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Chapter 1

Introduction

Our current knowledge of fundamental particles and interactions is summarised in the so-called
Standard Model (SM) of particle physics. While the SM describes very well the properties of
ordinary matter, precision measurements of the cosmic microwave background radiation (CMB)
show that ordinary matter makes up only 4.9% of the energy density of our universe; 26.8% is
made of a yet-unknown type of matter that gravitates but does not interact electromagnetically
(or it does so very weakly), known as dark matter (DM), while 68.3% is dark energy that makes
the universe expand at an accelerated rate [7].

This thesis focuses on DM. Besides the cosmological evidence for its existence, DM is neces-
sary to explain many astrophysical observations. Elucidating the nature of DM would allow us
to understand better the evolution and the structure of our universe. It would also correspond
to discovering unknown fundamental physics. The importance of DM for particle physics, cos-
mology and astrophysics has placed it in the forefront of theoretical and experimental research
in these fields. Indeed, a great number of plausible theories for the fundamental properties of
DM have been proposed, and a large experimental program has been developed to identify its
nature.

1.1 Evidence for dark matter

Dark matter was first inferred from the rotational curves of the Milky Way. They seemed to
indicate that must be some hidden mass creating a gravitational potential to explain the observed
stellar orbits. Other more recent investigations [8] include gravitational lensing, the cosmic
microwave background and other astronomical observations. In the following we summarize
some of this evidence.

Galactic rotation curves: The first evidence for DM comes after observing the trajectories
of the stars in the Milky Way. The luminosity of the spiral galaxy decreases from the center to
outside. If luminous mass were all of the matter, we can model the galaxy as the solar system,
with a big mass in the center and other masses orbiting around. From the second Kepler’s
law, we expect1 that the rotational velocities decreases with the distance to the center, however
this is not observed [9]. The obvious way to solve this discrepancy is to conclude that the
mass distribution in spiral galaxies is not similar to the light distribution. Today we can use
gravitational lensing to determine the total mass of other similar spiral galaxies, independently

1The rotation speed is found to be constant with increasing distance, implying that the mass distribution is
unlike the light distributions. From v2

rot „ GM{r, we infer that M increases proportionally to r.
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Figure 1.1: Rotation velocity curve in a typical spiral galax: predicted by just luminous matter
(A) and observed (B). Dark matter may explain the discrepancy of the rotation velocity curves
for long distances to the galactic center.

of their luminosity. We know that the problem of the rotational curves in the Milky Way is
common to most of the observed galaxies [10].

Cosmic microwave background (CMB): In the early universe ordinary matter was ionized,
and interacted strongly with radiation via Thomson scattering. In the meantime DM was
not interacting directly with radiation, but it affected the CMB by its gravitational potential.
The regions with higher DM density create gravitational potential wells that distort the space

Figure 1.2: The CMB temperature fluctuations from the 7-year WMAP data seen over the
full sky [11]. The image is a projection of temperature variations over the celestial sphere.
The average temperature is 2.725K, and the colors represent temperature fluctuations of about
0.002K.

and produce temperature fluctuations2 in the CMB. At the same time, the same gravitational
potential affects the density and velocity of ordinary matter [12].

The Bullet Cluster is the result of a collision of two galaxy clusters. Galaxies are made of
about 2% of stars; 5-15% of intergalactic gas and plasma, and the rest is DM (hypothetically
at least). During collisions stars rarely collide, the gas and plasma interacts through gravity as
well as electromagnetic friction-like interactions, and the DM is expected to interact by gravity
but to be (almost) collision-less and pass right through at high velocities. Galaxy plasma emits
radiation in the X-ray regime. Stars emit optical and infrared light. Finally, gravitational lensing
of background galaxies allows us to spatially place the mass within the cluster. Putting all these
measurements together we conclude that the mass distribution after the collision is far displaced

2The anisotropies can be predicted for any assumed set of cosmological parameters by modern computational
models (such as CMBFAST or CAMB): they constrain cosmological parameters. The models predict that some
peaks mostly show the density of baryonic matter while others show the density of DM.
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Figure 1.3: Left: Optical images of luminous stars from the Magellan telescope with overlayed
contours of spatial distribution of mass (green lines) from gravitational lensing. Right: The
same mass contours overlayed over Chandra X-ray data that traces the intergalactic gas (blue-
red regions).

from the baryonic matter [13], i.e. the intergalactic gas, plasma and astrophysical bodies. In
the right panel of fig. 1.3 we can see that most of the mass resides in a location different from
the baryonic gas, which underwent frictional interactions during the merger and slowed down.

1.2 Dark matter candidates and production mechanisms

As we have seen in the previous section, the evidence for DM is compelling at all observed
astrophysical scales. It is therefore natural to ask what is DM made of [14–16]. We summarize
in this section the general features for particle DM candidates in the mass range of fig. 1.4, and
then restrict ourselves to the keV ´multiTeV window. The candidates in this window may be
generated thermally with the standard cosmology, and are the ones invoked in this thesis.

Figure 1.4: Candidates for particle DM and primordial black holes within the full mass range,
image from [15].

Ultralight DM candidates are the set of DM candidates with mass lower than „ keV. This
mass value refers to the Warm DM bound : all the particles that in the early universe were
in thermal equilibrium with the photon bath are relativistic if mDM ă keV, which leads to a
non-hierarchical growth of cosmological structures3. Of course this is not a hard bound for non-
thermal DM. Among the ultralight candidates we find the axion [18], a hypothetical elementary

3Non-hierarchical growth of cosmological structures refers to large matter aggregations forming earlier, and
subsequent fragmentation into separated galaxies. The Λ-CDM model, and in particular the CMB are solid
arguments to conclude that cosmic structures grow hierarchically. Dwarf galaxies are in agreement with this
theory [17]: they were formed for small density fluctuations in the early universe and they are considered as
natural building blocks for the formation of larger structures.
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particle introduced as an attempt to solve the problem of strong force CP violation in particle
physics.

Superheavy DM includes candidates with masses heavier than the unitarity limit mDM Á

200 TeV. This is the maximum DM mass allowed for a thermal candidate. Otherwise its annihi-
lation cross-section would surpass the geometric cross-section limit. Superheavy candidates up
to the Planck mass are known as WIMPzillas [19]: such particles would have been generated
via gravitational production or through another non-thermal channel at the end of the inflation.
For masses heavier than the Planck mass we may fined nuggets [20]: they are conglomerated
bound states of multiple lighter particles. Another possibility is the Q-ball [21], a soliton state
that carries a baryon number and appears in supersymmetric models. Finally primordial
black holes (PBHs) [22] are DM candidates that have been formed before recombination. Mas-
sive PBHs can accrete matter in the early universe, emitting ionized radiation that is strongly
constrained by the CMB. At the low mass end, light PBHs can disintegrate through Hawking
radiation [23] in times comparable to the age of the universe, consequently they are not good
candidates either. Between 10Md and 50Md there are searches with gravitational lensing for
PBHs in the Milky Way. Constraints on PBH are discussed in [23–25].

Thermal DM candidates are in the range of mass of keV À mDM À 200 TeV. They are
assumed to be non-relativistic and in equilibrium with the SM thermal bath at early times.
As the universe get cold, DM is too heavy to be produced by the thermal bath. The system
departs from the equilibrium and the total number of DM particles starts to decrease. At some
point, the expansion of the universe separates the particles so much that they cannot interact.
The remaining amount of DM particles “freezes out” [26], leaving the relic abundance that
is observed today. Using the Boltzmann equation we can determine this relic abundance, and
find relations with the parameters of the DM candidate. Furthermore the assumption of thermal
equilibrium implies some level of interaction or dark portal [27] between DM and the SM, which
has a variety of interesting and testable signatures. Two interesting thermal DM candidates are:

1. Weakly interacting massive particles (WIMPs) [28, 29] are the candidates in the mass
range of 10 GeV´ 200 TeV. For this mass, the couplings with the SM weak bosons suffice
to explain the DM relic density. This is known as the WIMP miracle [30]: a numerical
coincidence within two physical scales that suggests WIMPs as promising candidates for
DM.

2. Dark sector [31, 32] models propose candidates for the keV´ 200 TeV scale. This mass
range requires some new non-SM mediator. Typically the dark sector features its own
interactions and a potentially rich particle content; it is a generalization of thermal candi-
dates beyond WIMPs. Within the dark sector we have DM coupled to light mediators
[33], which manifest with long-range interactions. This is today an active area of DM
experimental detection searches.

Besides thermal DM, the subGeV range has others interesting candidates. An example is
sterile neutrinos [34], hypothetical particles similar to the SM neutrinos but without the SM
weak interactions. Sterile neutrinos could simultaneously explain the small mass of neutrino and
produce DM with the correct relic density. Another non-thermal DM production mechanism
arise when DM has an small coupling with the SM thermal bath. In “freeze in” [35], DM was
not produced as the other elements during the universe inflation, but it is the product of SM
interactions. We can imagine the freeze-in production by the s-channel annihilation of two SM
particles, such as e`e´ Ñ DM` DM. The DM abundance slowly increases in the early universe

10



until it “freezes in” the observed relic abundance. The coupling of DM with the SM particle is
assumed to be sufficiently feeble that the reaction is never in equilibrium.

Modified general relativity [36] is an interesting alternative for particle DM hypotheses.
General relativity is well-tested on solar system scales, but its validity on galactic or cosmological
scales has not been proved yet. A modification to general relativity that affects long distances
may eliminate the need for DM in spiral galaxies. A challenge for modified gravity theories is
the bullet cluster [13] because its apparent center of mass is displaced from the baryonic matter.
As we saw in the previous section, particle DM candidates can easily explain this observation. A
problem with alternative hypotheses is that observational evidence for DM comes from so many
independent approaches: explaining some individual observations is possible, but to justify all
of them is very difficult. The prevailing opinion today is that modifications to general relativity
might explain part of the DM problem, however there is enough data to conclude there must be
some form of particle DM.

1.3 Long-range interactions and bound states

Most of the thermal DM research in the past focused on DM interactions mediated by a force
with a mass similar to DM. For example, in the prototypical version of DM coupled to the weak
interactions of the SM, dark matter was hypothesized to have a similar mass to the weak gauge
bosons, mDM „ mZ,W „ 100 GeV. In this case, the DM interactions are contact-type.

By contrast, if DM couples to force mediators that are much lighter than itself, its inter-
actions manifest as long-range. Long-range effects appear when the de Broglie wavelength (or
Bohr radius) of the interacting particles4 are of the same order or shorter than the range of the
interaction, i.e. µvrel or µα Á mmed. Even the weak interactions of the SM can be long-range
if the interacting particles are heavier than a few TeV5. More generally, DM coupled to lighter
force mediators is a generic possibility for multi-TeV DM. It may couple to the SM particles via
the weak interaction or some other yet-unknown force from the dark sector.

Long-range interactions give rise to non-perturbative effects. On the one hand, they distort
the wavefunctions of the scattering states, a phenomenon known as the Sommerfeld effect [37,
38]. This affects the cross-sections of all processes, elastic and inelastic, to which the particles
participate. On the other hand, long-range interactions imply the existence of bound states.
The formation of DM bound states, which is also affected by the Sommerfeld effect, can have
very significant implications for DM phenomenology. The main ones are:

a. In the early universe, the formation of metastable bound states (e.g. particle-antiparticle
bound states) and their subsequent decay can decrease the DM density, thereby changing
the predicted DM couplings and/or mass that reproduce the observed DM relic density [39].
This in turn affects all DM experimental signatures.

b. Inside galactic haloes today, the formation and decay of metastable bound states con-
tributes to the expected radiative signals searched for indirect detection [40–48].

4Here µ is the reduced mass of the interacting species (µ “ mDM{2 for a DM particle-antiparticle pair), and
vrel is their relative velocity. α stands for the DM coupling to the force mediators (to be defined more precisely
in the following chapters), and mmed is the mediator mass.

5Considering the SULp2q gauge coupling α2 » 0.03, we find that α2mDM{2 Á mZ,W for mDM Á 5 TeV. In the
following chapters we get more precise determinations: they depend on the SULp2qˆUY p1q representation of the
interacting particles.
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c. The formation of stable DM bound states in the early universe alters the DM self-scattering
inside haloes which affects the galactic structure [49], and may give rise to novel direct
detection signatures [50, 51].

In this thesis we focus on scalar force mediators. We investigate the formation of metastable
DM bound states in the early universe, and how they may affect the DM relic density.

1.4 Outline

In the following chapters we study thermal DM candidates coupled to light scalar mediators,
and we explore the DM bound states formation (BSF) via light scalar emission. We investigate
the effect of metastable bound states on the DM relic density. We find that BSF can dramati-
cally affect the DM thermal decoupling in the early universe, and consequently the predictions
for the DM mass and couplings. This is expected to affect all experimental signatures, and
suggests that DM may be much heavier than previously anticipated. We are thereby solidifying
the physics for the experimental exploration in the multi-TeV regime.

In chapter 2, based on [1], we shall see that BSF in models with (neutral) scalar mediators
appears to be less severe – or relevant to a limited parameter space – than via vector mediator. In
such models, the radiative capture into bound states suffers from two suppression mechanisms:

i. The lowest order s-wave contribution to the BSF amplitude vanishes due to the orthog-
onality of the incoming and outgoing wavefunction, thus abdicating the leading order to
the p-wave.

ii. The previous p-wave term of the BSF amplitude cancel for particle-antiparticle or particle-
particle pair, yielding to s- and d-wave contributions that are suppressed by higher orders
in the coupling.

Such cancellations concern the contributions to the radiative part of the amplitude that arise
from the trilinear DM-DM-mediator coupling alone. However, the self-couplings of the mediator,
as well as the biquadratic couplings between DM and the mediator also contribute to the BSF
amplitude and may, in turn, enhance the capture cross-sections. Nevertheless, we find that for
natural values of the parameters, the cross-sections remain mostly small. Even so, BSF may
have some important implications since it contains an s-wave component: it results in CMB
constraints for fermionic DM, whose direct annihilation is p-wave and thus unconstrained by
indirect probes [52].

In chapter 3, based on [2], we point out that the situation is markedly different if the emis-
sion of the scalar boson alters the potential between the interacting particles, this may occur
if the scalar mediator is charged under either a local or a global symmetry. For charged scalar
mediators, the leading-order contributions to the BSF amplitude are proportional to the overlap
of the initial-state and final-state wavefunctions, which now are not orthogonal since they are
subject to different potentials. The large overlap between the incoming and outgoing states
gives rise to strikingly large BSF cross-sections. This is akin to atomic transitions precipitated
by “sudden perturbations”, such as ionisation caused by a beta decay of the nucleus [53].

Models with charged scalars are a particularly compelling possibility in view of the discovery
of the 125 GeV Higgs boson, which may provide a portal to DM via an extended scalar sector,
or may itself be the mediator between TeV-scale particles. If DM has a sizeable coupling to the
SM Higgs, then it affects their annihilation rate and can bind DM into bound states [54, 55].
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This renders the dynamics of light scalar force carriers relevant, and impacts the phenomenology
of DM consisting of weakly interacting massive particles.

Finally, in Chapter 4 based on [3, 4], we investigate the role of the Higgs doublet in the
thermal decoupling of multi-TeV DM coupled to the weak interactions of the Standard Model
(WIMPs). WIMPs have been arguably the most widely considered candidates for DM in the
past decades. Among the archetypical WIMP models are Higgs-portal scenarios where DM is a
linear combination of the neutral components of electroweak multiplets that couple to the Higgs
doublet. The Higgs doublet can mediate a long-range force for DM, which affects the annihi-
lation processes and binds DM into bound states. More importantly, the emission of a Higgs
doublet by a pair of DM particles can give rise to extremely rapid monopole BSF processes and
bound-state to bound-state transitions. We compute these effects in the unbroken electroweak
phase, and we show that the formation of metastable DM bound states via Higgs-doublet emis-
sion and their decay decreases the relic density very significantly. We give new constraints for
the WIMPs parameters, solidifying them at the multi-TeV scale.

13
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Chapter 2

Bound state formation via emission
of neutral scalar mediator

While the importance of bound-state formation for DM is now well established for weakly coupled
theories with vector mediators [39–47, 49, 56–67], and of course in confining DM theories [68–72],
in models with scalar mediators bound-state effects appear to be either less severe, or relevant to
a limited parameter space. In such models, the radiative capture into bound states suffers from
two cancellations: (i) The lowest order s-wave contribution vanishes due to the orthogonality of
the incoming and outgoing wavefunctions, thus abdicating the leading order to the p-wave. (ii)
The leading order p-wave terms cancel for particle-antiparticle or identical-particle pairs, yielding
to s- and d-wave contributions that are suppressed by higher orders in the coupling with respect
to the capture via vector emission and possibly to the annihilation cross-section [43, 59, 73].
Even so, BSF has some important implications. Since it contains an s-wave component, it
results in CMB constraints for fermionic DM, whose direct annihilation is p-wave and thus un-
constrained by indirect probes [52]. Moreover, asymmetric DM coupled to a light scalar may
form stable multiparticle bound states, provided that the coupling is large enough to overcome
the two-particle capture bottleneck [73–75] (or BSF is facilitated by a parametric resonance [76]).

In the present chapter 2 we go one step forward in the study of BSF mediated by neutral
scalar forces. The above results take into account only the trilinear DM-DM-mediator coupling.
However, given the cancelations mentioned above, there are also other couplings that contribute
to the LO of the BSF amplitude. It is thus important to consider all relevant contributions,
particularly if they are generic within a theory. Theories with scalar mediators include a scalar
potential whose couplings can contribute to the radiative part of the capture process. In this
work, we investigate the impact of the various couplings in the scalar potential to the radiative
BSF.

This chapter is organised as follows. In section 2.1.1, we introduce the interaction La-
grangians, review the computation of radiative transitions, and summarise the past results on
BSF with scalar emission via the trilinear DM-DM-mediator coupling. In section 2.2, we com-
pute the contributions to the radiative BSF from other scalar couplings. We consider both
scalar and fermionic DM, and compute BSF via one and two scalar emission (BSF1 and BSF2
respectively). We discuss the features of the resulting cross-sections and compare them with
the past results. We conclude in section 2.3, with a discussion of their potential implications.
Various technical computations are included in the appendices.
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2.1 Bound state formation via trilinear couplings

2.1.1 Preliminaries

We consider two particles X1 and X2 with masses m1 and m2 respectively, that interact via a
light scalar mediator ϕ of mass mϕ. We shall allow X1 and X2 to be real or complex scalars, or
Dirac fermions. The relevant interactions are described by the following Lagrangians,

L<,sc “
1

2
BµX1B

µX1 `
1

2
BµX2B

µX2 `
1

2
BµϕB

µϕ´
1

2
m2

1X
2
1 ´

1

2
m2

2X
2
2 ´

1

2
m2
ϕϕ

2

´
1

2
g1m1ϕX

2
1 ´

1

2
g2m2ϕX

2
2 ´

λ1ϕ

4
X2

1ϕ
2 ´

λ2ϕ

4
X2

2ϕ
2 ´

ρϕ
3!
ϕ3 ´

λϕ
4!
ϕ4

´
λ1

4!
X4

1 ´
λ2

4!
X4

2 ´
λ12

4
X2

1X
2
2 ,

(2.1.1)

L=,sc “ BµX
:
1B
µX1 ` BµX

:
2B
µX2 `

1

2
BµϕB

µϕ´m2
1|X1|

2 ´m2
2|X2|

2 ´
1

2
m2
ϕϕ

2

´ g1m1ϕ|X1|
2 ´ g2m2ϕ|X2|

2 ´
λ1ϕ

2
|X1|

2ϕ2 ´
λ2ϕ

2
|X2|

2ϕ2 ´
ρϕ
3!
ϕ3 ´

λϕ
4!
ϕ4

´
λ1

2
|X1|

4 ´
λ2

2
|X2|

2 ´ λ12|X1|
2|X2|

2 ,

(2.1.2)

and

Lf “ X̄1i{BX1 ` X̄2i{BX2 `
1

2
BµϕB

µϕ´m1X̄1X1 ´m2X̄2X2 ´
1

2
m2
ϕϕ

2

´ g1ϕX̄1X1 ´ g2ϕX̄2X2 ´
ρϕ
3!
ϕ3 ´

λϕ
4!
ϕ4 .

(2.1.3)

Note that, since we are interested in the application of our results to DM, we shall assume that
the interacting particles X1, X2 carry a Z2 symmetry. For later convenience, we define the total
and the reduced mass of the two interacting particles

M ” m1 `m2, µ ”
m1m2

m1 `m2
, (2.1.4)

and the dimensionless factors

η1 ”
m1

m1 `m2
, η2 ”

m2

m1 `m2
. (2.1.5)

In the non-relativistic regime, the interaction between X1 and X2 is described to leading
order by a static Yukawa potential that arises from the resummation of the one-boson-exchange
diagrams,

VY prq “ ´
α

r
e´mϕr, (2.1.6)

with α “ αsc or α “ αf , depending on whether the interacting particles are scalars or fermions,
where

αsc ”
g1g2

16π
and αf ”

g1g2

4π
. (2.1.7)

We derive the Yukawa potential and αsc, αf in appendix A.1. The long-range interaction be-
tween X1 and X2 described by the potential (2.1.6) distorts the wavefunction of the scattering
(unbound) states – a phenomenon known as the Sommerfeld effect [37, 38] – and gives rise to
bound states. Bound states exist if the mediator is sufficiently light. For the ground state to
exist,

µα{mϕ ą 0.84 , (2.1.8)
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while stronger conditions apply for excited states [43]. The condition (2.1.8) also roughly marks
the regime where the Sommerfeld effect is significant.

The capture into bound states necessitates the dissipation of the binding energy and the
kinetic energy of the relative motion of the X1X2 pair, which may occur radiatively. In sec-
tion 2.1.2, we review the computation of radiative BSF amplitudes. The capture via emis-
sion of one scalar mediator, X1 ` X2 Ñ BpX1X2q ` ϕ, has been previously considered in
Refs. [43, 52, 59, 73], where only the trilinear ϕX2

j couplings were taken into account. We
review the main results in section 2.1.3. As we shall see, for a particle-antiparticle pair or a pair
of identical particles, the dipole contribution – which is the leading order term for X1, X2 with
different masses and couplings – vanishes identically.

2.1.2 Radiative transition amplitude

We consider the radiative transitions

X1pk1q `X2pk2q Ñ X1pp1q `X2pp2q ` radiation , (2.1.9)

where the parentheses denote the 4-momenta of the incoming and outgoing X1 and X2 fields.
We will be interested in particular in the case where the incoming X1, X2 particles form a
scattering state, while the outgoing X1, X2 are captured into a bound state. In order to separate
the motion of the CM from the relative motion, we make the following transformation in the
momenta [59, 77]

k1 ” η1K ` q, k2 ” η2K ´ q , (2.1.10)

p1 ” η1P ` p, p2 ” η2P ´ p , (2.1.11)

where η1,2 are defined in eq. (2.1.5).
In the presence of a long-range interaction, the relative motion of X1, X2 is not well approx-

imated by a plane wave. It is described more generally by wavefunctions, which in momentum
space we shall denote as φ̃kpqq and ψ̃n`mppq for the scattering and the bound states respectively.
The wavefunctions obey the Schrödinger equation with the potential (2.1.6). The continuous
spectrum is characterised by the momentum k “ µvrel, which is the expectation value of q and
parametrises the energy of the relative motion in the scattering states, εk “ k2{p2µq “ µv2

rel{2.
The bound states are characterised by the standard discrete principal and angular momentum
quantum numbers tn`mu, which determine the expectation value of p and the binding energy
εn`. As is well known, for a Coulomb potential, εn` “ κ2{p2n2µq “ µα2{p2n2q, where κ ” µα is
the Bohr momentum; a non-negligible mediator mass suppresses εn` and introduces a dependence
on `. We review the wavefunctions in appendix B (see Ref. [43] for a more detailed discussion).
For the purpose of evaluating the leading order contributions to the transition amplitude, we
shall keep in mind that the wavefunctions impose |q| „ |k| “ µvrel and |p| „ κ “ µα.

In the non-relativistic regime, the total 4-momenta of the scattering and the bound states
are

K »

ˆ

M `
K2

2M
` εk, K

˙

, (2.1.12)

P »

ˆ

M `
P2

2M
´ εn`, P

˙

. (2.1.13)

We will work in the CM frame, K “ 0. Then, taking into account that εk, εn` !M (or equiva-
lently α, vrel ! 1), the total energy available to be dissipated is

ω » εk ` εn` . (2.1.14)
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Figure 2.1: The amplitude for the radiative capture into bound states via emission of one or
two scalars consists of the initial and final state wavefunctions, and the perturbative radiative
amplitude MT that includes the radiative vertices.

Evidently, the bound state acquires momentum |P| „ ω. The full amplitude for the radiative
capture into a bound state depends on the overlap of the initial (scattering) and final (bound)
state wavefunctions and the radiative vertex. The diagrammatic representation for transitions
with emission of one or two scalars is shown in fig. 2.1. In the instantaneous and non-relativistic
approximations, the amplitude is [59]

MkÑtn`mu »
1
?

2µ

ż

d3p

p2πq3
d3q

p2πq3

„

1´
p2 ` q2

4µ2

ˆ

1´
3µ

M

˙

ψ̃˚n`mppqφ̃kpqqAT pq,pq , (2.1.15)

where AT pq,pq is the radiative amplitude for the (off-shell) transition (2.1.9), under the trans-
formations of eqs. (2.1.10) and (2.1.11). The fully connected diagrams contributing to AT can
be evaluated at leading order by setting the incoming and outgoing X1, X2 on-shell. For any
non-fully-connected diagrams contributing to AT , the virtuality of X1 and X2 has to be inte-
grated out. This can be done starting from the off-shell amplitude as described in [59] (see also
[62, section 2.3] for a brief summary), or by adopting an effective field theory approach [78–89].1

The dominant contributions to the capture with emission of a vector or scalar mediator via the
trilinear coupling arise from non-fully-connected diagrams [43, 59]. (However, in non-Abelian
theories, a leading order contribution to capture via gluon emission arises also from a fully con-
nected diagram [42].) In the computations of this chapter in section 2.2, we will consider only
fully connected diagrams.

In eq. (2.1.15), the factor inside the square brackets includes the leading order corrections in
p2,q2 arising from the relativistic normalisation of states [59]. Upon the convolution with the
wavefunctions and integration over p and q, these terms amount to corrections in α2 and v2

rel.
They become important when the leading order contribution from AT alone cancels, as is the
case for the capture of particle-antiparticle or identical-particle pairs with emission of a scalar
mediator via the trilinear coupling.

2.1.3 Capture via one scalar mediator: only trilinear couplings

The leading contributions to capture with emission of a scalar via the trilinear coupling only
are shown in fig. 2.2. Starting from eq. (2.1.15), and neglecting the correction arising from the
normalisation of states, these diagrams yield2 [43, 59]

MTC
kÑn`m » ´M

a

2µ

ż

d3r ψ˚n`mprq φkprq
`

g1 e
´iη2Pϕ¨r ` g2 e

iη1Pϕ¨r
˘

, (2.1.16)

where Pϕ is the momentum of the emitted boson, with P2
ϕ`m

2
ϕ “ ω2 and ω given in eq. (2.1.14).

The wavefunctions imply that the integrand is significant in the region r À 1{maxpµα{n, µvrelq !

1For a comparison of quantum and classical approaches, see [90].
2We use the superscript TC to denote contributions that arise from the trilinear coupling alone, and in section 2.2

we will use the superscript SC to denote contributions in which other scalar couplings participate.
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X1

X2

ϕ

η1K ` q η1P ` p

η2K ´ q η2P ´ p

Pϕ

g1m1

Pϕ

g2m2

Figure 2.2: The contribution of the trilinear DM-DM-mediator couplings to the radiative part
of bound-state formation via emission of one scalar mediator.

1{ω, therefore we may evaluate eq. (2.1.16) by expanding in Pϕ ¨ r „ maxpα{n, vrelq (cf. ref. [43,
appendix B]). Clearly, the zeroth order terms vanish due to the orthogonality of the wavefunc-
tions.

For a pair of particles with different masses and/or couplings to the scalar mediator, the
leading order contributions arise from the Pϕ ¨ r terms in the expansion of eq. (2.1.16). The
cross-section for capture into the ground state tn`mu “ t100u is [43, 59]

σTC
BSF1vrel »

„

pg1η2 ´ g2η1q
2

16πα



πα2

µ2
STC

BSF1 , (2.1.17)

where STC
BSF1 depends on the dimensionless parameters α{vrel and µα{mϕ. In the Coulomb

approximation, which is valid at mϕ À µvrel, S
TC
BSF1 depends only on the parameter ζ ” α{vrel as

follows [43, 59]

STC
BSF1pζq “

ˆ

2πζ

1´ e´2πζ

˙

ˆ
26

3

ˆ

ζ2

1` ζ2

˙2

e´4ζarccot ζ . (2.1.18)

For the more general case that includes the effect of the mediator mass, we refer to [43]. We
note that eqs. (2.1.17) and (2.1.18) correspond to dipole emission (`S “ 1 mode of the scattering
state wavefunction). In eq. (2.1.17), the factor in the square brackets reduces to 1 for a pair of
scalar particles with g1 “ g2 and η1 " η2. In eq. (2.1.18), the first factor inside the brackets is
responsible for the characteristic σvrel 9 1{vrel scaling of the Sommerfeld-enhanced processes at
low velocities (ζ Á 1), while the remaining factors tend to a constant.

Evidently, for a particle-antiparticle pair or a pair of identical particles (g1 “ g2 “ g and
η1 “ η2 “ 1{2), the two terms proportional to P’ in the expansion of eq. (2.1.16) cancel.
This cancellation persists even for capture into bound states of non-zero angular momentum
(` ą 0), as is evident from eq. (2.1.16), and implies that the next order contributions should be
considered.

For a scalar particle-antiparticle pair the next order terms, which include also the leading
order correction from the normalisation of states shown in eq. (2.1.15), yield [43]

σTC
BSF1vrel »

πα4
sc

µ2
STC

BSF1,XX˚ , (2.1.19)

where in the Coulomb regime STC

BSF1,XX˚ depends on ζ “ αsc{vrel as follows

STC

BSF1,XX˚ pζq “

ˆ

2πζ

1´ e´2πζ

˙

ˆ
26

15

ζ2p3` 2ζ2q

p1` ζ2q2
e´4ζarccot ζ . (2.1.20)
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(For a pair of identical scalars, an extra factor of 2 arises from the symmetrization of the
scattering state wavefunction.) The case of fermionic DM was considered in ref. [73]. In the
Coulomb regime and for ζ Á 1, the cross-section was found to be

σTC
BSF1,XX̄ vrel »

πα4
f

µ2

ˆ

2παf
vrel

˙

24e´4

32
. (2.1.21)

Note that both eq. (2.1.19) and eq. (2.1.21) are suppressed by α2 with respect to eq. (2.1.17).

2.2 The contribution of scalar potential couplings to the radia-
tive capture

In this section, we investigate how the scalar couplings λ1ϕ, λ2ϕ, λϕ and ρϕ in eqs. (2.1.1)
to (2.1.3) – which do not affect the long-range potential between X1 and X2 – contribute to
the radiative capture of X1, X2 pairs into bound states. In order to exhibit the leading order
contribution from all couplings, we consider BSF via one and two scalar emission,

BSF1: X1 `X2 Ñ BpX1X2q ` ϕ , (2.2.1)

BSF2: X1 `X2 Ñ BpX1X2q ` 2ϕ . (2.2.2)

It is important to note that in most diagrams we will consider, the trilinear couplings gj
also participate in the radiative part of the process (cf. figs. 2.3 to 2.6). In fact, it may naively
seem that these diagrams are of the same or higher order in α than those giving rise to the
cross-sections of section 2.1.3 (even ignoring the additional suppression introduced by the new
couplings). However, the momentum transfer along the mediators exchanged in these diagrams
and the off-shellness of the interacting particles scale also with α, thereby reducing the order of
dependence of the diagrams on α.3

For convenience, we first define in section 2.2.1 the wavefunction overlaps integrals that we
will use for the BSF cross-sections. We provide some analytic approximations for capture into
the ground state, and describe their features that are of course inherited by the BSF cross-
sections. Then, in sections 2.2.2 and 2.2.3 we compute the contributions to BSF1 from the
couplings in the scalar potential, for scalar and fermionic interacting particles, respectively, and
discuss in which regimes they are important. We finish with considering BSF2 in section 2.2.4.

2.2.1 Overlap integrals

We define the overlap integrals

Vk,tn`mu ” p8πκq
1{2

ż

d3q

p2πq3
d3p

p2πq3
φ̃kpqqψ̃

˚
n`mppq

pq´ pq2 `m2
ϕ

, (2.2.3)

Rk,tn`mu ” p8πκ
5q1{2

ż

d3q

p2πq3
d3p

p2πq3
φ̃kpqqψ̃

˚
n`mppq

rpq´ pq2 `m2
ϕs

2
, (2.2.4)

Ik,tn`mupΓq ”

ż

d3p

p2πq3
φ̃kpp` Γqψ̃˚n`mppq “

ż

d3p

p2πq3
φkprqψ

˚
n`mprq e

´iΓ¨r . (2.2.5)

The prefactors in eqs. (2.2.3) and (2.2.4) have been chosen such that Vk,tn`mu and Rk,tn`mu are
dimensionless, and the definition of Ik,tn`mu follows refs. [43, 59].

3This is of course also the reason for the emergence of the non-perturbative effects we consider, the Sommerfeld
enhancement and the existence of bound states.

20



The integrals eqs. (2.2.3) to (2.2.5) depend on the two dimensionless parameters

ζ ”
α

vrel
and ξ ”

µα

0.84mϕ
. (2.2.6)

As stated in section 2.1.1, for the Yukawa potential (2.1.6) the ground state exists if ξ ą 1 [43].4

However, BSF1 is kinematically possible only if

mϕ ă pµ{2qrα
2p1´ 1{ξq2 ` v2

rels , (2.2.7)

where we used the Hulthen approximation for the binding energy (cf. appendix B). In the regime
where BSF is important, vrel À α (see e.g. section 2.1.3), this condition reduces roughly to
mϕ À µα2{2 or equivalently ξ Á ξmin » 2.4{α " 1, i.e. it is much stronger than the requirement
for the existence of bound states. This in turn ensures that the bound-state wavefunction can
be approximated by its Coulomb value. (For the validity of the Coulomb limit for the overlap
integrals and the BSF cross-sections, see below.)

We derive analytical expressions for the Vk,t100u and Rk,t100u integrals in appendix C, using
an appropriate approximation. The integral (2.2.5) has been considered in ref. [43]. For the BSF
cross-sections of interest, |Γ| „ |Pϕ| ! x|p|y „ κ, thus IkÑtn`mu can be computed by expanding
in Γ. Here we shall keep up to first order terms in Γ {κ. For capture into the ground state,

Vk,t100u »
a

8S0pζ, ξq

ˆ

ζ2

1` ζ2

˙

e´2ζ arccot ζ , (2.2.8)

Rk,t100u »
a

8S0pζ, ξq

ˆ

ζ2

1` ζ2

˙2

e´2ζ arccot ζ , (2.2.9)

Ik,t100upΓq »

c

28πS1pζ, ξq

κ3

„

ζ5

p1` ζ2q3



e´2ζ arccot ζ Γ cospθk,Γq

κ
, (2.2.10)

where S0pζ, ξq and S1pζ, ξq are the Sommerfeld factors for s- and p-wave annihilation respectively.
In the Hulthen approximation,

S0pζ, ξq “
2πζ sinhpπξ{ζq

coshpπξ{ζq ´ coshrpπξ{ζq
a

1´ 4ζ2{ξs
, (2.2.11)

which in the Coulomb limit reduces to SC0 pζq “ 2πζ{p1 ´ e´2πζq. While there is no analytical
approximation for S1pζ, ξq for finite ξ, in the Coulomb limit ξ Ñ 8 it becomes SC1 pζq “ p1 `
ζ2qSC0 pζq. The Coulomb limit remains a good approximation as long the average momentum
transfer between the interacting particles is larger than the mediator mass,

mϕ À µvrel , (2.2.12)

or equivalently ξ ą ζ (see e.g. [43]).
Outside this range, i.e. at low velocities vrel À mϕ{µ, both S0 and S1 exhibit parametric

resonances at discrete values of ξ that correspond to the thresholds for the existence of ` “ 0
and ` “ 1 bound states respectively. For S0 in the Hulthen approximation, these are ξ “ n2 with
n P integers. At non-resonant parametric points, S0 and S1 follow the Coulomb approximation
as long as (2.2.12) is satisfied, but saturate to their respective Coulomb values at vrel « mϕ{µ as
the velocity decreases. In contrast, if close to a resonant parametric point, S0 and S1 grow faster

4Note that in ref. [43], the parameter ξ was defined as µα{mϕ. The reason we prefer the definition (2.2.6) here
is to simplify the expressions for the wavefunctions and the binding energies in the Hulthen approximation of the
Yukawa potential.
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Figure 2.3: The contribution of the scalar couplings to the radiative part of bound-state
formation via emission of one scalar mediator. For fermionic X1, X2, only the diagram to the
right exists.

than 1{vrel and 1{v3
rel respectively at vrel À mϕ{µ (in particular S0 9 ζ2 9 1{v2

rel), to eventually
saturate to a constant value at a lower velocity that depends on the proximity to the resonant
point. For S0 in the Hulthen approximation, the saturated value is S0pζ, ξq » π2ξ{ sin2

a

π2ξ
[cf. eq. (2.2.11)].

This behaviour implies that an s-wave cross-section times relative velocity saturates to a
constant value at low velocities, while a p-wave recovers the velocity suppression that appears
in perturbative cross-sections, σp´wavevrel 9 v2

rel, albeit is enhanced with respect to its value if
the Sommerfeld effect were neglected. This point will be important in our discussion of the new
contributions to BSF that we compute in the following.

2.2.2 Capture via emission of one mediator: scalar dark matter

Amplitude

The leading order diagrams in λ1ϕ, λ2ϕ and ρϕ that contribute to the radiative part of the
transition amplitude due to the scalar couplings in eqs. (2.1.1) to (2.1.3) are shown in fig. 2.3.
We find

iASC
T “ p´iλ1ϕq

i

pη2Pϕ ´ q ` pq2 ´m2
ϕ

p´ig2m2q

` p´iλ2ϕq
i

pη1Pϕ ` q ´ pq2 ´m2
ϕ

p´ig1m1q

` p´ig1m1q
i

pη1Pϕ ` q ´ pq2 ´m2
ϕ

p´iρϕq
i

pη2Pϕ ´ q ` pq2 ´m2
ϕ

p´ig2m2q . (2.2.13)

Then according to the discussion in section 2.1.2 on the scaling of the momenta,

ASC
T »

pλ1ϕg2η2 ` λ2ϕg1η1qM

pq´ pq2 `m2
ϕ

´
g1g2Mµρϕ

rpq´ pq2 `m2
ϕs

2
. (2.2.14)

The contribution from the diagrams of fig. 2.2 is [43, 59]

ATC
T » ´2Mµ

“

g1p2πq
3δ3pq´ p´ η2P’q ` g2p2πq

3δ3pq´ p` η1P’q
‰

. (2.2.15)
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Inserting eqs. (2.2.14) and (2.2.15) in eq. (2.1.15), and neglecting the corrections arising from
the relativistic normalisation of states, we find

MSC

kÑtn`mu »
M

µ

„

λ1ϕg2η2 ` λ2ϕg1η1q
?

16παsc
Vk,tn`mu ´

ˆ

ρϕ
µα2

sc{2

˙

?
4παscRk,tn`mu



, (2.2.16)

MTC

kÑtnlmu » ´M
a

2µ
“

g1Ik,tnlmupη2Pϕq ` g2Ik,tnlmup´η1Pϕq
‰

. (2.2.17)

Equation (2.2.17) of course agrees with eq. (2.1.16)

Cross-section for capture into the ground state

The cross-section for capture into the ground state is

vrel
dσBSF1

dΩ
»

|P’|

64π2M2µ
|MkÑt100u|

2 . (2.2.18)

The momentum of the emitted scalar is found from the conservation of energy [cf. eq. (2.1.14)]

b

P2
ϕ `m

2
ϕ »

µ

2
pα2 ` v2

relq , (2.2.19)

where we adopted the Coulomb value for the binding energy since ξ " 1.

Taking into account the contributions of eqs. (2.2.16) and (2.2.17) to the amplitude, and the
overlap integrals of eqs. (2.2.8) to (2.2.10) for capture into the ground state, we obtain

σtot
BSF1vrel »

α2
sc

µ2
sBSF1
ps

ˆ

ζ2

1` ζ2

˙

e´4ζarccot ζ

ˆ

#

„

λ1ϕ g2η2 ` λ2ϕ g1η1
?

64π2αsc
´
?
αsc

ˆ

ρϕ
µα2

sc{2

˙ˆ

ζ2

1` ζ2

˙2

S0pζ, ξq

`
26π

3

pg1η2 ´ g2η1q
2

16παsc

ˆ

ζ2

1` ζ2

˙

S1pζ, ξq

p1` ζ2q

*

, (2.2.20)

where sBSF1
ps is the phase-space suppression factor for BSF1,

sBSF1
ps ”

˜

1´

„

2mϕ

µpα2 ` v2
relq

2
¸1{2

. (2.2.21)

As can be seen from eq. (2.2.20), the ρϕ contribution to the BSF1 cross-section scales as
σBSF1vrel 9 p1{αqpρϕ{µq

2. This is clearly of lower order in α than the cross-sections of sec-
tion 2.1.3, however it is suppressed by the square of the ratio of the mediator scale to the DM
scale. Assuming that ρϕ „ mϕ, the kinematic threshold mϕ À µα2{2 implies that this contri-
bution scales at best as σBSF1vrel 9 α3. While this is of higher order in α than eq. (2.1.17), it
is still of lower order than eqs. (2.1.19) and (2.1.21). It is of course important to keep in mind
that ρϕ may differ significantly from mϕ and/or the binding energy.5

We shall now simplify and adapt the above expression – which has been derived for a pair
of distinguishable scalars – to various cases.

5 We note that the third diagram of fig. 2.3, from where the ρϕ contribution to BSF1 arises, resembles
the diagram that appears in the radiative capture via one gluon emission in non-Abelian theories due to the
trilinear gluon coupling [42]. That coupling is momentum dependent, with the relevant momentum scale in the
capture process being κ. We may recover the scaling of the non-Abelian BSF cross-section on α [62] by mapping
ρϕ Ñ g κ 9 α3{2.
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Different scalars species

Let us consider for simplicity the limiting case where the couplings of the two particles are
equal, λ1ϕ “ λ2ϕ “ λXϕ and g1 “ g2 “ g, while their masses are very different, η1 " η2. Then,
eq. (2.2.20) simplifies to

σtot
BSF1vrel »

α2
sc

µ2
sBSF1
ps

ˆ

ζ2

1` ζ2

˙

e´4ζarccot ζ

ˆ

#

„

λXϕ
?

4π
´
?
αsc

ˆ

ρϕ
µα2

sc{2

˙ˆ

ζ2

1` ζ2

˙2

S0pζ, ξq `
26π

3

ˆ

ζ2

1` ζ2

˙

S1pζ, ξq

p1` ζ2q

+

. (2.2.22)

In the regime where BSF is important and the Coulomb approximation is valid, i.e. for mϕ À

µvrel À µαsc, we recall that S1 » p1 ` ζ2qS0, thus all contributions exhibit the same velocity
scaling, σvrel 9 1{vrel. For perturbative λXϕ and for ρϕ „ mϕ À µα2

sc{2, the s-wave contribu-
tions are subdominant, and we recover the cross-section arising from the diagrams of fig. 2.2
[cf. eq. (2.1.17)].

However, outside the Coulomb regime, i.e. for µvrel À mϕ À µαsc, the p-wave term becomes
velocity suppressed (cf. discussion in the end of section 2.2.1). This implies that at sufficiently
low velocities, the λXϕ and ρϕ contributions dominate.

Particle-antiparticle pair

For a particle-antiparticle pair, λ1ϕ “ λ2ϕ ” λXϕ, g1 “ g2 ” g and m1 “ m2 ” mX (or η1 “ η2).
In this case, the p-wave term in eq. (2.2.20) vanishes. The contribution from the λXϕ and ρϕ
couplings becomes

σSC
BSF1vrel »

α2
sc

µ2

„

λXϕ
?

4π
´
?
αsc

ˆ

ρϕ
µα2

sc{2

˙ˆ

ζ2

1` ζ2

˙2

sBSF1
ps S0pζ, ξq

ˆ

ζ2

1` ζ2

˙

e´4ζarccot ζ .

