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ReseaRch

We are Not Groupies⋯ We are Band Aids’: Assessment 
Reliability in the AI Song Contest
John Ashley Burgoyne* and Hendrik Vincent Koops†

In 2020, inspired by the expectation that Rotterdam would host the Eurovision Song Contest, the Dutch 
public broadcaster VPRO sponsored an international AI Song Contest. The winner was determined by 
combining an online public vote, which attracted 3800 voters across 70 countries, with the ratings of 
three professional judges. In this paper, we analyse the voters’ and judges’ ratings to assess the reliability 
of the contest results and to make recommendations for evaluating the contest in the future. We focus 
on Rasch-type models because of their strong measurement characteristics, but also consider a mixture 
variant to inflate counts for the 46 percent of voters who exhibited ‘groupie’-like behaviour: voting for 
one team only and giving their team a perfect score. We find that the overall reliability of the AI Song 
Contest evaluation was excellent (ρ = .90) but that the large number of one-time voters distorted the 
results. These findings pose a dilemma for organising such a contest in the future: to what extent is a 
popularity contest desirable and even expected from a broader voting public, and to what extent should 
such a contest strive for an objective measurement of the quality of AI-composed music?

Keywords: AI Song Contest; reliability; music competitions; measurement; Rasch models

1. Introduction
On 12 May 2020, thirteen musical groups from around the 
world tuned in to a live broadcast that would determine 
their fate: who had won the first-ever AI Song Contest?1 
Six months earlier, assuming that Rotterdam would be 
hosting the Eurovision Song Contest, the public Dutch 
broadcaster VPRO had begun soliciting participants 
from across Europe to compose and record their own 
Eurovision-inspired songs, co-created with artificial 
intelligence (Huang et al., 2020). In the end, the Australian 
entry ‘Beautiful the World’, created by team Uncanny 
Valley, emerged victorious. Table 1 lists the contestants in 
the order of their final ranking.

Like the Eurovision Song Contest that inspired it, the 
AI Song Contest entries were ranked according to the 
sum of average scores from online voters in the general 
public and average scores from a professional jury. Unlike 
Eurovision, for which the public scores are based on ranks 
from a raw popularity contest and the jury scores are also 
based only on ranked top-ten lists, both voters and judges 
in the AI Song Contest used formal rubrics to evaluate the 
contest entries across multiple criteria. Because it was the 
first year of such a contest, however, these rubrics and the 
voting system were necessarily ad hoc. This paper analyses 

the voting data from the AI Song Contest in detail, 
focusing on three open questions:

1. Are the AI Song Contest results a fair measure of 
some type of underlying quality in the entries, or was 
it de facto a popularity contest? And to the extent 
that the results do measure underlying differences 
in quality, are these differences large enough to 
be meaningful? Put more formally, are the results 
reliable and valid?

2. How well did the individual rubric criteria function, 
and are there any redundant or ill-fitting criteria 
that could be replaced in future contests?

3. Were there any characteristics of the voters or the 
jury that may have distorted the results?

We conclude with a discussion of how our findings could 
be incorporated into future versions of the contest. 
Questioning the reliability and validity of musical contest 
results is not just a pastime for unhappy losers, of course, 
but also an active area of research. The Eurovision Song 
Contest has received the most attention in the literature, 
most often from the perspective of measuring the effects 
of political collusion (Yair and Maman, 1996; Gatherer, 
2006; Ginsburgh and Noury, 2008; Blangiardo and Baio, 
2014) but sometimes also from more general standpoints 
about possible causes of juror bias (Bruine de Bruin, 2005; 
Haan et al., 2005). The Queen Elisabeth Competition 
has also been studied by several groups of researchers, 
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again mostly with a focus on juror bias due to potential 
distortions from non-musical factors such as order effects 
(Flôres and Ginsburgh, 1996; Glejser and Heyndels, 
2001). In educational contexts, where it is sometimes 
easier to obtain complete data from the judges of musical 
competitions and recitals, there has been considerable 
research on best practices in rubric and rating-scale design, 
using the same or similar techniques to those we use here 
(Latimer et al., 2010; Wesolowski et al., 2016; Springer and 
Bradley, 2017; Álvarez-Díaz et al., 2020).

In the MIR community, questions of measurement 
reliability are perhaps most strongly associated with the 
beginnings of the MIREX evaluation exchange (Downie, 
2004). Concomitant with MIREX’s de facto standardisation 
of a classical set of MIR tasks, there has been increasing 
attention to assessing the reliability and validity of 
experimental results (Urbano et al., 2013; Sturm, 2016). In 
recent years, researchers have used reliability assessments 
not only as a means of evaluating experiments but also 
to identify ceilings on the level of performance that one 
should expect an MIR system to achieve (Flexer and Grill, 
2016; Koops et al., 2019): when ground-truth annotators 
disagree with each other, it is unrealistic to demand that 
a classification or regression algorithm match ground 
truth more exactly than humans do. Beyond the AI Song 
Contest, inter-rater reliability is also being promoted 
as an important standard to consider when evaluating 
AI-generated music more generally (Yang and Lerch, 2018; 
Carnovalini and Rodà, 2020).

