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ABSTRACT
Reference annotation datasets containing harmony annotations are at the core of a wide range of
studies in music information retrieval (MIR) and related fields. The majority of these datasets contain
single reference annotations describing the harmony of each piece. Nevertheless, studies showing
differences among annotators inmany other MIR tasksmake the notion of a single ‘ground-truth’ ref-
erence annotation a tenuous one. In this paper, we introduce and analyse the Chordify Annotator
Subjectivity Dataset (CASD) containing chord labels for 50 songs from 4 expert annotators in order
to gain a better understanding of the differences between annotators in their chord label choice.
Our analysis reveals that annotators use distinct chord-label vocabularies, with low chord-label over-
lap across all annotators. Between annotators, we find only 73 percent overlap on average for the
traditional major–minor vocabulary and 54 percent overlap for the most complex chord labels. A
factor analysis reveals the relative importance of triads, sevenths, inversions and other musical fac-
tors for each annotator on their choice of chord labels and reported difficulty of the songs. Our
results further substantiate the existence of a harmonic ‘subjectivity ceiling’: an upper bound for
evaluations in computational harmony research. Current state-of-the-art chord-estimation systems
perform beyond this subjectivity ceiling by about 10 percent. This suggests that current ACE algo-
rithms are powerful enough to tune themselves to particular annotators’ idiosyncrasies. Overall, our
results show that annotator subjectivity is an important factor in harmonic transcriptions, which
should inform future studies into harmony perception and computational models of harmony.
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1. Introduction

Since the inception of computational harmonic analy-
sis in music information retrieval (mir) research, several
reference annotation datasets for chord labels have been
introduced (Burgoyne,Wild,&Fujinaga, 2011;DeClercq
& Temperley, 2011; Mauch et al., 2009; Ni, McVicar,
Santos-Rodriguez, & De Bie, 2013). These datasets are
at the centre of a wide range of important computa-
tional studies into harmony, including but not limited
to: automatic chord estimation (ace) (McVicar, Santos-
Rodríguez, Ni, & De Bie, 2014), analysis of harmonic
trends over time (Burgoyne, Wild, & Fujinaga, 2013;
Gauvin, 2015; Mauch, MacCallum, Levy, & Leroi, 2015),
computational hook discovery (Van Balen, Burgoyne,
Bountouridis, Müllensiefen, & Veltkamp, 2015), cho-
rus analysis of popular music (Van Balen, Burgoyne,
Wiering, & Veltkamp, 2013), data fusion of ace algo-
rithms (Koops, de Haas, Bountouridis, & Volk, 2016),
automatic structural segmentation (Haas, Volk, &
Wiering, 2013) and computational creativity, such as

CONTACT Hendrik Vincent Koops h.v.koops@gmail.nl

automatic generation of harmony accompaniment
(Chuan & Chew, 2007) and harmonic blending
(Kaliakatsos-Papakostas, Cambouropoulos, Kühnberger,
Kutz, & Smaill, 2014).

Virtually all of these studies use datasets that contain
single reference annotations,that is, for each correspond-
ingmusicalmoment (e.g. audio frame or section), the ref-
erence annotation contains a single harmony descriptor
(e.g. a chord label) from either a single annotator (Mauch
et al., 2009) or a unified consensus of multiple anno-
tators (Burgoyne et al., 2011). Using a single reference
annotation is not exclusive to harmony research: a wide
range of mir studies and tasks, such as melody transcrip-
tion, beat detection and automatic rhythm transcrip-
tion, also rely primarily or exclusively on single reference
annotations. Although most creators of these datasets
mention the problem of (harmonic) subjectivity and
ambiguity, these single reference annotations are never-
theless used in practice as the de facto ‘ground truth’ for
a large number of computational studies into harmony
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and related tasks (e.g. Music Information Retrieval Eval-
uation eXchange1 [mirex] ace).