(2.2.23)

However, as discussed in section 2.1.3, the trilinear ϕXX: coupling gives rise also to s- and
d-wave contributions that are suppressed by higher orders in αsc [43]. Comparing eq. (2.2.23)
with eq. (2.1.19) in the Coulomb regime, we find the following.

• The λXϕ contribution to eq. (2.2.23) dominates over eq. (2.1.19) if

λXϕ Á 18αsc . (2.2.24)

Note that if the mediator ϕ is the radial component of a complex scalar Φ that obtains a
vacuum expectation value vϕ and breaks a local symmetry, i.e. Φ “ pvϕ`ϕqe

iaϕ{
?

2, then
the trilinear DM-DM-mediator coupling g arises from the quartic coupling of this scalar
to DM after spontaneous symmetry breaking, i.e.

δL “ ´λXϕ|Φ|2|X|2 Ą ´λXϕ vϕ ϕ|X|2 ´
λXϕ

2
ϕ2|X|2 . (2.2.25)

In this case, λXϕ and g are related via λXϕvϕ “ gmX . Note that mX receives a con-
tribution from vϕ, but remains an independent parameter. The above implies αsc “
λ2
Xϕv

2
ϕ{p16πm2

Xq, and the condition (2.2.24) becomes λXϕ À p16π{18qpmX{vϕq
2, which

encompasses the entire regime where λXϕ is perturbative if vϕ „ mϕ ! mX (or more
generally, if vϕ À mX). In this case, the λXϕ contribution to BSF1 dominates.
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• The ρϕ contribution to eq. (2.2.23) dominates over eq. (2.1.19) if

ρϕ
µα2

sc{2
Á 3

?
αsc , (2.2.26)

which encompasses significant parameter space.

Note that outside the Coulomb regime, the λXϕ and ρϕ contributions dominate over eq. (2.1.19)
in a broader parameter ranges than those designated by the conditions (2.2.24) and (2.2.26),
since the d-wave component of eq. (2.1.19) becomes suppressed at low vrel while the s-wave
terms saturate to constant values.

Identical scalars

For a pair of identical scalars, the total wavefunction has to be symmetric in the interchange of
the two particles. Thus the scattering state wavefunction is

rφkprq ` φ´kprqs {
?

2 , (2.2.27)

This implies that the contribution of the even-`S modes participating in a process is doubled with
respect to the case of distinguishable scalars, while the contribution of the odd-`S modes van-
ishes. Similarly, there are only ` “ even bound states of two identical bosons. Since eq. (2.2.23)
includes only s-wave terms, the cross-section for a pair of identical scalars is twice as large as
that given by eq. (2.2.23).

2.2.3 Capture via emission of one mediator: fermionic dark matter

Amplitude

For fermions, there are no renormalisable λjϕ couplings and only the third diagram in fig. 2.3
contributes. The amplitude is related to that for scalars as follows. The Dirac propagators SDj
can be expressed in terms of the scalar propagators Sjppq and the spinors u, ū

SDj ppq “
ip{p`mjq

p2 ´m2
j

“ Sjppqp{p`mjq “ Sjppq
ÿ

r

urjppqū
r
jppq , (2.2.28)

where r denotes the spin and j “ 1, 2 refers to the particle species. In order to compute the
fermionic BSF diagrams, we insert a factor

ř

ri
urij ppiqū

ri
j ppiq for each propagator and contract

ū
ri`1

j ppi`1qu
ri
j ppiq across each vertex i. Since all the fermion-fermion-scalar vertices in the BSF

diagrams are either soft or ultrasoft, we can use the identity

ū
si`1

j ppi`1qu
sippiq » ū

si`1

j ppiqu
si
j ppiq “ `2mjδ

sisi`1 , (2.2.29)

as also in appendix A.1. The spin Kronecker deltas in eq. (2.2.29), upon summation over the
internal spin indices, ensure that the spin of each particle is conserved across the entire diagram,
including both the ladders and the vertices in the radiative parts of the diagrams. With this,
we find

iASC
T “ p´ig1q

iū
r11
1 pη1K ` qqur11 pη1P ` pq

pη1Pϕ ` q ´ pq2 ´m2
ϕ

p´iρϕq
iū
r12
2 pη1K ` qqur22 pη1P ` pq

pη2Pϕ ´ q ` pq2 ´m2
ϕ

p´ig2q

“
´i4Mµg1g2ρϕ
rpq´ pq2 `m2

ϕs
2
δr1r

1
1 δr2r

1
2 , (2.2.30)
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where r1, r
1
1 and r2, r

1
2 are the spins of the incoming and outgoing X1 and X2 particles. Com-

paring eq. (2.2.30) to (2.2.14), we see that the ρϕ contribution to AT is larger by a factor 4
for a fermionic pair than for a scalar pair. However, taking into account that for fermions
αf “ g1g2{p4πq, the full amplitude for fermions looks the same as the ρϕ contribution to
eq. (2.2.16), up to the spin conservation factors,

MSC

kÑtn`mu » ´
M

µ

˜

ρϕ
µα2

f{2

¸

a

4παf Rk,tn`mu δ
r1r11 δr2r

1
2 , (2.2.31)

where we used eqs. (2.1.15) and (2.2.4). Similarly, the contribution to the amplitude from the
diagrams of fig. 2.2 is

MTC

kÑtnlmu » ´2M
a

2µ
“

g1Ik,tn`mupη2Pϕq ` g2Ik,tn`mup´η1Pϕq
‰

δr1r
1
1 δr2r

1
2 , (2.2.32)

where the extra factor 2 with respect to eq. (2.2.17) arises from the spinor contraction along the
leg that contains the radiative vertex.

Cross-section for capture into the ground state

Upon squaring the amplitudes (2.2.31) and (2.2.32), summing over the final-state spins and
averaging over the spin of the initial particles, the spin factors simply yield 1. Using eqs. (2.2.18)
and (2.2.19) and the overlap integrals (2.2.9) and (2.2.10), we find the spin-averaged BSF1 cross-
section to be

σtot
BSF1vrel »

α2
f

µ2
sBSF1
ps

ˆ

ζ2

1` ζ2

˙2

e´4ζarccot ζ

ˆ

$

&

%

αf

˜

ρϕ
µα2

f{2

¸2
ˆ

ζ2

1` ζ2

˙

S0pζ, ξq `
26π

3

pg1η2 ´ g2η1q
2

4παf

S1pζ, ξq

p1` ζ2q

,

.

-

. (2.2.33)

As in the previous section, we shall now consider some specific cases.

Different fermion species

We consider again the limiting case g1 “ g2 ” g and η1 " η2. Equation (2.2.33) simplifies to

σtot
BSF1vrel »

α2
f

µ2
sBSF1
ps

ˆ

ζ2

1` ζ2

˙2

e´4ζarccot ζ

ˆ

$

&

%

αf

˜

ρϕ
µα2

f{2

¸2
ˆ

ζ2

1` ζ2

˙

S0pζ, ξq `
26π

3

S1pζ, ξq

p1` ζ2q

,

.

-

. (2.2.34)

As in the case of scalar X1,2, in the regime mϕ ă µvrel ă µα where the Coulomb approximation
holds, S1 “ p1 ` ζ2qS0, and both terms in eq. (2.2.34) scale as σvrel 9 1{vrel. For ρϕ „
mϕ À µα2

f{2, the s-wave term is subdominant for perturbative αf . However, at lower velocities
vrel ă mϕ{µ, the p-wave term dwindles and the ρϕ contribution dominates.

Particle-antiparticle pair

For a particle-antiparticle pair, the p-wave contribution in eq. (2.2.33) vanishes, and the BSF
cross-section becomes

σSC
BSF1vrel “

α3
f

µ2

˜

ρϕ
µα2

f{2

¸2

sBSF1
ps ˆ S0pζ, ξq

ˆ

ζ2

1` ζ2

˙3

e´4ζ arccot ζ . (2.2.35)

26



We recall that there are also s- and d-wave contributions of higher order in αf from the trilinear
ϕXX̄ coupling alone. Comparing eq. (2.2.35) with eq. (2.1.21), we find that the ρϕ term is more
significant if

ρϕ
µα2

f{2
Á 2.4

?
αf . (2.2.36)

Identical fermions

For a pair of identical fermions, the total wavefunction has to be antisymmetric in the interchange
of the two particles. This implies that the spatial wavefunction depends on their total spin. A
pair of identical spin-1/2 particles may be either in the antisymmetric spin-0 state, or in the
symmetric spin-1 state. Their spatial wavefunction should then be symmetric or antisymmetric,
respectively,

fermions with total spin 0: rφkprq ` φ´kprqs {
?

2 , (2.2.37)

fermions with total spin 1: rφkprq ´ φ´kprqs {
?

2 . (2.2.38)

As for identical bosons, the wavefunction (2.2.37) implies that the contribution of the even-`S
modes participating in a process is doubled with respect to the case of distinguishable particles,
while the contribution of the odd-`S modes vanishes. The opposite holds for the wavefunction
(2.2.38). Similarly, there are only ` “ even bound states of two identical total-spin-0 fermions,
and only ` “ odd bound states of two identical total-spin-one fermions. Since eq. (2.2.35) is an
s-wave process, the spin-averaged cross-section for capture of two identical fermions is half of
that given in eq. (2.2.35), with the entire contribution arising from the spin-0 state.

2.2.4 Capture via emission of two scalar mediators

The scalar couplings appearing in eqs. (2.1.1) to (2.1.3) raise the possibility that the radiative
part of the capture into bound states may carry a lower suppression in α if two mediators are
emitted. On the other hand, the emission of two mediators, which share the available energy
ω » µpα2`v2

relq{2, implies that the BSF2 cross-section picks up additional suppression in powers
of α (for α ą vrel) due the phase space of the second mediator. To determine which diagrams
may contribute significantly, we first work out the phase-space integration.

Phase-space integration

The cross-section for capture via emission of two mediators with momenta Pa and Pb is

dσBSF2“
1

2E12E2vrel

1

2

ż

d3P

p2πq32P 0

d3Pa
p2πq32P 0

a

d3Pb
p2πq32P 0

b

ˇ

ˇMkÑtn`mu

ˇ

ˇ

2
p2πq4δ4pK ´ P ´ Pa ´ Pbq,

(2.2.39)
where the factor p1{2q is due to the two identical particles in the final state. We work in the CM
frame, K “ 0, and use the three-momentum delta function to integrate over the momentum of
the bound state P “ ´pPa `Pbq. The energy delta function yields the condition

b

P2
a `m

2
ϕ `

b

P2
b `m

2
ϕ `

P2

2M
» εn` ` εk. (2.2.40)

For convenience, we define the dimensioneless parameters

xa “
|Pa|

εn` ` εk
, xb “

|Pb|

εn` ` εk
(2.2.41)
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X1

X2

η1K ` q η1P ` p

η2K ´ q η2P ´ p

Pa

Pb

g1

g2

λϕ

Figure 2.4: Capture via emission of two scalar mediators: the contribution of the mediator
quartic self-coupling to the radiative amplitude.

and

δ ”
εn` ` εk

2M
, d ”

mϕ

εn` ` εk
. (2.2.42)

Then, combining energy and momentum conservation, we obtain the phase space condition for
the momenta of the emitted scalars,

a

x2
a ` d

2 `

b

x2
b ` d

2 ` px2
a ` x

2
b ` 2xaxb cos θabqδ “ 1 , (2.2.43)

where θab is the angle between Pa and Pb. Because δ ! 1, the phase-space encompassed by
eq. (2.2.43) extends on the xa ´ xb plane essentially along the line

a

x2
a ` d

2 `

b

x2
b ` d

2 “ 1 , (2.2.44)

with 0 ď xa ď
?

1´ 2d, and a small width along the xb direction, due to cos θab ranging in
r´1, 1s. Note that for the capture process to be kinematically allowed, 2d ă 1. The xb width
can be estimated by differentiating eq. (2.2.43) with respect to xb and cos θab. We find

xmax
b ´ xmin

b » 4xa

´

1´
a

x2
a ` d

2
¯

δ . (2.2.45)

For the diagrams of interest, the amplitude is independent of Pa,b (cf. section 2.2.4). Thus,
putting everything together, eq. (2.2.39) yields

σBSF2vrel »
pεn` ` εkq

3

283π3M2µ

ˇ

ˇMkÑtn`mu

ˇ

ˇ

2
sBSF2
ps pdq , (2.2.46)

where sBSF2
ps is the phase-space suppression factor due to the kinematic threshold for BSF2,

sBSF2
ps pdq ” 6

ż

?
1´2d

0
dx x2

d

1` x2 ´ 2
?
x2 ` d2

x2 ` d2
, (2.2.47)

with sBSF2
ps “ 1 for d “ 0. Comparing eq. (2.2.46) with eq. (2.2.18), we observe that the

BSF2 cross-section is proportional to two extra powers of the available energy to be dissipated,
ω » εn` ` εk, with respect to BSF1, as expected from the phase-space element for the second
mediator d3Pb{p2P

0
b q 9 ω2. This implies an extra suppression by α4 in the regime where BSF

is important, α ą vrel. We also note the suppression of BSF2 with respect to BSF1 by the
numerical factor 1{p243π2q » 2ˆ 10´3.
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Amplitude and cross-section

In figs. 2.4 to 2.6, we show various contributions to BSF2 arising from the mediator self-couplings
and the mediator-DM quartic coupling for scalar DM. The diagram of fig. 2.4 yields the most
important contribution. We shall first compute the cross-section arising from this diagram and
then discuss why we neglect the other contributions.

The amplitude for the λϕ contribution can be obtained from the second term in eq. (2.2.16)
by replacing ρϕ with λϕ. Taking into account the discussion in section 2.2.3, we find it to be
the same for both bosons and fermions,

MSC

kÑtn`mu » λϕ

c

16π

α3

M

µ2
Rk,tn`mu , (2.2.48)

where Rk,tn`mu is defined in eq. (2.2.4). From eqs. (2.2.9) and (2.2.46) we obtain the (spin-
averaged) cross-section for capture into the ground state,

σSC
BSF2vrel » f

λ2
ϕα

3

48π2µ2
sBSF2
ps S0

ˆ

ζ2

1` ζ2

˙

e´4ζ arccot ζ , (2.2.49)

where sBSF2
ps and S0 are given in eqs. (2.2.47) and (2.2.11) respectively. The factor f follows from

the discussion in sections 2.2.2 and 2.2.3, with

f “

$

’

’

’

&

’

’

’

%

1, distinguishable scalars,

2, identical scalars,

1{4, distinguishable fermions,

1{2, identical fermions.

(2.2.50)

The cross-section (2.2.49) becomes comparable to the ρϕ contribution to BSF1 computed in
sections 2.2.2 and 2.2.3 for

λϕ

4
?

3π
„

ρϕ
µα2{2

. (2.2.51)

Comparing with the BSF1 contributions from the trilinear coupling alone (2.1.19) and (2.1.21),
the λϕ contribution to BSF2 is more significant for

λϕ Á 102?α . (2.2.52)

The perturbativity of the couplings implies that the above condition may be meaningfully sat-
isfied only for small coupling α À 10´3.

Other subdominant contributions

In figs. 2.5 and 2.6, we display various diagrams arising from ρϕ and λjϕ. Their contributions
to BSF2 are subdominant compared to the contributions of the same couplings to BSF1 for
reasonable choices of the parameters, as we discuss below. Since for phenomenological purposes,
we are interested mostly in the total capture rate, we do not compute these contributions in
detail.

Because part of the suppression arises from the phase space density of the second mediator
(cf. section 2.2.4), we will consider directly the contributions of these diagrams to the cross-
section rather than the amplitude, thus neglecting any cross-terms between different diagrams
(except in the cases where there is a cancellation between them). It is straightforward to verify
that the cross-terms do not alter our conclusions. We focus on particle-antiparticle or identical-
particle pairs. Our comparisons refer to the regime α ą vrel where BSF is important, setting
aside the ζ-dependent factors that yield the same vrel dependence between BSF1 and BSF2 in
this regime.
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Figure 2.5: Capture via emission of two scalar mediators: the contributions of the mediator
trilinear self-coupling to the radiative amplitude.
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Pa Pb

λ1ϕ
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λ2ϕ

Figure 2.6: Capture via emission of two scalar mediators: the contribution of the quartic
DM-mediator coupling to the radiative amplitude. These diagrams exist for scalar DM only.

• For particle-antiparticle or identical-particle pairs, the sum of the two diagrams on the left
in fig. 2.5 suffers from the same cancellation as the diagrams of fig. 2.2 (cf. section 2.1.3).
This introduces a α4 suppression in the corresponding cross-section, while the phase-space
density of the second emitted mediator implies an additional suppression by pµα2{2q2

as discussed in section 2.2.4. These suppressions are balanced by the propagator of the
off-shell mediator, which introduces a factor „ pP 0

a ` P 0
b q
´4 9 pµα2{2q´4. Thus, the

contribution of these diagrams to the cross-section scales as σBSF2vrel 9 pρϕ{µq
2. This is

suppressed by α with respect to the ρϕ contribution to BSF1, σBSF1vrel 9 p1{αqpρϕ{µq
2

[see e.g. eq. (2.2.35)], as well as by the numerical factor „ 2ˆ 10´3 due to the three-body
phase space.

• The third and forth diagrams in fig. 2.5 can be estimated starting from the ρϕ contribution
to BSF1 [cf. third diagram in fig. 2.3 and eq. (2.2.35)].

For the third diagram, the off-shell mediator yields a factor 9 pµα2{2q´4. Taking into
account the phase-space suppression 9 pµα2{2q2, we find that the contribution to the
BSF2 cross-section scales as σBSF2vrel 9 p1{α

5qpρϕ{µq
4. Assuming that ρϕ „ mϕ À µα2{4

(cf. footnote 5), effectively this yields at best σBSF2vrel 9 α3, similarly to the BSF1 cross-
section (2.2.35). Still, the numerical suppression of BSF2 due to the three-body phase
space ensures that the BSF2 contribution is subdominant to BSF1. However, if there is a
large hierarchy between mϕ and ρϕ with ρϕ " mϕ, then the diagram under consideration
may be significant.6

For the forth diagram, the off-shell mediator between the two emitted scalars yields a

6We note that the three left diagrams in fig. 2.5 exhibit a collinear divergence at mϕ Ñ 0 that would have to
be treated appropriately.
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factor 9 pµαq´4. It follows that it is subdominant to the third diagram in fig. 2.5 and to
the ρϕ contribution to BSF1.

• For the two diagrams on the left in fig. 2.6, we start from the first term of eq. (2.2.23),
replace one factor of α with λ2

Xϕ and introduce the phase-space suppression 9 α4. We

obtain σBSF2vrel 9 α5λ4
Xϕ.

• For the two middle diagrams in fig. 2.6, we start from the second term of eq. (2.2.23),
replace one power of α with λ2

Xϕ and introduce the phase-space suppression 9 α4. We

obtain σBSF2vrel 9 α2λ2
Xϕpρϕ{µq

2, which is subdominant to the first term of eq. (2.2.23)
for ρϕ ! µ.

• The two diagrams on the right in fig. 2.6 suffer from the cancellations of the BSF1 diagrams
of fig. 2.2. Replacing one factor of α with λ2

Xϕ results in the suppression λ2
Xϕα

3 for particle-
antiparticle or identical-particle pairs. Introducing also the phase-space suppression yields
σBSF2vrel 9 λ2

Xϕα
7.

2.3 Conclusion

While the trilinear coupling determines the long-range interaction between the DM particles, it
is not necessarily the only contributor to the radiative part of the transition. Quite generically,
in theories with scalar mediators the couplings in the scalar potential also contribute. In the
present chapter, we investigated the contribution of the mediator self-couplings, as well as the
DM-mediator quartic coupling in the case of scalar DM, to the radiative capture into bound
states. We considered capture both via one and two scalar mediator emission. Our main results
include eqs. (2.2.22) and (2.2.23) for BSF1 by scalar particles, eqs. (2.2.34) and (2.2.35) for BSF1
by fermionic particles, and in eq. (2.2.49) for BSF2. We have found that the newly considered
couplings can enhance or dominate the capture rate in sizeable parts of the parameter space,
described in part by eqs. (2.2.24), (2.2.26), (2.2.36), (2.2.51) and (2.2.52).

Importantly, the new contributions are s-wave and remain significant even at very low veloc-
ities, thereby enhancing the radiative signals that can be probed in the indirect searches. This
can potentially strengthen the resulting constraints. While models with light mediators and
s-wave annihilation are severely constrained by the CMB and other indirect probes [44, 91, 92],
models with p-wave annihilation – such as fermionic DM coupled to a scalar mediator – remain
largely unconstrained. In this case, the formation and subsequent decay of unstable bound states
offers a source of detectable indirect signals [52]. (Bremsstrahlung of dark mediators has also
been invoked to lift the p-wave suppression [93].) Moreover, s-wave annihilation processes may
lead to a period of reannihilation in the early universe, after DM kinetic decoupling [94].

Besides the signals produced from the decay of unstable bound states, the radiation emitted
during the capture process is another source of indirect signals even in the case of stable bound
states [95]. This is particularly important for asymmetric DM [96], whose annihilation signals
are suppressed due to the asymmetry (albeit can still be significant due to the Sommerfeld ef-
fect [46]). Asymmetric DM, in turn, offers an excellent host of self-interacting DM, both because
it allows for large couplings to light mediators, and it evades the indirect detection constraints,
provided that the asymmetry is sufficiently large [47]. The enhanced radiative signals expected
due to the contributions computed here can improve the prospects of probing asymmetric and
self-interacting DM.
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In this chapter, we focused on scalar mediators that do not carry any conserved charge. In
chapter 3 we go one step forward in the model to and we study how the situation changes when
a scalar mediator is charged under a low-energy symmetry.
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Chapter 3

Bound state formation via emission
of charged scalar mediator

As we studied in the previous chapter 2, for a particle-antiparticle pair or a pair of identical
particles, the radiative capture via emission of a scalar boson is rather suppressed due to cancel-
lations in the amplitude that reflect in part the angular momentum selection rules of the process
(cf. section 3.1.2) [43, 73]. These cancellations concern the contributions to the radiative part
of the amplitude that arise from the trilinear DM-DM-mediator coupling alone. The couplings
of the scalar potential — the self-couplings of the mediator, as well as the biquadratic couplings
between DM and the mediator if DM is bosonic — also contribute to the radiative amplitude
and may enhance the capture cross-sections [1]. However for natural values of the parameters,
the cross-sections remain mostly small. The radiative capture via emission of a scalar boson
suppressed due to cancellations in the amplitude: (i) The lowest order s-wave contribution van-
ishes due to the orthogonality of the incoming and outgoing wavefunctions, thus abdicating the
leading order to the p-wave. (ii) The leading order p-wave terms cancel for particle-antiparticle
or identical-particle pairs, yielding to s- and d-wave contributions that are suppressed by higher
orders in the coupling with respect to the capture via vector emission and possibly to the anni-
hilation cross-section [43, 59, 73].

In this chapter we point out that the situation is markedly different if the emission of the
scalar boson alters the potential between the interacting particles. This may occur if the scalar is
charged under either a local or a global symmetry. As we shall see, in this case, the leading-order
contributions to the amplitude are proportional to the overlap of the initial-state and final-state
wavefunctions, which now are not orthogonal since they are subject to different potentials. The
large overlap between the incoming and outgoing states gives rise to strikingly large BSF cross-
sections. This is akin to atomic transitions precipitated by “sudden perturbations”, such as
ionisation caused by a beta decay of the nucleus [53].

To demonstrate the phenomenological importance of the transitions we consider, we calcu-
late the chemical decoupling of DM in the early universe taking into account the formation of
particle-antiparticle bound states via charged-scalar emission, and their subsequent decay into
radiation. The formation of metastable bound states in the early universe has been shown to
deplete the DM abundance [39], with the effect being generally more pronounced if the bound
states have sizeable binding energy. Then, they form and decay efficiently already at high tem-
peratures, when the DM density is large [39, 55, 62]. Here we find that, because of the largeness
of the BSF cross-sections, shallow bound states can cause a second period of rapid DM deple-
tion at low temperatures (of the order of their binding energy), much later than the traditional
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freeze-out. This alters the predicted couplings of DM to other species very significantly, thereby
affecting its observable signatures.

For simplicity, in the present work, we carry out our computations in an Abelian model with
scalar DM that is singly-charged under a dark Up1qD gauge force and is coupled to a doubly-
charged light scalar via a trilinear coupling. We shall not assume that the light scalar obtains
a vacuum expectation value (VEV). Even in models where it does, our computation remains
essentially valid, provided that the VEV of the scalar is not much larger than its mass. Then,
if the scalar mediator is light enough to be emitted during BSF, its mass and VEV must be
smaller than all other relevant scales, and the symmetry is only mildly broken. Our results
are also readily applicable to non-Abelian models, whose dynamics in the unbroken phase can
be reduced to the Abelian case by an appropriate decomposition of the representations of the
interacting particles [97].

The chapter is organized as follows. In section 3.1, we introduce the model, compute the
cross-sections for BSF via emission of a charged scalar, provide analytical results in the Coulomb
limit for capture into any bound level, and discuss their features. We confront our results with
partial-wave unitarity and discuss the resolution to its apparent violation where it occurs. In
section 3.2, we consider the DM freeze-out in the presence of BSF via emission of a charged
scalar, and show the effect on the DM relic density and predicted couplings. We conclude in
section 3.4 with an outlook on the implications of our results.

3.1 Bound state formation via charged scalar emission

3.1.1 The model

We assume that DM consists of a complex scalar field X that couples to a dark Abelian gauge
force Up1qD with V being the gauge boson, as well as to a light complex scalar Φ that is doubly
charged under the same force. The interaction Lagrangian is

L “´ 1

4
FµνF

µν ` pDµXq
:pDµXq ` pDµΦq

:pDµΦq ´m2
X |X|

2 ´m2
Φ|Φ|

2

´
ymX

2

´

X2Φ: `X:
2
Φ
¯

´
λX
4
|X|4 ´

λΦ
4
|Φ|4 ´ λXΦ|X|

2|Φ|2, (3.1.1)

with Fµν ” BµV ν ´ BνV µ and Dµ
j ” Bµ ` iqjgV µ, where the index j denotes the particle of

charge qj . The charges are qX “ 1 and qΦ “ 2 for X and Φ fields respectively. The quartic terms
stabilize the scalar potential at large field values. It is possible that the dark sector couples
also to the SM, via biquadratic couplings of the scalars to the Higgs, and/or kinetic mixing of
V with the Hypercharge gauge boson. Here we do not attempt a detailed phenomenological
study of the model, but instead focus on computing the radiative capture into bound states via
emission of a charged scalar, and simply showcasing its implications. We thus do not consider
any couplings to the SM and do not derive any observational constraints.

We define the parameters that will appear in the non-relativistic potential,

αV ”
g2

4π
and αΦ ”

y2

16π
. (3.1.2)

For convenience, we also define the total mass M and the reduced mass µ of a pair of interacting
particles; in our case M “ 2mX and µ “ mX{2.

We emphasise here that we are interested in mΦ ! mX . This hierarchy remains stable for
momentum flows Q ă mX , which encompass the momentum transfer along the off-shell Φ bosons
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Figure 3.1: The 2PI diagrams contributing to the non-relativistic potential for XX: pairs
(upper) and XX or X:X: pairs (lower). The arrows denote the flow of the Up1qD charge.

exchanged in the scattering and bound states (cf. section 3.1.1). At Q Á mX , X loops generate
corrections to the running mass of Φ, δpm2

Φq9αΦm
2
X , that may far exceed its low-energy value.

Seen from a high-energy perspective, this amounts to a near cancellation between the high-
energy value of the running Φ mass and the running contribution. While this may be fine-tuned,
the value of the running Φ mass at high energies does not affect our computations. Moreover,
eq. (3.1.1) can be viewed as an effective theory valid below „ mX , that is potentially stabilised
by additional physics at higher scales, such as supersymmetry.

Non-relativistic potential

The long-range potential of XX, X:X: and XX: pairs is generated by the one-boson-exchange
diagrams shown in fig. 3.1. Because the Φ-exchange diagram for XX: pairs is u-channel, the
Φ-generated potential depends on the angular momentum mode of the eigenstate; we clarify
this subtlety in appendix A.2. Combining this with well-known results for vector-mediated and
scalar-mediated potentials [1, 43, 59], we obtain

VXXprq “ VX:X:prq “ `
αV
r
, (3.1.3a)

VXX:prq “ ´
αV
r
´ p´1q`

αΦ
r
e´mΦr , (3.1.3b)

where αV and αΦ are defined in eq. (3.1.2). The potentials (3.1.3) distort the wavefunctions
of pairs of unbound particles, a phenomenon known as the Sommerfeld effect [37, 38]. For
αV ` p´1q`αΦ ą 0, they also give rise to XX: bound states.1

Radiative capture processes

The capture of unbound particles into bound states can occur radiatively, via emission of a
vector or scalar boson, according to the processes

X `X: Ñ BpXX:q ` V, (3.1.4)

and

X `X Ñ BpXX:q ` Φ, (3.1.5a)

X: `X: Ñ BpXX:q ` Φ:. (3.1.5b)

1In fact, the condition for the existence of XX: bound levels is somewhat more relaxed since the repulsive
contribution to the potential (3.1.3b) arising from Φ exchange for ` odd is of finite range, while the attractive
term is of infinite range.
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Figure 3.2: The capture into bound states via emission of a vector boson (BSFV ), X `X: Ñ
BpXX:q ` V . While the bottom diagram appears to be naively of higher order, the momentum
exchange along the two Φ propagators scales with the couplings, and renders this diagram of
the same order as the two upper diagrams. We refer to appendix D.1 for the computation.

X

X
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Figure 3.3: The capture into bound states via emission of a charged scalar (BSFΦ), X `X Ñ

BpXX:q`Φ. There is also the conjugate process, X:`X: Ñ BpXX:q`Φ:. The arrows denote
the flow of the Up1qD charge. Note that in this case, the diagrams in which the incoming XX
particles emit off-shell V and Φ that fuse to produce the final state Φ are of higher order, and
we do not consider them here.

We shall refer to the processes (3.1.4) and (3.1.5) as BSFV and BSFΦ respectively. The leading
order Feynman diagrams are shown in figs. 3.2 and 3.3.

BSFV has been computed in [43, 59] (see [62] for non-Abelian generalisations), and a number
of papers have considered its effects on the DM relic density [39, 46, 47, 55, 62, 98, 99] and indirect
signals [40, 41, 44, 46, 47, 58, 98]. Here, the coupling of DM to the light scalar gives rise to an
additional contribution to the BSFV amplitude at leading order, shown in fig. 3.2. We review
and adapt the computation of BSFV to the present model in appendix D.1.

In the rest of this section, we focus on the BSFΦ cross-sections.
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Momentum decomposition and wavefunctions

We focus on the processes (3.1.5). For simplicity, in the following we neglect the mass of Φ,
except in the phase-space integration. This will allow us to obtain analytical expressions for the
BSFΦ cross-sections, and gain important insight. Taking fully into account the mass of Φ (and
potentially also a non-zero mass for V ) requires computing the wavefunctions numerically, as
done in [43] for a Yukawa potential and [54, 55] for mixed Coulomb and Yukawa potentials. In
the Coulomb approximation, the XX, X:X: scattering states and the XX: bound states are
governed respectively by the potentials

VS “ ´αS{r and VB “ ´αB{r, (3.1.6)

with

αS “ ´αV , αB “ αV ` p´1q`αΦ. (3.1.7)

The momentum assignments for the particles participating in BSFΦ are shown in fig. 3.4.
In order to separate the motion of the center-of-momentum from the relative motion in the
scattering and bound states, we decompose the momenta as follows [59]

k
p1q

1 ” K{2` kp1q, k
p1q

2 ” K{2´ kp1q, (3.1.8a)

pX ” P {2` p, pX: ” P {2´ p. (3.1.8b)

Scattering states. In eq. (3.1.8a), the unprimed momenta correspond to infinite separation of
XX, while the primed momenta denote the corresponding values in the XX wavepacket, which
is distorted by the long-range interaction; this is the well-known Sommerfeld effect [37, 38]. It
is easy to see from eq. (3.1.8a) that in the non-relativistic regime, k “ µvrel, with vrel being
the relative velocity of the incoming XX pair. The non-relativistic on-shell relations for k0

1

and k0
2 imply that the total energy of the scattering state is K0 » M ` Ek `K2{p2Mq, with

Ek “ k2{p2µq “ µv2
rel{2. The scattering states are described by the wavefunctions φXXk prq

in position space and φ̃XXk pk1q in momentum space; k is the expectation value of k1. The
wavefunctions φXXk prq obey the Schrödinger equation with the potential (3.1.3a) and energy
eigenvalue Ek.

Bound states. They are described by the wavefunctions ψXX
:

n`m prq and ψ̃XX
:

n`m ppq in position and
momentum space respectively, where n`m are the standard principal and angular momentum
quantum numbers in a central potential that determine the expectation value of p. The energy
of the bound states is P 0 »M´|En|`P2{p2Mq, where the binding energies can be parametrised
as En “ ´κ2

B{p2n
2µq, with κB ” µαB being the Bohr momentum of the system. Note that p0

1 and

p0
2 do not obey on-shell relations individually. The wavefunctions ψXX

:

n`m prq obey the Schrödinger
equation with the potential (3.1.3b) and energy eigenvalue En.

Hierarchy of scales. The emergence of non-perturbative phenomena – the Sommerfeld effect
and the existence of bound states – is largely due to the different scales involved in the XX and
XX: scattering. For the scattering states and the bound states,

µv2
rel{2 ! µvrel ! µ ÀM, (3.1.9a)

µα2
B{p2n

2q ! µαB{n ! µ ÀM, (3.1.9b)
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Figure 3.4: The radiative part of transitions via emission of a charged scalar, XX Ñ XX:`Φ.
The arrows on the field lines denote the flow of the Up1qD charge.

or equivalently,

Ek ! |k| „ |k
1| ! K0 (3.1.10a)

|En| ! κB{n „ |p| ! P 0 (3.1.10b)

In our computations, we make approximations based on these hierarchies.

Energy-momentum conservation. Taking into account the above relations, the conserva-
tion of energy and momentum, K “ P `PΦ, implies that Φ takes away the kinetic energy of the
relative motion in the scattering state and the binding energy of the bound state [43, 59],

b

|PΦ|
2
`m2

Φ “ ω ” Ek ´ En “
k2 ` κ2

B{n
2

2µ
“
µ

2
pα2

B{n
2 ` v2

relq, (3.1.11)

where we neglected the recoil of the bound state, as per (3.1.9). Equation (3.1.11) can be recast

as |PΦ| “ ω s
1{2
ps , with the phase-space suppression factor being

sps ” 1´m2
Φ{ω

2. (3.1.12)

Parametrisation. Throughout, we shall thus assume and use the well-known analytical so-
lutions for the energy eigenstates and eigenvalues in a Coulomb potential (see e.g. ref. [100]),
which we review in appendix B. We discuss the range of validity of the Coulomb approximation
in section 3.3, in the context of the phenomenological application of BSFΦ on the DM freeze-out,
that we present in section 3.2. In the Coulomb regime, we need the following two variables to
parametrise the cross-sections in a minimal fashion [59],

ζS ” αS{vrel, ζB ” αB{vrel. (3.1.13)

Taking the couplings (3.1.7) into account, ζS and ζB can be re-expressed in terms of

ζV ” αV {vrel, ζΦ ” αΦ{vrel. (3.1.14)

Outside the Coulomb regime, the wavefunctions can be computed as in ref. [43] (see [54, 55] for
results in a mixed Coulomb and Yukawa potential).

3.1.2 Amplitude

The amplitude for BSFΦ is [59]

iMΦ
kÑn`m »

ż

d3k1

p2πq3
d3p

p2πq3
φ̃XXk pk1q iAΦ

T pk
1,pq

rψ̃XX
:

n`m ppqs
˚

?
2µ

, (3.1.15)
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where the factor 1{
?

2µ has arisen in switching from the relativistic to the non-relativistic nor-
malisation for the fields participating in the bound state [59]. AΦ

T is the (amputated) amplitude
of the radiative part of the process,

XpK{2` k1q `XpK{2´ k1q Ñ XpP {2` pq `X:pP {2´ pq ` ΦpPΦq, (3.1.16)

where the parentheses denote the momenta of each field; K and P are the total 4-momenta of
the XX scattering state and the XX: bound state respectively. The leading order diagrams
with the precise momentum assignments are shown in fig. 3.4. Because these diagrams are not
fully connected, the virtuality of the X,X: fields has to be integrated out as described in [59]
(see [62] for a more recent summary). Adapting the result of [59], we find the leading order
contributions to be

iAΦ
T pk

1,pq » ´i2yMµ p2πq3
“

δ3pk1 ´ p`PΦ{2q ` δ
3pk1 ` p´PΦ{2q

‰

. (3.1.17)

Combining eqs. (3.1.15) and (3.1.17), Fourier transforming the wavefunctions, and taking into
account that ψn`mp´rq “ p´1q`ψn`mprq, we obtain

iMΦ
kÑn`m » ´iyM

a

2µ

ż

d3r φXXk prq rψXX
:

n`m prqs
˚
”

e`iPΦ¨r{2 ` p´1q` e´iPΦ¨r{2
ı

. (3.1.18)

Amplitudes of this type can be computed by expanding in powers of PΦ ¨ r{2 [43]. Indeed,
the bound-state wavefunction is exponentially suppressed at r Á n{κB. Moreover, the scattering
state wavefunction oscillates at r ą 1{k. Thus the integrand is significant roughly only for r À
1{
a

κ2
B{n

2 ` k2. Taking eq. (3.1.11) into account, this implies PΦ ¨ r{2 À
a

κ2
B{n

2 ` k2{p4µq “
b

α2
B{n

2 ` v2
rel{4 ! 1. If the scattering and the bound states were subject to the same po-

tential, the zeroth order term in this expansion would vanish due to the orthogonality of the
wavefunctions.2

The essential point of our calculation is that because Φ carries away charge, the scattering
and bound state wavefunctions are governed by different potentials and thus are not orthogonal.3

Therefore, to lowest order, eq. (3.1.18) becomes

iMΦ
kÑn`m » ´i δ`,even 2yM

a

2µ

ż

d3r φXXk prq rψXX
:

n`m prqs
˚. (3.1.19)

Since the scattering state consists of a pair of identical bosons XX, the wavefunction is
related to that of two distinguishable particles (DP), φDP

k prq, as follows

φXXk prq “
φDP

k prq ` φ
DP
k p´rq

?
2

“
φDP

k prq ` φ
DP
´kprq?

2
“
?

2
ÿ

`S“even

φDP
k,`S
prq, (3.1.20)

2 For two particles X1, X2 coupled to a light neutral scalar ϕ via δL “ ´yjmjX
:

jXjϕ, the amplitude for the
formation of X1X2 bound states via ϕ emission is [43, 59]

iMkÑn`m » ´iM
a

2µ

ż

d3r φkprqψ
˚
n`mprq

”

y1e
´iη2PΦ¨r ` y2e

iη1PΦ¨r
ı

,

with η1,2 ” m1,2{pm1 ` m2q. In the PΦ ¨ r expansion, the zeroth order terms vanish due to the orthogonality
of the wavefunctions, and for y1 “ y2 and m1 “ m2 also the first order terms cancel with each other. Then,
the dominant contributions arise from the pPΦ ¨ rq

2 terms (plus corrections of the same order that have been
omitted in the above expression). Note that the second cancellation indicates the angular momentum selection
rule ∆` “ even. Thus, for a particle-antiparticle pair or a pair of identical particles, the capture cross-section is
suppressed and becomes phenomenologically important mostly for large couplings.

3While this is inevitable in an Abelian theory, in non-Abelian theories it is possible for a pair of particles to
emit a charged boson without changing their combined representation. For example, because adj b adj Ą adj,
two particles each transforming in the adjoint representation of a group, can begin from a combined adjoint
configuration, emit an adjoint boson and end up again in an adjoint combined state.
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where φDP
k,`S
prq denotes the `S angular mode of φDP

k prq. We now define the overlap integral of

wavefunctions of distinguishable particles4

Rk,n`m ” κ
3{2
B

ż

d3r rψDP
n`mprqs

˚ φDP
k prq, (3.1.21)

for scattering and bound states that are subject to the potentials (3.1.6). We calculate Rk,n`m

analytically in appendix C.2 (without specifying the couplings αS and αB). The angular inte-
gration in eq. (3.1.21) imposes the selection rule

`S “ `. (3.1.22)

Then, collecting eqs. (3.1.19) to (3.1.22), we find

MΦ
kÑn`m » ´

4y

α
3{2
B

M

µ
Rk,n`m δ`,even. (3.1.23)

We will use eq. (3.1.23) to compute the BSFΦ cross-section in section 3.1.3. Before doing so,
some clarifications are important.

For ` “ odd, we must keep the first order terms in the pPΦ ¨ rq expansion of the integrand of
eq. (3.1.18). Then the amplitude becomes non-vanishing for ` “ odd, and is proportional to the
overlap integral

ş

d3r pPΦ ¨ rqφ
XX
k prq rψXX

:

n`m prqs
˚, which imposes the selection rule |` ´ `S | “ 1.

As per eq. (3.1.20), the scattering state wavefunction contains only modes `S “ even. Thus, this
contribution survives, and yields a cross-section that is larger than BSF via emission of a neutral
scalar (cf. footnote 2) and of the equivalent order as BSF via emission of a vector boson.5

Nevertheless, the cancellation of the zeroth order terms in pPΦ ¨rq for odd ` is a particularity
of the model we are considering here, rather than a generic feature of BSF via charged scalar
emission. For example, in a (coannihilation) scenario where the two incoming particles transform
under different representations of the underlying symmetry (i.e. in the Up1q case, they have
different charges), there in no generic cancellation between the contributing diagrams. Thus, to
remain focused on the main point of our computation, we shall consider only the lowest order
contributions given by eq. (3.1.19).

The result (3.1.23) should also make evident that for BSFΦ, the diagrams in which the final-
state Φ is produced from the fusion of off-shell V and Φ emitted by the incoming XX pair,
are subleading. Diagrams where the radiated boson is emitted from an off-shell propagator
exchanged between the two interacting particles, are known to give leading-order contributions
to BSFV [42]. However, as shown here, the diagrams of fig. 3.4 for BSFΦ yield lower order
contributions than the corresponding diagrams for BSFV , where the vector-emission vertices
introduce a momentum suppression in the wavefuntion overlap integral and thus in the amplitude
(see appendix D.1 for more details). Thus, with respect to the diagrams of fig. 3.4, the Φ emission
from V Φ fusion must be subleading; in fact, it turns out to be even of higher order than the
corresponding diagrams in BSFV , due to the different Lorentz structure of the vertices involved.

4In the notation of refs. [43, 59], this is the overlap integral Ik,n`mpbq, evaluated at b “ 0 and up to the overall

constant κ
3{2
B , here introduced to make Rk,n`m dimensionless.

5For fermionic DM, we find that the pPΦ ¨ rq
0 contributions would survive for `` s` 1 “ even, with s “0 or 1

being the total spin. However, the XX wavefunctions contain only `S ` s ` 1 “ odd modes. Given the `S “ `
selection rule (3.1.22), these contributions cancel. The pPΦ ¨ rq

1 contributions have the same fate: they would
survive for ` ` s ` 1 “ odd, however the selection rule now becomes |` ´ `S | “ 1. Since `S ` s ` 1 “ odd, these
contributions cancel as well.
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3.1.3 Cross Section

The cross-section times relative velocity for the BSFΦ processes (3.1.5) is

σΦn`mvrel “
|PΦ|

26π2M2µ

ż

dΩ |MΦ
kÑn`m|

2 , (3.1.24)

where the momentum of the emitted scalar PΦ is given by eq. (3.1.11).
Collecting eqs. (3.1.11), (3.1.23), (3.1.24) and (C.2.6), we find for the capture cross-section,

σΦn`vrel ”
ÿ̀

m“´`

σΦn`mvrel, (3.1.25)

the following

σΦn`vrel » s1{2
ps

π

µ2

αΦ
αB

ˆ

1´
αS

αB

˙2

δ`,even
24``9 n2

2`` 1

pn` `q!

pn´ `´ 1q!

„

`!

p2`q!