2. Method
2.1 Judges and Voters
Between 10 April 2020 and 10 May 2020, voters were 
able to rate the AI Song Contest entries on either of 
two websites, one in Dutch and one in English. When 
multiple votes for the same song arrived from the same 
IP address, only a single vote, chosen at random, was kept. 

No demographic information was asked of or recorded 
for the voters, but based on IP addresses, the contest sites 
attracted 3826 voters across 70 different countries. Of 
these 70 countries, however, just four accounted for more 
than half of the voters: The Netherlands (22%), Belgium 
(16%), Australia (14%), and France (11%).

Alongside the public vote, an international panel of three 
researchers in music and artificial intelligence served as a 
jury for the contest. In addition to the songs themselves, 
each participating team provided the jury with a ‘process 
document’ explaining how they had created their song 
and how the interaction between humans and algorithms 
had worked. After listening to all the entries and reading 
all of the process documents, the jury met to discuss and 
evaluate them on a separate list of criteria from the public 
voters.

2.2 evaluation criteria
The public voting sites asked voters to evaluate the entries 
on four criteria, using scales of 0 to 3: its originality, 
the quality of the song itself, its ‘Eurovision-ness’, and 
its lyrics. Although this system was quite different 
than the ranked-choice system of the Eurovision Song 
Contest, it shared one common detail: the maximum 
possible total score across all criteria was 12 points. A 
complete spreadsheet of the public votes is available as 
Supplementary File 1.

The judges on the jury evaluated the entries according 
to four other criteria: effective and creative use of AI 
(scale of 0 to 6), expansion of creativity (scale of 0 to 2), 
furthering understanding (scale of 0 to 2), and diversity 
and collaboration (scale of 0 to 2). Again, the maximum 
possible total score across all criteria was 12 points. 
Although the judges kindly shared a spreadsheet of their 
evaluations with us for the purposes of this paper, in order 
to protect the anonymity of their individual opinions and 
the integrity of the contest, we cannot make them public.

Table 1: Entries and final places for the AI Song Contest 2020.

Place Country Team Song

1 Australia Uncanny Valley Beautiful the World

2 Germany Dadabots × Portrait XO I’ll Marry You Punk Come

3 The Netherlands Can AI Kick It Abbus

4 France Algomus & Friends I Keep Counting

5 The Netherlands COMPUTD/Shuman & Angel-Eye I Write a Song

6 United Kingdom Brentry Hope Rose High

7 Belgium Polaris Princess

8 Belgium Beatroots Violent Delights Have Violent Ends

9 France DataDada Je secoue le monde

10 Sweden KTH/KMH + Doremir Come To Ge Ther

11 Germany OVGneUrovision Traveller in Time

12 Germany Ligatur Offshore in Deep Water

13 Switzerland New Piano Painful Words

Source: https://www.vprobroadcast.com/titles/ai-songcontest.html

https://www.vprobroadcast.com/titles/ai-songcontest.html
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The final ranking was determined by the total of the 
average voter score (summed across all criteria) and 
the average jury score (summed across all criteria and 
rounded to the nearest integer) for each entry. Overall, the 
evaluation scheme was in line with recommendations for 
evaluating computational creativity (e.g., SPECS, Jordanous,  
2012), incorporating aspects of the process as well as the 
product, multiple recognised dimensions of creativity, 
and a combination of expert and non-expert evaluators. 
Figure 1 shows the development of the average voter 
scores during the voting period and a comparison of the 
voters’ final scores against the jury’s.

2.3 Distribution of Votes and the Groupie Effect
In total, there were 12,416 votes (defined here as one 
voter sending a completed evaluation rubric for one 
song). Only 11 percent of voters voted for every song, 
but these voters were responsible for 43 percent of the 
total number of votes. At the other extreme, 67 percent 
of voters voted for one song only, but due to this group’s 
low vote count, they were responsible for only 21 percent 
of the total number of votes. The votes from one-time 
voters were distributed quite unevenly over the teams (see 
the heatmap in Figure 2): while 45 percent of votes for 
‘Beautiful the World’ came from one-time voters, the same 
was true of only 2 percent of voters for ‘Painful Words’. 
One-time voters were also substantially more likely to 
award perfect scores than other voters: whereas perfect 
scores comprised only 8 percent of votes from voters who 
voted for two or more songs, one-time voters gave their 

teams a perfect score 69 percent of the time. We dub this 
phenomenon the groupie effect.

