., 2012), wa-
tershed analysis (Keune & Miralles, 2019), and precipitation- and evaporationsheds (Keys et al., 2014) can 
support water accounting measures and environmental and social impact assessments (Bagley et al., 2012) 
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to govern TMR. The notion of green and atmospheric water governance (te Wierik et al., 2020) implies 
that—amongst others—trade-offs associated with vegetation's ability to redistribute water flows are ad-
dressed. This implies, for example, that climate mitigation policies for carbon sequestration explicitly con-
sider the hydro-climatic effects at the precipitationshed level to prevent unexpected hydrological conse-
quences for people and nature.
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