2

ˆ S`pζSq

„

pζ2
B{n

2q``3

p1` ζ2
B{n

2q2``3



e´4ζS arccotpζB{nq

ˆ

ˇ

ˇ

ˇ

ˇ

2F1

ˆ

1` `´ n; 1` `` iζS ; 2`` 2;
4iζB{n

p1` iζB{nq2

˙ˇ

ˇ

ˇ

ˇ

2

,

(3.1.26)

where S`pζSq is the Sommerfeld factor for `-wave processes [101],

S`pζSq “
2πζS

1´ e´2πζS

ź̀

j“1

ˆ

1`
ζ2
S

j2

˙

, (3.1.27)

and in our model

αS “ ´αV , ζS ” αS{vrel “ ´ζV , (3.1.28a)

αB “ `αV ` p´1q`αΦ, ζB ” αB{vrel “ `ζV ` p´1q`ζΦ, (3.1.28b)

with αV and αΦ defined in eq. (3.1.2). 2F1 is the (ordinary) hypergeometric function, and sps is
the phase-space suppression factor defined in eq. (3.1.12).

The cross-sections (3.1.26) is the main result of this section. They are readily generalisable
to unbroken perturbative non-Abelian theories: as in ref. [62], the appropriate colour factors
arising in the amplitudes (3.1.23) upon projection of the initial and final states onto states of
definite colour must be included, αS and αB have to be chosen according to the initial and final
colour representations [97], and the (anti)symmetrisation of the wavefunctions in the case of
identical particles must be taken into account. Considering the couplings (3.1.28), we illustrate
eq. (3.1.26) in figs. 3.5 and 3.6, and compare BSFΦ with BSFV [43, 59].

A few remarks are in order.

• The computed contribution (3.1.26) to the BSF cross-section vanishes if αB “ αS , as
expected from the orthogonality of the wavefunctions.

• The hypergeometric function in eq. (3.1.26) is a finite polynomial in its last argument
(which can be also cast as 1 ` ei4arccotpζB{nq) because its first argument is a non-positive
integer, 1` `´ n ď 0. For ` “ n´ 1, this factor reduces to 1. For an arbitrary `, it tends
to 1 both at large and at small velocities (ζB, |ζS | ! 1 and ζB, |ζS | " 1). At intermediate
velocities, it gives rise to cancellations, as seen for example in fig. 3.5.
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Figure 3.5: The velocity-weighted cross-section for capture into zero-angular momentum XX:

bound states, n00: XX Ñ Bn00pXX
:q ` Φ for n “ 1, 2, 3, and XX: Ñ B100pXX

:q ` V . For V
emission, the capture into n ą 1 states is subdominant to capture into n “ 1 [43], and we do not
show them here. Also shown are the s- and p-wave unitarity limits on inelastic cross-sections; for
capture into n00, BSFΦ is s-wave, while BSFV is p-wave. All cross-sections have been normalised
to π{µ2, with µ being the reduced mass of the interacting particles, and we have neglected any
phase-space suppression due to the mass of Φ.
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Figure 3.6: Same as in fig. 3.5, for capture into bound levels with ` “ n ´ 1, which have the
highest multiplicity for a given n. We also show the respective unitarity limits for each process.

• At large velocities, vrel " αB{n “ pαV `αΦq{n (i.e. ζB{n ! 1), the overlap of the scattering
and bound state wavefunctions is small, as seen from the term inside the square brackets

in the second line of eq. (3.1.26). The BSFΦ cross-sections are suppressed by ζ
2p``3q
B ! 1.

• At low velocities, vrel À |αS | “ αV (i.e. |ζS | Á 1), the BSFΦ cross-sections become sup-
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pressed due to the repulsion in the scattering state, by the Sommerfeld factor S`pζSq, with
ζS “ ´ζV ă 0. The suppression becomes exponential at very low velocities ζS ! ´1.

• In between, the BSFΦ cross-sections become very significant. While the velocity at which
they peak depends on n, ` and the ratio αS{αB, it can be roughly approximated by vrel „

αB{n “ pαV ` αΦq{n, as seen in figs. 3.5 and 3.6.

• For ζB{n “ αB{pnvrelq Á 1, the factor in eq. (3.1.26) next to S`pζSq yields the characteristic
behaviour v2`

rel of `-wave processes without Sommerfeld. Combined with S`pζSq, we see that
the velocity suppression of higher partial waves disappears, and all partial waves exhibit
the velocity dependence of S0.

Let us also now examine two different limits of eq. (3.1.26).

Limit αV Ñ 0. In the limit of vanishing gauge coupling, the symmetry that is responsible for
the dynamics we are considering becomes essentially global. This limit can be also effectively
attained if the gauge boson has a very large mass mV " µαV such that it mediates a contact type
interaction. In this case, V decouples from the low-energy effective theory, leaving a remnant
unbroken global symmetry. In this regime, αB Ñ αΦ, ζB Ñ ζΦ and αS Ñ 0, ζS Ñ 0. Then,
eq. (3.1.26) becomes

σΦn`vrel » s1{2
ps

π

µ2
δ`,even

24``9n2

2`` 1

pn` `q!

pn´ `´ 1q!

„

`!

p2`q!

2

ˆ

„

pζ2
Φ{n

2q``3

p1` ζ2
Φ{n

2q2``3



ˆ

ˇ

ˇ

ˇ

ˇ

2F1

ˆ

1` `´ n; 1` `; 2`` 2;
4iζΦ{n

p1` iζΦ{nq2

˙ˇ

ˇ

ˇ

ˇ

2

. (3.1.29)

Since there is now no repulsion in the scattering state, this cross-section is not exponentially
suppressed at very low velocities. Nevertheless, because there is also no long-range attraction
in the incoming state, the cross-section scales as σΦn`vrel9v

2`
rel at vrel ! αB{n.

Limit αV " αΦ. In this regime, αB Ñ αV , ζB Ñ ζV . As always αS “ ´αV , ζS “ ´ζV . Then,
eq. (3.1.26) becomes

σΦn`vrel » s1{2
ps

πpαΦ{αV q

µ2
δ`,even

24``11n2

2`` 1

pn` `q!

pn´ `´ 1q!

„

`!

p2`q!

2

S`p´ζV q

„

pζ2
V {n

2q``3

p1` ζ2
V {n

2q2``3



ˆ e4ζV arccotpζV {nq

ˇ

ˇ

ˇ

ˇ

2F1

ˆ

1` `´ n; 1` `´ iζV ; 2`` 2;
4iζV {n

p1` iζV {nq2

˙ˇ

ˇ

ˇ

ˇ

2

. (3.1.30)

Despite the very small αΦ, this can exceed the BSFV cross-section for a significant velocity range,
as seen in figs. 3.5 and 3.6.

Capture via scattering

While in this work we focus on radiative BSF, it is possible that the dissipation of energy
necessary for the capture into bound states occurs via scattering on other particles through
exchange of an off-shell mediator, if the mediator couples also to other light degrees of freedom.
Although of higher order, such processes can be extremely efficient inside a relativistic thermal
bath, where the density of the light particles is very high, as was recently shown in [102] and
previously suggested in [61, 65, 103].

Reference [102] found that the rate of capture via scattering factorises into the radiative
cross-section (albeit without any phase-space suppression due to the mass of the emitted scalar),
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times a part that includes the kinematics and dynamics of the bath particles. The cross-sections
(3.1.26) can then be recast to calculate BSF via off-shell exchange of a charged scalar. A corollary
of this and the largeness of the radiative cross-sections (3.1.26) is that the corresponding bath
scattering processes must also be very significant in the early universe in the presence of light
relativistic particles coupled to the charged scalar. In the case of an unbroken or mildly broken
gauge symmetry, the gauge bosons and charged scalars already provide the relativistic bath
necessary for such scattering processes to occur, XX ` V Ñ BpXX:q ` Φ and XX ` Φ: Ñ
BpXX:q ` V .

In contrast to the radiative capture, BSF via bath scattering is not kinematically blocked
if the mediator mass is larger than the energy available to be dissipated [cf. eq. (3.1.11)]. This
implies that bound-state effects are not only enhanced, but also relevant to a broader parameter
space.

3.1.4 Partial wave unitarity

The unitarity of the S matrix implies an upper bound on the partial wave inelastic cross-
section [104]

σ
pJq
inelvrel ď σ

pJq
univrel “

πp2J ` 1q

µ2vrel
, (3.1.31)

where J denotes the partial wave of the scattering state wavefunction that participates in the
process. For BSFΦ, this is the same as that of the bound state formed, thus we consider the
ratio

σΦn`{σ
p`q
uni “ αΦ ˆ f̃n`pζS , ζBq δ`,even, (3.1.32)

with

f̃n`pζS , ζBq ”
24``9 n2 pn` `q!

pn´ `´ 1q!

„

`!

p2`` 1q!

2 ˆ

1´
ζS
ζB

˙2 S`pζSq

ζB

„

pζ2
B{n

2q``3

p1` ζ2
B{n

2q2``3



ˆ e´4ζS arccotpζB{nq

ˇ

ˇ

ˇ

ˇ

2F1

ˆ

1` `´ n; 1` `` iζS ; 2`` 2;
4iζB{n

p1` iζB{nq2

˙
ˇ

ˇ

ˇ

ˇ

2

, (3.1.33)

where we have neglected the phase-space suppression factor s
1{2
ps . As vrel varies, ζS and ζB scan

a range of values, but the ratio r ” ζS{ζB of course remains constant (neglecting the possible
running of the coupling, which may render αS mildly dependent on vrel). Unitarity must be
respected for all vrel. We thus define

fn`;rpζBq ” f̃n`pr ζB, ζBq. (3.1.34)

Then eq. (3.1.32) implies that unitarity is respected provided that αΦ is sufficiently small,

αΦ ă 1{maxrfnl;rpζBqs, (3.1.35)

where fnl;r is maximized with respect to ζB. (Note that ζB ą 0 always for bound states to exist.)
In fig. 3.7, we present fn`;rpζBq vs. ζB for n “ 1, ` “ 0 and various values of r. In the present

model, r “ ´αV {pαV ` αΦq P r´1, 0s. However, in any model where transitions of the type
considered here occur, the BSF amplitudes will be proportional to the overlap integrals (3.1.21),
and the cross-sections will be similar to eq. (3.1.26), up to a possible numerical factor. Thus,
to get a broader insight into the implications of unitarity, in fig. 3.7 we consider a wider range
of r values. As seen, fn`;r is bounded from above; this remains true for all n, `. It is then
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indeed possible to find a maximum value for αΦ, below which our calculation is consistent with
unitarity, but above which it evidently fails. We determine this numerically and present it in
fig. 3.8. Notably, for αS{αB ă 0, our computation fails already at rather small values of αΦ.
This is a consequence of the very large overlap between the initial and final states. The high
peak of the BSFΦ cross-sections at vrel „ αB{n, explained in section 3.1.3, results in a rather
stringent upper bound on αΦ.

What is the underlying reason for this apparent violation of unitarity, and how can unitarity
be restored in the computation of the BSFΦ cross-sections? At such low values of αΦ it is unlikely
that higher order corrections to the perturbative part of the amplitude AΦ

T [cf. eq. (3.1.17)] may
have any significant effect on the cross-section. Moreover, it has been pointed out that the
breakdown of unitarity in perturbative calculations at low energies suggests that the two-particle
interactions at infinity must be resummed [46, section 5]. In our computation, this has been
done at leading order, by the resummation of the one-boson exchange diagrams of fig. 3.1 that
give rise to the potentials (3.1.3). However, by the optical theorem, all the inelastic processes
to which the two interacting particles may participate also contribute to the self-energy of this
two-particle state. Such contributions are typically neglected because they are of higher order
than the one-boson exchange diagrams, and give rise to shorter-range (or contact) potentials
that may have only limited impact on the large-distance behaviour of the wavefunctions. Still,
the fact that the BSFΦ cross-sections can become so large suggests that their contribution to
the two-particle self-energy may be significant, thus it must be resummed. The effect of this
resummation will likely be significant mostly for incoming momenta around the peak of the
BSFΦ cross-sections, kpeak. While the corrected BSFΦ cross-sections should be consistent with
unitarity, we expect them to remain very significant for k „ kpeak, and essentially unaffected for
k " kpeak and k ! kpeak. Therefore, we still expect significant phenomenological implications.
We leave this computation for future work.
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uniq vs ζB ” αB{vrel, for n “ 1, ` “ 0 and various values of

r ” αS{αB. The coupling αΦ must be sufficiently small, αΦ ă maxpfn`;rq, such that unitarity is
respected for all velocities. This is possible because fn`;r is bounded from above.
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Figure 3.8: The maximum value of αΦ vs. r ” αS{αB, for which the BSFΦ cross-sections (3.1.26)
remain below the unitarity limit for all velocities. In the model considered in this work r “
´αV {pαV ` αΦq, thus ´1 ď r ď 0.

3.2 Freeze out of thermal relic dark matter

To showcase the phenomenological applications of the above, we consider the effect of BSFΦ

on the density of thermal-relic DM. Below, we list the pertinent cross-sections and rates, and
present the Boltzmann equations that govern the evolution of the unbound and bound DM
particle densities. We then describe how freeze-out is modified due to BSFΦ, and compute the
couplings that reproduce the observed DM density. For simplicity, we assume that the DM
particles and the radiation to which they couple are at the same temperature as the SM plasma,
and use the standard time parameter

x “ mX{T. (3.2.1)
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Figure 3.9a: The tree level diagrams contributing to the annihilation of XX:, XX and X:X:

pairs. Note that for the XX: Ñ V V and XX Ñ ΦV annihilation processes, there are both
t- and u-channel diagrams. In contrast, there is no u-channel diagram for XX: Ñ ΦΦ:. The
arrows denote the flow of the Up1qD charge.
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Figure 3.9b: The long-range interaction affects the rate of the annihilation processes, and
necessitates the resummation of the 2PI interactions at infinity. The 2PI kernels are shown in
fig. 3.1. The black blob stands for the tree-level annihilation diagrams of fig. 3.9a.

The generalisation to different dark sector and SM temperatures is straightforward, see e.g. [47].

3.2.1 Interaction rates

Annihilation

The tree-level annihilation channels for XX, X:X: and XX: pairs are shown in fig. 3.9a. The
annihilation processes are affected by the Sommerfeld effect as depicted in fig. 3.9b. We consider
only s-wave contributions, at leading order in each coupling and zeroth order in vrel. The full
velocity-weighted cross-sections are

σXX:ÑV V vrel »
2πα2

V

m2
X

S0pζV ` ζΦq, (3.2.2a)

σXX:ÑΦΦ: vrel »
2πrαΦ ´ λXΦ{p8πqs

2

m2
X

S0pζV ` ζΦq, (3.2.2b)

σXXÑΦV vrel “ σX:X:ÑΦ:V vrel » 0, (3.2.2c)

where we recall that ζV ” αV {vrel and ζΦ “ αΦ{vrel, and S0pζSq ” 2πζS{p1 ´ e´2πζS q is the
s-wave Sommerfeld factor [cf. eqs. (3.1.14) and (3.1.27)]. Note that the cross-section (3.2.2a)
for XX: Ñ V V is twice as large as the spin-averaged cross-section for the annihilation of a
fermionic particle-antiparticle pair into two Abelian vector bosons [39, 43]. For the XX: Ñ ΦΦ:

annihilation, the s-channel diagram (annihilation via off-shell V ) is p-wave and we have neglected
it in eq. (3.2.2b). For simplicity, in the following we shall also ignore the λXΦ contribution. This
coupling does not affect BSFΦ, and ignoring it will allow us to compare more easily the strength
of the processes that arise from the essential couplings of the model, αΦ and αV .
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Thus, the total velocity-weighted annihilation cross-section we will consider is

σannvrel »
2πpα2

V ` α
2
Φq

m2
X

S0pζV ` ζΦq, (3.2.3)

with its thermal average being

xσannvrely “
x3{2

2
?
π

ż 8

0
dvrel v

2
rel pσannvrelq e

´xv2
rel{4. (3.2.4)

Bound-state formation, ionisation and decay

Formation

As already discussed, XX: bound states can form via emission of a V or a Φ boson, according
to the processes (3.1.4) and (3.1.5), with the Feynman diagrams shown in figs. 3.2 and 3.3. For
simplicity, we shall consider the capture into the ground state only, n “ 1, ` “ m “ 0, for both
BSFV and BSFΦ. The larger binding energy and decay rate of the ground state render the
ionisation processes unimportant earlier on, and imply that the capture into the ground state
has a higher efficiency in depleting DM than the other BSF processes. Moreover, for BSFV , the
capture into the ground state is the dominant contribution [43, fig. 2]. On the other hand, for
BSFΦ, the rate of capture into excited states may exceed that of capture into the ground state
in some velocity range, as seen in figs. 3.5 and 3.6. While we do expect that the capture into
excited states plays an important role, here we only aim at showcasing the effect of BSF via
emission of a charged scalar. We leave more detailed phenomenological studies for future work.

The effect of BSFV on the DM relic density was shown in [39], in a setup where V was the sole
mediator; the corresponding cross-sections have been computed in [43, 59, 62]. In appendix D.1,
we review the computation and adapt it to the present model.

Taking the above into account, the BSF cross-sections we will consider are

σV100vrel “
29π

3m2
X

αV pαV ` αΦq

ˆ

1`
2αΦ

αV ` αΦ

˙2

ˆ

ˆ S0pζV ´ ζΦq r1` pζV ´ ζΦq
2s

pζV ` ζΦq
4

r1` pζV ` ζΦq2s3
e´4pζV ´ζΦqarccotpζV `ζΦq, (3.2.5a)

σΦ100vrel »
211π

m2
X

αΦp2αV ` αΦq
2

pαV ` αΦq3
S0p´ζV q

„

pζV ` ζΦq
2

1` pζV ` ζΦq2

3

e4ζV arccotpζV `ζΦq, (3.2.5b)

where S0pζSq ” 2πζS{p1 ´ e´2πζS q is the s-wave Sommerfeld factor [cf. eq. (3.1.27)], and we
neglect any phase-space suppression due to the mass of the Φ (cf. section 3.3). The total BSF
cross-section is then

σBSFvrel “ σΦ100vrel ` σ
V
100vrel. (3.2.6)

The thermally averaged BSF cross-section is

xσBSFvrely “
x3{2

2
?
π

ż 8

0
dvrel v

2
relpσBSFvrelqe

´xv2
rel{4

ˆ

1`
1

exrv
2
rel`pαV `αΦq

2s{4 ´ 1

˙

, (3.2.7)

where the last factor accounts for the Bose enhancement due to the low-energy boson (V or Φ)
emitted in the capture process; including the Bose enhancement is necessary in order to ensure
detailed balance at large temperatures [39].
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Ionization

The ionisation rate of the bound states can be found either by using the Milne relation between
the capture and ionization cross-sections (see [62, appendix D] for the proof), or more directly,
by invoking detailed balance,

Γ ion
B “ xσBSFvrely ˆ pn

eq
X q

2{neq
B “ xσBSFvrely ˆ spY

eq
X q

2{Y eq
B , (3.2.8)

where s is the entropy density of the universe, and the equilibrium yields of the unbound particles
and the bound states, Y eq

X ” neq
X {s and Y eq

B ” neq
B {s, are given in section 3.2.2 below. Using

these densities, we obtain

Γ ion
B » xσBSFvrely

ˆ

mXT

4π

˙3{2

e´|EB|{T , (3.2.9)

where EB “ E10 is the binding energy of the ground state.

Decay into radiation

The dominant decays of the ground state are

B100pXX
:q Ñ V V, ΦΦ:, (3.2.10)

with total rate

Γ dec
B » |ψXX

:

100 p0q|
2pσannvrelq

pert
0 (3.2.11)

where pσannvrelq
pert
0 is the perturbative s-wave velocity-weighted annihilation cross-section (to

zeroth order in vrel), which is contained in eq. (3.2.3). Then,

Γ dec
B »

m3
XpαV ` αΦq

3

23π

ˆ

2πα2
V

m2
X

`
2πα2

Φ

m2
X

˙

“
mX

4
pαV ` αΦq

3pα2
V ` α

2
Φq. (3.2.12)

3.2.2 Boltzmann equations and effective depletion rate

Let YX “ nX{s and YB “ nB{s be the yields of the unbound X particles and the bound states
respectively. The Boltzmann equations that govern the evolution of the densities are [39]6

dYX
dx

“´

c

π

45

mPl mX g
1{2
˚,eff

x2

"

xσannvrely
“

Y 2
X ´ pY

eq
X q

2
‰

` xσBSF vrely

„

Y 2
X ´

YB

Y eq
B
pY eq

X q
2

*

,

(3.2.13a)

dYB

dx
“`

c

π

45

mPl mX g
1{2
˚,eff

x2
xσBSF vrely

„

Y 2
X ´

YB

Y eq
B
pY eq

X q
2



´

c

45

4π3

mPl

m2
X

g
1{2
˚,eff

g˚S
xΓ dec

B pYB ´ Y
eq
B q ,

(3.2.13b)

where xσannvrely, xσBSFvrely and Γ dec
B have been given in section 3.2.1. In eqs. (3.2.13),

g
1{2
˚,eff ”

g˚S
?
g˚

ˆ

1´
x

3g˚S

dg˚S
dx

˙

, (3.2.14)

with g˚ and g˚S being the energy and entropy relativistic degrees of freedom. We will take
g˚ “ g˚S “ gSM

˚ ` 4 to account for the SM plus the V and Φ degrees of freedom, during the

6We use the Planck mass mPl “ 1.22ˆ 1019 GeV.
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DM freeze-out. We recall that the entropy density of the universe is s “ p2π2{45qg˚ST
3. In the

non-relativistic regime, the equilibrium yields Y eq
X and Y eq

B are

Y eq
X »

90

p2πq7{2
1

g˚S
x3{2 e´x , (3.2.15a)

Y eq
B »

90

p2πq7{2
1

g˚S
p2xq3{2 e´2xr1´pαV `αΦq

2{8s . (3.2.15b)

The relic density of the X,X: particles is

ΩX “ 2mXYXs0{ρc, (3.2.16)

where s0 » 2840 cm´3 and ρc » 3.67 ˆ 10´47GeV4 are the entropy and critical energy density
of the universe today [7]. We require that ΩX “ ΩDM, where the observed DM density is
ΩDM » 0.264 [7].

We note that in the minimal setup considered here, the Φ particles are stable, being the
lightest degrees of freedom charged under Up1qD. As such, they contribute to the DM density.
However, due to their lightness, even a small αV suffices to ensure that they annihilate into vector
bosons efficiently, via the t{u-channel process ΦΦ: Ñ V V , thereby reaching a cosmologically
negligible relic abundance. Moreover, the radiation density due to V evades the CMB and BBN
constraints provided that the dark sector temperature is somewhat lower than that of the SM
plasma at the corresponding times. If Φ acquires a VEV and/or the dark sector couples to the
SM, then there are more possibilities for the cosmological abundance of Φ and V , as well as
constraints. A complete phenomenological study is beyond the scope of this work.

Effective depletion cross-section

Instead of the system of coupled eqs. (3.2.13), the effect of bound states on the relic density can
be described by a single Boltzmann equation for the DM particles and an effective annihilation
cross-section that includes BSF weighted by the fraction of bound states that decay rather than
being ionised. We define first the effective BSF cross-section

xσBSFvrelyeff ” xσBSFvrely ˆ

ˆ

Γ dec
B

Γ dec
B ` Γ ion

B

˙

. (3.2.17)

The effective DM depletion cross-section is

xσvrelyeff “ xσannvrely ` xσBSFvrelyeff . (3.2.18)

We may compute the X relic density by solving the Boltzmann equation [105]

dYX
dx

“´

c

π

45

mPl mX g
1{2
˚,eff

x2
xσvrelyeff

“

Y 2
X ´ pY

eq
X q

2
‰

. (3.2.19)

In figs. 3.10 and 3.11, we show the DM annihilation and BSF cross-sections, and their thermal
averages. The BSFΦ cross-sections can exceed both the BSFV and annihilation cross-sections
by orders of magnitude, even for very small values of the couplings. However, the effect on the
DM density depends on the interplay among the bound-state formation, ionisation and decay
processes. To anticipate the result, it is useful to discern between two phases during the DM
chemical decoupling.
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(a) While the temperature is large enough to ensure that Γ ion
B " Γ dec

B , the system is in a state
of ionization equilibrium [106], where the effective DM depletion rate due to bound states
is essentially independent of the BSF cross-section. Indeed, combining eqs. (3.2.9), (3.2.11)
and (3.2.17) under the aforementioned condition, we obtain

xσBSFvrelyeff » xσannvrely
pert
0 ˆ 8

?
π

ˆ

|EB|

T

˙3{2

e`|EB|{T . (3.2.20)

Note that eq. (3.2.20) does not rely on the specific couplings or interactions of the model
considered here, but is rather general. It is easy to check that (3.2.20) is small in comparison
to the annihilation cross-section, unless or until the temperature approaches or drops below
the binding energy. In a Up1q model where DM couples only to the gauge boson, the
ionization equilibrium ends at a temperature somewhat higher than the binding energy,
thus (3.2.20) remains mostly small and most of the BSF effect on the DM density arises
after that the end of ionisation equilibrium [39]. However, in the present model, the largeness
of the BSFΦ cross-section sustains ionization equilibrium down to temperatures below the
binding energy (cf. fig. 3.11), thereby rendering the DM depletion significant during this
phase. Clearly, while eq. (3.2.20) is independent of xσBSFvrely, the duration of ionisation
equilibrium depends on it.

(b) The ionisation equilibrium ends when the ionisation rate drops below the decay rate, Γ ion
B À

Γ dec
B . Then, the DM depletion rate approaches rapidly the actual BSF rate, and is therefore

sensitive to the exact BSF cross-section, xσBSFvrelyeff » xσBSFvrely.

Taking into account the above considerations, and in order to gain insight on whether
BSFΦ may affect the DM density, in figs. 3.12 and 3.13 we present the effective DM depletion
cross-section for the following four cases:

AnnP: Perturbative annihilation only (diagrams shown in fig. 3.9a).

AnnS: Annihilation including the Sommerfeld effect due to both V and Φ exchange [cf. eq. (3.2.3)].

AnnS + BSFV : Annihilation with Sommerfeld effect due to V and Φ exchange, plus BSFV

[cf. eq. (3.2.5a)] with the ionization of the bound states [cf. eq. (3.2.8)] caused by V only.

AnnS + BSFV + BSFΦ: Annihilation with Sommerfeld effect due to V and Φ exchange, plus
BSFV and BSFΦ [cf. eq. (3.2.6)], with the ionization of the bound states [cf. eq. (3.2.8)]
caused by V or Φ.

In fig. 3.12 we show the evolution of xσvrelyeff as the temperature drops. We choose a small
value for the DM coupling to the charged scalar, αΦ “ 10´3, to be well within the range that is
consistent with unitarity (cf. section 3.1.4). We observe that the BSFV and BSFΦ contributions
to the effective cross-section begin to rise at T „ |EB|, as implied by eq. (3.2.20). Later on,
the ionisation equilibrium ends, and xσBSFvrelyeff saturates to xσBSFvrely; because this occurs at

T ă |EB|, when
b

xv2
rely ă αB “ αV ` αΦ ă αV , the effective BSF cross-section xσBSFvrelyeff

decreases beyond this point, due to the repulsive potential in the XX and X:X: scattering
states. The largeness of xσBSFvrely and consequently of xσBSFvrelyeff around its peak, suggest
that the DM depletion processes may recouple, even at a very low temperature, as we shall see
in section 3.2.3.

Comparing the two plots of fig. 3.12, corresponding to αV “ 10´2 and αV “ 10´4, we
also note that the rise and the peak of BSFΦbecome more pronounced for smaller αV values,
which allow for the effective BSFΦcross-sections to grow larger before the suppression due to the
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Figure 3.10: The BSF and annihilation velocity-weighted cross-sections that we consider in the
computation of the DM freeze-out, vs. vrel. All cross-sections have been normalised to π{µ2,
with µ “ mX{2 being the reduced mass of the interacting particles. Also shown, the unitarity
limits on s-wave and p-wave inelastic processes, which have to be respected by BSFΦ and BSFV ,
respectively, for capture into the ground state.
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Figure 3.11: The thermally averaged BSF and annihilation velocity-weighted cross-sections that
we consider in the computation of the DM freeze-out, vs. x ” mX{T . All cross-sections have
been normalised to π{µ2, with µ “ mX{2 being the reduced mass of the interacting particles. We
also mark two important mileposts: (i) the time when the temperature equals the binding energy
TB “ mXpαV ` αΦq

2{4, at and below which the equilibrium occupation number of the bound
states becomes very significant, and (ii) the end of ionisation equilibrium, below which the DM
depletion rate saturates to the BSF rate and thus becomes sensitive to the BSF cross-section.
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Figure 3.12: The thermally-averaged velocity-weighted effective cross-section as a function
x “ mX{T , for fixed αΦ “ 10´3 and two different values of αV .
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Figure 3.13: The value of the thermally averaged velocity-weighted effective cross-section at its
peak as a function of αV , for different values of αΦ. Note that the time at which the peak occurs,
x “ xpeak, depends on αV and αΦ, and is chosen accordingly. We observe that, by varying αV ,

xσvrely
peak
eff rises at αV À αΦ, and becomes most significant at the limit of global symmetry,

αV Ñ 0.

repulsion in the scattering state settles in. To investigate this further, in fig. 3.13 we show the
dependence of xσvrelyeff evaluated at its peak, on αV . We see that xσvrely

peak
eff rises at αV À αΦ,

and becomes most significant at αV Ñ 0, i.e. in the limit where the symmetry becomes global.
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Figure 3.14: Left: The DM depletion rate ΓX “ nXxσvrelyeff compared to the Hubble parameter
H, for αΦ “ 10´3 and different values of αV . We have used mX “ 103 GeV. Right: xpeak is the
value of x ” mX{T at which xσvrelyeff peaks. The symbols correspond to the values determined
numerically, while the line is the semi-analytical prediction eq. (3.2.21).

3.2.3 Solutions of the Boltzmann equations

We now solve the Boltzmann eq. (3.2.19), discuss the qualitative features of the solutions and
present numerical results. We focus mostly on small values of αΦ, roughly αΦ À 10´2, in order to
be consistent with unitarity (cf. section 3.1.4), and mark any parameter space where the BSFΦ

cross-section violates it.

Freeze-out and recoupling of DM depletion processes

The Boltzmann eq. (3.2.19) describes the balance between the DM depletion processes and the
expansion of the universe. Motivated by the sharp increase of xσvrelyeff at low temperatures
seen in fig. 3.12, we compare the X depletion rate ΓX ” nXxσvrelyeff with the expansion rate
of the universe H “

a

4π3g˚{45T 2{mPl in the left plot of fig. 3.14. Then in fig. 3.15, we show
the evolution of the DM density for different sets of parameters, in the four cases defined in
section 3.2.2. The DM chemical decoupling is marked by two important events.

First freeze-out. As is standard, for x À xFO1 « 30, the DM depletion and creation processes
are in equilibrium, i.e. ΓX Á H. Beyond this point, the X,X: densities depart from their equi-
librium values, their exponential drop is stalled, and they begin to freeze-out. However, because
the annihilation and BSF cross-sections increase with decreasing temperature, the depletion of
DM continues to be important until somewhat later, and may lead to the reduction of the DM
density by a factor of a few. The Sommerfeld enhancement of the annihilation processes is
important for vrel À 10pαV ` αΦq, which upon thermal averaging implies x Á 10´2pαV ` αΦq

´2.
Thus if αV ` αΦ Á 10´2, the Sommerfeld enhancement becomes significant already at x „ 102,
i.e. soon after freeze-out, while the DM density is still quite large. For BSF, a somewhat larger
coupling, αV ` αΦ Á 0.03, is required. In this range of couplings, the DM chemical decoupling
is prolonged beyond freeze-out, as clearly seen in the bottom right plot of fig. 3.15.
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Figure 3.15: The evolution of the DM yield YX ” nX{s vs. x ” mX{T for the four cases defined
in section 3.2.2. We have fixed mX “ 103 GeV.

Recoupling of DM depletion and second freeze-out. If αV ` αΦ À 10´2, the ionisa-
tion processes impede the DM depletion via BSF until quite late, when the DM density is
rather low. However, the largeness of the BSFΦ cross-section may compensate for the small-
ness of the DM density, and result in the recoupling of the DM depletion processes around
the time when xσvrelyeff peaks, at T À |EB|.

7 We may estimate if and when this occurs
as follows. The X,X: yield after the first freeze-out is estimated by the standard result,
mXY

FO1
X xσannvrely

FO1 „ 8ˆ10´19 GeV´1 (see e.g. [108]), where we assumed that the direct anni-
hilation dominates the DM depletion rate at that time; this is indeed true for the range of αV , αΦ
where the recoupling may occur. The DM depletion recouples if Y FO1

X xσvrelyeff Á H{s, which
implies xσvrelyeff{xσannvrely

FO1 Á 0.4x{
?
g˚. If this occurs, it does so shortly before DM exits

the ionisation equilibrium, i.e. while eq. (3.2.20) is still approximately valid. (As already men-
tioned, at later times BSFΦ decreases exponentially due to the repulsion in the scattering state.)
Thus, the recoupling condition becomes

a

π{SFO1
annpαV ` αΦq

3 x3{2 expαV `αΦq
2{4 Á 0.4x{

?
g˚,

7Recoupling of the DM depletion at late times may occur also due to the strong velocity dependence of
Sommerfeld-enhanced cross-sections at (or close to) parametric resonance points [94, 107]. The recoupling ob-
served here is not due to resonant features, and applies to broader parameter space.
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Figure 3.16: In the limit of the local symmetry becoming global, αV “ 0, we show the relation
between the DM mass mX and the coupling αΦ to the scalar mediator (left), and the effect of
BSFΦ on the DM density (right).

where SFO1
ann „ Op1q stands for the thermally averaged Sommerfeld factor of the annihilation

processes around the time of the first freeze-out. For large αV `αΦ, this condition yields a time
close to the first freeze-out, and corresponds to the case when the DM chemical decoupling is
simply delayed due to the BSF processes, as discussed above (cf. bottom right plot in fig. 3.15).
However, for smaller couplings, we obtain the following estimate for the time of recoupling and
approximately the peak of xσvrelyeff ,

xpeak „
8 lnpαV ` αΦq

´1

pαV ` αΦq2
, (3.2.21)

where we kept the leading order logarithmic correction in xpeak. Note that xpeak is independent
of the DM mass mX . In the right plot of fig. 3.14, we compare the semi-analytical prediction
(3.2.21) with values of xpeak determined numerically, and we find them in very good agreement.
For αV ` αΦ Á 10´2, (3.2.21) occurs much after the first chemical decoupling. In the top and
the bottom left plots of fig. 3.15, this manifests as a second plateau of the DM yield at large x.
Clearly, the recoupling of the depletion processes at low temperatures results in very significant
decrease of the DM abundance. This impels the re-determination of the couplings that give rise
to the observed DM density.

Mass-coupling relation

We solve the Boltzmann eq. (3.2.19) numerically and determine the relation between αV , αΦ and
mX that reproduces the observed DM density. In figs. 3.16 to 3.18, we present our results.

From the previous discussion, we expect that the effect of BSFΦ is more pronounced at small
αV , and in particular for αV À αΦ. For this reason, in fig. 3.16, we focus on the limit of global
symmetry, αV “ 0, and determine the relation between mX and αΦ, while in figs. 3.17 and 3.18
we consider also the dependence on αV .

In all cases, we see that taking BSFΦ into account changes the predicted couplings or mass
very significantly, even by an order of magnitude. The effect on the DM density is illustrated
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Figure 3.17: Top: The relation between the DM mass mX and the coupling to the gauge
boson αV that reproduces the observed DM density, when considering different contributions
to the DM depletion. In the gray-shaded region, our computation of the BSFΦ cross-section
violates unitarity within a range of velocities. Bottom: The X,X: relic density when taking
into account only some of the DM depletion processes, normalised to the observed DM density.
For each value of αV we have chosen mX such that the observed DM density is reproduced by
the AnnS+BSFV +BSFΦ calculation (red line in plots above).

in the right plot of fig. 3.16 and the bottom plots of fig. 3.17. We pick the combination of
parameters that reproduce the observed DM abundance when considering AnnS+BSFV +BSFΦ,
and then calculate the final density attained if only AnnP, AnnS, or AnnS+BSFV are taken
into account. We observe the BSFΦ can deplete the DM density by more than two orders of
magnitude.

Because of the interplay of the couplings αV and αΦ in xσvrelyeff , the DM relic density does
not always vary monotonically with the parameters. In particular, for fixed mX and αΦ within
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Figure 3.18: The combination of the couplings αV , αΦ that reproduces the observed DM abun-
dance, for fixed values of the DM mass, when considering different contributions to the DM
depletion.

some range, we observe in figs. 3.17 and 3.18 that there are two values of αV that reproduce the
observed DM density: a value in the range αV ą αΦ where BSFΦ has little effect, and a value in
the range αV ă αΦ where BSFΦ has significant impact.

3.3 Validity of the Coulomb approximation

Throughout this chapter, we have neglected the mass of the charged scalar Φ (as well as the
possibility of a non-vanishing V mass). The calculation of section 3.1 can be generalised to
include non-zero masses for Φ and V by evaluating numerically the wavefunctions and the overlap
integral, as in refs. [43, 54, 55]. Here we examine the validity of the Coulomb approximation in
the computation of the DM relic density.
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In the present model, mΦ affects BSFΦ via the bound-state wavefunction and the phase-space
suppression due to Φ emission. Note that mΦ does not affect the XX and X:X: scattering
states that participate in BSFΦ. The conditions for the Coulomb approximation to be valid are
as follows.

(i) For a pure Yukawa potential, the ground state is Coulombic if the mediator mass is much
smaller than the Bohr momentum. In the absence of V , this would imply mΦ ! µαΦ [43].
The presence of the V -mediated attractive Coulomb potential relaxes this condition [55].
Indicatively we note that, neglecting the V -generated potential, the binding energy is
larger than 90% of its Coulomb value if mΦ ă µαΦ{10 [43, fig. 13]. On the other hand, for
αV “ αΦ, this occurs if mΦ ă µαΦ{2 [55, fig. 6]. For simplicity, we shall thus assume the
following condition for the Coulomb approximation

few ˆmΦ À µαB “ µpαV ` αΦq. (3.3.1)

(ii) BSFΦ is kinematically accessible if mΦ ă Ek`|EB| » pµ{2qrpαV `αΦq
2`v2

rels. In the thermal
bath, xµv2

rel{2y “ 3T {2. During the first freeze-out the temperature is large, T " |EB|, and
Ek dominates the energy available to be dissipated. However, the recoupling of the DM
depletion processes occurs at T „ |EB| (if at all), when xEky „ |EB|. Therefore, we require

mΦ À µα2
B{2 “ pµ{2qpαV ` αΦq

2. (3.3.2)

The condition (3.3.2) is stronger than (3.3.1). Particularly for the small values of αΦ and αV we
have considered here, it ensures that the bound states are very nearly Coulombic.

For BSFV , there is no kinematic blocking, provided that V is massless. However, a non-
vanishing mΦ affects the XX: scattering state, as well as the XX: bound state. For the latter,
the condition for the Coulomb approximation is (3.3.1). We briefly discuss the scattering state.
In the case of a pure attractive Yukawa potential, the Coulomb limit is obtained if the mediator
mass is lower than the average momentum transfer, mΦ À µvrel [43]. For a pure repulsive Yukawa
potential the condition is somewhat stronger. On the other hand, this condition is relaxed by
the superposition of the V -mediated attractive Coulomb force [54, fig. 2]. Since BSFV can
be important only at early times, when the average kinetic energy is still fairly large, and
provided that αV `αΦ is sufficiently large, the Coulomb approximation is typically justified (see
e.g. discussion in ref. [44]). Regardless of the validity of the approximation, BSFV is not the
focus of this study, thus we do not elaborate on this issue further.

Finally, we note that if the charged scalar obtains a VEV, vΦ, the symmetry-breaking phase
transition is expected to occur at temperature TPT À vΦ. Then, if vΦ ă |EB|, the DM chemical
decoupling – including both the first freeze-out and the recoupling epoch – takes place essentially
in the unbroken phase, and the computation of this section is applicable. Assuming that (3.3.2)
holds, the condition vΦ ă |EB| is satisfied in models where vΦ À mΦ. However, the DM chemical
decoupling may occur in the unbroken phase even for vΦ " mΦ, if both vΦ and mΦ are much
lower than |EB|.

3.4 Conclusion

In this chapter 3, we computed the cross-sections for the radiative capture of non-relativistic
particles into bound states via emission of a scalar that is charged under either a local or global
symmetry. The emission of a charged scalar alters the Hamiltonian between the interacting par-
ticles, and precipitates extremely rapid transitions. We have provided analytical formulae in the
Coulomb approximation for the capture into any bound level [cf. eq. (3.1.26)]. While we carried
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out our calculations in the context of a minimal Up1q model, our results are readily generalisable
to more complex models, including perturbative non-Abelian theories, and can thus be relevant
to the phenomenology of various scenarios, e.g. [54, 55, 68, 71, 109].

The phenomenological implications of the processes we computed can be striking. Here, we
demonstrated that the formation of particle-antiparticle bound states via emission of a charged
scalar and their subsequent decay can deplete the DM density by as much as two orders of mag-
nitude. While for simplicity we considered only capture into the ground state, the computed
cross-sections strongly suggest that the capture into excited states during the DM chemical
decoupling should also be significant, thereby producing an even more important effect. The
depletion of DM via these processes in the early universe alters the predicted relation between
the DM mass and couplings rather dramatically. This in turn implies very different predictions
for the DM signals in collider, direct and indirect detection experiments.

For indirect detection, the modification in the predicted relation between the DM mass and
couplings implies that the signals arising from the direct annihilation processes and BSF via
vector emission are very suppressed with respect to what expected when neglecting BSF via
charged scalar emission during freeze-out. This essentially invalidates any existing constraints.
On the other hand, BSF via charged scalar emission occurring during CMB or inside halos to-
day may itself produce very significant radiative signals that result in strong constraints. For
direct detection experiments, the implications are again varied. The larger predicted DM mass
can bring a model previously thought to reside in the sub-GeV regime, within the threshold
of current detectors. On the other hand, it can relax existing constraints for models already
within the experimental sensitivity. Finally, the large BSFΦ cross-sections may imply late kinetic
decoupling of DM from radiation in the early universe, as well as strong DM self-interactions
inside halos today; both features can potentially affect the galactic structure very significantly.

Our results can be recast to compute BSF via scattering on a bath of relativistic particles,
through exchange of a charged scalar, according to ref. [102]. This can be particularly important
for the chemical decoupling of multi-TeV WIMP DM coupled to the 125 GeV Higgs [109]; in
this regime the Higgs can indeed act as a light mediator [54, 55], even if its on-shell emission in
capture processes is not kinematically allowed. We study multi-TeV WIMP DM coupled to the
125 GeV Higgs in chapter 4.
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Chapter 4

Bound states of WIMP dark matter
in Higgs portal model

In the present chapter we study WIMP models - particles coupled to the weak interactions of
the Standard Model - in a Higgs-portal scenario where DM is a linear combination of the neutral
components of electroweak multiplets that couple to the Higgs doublet. The hierarchy between
the multi-TeV and electroweak scales implies the emergence of long-range interactions, since
the interaction range l „ p100 GeVq´1 may be comparable or exceed the de Broglie wavelength
pµvrelq

´1 and/or the Bohr radius pµαq´1 of the interacting particles, where µ “ m{2 Á TeV,
vrel and α are the reduced mass, relative velocity and coupling to the force mediators. The
long-range nature of the interactions gives rise to non-perturbative phenomena, the Sommerfeld
effect and the existence of bound states.

In chapter 3 we showed that the emission of a scalar boson charged under a symmetry alters
the effective Hamiltonian between the interacting particles and renders BSF extremely rapid,
even for small couplings [2]. For WIMPs, this implies that BSF via emission of a Higgs doublet
may be a very significant inelastic process. Moreover, it has been shown in simplified models,
that the 125 GeV Higgs boson can mediate a sizeable long-range force between TeV-scale par-
ticles, despite being heavier than all SM gauge bosons [54, 55].

The phenomenological importance of the above is rather large. It has been long known that
the Sommerfeld effect [37, 38] – the distortion of the wavefunction of interacting particles due
to a long-range force – affects the DM annihilation cross-sections at low relative velocities [110].
This, in turn, alters the DM chemical decoupling in the early universe, and consequently the
predicted DM mass and couplings to other particles [111]. It also affects the radiative signals
expected from the DM annihilations during CMB and inside galaxies today [112]. More recently,
it has been realised that the formation and decay of metastable (e.g. particle-antiparticle) bound
states in the early universe can decrease the DM density [39], and contribute to the DM indirect
detection signals [40, 42, 44, 46–48, 52]. Importantly, BSF can be faster than annihilation in a
variety of models [2, 43, 55, 59, 62], but it can also produce novel indirect signals even in models
where annihilation is absent or suppressed [49, 57, 58, 95, 113–115].