2.4 Rasch Models
We analysed the data using the Rasch approach to 
psychometric measurement (Rasch, 1960; Wright and 
Mok, 2004), specifically the Rasch rating-scale model and 
the Rasch partial-credit model (Wright and Masters, 1982). 
These are models for passing each step of a rating scale, 
conditional on having passed all previous steps. They are 

Figure 1: Development of voters’ average scores over time and final jury scores. The voting sites were open from 10 
April 2020 through 10 May 2020; the jury scores and final results were announced in a live broadcast on 12 May 
2020. Each song’s final score was the sum of its average voter score and its score from the jury.2 The jury favourite, ‘I’ll 
Marry You Punk Come’, was a notable area of disagreement between the jury and the voters.
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closely related to logistic regression, and with the right 
parameterisation, it is possible to fit these and most other 
Rasch-type models using any statistical software that 
supports hierarchical log-linear modelling.

Consider a rating scale with integer scores ranging 
from 0 to K. Given a quality parameter θn for a song n, an 
overall difficulty parameter δi for a rating criterion i, and a 
set of thresholds τk for the rating scale, k ∈ {1, …, K}, the 
Rasch rating-scale model for the probability of passing the 
threshold to xni is
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The partial-credit model is a variant that allows an 
interaction between criteria and the rating thresholds (i.e., 
the perceptual distance between scale steps may differ 
across criteria). Instead of a common set of thresholds 
τk, it combines criterion difficulties and thresholds into a 
matrix of parameters δik:
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In contests like the AI Song Contest, wherein multiple 
judges and voters rate the same songs on a common set of 
criteria, these models can be extended to so-called many-
facet Rasch models by adding severity parameters λj to 
reflect the harshness of judge or voter j when applying 
the rating criteria (Linacre, 1989). The rating-scale model 
becomes
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Marginalising over all possible ratings yields the usual 
form for presenting these models:
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for the rating-scale model and for partial credit:
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The most notable feature of Rasch-type models is what 
they do not include: namely, any kind of interaction 
between the quality of the songs, difficulty of the rating 
criteria, and severity of the judges or voters. Unlike item–
response theory in general, the Rasch approach excludes 
these interactions from consideration on principle, even 
where they would improve model fit. This viewpoint can 

be controversial, but the argument for it is straightforward 
when the goal is not just a model for predictive inference 
but also a robust measurement model that can generalise 
to new circumstances (Andrich, 2004). Under Rasch 
models, the total raw scores for each team, criterion, and 
judge or voter are sufficient statistics for the corresponding 
parameters in the model; moreover, in the case of complete 
data, the relationship between raw scores and parameter 
values is monotonic. Crucially, in the case of incomplete 
data or, especially relevant to the task of evaluating a song 
contest, in the case of a new set of songs, a different set of 
rating criteria, or a different group of judges and voters, 
the underlying parameter values in Rasch models remain 
unchanged. This property, known as specific objectivity 
(Rasch, 1977), is so essential to measurement from the 
Rasch perspective that it is preferable to remove outlying 
songs, criteria or judges before introducing an interaction 
that would destroy specific objectivity.

2.5 Reliability
Similar to the intra-class correlation coefficient (ICC) 
and other classical measures of reliability (e.g., Lord and 
Novick, 1968), reliability in Rasch models for a parameter 
of interest φ is defined as

 
2

2
1 ,







   (7)

where 2
  is the variance of measurement error for 

the parameter of interest and 2
  is the variance of the 

(estimated) parameter of interest across the population 
(Wright and Masters, 1982). The maximum possible value 
of ρ is 1, and intuitively, it represents the proportion 
of variance in parameter estimates that represent true 
differences in quality, difficulty, or severity (as opposed 
to measurement error). Conventionally, after Nunnally 
(1978), ρ ≥ 0.7 is considered good and ρ ≥ 0.9 is considered 
excellent.

Because of specific objectivity, reliabilities in Rasch 
models can be computed independently for the estimates 
of song quality, criterion difficulty, and voter or judge 
severity. In many-facet models, Rasch reliability is also 
robust to cases of perfect separation where classical 
measures of inter-rater reliability can fail catastrophically 
(Bond et al., 2020).

2.6 Groupies and Three Inflation
As mentioned earlier, some AI Song Contest entries 
attracted large numbers of voters who voted only for one 
entry and gave perfect scores. In principle, many-facet 
Rasch models can handle this situation by assigning very 
low severities λj to the one-time, perfect-score voters; 
indeed, with no prior or other sort of regularisation, 
the maximum-likelihood estimate of the severity of 
such a voter would be –∞. But one could also imagine 
a distinct dimension that is responsible for this pattern 
of high scores in one-time voters: that while some 
perfect scores are ‘true’ perfect scores arising from a very 
positive assessment of a song’s merits, others arise from 
a simple popularity contest, whereby some voters (the 
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groupies) simply logged in to give a perfect score to their 
friends. Alternatively, one could imagine that one-time 
voters indeed did listen carefully to one or more entries, 
but then simply gave a perfect score to their favourite 
rather than going to the trouble of entering comparative 
ratings.