However, recent research has revealed that among
different annotators of the same musical task, often a
low agreement is found, which is problematic for cre-
ating single reference annotations. A study by Flexer
and Grill (2016) demonstrates a low inter-rater agree-
ment between annotators of the mirex music similar-
ity task. In a study that evaluates automatic approaches
for the task of predominant melody estimation, Balke,
Driedger, Abeßer, Dittmar, Müller (2016) found that
the evaluated performances of these automated methods
vary substantially depending on which human annota-
tion is taken as the reference. Balke et al. (2016) argued
that the existence of a single ‘ground-truth’ reference
annotation is questionable. Ni et al. (2013) similarly
argued that a low inter-rated agreement can be found
between harmony transcriptions of different annotators.
In a related study, De Clercq and Temperley (2011, p. 95)
report an agreement of 94.4% on root judgements and
92.4% on chromatic relative root (root relative to the
key). However, these results are based on two annotations
made by the authors of the study, which were discussed,
compared and corrected for what the authors consid-
ered to be errors. In a study using a larger corpus of 200
songs, Temperley Clercq (2013) report 93.3% agreement
on chromatic relative root.

Real-world evidence for disagreement between har-
monic annotators can be found in the vast amounts
of heterogeneous (subjective) harmony transcriptions
in crowd-sourced repositories for popular music (e.g.
Ultimate-Guitar,2 Chordify3). Oftenmultiple, conflicting
harmonic transcriptions of the same song can be found,
of which it is unclear which one is ‘correct’. Moreover,
harmonic disagreement is not only found in (amateur)
crowd-sourced annotations, but also between expert har-
monic analysts. To provide a more specific example of
harmonic disagreement, the next sections provide an
overview of disagreement between songwriters, experts
and amateur analysts of popular music.

1.1. Harmonic annotator disagreement

A particularly notorious example of harmonic disagree-
ment relates to the opening of the song A Hard Day’s
Night by The Beatles, of which countless music theo-
rists, experts and amateurs have tried to find and explain
its particular pitch-class content. Beatles experts, such

1 MIREX is a community-based formal evaluation framework coordinated and
managed by the International Music Information Retrieval Systems Evalua-
tion Laboratory.

2 https://www.ultimate-guitar.com/
3 https://www.chordify.net/

as Pedler (2010), refer to it as having a ‘holy grail’ sta-
tus of ‘one of popular music’s great unsolved mysteries’.
In interviews, the Beatles have given partial and some-
times conflicting definitions of the sonority in terms of
a specific chord label. In an interview, George Harrison
referred to the chord as an ‘F with a G on top (on the 12-
string), but you’ll have to ask Paul [McCartney] about the
bass note to get the proper story’ (AKA, 2001). On a dif-
ferent occasion, guitarists Gary Moore and George Har-
rison were discussing the chord, which Moore thought
to be a G7sus4. Harrison denied this and showed him
a different fingering. Moore responded: ‘Are you sure? It
doesn’t sound like that!’, to which Harrison replied: ‘Yes,
I’m sure, actually, Gary’ (Spitz, 2005).

A wide range of expert analysts have tried to decipher
the collection of pitches, which has resulted in a myriad
of chord possibilities, of which we will provide a couple
of examples.We refer to Koops (2019) for amore detailed
overview. Spitz (2005) analyses the chord as a ‘a G7, with
an added ninth and a suspended fourth, so unique that
it is neither major nor minor’. Hickey (2010) describes it
as a G11sus4. Womack (2017) writes that Lennon and
Harrison played Fmajor chords with an added G on their
12-string guitars, andMcCartney plucked aD on his bass.
Fujita, Hagino, Kubo, and Sato (1993) defines the main
guitar chord as a Gsus4/D. Pedler (2010) provides sev-
eral solutions: G7sus4 as ‘the buskers’ choice’, but sug-
gests amore accurate label asG11/D. Gould (2014) labels
the chord a D minor 11th. Many more interpretations
to the sonority have been proposed, e.g. Gsus4 (Roess-
ner, 2009) and G7sus4/A (Bennett, 2001). Despite his
detailed analysis, Pedler (2010) argues that there is no
single perfect guitar chord that covers all the bases of
the actual sonority. Hickey (2010) refers to the sonority
as ‘probably the most famous opening chord since Wag-
ner’s Tristan chord’, which similarly has been exposed to
numerous harmonic analyses and heated debates (Nat-
tiez, 1990).