Collecting the above considerations, in this chapter we consider bound states in Higgs portal
models, and their effect on the DM relic density. We are interested in scenarios that feature
a trilinear coupling between the DM and Higgs multiplets, i.e. δL Ą χ̄nHχn`1` h.c., where
χn is a fermionic or bosonic n-plet under SULp2q, and DM is the lightest linear combination
of the neutral χn and χn`1 components after electroweak symmetry breaking. Such scenarios
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have been considered extensively in the literature, and appear also in supersymmetry, e.g. Bino-
Higgsino or Higgsino-Wino DM [109, 116–132]. For concreteness, we shall focus on the most
minimal such model with a Majorana singlet and a Dirac doublet [109, 116–125].

The chapter is organized as follows. In section 4.1, we introduce the DM model and briefly
review its basic properties in the broken electroweak phase. In section 4.2, we derive the long-
range potentials between the DM multiplets in the unbroken electroweak phase. We identify the
scattering and bound eigenstates of these potentials by appropriate spin and gauge projections,
before computing the DM annihilation processes and bound-state decay rates. In section 4.3,
we calculate all the radiative BSF cross-sections, while in section 4.4 we consider BSF via
scattering on a relativistic thermal bath. Then, in sections 4.5 and 4.6, we compute the DM
thermal decoupling in the early universe using an effective DM destruction cross-section that
incorporates bound-state effects, and analyse the results. We conclude in section 4.9.

4.1 The model

We introduce a gauge-singlet Majorana fermion S “ pψα, ψ
: 9αqT of mass mS, as well as a Dirac

fermion D “ pξα, χ
: 9αqT of mass mD with SM gauge charges SULp2q ˆ UY p1q “ p2, 1{2q. We

assume that S and D are odd under a Z2 symmetry that leaves all the SM particles unaffected.
Under these assignments, the new degrees of freedom (dof) allow to extend the SM Lagrangian
by the following interactions

δL “ 1

2
S̄pi{B ´mSqS `Dpi {D ´mDqD ´ pyLD̄LHS ` yRD̄RHS ` h.c.q, (4.1.1)

where H is the SM Higgs doublet of mass mH and hypercharge YH “ 1{2, and DL ” PLD “

pξα, 0q
T and DR ” PRD “ p0, χ: 9αqT , with PR,L “ p1 ˘ γ5q{2 being the right-handed and left-

handed projection operators. In the above, Dµ ” Bµ ´ ig1Y Bµ ´ ig2W
a
µ t
a is the covariant

derivative, with ta “ 1
2pσ

1, σ2, σ3q and σ being the Pauli matrices. The particle content of
eq. (4.1.1) is summarised in table 4.1.

field SULp2q UY p1q Z2

S 1 0 ´1
D 2 1/2 ´1
H 2 1/2 `1

Table 4.1: Particle content and charge assignments

Here, we have taken the mass parameters mS and mD to be real. This can always be achieved
by rephasing ψ and either ξ or χ. Rephasing the remaining spinor eliminates the phase of one of
the Yukawa couplings. Thus the free parameters of the present model are 4 real couplings (two
masses and two dimensionlesss Yukawa couplings), and a phase that allows for CP violation.

We are interested in the regime in which S and D can co-annihilate efficiently before the elec-
troweak phase transition (EWPT) of the universe, which occurs if their masses are similar, within
about 10%. This is because the number density of the heavier species in the non-relativistic
regime is suppressed with respect to that of the lighter species by a factor expr´pδm{mqxs,
with x ” m{T „ 30 during DM freeze-out. For δm{m Á 10%, the co-annihilations and the
self-annihilations of the heavier species are subdominant to the self-annihilations of the lightest
species, although their relative importance depends also on the corresponding cross-sections.
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Such a small discrepancy in the masses does not significantly affect (most of) the cross-sections
that we compute in the following; we shall thus take the masses to be equal, which greatly
simplifies the computations and allows to obtain analytical results,

mD “ mS ” m. (4.1.2)

We will very often use the reduced mass of a pair of DM particles,

µ ” m{2. (4.1.3)

Moreover, in order to reduce the number of free parameters, we set

yL “ yR ” y, (4.1.4)

which we take to be real. (The CP violation is anyway not important for our purposes.) Our
computations can of course be extended to more general Yukawa couplings. As is standard, we
define the couplings

α1 ”
g2

1

4π
, α2 ”

g2
2

4π
, αH ”

y2

4π
. (4.1.5)

The model of eq. (4.1.1) and various aspects of its phenomenology have been considered for
general parameters extensively in the past [109, 116–124]. Here we will only briefly review the
mass eigenstates and their interactions after electroweak symmetry breaking for the choice of
parameters denoted in eqs. (4.1.2) and (4.1.4).

Mass eigenstates in the broken electroweak phase

At electroweak symmetry breaking, the neutral component of the Higgs doublet acquires a
vacuum expectation value. In terms of SULp2q components, the H, ξ and χ fields are

H “

¨

˝

φ`

1
?

2
pvH ` h` iφ0q

˛

‚, ξα “

ˆ

ξ`α
ξ0
α

˙

, χα “

ˆ

χ0
α

χ´α

˙

, (4.1.6)

with vH » 246 GeV.
We define the left-handed multiplet of the neutral states N̂α ” pψα, ξα, χαq

T . Then, by
inserting eq. (4.1.6) into the Lagrangian (4.1.1), we find the corresponding mass terms,

δLN,mass “ ´
1

2
N̂αM̂NN̂α ` h.c., (4.1.7)

with

M̂N “

¨

˝

m yvH{
?

2 yvH{
?

2

yvH{
?

2 0 m

yvH{
?

2 m 0

˛

‚. (4.1.8)

We diagonalise eq. (4.1.7) by setting

Nα “ UN̂α, Nα “ N̂αUT , MN “ pU
T q´1M̂NU

´1, (4.1.9)

where U is the unitary matrix

U “

¨

˝

´1{
?

2 1{2 1{2

0 i{
?

2 ´i{
?

2

1{
?

2 1{2 1{2

˛

‚. (4.1.10)

The corresponding mass eigenvalues are

m1 ” m´ yvH , m2 ” m, m3 ” m` yvH . (4.1.11)

In addition to the neutral states, there is a charged Dirac fermion of mass m.
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Interactions in the broken electroweak phase and constraints

The interactions among the neutral states, N ” pN1, N2, N3q
T , are described by the Lagrangian [120]

δLN,inter “
g2

2cW
ZµN

:
2 σ̄

µ i

2
?

2
pN1 `N3q ´

y

2
h pN1N1 ´N3N3 `N1N3q ` h.c., (4.1.12)

where cW “ g2{
a

g2
1 ` g

2
2.

Since the coupling to Zµ is non-diagonal, with the mass splitting being always much larger
than „ Op100 keVq for the y values we will consider here (cf. section 4.5), the constraints
from direct detection experiments due to this interaction are evaded. On the other hand, the
coupling to the Higgs boson is expected to yield sizable DM-nucleus scattering and potentially
strong constraints. Existing analyses of the direct detection data for this model do not extend
to the multi-TeV regime that is of interest here. Moreover, the direct detection constraints
on the model (4.1.1) are generally significantly relaxed around the so-called blind spots where
the coupling to the Higgs vanishes, roughly when yL “ ´yR (see e.g.[119, 120].) A detailed
phenomenological analysis is beyond the scope of the present work. However, our results are
important for interpreting the experimental constraints, since they imply a different relation
between the DM mass and couplings in order for the observed DM density to be attained via
thermal freeze-out.

4.2 Long-range dynamics in the unbroken electroweak phase

4.2.1 Static potentials

The D, D̄ and S fermions interact with each other via the W , B and H boson exchanges that
give rise to long-range potentials. The kernels generating these potentials are shown in fig. 4.1.
To compute them, we decompose the incoming and outgoing momenta as follows

p1 “ P {2` p, p11 “ P {2` p1, (4.2.1a)

p2 “ P {2´ p, p12 “ P {2´ p1. (4.2.1b)

For low momentum transfers, we find (see e.g. [1, 2, 43, 59, 62])

irKDD̄ØSSs
s1s2,s11s

1
2

ij » `i4m2py2δijq
1

2

«

δs1s
1
1δs2s

1
2

pp1 ´ pq2 `m2
H

´
δs1s

1
2δs2s

1
1

pp1 ` pq2 `m2
H

ff

, (4.2.2a)

irKDD̄ØDD̄s
s1s2,s11s

1
2

ij,i1j1 » `
i4m2

pp1 ´ pq2
`

g2
1Y

2
Dδii1δjj1 ` g

2
2t
a
i1it

a
jj1
˘

δs1s
1
1δs2s

1
2 , (4.2.2b)

irKDDØDDs
s1s2,s11s

1
2

ij,i1j1 » ´i4m2 1

2

»

–

´

g2
1Y

2
Dδii1δjj1 ` g

2
2t
a
i1it

a
j1j

¯

δs1s
1
1δs2s

1
2

pp1 ´ pq2

´

´

g2
1Y

2
Dδij1δji1 ` g

2
2t
a
j1it

a
i1j

¯

δs1s
1
2δs2s

1
1

pp1 ` pq2

fi

fl , (4.2.2c)

irKDSØDSs
s1s2,s11s

1
2

i,i1 » ´
i4m2

pp1 ` pq2 `m2
H

py2δii1qδ
s1s12δs2s

1
1 . (4.2.2d)

In determining the sign of each contribution in the above, we have taken into account the
number of fermion permutations needed to perform the Wick contractions. This is the origin
of the relative minus sign between the t- and u-channels of the DD̄ Ø SS and DD Ø DD
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Figure 4.1: The kernels generating the long-range potentials between pairs of D, D̄ and S
fermions. The double lines represent the SULp2q ˆ UY p1q “ p2, 1{2q fermion D while the single
lines stand for the gauge singlet S. The arrows on the fermion lines denote the flow of Hyper-
charge. The indices i, j, i1, j1 and s1, s2, s

1
1, s

1
2 are SULp2q and spin indices, respectively. The

factors 1{2 in the interactions involving identical particles, DD̄ Ø SS and DD Ø DD, ensure
that the resummation of the kernels does not result in double-counting of loops (cf. appendix E.)
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interactions. The factors 1{2 appearing in eqs. (4.2.2a) and (4.2.2c) ensure that the resummation
of the kernels does not double-count the loop diagrams by exchanging identical particles in the
loops; this is shown in appendix E.

To obtain the non-relativistic potentials, we must diagonalise the interactions (4.2.2) in
momentum, spin, and gauge charge space.

Momentum space. The kernels of both the t- and u-channel diagrams depend only on the
momentum transfer, which is however different in the two cases, Ktpp´ p1q and Kupp` p1q.
This implies that in position space, the u-channel potential depends on the orbital angular
momentum mode ` of the state under consideration [2, appendix A]. Specifically, the static
potentials generated by t- and u-channel diagrams are [2, 59]

Vtprq “ ´
1

i4m2

ż

d3q

p2πq3
iKtpqq e

iq¨r, (4.2.3a)

Vuprq “ ´
p´1q`

i4m2

ż

d3q

p2πq3
iKupqq e

iq¨r. (4.2.3b)

Inserting eqs. (4.2.2) into (4.2.3) yields the well-known Coulomb and Yukawa potentials.

Spin diagonalisation. The factor δs1s
1
1δs2s

1
2 and δs1s

1
2δs2s

1
1 arising from t- and u-channel ex-

changes respectively, can be written in matrix form in the basis tÒÒ, ÒÓ, ÓÒ, ÓÓu as

t-channel:

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

, u-channel:

¨

˚

˚

˝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

˛

‹

‹

‚

. (4.2.4)

Clearly, the t-channel interactions conserve spin along each leg of the ladder, and the corre-
sponding spin factor is simply the unity operator. On the other hand, the u-channel interac-
tions conserve the total spin only. Indeed, the u-channel spin eigenvalues are t´1, 1, 1, 1u, and
correspond to the eigenvectors of total spin

1
?

2
p0, 1,´1, 0qT , p0, 0, 0, 1qT ,

1
?

2
p0, 1, 1, 0qT , p1, 0, 0, 0qT . (4.2.5)

In the following, we shall therefore project the asymptotic states of pairs of S,D, D̄ fermions
onto eigenstates of total spin.

Gauge-charge diagonalisation. Since the interactions respect the SULp2q symmetry, this
amounts to projecting on SULp2q representations of the incoming or outgoing pairs. For two
multiplets transforming under the representations R1 and R2 of a gauge group, the Coulomb
potential generated by the gauge-boson exchange in the configuration R Ă R1 b R2 of the pair
is V Rprq “ ´αR{r with [97]

αR “
α

2
rC2pR1q ` C2pR2q ´ C2pRqs, (4.2.6)

where α is the fine structure constant of the group, and C2pRq is the quadratic Casimir operator
of the representation R. For SUp2q, 2b 2 “ 1` 3, and C2p2q “ 3{4, C2p3q “ 2. Thus, the DD̄,
DD and D̄D̄ pairs appear in SULp2q singlet and triplet configurations, with α1

2 “ 3α2{4 and
α3

2 “ ´α2{4 respectively. In the case of identical-particle pairs DD and D̄D̄, the (anti)symmetry
of the SULp2q (singlet) triplet states in gauge space generates also the factor p´1qI`1 for the
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u-channel diagrams, where here I “ 0, 1 stands for the Weak isospin. Note that the UY p1q
potentials are of course not affected by the SULp2q diagonalisation.1

The remaining task is the H-mediated interaction of eq. (4.2.2a). This occurs only in the
SULp2q singlet state. Projecting DD̄ on the singlet, we obtain

δij
?

2
py2δijq “

?
2y2. (4.2.7)

Kernel (anti)symmetrisation. We close this discussion by noting the importance of con-
sidering properly both the t- and u-channel diagrams when identical particles are present in the
initial and/or final states, as e.g. in the DD̄ Ø SS and DD Ø DD interactions of the present
model. Using the correct kernel, as derived in appendix E, and taking into account the above
yields the overall factor

r1´ p´1q`p´1qs`1p´1qI`1s{2 (4.2.8)

that enforces the proper particle statistics. This result is valid for pairs of fermions as well as
pairs of scalars. Collecting the above, in table 4.2 we summarise the potentials generated by the
one-boson-exchange diagrams of fig. 4.1.

Interaction UY p1q SULp2q Potential
Sign of the potential

`` s “ even `` s “ odd

DD̄ Ø SS 0 1 ´

„

1` p´1q``s

2



?
2αH

e´mHr

r
attractive 0

DD̄ Ø DD̄ 0
1 ´

pα1 ` 3α2q{4

r
attractive attractive

3 ´
pα1 ´ α2q{4

r
repulsive repulsive

DD Ø DD 1
1

„

1´ p´1q``s

2



pα1 ´ 3α2q{4

r
0 attractive

3

„

1` p´1q``s

2



pα1 ` α2q{4

r
repulsive 0

SD Ø SD 1{2 2 ´p´1q``s αH
e´mHr

r
attractive repulsive

Table 4.2: The static potentials generated by the W , B and H-exchange diagrams shown in
fig. 4.1. ` and s denote the orbital angular momentum mode and the total spin respectively.

1All these results can be easily recovered by organising the gauge factors of eqs. (4.2.2b) and (4.2.2c) in 4ˆ 4
matrices with elements tij, i1j1u and diagonalising them.
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4.2.2 Asymptotic scattering and bound states

The potentials of table 4.2 determine the asymptotic states. For all gauge assignments except
the singlet states, SULp2q ˆ UY p1q “ p1, 0q, finding the corresponding wavefunctions is rather
straightforward; it amounts to solving a single Schrödinger equation with the corresponding
potential, and antisymmetrising the wavefunction in the case of identical particles. For the
gauge-singlet states, the DD̄ Ø SS interaction implies that a system of coupled Schrödinger
equations must be solved. We work out this case in detail in section 4.2.2, after we discuss the
general properties of the wavefunctions and the underlying hierarchy of scales in section 4.2.2.
All the results on the wavefunctions of the scattering and bound states are summarised in
tables 4.3 and 4.4.

Wavefunctions and hierarchy of scales

The non-relativistic potentials of table 4.2include both Coulomb and Yukawa contributions. The
latter does not allow for analytical solutions. In order to obtain analytical expressions for the
wavefunctions and ultimately the various cross-sections of interest, we shall neglect the Higgs
mass in the potentials of table 4.2,

mH Ñ 0, (4.2.9)

although we will retain it in the phase-space suppression of BSF via H emission computed in
section 4.3, as well as in the H propagator of BSF via off-shell H exchange with the thermal
bath, computed in section 4.4. We discuss the validity of this approximation in section 4.2.2.

In the approximation (4.2.9), we can express all wavefunctions in terms of those for a
Coulomb potential V prq “ ´α{r, which we shall denote as ϕpr; αq and we now summarise.
For clarity, we denote by αS and αB the couplings of the scattering and bound states. The
momentum of each particle in the CM frame in the scattering states is k ” µvrel, with vrel being
the relative velocity. The Bohr momenta in the scattering and bound states are κS ” µαS and
κB ” µαB. For convenience, we define the parameter ζS ” κS{k “ αS{vrel (in section 4.3 we will
also use ζB ” κB{k “ αB{vrel), and the variables xS ” kr and xB ” κr. The energy eigenvalues
of the scattering and bound states are

Ek “
k2

2µ
“
µv2

rel

2
, En “ ´

κ2

2µn2
“ ´

µα2
B

2n2
. (4.2.10)

The scattering state wavefunctions can be decomposed in partial waves,

ϕkpr; αSq “

8
ÿ

`S“0

p2`S ` 1q

„

ϕ|k|,`S pxS ; αSq

xS



P`S pk̂ ¨ r̂q, (4.2.11)

where

ϕ|k|,`S pxS ; αSq “ ´

a

S0pζSq

p2`S ` 1q!

Γ p1` `S ´ iζSq
Γ p1´ iζSq

ˆ e´ixS xS p2ixSq
`S

1F1p1` `S ` iζS ; 2`S ` 2; 2ixSq, (4.2.12)

and

S0pζSq ”
2πζS

1´ e´2πζS
(4.2.13)
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G
p4q
DD̄DD̄

“ ` iKDD̄ØDD̄ G
p4q
DD̄DD̄

` iKDD̄ØSS G
p4q
SSDD̄

G
p4q
SSSS

“ ` iKSSØDD̄ G
p4q
DD̄SS

Figure 4.2: The resummation of 2PI diagrams for the gauge-singlet states, SULp2q ˆ UY p1q “
p1, 0q. Single and double lines correspond to S and D respectively.

is the well-known s-wave Sommerfeld factor. The bound-state wavefunctions are

ϕn`mpr;αBq “ κ3{2Y`mpΩrq
2

n2p2`` 1q!

„

pn` `q!

pn´ `´ 1q!

1{2

ˆ e´xB{n p2xB{nq
`

1F1 p´n` `` 1; 2`` 2; 2xB{nq , (4.2.14)

where the normalisation of the spherical harmonics is
ş

dΩ Y`mpΩqY
˚
`1m1pΩq “ δ``1δmm1 .

The emergence of the Sommerfeld effect and the existence of bound states emanate from the
different scales involved in the interactions of the D, D̄ and S particles,

µv2
rel{2 ! µvrel ! µ ă m and µα2{p2n2q ! µ|α|{n ! µ ă m, (4.2.15)

where here α “ αS or αB. (Note that αS may be negative.) In computing the BSF cross-sections
in sections 4.3 and 4.4, we make approximations based on these hierarchies.

The hierarchies (4.2.15) imply that the couplings (4.1.5) must be evaluated at the appropriate
momentum transfer in every occurrence. The average momentum transfers in the annihilation
vertices, the scattering-state potentials, the bound-state potentials, and the emission vertices
for BSF and bound-to-bound transitions are respectively

Q « m, µvrel, µαB, pµ{2qpα
2
B{n

2 ` v2
relq, pµ{2q|α

2
B{n

2 ´ α1B
2
| (4.2.16)

(cf. section 4.3 for the last two.) Here for simplicity we will neglect the running of the couplings
(although it is easy to restore the scale dependence in all of our analytical results.) In computing
the DM freeze-out in section 4.5, we adopt the values of the gauge couplings α1 and α2 at the
Z pole, α1pmZq » 0.00973 and α2pmZq » 0.0339. Since αH increases with Q, we consider the
quoted values of αH to correspond to the highest relevant scale, Q “ m, such that the theory
remains well-defined at all Q ď m. For large values of αH , a Landau pole appears at fairly low
energies (but larger than m); however this may be cured by other new physics around those
scales. For the renormalisation group equations in the present model, we refer to [124].

Mixed SULp2q ˆ UY p1q “ p1, 0q states

The H exchange mixes SS and DD̄ Fock states. The coupled resummation of the DD̄ Ø DD̄
and DD̄ Ø SS potentials is shown schematically in fig. 4.2. We define the wavefunctions of the
gauge-singlet states

Φjprq “

˜

rφprqsjSS
rφprqsjDD̄

¸

, (4.2.17)
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where the component wavefunctions are

rφpxqsjSS ” xΩ|T Spx{2qSp´x{2q|Sjp1,0qyx0“0, (4.2.18a)

rφpxqsjDD̄ ” xΩ|T Dpx{2qD̄p´x{2q|S
j
p1,0qyx0“0. (4.2.18b)

Here, Sj
p1,0q denotes the gauge-singlet states. Along with their wavefunctions Φj , they carry

quantum numbers that define their energy, angular momentum and spin, and that we have here
left implicit. The superscript j aims to differentiate between states with the same quantum
numbers but different boundary conditions. Ω stands for the vacuum of the interacting theory,
T is the time ordering operator, S, D and D̄ are the field operators.

The resummation sketched in fig. 4.2 implies that Φ obey the Schrödinger equations

„

´
∇2

2µ
` Vp1,0qprq



Φprq “ EΦprq, (4.2.19)

where Vp1,0q is the 2ˆ 2 potential matrix of the gauge-singlet states

Vp1,0qprq “ ´
1

r

ˆ

0 δ``s,even

?
2αH expp´mHrq

δ``s,even

?
2αH expp´mHrq pα1 ` 3α2q{4

˙

. (4.2.20)

In the limit mH Ñ 0, the system (4.2.19) easily decouples. We first define the couplings

αR ”
1

2

”
b

rpα1 ` 3α2q{4s2 ` 8α2
H δ``s,even ´ pα1 ` 3α2q{4

ı

, (4.2.21a)

αA ”
1

2

”
b

rpα1 ` 3α2q{4s2 ` 8α2
H δ``s,even ` pα1 ` 3α2q{4

ı

, (4.2.21b)

noting that αR, αA ě 0, as well as the unitary matrix

P ”
1

?
αA ` αR

ˆ ?
αA

?
αR

´
?
αR

?
αA

˙

, (4.2.22)

whose columns are the normalised Vp1,0q eigenvectors with eigenvalues ´αR and αA. Then, the

rotated wavefunctions Φ̂ ” P :Φ obey the Schrödinger equations

„

´
∇2

2µ
` V̂p1,0qprq



Φ̂prq “ EΦ̂prq, (4.2.23)

with the potential

V̂p1,0q “ P :Vp1,0qP “ ´
1

r

ˆ

´αR 0
0 αA

˙

. (4.2.24)

We now seek scattering and bound state solutions to eq. (4.2.23).

Scattering states. The scattering state solutions of eq. (4.2.23) are given by eq. (4.2.11),
albeit the normalisation of each component is allowed to vary and will be determined by the
boundary conditions on Φj . Analysing eq. (4.2.23) in partial waves, the solutions are

Φ̂j
|k|,`pxSq “

˜

N j
R ϕ|k|,`pxS ; ´αRq

N j
A ϕ|k|,`pxS ; αAq

¸

, (4.2.25)
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where at xS Ñ8, the wavefunctions ϕk,`pxS ; αq obey

dϕ|k|,`pxS ; αq

dxS
´ iϕ|k|,`pxS ; αq “ e´ipxS´`πq. (4.2.26)

We seek scattering-state solutions to eq. (4.2.19) that asymptote at r Ñ8 to a pure SS or
DD̄ state. In terms of partial waves, this implies that at r Ñ8,

SS-like state:
drφ`pxSqs

SS
i

dxS
´ irφ`pxSqs

SS
i “ δSSi e´ipxS´`πq ˆ

?
2δ``s,even, (4.2.27a)

DD̄-like state:
drφ`pxSqs

DD̄
i

dxS
´ irφ`pxSqs

DD̄
i “ δDD̄i e´ipxS´`πq, (4.2.27b)

where i “ SS,DD̄ denotes the component. In eq. (4.2.27a), we included the antisymmetrisation
factor due to the identical particles in the SS-like state, with s “ 0 or 1 being the total spin
(cf. appendix E.2).

Since Φ̂|k|,`pxSq “ P :Φ|k|,`pxSq, the asymptotic behaviours (4.2.26) and (4.2.27) imply

ˆ

NSS
R

NSS
A

˙

“ P :
ˆ ?

2δ``s,even

0

˙

“

?
2δ``s,even
?
αA ` αR

ˆ ?
αA

?
αR

˙

, (4.2.28a)

ˆ

NDD̄
R

NDD̄
A

˙

“ P :
ˆ

0
1

˙

“
1

?
αA ` αR

ˆ

´
?
αR

?
αA

˙

. (4.2.28b)

We recall that αR and αA depend on ` ` s, and note that while the DD̄-like state should not
be antisymmetrised, the SS components of the symmetric ` ` s “ odd modes do vanish due
to the antisymmetrisation of the kernel (αR “ 0 for ` ` s “ odd). Equivalently, we could have
required that the SS components of both of the SS-like and DD̄-like states are antisymmetrised.
Combining eqs. (4.2.25) and (4.2.28), we obtain the wavefunctions Φj

|k|,`prq “ PΦ̂j
|k|,`prq. The

results are summarised in table 4.3.

Bound states. It is easy to see that eq. (4.2.23) has only one set of bound-state solutions,
Φ̂n`mprq “ p0, ϕn`mpr; αAqq

T , with En “ ´µα2
A{p2n

2q. The unrotated wavefunctions are
Φn`mprq “ PΦ̂n`mprq.

Validity of the Coulomb approximation mH Ñ 0

Scattering states. The scattering states are listed in table 4.3. The DS states with ` `
s “ even are subject to an attractive Higgs-mediated potential, and the Coulomb approximation
is good as long as [43]

µvrel Á mH . (4.2.29)

The condition becomes stronger for the DS scattering states with `` s “ odd, where the Higgs-
mediated potential is repulsive. Moreover, it is relaxed or strengthened in the presence of an
additional attractive or repulsive Coulomb potential due to B or W exchange, as is the case
with the SS-like and DD̄-like scattering states for `` s “ even [54, figs. 2, 3].

Bound states. The bound states of the present model are listed in table 4.4. The DS states
with `` s “ even are bound only by the Higgs-mediated potential; they exist if pµαH{nq{mH ą

0.84, and become essentially Coulombic if this condition is strengthened only by a factor of a
few [43]. (For example, the binding energy of the ground state exceeds 80% of its Coulomb
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UY p1q SULp2q State
Com-

ponent
Partial-wave wavefunctions

0 1 SS-like
SS δ``s,even

?
2

αA ` αR

”

αRϕ|k|,`pxS ;αAq ` αAϕ|k|,`pxS ;´αRq
ı

DD̄ δ``s,even

?
2αAαR

αA ` αR

”

ϕ
|k|,`pxS ;αAq ´ ϕ|k|,`pxS ;´αRq

ı

0 1 DD̄-like
SS

?
αAαR

αA ` αR

”

ϕ
|k|,`pxS ;αAq ´ ϕ|k|,`pxS ;´αRq

ı

DD̄
1

αA ` αR

”

αAϕ|k|,`pxS ;αAq ` αRϕ|k|,`pxS ;´αRq
ı

0 3 DD̄ DD̄ ϕ
|k|,` pxS ; pα1 ´ α2q{4q

1 1 DD DD δ``s,odd

?
2 ϕ

|k|,` pxS ; p´α1 ` 3α2q{4q

1 3 DD DD δ``s,even

?
2 ϕ

|k|,` pxS ; ´pα1 ` α2q{4q

1{2 2 DS DS ϕ
|k|,`

`

xS ; p´1q``sαH
˘

Table 4.3: The scattering states and their wavefunctions in the limit mH Ñ 0. Here,
ϕ
|k|,`pxS ; αq denotes the ` mode of a scattering state with momentum k for a Coulomb po-

tential V prq “ ´α{r; the position variable is xS ” kr. The couplings αA and αR, defined in
eqs. (4.2.21), depend on `` s. For `` s “ odd, the p1, 0q mixed states decouple.

UY p1q SULp2q
Binding
energy

Bound state/
component

Wavefunctions

0 1 µα2
A

2n2

SS

c

αR
αA ` αR

ϕn`mpr; αAq

DD̄

c

αA
αA ` αR

ϕn`mpr; αAq

1 1
µ rp´α1 ` 3α2q{4s

2

2n2
DD δ``s,odd

?
2 ϕn`m pr; p´α1 ` 3α2q{4q

1{2 2
µα2

H

2n2
DS δ``s,even ϕn`mpr; αHq

Table 4.4: The bound states and their wavefunctions in the limit mH Ñ 0. Here ϕn`mpr; αq
denotes the bound state wavefunction with quantum numbers tn`mu for a Coulomb potential
V prq “ ´α{r. The couplings αA and αR are defined in eqs. (4.2.21), and depend on `` s. For
`` s “ odd, the p1, 0q state becomes purely DD̄.

value if µαH{mH ą 10 [43, fig. 13].) The mixed SS{DD̄ states are bound by the combined
attraction of the B,W and H bosons, which removes the condition of existence and relaxes
the condition for the Coulomb approximation [55, fig. 6]. Thus, the strongest condition for the
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Coulomb approximation to be satisfactory is

µαH{n ą few ˆmH . (4.2.30)

We note that this condition is essentially satisfied everywhere BSF via Higgs emission is phe-
nomenologically significant (cf. section 4.3.) Indeed, the energy available to be dissipated
must exceed the Higgs mass, pµ{2qrpαH{nq

2 ` v2
rels ą mH , while BSF is most significant when

vrel À αH{n. Since αH ă 1, this yields a stronger condition. Bound states can also form via B
or W emission, however we shall see that these processes are less significant.

We further discuss the Coulomb approximation for the DM freeze-out in section 4.7.

4.2.3 Annihilation

The S, D and D̄ fermions annihilate into SM particles via various processes that we list in
table 4.5 together with their tree-level cross-sections and Sommerfeld factors. We consider s-wave
contributions only. Because the non-relativistic potentials between the annihilating particles
depend in many cases on their spin and gauge representations, we project the initial state on
eigenstates of total spin and Weak isospin. With the help of table 4.3, it is straightforward to
obtain the Sommerfeld factors for all states except the spin-0 p1, 0q ones, which involve mixing
of the SS and DD̄ channels nd we discuss in detail below. The Sommerfeld factors are expressed
in term of the S0pζq function defined in eq. (4.2.13), and the variables

ζ1 ” α1{vrel, ζ2 ” α2{vrel, ζH ” αH{vrel, ζA ” αA{vrel, ζR ” αR{vrel, (4.2.31)

where the couplings α1, α2, αH , αA and αR have been defined in eqs. (4.1.5) and (4.2.21). In
fig. 4.3, we present the total s-wave 2-to-2 annihilation cross-section, averaged over the dof of
the incoming particles.

Mixed p1, 0q spin-0 states

The annihilation amplitudes of the SS-like and DD̄-like states (denoted by M) are related to
the perturbative amplitudes (denoted by A) as follows

iMSS-likeÑfpkq “

ż

d3k1

p2πq3

”

rφ̃kpk
1qsSSSS iASSÑfpk

1q ` rφ̃kpk
1qsSSDD̄ iADD̄Ñfpk

1q

ı

, (4.2.32a)

iMDD̄-likeÑfpkq “

ż

d3k1

p2πq3

”

rφ̃kpk
1qsDD̄SS iASSÑfpk

1q ` rφ̃kpk
1qsDD̄DD̄ iADD̄Ñfpk

1q

ı

, (4.2.32b)

where f stands for the final state, and rφ̃kpk
1qs
j
i are the momentum-space wavefuntions, with

the j and i indices denoting the state and the component respectively, as in section 4.2.2. Since
the perturbative s-wave SS annihilation vanishes, in our approximation there is no interference
between SS andDD̄ channels. Considering that the perturbative s-wave annihilation amplitudes
are independent of the momentum to lowest order in vrel, we obtain as is standard,

pσvrelq
SS-likeÑf “

ˇ

ˇrφkp0qs
SS

DD̄

ˇ

ˇ

2
pσvrelqDD̄Ñf , (4.2.33a)

pσvrelq
DD̄-likeÑf “

ˇ

ˇ

ˇ
rφkp0qs

DD̄

DD̄

ˇ

ˇ

ˇ

2
pσvrelqDD̄Ñf , (4.2.33b)
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where rφkprqs
j
i are the position-space wavefunctions computed in section 4.2.2. Using the results

quoted in table 4.3, we find

ˇ

ˇrφkp0qs
SS

DD̄

ˇ

ˇ

2

spin-0
“

2αAαR

”

a

S0pζAq ´
a

S0p´ζRq
ı2

pαA ` αRq2
, (4.2.34a)

ˇ

ˇ

ˇ
rφkp0qs

DD̄

DD̄

ˇ

ˇ

ˇ

2
“

”

αA
a

S0pζAq ` αR
a

S0p´ζRq
ı2

pαA ` αRq2
. (4.2.34b)

Note that eq. (4.2.34a) includes the symmetry factor of the spin-0 SS-like state, and that
ˇ

ˇrφkp0qs
SS

DD̄

ˇ

ˇ

2

spin-1
“ 0.

We are ultimately interested in the reduction of the DM density via the various annihilation
processes. For the spin-0 p1, 0q states, the rate is (cf. section 4.5)

pnSnSq
spin-0
p1,0q xσvrely

SS-likeÑf ` 2pnDnD̄q
spin-0
p1,0q xσvrely

DD̄-likeÑf , (4.2.35)

where n and x¨y denote densities and thermal averages. In the limit mS “ mD, the densities are
pnSnSq

spin-0
p1,0q “ pnDnD̄q

spin-0
p1,0q , thus the DM density reduction rate can be computed by regarding

that the spin-0 p1, 0q DD̄ perturbative annihilation cross-sections are enhanced by the factor

1

2

ˇ

ˇrφkp0qs
SS

DD̄

ˇ

ˇ

2
`

ˇ

ˇ

ˇ
rφkp0qs

DD̄

DD̄

ˇ

ˇ

ˇ

2
“
αAS0pζAq ` αRS0p´ζRq

αA ` αR
. (4.2.36)

We quote this result in table 4.5, but emphasise that pnSnSq
spin-0
p1,0q and pnDnD̄q

spin-0
p1,0q depend

exponentially on the corresponding masses, thus eq. (4.2.36) ceases to be a good approximation
already for fairly small mass differences |mD ´mS|.

4.2.4 Ground-level bound states and their decay rates

Besides annihilating directly into radiation, the S, D and D̄ fermions can form unstable bound
states that decay rapidly into radiation, thereby enhancing the DM destruction rate. However,
the DM annihilation via BSF is impeded by the inverse (ionisation) processes. The latter become
inefficient as the temperature drops around or below the binding energy. This occurs earlier for
the most deeply bound states, which therefore have the greatest effect on the DM density.
Thus, for our purposes, we shall consider the ground level of each bound state species only,
tn`mu “ t100u, which has the largest binding energy.2 We list the ground-level bound states in
table 4.6.

Decay into radiation

The decay rate of bound states with zero angular momentum into radiation is

ΓBpX1X2qÑf “ pσ0vrelqX1X2Ñf ˆ |ψn00p0q|
2, (4.2.37)

where X1X2 represent the constituent fields of the bound state and f stands for the final state
particles. pσ0vrelqX1X2Ñf is the s-wave annihilation cross-section of an X1X2 state with the

2In addition to its ionisation becoming inefficient earlier, the cross-section for capture into the ground state is
typically larger than those of excited states, if BSF occurs via vector emission [39, 43, 59, 62]. This strengthens
the argument for considering only the ground states of each bound species. However, in ref. [2] it was shown that
if BSF occurs via emission of a charged scalar (here the Higgs doublet), the capture into excited states can be
comparable to the capture into the ground state. It is thus possible that excited states have substantial impact
in the present model. We leave this investigation for future work.
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Channel UY p1q SULp2q Spin dof pσ0vrelq{pπm
´2q Sommerfeld factor

SS Ñ HH: 0 1 0, 1 4 0 ´

0 1 0 ´
1

1 3 pα1 ` 2αHq
2{12 S0 rpζ1 ` 3ζ2q{4s

0 3 0 ´
DD̄ Ñ HH: 0

3
1 9 pα2 ` 2αHq

2{12 S0 rpζ1 ´ ζ2q{4s

0 1 3α2
2{2

αAS0pζAq ` αRS0p´ζRq

αA ` αR1
1 3 0 ´

0 3 0 ´
DD̄ ÑWW 0

3
1 9 α2

2{12 S0 rpζ1 ´ ζ2q{4s

0 1 α2
1{2

αAS0pζAq ` αRS0p´ζRq

αA ` αR1
1 3 0 ´DD̄ Ñ BB 0

3 0, 1 12 0 ´

1 0, 1 4 0 ´

0 3 α1α2 S0 rpζ1 ´ ζ2q{4sDD̄ ÑWB 0
3

1 9 0 ´

0 1 0 ´

1
1 3

2Y 2
L α

2
1{3,

ř

Y 2
L “ 1

S0 rpζ1 ` 3ζ2q{4s

0 3 0 ´DD̄ Ñ FLF̄L 0

3
1 9

NL ˆ α
2
2{6

NL “ 12
S0 rpζ1 ´ ζ2q{4s

0 1 0 ´

1
1 3

Y 2
Rα

2
1{3,

ř

Y 2
R “ 8

S0 rpζ1 ` 3ζ2q{4sDD̄ Ñ fRf̄R 0

3 0, 1 12 0 ´

0 1 0 ´
1

1 3 4α2
H{3 S0 rp´ζ1 ` 3ζ2q{4sDD Ñ HH 1

3 0, 1 12 0 ´

0 2 0 ´
DS ÑWH 1/2 2

1 6 α2αH{2 S0p´ζHq

0 2 0 ´
DS Ñ BH 1/2 2

1 6 α1αH{6 S0p´ζHq

DS Ñ fRF̄L, FLf̄R 1{2 2 0, 1 8 0 ´

Table 4.5: Annihilation processes, their tree-level s-wave velocity-weighted cross-sections σ0vrel

and Sommerfeld factors. All σ0vrel are averaged over the degrees of freedom of the corresponding
projected scattering state (5th column). For DD, σ0vrel includes the symmetry factor due to the
identical initial-state particles. For the gauge-singlet spin-0 DD̄ channels, see text for discussion.
S0pζq and the various ζ parameters are defined in eqs. (4.2.13) and (4.2.31).

same quantum numbers (spin, gauge and global) as the bound state, averaged over the dof
that correspond to those quantum numbers only (rather than all the dof of an X1X2 scattering
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αH = 0.1

with Higgs potential

without Higgs potential
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DD and SS

DD
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l
/
(π

m
-
2
)

Figure 4.3: The s-wave annihilation cross-sections, by initial state (left) and total (right),
averaged over the dof of the incoming particles, with and without the Higgs-mediated potential
(cf. table 4.5). Because the processes affected by the latter have either low multiplicity or small
perturbative cross-sections, the Sommerfeld effect at low velocities arises mostly due to the
Bµ and Wµ gauge bosons. Note that we have weighted the contribution of each annihilation
channel with the number of DM particles eliminated in each process as estimated upon thermal
averaging (cf. section 4.5.)

state.) For an attractive Coulomb potential of strength α, the squared ground-state wavefunction
evaluated at the origin is |ψn00p0q|

2 “ κ3
B{π “ µ3α3{π, where κB “ µα is the Bohr momentum.

Taking into account the s-wave annihilation processes of table 4.5, we compute the total decay
rates of the ground states and list them in table 4.6. The decay of the mixed SS{DD̄ bound
state occurs via its DD̄ component, and the rate is computed analogously to the annihilation of
the mixed scattering states described in section 4.2.3. For the DD bound state, a factor 2 due
to the antisymmetrisation of the wavefunction has already been included in the corresponding
σ0vrel in table 4.5 and should not be included twice when computing the decay rate of the bound
state. As seen in table 4.5, the DS bound state cannot decay into two particles. It may decay
instead into three bosons, however the corresponding rates are suppressed by higher powers of
the couplings, Opα2

1α
4
H , α

2
2α

4
H , α1α2α

4
H , α

6
Hq, as well as the three-body final-state phase space.

The DS bound state instead decays much faster into the tighter SS{DD̄ bound state, as we
shall now see.

Transitions into deeper bound levels

Besides decaying directly into radiation, bound states may transition into lower-lying bound
levels via dissipation of energy. The bound-to-bound transition rates are computed in a similar
fashion to BSF processes, as we shall see in sections 4.3 and 4.4. Here we note that in radiative
transitions (either scattering-to-bound or bound-to-bound), spin is conserved at leading order
in the non-relativistic regime. Spin-flipping transitions can occur via emission of a vector bo-
son, but rely on spin-orbit interaction and are suppressed by higher powers of the couplings.
Consequently, they are subdominant to the direct bound-state decay rates into two relativistic
species.

Considering the bound states of table 4.6, there are only two spin-conserving transitions, of
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Bound
state (B)

UY p1q SULp2q Spin
dof
(gB)

Bohr
momentum (κB)

Decay rate pΓBq

SS{DD̄ 0 1 0 1
mαA

2

mα3
Apα

2
1 ` 3α2

2q

16

ˆ

αA
αA ` αR

˙

DD̄ 0 1 1 3
mpα1 ` 3α2q

8

mpα1 ` 3α2q
3rpα1 ` 2αHq

2 ` 40α2
1s

211 ¨ 3

DD 1 1 1 3
mp´α1 ` 3α2q

8

mp´α1 ` 3α2q
3α2

H

27 ¨ 3

DS 1{2 2 0 2
mαH

2

Negligible.

Transition to BpSS{DD̄q:
eq. (4.3.26),

eqs. (4.4.12) and (4.4.19)
to (4.4.21)

Table 4.6: The ground-level bound states, tn`mu “ t100u, and their rates of decay into
radiation, in the limit mH Ñ 0. The decay rate of the DS bound state is suppressed, and we
reference instead the formulae for its transition rate to the SS{DD̄ bound state. In the first
row, αA and αR are found from eqs. (4.2.21) for ` “ s “ 0. The binding energy of each bound
state is |EB| “ κ2

B{m.

which only one may occur with emission of a single boson contained in the theory. Noting that
αA ě αH (cf. eq. (4.2.21b)), this transition is

BpDSq Ñ BpSS{DD̄q `H. (4.2.38)

In fact, much like BSF, bound-to-bound transitions may occur either radiatively or via scattering
on the relativistic thermal bath. In sections 4.3 and 4.4, we compute the corresponding rates
for the transition (4.2.38) and reference the results in table 4.6.
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Prad

G
p4q
in G

p4q
out

iAT

Figure 4.4: Radiative bound-state formation and bound-to-bound transitions.

4.3 Radiative bound-state formation and bound-to-bound tran-
sitions

We now compute the cross-sections for the radiative formation of the ground-level bound states
of table 4.6. We first outline the elements of the computation, explain the approximations
involved, and define some useful quantities. Then we proceed with the computation of the
amplitudes and cross-sections. The final results are listed in tables 4.7 to 4.10 and illustrated in
fig. 4.9.

4.3.1 Preliminaries

Full amplitudes MkÑn`m and Mn1`1m1Ñn`m. As depicted schematically in fig. 4.4, the full
amplitudes consist of the radiative transition part AT computed perturbatively and convoluted
with the initial and final-state wavefunctions [59],

iMkÑn`m “

ż

d3k1

p2πq3
d3p

p2πq3
φ̃kpk

1q iAT pk
1,pq

rψ̃n`mppqs
:

?
2µ

. (4.3.1a)

iMn1`1m1Ñn`m “

ż

d3p1

p2πq3
d3p

p2πq3
ψ̃n1`1m1pp

1q
?

2µ
iAT pp

1,pq
rψ̃n`mppqs

:

?
2µ

. (4.3.1b)

Equations (4.3.1) can accommodate the possibility that the incoming and/or outgoing states are
superpositions of different Fock states, as is the case with the mixed SS{DD̄ states discussed in
section 4.2.2. Then, the wavefunctions are vectors and AT becomes a matrix.