In either scenario, one would expect to see a larger 
number of threes in the rating data (the highest possible 
score on the rating criteria) than one would under a pure 
Rasch model. These scenarios are similar to those where 
researchers might use zero-inflated models for count data 
(e.g., the number of tracks streamed by a listener during 
each hour of the day). Zero-inflated models consider 
counts to come from a Poisson distribution ‘inflated’ with 
extra zero counts (Lambert, 1992). Specifically, the zero-
inflated Poisson model assumes that counts are drawn 
not from a pure Poisson distribution but rather from 
a mixture distribution, with a probability γ of a count 
arising from a process that generates only zeros (e.g., the 
probability that the user is not listening to music during a 
particular hour) and probability 1–γ that it arises from the 
Poisson distribution of interest. We use the same principle 
to derive a three-inflated Rasch model: instead of the 
pure Rasch models in Equations (5) and (6), we consider 
mixture models in which there is a probability γ that a 
rating is a three regardless of the underlying song quality 
– either because of pure popularity or because a voter 
chose to rank only their favourite song – and a probability 
1–γ that the rating is sampled from the distribution of a 
Rasch model.

The structure of the AI Song Contest data introduces an 
extra complication to this model. Our primary motivation 
for considering a three-inflated model is that the extra 
threes are not identically distributed, and as such, there 
should be multiple mixing parameters for different 
groups within the data. At first glance, it would seem that 
one would want to assign γj individually to each voter, 
on the idea that some voters, especially one-time voters, 
assigned ratings without specific regard to song quality 
whereas others used the scale more carefully. Even with 
regularisation, however, such a model introduces so many 
regions of perfect or near-perfect separability that it is 
difficult to estimate severities accurately. A more practical 
alternative is to consider the mixing probabilities γn to be 
parameters of the songs, capturing the idea that some 
entries, regardless of their quality, were more likely to 
attract groupies. The three-inflated many-facet partial-
credit model is thus:
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The rating-scale and single-facet variants of the three-
inflated model are formed similarly.

3 Results
3.1 Bayesian hierarchical Model
In order to understand the voting data fully, not only 
are the parameters of the Rasch models of interest, but 
also their distribution. As such, we chose a Bayesian 
approach for model estimation. We coded the models 
as hierarchical models in the Stan language for Bayesian 
modelling, version 2.26 (Stan Development Team, 2021). 
To simplify the fit and facilitate comparisons across the 
jury criteria, we split the judge’s ratings for the use of AI, 
originally on a scale of 0 to 6, into three ratings on a scale 
of 0 to 2 (e.g., a rating of 5 would become three ratings 
of 1, 2, and 2, respectively). The jury contained only three 
judges, against 3862 voters, and so we weighted the jury 
observations and the voter observations by their inverse 
frequency when computing the log likelihood, so that 
the jury as a whole and the voters as a whole would make 
equal contributions to the posterior, as in the contest’s 
official scoring system.

The prior and hyper-prior distributions for the model 
are summarised in Table 2. For consistency with the other 
parameters, we work with the γn parameters on a logit 
scale rather than as raw probabilities. For partial-credit 
models, we introduce an interaction parameter ζik to the 
rating-scale model and model the rating-scale thresholds 
as δi + τk + ζik instead of the more direct δik formulation 
in Equations (4) and (6); this expanded parameterisation 
allows us to eliminate any covariance between parameters 
in the prior distribution. In order to ensure regularisation 
and partial pooling in the case of parameters with fewer 
data points (e.g., the severity parameters for groupies), we 

Table 2: Prior and hyper-prior distributions for the hierar-
chical Rasch models. The choices are weakly informative 
with regularising tails.

Parameter Description

Priors

γn ~ N(µγ, σγ) Logit three-inflation

θn ~ N(0, σθ) Song quality

δi ~ N(µδ, σδ) Criterion difficulty

λj ~ N(0, σλ) Voter or judge severity

τk ~ N(0, στ) Rating-threshold offset

ζik ~ N(0, σζ) Partial-credit interaction

Hyper-Priors

µγ ~ N(0, 1) Mean logit three-inflation

µδ ~ N(0, 1) Intercept

σγ ~ N+(0, 1) SD logit three-inflation

σθ ~ N+(0, 1) SD song quality

σδ ~ N+(0, 1) SD criterion difficulty

σλ ~ N+(0, 1) SD voter or judge severity

στ ~ N+(0, 1) SD threshold offset

σζ ~ N+(0, 1) SD partial-credit interaction
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assume that all parameters are normally distributed with 
a distinct variance hyper-parameter per group. While most 
parameters are centred at 0, an intercept term must be 
assigned to one of them in the form of a non-zero mean; 
we choose the criterion difficulties in order to facilitate 
interpretation (see below). We give all hyper-priors a 
standard normal or half-normal distribution, a weakly 
informative choice that provides further regularisation to 
a difficult posterior geometry (cf. Lemoine, 2019).