Amateur transcriptions differ wildly as well. To facili-
tate playing popular songs, several online archives exist,
containing (mostly crowd-sourced) chord-label annota-
tions for popular music songs. A large amount of varia-
tion can be found in these repositories. Table 1 provides
an overview of several of these repositories and the chord
labels they present for the opening chord of the A Hard
Day’s Night. Most of the versions from Table 1 seem to
suggest the label G7sus4 – ‘the buskers’ choice’ accord-
ing to Pedler (2010) – which was disputed by composer
Harrison himself, according to Gary Moore. Overall, the
table shows a wide range of possible chord labels whose
pitches in some cases overlap, and in some cases clash.

One could argue that the opening sonority to A Hard
Day’s Night is a particularly difficult one to match with

https://www.ultimate-guitar.com/
https://www.chordify.net/
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Table 1. Different online repositories provide different, conflicting chord labels for the opening chord for A Hard Day’s Night by the
Beatles.

Source
Number of

transcriptions Chord label(s)

ultimate-guitar.com 8 G7sus4/D, D7sus4, D7sus4/A, Fadd9, Fadd9/A, Fadd9/C, Fadd9/D, C7sus4,
G7sus4,Gsus4,Fadd9,Dadd9*,Dadd9/F# (capo at fret 3),D7sus4,Gadd9sus4
(no 3rd), F6/9 (no tonic)

e-chords.com 1 G4(7)
guitaretab.com 1 G
tabs4ukulele.com 1 G7sus4
ukulele-tabs.com 1 G7sus
chords-and-tabs.net 3 Fadd9, G, C9
guitarfloor.com 2 A#add9, G7/4
guitartabsexplorer.com 4 G, C9, Fadd9, G7sus4

Note: Transcriptions retrieved April 2019.

a chord label, one that is not representative of chords
in general. Although this particular example is indeed
notoriously complex, variation is ubiquitous in harmony
analyses of popular music. Doll (2017) provides a large
number of examples of songs which are built from the
same basic ‘chordal loops’, yet convey centric and func-
tional ambiguity because of different musical dimensions
(meter, texture, parallelism). The wide use of production
effects that distort the original content of the acoustic
signal in some way is an important factor in perceptual
harmonic ambiguity.

George Martin, the long-time producer of the Bea-
tles, referred to (harmonic) ambiguity stemming from
production effects (such as distortion) when he said:
‘it shouldn’t be expected that people are necessarily
doing what they appear to be doing on records’ (Martin
& Hornsby, 1994). Martin argues that recording a song
is like film making, where all sorts of effects are used
in order to create aural illusions. However aesthetically
pleasing these illusions might be, they are problematic
for determining what chords are played in a musical
recording.

The right amount of signal distortion can aurally imply
some harmonies that are not physically played by the
musician. Rock guitarists for example often use power
chords, which contain only a root note and a fifth inter-
val. When these power chords are distorted, the complex
overtones of the fifth interval are amplified and can imply
chord notes that are not part of the original power chord.
A distorted perfect fifth has an overtone at the major
tenth (one octave plus a major third), which can be per-
ceived as a chordal major third. It is unclear whether this
major third should be regarded as part of the sonority,
and thus part of a label in a transcription. Doll (2017)
notes for example that the power chords in the opening
of Bikini Kill’s ‘Rebel Girl’ imply a major third, which is
not actually played by the performers.