Transition amplitudes AT . The radiative parts of the BSF and transition diagrams are
shown in figs. 4.5 to 4.8. Following refs. [2, 59, 62], we compute the amplitudes AT , applying
the standard approximations due to the hierarchy of scales and retaining only the leading or-
der terms. Among else, we shall use the following approximate spinor identities valid for low
momentum changes, p » p1,

ūpp, squpp1, s1q » `2m δss
1

, ūpp, sq γµ upp1, s1q » `2pµδss
1

, (4.3.2a)

v̄pp, sq v2pp
1, s1q » ´2m δss

1

, v̄pp, sq γµ vpp1, s1q » `2pµδss
1

. (4.3.2b)

Moreover, we emphasise that the signs arising from the fermion permutations needed to perform
the Wick contractions must be carefully taken into account, as they often differ among various
diagrams contributing to the same amplitude. An example calculation is presented in detail in
appendix D.2.

Overlap integrals. The scattering and bound state wavefunctions are listed in tables 4.3
and 4.4. To express MkÑn`m and Mn1`1m1Ñn`m compactly, we define the Coulombic overlap
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integrals [2, 43, 59, 62]

Rk,n`mpαS , αBq ” pµαBq
3{2

ż

d3p

p2πq3
ϕ̃kpp;αSq ϕ̃

˚
n`mpp;αBq, (4.3.3a)

J k,n`mpαS , αBq ”

ż

d3p

p2πq3
p ϕ̃kpp;αSq ϕ̃

˚
n`mpp;αBq, (4.3.3b)

YW
k,n`mpαS , αBq ” 8πµα2

ż

d3k1

p2πq3
d3p

p2πq3
k1 ´ p

pk1 ´ pq4
ϕ̃kpk

1;αSq ϕ̃
˚
n`mpp;αBq, (4.3.3c)

YH
k,n`mpαS , αBq ” 8πµαH

ż

d3k1

p2πq3
d3p

p2πq3
k1 ´ p

rpk1 ´ pq2 `m2
Hs

2
ϕ̃kpk

1;αSqϕ̃
˚
n`mpp;αBq, (4.3.3d)

and

Rn1`1m,n`mpα
1
B, αBq ”

ż

d3p

p2πq3
ϕ̃n1`1m1pp;α1Bq ϕ̃

˚
n`mpp;αBq, (4.3.3e)

where ϕ̃n`m and ϕ̃k are Fourier transforms of the Coulomb wavefunctions (4.2.11) and (4.2.14).3

In the Coulomb regime, the overlap integrals can be computed analytically, after Fourier trans-
forming into position space. The scattering-bound integrals of eqs. (4.3.3a) to (4.3.3d) have been
computed in refs. [2, 43, 59, 62]. We compute the bound-bound integral (4.3.3e) in appendix C.3.
For the ground-level bound states, tn`mu “ t100u, the results are

Rk,100pαS , αBq “

«

26π

ˆ

1´
ζS
ζB

˙2 ˆ ζ2
B

1` ζ2
B

˙

SsclpζS , ζBq

ff1{2

, (4.3.4a)

J k,100pαS , αBq “ k̂

„

26π

µαB

ˆ

ζ2
B

1` ζ2
B

˙

SvecpζS , ζBq

1{2

, (4.3.4b)

YW
k,100pαS , αBq “ pα2{αBqJ k,100pαS , αBq, (4.3.4c)

lim
mHÑ0

rYH
k,100pαS , αBqs “ pαH{αBq J k,100pαS , αBq, (4.3.4d)

and

R100,100pα
1
B, αBq “ 8pαBα

1
Bq

3{2{pαB ` α
1
Bq

3, (4.3.4e)

where

ζS ” αS{vrel and ζB ” αB{vrel (4.3.5)

entail the coupling strengths αS and αB of the potential in the scattering and bound states
respectively, and we have defined the functions [2, 39, 43, 59, 62]

SsclpζS , ζBq ”

ˆ

2πζS
1´ e´2πζS

˙

«

ζ6
Be
´4ζS arccotpζBq

p1` ζ2
Bq

3

ff

. (4.3.6a)

SvecpζS , ζBq ”

ˆ

2πζS
1´ e´2πζS

˙

p1` ζ2
Sq

«

ζ4
Be
´4ζS arccotpζBq

p1` ζ2
Bq

3

ff

. (4.3.6b)

Note that Sscl and Svec include the s- and p-wave Sommerfeld factors, S0pζSq ” 2πζS{p1`e
´2πζS q

and S1pζSq “ S0pζSqp1 ` ζ2
Sq, respectively. Indeed, eq. (4.3.4a) arises from the `S “ 0 and

eqs. (4.3.4b) to (4.3.4d) arise from the `S “ 1 modes of the scattering state wavefunctions. In
eq. (4.3.4d) we took the limit mH Ñ 0 to be consistent with our approximations, although it is
easy to obtain an analytical result for mH ‰ 0 (but using the Coulomb wavefunctions.)

3Note that Rk,n`m, Rn1`1m,n`m are dimensionless, while J k,n`m and Yk,n`m have mass-dimension ´1{2.
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BSF cross-sections. The cross-sections for BSF via emission of a massless vector (B or W )
or scalar (H or H:) boson are, respectively [43, 59]

vrel
dσVkÑn`m
dΩ

“
|PV |

27π2m3
|MkÑn`m|

2

„

1´
´

P̂V ¨ M̂kÑn`m

¯2


, (4.3.7a)

vrel
dσHkÑn`m
dΩ

“
|PH |

27π2m3
|MkÑn`m|

2, (4.3.7b)

where PV and PH are the momenta of the emitted bosons, which dissipate the kinetic energy of
the relative motion and the binding energy, |PV | or

a

P2
H `m

2
H “ ωkÑn`m, where

ωkÑn`m » Ek ´ En`m » pm{4q
`

α2
B{n

2 ` v2
rel

˘

. (4.3.8)

In eq. (4.3.7a), we have summed over polarisations of the emitted vector. As we shall see in the
following, to working order, the amplitudes for BSF via vector emission are MkÑ1009k, while
the amplitudes for BSF via scalar emission are independent of Ω. Then, eqs. (4.3.7) simplify
to [43, 59]

σVkÑn`mvrel “
α2

B

26 ¨ 3πm2

ˆ

1` ζ2
B

ζ2
B

˙

|MkÑn`m|
2, (4.3.9a)

σHkÑn`mvrel “
α2

B

27πm2

ˆ

1` ζ2
B

ζ2
B

˙

|MkÑn`m|
2 hHpωkÑn`mq, (4.3.9b)

where hH ” |PH |{EH is the phase-space suppression due to the Higgs mass,

hHpωq ”
`

1´m2
H{ω

2
˘1{2

. (4.3.10)

Bound-to-bound transition rates. Similarly to the above, the rates for the radiative de-
excitation of bound states are

dΓ V
n1`1m1Ñn`m

dΩ
“

|PV |

27π2m2
|Mn1`1m1Ñn`m|

2

„

1´
´

P̂V ¨ M̂n1`1m1Ñn`m

¯2


, (4.3.11a)

dΓH
n1`1m1Ñn`m

dΩ
“

|PH |

27π2m2
|Mn1`1m1Ñn`m|

2, (4.3.11b)

where |PV | and |PH | are determined again by the amount of dissipated energy, which is now the
difference between the binding energies of the two states,

ωn1`1m1Ñn`m » En1`1m1 ´ En`m » pm{4q
`

α2
B{n

2 ´ α12B {n
12
˘

. (4.3.12)

For monopole transitions via H or H: emission, the amplitude is independent of the PH direction,
and eq. (4.3.11b) simplifies to

ΓH
n1`1m1Ñn`m “

α12B {n
12 ´ α2

B{n
2

27πm
|Mn1`1m1Ñn`m|

2 hHpωn1`1m1Ñn`mq, (4.3.13)

where the phase-space suppression hH is defined in eq. (4.3.10).

4.3.2 SS{DD̄ bound states: p1, 0q, spin 0, n`m “ t100u

The BSF processes are listed in table 4.7, and the radiative part of the diagrams contributing
to these processes are shown in fig. 4.5. We project the bound-state fields on the spin-0 state
via rU´1

spin-0s
r2r1 “ εr1r2{

?
2, and the DD̄ component on the SULp2q singlet via δi1j1{

?
2.
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Bound state SS{DD̄ : p1,0q, spin 0, tn`mu “ t100u

Scattering state (spin 0) Rad
boson

Cross-section
State UY p1q SULp2q dof `S pσBSFvrelq{pπm

´2q

DD̄ 0 1 1 1 B
27

3

α1α
2
A

αA ` αR

„

1`
αH
αA

c

8αR
αA

2

Svec

ˆ

ζ1 ` 3ζ2

4
, ζA

˙

SS 0 1 1 1 B 0 (due to antisymmetry of SS scattering state)

DD̄ 0 3 3 1 W
25

3

α2α
2
A

αA ` αR

„

1`
α2

αA
`
αH
αA

c

8αR
αA

2

Svec

ˆ

ζ1 ´ ζ2

4
, ζA

˙

DS `1{2 2 2 0 H
27αH
αA

`?
αA `

?
8αR

˘2

αA ` αR

ˆ

1´
αH
αA

˙2

Sscl pζH , ζAq hHpωq

D̄S ´1{2 2 2 0 H: same as above

Table 4.7: Radiative processes and cross-sections for capture into the ground level of the
SS{DD̄ bound states. Here, αA, αR are obtained from eqs. (4.2.21) for ` “ s “ 0. Each cross-
section is averaged over the dof of the corresponding scattering state (4th column.) Svec and
Sscl are defined in eqs. (4.3.6), and hH in eq. (4.3.10). Here, ω “ mpα2

A ` v
2
relq{4.

s1 r1

s2 r2

K{2` kp1q

K{2´ kp1q

P {2` p

P {2´ p

PB

i i1

j j1

P {2` p

P {2´ p

r1

r2

P {2´ p

P {2` p

r2

r1

s1 r1

s2 r2

K{2` kp1q

K{2´ kp1q

P {2` p

P {2´ p

PW

i i1

j j1

a

P {2` p

P {2´ p

r1

r2

P {2´ p

P {2` p

r2

r1

s1 r1

s2 r2

K{2` kp1q

K{2´ kp1q

P {2` p

P {2´ p

PH

i i1

j1

h

P {2` p

P {2´ p

r1

r2

P {2´ p

P {2` p

r2

r1

Figure 4.5: The radiative parts of the diagrams contributing to the formation of SS{DD̄ bound
states. Top row: DD̄ Ñ BpSS{DD̄q ` B. Middle row: DD̄ Ñ BpSS{DD̄q `W . Bottom row:
DS Ñ BpSS{DD̄q`H, which has also a conjugate counterpart (not shown.) Single and double
lines correspond to S and D fermions, while vector, gluon and dashed lines to B, W and H
bosons. The arrows on the field lines denote the flow of Hypercharge. Wherever not shown,
the momenta, spins and gauge indices of the external particles can be deduced from the other
graphs.
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DD̄ Ñ BpSS{DD̄q `B

The perturbative parts of the amplitude are

iAs1s2
ij

”

DD̄ Ñ pSSqspin-0
p1,0q `B

ı

»

» i δij
εs1s2
?

2
y2 g1YH 4m2

„

2pk1 ´ pq

rpk1 ´ pq2 `m2
Hs

2
`

2pk1 ` pq

rpk1 ` pq2 `m2
Hs

2



, (4.3.14a)

iAs1s2
ij

”

DD̄ Ñ pDD̄qspin-0
p1,0q `B

ı

»

» i
δij
?

2

εs1s2
?

2
g1YD 2m 2p p2πq3

“

δ3pk1 ´ p´PB{2q ` δ
3pk1 ´ p`PB{2q

‰

, (4.3.14b)

In eq. (4.3.14a), the fermion permutations introduced factors p´1q and p`1q for the t- and u-
channel diagrams. The projection on the antisymmetric spin-0 eigenstate alloted another factor
p´1q to the u-channel. The full amplitude (4.3.1a) is

iMs1s2
ij “

1
?

2µ

ż

d3k1

p2πq3
d3p

p2πq3
ϕ̃k

ˆ

k1;
α1 ` 3α2

4

˙

ˆ

„

iAs1s2
ij

”

DD̄ Ñ pSSqspin-0
p1,0q `B

ı

c

αR
αA ` αR

ϕ̃:100pp;αAq

` iAs1s2
ij

”

DD̄ Ñ pDD̄qspin-0
p1,0q `B

ı

c

αA
αA ` αR

ϕ̃:100pp;αAq



, (4.3.15)

where only the `S “ 1 component of the scattering state wavefunction is meant to be kept, and
here αA and αR should be evaluated from eqs. (4.2.21) for ` “ s “ 0. This becomes

iMs1s2
ij » iδijε

s1s2

ˆ

4πα1

αA ` αR
4m

˙1{2

ˆ

ˆ

"

?
8αRYH

k,100

ˆ

α1 ` 3α2

4
, αA

˙

`
?
αAJ k,100

ˆ

α1 ` 3α2

4
, αA

˙*

. (4.3.16)

Note that we have neglected the ˘PB{2 terms inside the δ-functions of eq. (4.3.14b) that give
rise to higher order corrections [43, 59]. Squaring and summing over the initial-state gauge
indices and spins selects the p1, 0q spin-0 DD̄ scattering state, which has one dof. Using the
overlap integrals (4.3.4), we find

ÿ

s1,s2

ÿ

i,j

ˇ

ˇ

ˇ
Ms1s2

ij

ˇ

ˇ

ˇ

2
» 213π2

ˆ

α1

αA ` αR

˙ˆ

1`
αH
αA

c

8αR
αA

˙2 ˆ
ζ2
A

1` ζ2
A

˙

Svec

ˆ

ζ1 ` 3ζ2

4
, ζA

˙

.

(4.3.17)

The cross-section is obtained from eq. (4.3.9a) setting αB Ñ αA, and is shown in table 4.7.

DD̄ Ñ BpSS{DD̄q `W

The perturbative parts of the amplitude are

ipAs1s2qaij

”

DD̄ Ñ pSSqspin-0
p1,0q `W

ı

» i taji
εs1s2
?

2
y2 g2 4m2ˆ

ˆ

„

2pk1 ´ pq

rpk1 ´ pq2 `m2
Hs

2
`

2pk1 ` pq

rpk1 ` pq2 `m2
Hs

2



, (4.3.18a)

ipAs1s2qaij

”

DD̄ Ñ pDD̄qspin-0
p1,0q `W

ı

» i
taji
?

2

εs1s2
?

2
g2 2mˆ

"

2m 4πα2
2pk1 ´ pq

pk1 ´ pq4
(4.3.18b)

`2p p2πq3
“

δ3pk1 ´ p´PW {2q`δ
3pk1 ´ p`PW {2q

‰(

,
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where the signs of the t- and u-channel diagrams in eq. (4.3.18a) are as in DD̄ Ñ SS`B above,
and the first factor 2 in the first term of eq. (4.3.18b) is the quadratic Casimir of SULp2q (see
ref. [62] for details of this computation.) The full amplitude (4.3.1a) is

ipMs1s2qaij » iptaqijε
s1s2

ˆ

4πα2

αA ` αR
4m

˙1{2

ˆ

"

?
8αRYH

k,100

ˆ

α1 ´ α2

4
, αA

˙

`
?
αA

„

J k,100

ˆ

α1 ´ α2

4
, αA

˙

`YW
k,100

ˆ

α1 ´ α2

4
, αA

˙*

, (4.3.19)

where again αA and αR should be evaluated from eqs. (4.2.21) for ` “ s “ 0, and we have
neglected the ˘PW {2 terms inside the δ-functions in eq. (4.3.18b). Squaring, summing over the
initial and final state gauge indices and spins selects the p3, 0q spin-0 DD̄ state, which has three
dof. Using eqs. (4.3.4) and (4.3.6), we find

1

3

ÿ

s1,s2

ÿ

i,j,a

|pMs1s2qaij |
2 » 211π2

ˆ

α2

αA ` αR

˙ˆ

1`
α2

αA
`
αH
αA

c

8αR
αA

˙2

ˆ

ˆ

ζ2
A

1` ζ2
A

˙

Svec

ˆ

ζ1 ´ ζ2

4
, ζA

˙

. (4.3.20)

The cross-section is obtained from eq. (4.3.9a) setting αB Ñ αA, and is shown in table 4.7.

DS Ñ BpSS{DD̄q `H

The perturbative parts of the amplitude are

iAs1s2
i,h

”

DS Ñ pSSqspin-0
p1,0q `H

ı

» ´i δih
εs1s2
?

2
y 4m2ˆ (4.3.21a)

ˆ p2πq3
“

δ3pk1 ´ p´PH{2q ` δ
3pk1 ´ p`PH{2q

‰

,

iAs1s2
i,h

”

DS Ñ pDD̄qspin-0
p1,0q `H

ı

» ´i
δih
?

2

εs1s2
?

2
y 4m2 p2πq3δ3pk1 ´ p`PH{2q. (4.3.21b)

where now the fermion permutations introduced factors p`1q and p´1q for the t- and u-channel
DS Ñ SS `H diagrams respectively, and p´1q for the DS Ñ DD̄`H diagram. We note that
there are two diagrams where an off-shell vector boson (B or W ) emitted from one leg and an
off-shell Higgs emitted from the other leg fuse to produce the final-state Higgs. In appendix D.3,
we show that these diagrams are of higher order, thus we do not consider them here. The full
amplitude (4.3.1a) is

iMs1s2
i,h » ´i δih ε

s1s2

d

27παH
α3
A

?
αA `

?
8αR

?
αA ` αR

Rk,100pαH , αAq, (4.3.22)

where we have neglected the ˘PH{2 terms inside the δ-functions in eqs. (4.3.21). Squaring and
summing over the initial and final state gauge indices and spins selects the p2, 1{2q spin-0 DS
state, which has two dof. Using the overlap integrals (4.3.4), we find

1

2

ÿ

s1,s2

ÿ

i,h

|Ms1s2
i,h |

2 » 214π2 αH
α3
A

`?
αA `

?
8αR

˘2

αA ` αR

ˆ

1´
ζH
ζA

˙2 ˆ ζ2
A

1` ζ2
A

˙

Sscl pζH , ζAq . (4.3.23)

The cross-section is obtained from eq. (4.3.9b) setting αB Ñ αA, and is shown in table 4.7.
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Bound-to-bound transition BpDSq Ñ BpSS{DD̄q `H

Using the perturbative amplitudes (4.3.21), we may now compute the rate of bound-to-bound
transition (4.2.38). Projecting on the spin-0 DS state, and taking into account the bound-state
wavefuntions of table 4.4, we find that the full amplitude is, analogously to eq. (4.3.22), given
by

iMi,h » ´i δihm
a

25παH

?
αA `

?
8αR

?
αA ` αR

R100,100pαH , αAq, (4.3.24)

Squaring and averaging over the initial and final state gauge indices, and using the overlap
integral (4.3.4e), we find

1

2

ÿ

i,h

|Mi,h|
2 » 211πm2 αH

`?
αA `

?
8αR

˘2

αA ` αR

pαHαAq
3

pαH ` αAq6
. (4.3.25)

The transition rate is found from eq. (4.3.13) to be

ΓDSÑSS{DD̄ “ 24mαH pα
2
A ´ α

2
Hq

`?
αA `

?
8αR

˘2

αA ` αR

pαAαHq
3

pαA ` αHq6

„

1´
16m2

H

m2pα2
A ´ α

2
Hq

2

1{2

.

(4.3.26)

4.3.3 DD̄ bound states: p1, 0q, spin 1, n`m “ t100u

The BSF processes are listed in table 4.8, and the radiative parts of the diagrams contributing
to these processes are shown in fig. 4.6. For all processes below, we project the bound-state
fields on the SULp2q singlet via δi1j1{

?
2. Moreover, since spin is conserved at working order, as

already seen in section 4.3.2, we project both the scattering and the bound states on the spin-
1 configuration by contracting the spin indices with rUσspin-1s

s1s2rUρ:spin-1s
r2r1 , where the indices

σ, ρ “ ´1, 0, 1 run through the three states of the spin-1 multiplets. While the Clebsh-Gordan
coefficients contained in Uspin-1 are well-known, we shall not need them explicitly. We will instead

only invoke that the operators rUσ:spin-1s
s1s2 are symmetric in s1, s2, and rUσspin-1s

s1s2rUρ:spin-1s
s2s1 “

δσρ.

DD̄-like Ñ BpDD̄q `B

Besides the projections mentioned above, here we also project the DD̄ component of the scatter-
ing state on the SULp2q singlet configuration via δij{

?
2. The perturbative parts of the amplitude

are

iAσρ
”

pSSqspin-1 Ñ pDD̄qspin-1
p1,0q `B

ı

»

» ´i
?

2 δσρ y2 g1YH 4m2

„

2pk1 ´ pq

rpk1 ´ pq2 `m2
Hs

2
`

2pk1 ` pq

rpk1 ` pq2 `m2
Hs

2



, (4.3.27a)

iAσρ
”

pDD̄qspin-1
p1,0q Ñ pDD̄qspin-1

p1,0q `B
ı

»

» `i δσρ g1YD 2m 2p p2πq3
“

δ3pk1 ´ p´PB{2q ` δ
3pk1 ´ p`PB{2q

‰

. (4.3.27b)

In eq. (4.3.27a), the fermion permutations introduced factors p´1q and p`1q for the t- and u-
channel diagrams. Upon projection on the symmetric spin-1 eigenstate, their relative sign does
not change. The factor

?
2 appearing in the beginning of eq. (4.3.27a) arises from the projection
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Bound state DD̄ : p1,0q, spin 1, tn`mu “ t100u

Scattering state (spin 1) Rad
boson

Cross-section
State UY p1q SULp2q dof `S pσBSFvrelq{pπm

´2q

DD̄-like 0 1 3 1 B

27α1αB

3

α2
A

pαA ` αRq2

„ˆ

1´
2αH
αB

c

αR
αA

˙

S
1{2
vec pζA, ζBq

`

ˆ

αR
αA
`

2αH
αB

c

αR
αA

˙

S
1{2
vec p´ζR, ζBq

2

SS-like 0 1 3 1 B

28α1αB

3

αAαR
pαA ` αRq2

„ˆ

1´
αH
αB

c

8αR
αA

˙

S
1{2
vec pζA, ζBq

´

ˆ

1`
αH
αB

c

8αA
αR

˙

S
1{2
vec p´ζR, ζBq

2

DD̄ 0 3 9 1 W
27α2αB

3

ˆ

1`
α2

αB

˙2

Svec

ˆ

ζ1 ´ ζ2

4
, ζB

˙

DS `1{2 2 6 0 H
27αH
αB

ˆ

1`
αH
αB

˙2

Sscl p´ζH , ζBqhHpωq

D̄S ´1{2 2 6 0 H: same as above

Table 4.8: Same as table 4.7 for the DD̄ bound states. Here, the bound-state coupling is
αB “ pα1 ` 3α2q{4, and correspondingly ζB “ pζ1 ` 3ζ2q{4. In the first two processes, αA and
αR should be evaluated from eq. (4.2.21) with `S “ s “ 1 for the scattering state. For the
phase-space suppression hH , here ω “ m

“

pα1 ` 3α2q
2{16` v2

rel

‰

{4.

s1 r1

s2 r2

K{2` kp1q

K{2´ kp1q

P {2` p

P {2´ p

PB

i i1

j j1

K{2` kp1q

K{2´ kp1q

s1

s2

i1

j1

K{2´ kp1q

K{2` kp1q

s2

s1

s1 r1

s2 r2

K{2` kp1q

K{2´ kp1q

P {2` p

P {2´ p

PW

i i1

j j1

a

s1 r1

s2 r2

K{2` kp1q

K{2´ kp1q

P {2` p

P {2´ p

PH

i i1

j1

h

Figure 4.6: Same as in fig. 4.5, for the formation of DD̄ bound states. Top: DD̄-like Ñ
BpDD̄q ` B and SS-like Ñ BpDD̄q ` B. Bottom left: DD̄ Ñ BpDD̄q ` W . Bottom right:
DS Ñ BpSS{DD̄q `H.
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onto the SULp2q singlet final DD̄ state. Using the wavefunctions listed in tables 4.3 and 4.4, we
find the full amplitude (4.3.1a) to be

iMσρ » iδσρ
2

αA ` αR

?
4πα1 4mˆ

ˆ

"

2
?

2αAαR

„

´YH
k,100

ˆ

αA,
α1 ` 3α2

4

˙

`YH
k,100

ˆ

´αR,
α1 ` 3α2

4

˙

`αAJ k,100

ˆ

αA,
α1 ` 3α2

4

˙

` αRJ k,100

ˆ

´αR,
α1 ` 3α2

4

˙*

, (4.3.28)

where here αA and αR should be evaluated from eqs. (4.2.21) for `S “ s “ 1 (scattering state).
As before, we have neglected the ˘PB{2 terms inside the δ-functions in eq. (4.3.27b). Next, we
square, sum over the spins, and average over the three dof of the incoming spin-1 state. Using
the overlap integrals eq. (4.3.4), we find

1

3

3
ÿ

σ,ρ“1

|Mσρ|
2
»

213π2α1

αB

α2
A

pαA ` αRq2

ˆ

ζ2
B

1` ζ2
B

˙

ˆ

ˆ

„ˆ

1´
2αH
αB

c

αR
αA

˙

S1{2
vec pζA, ζBq `

ˆ

αR
αA
`

2αH
αB

c

αR
αA

˙

S1{2
vec p´ζR, ζBq

2

, (4.3.29)

where here αB “ pα1 ` 3α2q{4 and correspondingly ζB “ pζ1 ` 3ζ2q{4. The cross-section is
obtained from eq. (4.3.9a), and is shown in table 4.8.

SS-like Ñ BpDD̄q `B

Using the perturbative parts (4.3.27), and the wavefunctions listed in tables 4.3 and 4.4, we find
the full amplitude (4.3.1a)

iMσρ » iδσρ
2

αA ` αR

?
4πα1 4mˆ

ˆ

"

´4

„

αRYH
k,100

ˆ

αA,
α1 ` 3α2

4

˙

` αAYH
k,100

ˆ

´αR,
α1 ` 3α2

4

˙

`
?

2αAαR

„

`J k,100

ˆ

αA,
α1 ` 3α2

4

˙

´J k,100

ˆ

´αR,
α1 ` 3α2

4

˙*

, (4.3.30)

where again αA and αR should be evaluated from eqs. (4.2.21) for `S “ s “ 1 (scattering state),
and with the help of the overlap integrals (4.3.4),

1

3

3
ÿ

σ,ρ“1

|Mσρ|
2
»

214π2α1

αB

αAαR
pαA ` αRq2

ˆ

ζ2
B

1` ζ2
B

˙

ˆ

ˆ

„ˆ

1´
2αH
αB

c

2αR
αA

˙

S1{2
vec pζA, ζBq ´

ˆ

1`
2αH
αB

c

2αA
αR

˙

S1{2
vec p´ζR, ζBq

2

, (4.3.31)

with αB “ pα1 ` 3α2q{4 and ζB “ pζ1 ` 3ζ2q{4. The cross-section is obtained from eq. (4.3.9a),
and is shown in table 4.8.
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DD̄ Ñ BpDD̄q `W

The perturbative part of the amplitude is (cf. eq. (4.3.18b))

ipAσρqaij

”

pDD̄qspin-1 Ñ pDD̄qspin-1
p1,0q `W

ı

» iδσρ
taji
?

2
g2 2mˆ

ˆ

"

2m 4πα2
2pk1 ´ pq

pk1 ´ pq4
` 2p p2πq3

“

δ3pk1 ´ p´PW {2q ` δ
3pk1 ´ p`PW {2q

‰

*

. (4.3.32)

Using the wavefunctions listed in tables 4.3 and 4.4, and anticipating that the scattering state
will be an SULp2q triplet, we find the full amplitude (4.3.1a),

ipMσρqaij » iδσρtaji
a

4πα2 25mˆ

ˆ

"

YW
k,100

ˆ

α1 ´ α2

4
,
α1 ` 3α2

4

˙

` Jk,100

ˆ

α1 ´ α2

4
,
α1 ` 3α2

4

˙*

. (4.3.33)

Squaring and summing over gauge and spin indices, projects the scattering state on the spin-1
SULp2q triplet that has 9 dof. Using the overlap integrals (4.3.4), we find

1

9

ÿ

σ,ρ

ÿ

i,j,a

ˇ

ˇ

ˇ
rMσρs

a
ij

ˇ

ˇ

ˇ

2
» 213π2 α2

αB

ˆ

1`
α2

αB

˙2 ˆ ζ2
B

1` ζ2
B

˙

Svec

ˆ

ζ1 ´ ζ2

4
, ζB

˙

. (4.3.34)

The cross-section is obtained from eq. (4.3.9a), and is shown in table 4.8. It agrees with the
results of refs. [55, 62] appropriately adjusted.

DS Ñ BpDD̄q `H

The perturbative part of the amplitude is

iAσρ
i,h

”

pDSqspin-1 Ñ pDD̄qspin-1
p1,0q `H

ı

» iδσρ
δih
?

2
y 4m2 p2πq3δ3pk1 ´ p`PH{2q. (4.3.35)

Using the wavefunctions listed in tables 4.3 and 4.4, we find the full amplitude (4.3.1a),

iMσρ
i,h » iδσρδih

d

28παH
rpα1 ` 3α2q{4s3

Rk,100

ˆ

´αH ,
α1 ` 3α2

4

˙

. (4.3.36)

and taking into account the overlap integral (4.3.4a),

1

6

ÿ

σ,ρ

ÿ

i,h

ˇ

ˇ

ˇ
Mσρ

i,h

ˇ

ˇ

ˇ

2
»

214π2αH
α3

B

ˆ

1`
αH
αB

˙2 ˆ ζ2
B

1` ζ2
B

˙

Sscl p´ζH , ζBq , (4.3.37)

with αB “ pα1 ` 3α2q{4 and ζB “ pζ1 ` 3ζ2q{4. The cross-section is obtained from eq. (4.3.9b),
and is shown in table 4.8.

4.3.4 DD bound states: p1, 1q, spin 1, n`m “ t100u

The BSF processes are listed in table 4.9, and the radiative part of the diagrams contributing
to these processes are shown in fig. 4.7. In all processes below, we project the bound-state fields
on the SULp2q singlet via εi1j1{

?
2. Moreover, as in section 4.3.3, we project both the scattering

and the bound states on the spin-1 configuration via rUσspin-1s
s1s2rUρ:spin-1s

r2r1 , and invoke that

rUσ:spin-1s
s1s2 are symmetric in s1, s2, and rUσspin-1s

s1s2rUρ:spin-1s
s1s2 “ δσρ.
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Bound state DD : p1,1q, spin 1, tn`mu “ t100u

Scattering state (spin 1) Rad
boson

Cross-section
State UY p1q SULp2q dof `S pσBSFvrelq{pπm

´2q

DD 1 1 3 1 B 0 (due to antisymmetry of DD scattering state)

DD 1 3 9 1 W
211αBα2

3

ˆ

1`
α2

αB

˙2

Svec

ˆ

´
ζ1 ` ζ2

4
, ζB

˙

DS `1{2 2 6 0 H:
211αH
αB

ˆ

1`
αH
αB

˙2

Sscl p´ζH , ζBq hHpωq

Table 4.9: Same as table 4.7 for the DD bound states. Here, αB “ p´α1 ` 3α2q{4, ζB “
p´ζ1`3ζ2q{4, and ω “ m

“

p´α1 ` 3α2q
2{16` v2

rel

‰

{4. All processes have conjugate counterparts.

s1 r1

s2 r2

K{2` kp1q

K{2´ kp1q

P {2` p

P {2´ p

PW

i i1

j j1

a

s1 r1

s2 r2

K{2` kp1q

K{2´ kp1q

P {2` p

P {2´ p

PW

i i1

j j1

a

s1 r1

s2 r2

K{2` kp1q

K{2´ kp1q

P {2` p

P {2´ p

PW

s1 r2

s2 r1

K{2` kp1q

K{2´ kp1q

P {2´ p

P {2` p

PW

i j1

j i1

a

s1 r2

s2 r1

K{2` kp1q

K{2´ kp1q

P {2´ p

P {2` p

PW

i j1

j i1

a

s1 r2

s2 r1

K{2` kp1q

K{2´ kp1q

P {2´ p

P {2` p

PW

s1 r1

s2 r2

K{2` kp1q

K{2´ kp1q

P {2` p

P {2´ p

PH:

i i1

j1

h

s1 r2

s2 r1

K{2` kp1q

K{2´ kp1q

P {2´ p

P {2` p

PH:

i j1

i1

h

Figure 4.7: Same as fig. 4.5, for the formation of DD bound states. Top two rows: DD Ñ

BpDDq `W . Bottom row: DS Ñ BpDDq `H:.
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DD Ñ BpDDq `W

The perturbative part of the amplitude is

ipAσρqaij

”

pDDqspin-1 Ñ pDDqspin-1
p1,0q `W

ı

» iδσρ g2 2mˆ

ˆ

"„

2m 4πα2
2pk1 ´ pq

pk1 ´ pq4

ˆ

´ifabctbi1it
c
j1j

εi1j1
?

2

˙

` 2p p2πq3δ3pk1 ´ pq

ˆ

tai1i
εi1j
?

2
´ taj1j

εij1
?

2

˙

´piØ j, k Ñ ´kqu , (4.3.38)

where the last line accounts for the u-channel diagrams. The different number of fermion per-
mutations in the t- and u-channel diagrams introduces a relative p´1q factor between the two,
while the projection on the symmetric spin-1 state does not. Here we have neglected the ˘PW {2
terms inside the δ-functions already at the level of the perturbative amplitude.

It is easy to check that the gauge factors in eq. (4.3.38) are symmetric in iØ j, as expected,
since the scattering state must be an SULp2q triplet. Convoluting with the scattering state
wavefunction and setting k Ñ ´k for the u channel renders the latter identical to the t-channel
up to the extra factor ´p´1q`S “ `1 since `S “ 1. Thus, the t and u channels add up, and we
find the full amplitude (4.3.1a) to be

ipMσρqaij » iδσρ
a

4πα2 28mˆ

„

2YW
k,100

ˆ

´
α1 ` α2

4
,
´α1 ` 3α2

4

˙ˆ

´ifabctbi1it
c
j1j

εi1j1
?

2

˙

`J k,100

ˆ

´
α1 ` α2

4
,
´α1 ` 3α2

4

˙ˆ

tai1i
εi1j
?

2
´ taj1j

εij1
?

2

˙

, (4.3.39)

where we also took into account the symmetry factors of the scattering and bound state wave-
functions, as stated in tables 4.3 and 4.4. Considering the relation (4.3.4c) between the overlap
integrals, the above simplifies to

ipMσρqaij » iδσρ
a

4πα2 28mˆJ k,100

ˆ

´
α1 ` α2

4
, αB

˙

Gaij , (4.3.40)

where here αB “ p´α1 ` 3α2q{4, and Gaij is the gauge factor

Gaij ” tai1i
εi1j
?

2
´ taj1j

εij1
?

2
`
α2

αB

ˆ

´i2fabctbi1it
c
j1j

εi1j1
?

2

˙

, (4.3.41)

with

GaijG
a
ij
˚
“ 3

ˆ

1`
α2

αB

˙2

. (4.3.42)

Squaring eq. (4.3.40) and summing over gauge indices and spins projects the scattering state
on the spin-1 SULp2q triplet configuration that has nine dof. Considering the overlap integral
(4.3.4b), we find

1

9

ÿ

σ,ρ

ÿ

i,j,a

|pMσρqaij |
2 » 217π2α2

αB

ˆ

1`
α2

αB

˙2 ˆ ζ2
B

1` ζ2
B

˙

Svec

ˆ

´
ζ1 ` ζ2

4
, ζB

˙

. (4.3.43)

The cross-section is obtained from eq. (4.3.9a) and is shown in table 4.9.
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DS Ñ BpDDq `H:

The perturbative part of the amplitude is

iAσρ
i,h

”

pDSqspin-1 Ñ pDDqspin-1
p1,0q `H

ı

»´ iδσρ
εih
?

2
y 4m2 p2πq3δ3pk1 ´ p`PH{2q

` iδσρ
εhi
?

2
y 4m2 p2πq3δ3pk1 ` p`PH{2q, (4.3.44)

where the fermion permutations alloted factors p`1q and p´1q to the t and u channels respec-
tively. As seen from eq. (4.3.44), the resulting relative sign is canceled upon contraction of
the bound-state fields on the SULp2q singlet state. Convoluting eq. (4.3.44) with the scattering
and bound state wavefunctions found in tables 4.3 and 4.4, and setting p Ñ ´p renders the
u-channel contribution the same as t-channel, with the extra factor p´1q` “ `1 for ` “ 0. Thus
the t and u channels add up, and we find

iMσρ
i,h »´ iδσρ εih

d

212παH
α3

B
Rk,100p´αH , αBq. (4.3.45)

Here αB “ p´α1 ` 3α2q{4, and we have included the symmetry factors of the scattering and
bound state wavefunctions. Squaring and summing over the gauge indices and spins, and using
the overlap integral eq. (4.3.4a), we find

1

6

ÿ

σ,ρ

ÿ

i,h

|Mσρ
i,h|

2 »
218π2αH
α3

B

ˆ

1`
αH
αB

˙2 ˆ ζ2
B

1` ζ2
B

˙

Ssclp´ζH , ζBq, (4.3.46)

where we averaged over the six dof of the spin-1 SULp2q doublet scattering state. The cross-
section is obtained from eq. (4.3.9b) and is shown in table 4.9.

4.3.5 DS bound states: p2, 1{2q, spin 0, n`m “ t100u

The BSF processes are listed in table 4.10, and the radiative part of the diagrams contributing
to these processes are shown in fig. 4.8. We project the bound-state fields on the spin-0 state
via U s1s2spin-0rU

´1
spin-0s

r2r1 “ pεs1s2{
?

2qpεr1r2{
?

2q.

DS Ñ BpDSq `B

The perturbative part of the amplitude is

iAi,i1
“

pDSqspin-0 Ñ pDSqspin-0 `B
‰

» iδii1 g1YD 2m 2p p2πq3δ3pk1 ´ p´PB{2q

` iδii1 g1YH y
2 4m2 2pk1 ` pq

rpk` pq2 `m2
Hs

2
, (4.3.47)

where the fermion permutations alloted factors p`1q and p´1q to the t and u channels. Upon
projection on the spin-0 states, the u channel acquired another factor p´1q. Using the wave-
functions of tables 4.3 and 4.4, we find the full amplitude (4.3.1a) to be

iMi,i1 » iδii1
?

4πα1 4m
“

J k,100p´αH , αHq ` 2YH
k,100p´αH , αHq

‰

, (4.3.48)

Next we square, sum over the gauge indices and average over the two dof of the spin-0 scattering
state. Using the overlap integrals (4.3.4), we obtain

1

2

ÿ

i,i1

|Mi,i1 |
2 »

21132π2α1

αH

ˆ

ζ2
H

1` ζ2
H

˙

Svecp´ζH , ζHq. (4.3.49)

The cross-section is found from eq. (4.3.9a) for αB “ αH and is shown in table 4.10.
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Bound state DS : p2,1{2q, spin 0, tn`mu “ t100u

Scattering state (spin 0) Rad
Boson

Cross-section
State UY p1q SULp2q dof `S pσBSFvrelq{pπm

´2q

DS `1{2 2 2 1 B 253 αHα1 Svecp´ζH , ζHq

DS `1{2 2 2 1 W 2532αHα2 Svecp´ζH , ζHq

SS-like 0 1 1 0 H:
212α2

A

pαA ` αRq2

„ˆ

1`

c

αR
8αA

˙ˆ

1`
αR
αH

˙

S
1{2
scl p´ζR, ζHq

´

ˆ

αR
αA
´

c

αR
8αA

˙ˆ

1´
αA
αH

˙

S
1{2
scl pζA, ζHq

2

hHpωq

DD̄-like 0 1 1 0 H:
28α2

A

pαA ` αRq2

„̂

αR
αA
´

c

8αR
αA

˙ˆ

1`
αR
αH

˙

S
1{2
scl p´ζR, ζHq

`

ˆ

1`

c

8αR
αA

˙ˆ

1´
αA
αH

˙

S
1{2
scl pζA, ζHq

2

hHpωq

DD̄ 0 3 3 0 H: 28

ˆ

1´
α1 ´ α2

αH

˙2

Sscl

ˆ

ζ1 ´ ζ2

4
, ζH

˙

hHpωq

DD 1 1 1 0 H 0 (due to antisymmetry of DD scattering state)

DD 1 3 3 0 H 211

ˆ

1`
α1 ` α2

αH

˙2

Sscl

ˆ

´
ζ1 ` ζ2

4
, ζH

˙

hHpωq

Table 4.10: Same as table 4.10 for the DS bound states. For the SS-like and DD̄-like states,
αA and αR should be evaluated from eq. (4.2.21) for `S “ s “ 0. Here, ω “ mpα2

H ` v
2
relq{4. All

processes have conjugate counterparts.

DS Ñ BpDSq `W

The perturbative part of the amplitude is

iAa
i,i1

“

pDSqspin-0 Ñ pDSqspin-0 `W
‰

» itai1i g2 2m 2p p2πq3δ3pk1 ´ p´PB{2q

` itai1i g2 y
2 4m2 2pk1 ` pq

rpk` pq2 `m2
Hs

2
, (4.3.50)

where the signs are determined as in eq. (4.3.47). The full amplitude is

iMa
i,i1 » itai1i

a

4πα2 24m
“

J k,100p´αH , αHq ` 2YH
k,100p´αH , αHq

‰

, (4.3.51)

and

1

2

ÿ

i,i1,a

|Ma
i,i1 |

2 »
21133π2α2

αH

ˆ

ζ2
H

1` ζ2
H

˙

Svecp´ζH , ζHq, (4.3.52)

where we used Trptataq “ 3{2. The cross-section is found from eq. (4.3.9a) for αB “ αH and is
shown in table 4.10.

SS-like Ñ BpDSq `H:

The perturbative parts of the amplitude are

iAi1h

“

pSSqspin-0 Ñ pDSqspin-0 `H:
‰

»´ iδih y 4m2 p2πq3δ3pk1 ´ p´PH:{2q

´ iδih y 4m2 p2πq3δ3pk1 ` p`PH:{2q (4.3.53a)

iAij,i1h

“

pDD̄qspin-0 Ñ pDSqspin-0 `H:
‰

»iδii1δjh y 4m2p2πq3δ3pk1 ´ p`PH:{2q. (4.3.53b)

91



s1 r1

s2 r2

K{2` kp1q

K{2´ kp1q

P {2` p

P {2´ p

PB

i i1
i

i1

,
s1 r1

s2 r2

K{2` kp1q

K{2´ kp1q

P {2` p

P {2´ p

PW

i i1

a

i

i1

s1 r1

s2 r2

K{2` kp1q

K{2´ kp1q

P {2` p

P {2´ p

PH:

i i1

j

h

s1

s2

K{2` kp1q

K{2´ kp1q

i1

h

s2

s1

K{2´ kp1q

K{2` kp1q

i1

h

s1 r1

s2 r2

K{2` kp1q

K{2´ kp1q

P {2` p

P {2´ p

PH

i i1

j

h

s2 r1

s1 r2

K{2´ kp1q

K{2` kp1q

P {2` p

P {2´ p

PH

i i1

j

h

Figure 4.8: Same as fig. 4.5, for the formation of DS bound states. Top row: DS Ñ BpDSq`B
(left) and DS Ñ BpDSq ` W (right). Middle row: DD̄-like Ñ BpDSq ` H: and SS-like
Ñ BpDSq `H:. The diagram on the left gives also DD̄ Ñ BpDSq `H:. Bottom row: DD Ñ

BpDSq `H.

In eq. (4.3.53a), the fermion permutations alloted signs p`1q and p´1q factors to the t and u
channels. Upon projection on the spin-0 state, the u channel acquired another factor p´1q. We
now project the DD̄ component of the scattering state in eq. (4.3.53b), on the SULp2q singlet
configuration via δij{

?
2,

iAi1h

”

pDD̄qspin-0
p1,0q Ñ pDSqspin-0 `H:

ı

»i
δi1h
?