For reporting purposes, we convert the parameters to 
a standard T-score scale (Seashore, 1955) by multiplying 
all parameters by 10/σθ and adding 50 to the θn and δi 
parameters. This transformation has several advantages 
for interpretation. It fixes the scale of the prior distribution 
on the most important parameters of interest, the song 
quality parameters θn, such that they can be interpreted as 
arising from a normal distribution with a mean of 50 and 
a standard deviation of 10.3 All other parameters can then 
be interpreted relative to this fixed scale. For example, if 
Voter A is 10 points more severe than Voter B, Voter A will 
judge a song as if it were one standard deviation lower in 
quality than Voter B would. By assigning both the intercept 
and the 50-point shift to the criterion difficulties δi, the 
rating thresholds also have a neat interpretation: if the 
standardised rating threshold k for some criterion is equal 
to the standardised quality score of some song, then if an 
average judge is debating between ratings of k and k–1, 
they will assign either rating with equal probability (i.e., a 
coin toss). If the criteria are well targeted for evaluating AI 
Song Contest entries, the standardised rating thresholds 
should fall within a similar range to the standardised song 
quality scores (roughly 20–80). The closer the thresholds 
are to the song qualities, the more statistical information 
each vote provides, and thus the fewer the votes necessary 
to achieve a desired level of reliability (Wright and Masters, 
1982).

For computing reliabilities of individual parameters 
according to Equation (7), we take the numerator 2

  to 
be the squared MAD SD (median absolute deviation scaled 
to match the standard deviation of a normal distribution) 
of the posterior distribution of the parameter of interest 
and the denominator 2

  to be the squared median of the 
posterior distribution of the corresponding hyper-prior 
(e.g., σθ for song qualities or σλ for voter severities). When 
reporting reliabilities for a group of parameters (e.g., the 
overall reliability of song quality measurements), we take 
the median over the reliabilities of all parameters in the 
group.

The Stan code for these models, including the T-score 
transform, is available as Supplementary File 2.

3.2 Model selection
We considered all of the Rasch model variants discussed 
above: rating scale and partial credit, single- and many-
facet, with and without three inflation. We sampled these 
models with Stan’s default no-U-turn sampler. In order to 
avoid divergent transitions, we used a very conservative 
adapt_delta setting of 0.99 and increased the maximum 
tree depth to 25. We ran four parallel chains for 1000 

iterations each, discarding the first 500 samples from 
each chain as warm-up. This procedure was sufficient 
for all R̂  statistics to converge to less than 1.01 and left 
us with 2000 samples from the posterior distribution 
of each model to use for further analysis. As a baseline, 
we also sampled from an intercept-only model, with all 
parameters except the song parameters and µδ fixed to 0:
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We compared the models using leave-one-song-out 
cross-validation, which we expect to generalise better 
than randomised or leave-one-vote-out cross-validation 
structures for the purposes of predicting the ratings for 
new songs in new competitions (Merkle et al., 2019). 
The posterior geometry of hierarchical models like 
ours can be challenging, however, for the Markov-chain 
Monte Carlo (MCMC) sampling techniques that are used 
in modern Bayesian inference (see Stan Development 
Team, 2021, §22.7, ‘Reparameterization’). On current 
hardware, it takes 12 to 24 hours per model or fold 
before MCMC sampling converges,4 which renders full 
cross-validation impractical. Instead, we used a popular 
approximate cross-validation technique for Bayesian 
analysis: Pareto-smoothed importance sampling (PSIS, 
Vehtari et al., 2017). Even this approximate technique 
requires the likelihood of each observation for each 
sample to be integrated over the prior distribution of song 
quality in that sample, which is itself computationally 
demanding. We thus made a further approximation by 
simply evaluating the likelihood of each observation for 
each sample as if the song had been of the overall mean 
quality (i.e., at θn = 0).5

Note that this approach heavily favours the intercept-
only baseline: it will select only models that can consistently 
capture more variance from criterion difficulties, judge or 
voter severities, and three inflation than they can capture 
from song quality. This conservatism is inherent in our 
choice to prefer leave-one-song-out cross-validation, 
which demands more robust parameters than a leave-one-
vote-out model that would only be trying to predict how a 
voter from the 2020 contest might have rated one of the 
songs that they skipped.

Table 3 summarises the results. For each model, we 
report the total number of parameters and the LOO-IC. 
The LOO-IC is asymptotically equivalent to the more 
familiar Akaike information criterion (AIC); smaller values 
are better. Only three models outperformed the baseline: 
from worst to best, the three-inflated many-facet rating-
scale model, the three-inflated single-facet partial-credit 
model, and the many-facet partial-credit model without 
three inflation. Bearing in mind that these values are all 
approximations, the results do suggest that the many-
facet models are an improvement over the single-facet 
models – or in other words, that judge and voter severities 
matter. The evidence for or against three inflation is more 
equivocal: while it clearly can help in some cases, being 



Burgoyne and Koops: Assessment Reliability in the AI Song Contest 242

part of two out of three of the best models, in other cases, 
it seems to degrade predictive performance. In the case 
of our best-performing model, however, it is perhaps not 
so surprising that three inflation is less helpful. Partial-
credit models can accommodate more three ratings than a 
strict rating-scale model, and likewise many-facet models 
can accommodate more threes than single-facet models. 
When both partial credit and extra facets are already 
available, the extra parameters in a three-inflated model 
may be less necessary.

On the basis of these results, we selected the many-facet 
partial credit model without three inflation, Equation (4), 
for further reporting here. But it should be noted that the 
second-best model, the three-inflated single-facet partial-
credit model, requires only 2% as many parameters, and 
this ratio would become even starker as the number of 
voters increased. The number of parameters affects both 
computation time and the storage necessary to save 
samples, and so in a larger contest, the three-inflated 
model might be preferable.

3.3 song calibrations
Figure 3a presents our main result: T-scaled 
calibrations from the model for song quality. They 
correlate almost perfectly with the official results (rs 
= .97), with only some slight differences in ordering 
in the bottom half. The quality of measurement in 
terms of Rasch reliability was excellent overall (ρ = 
.90), although the last-place entry, ‘Painful Words’, 
was somewhat more difficult than the others to place 
precisely (ρ = .75). At this level of reliability, one can 
distinguish three or four quality levels: one group 
including the top three or four entries (which are 
statistically indistinguishable), another between that 
group and the average standard score of 50, a below-
average group, and possibly ‘Painful Words’ in a class 
by itself. New Piano, the team behind ‘Painful Words’, 

interpreted the AI component of the challenge much 
more strictly than the other teams, eschewing as much 
human involvement as possible.

3.4 criterion calibrations
The average criterion difficulty was 40 on the standard 
scale, 95% CI [24, 56].6 The standard deviation was 17.5, 
95% CI [9.6, 32.9], composed of three subcomponents: 
the standard deviation of mean criterion difficulty, 4.7, 
95% CI [0.2, 14.5]; the standard deviation of the mean 
threshold offsets, 13.8, 95% CI [6.2, 29.8]; and the 
standard deviation of the criterion–threshold interaction 
that characterises partial-credit models, 8.0, 95% CI [4.1, 
14.7]. Figure 3b illustrates the posterior distribution for 
the voters’ criterion thresholds and Figure 3c the jury’s. 
Given the much larger amount of data, the calibrations for 
the voters’ criteria are more precise.

To achieve optimal reliability at minimal cost, one 
would want the rating thresholds to be centred exactly 
around 50, the centre of the songs’ quality distribution. 
Ours are centered one standard deviation lower, which has 
the consequence of degrading reliability slightly for the 
top-ranked entries. That is undesirable for a competition, 
where the most important reason to evaluate is to 
determine a winner, but even with this degradation, the 
reliability of measurement for the winner was still good 
(ρ = .83).

The larger problem revealed by these calibrations is that 
the voters had too many choices. As a general guideline, 
rating thresholds should be separated by between 1.4 
and 5.0 logits (Linacre, 2002), which corresponds to a 
separation of roughly 20 to 60 points on our standard 
scale (the median of the posterior distribution for σθ was 
0.77). All of the voters’ criteria fail to meet this guideline, 
and future competitions could consider reducing the 
voters’ rating scales to a simpler 0 to 2 range. The jury used 
a 0-to-2 range for their evaluation, and with the notable 

Table 3: Approximate information criteria under leave-one-song-out cross-validation (LOO-IC; lower is better). The 
observations are weighted such that voters’ ratings (on scales of 0 to 3) and the judges’ ratings (on scales of 0 to 2) 
contribute equally to the likelihood. The intercept-only model serves as a simple baseline. Leave-one-song-out cross-
validation is conservative, and only three models outperform the baseline (in italics and bold); the many-facet partial-
credit model without three inflation performs best.