2
y 4m2p2πq3δ3pk1 ´ p`PH:{2q. (4.3.53c)

Considering the wavefunctions of tables 4.3 and 4.4, the full amplitude (4.3.1a) is

iMi1h » ´iδi1h

d

212π

α2
H

ˆ

αA
αA ` αR

˙

ˆ

ˆ

„ˆ

1`

c

αR
8αA

˙

Rk,100p´αR, αHq ´

ˆ

αR
αA
´

c

αR
8αA

˙

Rk,100pαA, αHq



, (4.3.54)

where αA and αR should be evaluated from eq. (4.2.21) for `S “ s “ 0. Using the overlap
integrals (4.3.4),

ÿ

i1,h

|Mi1h|
2 »

219π2

α2
H

ˆ

αA
αA ` αR

˙2 ˆ ζ2
H

1` ζ2
H

˙

ˆ (4.3.55)

ˆ

„ˆ

1`

c

αR
8αA

˙ˆ

1`
αR
αH

˙

S
1{2
scl p´ζR, ζHq ´

ˆ

αR
αA
´

c

αR
8αA

˙ˆ

1´
αA
αH

˙

S
1{2
scl pζA, ζHq

2

.

92



The cross-section is found from eq. (4.3.9b) for αB “ αH and is shown in table 4.10.

DD̄-like Ñ BpDSq `H:

Starting from the perturbative parts (4.3.53a) and (4.3.53c), and considering the wavefunctions
of tables 4.3 and 4.4, the full amplitude (4.3.1a) is

iMi1h » iδi1h

d

28π

α2
H

ˆ

αA
αA ` αR

˙

ˆ

ˆ

„ˆ

αR
αA
´

c

8αR
αA

˙

Rk,100p´αR, αHq `

ˆ

1`

c

8αR
αA

˙

Rk,100pαA, αHq



, (4.3.56)

where again αA and αR should be evaluated from eq. (4.2.21) for `S “ s “ 0. Using the overlap
integrals (4.3.4),

ÿ

i1,h

|Mi1h|
2 »

215π2

α2
H

ˆ

αA
αA ` αR

˙2 ˆ ζ2
H

1` ζ2
H

˙

ˆ (4.3.57)

ˆ

„ˆ

αR
αA
´

c

8αR
αA

˙ˆ

1`
αR
αH

˙

S
1{2
scl p´ζR, ζHq `

ˆ

1`

c

8αR
αA

˙ˆ

1´
αA
αH

˙

S
1{2
scl pζA, ζHq

2

.

The cross-section is found from eq. (4.3.9b) for αB “ αH and is shown in table 4.10.

DD̄ Ñ BpDSq `H:

The perturbative part of the amplitude is given in eq. (4.3.53b). We project it the DD̄ scattering
state on the SULp2q triplet configuration via taji{

a

Cp2q “
?

2taji, where Cp2q “ 1{2 is the
Casimir of the SULp2q doublet representation, and obtain

iAa
i1h

”

pDD̄qspin-0
p3,0q Ñ pDSqspin-0

p2,1{2q `H
:
ı

» i
?

2tahi1y 4m2 p2πq3δ3pk1 ´ p`PH:{2q. (4.3.58)

Considering the wavefunctions of tables 4.3 and 4.4, the full amplitude (4.3.1a) is

iMa
i1h » ip

?
2tahi1q

d

29π

α2
H

Rk,100

ˆ

α1 ´ α2

4
, αH

˙

. (4.3.59)

Squaring, summing over the final state gauge indices, and averaging over the three dof of the
scattering state, we obtain

1

3

ÿ

i1,h,a

|Ma
i1h|

2 »
215π2

α2
H

ˆ

1´
α1 ´ α2

αH

˙2 ˆ ζ2
H

1` ζ2
H

˙

Sscl

ˆ

ζ1 ´ ζ2

4
, ζH

˙

, (4.3.60)

where we used Trp
?

2ta
?

2taq “ 3. The cross-section is found from eq. (4.3.9b) for αB “ αH and
is shown in table 4.10.

DD Ñ BpDSq `H

The perturbative part of the amplitude is

iAij,i1h

“

pDDqspin-0 Ñ pDSqspin-0 `H
‰

»

» ´iy 4m2
“

δii1δjhp2πq
3δ3pk1 ´ p`PH{2q ` δji1δihp2πq

3δ3pk1 ` p´PH{2q
‰

, (4.3.61)
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where the fermion permutations alloted signs p`1q and p´1q factors to the t and u channels.
Upon projection on the spin-0 state, the u channel acquired another factor p´1q. We now
project the DD scattering state on the SULp2q triplet configuration via the symbolic operator
pU3q

a
ij “ pU3q

a
ji, which satisfies pU3q

a
ijpU

:
3q
b
ji “ δab,

iAa
i1h

”

pDDqspin-0
p3,1q Ñ pDSqspin-0

p2,1{2q `H
ı

»

» ´ipU3qi1h y 4m2
“

p2πq3δ3pk1 ´ p`PH{2q ` p2πq
3δ3pk1 ` p´PH{2q

‰

. (4.3.62)

Considering the wavefunctions of tables 4.3 and 4.4, the full amplitude (4.3.1a) is

iMa
i1h » ´ipU3qi1h

d

212π

α2
H

Rk,100

ˆ

´
α1 ` α2

4
, αH

˙

, (4.3.63)

where we included the symmetry factor of the DD wavefunction. Squaring, summing over the
final state gauge indices, and averaging over the three dof of the scattering state, and using the
overlap integral (4.3.4a), we obtain

1

3

ÿ

i1,h,a

|Ma
i1h|

2 »
218π2

α2
H

ˆ

1`
α1 ` α2

αH

˙2 ˆ ζ2
H

1` ζ2
H

˙

Sscl

ˆ

´
ζ1 ` ζ2

4
, ζH

˙

. (4.3.64)

The cross-section is found from eq. (4.3.9b) for αB “ αH and is shown in table 4.10.

4.3.6 Unitarity and BSF via Higgs emission

The unitarity of the S matrix implies an upper limit on the partial-wave inelastic cross-sections,
σinel
` ď σuni

` “ p2`` 1qπ{k2, where ` is the partial wave and k is the momentum of either of the
interacting particles in the CM frame. In the non-relativistic regime, k “ µvrel with µ being the
reduced mass, thus

σuni
` vrel »

p2`` 1qπ

µ2vrel
. (4.3.65)

As already discussed in ref. [2], the high efficiency of BSF via charged scalar emission implies
that the unitarity limit (4.3.65) may be saturated already for rather small values of αH . If the
incoming particles interact via an attractive long-range force, then this occurs for the continuum
of velocities vrel À αB, otherwise only for a finite range or discrete values of vrel (cf. fig. 4.11.)
The apparent violation of unitarity at larger αH by the computations of sections 4.3.2 to 4.3.5,
whether it occurs for an infinite or finite range of vrel, indicates that these computations must
be amended. At small values of αH , higher order corrections to the perturbative transition
amplitudes AT are expected to be insignificant. Restoring unitarity in perturbative calculations
in the non-relativistic regime necessitates instead that the two-particle interactions at infinity
are resummed [46].

The results of sections 4.3.2 to 4.3.5 already include the resummation of the (leading-order)
long-range interaction between the incoming particles, computed in section 4.2.1. However, ac-
cording to the optical theorem, all elastic and inelastic processes to which the incoming state may
participate contribute to its self-energy. Typically, contact-type interactions can be neglected,
as they do not distort significantly the wavefuctions of the interacting particles. Nevertheless,
if a contact-type interaction is very strong – as is the case when the corresponding cross-section
approaches (or even appears to exceed) the unitarity limit (4.3.65) – then its contribution to
the two-particle self-energy may be significant.
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The contributions to the 2PI kernels arising from inelastic processes that involve Higgs
emission are shown in fig. 4.10. These diagrams include both scattering and bound intermediate
states of the S, D and D̄ particles, and therefore include bremsstrahlung, BSF and bound-
to-bound transitions. Note that in fig. 4.10 we have not included the resummation of the
long-range kernels of section 4.2.1 in the incoming and outgoing pairs, as this would result in
double-counting; only 2PI diagrams must be included in the kernels that determine the potential.

The proper resummation of the diagrams of fig. 4.10 requires developing suitable formalism,
and is beyond the scope of the present work. To ensure that our cross-sections are consistent
with partial-wave unitarity, we shall instead adapt the result of ref. [133] that resummed the
box diagrams arising from the perturbative part of s-wave annihilation into radiation (hard
scattering), to compute the effect on the scattering-state wavefunctions and ultimately on the full
cross-sections for s-wave annihilation into radiation. This procedure regulates the annihilation
cross-sections as follows [133, eq. (40)],

σreg
s-wavepiÑ fq “

σs-wavepiÑ fq
˜

1`

ř

f 1 σs-wavepiÑ f 1q

4σuni
s-wave

¸2 , (4.3.66)

where we have generalised the result of ref. [133] to multiple annihilation channels. Equa-
tion (4.3.66) ensures that the unitarity limit is respected by the total s-wave inelastic cross-

section, since it implies rreg “ r{p1` r{4q2 ď 1, with rpregq ”

”

ř

f σ
pregq
s-wavepiÑ fq

ı

{σuni
s-wave.

We emphasise that the assumptions made in deriving eq. (4.3.66) are not strictly satisfied in
our case, for at least two reasons: (i) Reference [133] assumed that for the resummed inelastic
processes (hard scattering), σvrel is independent of vrel. For BSF via Higgs emission, the corre-
sponding cross-sections can be found from tables 4.7 to 4.10 by setting ζS Ñ 0; eq. (4.3.6a) then
shows that they depend on vrel for vrel Á αB. (ii) In the present case, the new contributions to
the kernel may affect both the initial (scattering) and final (bound) state wavefunctions, while
only the former is relevant for annihilation into radiation in the analysis of ref. [133]. Neverthe-
less, we shall adopt eq. (4.3.66) as a perscription that regulates the inelastic cross-sections in
the velocity range where the base calculation violates unitarity, while leaving them essentially
unaffected outside that range. We leave a more precise treatment for future work.

In fig. 4.11, we show how the prescription (4.3.66) adjusts the inelastic cross-sections for the
scattering states that may participate in BSF via Higgs emission. We include the total inelastic
cross-section (BSF plus annihilation) in the resummation, although only BSF is significant.
However, both BSF and annihilation are regulated by the same factor, which implies that the
annihilation cross-sections are affected significantly even while themselves being well below the
unitarity limit.
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Figure 4.9: The radiative BSF cross-sections vs relative velocity. The four rows correspond to
capture into the ground levels of the bound states marked on the right. In the DD and DS
panels, we have included the capture into the conjugate bound states, and all BSF channels
have been weighted with the number of DM particles eliminated in each process as estimated
upon thermal averaging (cf. section 4.5.) Left column: The contributions of B, W and Hp:q

emission, for αH “ 0.1. Comparing with fig. 4.3 at vrel „ 0.1 relevant for DM freeze-out, BSF
can be comparable to or significantly faster (in the case of Hp:q emission) than annihilation,
σannvrel{pπm

´2q „ 10´3. Right column: The sum of the B-, W - and Hp:q-emission contributions,
for different values of αH . In both columns, we show the cross-sections considering and neglecting
the Higgs-mediated potential. The various σvrel normalised to πm´2 are independent of the DM
mass, except for the cutoff on BSF via Hp:q emission due the Higgs mass; for this purpose, we
have used m “ 50 TeV and temperature T “ 300 GeV which sets mH » 168 GeV. Note that we
take the Higgs potential to be Coulombic (see text for discussion.)
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iK Ą iAT Gp4q

H

iAT

Figure 4.10: The contributions to the 2PI kernels arising from inelastic processes that involve
Higgs emission. The solid lines stand for any of the S, D or D̄ particles, and Gp4q includes
their scattering and bound states. The dashed line represents the Higgs doublet. AT are the
perturbative transition amplitudes with Hp:q emission, computed in sections 4.3.2 to 4.3.5.
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Figure 4.11: The effect of the perscription (4.3.66) on the inelastic cross-sections. While only
BSF via Higgs emission approaches or appears to violate the unitarity limit, the regurarisation
affects all cross-sections with the same intial state. We have used αH “ 0.2, m “ 50 TeV and
T “ 300 GeV which corresponds to mH » 168 GeV.
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Figure 4.12: Bound-state formation or bound-to-bound transitions via exchange of an off-
shell Higgs doublet with the SM particles. The arrows on the field lines denote the flow of
Hypercharge. All processes have their conjugate counterparts that occur via H: exchange.

4.4 Bound-state formation and bound-to-bound transitions via
scattering

The dissipation of energy necessary for the capture into bound states or transitions between
bound levels, may occur via exchange of an off-shell mediator with particles of the thermal
bath [61, 64, 65, 102, 134].4 References [102, 134] showed, in the context of a Up1q model, that
the cross-sections for BSF via scattering factorise into the radiative ones (with any phase-space
suppression due to the mass of the emitted vector removed), and a factor that depends on the
thermal bath and the interaction that mediates the scattering.

In the following, we consider BSF and bound-to-bound transitions via off-shell Higgs ex-
change. We derive a similar factorisation and then compute the BSF cross-sections and transi-
tion rates. We also adapt the results of refs. [102, 134] to our model, for BSF and transitions
via off-shell B and W exchange.

4.4.1 H exchange

Factorisation of the effective BSF cross-sections and transition rates

For simplicity, we lay out the discussion in terms of the BSF cross-sections only. The derivation
for bound-to-bound transition rates is analogous.

The thermally averaged rate per unit volume for BSF via off-shell Higgs exchange is

dxΓH˚-BSF
n`m y

dV
“ g1g2

ż

d3k1

p2πq3
d3k2

p2πq3
f`pk

0
1qf`pk

0
2qr1` f´pωkÑn`mqs σ

H˚-BSF
kÑn`mvrel, (4.4.1)

where we defined

σH
˚-BSF

kÑn`mvrel ”
r1` f´pωkÑn`mqs

´1

2k0
12k0

2

ż

d3P

p2πq32P 0

d3qi
p2πq32q0

i

d3qf
p2πq32q0

f

f˘pq
0
i qr1¯ f˘pq

0
f qsˆ

ˆ p2πq4δ4pk1 ` k2 ` qi ´ P ´ qf q
1

g1g2
|MH˚-BSF

kÑn`m|
2. (4.4.2)

4Other rearragement processes have been considered in ref. [63].
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Here, the indices 1,2 correspond to the two incoming DM fields, while qi and qf denote the initial
and final bath particle momenta. We consider scattering only on relativistic species, whose
density in a thermal environment is large, and set q0

i “ |qi| and q0
f “ |qf |. f˘pEq “ pe

E{T ˘1q´1

are the phase-space occupation numbers for fermions (`) and bosons (´), and in eq. (4.4.2) the
upper and lower signs correspond to scattering on fermionic or bosonic dof respectively.

ωkÑn`m is the energy dissipated by the DM fields in the capture process, given by eq. (4.3.8).
When the DM particles are non-relativistic, it depends only on the relative momentum of the
incoming DM particles and the binding energy of the bound state, but is independent of the
momenta of the bath particles. (We note that this does not hold for the 3-momentum exchange
|qf´qi| along the off-shell mediator.) The factor r1`f´pωkÑn`mqs in eq. (4.4.1) is compensated
by the inverse factor in eq. (4.4.2); this definition ensures that the thermal averaging of the
cross-section (4.4.2) is the same as that of its radiative counterpart, which includes a Bose-
enhancement factor for the radiated boson (cf. section 4.5.)

Next, we conjecture that the amplitude for off-shell H exchange, MH˚-BSF
kÑn`m, can be factorised

into the corresponding amplitude with on-shell H emission, MH-BSF
kÑn`m, and a function of the

momenta of the bath particles, as follows5

ÿ

i,f dof

|MH˚-BSF
kÑn`m|

2 » |MH-BSF
kÑn`m|

2 ˆR0pqi ¨ qf q, (4.4.3)

where the sum on the left side runs over the dof (spin and gauge) of the initial and final bath
particles. MH-BSF

kÑn`m may depend only on the momentum exchange q ” qf ´ qi rather than
on qi and qf separately. R0 must be Lorentz invariant since the amplitudes are. It may thus
depend only on the 4-vector products q2

i “ q2
f “ 0 and qi ¨ qf ; in eq. (4.4.3) we have denoted

its dependence on the latter. The R0 factors will be specified in section 4.4.1 for the processes
shown in fig. 4.12. Switching the integration from qf to q, eq. (4.4.2) gives

σH
˚-BSF

kÑn`mvrel “ r1` f´pωkÑn`mqs
´1

ż

d3qi
p2πq32|qi|

ˆ
1

2k0
12k0

2

ż

d3P

p2πq32P 0

d3q

p2πq32q0
p2πq4δ4pk1 ` k2 ´ P ´ qq

1

g1g2
|MH-BSF

kÑn`m|
2

ˆ
2q0

2|q` qi|
f˘p|qi|q r1¯ f˘p|q` qi|qsR0pqi ¨ qf q, (4.4.4)

where

q0 ” q0
f ´ q

0
i » |q` qi| ´ |qi|. (4.4.5)

The second line of eq. (4.4.4) would form the BSF cross-section via on-shell emission, except for
two complications: (i) The dispersion relation of the radiated momentum is given by eq. (4.4.5)
rather than the on-shell condition of the radiated boson, and depends on the variable qi. (ii) The
last line of eq. (4.4.4) depends on q. These complications are resolved within the non-relativistic
approximation, where the cross-section of BSF via scattering can be shown to be proportional
to that of radiative BSF, as we shall now see.

Non-relativistic approximation

Similarly to radiative BSF, if the incoming particles are non-relativistic and the final state
particles are weakly bound, we may neglect the recoil of the bound state. Then, the energy-
momentum conservation implies q0 » ω with ω given by eqs. (4.3.8) and (4.3.12) for BSF and

5For BSF via vector exchange/emission, the amplitude-squared does not factorise as in eq. (4.4.3). However,
it is still possible to obtain a factorisation formula similar to eq. (4.4.9) below, for an effective cross-section, at
leading order in the non-relativistic approximation [102, 134]. (See also footnote 7.)
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bound-to-bound transitions. (Here we drop the ω indices for simplicity.) The dispersion relation
(4.4.5) yields

|q| » ω

«
c

1`
2|qi|

ω
`
|qi|

2τ2

ω2
´
|qi|τ

ω

ff

, (4.4.6)

with τ ” q̂i ¨ q̂. It is also easy to show that qi ¨ qf “ pq2 ´ ω2q{2. Using the δ4-function to
perform the integration over d3P d|q| (as is standard in the computation of 2-to-2 cross-sections),
eq. (4.4.4) gives

σH
˚-BSF

kÑn`mvrel » r1` f´pωqs
´1

ż

d3qi
p2πq32|qi|

ω

ω ` |qi|
f˘p|qi|q r1¯ f˘pω ` |qi|qs

ˆ
1

2k0
12k0

2

1

2P 02ω

ż

dΩq

4π2
q2

ˆ

ω ` |qi|

|q| ` |qi|τ

˙

1

g1g2
|MH-BSF

kÑn`m|
2

ˆR0

ˆ

q2 ´ ω2

2

˙

, (4.4.7)

with P 0 » 2m and |q| given by eq. (4.4.6). Note that the second line of eq. (4.4.7) differs

from pσH-BSF
kÑn`mvrelq by the factor

ω ` |qi|

|q| ` |qi|τ

N

ω

|q|
due to the different dispersion relation of the

radiated momentum q, here given by eq. (4.4.5).
The radiative BSF amplitudes are typically computed by expanding in powers of the radiated

momentum q [43].6 As seen in section 4.3, the dominant contribution to the various MH-BSF
kÑn`m

amplitudes arises from the zeroth order term [2], i.e. MH-BSF
kÑn`m are independent of q (and therefore

τ) at leading order. Reshuffling the various factors, eq. (4.4.7) becomes

σH
˚-BSF

kÑn`mvrel »
1

8π2

1

2k0
12k0

2

ω

2P 0

ż

dΩq
1

g1g2
|MH-BSF

kÑn`m|
2ˆ (4.4.8)

ˆ r1` f´pωqs
´1

ż

d3qi
p2πq32|qi|

f˘p|qi|q r1¯ f˘pω ` |qi|qs
|q|2

ωp|q| ` |qi|τq
R0

ˆ

q2 ´ ω2

2

˙

.

The integration over d3qi in the second line of eq. (4.4.8) eliminates any dependence of the
integrand on the orientation of the vector q, allowing us to identify the first line as the cross-
section for on-shell Higgs emission with the phase-space suppression removed (cf. eqs. (4.3.7b)
and (4.3.9b).) Thus, the effective cross-section for off-shell Higgs exchange can be factorised at
leading order as follows7

σH
˚-BSF

kÑn`mvrel »
σH-BSF

kÑn`mvrel

hHpωkÑn`mq
ˆRHpωkÑn`mq, (4.4.9)

6The expansion is in effect in the dimensionless combination |q|{
a

κ2{n2 ` k2 “ |q|{
?

2µω. For BSF via on-
shell emission, the radiated momentum is limited by the available energy, |q| ď ω, thus the expansion parameter is
always

a

ω{p2µq ! 1. However, for BSF via scattering, |q| can be comparable to or larger than
?

2µω, particularly
at T Á κ{n, which puts in question the validity of the expansion. Nevertheless, for the purposes of DM freeze-out,
BSF typically reaches ionisation equilibrium at high T , where the DM destruction rate via BSF is independent of
the BSF cross-sections [106] (cf. section 4.5.) At lower T , where the magnitude of the BSF cross-sections matters,
the |q| expansion is a valid approximation.

7Note that eq. (4.4.9) holds for the effective cross-section of BSF via off-shell Higgs exchange as defined in
eq. (4.4.2). Since MH-BSF

kÑn`m is presumed to be independent of q and therefore q ¨ k, it has not been necessary to
integrate over the angular variables of k in order to obtain a factorised expression for the cross-section. This is
in contrast to the case of vector exchange, where the amplitude does not factorise as in eq. (4.4.3) and in fact
depends on qi ¨ k and qf ¨ k. A factorisation similar to eq. (4.4.9) is obtained only for the cross-section averaged
over the k solid angle [102, 134] (cf. section 4.4.2.)
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where hHpωq is the phase-space suppression (4.3.10) of the on-shell emission due to the Higgs
mass, with ωkÑn`m being the dissipated energy (4.3.8), and we restored the indices for concrete-
ness. The dimensionless factor RHpωq is

RHpωq ”

ż

d3qi
p2πq32|qi|

q2

ωp|q| ` |qi|τq

f˘pqiq r1¯ f˘pω ` |qi|qs

1` f´pωq
R0

ˆ

q2 ´ ω2

2

˙

. (4.4.10)

We recall that |q| is given by eq. (4.4.6). Since the entire integrand is rotationally invariant
(recall that R0 is Lorentz invariant), we perform the d3qi integration by setting q on the z axis.
Then the azimuthal angle is parametrised by τ defined above. Changing integration variables
from |qi| and τ to u ” |qi|{ω and z ” q2{ω2 ´ 1, eq. (4.4.10) simplifies to

RHpωq “
ω2

16π2

ż 8

0
du

f˘pωuq r1¯ f˘ pωp1` uqqs

1` f´pωq

ż 4up1`uq

0
dz R0

`

zω2{2
˘

. (4.4.11)

We compute RH next. The final result can be found in eqs. (4.4.19) to (4.4.21).

Following the same steps, we find that the bound-to-bound transition rate via off-shell Higgs
exchange is related to the radiative one via

ΓH˚-BSF
n1`1mÑn`m »

ΓH-BSF
n1`1m1Ñn`m

hHpωn1`1m1Ñn`mq
ˆRHpωn1`1m1Ñn`mq, (4.4.12)

where ωn1`1m1Ñn`m is the dissipated energy (4.3.12).

Amplitudes

Similarly to their radiative analogues, the amplitudes for BSF and bound-to-bound transitions
via scattering consist of the perturbative transition amplitudes that encode the scattering on
the bath particles, convoluted with the initial and final state wavefunctions. Focusing again on
BSF (cf. eq. (4.3.1a)),

iMH˚-BSF
kÑn`m “

ż

d3k1

p2πq3
d3p

p2πq3
rψn`mppqs

:

?
2µ

iAH˚-BSF
T pk1,pq φkpk

1q. (4.4.13)

We now compute AH˚-BSF
T pk1,pq for the scattering processes shown in fig. 4.12, and deduce from

eq. (4.4.11) the corresponding R factors.

Scattering on fermions

The Higgs couples to the SM fermions via the operators

δL “ ´yepδabL̄L aHbqeR ´ ydpδabQ̄L aHbqdR ´ yupεabQ̄L aH
:

b quR ` h.c., (4.4.14)

where the a, b superscripts indicate the SULp2q contractions, while the family indices are sup-
pressed. These couplings give rise to the scattering processes shown in fig. 4.12 (top). The
corresponding BSF perturbative transition amplitudes (projected on the desired spin and gauge,
scattering and bound states) are8

i
”

AH˚-BSF
T pk1,pq

ı

h
“ i

“

AH-BSF
T pk1,pq

‰

h1
ˆ

i
q2 ´m2

H

ūf p´iy˚F qδhh1
ˆ

1´ γ5

2

˙

ui, (4.4.15)

8In eq. (4.4.15), the sign of the γ5 term and whether the Yukawa coupling should be yF or y˚F depend on the
exact process we are considering. For scattering on antifermions, the spinors ui, uf become vi, vf . In addition,
for a scattering involving an up-type right-handed (anti)quark, δhh1 should be replaced by εhh1 . However, all these
differences do not affect the R0 factors.
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where h, h1 are the SULp2q indices of the left-handed SM fermion field and the exchanged Higgs,
respectively. The scattering and bound states gauge indices, if any, are left implicit. We use
yF to denote collectively the SM Yukawa couplings of eq. (4.4.14). Inserting eq. (4.4.15) into
(4.4.13), squaring and summing over the bath particle spin and gauge dof, we arrive at the R0

factors (cf. eq. (4.4.3)),

R0 “ 2ˆ |yF |
2 2qi ¨ qf
p2qi ¨ qf `m2

Hq
2
, (4.4.16)

where we introduced a factor 2 to account for the partner process controlled by the same coupling,
where the initial (final) fermion becomes the final (initial) antifermion.

Scattering on bosons

The perturbative transition amplitude for scattering on gauge bosons (fig. 4.12, bottom left),
projected on the desired spin and gauge, scattering and bound states, is

i
”

AH˚-BSF
T pk1,pq

ıa,µ

h
“ irAH-BSF

T pk1,pqsh1 ˆ
i

q2 ´m2
H

ˆ ig T ahh1 pqf ` qq
µ, (4.4.17)

where h, h1 and a are the SULp2q indices of the outgoing and exchanged Higgs bosons and the
incoming gauge boson respectively. T a and g stand for the generators and the gauge coupling of
the gauge group under consideration. Inserting eq. (4.4.17) into (4.4.13), squaring and summing
over the bath particle polarisations and gauge dof, we find the R0 factors

R0 “ 2ˆ 4παC2pRHq
4qi ¨ qf

p2qi ¨ qf `m2
Hq

2
, (4.4.18)

where, as before, we introduced a factor 2 to account for the partner process where H: is the
incoming bath particle (fig. 4.12, bottom right). C2pRHq is the quadratic Casimir of the Higgs
representation under the gauge group considered; here, C2pRHq “ Y 2

H “ 1{4 for Hypercharge
and C2pRHq “ 3{4 for SULp2q.

BSF cross-sections and transition rates

Both eqs. (4.4.16) and (4.4.18) depend only on qi ¨ qf , as presumed in eq. (4.4.3), and in fact in
the same fashion. Inserting them into eq. (4.4.11), and carrying out the integration over z, we
find the contributions of scattering on fermions and bosons to BSF,

RF
H “ 2ˆ

|yF |
2

4π

1

2
ˆR` ,

RBH
H “ 2ˆ p1{4qα1 ˆR´ ,

RWH
H “ 2ˆ p3{4qα2 ˆR´ ,

(4.4.19a)

(4.4.19b)

(4.4.19c)

where R˘ are dimensionless functions of two parameters, ω{T and mH{ω,

R˘ ”
1

2π

ż 8

0
du

euω{T

eupω{T q ˘ 1

eω{T ´ 1

ep1`uqω{T ˘ 1

"

ln

„

1`
4up1` uq

m2
H{ω

2



´
4up1` uq

4up1` uq `m2
H{ω

2

*

.

(4.4.20)
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The factor 1{2 in eq. (4.4.19a) is due to the SM fermions being chiral. The RH factor that
determines the BSF via scattering cross-section (4.4.9) is

RH “
ÿ

F

RF
H `R

BH
H `RWH

H . (4.4.21)

Among the SM fermions, the top quark yields the largest contribution as long as it remains
relativistic.

The R˘ factors (4.4.20) diverge at mH Ñ 0, which for our purposes occurs around the EWPT
(cf. section 4.5.) This divergence can be removed by a full next-to-leading-order calculation, as
done in ref. [134] in the context of a Up1q gauge theory. Performing such a computation for
the model considered here is beyond the scope of this work. However, comparing the results
of refs. [102] and [134] for a massive and massless vector mediator respectively, we find that,
upon thermal averaging, the former approximates well the latter at temperatures higher than
the binding energy if the screening scale (i.e. the mediator mass) is set to 0.74ω.9 Considering
this, in eq. (4.4.20) we shall do the replacement

mH Ñ maxpmH , ωq. (4.4.22)

We present R˘ and RH in fig. 4.13. It is clear that they are more significant for ω{T ! 1. This
implies that for bound-to-bound transitions, they enhance the rates at T " ωn1Ñn “ |En1 ´ En|.
For BSF via scattering, the R˘ factors weigh preferentially the contribution of DM pairs with
low relative velocity. We note that even though in a thermal bath xωkÑn`my “ |En|`p3{2qT ą T
(cf. eq. (4.3.8)), lower values of ωkÑn`m may still incur in a sizeable portion of the DM collisions
while T Á |En|.

Even when the RH factor (4.4.21) is less than 1, BSF via scattering may potentially be (i)
faster than radiative BSF, which is suppressed by the hHpωkÑn`mq phase-space factor (4.3.10),
becoming entirely inaccessible for mH{ωkÑn`m ą 1, and (ii) significant with respect to direct
annihilation and BSF via vector emission, since these processes are suppressed by one (two)
extra power(s) of couplings compared to BSF via Hp:q off-shell exchange (on-shell emission.)
Analogously, bound-to-bound transitions via scattering may dominate over their radiative coun-
terparts and/or the direct bound-state decay into radiation.

To assess realistically the impact of BSF and bound-to-bound transitions via scattering we
must thermally average the cross-sections and rates of eqs. (4.4.9) and (4.4.12), and consider
the interplay of bound-state formation, decay, ionisation and transition processes in the thermal
bath. We do so in section 4.5 and figs. 4.14 and 4.15.

4.4.2 B and W exchange

References [102, 134] showed in the context of a Up1q gauge theory that the effective cross-
section for BSF via off-shell vector exchange, defined via the thermally averaged rate per volume
(cf. footnote 7)

dxΓ V ˚-BSF
n`m y

dV
“ n1n2

ˆ

2µ3

πT 3

˙1{2 ż

dvrel v
2
rel e

´µv2
rel{p2T q

ˆ

1`
1

eωkÑn`m{T ´ 1

˙

pσV
˚-BSF

kÑn`mvrelq,

(4.4.23)

9Reference [134] found that using the binding energy as the minimum screening scale provides a good ap-
proximation. While this is indeed so, the above prescription ensures that the R factor depends only on ω{T as
predicted by the full computation, besides being a somewhat better approximation.
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Figure 4.13: Left : The R˘ and RH factors of eqs. (4.4.20) and (4.4.21) that determine the ratio
of BSF via off-shell Hp:q scattering over on-shell Hp:q emission. Right : The RB and RW factors
of eqs. (4.4.25) that determine the ratio of BSF via off-shell B or W scattering on fermions over
on-shell B or W emission. Also shown, the RUp1q factor from [134] (cf. footnote 10.)

is, at leading order in the non-relativistic regime, proportional to the cross-section for on-shell
emission, σV

˚-BSF
kÑn`mvrel “ pσ

V -BSF
kÑn`mvrelq ˆ RV , where RV “ 2 ˆ α ˆ RUp1q. As in section 4.4.1, the

factor 2 accounts for the partner processes related via exchanging the initial (final) bath particle
with the final (initial) bath antiparticle, and α is the fine structure constant of the group. The
factor RUp1q depends only on ω{T provided that V is massless, and has been derived in [134] via
a next-to-leading order calculation where the colinear and infrared the divergences are cancelled.
For a massive V , a simple analytical formula that depends on ω{T and mV {ω has been computed
in [102]. We define RUp1q to correspond to scattering on one species of relativistic Dirac fermions
with charge unity, and use the results of [134].10

Adapting the result to the present model, the cross-sections for BSF via off-shell B and W
exchange are related to those of on-shell emission as follows

σB
˚-BSF

kÑn`mvrel » pσ
B-BSF
kÑn`mvrelq ˆRBpωkÑn`m{T q, (4.4.24a)

σW
˚-BSF

kÑn`mvrel » pσ
W -BSF
kÑn`mvrelq ˆRW pωkÑn`m{T q, (4.4.24b)

where

RBpω{T q “ 2ˆ cBα1 ˆRUp1qpω{T q, (4.4.25a)

RW pω{T q “ 2ˆ cWα2 ˆRUp1qpω{T q. (4.4.25b)

The factors cB and cW account for scattering on the relativistic SM fermions. The contribution of
a chiral fermion F transforming under the representation RF of a gauge group is cF “ CpRF q{2,
where C is the Casimir operator. When all the SM fermions are relativistic, cB “ p1{2q

ř

F
Y 2
F “

5 and cW “ p1{2qCp2q ˆ 12 “ 3, where Cp2q “ 1{2 for SULp2q.
Note that eq. (4.4.25b) includes only scattering on SM fermions via off-shell W exchange.

However, non-Abelian gauge bosons may also scatter on themselves due to the trilinear gauge

10 RUp1q is related to R2002.07145 defined in ref. [94, eq. (4.13) and fig. 14] as RUp1q ” R2002.07145{p2πq. We thank
Tobias Binder for providing the numerical values of R2002.07145.
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coupling. Estimating this effect necessitates a dedicated next-to-leading order computation that
is beyond the scope of this work. We shall thus neglect this contribution.

Formulae analogous to eqs. (4.4.25) hold for bound-to-bound transitions via off-shell B and
W exchange, however no such transition is of interest here.

We present the RB and RW factors in fig. 4.13.

4.5 Dark matter thermal decoupling: Boltzmann equations

4.5.1 Coupled Boltzmann equations

Let Yj ” nj{s and YB ” nB{s be the number-density-to-entropy-density ratios of the free species
i and the bound state B respectively. In our model, j “ S, D, D̄ and B “ SS{DD̄, DD̄, DD,
DS. We are ultimately interested in the total DM yield

Y ” YS ` YD ` YD̄ “ YS ` 2YD. (4.5.1)

Note that the bound states are metastable and their abundance becomes eventually negligible,
so we do not include them in eq. (4.5.1). As is standard, we will use the time parameter

x ” m{T. (4.5.2)

The entropy density of the universe is s “ p2π2{45qg˚ST
3 “ p2π2{45qg˚Sm

3{x3. We denote by
g˚S and g˚ the entropy and energy dof respectively, and define

g
1{2
˚,eff “

g˚S
?
g˚

ˆ

1´
x

3g˚S

dg˚S
dx

˙

. (4.5.3)

The evolution of Yj and YB is governed by the coupled Boltzmann equations

dYj
dx

“´
λ

x2

ÿ

i

xσann
ji vrely

´

YjYi ´ Y
eq
j Y eq

i

¯

´
λ

x2

ÿ

i

ÿ

B

xσBSF
jiÑB vrely

ˆ

YjYi ´
YB

Y eq
B
Y eq
j Y eq

i

˙

´ Λx
ÿ

i

xΓjÑiy

ˆ

Yj ´
Yi
Y eq
i

Y eq
j

˙

, (4.5.4a)

dYB

dx
“´ Λx

«

xΓ dec
B y pYB ´ Y

eq
B q `

ÿ

i,j

xΓ ion
BÑijy

˜

YB ´
YiYj

Y eq
i Y eq

j

Y eq
B

¸

`
ÿ

B1‰B

xΓ trans
BÑB1y

ˆ

YB ´
YB1

Y eq
B1
Y eq

B

˙

ff

, (4.5.4b)

where

λ ”

c

π

45
mPlmg

1{2
˚,eff and Λ ”

λ

s x3
“

c

45

4π3

mPl

m2

g
1{2
˚,eff

g˚,S
, (4.5.5)

and the equilibrium densities in the non-relativistic regime are

Y eq
i »

90

p2πq7{2
gi
g˚,S

x3{2 e´x and Y eq
B »

90

p2πq7{2
gB
g˚,S

p2xq3{2 e´2x e|EB|{T , (4.5.6)

where gi are the spin and SULp2q dof of the free species, with gS “ 2, gD “ gD̄ “ 4; we also
define gDM ” gS ` gD ` gD̄ “ 10. The dof gB and the binding energies EB of the bound states we
consider here can be found in table 6.
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In the above, Γ dec
B , Γ ion

BÑij and Γ trans
BÑB1 are respectively the rates of B decay into radiation,

ionisation (a.k.a. dissociation) to ij, and transition into the bound level B1. The rates ΓjÑi
describe the transitions between free particles, due to decays, inverse decays and/or scatterings
on the thermal bath; overall, these processes do not change the DM number density. Note
that in eqs. (4.5.4) we must use the thermally averaged rates, xΓ y. The thermal average in-
troduces Lorentz dilation factors for decay processes – which however are insignificant in the
non-relativistic regime – as well as Bose-enhancement factors in the case of transitions and
capture or ionisation processes. We discuss this in more detail in section 4.5.3. The thermally-
averaged rates and cross-sections of inverse processes are related via detailed balance that we
have already employed in writing eqs. (4.5.4),

xΓ trans
BÑB1y “ Γ trans

B1ÑB ˆ pY
eq
B1 {Y

eq
B q, (4.5.7a)

xΓ ion
BÑijy “ s xσBSF

ijÑBvrely ˆ pY
eq
i Y eq

j {Y
eq
B q, (4.5.7b)

xΓiÑjy “ xΓjÑiy ˆ pY
eq
j {Y

eq
i q. (4.5.7c)

The fractional relic DM density is

Ω » pm´
?

4παHvHqY8s0{ρc, (4.5.8)

where Y8 is the final yield, and we have included the mass shift of the lightest state that arises
after the electroweak symmetry breaking (cf. eq. (4.1.11)); this is significant only for the lower
end of the mass range we consider and for large couplings. In eq. (4.5.8), s0 » 2839.5 cm´3 and
ρc » 4.78 ¨10´6 GeV cm´3 are the entropy and critical energy densities of the universe today [7].

4.5.2 Effective Boltzmann equation

The system of coupled Boltzmann eqs. (4.5.4) is numerically difficult to solve. We shall thus
adopt an effective method that reduces eqs. (4.5.4) to one equation for the DM yield (4.5.1).

For convenience, we first define the total formation cross-section, ionisation rate and transi-
tion rate of every bound state B,

σBSF
B ”

ÿ

i,j

gigj
g2

DM

σBSF
ijÑB, (4.5.9a)

Γ ion
B ”

ÿ

i,j

Γ ion
BÑij , (4.5.9b)

Γ trans
B ”

ÿ

B1

Γ trans
BÑB1 . (4.5.9c)

We begin by assuming that the i Ø j interactions are sufficiently rapid to ensure kinetic
equilibrium, such that Yi{Y

eq
i “ w, where w is the same for all i “ S,D, D̄. Due to their decays,

inverse decays and transitions to other bound levels, the bound states are typically close to
equilibrium, thus dYB{dx » 0. Under this assumption, eqs. (4.5.4b) yield a system of linear
equations for YB that can be solved and re-employed in eq. (4.5.4a) [135]. For bound states that
do not participate in any bound-to-bound transitions, such as DD̄ and DD in our system, it is
easy to obtain

YB “ Y eq
B
xΓ dec

B y ` w2xΓ ion
B y

xΓ dec
B y ` xΓ ion

B y
. (4.5.10)

107



For the coupled bound states SS{DD̄ and DS, eqs. (4.5.4a) read
ˆ

xΓ dec
SS{DD̄y ` xΓ

ion
SS{DD̄y ` 2xΓ trans

SS{DD̄ÑDSy ´2xΓ trans
DSÑSS{DD̄y

´xΓ trans
SS{DD̄ÑDSy xΓ ion

DS y ` xΓ
trans
DSÑSS{DD̄y

˙ˆ

YSS{DD̄
YDS

˙

“

“

ˆ
“

xΓ dec
SS{DD̄y ` w

2xΓ ion
SS{DD̄y

‰

Y eq
SS{DD̄

w2xΓ ion
DS yY

eq
DS

˙

, (4.5.11)

where we set xΓ dec
DS y » 0, and we recall that xΓ trans

SS{DD̄ÑDSy “ xΓ trans
DSÑSS{DD̄ypY

eq
DS{Y

eq
SS{DD̄q, due to

detailed balance eq. (4.5.7a). The factors 2 in the first row account for transitions to and from
the two conjugate bound states DS and D̄S.

Next, we use eq. (4.5.10) for the DD̄ and DD yields and the solution of eq. (4.5.11) for the
SS{DD̄ and DS yields, in the Boltzmann eq. (4.5.4a). Summing over all free particle species,
we find that the evolution of Y is governed by the Boltzmann equation

dY

dx
“ ´

c

π

45

mPl mg
1{2
˚,eff

x2
xσvrelyeff rY

2 ´ pY eqq2s, (4.5.12)

where the equilibrium density Y eq is

Y eq “
90

p2πq7{2
gDM

g˚,S
x3{2 e´x. (4.5.13)

and we recall that gDM “ gS ` gD ` gD̄ “ 10. The DM destruction cross-section receives
contributions from direct annihilation and BSF processes,

xσvrelyeff “ xσannvrely ` xσBSFvrelyeff , (4.5.14)

where

xσannvrely ”
ÿ

i,j

gigj
g2

DM

xσann
ij vrely, (4.5.15)

and

xσBSFvrelyeff “ xσ
BSF
SS{DD̄vrelyeff ` xσ

BSF
DD̄ vrelyeff ` 2xσBSF

DD vrelyeff ` 2xσBSF
DS vrelyeff , (4.5.16)

where the factors 2 in the DD and DS terms account also for the formation of the conjugate
bound states, and the individual contributions are found from the following:

xσBSF
SS{DD̄vrelyeff

xσBSF
SS{DD̄vrely

“
xΓ dec

SS{DD̄y

xΓ dec
SS{DD̄y ` xΓ

ion
SS{DD̄y ` 2

xΓ ion
DS y xΓ

trans
DSÑSS{DD̄y

xΓ ion
DS y ` xΓ

trans
DSÑSS{DD̄y

Y eq
DS

Y eq
SS{DD̄

, (4.5.16a)

xσBSF
DD̄ vrelyeff

xσBSF
DD̄ vrely

“
xΓ dec

DD̄ y

xΓ dec
DD̄ y ` xΓ

ion
DD̄y

, (4.5.16b)

xσBSF
DD vrelyeff

xσBSF
DD vrely

“
xΓ dec

DD y

xΓ dec
DD y ` xΓ

ion
DDy

, (4.5.16c)

xσBSF
DS vrelyeff

xσBSF
DS vrely

“

xΓ trans
DSÑSS{DD̄y ˆ

xΓ dec
SS{DD̄y

xΓ dec
SS{DD̄y ` xΓ

ion
SS{DD̄y

xΓ ion
DS y ` xΓ

trans
DSÑSS{DD̄y ` 2

xΓ ion
DS yxΓ

trans
DSÑSS{DD̄y

xΓ dec
SS{DD̄y ` xΓ

ion
SS{DD̄y

Y eq
DS

Y eq
SS{DD̄

, (4.5.16d)

In eqs. (4.5.16), xσBSF
B vrely are the thermal averages of the actual velocity-weighted formation

cross-sections for every bound state, defined in eq. (4.5.9a); we discuss them further in the
following section. Note that if the transitions between the SS{DD̄ and DS bound states are
very rapid, in particular when xΓ trans

DSÑSS{DD̄y " xΓ
ion
DS y, then the branching ratios that weigh their

actual BSF cross-sections in eqs. (4.5.16a) and (4.5.16d) are equal.
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4.5.3 Effective cross-section

We now consider in more detail the contributions to the effective DM destruction cross-section in
our model, based on the computations of sections 4.2 to 4.4. We begin with direct annihilation
in section 4.5.3, and then discuss BSF in section 4.5.3. In figs. 4.14 and 4.15 we illustrate the
contributions to BSF, while in fig. 4.16 we compare all contributions to the DM destruction
cross-section for a chosen set of parameters, showcasing the effect of the Higgs potential and of
BSF via Higgs emission.