Facets
Three  
Inflation

Parameter 
CountModel LOO-IC

Intercept Only Single No 15 144 944

Rating Scale Single No 30 147 378

Rating Scale Single Yes 45 150 455

Partial Credit Single No 49 153 181

Partial Credit Single Yes 64 144 044

Rating Scale Many No 3860 145 056

Rating Scale Many Yes 3875 144 796

Partial Credit Many No 3879 143 402

Partial Credit Many Yes 3894 151 248
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exception of the diversity criterion, which operated as 
a de facto binary variable, this shortened range worked 
better.

The last notable pattern in the criterion calibrations is 
that the jury as a whole was more sensitive to difference 
at the top of the quality distribution than the voters were. 
Juries are brought in to most competitions in hope that 
the contest will benefit from a higher level of expertise, 
and these data suggest that it did indeed help the AI Song 
Contest.

3.5 Voter and Judge calibrations
Voters’ and judges’ severity of assessment varied widely: 
19.8 points on the standard scale, 95% CI [12.7, 28.3]. 
The posterior distribution was bimodal, however, and 
the pattern can be understood best by examining how 
severity interacted with the contest entries. As noted 
earlier, the one-time voters were clustered around only 
a few entries. Figure 3d shows density estimates of the 
severities of the voters who voted for each of the entries. 
The groupies are visible as sharp peaks on the negative 
sides of the distributions: low severity means a higher 
chance of awarding a perfect score. Figure 3e is the same 
visualisation, but excluding all voters who gave exclusively 
threes or exclusively zeros (1805 of the 3826 voters). The 

groupie effect disappears, and the severity distributions 
for each entry become similar.

Re-fitting the model without the groupies leaves the 
song quality parameters essentially unchanged. This is 
to be expected: many-facet Rasch models will naturally 
discount groupies because their very low severities mean 
that even in the case of multiple votes, they provide very 
little information about underlying song quality. The issue 
is that raw scores, which usually track Rasch calibrations 
quite closely, become distorted in the presence of large 
numbers of groupies.

3.6 Posterior Predictive checks
Having worked through the model’s calibrations, it is 
worth making an extra check to ensure that it is indeed 
making good predictions. Figure 4 shows the results of 
a graphical posterior predictive check. The histograms 
reflect the actual ratings collected for the AI Song 
Contest. Using the 2000 samples from our model’s 
posterior distribution, we generated 2000 random 
datasets of the same size and structure as the actual 
data. The black bars in the figure cover 95 percent of the 
range of these simulated data, and in a perfect model, 
they would always include the tops of the histogram 
bars.

Figure 3: Rasch calibrations for the AI Song Contest evaluation scheme. (A–C) present kernel density estimates of the 
calibrations for song quality, voters’ criterion difficulty, and the jury’s criterion difficulty, all on a standard T scale (M = 
50, SD = 10). Plot labels are followed by point estimates of the calibrations (posterior medians) as well as the reliability 
coefficients for these estimates (in parentheses). The density estimates are marked with their medians and the 2.5% 
and 97.5% quantiles (i.e., a 95% credible interval). For the rating criteria, the densities for each step of the scale are 
shown individually. (D) presents density estimates for the severities of the voters who voted for each entry, coloured 
by tail probability (dark blue for the median ranging to yellow at the extrema of the distributions). ‘Groupies’ are 
prominently visible, especially for ‘Beautiful the World’ and ‘I Write a Song’. (E) is the same visualisation but exclud-
ing all voters who gave perfect scores or perfect zeros. The groupie effect disappears.
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Overall, the model seems to have captured the structure 
of the data well, but there are a few notable outliers. ‘I’ll 
Marry You Punk Come’ was much more appreciated by the 
jury than it was by the voters, and the model seems to 
have split the difference. ‘Traveller in Time’ had no lyrics 
at all, and as such, it scored unexpectedly poorly on the 
lyrics criterion. And despite the overall weak performance 
of Painful Words, voters appreciated its originality more 
than the model did.

4. Discussion
Overall, our analyses suggest that the overall measurement 
quality of the AI Song Contest was high, and that the most 
important risk to its reliability was groupie-like behaviour 
from voters who seem not to have evaluated based on 
quality. Even the jury system cannot counterbalance this 
effect completely. But as a whole, the contest evaluation 
managed to capture something about what makes a 
human-AI musical collaboration good.

In 2021, a second AI Song Contest took place, and it 
is planned to continue as an annual event. As such, it is 
especially useful to focus on models for the jury’s and 
voters’ behaviour that one can expect to behave stably 
for new songs and a new configuration of judges and 
voters. The Rasch models we used for our analysis benefit 
from strong sufficient statistics and generalisability, and 
despite their apparent simplicity, they are able to capture 
the structure of AI Song Contest voting well. The strongest 
model scales linearly with the number of voters in their 
number of parameters, but the second-best model, by 
taking advantage of our novel ‘three inflation’ method, 
can also achieve good predictive power at a fraction of the 
parameter cost.