Annihilation

In our model, the total annihilation cross-section is

σannvrel “ rgSSpσ
ann
SS vrelq ` 2gDDpσ

ann
DD vrelq ` 2gDD̄pσ

ann
DD̄ vrelq ` 4gDSpσ

ann
DS vrelqs {g

2
DM, (4.5.17)

where the dof of the various two-particle states are gSS “ 4, gDD “ 16, gDD̄ “ 16, gDS “ 8. In
eq. (4.5.17), the DD and DS contributions carry factors of 2 to account also for the annihilation
of the conjugate states, and DD̄ and DS carry factors of 2 to account for the two distinguishable
particles annihilated in each process.11 From table 4.5, we find12

gSSpσ
ann
SS vrelq{pπm

´2q “ 0, (4.5.18a)

gDDpσ
ann
DD vrelq{pπm

´2q “ 3ˆ
4α2

H

3
ˆ S0

ˆ

´ζ1 ` 3ζ2

4

˙

, (4.5.18b)

gDD̄pσ
ann
DD̄ vrelq{pπm

´2q “ 1ˆ

ˆ

α2
1

2
`

3α2
2

2

˙

ˆ
αAS0pζAq ` αRS0p´ζRq

αA ` αR

` 3ˆ

„

pα1 ` 2αHq
2

12
`

10α2
1

3



ˆ S0

ˆ

ζ1 ` 3ζ2

4

˙

` 3ˆ α1α2 ˆ S0

ˆ

ζ1 ´ ζ2

4

˙

` 9ˆ

„

pα2 ` 2αHq
2

12
`
α2

2

12
` 2α2

2



ˆ S0

ˆ

ζ1 ´ ζ2

4

˙

, (4.5.18c)

gDSpσ
ann
DS vrelq{pπm

´2q “ 6ˆ
´α1αH

6
`
α2αH

2

¯

ˆ S0p´ζHq. (4.5.18d)

The thermally averaged annihilation cross-section (4.5.15) is found from (4.5.17), (4.5.18) and

xσannvrely “

´ m

4πT

¯3{2
ż

d3vrel e
´mv2

rel{p4T q pσannvrelq. (4.5.19)

11As is well known, for pairs of identical particles (here SS, DD, D̄D̄), this factor is canceled upon thermal
averaging by the factor 1/2 needed to avoid double-counting of the initial particle states [108].

12We recall from section 4.2.3 that, for simplicity, the contribution from the annihilation of the SS-like state
has been included in the DD̄ state.
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Bound state formation

Referring to tables 4.7 to 4.10, and recalling also the results of section 4.4, the cross-sections for
the formation of the different bound-state species are

σBSF
SS{DD̄vrel “

1

g2
DM

!

2ˆ 1ˆ p1`RBq ˆ σvrelrpDD̄q
spin-0
p1,0q s

`2ˆ 3ˆ p1`RW q ˆ σvrelrpDD̄q
spin-0
p3,0q s

`4ˆ 2ˆ p1`RH{hHq ˆ σvrelrpDSq
spin-0
p2,1{2qs

)

, (4.5.20a)

σBSF
DD̄ vrel “

1

g2
DM

!

2ˆ 3ˆ p1`RBq ˆ σvrelrpDD̄-likeqspin-1
p1,0q s

`1ˆ 3ˆ p1`RBq ˆ σvrelrpSS-likeqspin-1
p1,0q s

`2ˆ 9ˆ p1`RW q ˆ σvrelrpDD̄q
spin-1
p3,0q s

`4ˆ 6ˆ p1`RH{hHq ˆ σvrelrpDSq
spin-1
p2,1{2qs

)

, (4.5.20b)

σBSF
DD vrel “

1

g2
DM

!

1ˆ 9ˆ p1`RW q ˆ σvrelrpDDq
spin-1
p3,1q s

`2ˆ 6ˆ p1`RH{hHq ˆ σvrelrpDSq
spin-1
p2,1{2qs

)

, (4.5.20c)

σBSF
DS vrel “

1

g2
DM

!

2ˆ 2ˆ p1`RBq ˆ σvrelrpDSq
spin-0
p2,1{2q, B emissions

` 2ˆ 2ˆ p1`RW q ˆ σvrelrpDSq
spin-0
p2,1{2q, W emissions

` 1ˆ 1ˆ p1`RH{hHq ˆ σvrelrpSS-likeqspin-0
p1,0q s

` 2ˆ 1ˆ p1`RH{hHq ˆ σvrelrpDD̄-likeqspin-0
p1,0q s

` 2ˆ 3ˆ p1`RH{hHq ˆ σvrelrpDD̄q
spin-0
p3,0q s

`1ˆ 3ˆ p1`RH{hHq ˆ σvrelrpDDq
spin-0
p3,1q s

)

, (4.5.20d)

where the square brackets denote the scattering states. In each term in the above, the first
factor accounts for the number of DM particles destroyed (upon thermal averaging), as well
as the capture of the conjugate scattering state if applicable, in analogy to eq. (4.5.17) for
annihilation. The second factor corresponds to the dof of the scattering state. The factors in
the brackets sum the radiative and via-scattering contributions to BSF. As noted in section 4.4,
for BSF via off-shell H or H: exchange, the phase-space suppression hH of the radiative cross-
section must be removed. The RH , RB, RW and hH factors must be evaluated at the value of
ω, defined in eq. (4.3.8), that corresponds to each bound state.

Next, we must thermally average eqs. (4.5.20). In BSF, the emitted boson carries away a
small amount of energy that can be comparable to the temperature of the primordial plasma
during the DM decoupling. The Bose enhancement due to the final state boson can thus be
significant, and must be included in thermal averaging the BSF cross-sections to ensure that
detailed balance holds [39],

xσBSF
B vrely “

´ m

4πT

¯3{2
ż

d3vrel e
´mv2

rel{p4T q

ˆ

1`
1

eω{T ´ 1

˙

pσBSF
B vrelq, (4.5.21)
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where the dissipated energy ω is given in eq. (4.3.8).13

As seen in eq. (4.5.16), the contributions of each bound level to the effective DM destruction
cross-section (4.5.14) have to be waited by the appropriate branching fractions that account
for the portion of bound states that decay into radiation, thereby reducing the DM density.
The bound-state decay and transition rates needed to compute these branching fractions can be
found in table 4.6. In thermally averaging these rates, we may neglect the Lorentz dilation factor
that is » 1 in the non-relativistic regime. However, the low-energy boson emitted in bound-to-
bound transitions implies a Bose enhancement that must be included to ensure detailed balance
at temperatures higher than the dissipated energy. So,

xΓ dec
B y » Γ dec

B , (4.5.22a)

xΓ trans
DSÑSS{DD̄y » r1`RHpωq{hHpωqsΓ

trans
DSÑSS{DD̄

ˆ

1`
1

eω{T ´ 1

˙

, (4.5.22b)

where here ω “ mpα2
A´α

2
Hq{4 is the dissipated energy. Finally, the bound-state ionisation rates

are computed using the detailed balance eq. (4.5.7b), and summing over all ionised states as in
eqs. (4.5.9a) and (4.5.9b); this yields

xΓ ion
B y » xσBSF

B vrely ˆ
g2

DM

gB

ˆ

mT

4π

˙3{2

e´|EB|{T . (4.5.22c)

Ionisation equilibrium

Equation (4.5.22c) implies that at T " |EB|, the ionisation of the bound states tends to be
faster than their decays and transitions, xΓ ion

B y " xΓ dec
B y, xΓ trans

B y, provided that xσBSF
B vrely is

sufficiently large. If so, in this regime, the system reaches a state of ionisation equilibrium, where
the effective BSF cross-sections (4.5.16) become independent of the actual ones [134],

xσBSF
B vrelyeff »

gB
g2

DM

Γ dec
B

ˆ

4π

mT

˙3{2

e`|EB|{T , (4.5.23)

where for the DS bound state whose direct decay into radiation is suppressed, we must use the
effective decay rate (cf. eq. (4.5.16d))

xΓ dec
DS y Ñ xΓ trans

DSÑSS{DD̄y
xΓ dec

SS{DD̄y

xΓ ion
SS{DD̄y ` xΓ

dec
SS{DD̄y ` 2xΓ trans

DSÑSS{DD̄ypY
eq
DS{Y

eq
SS{DD̄q

. (4.5.24)

Since the bound-state decay rates are proportional to the annihilation cross-sections of the
corresponding scattering states (cf. eq. (4.2.37)), eq. (4.5.23) implies that at high temperatures
and while ionisation equilibrium holds, the BSF contribution to the DM destruction rate is
negligible in comparison to that of direct annihilation.

However, as T approaches or drops below |EB|, the ionisation rates become exponentially sup-
pressed and are overcome by the bound-state decay and/or bound-to-bound transition rates. For
the uncoupled bound states DD̄ and DD, this implies that the effective BSF cross-sections in-
crease exponentially until they saturate to their maximum values, the actual BSF cross-sections.
For the SS{DD̄ and DS coupled system, xΓ trans

DSÑSS{DD̄y ą xΓ
ion
DS y, occurs before the decay rates

surpass the ionisation rates; in this interval, the effective BSF cross-sections (4.5.16) together

13We recall from section 4.4 that a factor of r1`1{peω{T ´1qs has been pulled out from the definition of the BSF
cross-section via scattering, such that eq. (4.5.21) is the appropriate thermal-averaging formula for both radiative
BSF and BSF via scattering.
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Figure 4.14: Thermally averaged BSF cross-sections for the DD̄ and DD bound states; the
latter includes the capture into its conjugate. We have used m “ 20 TeV, αH “ 0.2 and the
temperature dependent Higgs mass mHpT q; the spikes in the radiative BSF occur at the EWPT,
when the Higgs mass tends to zero before becoming mh » 125 GeV. The vertical lines mark the
temperatures equal to the binding energies. The cross-sections have been regulated according
to section 4.3.6.

with the detailed balance eq. (4.5.22c), imply that ionisation equilibrium holds for the sum of
the SS{DD̄ and DS contributions,

xσBSF
SS{DD̄vrelyeff ` 2xσBSF

DS vrelyeff »
gSS{DD̄
g2

DM

Γ dec
SS{DD̄

ˆ

4π

mT

˙3{2

e`|ESS{DD̄|{T , (4.5.25)

where again we neglected the SS{DD̄ decay against ionisation rate. At even lower temperatures,
when ionisation becomes slower than decay, the effective BSF cross-sections reach their actual
values.

We illustrate the above in figs. 4.14 and 4.15, where we also compare radiative BSF and BSF
via scattering. Two observations are useful more generally for calculations of freeze-out with
bound states:

• In some (but not all) cases, BSF via scattering dominates at early times; BSF via Higgs
exchange may also dominate at late-times over on-shell emission due to the phase-space
suppression of the latter. Nevertheless BSF via scattering does not change significantly the
effective BSF cross-section with respect to considering radiative BSF only, because overall
it becomes subdominant while the system is still in ionisation equilibrium, or around the
time it exits it.

112



10 102 103 104

10-5

10-3

10-1

10

x = m / T

〈σ
v
re
l〉
/
(π

m
-
2
)

10-5

10-3

10-1

10

〈σ
v
re
l〉
/
(π

m
-
2
)

T
=
|ℰ

D
S
|

T
=
ℰ

D
S
-
ℰ

S
S
/D

D_

B emission

W emission

H
(†) emission

10-5

10-3

10-1

10

〈σ
v
re
l〉
/
(π

m
-
2
)

T
=
|ℰ

S
S
/D

D_
|

T
=
ℰ

D
S
-
ℰ

S
S
/D

D_

10 102 103 104

x = m / T

S
S
/D

D
+
2
D
S

D
S
:
(2
,1
/2
),

s
p
in

0

T
=
|ℰ

D
S
|

T
=
ℰ

D
S
-
ℰ

S
S
/D

D_

Radiative BSF

BSF via scatt.

Ion equilibrium

Effective BSF

S
S
/D

D
:
(1
,0
),

s
p
in

0

T
=
|ℰ

S
S
/D

D_
|

T
=
ℰ

D
S
-
ℰ

S
S
/D

D_

Figure 4.15: As in fig. 4.14, but for the SS{DD̄ and DS states that transition into each other
via Higgs emission or absorption. The DS panels include the capture into its conjugate. In the
bottom row, we show the sum of the SS{DD̄, DS and D̄S contributions. The vertical lines
mark the temperatures equal to the binding energies and the energy splitting between SS{DD̄
and DS. The feature around x » 50 occurs when the Higgs doublet mass becomes lower than
the energy splitting between the two bound states; this opens up the bound-to-bound transitions
via on-shell Higgs emission (at higher T they occur only via off-shell Higgs exchange with the
thermal bath), and drives the SS{DD̄ bound states somewhat away from ionisation equilibrium.

• For the DD̄, DD bound states, ionisation equilibrium ceases at T ą |EB| (cf. fig. 4.14.)

In contrast, the bound-to-bound transitions prevent the SS{DD̄ and DS coupled system to
reach ionisation equilibrium. However, it closely tracks it until much lower temperatures,
T ! |EB|, due to the largeness of the BSF cross-sections (cf. fig. 4.15.)

We also note here that the computation of the DM thermal decoupling (cf. section 4.6)
shows that much of the BSF effect on the relic density arises after the system exits ioni-
sation equilibrium. (This was also found in ref. [39].)

The above imply that it is not safe to estimate the BSF effect by assuming ionisation
equilibrium until T „ |EB| and neglecting any effect thereafter, an approach previously
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adopted in refs. [61, 64, 65]. Considering instead the BSF cross-sections is necessary for
an accurate computation.

Higgs doublet mass and EWPT

The cross-sections for BSF via H emission depend on the Higgs doublet mass. Taking into
account the finite temperature 1-loop corrections to the effective potential (see e.g. [136, 137]),
we estimate that before the EWPT of the universe, the Higgs doublet mass was

m2
HpT q « ´

m2
h

2
`
πT 2

4

ˆ

α1 ` 3α2 `
2λ

π
`
y2
t

π

˙

, (4.5.26)

where mh » 125 GeV is the Higgs boson mass at zero temperature, λ “ m2
h{p2v

2
Hq » 0.13 is the

Higgs quartic coupling, VSM Ą ´λ|H|
4, and yt » 0.994 is the top quark Yukawa coupling. The

EWPT occurs as m2
HpT q Ñ 0, i.e. at estimated temperature

TEWPT «

?
2mh

a

πα1 ` 3πα2 ` 2λ` y2
t

» 151 GeV. (4.5.27)

In computing the DM decoupling, we use eq. (4.5.26) at T ě TEWPT, and set mH Ñ mh at
T ă TEWPT while still using the annihilation and BSF rates computed under the assumption of
electroweak symmetry. We discuss this approximation in section 4.7.

We may now estimate whether or when mHpT q implies that BSF via Higgs emission is
kinematically suppressed. In a thermal distribution, the energy dissipated during BSF, given by
eq. (4.3.8), averages to xωy “ 3T {2 ` |EB|. The first term suffices to provide for mHpT q for all
T ą TEWPT since mHpT ą TEWPTq ď 0.63T , as well as after the EWPT, down to temperatures
T „ 2mh{3 » 83 GeV. However, since the BSF cross-sections weigh preferentially low values of
vrel, the kinematic suppression may become important at somewhat larger T than this estimate
implies, unless |EB| is sufficient to provide for mH .

4.6 Results: timeline and relic density

Collecting all the above, we are now ready to compute the DM decoupling and relic density. We
will consider and compare the cases described in table 4.11, and repeat that our calculations
always assume electroweak symmetry. We discuss this approximation in section 4.7.

In fig. 4.17, we present an example of the time evolution of the effective cross-section and the
DM density. For the parameters chosen, the exponential increase of xσvrelyeff due to BSF when
the ionisation processes cease, gives rise to a second period of DM destruction that decreases the
DM density by two orders of magnitude! In fig. 4.18, we show the timeline of the DM thermal
decoupling. We define the recoupling period of DM destruction due to BSF as the interval
between the two occurrences when d2plnY q{dplnxq2 “ 0, and the chemical decoupling as the
latest time when dplnY q{dplnxq “ 10%. In the same plot, we also mark the EWPT, as well
as the time beyond which the finite Higgs mass affects its long-range effect. Since in part of
the parameter space, the recoupling occurs after the EWPT and the chemical decoupling occurs
even later, the effect of BSF via Higgs emission is most important for the range of DM masses
where the binding energies exceed the Higgs boson mass, mh » 125 GeV. These ranges are
also marked in fig. 4.18. (We discuss the validity of various approximations, including that of
electroweak symmetry, in section 4.7).

In fig. 4.19, we show the values of αH vs. m that reproduce the observed DM density, as
well as the impact of the various processes on the relic density. As already seen in fig. 4.17, at
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AnnSBW
Annihilation with Sommerfeld effect
due to the B,W -mediated potentials.

AnnSBW + BW-BSFBW

Annihilation and BSF via B or W emission or
exchange, including the B,W -mediated potentials.

AnnSBWH + BWH-BSFBWH
Annihilation and BSF via on-shell B, W or Hp:q

emission, including the B,W,H-mediated potentials.

Table 4.11: The combinations of effects we shall compare in the following, in terms of their
impact on the DM decoupling. When considering BSF, we always include both radiative BSF
and BSF via scattering. However, we have examined their effects separately, and found that the
inclusion of BSF via scattering does not change the results obtained when considering radiative
BSF only. Moreover, in the present model, considering the Higgs-mediated potential while
omitting BSF via Higgs emission, or the reverse, do not result in a significant effect on the relic
density (cf. fig. 4.16), we thus do not present these cases separately.

m Á few TeV, BSF via emission of a Higgs doublet is estimated to decrease the relic density by
up to two orders of magnitude. The implications are twofold. For a fixed mass m, the coupling
αH is predicted to be almost up to an order of magnitude smaller than when neglecting BSF
via Higgs emission. This should be expected to change (relax) experimental constraints very
significantly. Conversely, for a given coupling, a much larger m is anticipated. In fact, DM
masses almost up to the unitarity limit can be attained for αH ă 1. (We discuss the unitarity
limit in more detail in section 4.8.) This motivates experimental searches at very high masses.

To understand better the effect of the various bound states, in fig. 4.20 we show the relation
between αH vs m determined by considering direct annihilation plus each of the four bound
states separately. The formation of the spin-1 DD and DD̄ bound states has only a small
effect because their binding energy is independent of αH and somewhat small. This implies
that ionisations inhibit the DM destruction via their formation until late, when BSF via Higgs
emission is kinematically blocked, and BSF via B or W emission is not sufficiently fast to
overcome the suppression due to the low DM density. Passing on to the SS{DD̄ and DS bound
states, for the lower range of m and αH , their formation destroys DM efficiently after the EWPT.
Thus the threshold for their effect being important is set by |EB| ą mh » 125 GeV, as the grey
dotted lines in fig. 4.20 indicate.

Even away from the correlation of parameters that reproduces the observed DM density, the
BSF effect on the relic abundance of the stable species can be very large as seen in fig. 4.21.
The parameter space where the relic density is cosmologically insignificant is greatly enlarged.
This is important for scenarios that do not aspire to explain the DM density, but nevertheless
predict the existence of stable particles.
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Figure 4.16: Contributions to the effective DM destruction cross-section. The solid lines include
direct annihilation with Sommerfeld effect plus BSF according to the colour legend. We have
used m “ 20 TeV, αH “ 0.2 and the temperature dependent Higgs mass mHpT q. The cross-
sections have been regulated according to section 4.3.6. The binding energy of the DD̄ and DD
bound states does not depend on the coupling to the Higgs, and their formation via H emission
or exchange is always suppressed due the Higgs mass; their contribution is dominated by W
emission. Both the SS{DD̄ and DS binding energies depend on αH , which ensures that their
formation via H emission is not suppressed when the Higgs-mediated potential is taken into
account and provided that αH is sufficiently large (bottom right panel.) The DS bound states
do not exist when neglecting the Higgs-mediated potential (upper row.)
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Figure 4.17: The effective cross-section xσvrelyeff{pπm
´2q and the dark matter yield Y ” n{s,

vs the time parameter x “ m{T . We also mark the time of freeze-out, the EWPT, and the
chemical decoupling for the three cases in the legend. We have used m “ 50 TeV and αH “ 0.2.
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Figure 4.21: Contours of log10pΩ{ΩDMq (with the values indicated in black), when considering
AnnSBW only (left), and AnnSBWH ` BWH´BSFBWH (right.) The red and cyan lines mark
Ω “ ΩDM. Note that the DM mass, mDM “ m´

?
4παHvH , differs significantly from m only at

the top left corners of the plots.
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4.7 Major approximations and their validity

We now summarise the main approximations made in our analysis and comment on their po-
tential effect on the estimated relic density.

(i) Considered only ground-level bound states.

BSF via vector or neutral scalar emission is dominated by dipole and quadrapole moments
respectively. In these cases, the capture into the ground state is the dominant BSF pro-
cess [1, 39, 43, 59, 62], the reason being twofold: it is the most exothermic process, and
the overlap of scattering and bound state wavefunctions is larger.

In contrast, BSF via emission of a charged scalar is a monopole transition, and the capture
into excited states can be comparable to or faster than the capture into the ground state,
despite the latter being more exothermic [2]. This suggests that in the present model,
capture into excited states via Higgs emission may be important.

Nevertheless, independently of the BSF cross-sections, the relative effect of the excited
states on the relic density is moderated by their smaller binding energy that renders their
ionisation efficient until later.

We thus anticipate that excited states may have a significant albeit not dominant effect
that would further diminish the relic density and alter the coupling-mass relation along
the direction found here. This is worth pursuing in more detail in the future.

(ii) Regularisation of inelastic cross-sections in parametric regimes where BSF via Higgs emis-
sion approaches or appears to exceed the unitarity limit.

See comments in section 4.3.6. In fig. 4.19 we compare the αH ´ m relations with and
without regularisation. Clearly, at large m the effect is significant; the regularisation of
the cross-sections ensures that m does not exceed the unitarity limit on the mass of thermal
relic DM [46, 104], which we discuss in section 4.8. This suggests that working out a more
accurate regularisation scheme that would address the issues discussed in section 4.3.6 may
be important in order to obtain more accurate results. We leave this for future work.

(iii) Neglected the Higgs mass in the Higgs-mediated potential.

Scattering states: In a thermal bath, the condition (4.2.29), µvrel ą mH , implies
a

3mT {2 Á
mH . Considering the Higgs doublet mass (4.5.26) before the EWPT, this becomes T À 3m,
which clearly covers all of the range of interest for the DM freeze-out. Below the EWPT,
where mH Ñ mh » 125 GeV, the condition is satisfied until after the DM chemical decou-
pling, as shown in fig. 4.18.

Bound states: The condition (4.2.30) for n “ 1, µαH ą few ˆ mH , becomes xαH ą few
before the EWPT, with x “ m{T . This is satisfied for all relevant x and αH for which
BSF has an effect (x Á 50 and αH Á 0.1, cf. figs. 4.18 and 4.19.) It is easy to check that
the condition (4.2.30) is also satisfied below the EWPT for all relevant DM masses and
couplings (m ą 5 TeV and αH Á 0.1, cf. fig. 4.19.) Note that this is not coincidental;
BSF via Higgs emission does not have a significant effect for lower αH values because of
the phase-space suppression due to the Higgs mass (cf. fig. 4.20.) The estimation here
thus confirms the argument of section 4.2.2 that bound states are nearly Coulombic in the
parameter space where their formation is kinematically allowed and significant.

(iv) Assumed electroweak symmetry.

In fig. 4.18, we see that the DM destruction via BSF may be efficient after the EWPT.
The breaking of the electroweak symmetry has several important implications that we now
discuss.
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a. The Goldstone modes of the Higgs doublet are absorbed by the Z,W˘ bosons.

• BSF via emission of a Higgs doublet in the unbroken electroweak phase corresponds
to BSF via emission of h or the longitudinal modes of the Z,W˘ bosons in the
broken electroweak phase. The Goldstone boson equivalence theorem implies that
the amplitudes for BSF via emission of the longitudinal Z,W˘ components are the
same as those for the corresponding processes in the unbroken electroweak phase,
in the limit that the energy of the emitted vector boson is much larger than its
mass, m2

Z,W {ω
2 ! 1.

In our computation, the phase-space suppression sets mH Ñ mh » 125 GeV after
the EWPT, ensuring that mh{ω ă 1 or equivalently m2

Z,W {ω
2 ă 0.5. We thus regard

the approximation as acceptable, especially in the parameter space away from the
phase-space thresholds (cf. fig. 4.20.)
The importance of monopole BSF processes in a broken gauge phase due to the
Goldstone boson equivalence theorem was previously pointed out in ref. [138].

• The potential mediated by the Higgs doublet in the unbroken electroweak phase
is mediated by h and the longitudinal Z,W˘ components in the broken phase.
To compute the non-relativistic potential generated by the latter, we need their
contribution to the vector boson propagators,

i
q2 ´m2

V

qµqν

m2
V

, (4.7.1)

where q and mV “ gV vH{2 denote the vector boson momentum and mass, for
V “ Z,W˘, with gZ “

a

g2
1 ` g

2
2 and gW “ g2. In general, the exchange of

Z,W˘ between a pair of Z2-odd particles may change the mass eigenstate on each
leg. (Indeed, in the model under consideration, the Z,W˘ bosons couple only
non-diagonally to the mass eigenstates, cf. eq. (4.1.7).) The contribution from the
exchange of the longitudinal Z,W˘ components to the 2PI kernels (cf. section 4.2.1)
is proportional to

KL9rūpp
1
1qigV {qupp1qsrūpp

1
2qigV {qupp2qs{m

2
V

“ pigV q
2pm11 ´m1qūpp

1
1qupp1q pm2 ´m

1
2qūpp

1
2qupp2q{m

2
V , (4.7.2)

where q “ p11 ´ p1 “ p2 ´ p12, and we used the Dirac equation {puppq “ muppq.
Considering the mass splittings „ yvH , this becomes

KL9g
2
V pyvHq

2p2mq2{m2
V9y

2m2. (4.7.3)

Equation (4.7.3) shows that the potential generated by the exchange of the longi-
tudinal Z,W˘ is indeed proportional to the coupling to the Higgs doublet. The
screening scale of each contribution is m´1

V ą m´1
h , thus the arguments presented

in item (iii) for the Coulomb approximation remain valid. An analogous result has
been obtained in [138] for a broken Up1q model.
Note that in eqs. (4.7.2) and (4.7.3) we omitted various numerical factors and signs
for simplicity, and focused on deriving the scaling of the 2PI kernel. Considering
these factors in detail reproduces the Higgs-doublet mediated potential (aside from
the screening scale.)

b. The Weak gauge bosons become massive.

The non-zero Z,W˘ masses curtail the range of the potentials generated by the exchange
of both their transverse and longitudinal components, and introduce phase-space sup-
pression to the BSF processes occurring via their emission. The validity of the Coulomb
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approximation for the Z,W˘ bosons can be assessed as in the preceding discussion for
the Higgs. However, in the present model, the B,W -generated potentials and BSF via
B or W emission do not have a significant effect, due to the fact that one of the dark
multiplets is a gauge singlet and the other belongs to a small representation. We thus
do not consider the transverse Z,W˘ components further. The effect of the longitudinal
Z,W˘ components was discussed above.

c. The components of the DM multiplets acquire different masses.

After acquiring a mass splitting, the various pairs of Z2-odd particles can oscillate into
each other according to the potentials of section 4.2.1 provided that the kinetic energy
of their relative motion exceeds their mass difference. This necessitates mv2

rel{4 ą 2yvH ,
which, upon thermal averaging, becomes T ą p4{3q

?
4παHvH . This condition is not

satisfied below the EWPT for the αH values of interest (αH Á 0.1.) We thus expect
that the rates of some of the processes below the EWPT will be lower than estimated
here.

This is probably the most severe limitation of our computation. To assess its impact, in
fig. 4.19 we include the coupling-mass relation obtained by integrating the Boltzmann
equations only up to the EWPT. Clearly, a proper treatment would result in an αH´m
relation between our this and the result obtained by integrating until late times. We
see that even when the integration stops at the EWPT, the Higgs effect is still very
significant, even if it appears only for larger αH values. The impact on the relic density
reaches up to a factor of a few.

4.8 Unitarity limit on the dark matter mass

The upper limit (4.3.65) on the inelastic cross-sections implied by unitarity, suggests that for
very large masses, annihilations in the early universe may not suffice to reduce the density of
thermalised particles to the observed DM value. It thus sets an upper bound on the mass
of thermal relic DM annihilating predominantly via a finite number of partial waves in the
early universe [104]. For self-conjugate DM in thermal equilibrium with the SM plasma, this
is [39, 46]14

mDM,` À 197 TeV ˆ

" ?
2`` 1, solely `,

`` 1, 0 ď ` ď `max.
(4.8.1)

Equation (4.8.1) is modified by 1{
?

2 in the case of non-self-conjugate DM.
The parametric dependence of σuni

` on µ and vrel implies that the limit (4.3.65) can be
attained down to arbitrarily low velocities — thus the upper limit (4.8.1) on the mass of thermal-
relic DM can be reached — only if there is an attractive long-range force between the interacting
particles, and provided of course that the relevant couplings are sufficiently large [46]. Attractive
long-range interactions imply also the existence of bound states, whose formation and subsequent
decay may decrease the DM abundance more efficiently than direct annihilation [39]. This means
that BSF may essentially be the dominant process that saturates the unitarity limit (4.3.65),
and/or that additional partial waves to those dominating in the annihilation processes become
important, thereby increasing the upper limit on the DM mass [46].

In general, the Weak interactions of the Standard Model are not sufficiently strong to generate
cross-sections that approach the unitarity limit (4.3.65), unless perhaps the interacting particles

14If DM annihilates into a dark plasma that has different temperature than the SM plasma or includes many
relativistic dof during DM freeze-out, then this value may somewhat change. Moreover, departures from thermal
cosmology, such as episodes of entropy injection (see e.g. [98]), imply that larger mDM values may be permissible.
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belong to very large SULp2q representations. However, BSF via emission of a scalar charged
under a symmetry can be very efficient even for small couplings [2]. Here, we have seen that BSF
via Higgs emission can raise the predicted WIMP mass very significantly, bringing it potentially
close to the unitarity limit.

4.9 Conclusions

In this chapter we studied a renormalisable Higgs portal scenarios in which DM is the lightest
mass eigenstate arising from the mixing of two electroweak multiplets that couple to the HiggsIn
this context, we have considered the role of the Higgs doublet in the non-perturbative phenom-
ena — the Sommerfeld effect and the formation of bound states — that take place during the
thermal decoupling of multi-TeV DM from the primordial plasma.

We have shown that the effect of the Higgs doublet is two-fold: (i) it can mediate a long-
range interaction that affects the wavefunctions of both scattering and bound states, and (ii)
its emission can precipitate extremely fast monopole transitions, including capture into bound
states and transitions between bound levels. In the model considered, these effects may change
the relic density of the stable species by up to two orders of magnitude.

From a phenomenological point of view, we see that the effect on the relic density alters
the coupling-mass relation that reproduces the observed DM abundance, and, beyond that, it
greatly expands the parameter space where the stable relics do not overclose the universe. In
the former case, the modified coupling-mass relation implies on one hand that, for a given DM
mass, existing constraints may be significantly relaxed, and on the other hand that DM may be
much heavier than previously anticipated, potentially approaching the unitarity limit.

In conclusion, while the amplitude for BSF via Higgs-doublet emission can be quite large
even for small couplings of the DM multiplets to the Higgs, the Higgs-doublet mass introduces a
kinematic suppression to the cross-section that renders this effect relevant for larger DM masses
and/or couplings to the Higgs. In the specific singlet-doublet scenario considered here, we found
that the effect is significant for m Á 5 TeV and αH Á 0.1. In models involving larger SULp2q
representations, the gauge interactions contribute more significantly to the binding energy of the
bound states, thereby rendering the phase-space suppression less significant. We thus expect
that the effect on the relic density is important even small couplings.

Finally we must notice that the capture into excited bound levels, which we neglected here,
may also have a sizeable effect due to the monopole nature of the transitions occurring via Higgs-
doublet emission. On the other hand, we have found that including BSF through scattering on
the relativistic thermal bath via an off-shell Higgs doublet does not affect the relic density
significantly.
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Summary and outlook

If DM couples to a force carrier that is much lighter than itself, non-perturbative effects associ-
ated with the long-range nature of the interaction impact the DM phenomenology. In this thesis
we focused on scalar forces, a particularly compelling possibility in view of the discovery of the
Higgs boson, which may itself be the mediator, or provide a portal to DM via an extended scalar
sector. If DM possesses a sizeable coupling to the SM Higgs, then it is constrained by current
experiments to be significantly heavier than the Higgs. On the other hand, if DM couples to a
non-SM scalar mediator that is much lighter than itself, then this coupling may result in signifi-
cant DM self-scattering inside haloes that can affect the galactic structure and bring theoretical
predictions in better agreement with observations [139]. Even outside the self-interacting DM
regime, the coupling of DM to a lighter non-SM scalar mediator is a generic possibility within
dark sector models.

It is well known that the Sommerfeld effect [37, 38] can influence the DM annihilation and
self-scattering rates. This can be the case if the mediator is either a non-SM scalar or the SM
Higgs [54]. More recently, it has been realised that the cosmological and astrophysical formation
of DM bound states is a generic implication of theories with light mediators. The formation and
subsequent decay of unstable bound states can deplete the DM density [39], and contribute to
the DM indirect detection signals [40–48, 52]. The formation of stable bound states may quell
the DM self-scattering inside haloes [49], and give rise to novel radiative [57, 58, 95, 114] and
direct detection signatures [50, 51].

In chapter 2 we saw that, although the capture into bound states via emission of a vector is
known to be significant, the capture via neutral scalar emission suffers from cancellations that
render it important only within narrow parameter space. In chapter 3 we showed that bound-
state formation via emission of a charged scalar is by contrast highly significant. We studied a
model where DM is charged under a dark Up1q force and coupled also to a light complex scalar
that is charged under the same gauge symmetry. Our results encompass the cross-sections for
bound-state formation via emission of the charged scalar, and show that they can exceed those
for capture via vector emission, as well as annihilation, by orders of magnitude. This holds even
for very small values of the DM coupling to the charged scalar, and remains true in the limit of
global symmetry. We then computed DM thermal freeze-out, and found that the capture into
meta-stable bound states via emission of a charged scalar can cause a late period of significant
DM depletion. We included analytical expressions in the Coulomb limit, that are readily gener-
alisable to non-Abelian interactions.

In chapter 4 we applied the results of chapter 3 in a model considering the Higgs doublet
in the thermal decoupling of multi-TeV dark matter coupled to the weak interactions of the
Standard Model. We showed that the Higgs doublet can mediate a long-range interaction that
binds or strengthens the binding of DM into bound states. More importantly, the emission of a
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Higgs doublet precipitates extremely rapid capture processes and bound-to-bound transitions.
The formation of metastable bound states via Higgs emission and their decay were found to
decrease the relic density very significantly.

In summary, we found that the entire Higgs doublet contributes to the (long-range) potential
between the DM multiplets. We also found that the cross-sections for BSF via Higgs emission
can exceed those for annihilation or BSF via vector emission by orders of magnitude, and result
in a late period of DM chemical recoupling. Consequently, BSF via Higgs emission increases
the DM destruction rate in the early universe and, for a given set of couplings, pushes the pre-
dicted DM masses to the multi-TeV scale. This, in turn, opens the possibility for thermal-relic
WIMP dark mate to be much heavier than anticipated, potentially approaching the unitarity
limit, which in the non-relativistic regime implies (or presupposes) the presence of long-range
interactions. This is particularly important in view of the numerous existing and upcoming
observatories probing high-energy cosmic rays, such as H.E.S.S., IceCube, CTA and KM3Net.
The experimental exploration of the multi-TeV scale creates urgency for the comprehensive the-
oretical understanding of the dynamics and possibilities in this regime.

Looking forward, we note that our calculations are broadly important for scenarios that
introduce new stable species in the fashion considered here, even if these species are not an-
ticipated to account for DM. Besides specifying the parameters for which the relic density of
the lightest new mass eigenstate matches the observed DM abundance, we showed how the relic
density is affected by the new effects within a broader parameter space. As is standard, the relic
density of stable particles sets a cosmological constraint of DM for new physics scenarios.

Finally, we leave for future work the capture into excited bound levels, which may also
have a sizable effect due to the monopole nature of the transitions occurring via Higgs-doublet
emission. Our work may moreover be improved by the introduction of scale-dependent couplings
and corrections of the light mediator masses outside the Coulomb limit.
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Appendix A

Non-relativistic potential

A.1 Scalar mediator: scalar vs. fermionic interacting particles

The non-relativistic static potential describing the X1´X2 interaction is (see e.g. Ref. [59, 140])

V prq “ ´
1

4Mµ

ż

d3k

p2πq3
M2PIpkq e

ikr , (A.1.1)

where M2PIpkq encompasses all 2-particle-irreducible diagrams that contribute to the X1 ´X2

elastic scattering. To leading order, this is the one boson exchange shown in Figure A.1. From

X1

X2

ps1q

ps2q

ps11q

ps12q

η1P ` p

η2P ´ p

η1P ` p
1

η2P ´ p
1

k “ p´ p1

ps1q

ps2q

ps11q

ps12q

η1P ` p

η2P ´ p

η1P ` p
1

η2P ´ p
1

k “ p´ p1

Figure A.1: One boson exchange diagrams that yield the leading order contribution to the non-
relativistic potential between two different paticles X1 and X2 (left), or a particle-antiparticle
pair (right). The parentheses denote the spin of the incoming and outgoing particles, in the case
of fermions.

the Lagrangians of Equations (2.1.1) to (2.1.3), we find for the interaction of a scalar pair X1X2,
a fermionic pair X1X2 and a fermion-antifermion pair XX̄,

iMsc
2PIpkq “ p´ig1m1qp´ig2m2q

i

k2 ´m2
ϕ

»
ig1g2m1m2

k2 `m2
ϕ

, (A.1.2)

iMf
2PIpkq “ r´ig1ū

s11pη1P ` p
1qus1pη1P ` pqsr´ig2ū

s12pη2P ´ p
1qus2pη2P ´ pqs

i

k2 ´m2
ϕ

»
i4g1g2m1m2

k2 `m2
ϕ

δs1s
1
1δs2s

1
2 , (A.1.3)

iMf,XX̄
2PI pkq “ p´1q3r´igūs

1
1pP {2` p1qus1pP {2` pqsr´igv̄s2pP {2´ pq vs

1
2pP {2´ p1qs

i

k2 ´m2
ϕ

»
i4g2m2

X

k2 `m2
ϕ

δs1s
1
1δs2s

1
2 , (A.1.4)
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where we made the approximation k0 ! |k|. In eq. (A.1.4), the factor p´1q3 arises from the
permutation of the fermion fields in the Wick contractions (see e.g. Ref. [140, section 4.7]). For
the spinor contractions in eqs. (A.1.3) and (A.1.4), we used

ūs
1
j pp1jqu

sj ppjq » ūs
1
j ppjqu

sj ppjq “ `2mjδ
sjs

1
j (A.1.5)

v̄sj ppjqv
s1j pp1jq » v̄sj ppjqv

s1j ppjq “ ´2mjδ
sjs

1
j (A.1.6)

From eqs. (A.1.1) to (A.1.4), we find the well known Yukawa potential

V prq “ ´
α

r
e´mϕr , (A.1.7)

with α “ αsc or α “ αf depending on whether the interacting particles are scalars or fermions
respectively, where

αsc ”
g1g2

16π
and αf ”

g1g2

4π
. (A.1.8)

The interaction is attractive if g1g2 ą 0.

A.2 t vs. u channels

We consider a particle-antiparticle pair XX: and derive the general formula for the non-
relativistic potential arising from t-channel and u-channel diagrams. The momentum decompo-
sition for the XX: interaction is shown in fig. A.2. We begin with the Schrödinger equation in

X X

X: X:

P {2` p P {2` p1

P {2´ p P {2´ p1

A2PI

Figure A.2: Momentum decomposition of the 2PI diagrams of the XX: interaction.

momentum space (see e.g. Ref. [59, eq. (2.78)]),
ˆ

´
p2

2µ
` En`m

˙

ψ̃n`mppq “
i

4Mµ

ż

d3p1

p2πq3
iA2PIpp,p1q ψ̃n`mpp

1q, (A.2.1)

where A2PIpp,p1q is the sum of the 2PI diagrams. We will be interested in t-channel and u-
channel contributions that have the form

iA2PIpp,p1q “ iA2PI
t pp´ p1q ` iA2PI

u pp` p1q. (A.2.2)

As in Ref. [43, 59, 62], we shall use the Fourier transforms

ψ̃n`mppq “

ż

d3r ψn`mprq e
´ip¨r, ψn`mprq “

ż

d3p

p2πq3
ψ̃n`mppq e

ip¨r. (A.2.3)

Applying the operator
ş

d3p{p2πq3 exppip ¨ rq on eq. (A.2.1), we obtain
ˆ

∇2

2µ
` En`m

˙

ψn`mprq “
i

4Mµ

ż

d3p

p2πq3
d3p1

p2πq3
eip¨r

“

iA2PI
t pp´ p1q ` iA2PI

u pp` p1q
‰

ψ̃n`mpp
1q

“
i

4Mµ

"„
ż

d3q

p2πq3
eiq¨r iA2PI

t pqq



ψn`mprq `

„
ż

d3q

p2πq3
eiq¨r iA2PI

u pqq



ψn`mp´rq

*

“ rVtprq ` Vuprqsψn`mprq, (A.2.4)
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where we used that ψn`mp´rq “ p´1q`ψn`mprq, and

Vtprq ”
i

4Mµ

ż

d3q

p2πq3
eiq¨r iA2PI

t pqq, (A.2.5a)

Vuprq ”
i

4Mµ
p´1q`

ż

d3q

p2πq3
eiq¨r iA2PI

u pqq. (A.2.5b)

We observe that the u-channel contribution depends on the angular momentum mode of the
eigenstate. Equation (A.2.4) can now be rewritten in the familiar order

„

´
∇2

2µ
` Vtprq ` Vuprq



ψn`mprq “ En`mψn`mprq. (A.2.6)
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Appendix B

Wave functions

B.1 Scattering state and bound state wave functions

The bound state and scattering state wavefunctions obey the Schrödinger equations

„

´
∇2

2µ
` V prq



ψn`mprq “ ´εn`ψtn`muprq , (B.1.1)

„

´
∇2

2µ
` V prq



φkprq “ `εkφkprq . (B.1.2)

If there is no long-range interaction: this happens when the mediator ϕ is very massive,
the interacting coupling is very small (e.i condition mϕ ă µα do not fit), or when the mediator
does not couple with one of the two particles X1, X2. Under one of this conditions, the long-
range interacting potential V prq vanish, the two scattering particles do not feel one each other
until the perturbative collision, consequently the scattering solution of the pair is a plane wave
and bound state formation is not possible.

If the mediator is massless: the Yukawa potential in eq. (A.1.7) becomes the Coulomb
potential

VCprq “ ´
α

r
, (B.1.3)

The solutions of the Schrödinger equations becomes analytical and the two particles interacts
at an infinity range. The scattering and bound-state wavefunctions are:

φkprq “
8
ÿ

`“0

p2`` 1q

„

χ|k|,`pκrq

κr



P`pk̂ ¨ r̂q (B.1.4)

ψn`mprq “ κ3{2

„

χn`pκrq

κr



Y`mpΩRq (B.1.5)

Where P`pyq are the Legendre polynomials and Y`mpΩRq are the spherical harmonic polynomials.
The sum over the ` modes od the scattering state can be also express in the close form

φkprq “
a

S0pζq 1F1riζ; 1; ip|k||r| ´ k ¨ rqseir¨k (B.1.6)

where1

S0pζq “
2πζ

1´ e´2πζ
(B.1.7)

1 The factor
a

S0pζq in eq. B.1.6 often appears in the literature as eπζ{2Γ p1´ iζq.
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χ|k|,`pxq “

a

S0pζq

Γ p1´ iζq
Γ p1` `´ iζq
p2`` 1q!

xp2ix{ζq`e´ix{ζ
1F1p1` `` iζ; 2`` 2; 2ix{ζq (B.1.8)

χn`pxq “
1

n

„

pn´ `´ 1q!

pn` `q!

1{2

e´x{np2x{nq``1L2``1
n´`´1p2x{nq (B.1.9)

Where 1F1 is the confluent hypergeometric function of the first kind, and Lab are the generalised
Laguerre polynomials of degree n.