From this measurement perspective, we found that 
the rating scales worked well, although we would advise 
simplifying the public voting page to use a three-point 
(0–2) rather than a four-point (0–3) scale in the future. 
Simplifying the scales might also allow room to add 
additional criteria for evaluating computational creativity, 
such as others on the SPECS list (Jordanous, 2012). The 
diversity and collaboration criterion from the jury could 
benefit from some attention, as the jury did not seem to be 
using it to its fullest extent, and the jury’s understanding 
criterion was perhaps too easy.

What a statistical model alone cannot answer is the 
question of how to reconcile the popularity-contest 
aspect of an international online vote against a desire for 
reliable measurement. This tension is inherent even in the 
Eurovision Song Contest, which inspired the first edition 
of the AI Song Contest. Since 1997, the Eurovision contest 
has tried different schemes for incorporating public 
voting, and in recent years, it has settled on a combined 
half-jury, half-public evaluation scheme similar to the AI 
Song Contest’s. Popularity contests are not inherently bad, 
especially when one considers the value of the AI Song 
Contest for promoting interest in computational creativity 
among the public. And although our models showed that 
a wave of groupies can and did influence scores to some 
extent, it was not enough to change the ranking at the 
top.

In this spirit, heavy-handed solutions to avoid 
thoughtless voting – for example, forcing every voter to 
vote for several songs – seem counter-productive: there 
would be no guarantee that the extra votes were sincere, 
and such a strategy could risk introducing other noise 
into the data that would be more difficult for a model 

Figure 4: Posterior predictive checks on the distribution of ratings. Observed data appear as histograms; black lines 
cover 95% of the corresponding histograms from 2000 simulated data sets using parameter values sampled from 
the posterior distribution. For the voters, we provide an analysis per song, but in order to preserve the anonymity of 
judges, we only provide aggregated data for the jury. In general, the model seems to be well calibrated, but there are 
a few notable miscalibrations for ‘I’ll Marry You Punk Come’ and ‘Traveller in Time’.
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to isolate. One could devise a friendlier, ‘nudge’ version 
of this strategy by announcing that anybody who failed 
to vote a certain number of times would not have their 
votes counted – but the simple fact of voting once is not 
itself distorting. One-time voting is simply a common 
outward symptom of an underlying problem of voting 
without reference to quality. A third, easy-to-implement 
strategy, then, would be to discard all voters who gave 
only perfect or perfect-zero scores, as in Figure 3e: in 
essence, quick-and-dirty regularisation for raw scores. 
While a savvy and nefarious voter could circumvent 
this strategy by always entering at least one less-than-
perfect score, we do not believe that a significant 
number of groupies were actively trying to thwart the 
contest and imagine that most non-groupie voters for 
the AI Song Contest are sufficiently interested in music 
that it would be more enjoyable to listen and make a 
thoughtful rating than it would be to read the details 
of how votes will be counted. Lastly, with sufficient 
preparation, it would be possible to run a Rasch model, 
possibly using some pre-computed parameter values 
to save computation time, after the online polls had 
closed; then, just as with standardised educational tests, 
it would be possible to release Rasch-calibrated scores 
instead of raw scores.

And what was this reliability worth? This study has not 
attempted to address the larger question of what ‘quality’ 
in the AI Song Contest might have been, but we hope that 
the reliability of the contest’s evaluation might encourage 
such an avenue of future work. Subjective opinions from 
listeners are a precious commodity in creative research, 
and the contest data offer precision far beyond that of a 
typical user study. Large scale human evaluation requires 
tremendous effort both from organisers and the collective 
listening of the voting public, and the AI Song Contest has 
shown that when done well, music contests can provide 
artists and researchers with excellent feedback on their 
work.

Notes
 1 At the time of writing, the broadcast is still available to 

watch online at https://youtu.be/-yIu5VLZj5g.
 2 The jury reported their official scores based on the 

members’ rankings of each song. ‘Offshore in Deep 
Water’ received a slightly lower score under this 
method (4 instead of 5) than it would have otherwise.

 3 Although pure z scores with M = 0 and SD = 1 would 
serve the same purpose, the convention of M = 50 and 
SD = 10 is often easier to read because it eliminates 
the need for negative values or decimal places in 
most cases. The traditional name for this scale is an 
unfortunate coincidence: T scores have no relation to 
the classical t statistics used in frequentist hypothesis 
testing.

 4 We ran our models on an Apple M1 laptop, with the 
Stan code compiled natively for ARM64.

 5 We thank Ed Merkle for this suggestion.
 6 As this paper reports a Bayesian analysis, we use CI 

to refer to central credible intervals, not frequentist 
confidence intervals.
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