If the mediator is massive: Hulthen approximation. the solutions of the Schrödinger equation
under the Yukawa potential (A.1.7) are not known in a closed form. However, it is possible to
obtain analytical solutions for the ` “ 0 modes of the wavefunctions, if we replace the Yukawa
for the Hulthen potential Ref. [141, 142],

VHprq “ ´αm˚
e´m˚r

1´ e´m˚r
. (B.1.10)

For m˚ „ mϕ, the Hulthen potential reproduces the behavior of the Yukawa potential at short
and large distances. Both potentials admit bound state solutions provided that the screening
length scale is sufficiently large. The thresholds for the n-th bound level in the Hulthen potential
are m˚ ď 2µα{n2, while for the Yukawa potential (A.1.7), bound states exist if mϕ ď µα{0.84
(see Ref. [43]). We shall pick

m˚ “ 1.68mϕ , (B.1.11)

such that the conditions for the existence of the lowest bound state coincide. The solutions
to the Schrödinger equation for the Hulthen potential can be expressed in terms of the two
dimensionless parameters

ζ ” α{vrel and ξ ” 2µα{m˚ . (B.1.12)

Note that ζ and ξ are always defined using the appropriate fermionic or scalar coupling α. ζ
compares the average momentum transfer between two unbound particles („ µvrel) with the
relative average momentum of the particles inside the bound state („ µα), while ξ compares
the Bohr momentum (κ “ µα) that determines the size of the bound state, with the screening
scale (m˚) that determines the range of the interaction. The interaction manifests as long-range
roughly if ξ Á 1; this is the regime where non-perturbative phenomena, the Sommerfeld effect
and bound states, emerge. The Coulomb limit is recovered for ξ Ñ 8. For the ground state,
the binding energy is

ε10 “
κ2p1´ 1{ξq2

2µ
, (B.1.13)

and the wavefunction reads

ψ100prq “ ξ

d

κ3

π

ˆ

1´
1

ξ2

˙

sinhpκr{ξq expp´κrq

κr
. (B.1.14)

For the scattering state, we make the partial-wave decomposition

φkprq “
8
ÿ

`S“0

w`S pm˚rq P`S pk̂ ¨ r̂q . (B.1.15)

It is possible to find an analytical solution for `S “ 0 only, which suffices for our purposes,

w0pzq “
a

S0pζ, ξq e
´iξz{p2ζq

ˆ

1´ e´z

z

˙

2F1pa0, b0, 2; 1´ e´zq , (B.1.16)
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where 2F1 is the hypergeometric function and

a0 ” 1`
iξ

2ζ
p1´

a

1´ 4ζ2{ξq , (B.1.17)

b0 ” 1`
iξ

2ζ
p1`

a

1´ 4ζ2{ξq , (B.1.18)

a

S0pζ, ξq ”
iζ

ξ

„

Γ pa0qΓ pb0q

Γ piξ{ζq

˚

. (B.1.19)

From eq. (B.1.19), we obtain

S0pζ, ξq “
2πζ sinhpπξ{ζq

coshpπξ{ζq ´ coshrpπξ{ζq
a

1´ 4ζ2{ξs
, (B.1.20)

which reduces to eq. (B.1.7) in the limit ξ Ñ8.

B.2 Wavefunctions for two different Coulomb potentials

We consider scattering and bound states in two different Coulomb potentials

ˆ

´
∇2

2µ
´
αS

r

˙

φkprq “ Ek φkprq, (B.2.1a)

ˆ

´
∇2

2µ
´
αB

r

˙

ψn`mprq “ En ψn`mprq. (B.2.1b)

The expectation value of the momentum of each particle in the CM frame in the scattering
state, and the Bohr momenta for the scattering and bound states are

k ” µvrel, (B.2.2a)

κS ” µαS , (B.2.2b)

κB ” µαB. (B.2.2c)

For convenience, we define the parameters

ζS ” κS{k “ αS{vrel, (B.2.3a)

ζB ” κB{k “ αB{vrel, (B.2.3b)

as well as the space variables

xS ” kr, (B.2.4a)

xB ” κBr. (B.2.4b)

The energy eigenvalues of the scattering and bound states are

Ek “
k2

2µ
“
µv2

rel

2
, (B.2.5a)

En “ ´
κ2

B

2µn2
“ ´

µα2
B

2n2
, (B.2.5b)
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and the corresponding wavefunctions are2

φkprq “ 4π
a

S0pζSq
8
ÿ

`S“0

`S
ÿ

mS“´`S

Y ˚`SmS pΩkq Y`SmS pΩrq

ˆ
p´i`S q
p2`S ` 1q!

Γ p1` `S ´ iζSq
Γ p1´ iζSq

e´ixS p2xSq
`S

1F1p1` `S ` iζS ; 2`S ` 2; 2ixSq,

(B.2.6a)

ψn`mprq “ κ
3{2
B Y`mpΩrq

2

n2p2`` 1q!

„

pn` `q!

pn´ `´ 1q!

1{2

ˆ

ˆ e´xB{n
ˆ

2xB

n

˙`

1F1

ˆ

´n` `` 1; 2`` 2;
2xB

n

˙

, (B.2.6b)

where S0pζSq ” 2πζS{p1 ´ e´2πζS q, and in eq. (B.2.6b), we have expressed the bound state
wavefunction in terms of the confluent hypergeometric function 1F1 rather than the Laguerre
polynomials. Note that the wavefunctions (B.2.6) assume distinguishable interacting particles.
We include the necessary (anti)symmetrization factors for identical particles in Sections 3.1
and 3.2, where we discuss the processes of interest.3

2For the spherical harmonics, we assume the normalisation
ş

dΩ Y`mpΩqY
˚
`1m1pΩq “ δ``1δmm1 .

3For clarity, in Sections 3.1 and 3.2 we denote the wavefunctions of distinguishable particles with the superscript
DP. In this appendix, we have omitted this superscript since there is no risk of confusion.
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Appendix C

Overlap integrals

C.1 Neutral scalar emission

For the capture into bound states via emission of two scalars, we need to compute the overlap
integrals

Vk,tn`mu ” p8πκq
1{2

ż

d3q

p2πq3
d3p

p2πq3
φ̃kpqqψ̃

˚
n`mppq

pq´ pq2 `m2
ϕ

, (C.1.1)

Rk,tn`mu ” p8πκ
5q1{2

ż

d3q

p2πq3
d3p

p2πq3
φ̃kpqqψ̃

˚
n`mppq

rpq´ pq2 `m2
ϕs

2
. (C.1.2)

We Fourier transform the wavefunctions as follows

ψn`mprq “

ż

d3p

p2πq3
ψ̃tn`muppq e

ipr, ψ̃n`mppq “

ż

d3r ψn`mprqe
´ipr , (C.1.3)

φkprq “

ż

d3p

p2πq3
φ̃kppq e

ipr, φ̃kppq “

ż

d3r φkprqe
´ipr . (C.1.4)

The overlap integrals become

Vk,tn`mu “

´ κ

2π

¯1{2
ż

d3r φkprqψ
˚
n`mprq

e´mϕr

r
, (C.1.5)

Rk,tn`mu “

ˆ

κ5

8π

˙1{2
1

mϕ

ż

d3r φkprqψ
˚
n`mprq e

´mϕr » ´

ˆ

κ5

8π

˙1{2 ż

d3r φkprqψ
˚
n`mprq r.

(C.1.6)

In the second step in eq. (C.1.6), we expanded the decaying exponential inside the integral.
The bound-state wavefunction implies that the integrand is significant for r À n{pµαq while
the kinematic threshold (2.2.7) for BSF imposes mϕ ă µα2{p2n2q; therefore mϕr À α ! 1.
The zeroth order term in the expansion vanishes due to the orthogonality of the wavefunctions,
leaving the first order term to be the dominant contribution. In the following, we will focus on
the capture into the ground state, tn`mu “ t100u.

While in the Coulomb limit (mϕ Ñ 0) it is possible to obtain analytical expressions for
the integrals eqs. (C.1.5) and (C.1.6), outside the Coulomb regime they should be evaluated
numerically. However, it is possible to obtain an analytical approximation, using the Hulthen
potential (cf. appendix B). Since ξ ” 2µα{m˚ " 1 in all the parameter space where BSF is
kinematically allowed to occur [cf. eq. (2.2.7)], the bound state wavefunction ψ100prq can be well
approximated by its Coulomb value. On the other hand, the scattering-state wavefunction φkprq
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is close to its Coulomb limit for r À 1{m˚, up to an overall normalisation which, for the `S “ 0
mode, is determined by the factor S0pζ, ξq of eq. (B.1.20). Since ξ " 1, this encompasses all the
range in which ψ100prq and therefore the integrands in eqs. (C.1.5) and (C.1.6) are important,
r À 1{pµαq. It follows that Vk,t100u and Rk,t100u – which depend only on the `S “ 0 mode of the
scattering state wavefunction – can be well approximated by their Coulomb values even outside
the Coulomb regime provided that we replace SC0 pζq in eq. (B.1.20) with S0pζ, ξq.

Following ref. [95] (see also [43, 59, 62]), we shall use the identity [143]

ż

d3r
eipk´Γqr´κr

4πr
1F1riζ, 1, ipkr ´ krqs “

rΓ2 ` pκ´ ikq2s´iζ

rpk´ Γq2 ` κ2s1´iζ
” fk,Γpκq . (C.1.7)

Then, eqs. (C.1.5) and (C.1.6) become

Vk,t100u » `
a

8κ4S0pζ, ξq fk,Γ“0pκq , (C.1.8)

Rk,t100u » ´
a

2κ8S0pζ, ξq

„

B2fk,Γ“0pκq

Bκ2



. (C.1.9)

Taking into account that κ{k “ ζ, we arrive at

Vk,t100u »
a

8S0pζ, ξq

ˆ

ζ2

1` ζ2

˙

e´2ζ arccot ζ , (C.1.10)

Rk,t100u »
a

8S0pζ, ξq

ˆ

ζ2

1` ζ2

˙2

e´2ζ arccot ζ . (C.1.11)

C.2 Charged scalar emission: bound-state formation

We are interested in computing the overlap integral

Rk,n`m ” κ
3{2
B

ż

d3r ψ˚n`mprqφkprq (C.2.1)

for the wavefunctions of appendix B.2. Note that the prefactor in eq. (C.2.1) has been chosen
such that Rk,n`m is dimensionless.

Substituting eqs. (B.2.6) into (C.2.1) and performing the angular integration, picks out the
`S “ ` mode of the scattering state. Then, setting t ” 2xB{n “ 2ζBxS{n, we obtain

Rk,n`m “

a

S0pζSq

pζB{nq`
Y ˚`mpΩkq ˆ

p´i`qπn
rp2`` 1q!s2

„

pn` `q!

pn´ `´ 1q!

1{2 Γ p1` `´ iζSq
Γ p1´ iζSq

ˆ

ż 8

0
dt t2``2 e

´

´

1` in
ζB

¯

t
2

1F1 p1` `´ n; 2`` 2; tq 1F1

ˆ

1` `` iζS ; 2`` 2;
in
ζB
t

˙

.

(C.2.2)

The confluent hypergeometric functions 1F1 obey the identity [144, section 7.622]

ż 8

0
dt tc´1 e´ρt1F1 pa; c; tq 1F1 pb; c; λtq “

“ Γ pcqpρ´ 1q´apρ´ λq´bρa`b´c2F1

“

a; b; c; λpρ´ 1q´1pρ´ λq´1
‰

” hpρ; a, b, c, λq, (C.2.3)

for Repcq ą 0 and Repρq ą Repλq`1, where 2F1 is the ordinary hypergeometric function. For a a
non-positive integer, 1F1pa; c; tq is a finite polynomial in t, and we have checked numerically that
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eq. (C.2.3) remains valid for Repcq ą 0 and Repρq ą Repλq, which encompasses the parameter
range of interest. Differentiating (C.2.3) over ρ, and setting

a “ 1` `´ n, (C.2.4a)

b “ 1` `` iζS , (C.2.4b)

c “ 2`` 2, (C.2.4c)

ρ “ 1{2` in{p2ζBq, (C.2.4d)

λ “ in{ζB, (C.2.4e)

we obtain the integral needed to compute the second line of eq. (C.2.2),

´
dh

dρ
“ 22``4np2`` 1q!

ˆ

1´
ζS
ζB

˙ˆ

ζ2
B{n

2

1` ζ2
B{n

2

˙``2

e´2ζS arccotpζB{nq

ˆ 2F1

ˆ

1` `´ n; 1` `` iζS ; 2`` 2;
4iζB{n

p1` iζB{nq2

˙

ei2pn´`´1q arctanpζB{nq. (C.2.5)

Note that the hypergeometric function in eq. (C.2.5) is a finite polynomial in its last argument
because its first argument of is a non-positive integer, 1``´n ď 0. The last factor in eq. (C.2.5)
is an unimportant overall phase. Combining eqs. (C.2.2) and (C.2.5), we find

ÿ̀

m“´`

ż

dΩk |Rk,n`m|
2 “

24p``2q π2n4

2`` 1

pn` `q!

pn´ `´ 1q!

„

`!

p2`q!

2

ˆ

ˆ

1´
ζS
ζB

˙2
«

S0pζSq
ź̀

j“1

ˆ

1`
ζ2
S

j2

˙

ff

pζ2
B{n

2q``4

p1` ζ2
B{n

2q2``4
e´4ζS arccotpζB{nq

ˆ

ˇ

ˇ

ˇ

ˇ

2F1

ˆ

1` `´ n; 1` `` iζS ; 2`` 2;
4iζB{n

p1` iζB{nq2

˙ˇ

ˇ

ˇ

ˇ

2

. (C.2.6)

Rk,n`m vanishes if ζB “ ζS , as expected from the orthogonality of the wavefunctions.

C.3 Charged scalar emission: bound-to-bound transitions

We want to compute the overlap integrals defined in eq. (4.3.3e),

Rn1`1m1,n`mpα
1
B, αBq ”

ż

d3p

p2πq3
ϕ̃n1`1m1pp;α1Bq ϕ̃

˚
n`mpp;αBq

“

ż

d3r ϕn1`1m1pr;α1Bq ϕ
˚
n`mpr;αBq, (C.3.1)

where the position-space bound-level wavefunctions for the potential V “ ´αB{r are

ϕn`mpr;αBq “

ˆ

2κB

n

˙
3
2
„

pn´ `´ 1q!

2npn` `q!


1
2

e´xB{n
ˆ

2xB

n

˙`

L2``1
n´`´1

ˆ

2xB

n

˙

Y`mpΩrq, (C.3.2)

with κB ” µαB being the Bohr momentum and xB ” κBr. Inserting eq. (C.3.2) into (C.3.1),

Rn1`1m1,n`mpα
1
B, αBq “ δ``1δmm1

„

pn´ `´ 1q!

2npn` `q!

pn1 ´ `´ 1q!

2n1pn1 ` `q!

1{2 ˆ4κBκ
1
B

nn1

˙``3{2

ˆ

ˆ

ż 8

0
dr e´pκB{n`κ

1
B{n

1q r r2``2 L2``1
n´`´1

ˆ

2κBr

n

˙

L2``1
n1´`´1

ˆ

2κ1Br

n1

˙

. (C.3.3)
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To compute the integral, ee will use the identity [144, section 7.414, item 4]

ż 8

0
dr e´ρrraLaqpλrqL

a
q1pλ

1rq “ (C.3.4)

“
Γ pq ` q1 ` a` 1q

q!q1!

pb´ λqq pb´ λ1qq
1

bq`q1`a`1 2F1

ˆ

´q, ´q1; ´q ´ q1 ´ a;
ρpρ´ λ´ λ1q

pρ´ λqpρ´ λ1q

˙

” hpa, q, q1, λ, λ1, ρq,

where 2F1 is the ordinary hypergeometric function. Equation (C.3.4) holds for Repaq ą ´1 and
Repρq ą 0. The overlap integral (C.3.3) can be expressed in terms of the h function as

Rn1`1m1,n`mpα
1
B, αBq “ δ``1δmm1

„

pn´ `´ 1q!

2npn` `q!

pn1 ´ `´ 1q!

2n1pn1 ` `q!

1{2 ˆ4κBκ
1
B

nn1

˙``3{2

ˆ

„

´
d

dρ
h
`

a, q, q1, λ, λ1, ρ
˘



, (C.3.5)

with

a “ 2`` 1, qp1q “ np1q ´ `´ 1, λp1q “ 2κ
p1q
B {n

p1q, ρ “ κB{n` κ
1
B{n

1. (C.3.6)

We find

Rn1`1m1,n`mpα
1
B, αBq “ δ``1δmm1

p´1qn´`´1 pn` n1 ´ 1q!
a

nn1pn` `q!pn1 ` `q!pn´ `´ 1q!pn1 ´ `´ 1q!

ˆ

ˆ

4αBα
1
B

nn1

˙``3{2

pαB ´ α
1
Bq

ˆ

αB

n
´
α1B
n1

˙n`n1´2`´3 ˆαB

n
`
α1B
n1

˙´pn`n1`1q

ˆ 2F1

«

1` `´ n, 1` `´ n1, 1´ n´ n1,

ˆ

αB{n` α
1
B{n

1

αB{n´ α1B{n
1

˙2
ff

.

(C.3.7)

Note that eq. (C.3.7) vanishes if αB “ α1B and n ‰ n1, but is equal to 1 if αB “ α1B and
n “ n1, due to the orthonormality of the wavefunctions. Equation (C.3.7) is useful for calculating
monopole transitions between bound states of different potentials, i.e. for αB ‰ α1B. This result
complements the computation of ref. [2] of scattering-to-bound monopole transitions.

For n “ n1 “ 1 and ` “ 0, we obtain

R100,100pα
1
B, αBq “

8pαBα
1
Bq

3{2

pαB ` α1Bq
3
. (C.3.8)
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Appendix D

Bound-state formation amplitudes

D.1 Vector emission

V
PV

X

X:

X

X:

K{2` kp1q P {2` p

K{2´ kp1q P {2´ p

`

X

X:

X

X:

K{2` kp1q P {2` p

K{2´ kp1q P {2´ p

V
PV

`

X

X:

X:

X

K{2` kp1q P {2´ p

K{2´ kp1q P {2` p

V
PV

Figure D.1: The leading order contributions to the radiative part of transitions via vector
emission XX: Ñ XX:`V , in the model of eq. (3.1.1). The arrows on the field lines denote the
flow of the Up1qD charge.

The BSFV amplitude is Ref. [59]

iMV
kÑn`m »

ż

d3k1

p2πq3
d3p

p2πq3
φ̃XX

:

k pk1q iAV
T pk

1,pq
rψ̃XX

:

n`m ppqs
˚

?
2µ

, (D.1.1)

where the leading order contributions to the perturbative transition amplitude AV
T pk

1,pq are
shown in Figure D.1. Note that the third diagram does not appear in more minimal Up1q theories
where the interacting particles do not couple to a doubly charged scalar. This diagram is akin
to the one that appears in non-Abelian theories, where the final-state gluon is radiated from a
gluon exchanged between the interacting particles, via the trilinear gluon vertex. Such diagrams
seem naively to be of higher order than those with emission directly from one of the interacting
particles. However, the momenta exchanged along the propagators scale with the couplings and
render these diagrams of the same order as those with emission from the legs Ref. [42]. See also
Ref. [1] for analogous contributions arising from couplings in the scalar potential.

Following Ref.[59, 62], we find AV
T pk

1,pq to be

iAV
T pk

1,pq » ´ig
“

2mX 2p p2πq3δ3pk1 ´ p´PV {2q ` 2mX 2p p2πq3δ3pk1 ´ p`PV {2q

`2y2Mµ
2pk1 ` pq

rpk1 ` pq2 `m2
Φs

2



, (D.1.2)
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where we took into account that qX “ 1 and qΦ “ 2. Following Ref. [62], we define

J k,n`mpbq ”

ż

d3p

p2πq3
p rψ̃XX

:

n`m ppqs
˚ φ̃XX

:

k pp` bq “ i
ż

d3r r∇ψXX:n`m prqs
˚ φXX

:

k prq e´ib¨r,

(D.1.3a)

Yk,n`m ” 8πµαΦ

ż

d3k1

p2πq3
d3p

p2πq3
k1 ´ p

pk1 ´ pq4
rψ̃XX

:

n`m ppqs
˚ φ̃XX

:

k pk1q

“ ´iµαΦ

ż

d3r rψXX
:

n`m prqs
˚ φXX

:

k prq r̂. (D.1.3b)

Then, the amplitude in eq. (D.1.1) becomes

iMV
kÑn`m » ´ig

4M
?

2µ

„

1

2
J k,n`mpPV {2q `

1

2
J k,n`mp´PV {2q `

p´1q`y2

8παΦ
Yk,n`m



, (D.1.4)

where energy-momentum conservation sets |PV | “ µpα2
B ` v2

relq{2 [cf. eq. (3.1.11)]. The leading
order terms in the J integrals are the zeroth order terms in the PV expansion Ref. [43]. For
capture into the ground state, both the J and the Y contributions arise from the `S “ 1 mode
of the scattering state wave function Ref. [43, 62]. In the Coulomb limit Ref. [62]

J k,100p0q “ k̂

˜

26π

k
S0pζSq p1` ζ

2
Sq
ζ5
B e
´4ζSarccotpζBq

p1` ζ2
Bq

4

¸1{2

, (D.1.5a)

Yk,100 “ pαΦ{αBqJ k,100p0q, (D.1.5b)

where ζS ” αS{vrel for the scattering state, ζB ” αB{vrel for the bound state, and S0pζSq ”
2πζS{p1´ e

´2πζS q. Considering the potential (3.1.3b), for the process of interest we find

ζS “ ζV ´ ζΦ and ζB “ ζV ` ζΦ. (D.1.6)

Collecting the above, we find the amplitude for capture into the ground state to be

|MV
kÑ100|

2 »
M2

µ
αV

ˆ

1`
2αΦ
αB

˙2 211π2

k
S0pζSq p1` ζ

2
Sq
ζ5
B e
´4ζS arccotpζBq

p1` ζ2
Bq

4
. (D.1.7)

Then, the cross-section Ref. [59, 62]

σV100vrel “
|PV |

26π2M2µ

ż

dΩ
´

|MV
kÑ100|

2 ´ |P̂V ¨MV
kÑ100|

2
¯

(D.1.8)

is found to be

σV100vrel “
27π

3µ2
αVαB

ˆ

1`
2αΦ
αB

˙2

S0pζSq p1` ζ
2
Sq

ζ4
B

p1` ζ2
Bq

3
e´4ζSarccotpζBq. (D.1.9)

Note that eq. (D.1.9) holds also for fermionic DM. This has been already established for the two
diagrams on the left of Figure D.1. In the third diagram, the contraction of two spinor pairs
due to the two fermion-antifermion-scalar vertices gives rise to an extra factor 22. Combined
with the fact that y2 “ 4παΦ for fermions Ref. [1, appendix A], reproduces eq. (D.1.9).

Despite the different potentials in the initial and final states – which in fact occur commonly
in BSFV in non-Abelian theories where the emitted gauge vector boson carries away non-Abelian
charge Ref. [62] – BSFV is suppressed by α2

B with respect to the BSFΦ processes computed in
section 3.1, due to the momentum dependence of the vector emission vertices. (For the third
diagram of fig. D.1, and its interference with the other two diagrams, the suppression is actually
of order α2

Φ and αΦαB respectively, at the level of the cross-section.).
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D.2 Perturbative transition amplitudes: an example

We demonstrate the calculation of diagrams contributing to the perturbative part of the tran-
sition amplitudes of section 4.3. We will work out in detail the diagram shown in fig. D.2.

s1 r1

s2 r2

k1

k2

p1

p2

PH

i i1

j1

h

Figure D.2: Example of diagram contributing to the perturbative parts of the amplitudes of
various transition processes considered in section 4.3.

We first express the fields in canonical form, following [140],

Hjpxq “

ż

d3q

p2πq3
1

a

2EHpqq

”

ajpqq e
´iq¨x ` b:jpqq e

`iq¨x
ı

, (D.2.1a)

H:j pxq “

ż

d3q

p2πq3
1

a

2EHpqq

”

bjpqq e
´iq¨x ` a:jpqq e

`iq¨x
ı

, (D.2.1b)

Spxq “

ż

d3q

p2πq3
1

a

2ESpqq

ÿ

s

“

cpq, squpq, sqe´iq¨x ` c:pq, sq vpq, sqe`iq¨x
‰

, (D.2.1c)

S̄pxq “

ż

d3q

p2πq3
1

a

2ESpqq

ÿ

s

“

cpq, sq v̄pq, sqe´iq¨x ` c:pq, sq ūpq, sqe`iq¨x
‰

, (D.2.1d)

Djpxq “

ż

d3q

p2πq3
1

a

2EDpqq

ÿ

s

”

djpq, squpq, sqe
´iq¨x ` f :j pq, sq vpq, sqe

`iq¨x
ı

, (D.2.1e)

D̄jpxq “

ż

d3q

p2πq3
1

a

2EDpqq

ÿ

s

”

fjpq, sq v̄pq, sqe
´iq¨x ` d:jpq, sq ūpq, sqe

`iq¨x
ı

, (D.2.1f)

where j is the SULp2q index, and the various q0 inside the integrals are equal to the corresponding
on-shell energies,

EHpqq “
a

m2
H ` q2, ESpqq “ EDpqq “

a

m2 ` q2. (D.2.2)

The creation and annihilation operators obey the (anti)commutation relations

raippq, a
:

jpqqs “ rbippq, b
:

jpqqs “ p2πq
3δ3pp´ qq δij , (D.2.3a)

tcpp, rq, c:pq, squ “ p2πq3δ3pp´ qq δrs, (D.2.3b)

tdipp, rq, d
:

jpq, squ “ tfipp, rq, f
:

j pq, squ “ p2πq
3δ3pp´ qq δrs δij , (D.2.3c)

with all other combinations being zero. The one-particle states are

|Hjpqqy “
a

2EHpqq a
:

jpq, sq|0y, |H:j pqqy “
a

2EHpqq b
:

jpq, sq|0y, (D.2.4a)

|Spq, sqy “
a

2ESpqq c
:pq, sq|0y, (D.2.4b)

|Djpq, sqy “
a

2EDpqq d
:

jpq, sq|0y, |D̄jpq, sqy “
a

2EDpqq f
:

j pq, sq|0y. (D.2.4c)
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We now return to the diagram of fig. D.2. Its contribution to an amplitude is

p2πq4δ4pk1 ` k2 ´ p1 ´ p2 ´ PHq iArDS Ñ DD̄Hs »

» xDi1pp1, r1q D̄j1pp2, r2qHhpPHq| p´iyq
ż

d4x S̄pxqH:pxqDpxq |Dipk1, s1qSpk2, s2qy

“ p´iyq
ÿ

tS ,tD

ÿ

n

ż

d4x

ż

d3qS
p2πq3

d3qH
p2πq3

d3qD̄
p2πq3

a

2EDpk1q 2ESpk2q 2EDpp1q 2EDpp2q 2EHpPHq
a

2ESpqSq 2EHpqHq 2EDpqD̄q

ˆ x0|ahpPHqfj1pp2, r2qdi1pp1, r1q
“

cpqS, tSq v̄pqS, tSq e
´iqS ¨x ` c:pqS, tSq ūpqS, tSq e

`iqS ¨x
‰

ˆ
“

bnpqHq e
´iqH ¨x ` a:npqHq e

`iqH ¨x
‰

ˆ

”

dnpqD̄, tD̄qupqD̄, tD̄q e
´iq

D̄
¨x
` f :npqD̄, tD̄q vpqD̄, tD̄q e

`iq
D̄
¨x
ı

d:i pk1, s1qc
:pk2, s2q|0y

“ p´iyq
ÿ

tS ,tD̄

ÿ

n

ż

d4x

ż

d3qS
p2πq3

d3qH
p2πq3

d3qD̄
p2πq3

a

2EDpk1q 2ESpk2q 2EDpp1q 2EDpp2q 2EHpPHq
a

2ESpqSq 2EHpqHq 2EDpqD̄q

ˆ e´ipqS´qH´qD̄qx ˆ p´1q2p2πq3δ3pk2 ´ qSqδtSs2 v̄pqS, tSq ˆ p2πq
3δ3pPH ´ qHqδhn

ˆ p´1qp2πq3δ3pp2 ´ qD̄qδtD̄r2δj
1n vpqD̄, tD̄q ˆ p2πq

3δ3pk1 ´ p1qδs1r1δii1

“ p´1q3p´iyqδs1r1δii1δhj1 v̄pk2, s2q vpp2, r2q
a

2EDpk1q 2EDpp1qp2πq
3δ3pk1 ´ p1q

ˆ

ż

d4x e´ipk2´PH´p2qx, (D.2.5)

where in the third step, we did the following contractions, in order,

• cpqS, tSq with c:pk2, s2q,

• a:npqHq with ahpPHq,

• f :npqD̄, tD̄q with fj1pp2, r2q,

• d:i pk1, s1q with di1pp1, r1q,

and accounted for the signs arising from the permutations of the fermion operators. Considering
that |k2 ´ p2| “ |PH | ! |k2|, |p2|, we may set v̄pk2, s2q vpp2, r2q » ´2mδs2r2 . Moreover, we do
the following manipulation1

p2πq3δ3pk1 ´ p1q

ż

d4x e´ipk2´PH´p2qx “ p2πq3δ3pk1 ´ p1q

ż

d4x e´ipk1`k2´PH´p1´p2qx

“ p2πq4δ4pk1 ` k2 ´ PH ´ p1 ´ p2qp2πq
3δ3pk1 ´ p1q. (D.2.6)

Finally, setting EDpk1q “ EDpp1q » m, eq. (D.2.5) yields

iArDS Ñ DD̄Hs » p´iyqδs1r1δs2r2δii1δhj1 4m
2p2πq3δ3pk1 ´ p1q. (D.2.7)

1Because the diagram of fig. D.2 is disconnected when considered alone, the energy-momentum conservation
on the vertex suggests that it vanishes. This is an artifact of having set the incoming and outgoing D, D̄ and S
particles on shell. In reality, because of their interactions along the ladders (cf. fig. 4.4), the propagating fields
are not exactly on-shell. A method for integrating out the virtuality of these particles has been suggested in [59]
and employed e.g. in [1, 62].
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D.3 Scalar emission via vector-scalar fusion

In many of the BSF processes considered in this work, the radiative parts of the amplitudes
receive contributions from diagrams where off-shell vector and Higgs bosons fuse to produce
the on-shell radiated Higgs boson; one such diagram is pictured in fig. D.3. These diagrams
resemble the ones where an on-shell vector is emitted from an off-shell vector or scalar mediator
exchanged between the interacting particles (cf. figs. 4.5 to 4.8.) This suggests that they may be
significant. Here we show that the diagrams of the type of fig. D.3 are of higher order than those
featuring emission of a vector from an off-shell mediator. Moreover, BSF via vector emission is
of higher order than BSF via emission of a charged scalar [2]. Thus, the Higgs emission diagrams
of the type of fig. D.3 are very subdominant.

s1 r1

s2 r2

K{2` kp1q

K{2´ kp1q

P {2` p

P {2´ p

PHi i1

j1
h

Figure D.3: Scalar emission via vector-scalar fusion.

The contribution from the diagram of fig. D.3 is

iA “ ūpP {2` p, r1q ig2γ
µtai1i upK{2` k

1, s1q

„

´igµν
pk1 ´ p` PH{2q2



(D.3.1)

ˆ ig2t
a
j1jp3PH{2´ k

1 ` pqν
i

pk1 ´ p´ PH{2q2 ´m2
H

v̄pK{2´ k, s2qp´iyqvpP {2´ pq.

Applying the standard approximations due to the scale hierarchies, the above becomes

iA » ig2
2y t

a
i1it

a
j1j 2m

pk1 ´ p´ PH{2q ¨ rpK ` P q{2` k1 ` ps

pk1 ´ pq2rpk1 ´ pq2 `m2
Hs

. (D.3.2)

The 4-vector product in the numerator is of order „ m2pα2
B ` v

2
relq, which renders eq. (D.3.2) of

higher order than eqs. (4.3.14) and (4.3.18), and even more so that eqs. (4.3.21).
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Appendix E

Kernel and wavefunction
(anti)symmetrisation for identical
particles

E.1 The 2PI kernel

For identical particle (IP) pairs, t-channel diagrams have u-channel counterparts. However,
adding them up and resumming them double-counts the loop diagrams because it corresponds
to exchanging identical particles in the loops. The proper resummation necessitates using an
(anti-)symmetrised kernel, as we will now show. Note that this holds not only for tree-level 2PI
diagrams, but more generally for 2PI diagrams involving loops in t- and u-type configurations.

We consider the 4-point function of a pair of identical particles, GIP

´

p, sA, sB
p1, s1A, s

1
B

¯

, where the

momentum and spin assignments are shown in fig. E.1. To ease the notation, the dependence
of GIP on the total momentum P is left implicit. Let A be a function of the same variables that
stands for the sum of either the t- or u-type 2PI diagrams. Clearly,

A
´

p, sA, sB
p1, s1A, s

1
B

¯

“ A
´

´p, sB, sA
´p1, s1B, s

1
A

¯

. (E.1.1a)

Then, the sum of complementary 2PI diagrams (u- or t-type respectively) is

p´1qfA
´

p, sA, sB
´p1, s1B, s

1
A

¯

“ p´1qfA
´

´p, sB, sA
p1, s1A, s

1
B

¯

, (E.1.1b)

where f “ 0 or 1 if the interacting particles are bosons or fermions. This factor arises from the
different number of fermion permutations needed in the t- and u-type cases, in order to perform
the Wick contractions.

The 4-point function GIP includes the two ladders shown in the two columns of fig. E.1.
These ladders are related by exchanging the momenta and spins of the initial (or final) state
particles, thus we may write

GIP

´

p, sA, sB
p1, s1A, s

1
B

¯

“ GIP
0

´

p, sA, sB
p1, s1A, s

1
B

¯

` p´1qfGIP
0

´

´p, sB, sA
p1, s1A, s

1
B

¯

. (E.1.2)
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sA s1A

P {2` p P {2` p1

P {2´ p P {2´ p1
sB s1B

G

“

sA s1A

P {2` p “ P {2` p1

P {2´ p “ P {2´ p1
sB s1B

`

`

sA s1A

P {2` p P {2` p1

P {2´ p P {2´ p1
sB s1B

iA `

`

sA rA
s1A

P {2` p P {2` q P {2` p1

P {2´ p P {2´ q P {2´ p1
sB

rB
s1B

iA iA `

`
...

sB s1A

P {2´ p “ P {2` p1

P {2` p “ P {2´ p1
sA s1B

p´1qf

`

sB s1A

P {2´ p P {2` p1

P {2` p P {2´ p1
sA s1B

p´1qf iA

`

sB rA
s1A

P {2´ p P {2` q P {2` p1

P {2` p P {2´ q P {2´ p1
sA

rB
s1B

p´1qf iA iA

`
...

Figure E.1: Resummation of t-type (left) and u-type (right) 2PI diagrams for pairs of identical
particles. Summation over rA, rB and integration over q is implied. The u-type diagrams carry
extra factors p´1qf with respect to their t-type counterparts, where f “ 0 or 1 if the interacting
particles are bosons or fermions respectively, due to the different number of fermion permutations
needed to perform the Wick contractions.

Let SpP q ” i{pP 2 ´m2q. The unamputated function G0 is

GIP
0

´

p, sA, sB
p1, s1A, s

1
B

¯

“ SpP {2` p1qSpP {2´ p1q p2πq4δp4qpp´ p1q δsA,s
1
A
δsB ,s

1
B

` SpP {2` p1qSpP {2´ p1q iA
´

p, sA, sB
p1, s1A, s

1
B

¯

SpP {2` pqSpP {2´ pq

` SpP {2` p1qSpP {2´ p1q
ÿ

rA,rB

ż

d4q

p2πq4
iA

´

q, rA, rB
p1, s1A, s

1
B

¯

SpP {2` qqSpP {2´ qq

ˆ iA
´

p, sA, sB
q, rA, rB

¯

SpP {2` pqSpP {2´ pq ` ¨ ¨ ¨ . (E.1.3)

Equation (E.1.3) can be re-expressed as a Dyson-Schwinger equation with A being the kernel,

GIP
0

´

p, sA, sB
p1, s1A, s

1
B

¯

“ SpP {2` p1qSpP {2´ p1qˆ

ˆ

«

p2πq4δp4qpp´ p1q δsA,s
1
A
δsB ,s

1
B
`

ÿ

rA,rB

ż

d4q

p2πq4
iA

´

p, sA, sB
q, rA, rB

¯

GIP
0

´

q, rA, rB
p1, s1A, s

1
B

¯

ff

. (E.1.4)
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In eq. (E.1.4), we can change the integration variable q Ñ ´q and switch rA Ø rB. Adding up
the resulting equation with eq. (E.1.4), we obtain

GIP
0

´

p, sA, sB
p1, s1A, s

1
B

¯

“ SpP {2` p1qSpP {2´ p1q ˆ
!

p2πq4δp4qpp´ p1q δsA,s
1
A
δsB ,s

1
B

`
1

2

ÿ

rA,rB

ż

d4q

p2πq4

”

iA
´

p, sA, sB
q, rA, rB

¯

GIP
0

´

q, rA, rB
p1, s1A, s

1
B

¯

` iA
´

p, sA, sB
´q, rB, rA

¯

GIP
0

´

´q, rB, rA
p1, s1A, s

1
B

¯ı

.

(E.1.5)

Combining eqs. (E.1.1), (E.1.2) and (E.1.5), we obtain the Dyson-Schwinger equation for G,

GIP

´

p, sA, sB
p1, s1A, s

1
B

¯

“ SpP {2` p1qSpP {2´ p1qˆ

ˆ

”

p2πq4δp4qpp´ p1q δsA,s
1
A
δsB ,s

1
B
` p´1qf p2πq4δp4qpp` p1q δsA,s

1
B
δsA,s

1
B

`
ÿ

rA,rB

ż

d4q

p2πq4
iK

´

p, sA, sB
q, rA, rB

¯

GIP

´

q, rA, rB
p1, s1A, s

1
B

¯

ff

, (E.1.6)

where we defined

iK
´

p, sA, sB
q, rA, rB

¯

”
1

2

”

iA
´

p, sA, sB
q, rA, rB

¯

` p´1qf iA
´

´p, sB, sA
q, rA, rB

¯ı

. (E.1.7)

Evidently, eq. (E.1.7) is the average of the t- and u-type 2PI diagrams,

iK “ 1

2
piAt ` iAuq . (E.1.8)

The factor 1{2 ensures that the loop diagrams are not double-counted. From eq. (E.1.7), we can
also deduce the following relation

iK
´

p, sA, sB
q, rA, rB

¯

“ p´1qf iK
´

p, sA, sB
´q, rB, rA

¯

, (E.1.9)

which we use below in the discussion on the (anti-)symmetrisation of the wavefunctions.

Finally, we note that if the interacting particles carry additional conserved numbers, e.g. non-
Abelian (gauge) charges, then appropriate factors ensuring their conservation may appear in the
0th order terms of eq. (E.1.6), as well as inside A and consequently K. However, eq. (E.1.8)
remains generally valid as is.

E.2 Wavefunctions

The 0th order terms of the Dyson-Schwinger equations determine the normalisation of the wave-
functions (see e.g. [59, 145].) The two contributions appearing in the second line of eq. (E.1.6)
ensure that the wavefunctions of identical particles are properly (anti)symmetrised, as we will
now show. Instead of deriving the normalisation conditions from eq. (E.1.6), we shall deduce
them by comparing to the case of distinguishable particles (DP), whose wavefunctions are nor-
malised as standard [59, 145].

For DP with equal masses, and incoming and outgoing momenta and spins as in fig. E.1, the
Dyson-Schwinger eq. for the four-point function GDP is (compare with eq. (E.1.6))

GDP

´

p, sA, sB
p1, s1A, s

1
B

¯

“ SpP {2` p1qSpP {2´ p1qˆ
«

p2πq4δp4qpp´ p1q δsA,s
1
A
δsB ,s

1
B
`

ÿ

rA,rB

ż

d4q

p2πq4
iK

´

p, sA, sB
q, rA, rB

¯

GDP

´

q, rA, rB
p1, s1A, s

1
B

¯

ff

. (E.2.1)
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We diagonalise eq. (E.2.1) in spin space. The factor δsA,s
1
A
δsB ,s

1
B

is simply the unity operator,
with all its eigenvalues being 1. Thus, the contribution from the spin-s state is

GDP
s pp, p

1q “ SpP {2` p1qSpP {2´ p1q

„

p2πq4δp4qpp´ p1q `

ż

d4q

p2πq4
iKspp, qqG

DP
s pq, p

1q



, (E.2.2)

where Ks is the projected kernel. GDP
s receives contributions from all energy eigenstates that

schematically read [59, 145]

GDP
n,spp, p

1q »
iΨ̃DP
n,sppq rΨ̃

DP
n,spp

1qs‹

2P 0pP 0 ´ ωn,s ` iεq
, (E.2.3)

where here n denotes collectively all quantum numbers characterising an eigenstate of energy
ωn,s. For scattering states, these include a continuous variable that corresponds to the relative
momentum of the two interacting particles, while bound states are characterised by a set of
discrete quantum numbers. The (momentum space) wavefunctions Ψ̃DP

n,sppq obey the Schrödinger
equation, and have the standard normalisation conditions that emanate from the first term in
eq. (E.2.2).

Now we return to IP and the Dyson-Schwinger eq. (E.1.6). For fermions, the operators
δsA,s

1
A
δsB ,s

1
B

and δsA,s
1
B
δsB ,s

1
A

have eigenvalues 1 and p´1qs`1 respectively, while for bosons the

eigenvalues are 1. Collectively, this is 1 and p´1qs`f . Thus, eq. (E.1.6) yields

GIP
s pp, p

1q “ SpP {2` p1qSpP {2´ p1q

ˆ

„

p2πq4δp4qpp´ p1q ` p´1qs p2πq4δp4qpp` p1q `

ż

d4q

p2πq4
iKspp, qqG

IP
s pq, p

1q



. (E.2.4)

The projected kernel is

iKspp, qq “ rU
sssAsB iKs

´

p, sA, sB
q, rA, rB

¯

rU ss´1
rArB

, (E.2.5)

where U s is the projection operator on the spin-s state, with the symmetry property rU sssAsB “
p´1qs`f rU sssBsA . Equation (E.2.5) combined with eq. (E.1.9) imply

iKspp, qq “ p´1qs iKspp,´qq. (E.2.6)

The contribution to the four-point function from the nth energy eigenstate is

GIP
n,spp, p

1q »
iΨ̃ IP
n,sppq rΨ̃

IP
n,spp

1qs‹

2P 0pP 0 ´ ωn,s ` iεq
, (E.2.7)

where Ψ̃ IP
n,sppq are the IP wavefunctions. We now make the conjecture

Ψ̃ IP
n,sppq “

1
?

2

”

Ψ̃DP
n,sppq ` p´1qsΨ̃DP

n,sp´pq
ı

, (E.2.8)

where Ψ̃DP
n,sppq are the solutions to the DP Dyson-Schwinger eq. (E.2.2), assuming the kernel is

the same as that of eq. (E.2.4). Plugging eq. (E.2.8) into (E.2.7), and considering (E.2.3), we
re-express GIP

n,s as

GIP
n,spp, p

1q “
1

2

“

GDP
n,spp, p

1q `GDP
n,sp´p,´p

1q
‰

`
p´1qs

2

“

GDP
n,spp,´p

1q `GDP
n,sp´p, p

1q
‰

. (E.2.9)
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It is now easy to see that, by virtue of the DP Dyson-Schwinger eq. (E.2.2) and the property
of the IP kernel (E.2.6), the four-point function GIP

n,spp, p
1q of eq. (E.2.9) satisfies the IP Dyson-

Schwinger eq. (E.2.4). Therefore, the wavefunctions (E.2.8) are indeed the desired solutions.
Expanding in modes of definite orbital angular momentum `, for which

Ψ̃DP
n,`sp´pq “ p´1q`Ψ̃DP

n,`sp´pq, (E.2.10)

eq. (E.2.8) becomes

Ψ̃ IP
n,`sppq “

1` p´1q``s
?

2
Ψ̃DP
n,`sppq. (E.2.11)

Note though that, as mentioned in appendix E.1, if the interacting particles carry additional
conserved numbers, then appropriate (anti-)symmetrisation factors may appear in eqs. (E.2.10)
and (E.2.11) (cf. e.g. DD potential in section 4.2.1.)
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