Another example of implied harmony is by sketch-
ing out a harmony and relying on the listener’s culturally

or stylistically informed expectations to perceptually
extend the sonorities to ‘hear’ the complete harmony.
Moore (2012) provides the example of the ‘boogie pat-
tern’ in Chuck Berry’s ‘Johnny B. Goode’. Here, the guitar
plays alternating fifth and sixth degrees of the scale, above
an open string root where possible. Since the roots of
this technique lie in the blues tradition, it is commonly
interpreted as a sequence of major chords from a blues
chord sequence. In this case, the choice of chord labels
is less grounded on the songs’ actual harmonic content,
but more on its relationship to a particular cultural or
historical context. In summary, disagreement in the per-
ception of harmony is a common phenomenon. Reasons
for diverging analyses are differences in application of
music theoretical concepts to ambiguous musical pas-
sages, and fundamental and inherent human perceptual
and cultural differences that stem from enculturation
differences.

1.2. Studying harmonic disagreement

In the previous section, we discussed well-known exam-
ples of disagreement. While it is generally known in
musicology that different analysts for the same piece
may have different opinions, its investigation in computa-
tional studies is rare. Therefore, we introduce here a new
chord-label dataset containing multiple reference anno-
tations for 50 songs from the Billboard dataset.4 Specif-
ically, the new dataset includes four different annotators’
transcriptions of each song. The study of annotator sub-
jectivity is important for perceptual and computational
harmony research. The former relates to gaining insight
into the perceptual variation of human harmony hearing,
while the latter relates to questions of how to model har-
mony for computational approaches, such as automatic
chord estimation. For example, the large differences in

4 http://ddmal.music.mcgill.ca/research/billboard

http://ddmal.music.mcgill.ca/research/billboard
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chord-label transcriptions among annotators raise ques-
tions about the validity of one-size-fits-all automatic
chord-label estimation systems and their training and
evaluation on single reference annotations (Humphrey
& Bello, 2015; Ni et al., 2013).

As a first step into studying disagreement in this
dataset, we investigate the phenomenon described above:
having different, perhaps conflicting harmonic descrip-
tions for the same piece of music. More specifically, we
investigate harmonic annotator subjectivity: the agree-
ment (or variation) found between chord labels pro-
vided by expert annotators of popular music. In a pre-
vious experimental study concerning 5 annotators and
20 songs by The Beatles and Queen, Ni et al. (2013)
already showed that annotators transcribing the same
music recordings disagree on roughly 10 percent of har-
monic annotations. This study expands on work such as
Ni et al. (2013) and De Clercq and Temperley (2011)
by studying harmonic annotator subjectivity on a larger
scale in a wider range of popular music, using a stan-
dardised chord-label encoding. The study of annotator
subjectivity in expert annotations, in this paper, aims
to reveal the variability found in human annotations,
which arguably should be taken into account in mod-
elling human harmonic perception.

Contributions. The contribution of this paper is
twofold. First, we introduce the Chordify Annotator
Subjectivity Dataset. This publicly available chord-label
dataset is linked with other important datasets contain-
ing harmonic transcriptions, as well as with major audio
music repositories. Second, we investigate annotator sub-
jectivity within this dataset and show that when using
the standard ace evaluations measures, significant dif-
ferences exist between transcriptions, as well as in per-
ceived difficulty and annotation times. These results show
that annotator subjectivity is an important factor in har-
monic transcriptions, which should be taken into account
in future automatic chord estimation, as well as related
computational harmonic research.

Synopsis. The remainder of this paper is structured as
follows. Section 2 discusses related work in the analy-
ses of human judgements in music information retrieval
research. In Section 3, we introduce our dataset and
describe the process of selecting songs, annotators and
their transcription process. In Section 4, we provide an
analysis of the transcriptions obtained from the anno-
tators. In Section 5, we explore the agreement between
annotators using pairwise analyses, a comparison with
the Billboard reference annotation and inter-rater agree-
ment statistics. Section 6 describes the individual dif-
ferences between annotators using a factor analysis.
The paper closes with a discussion and conclusion in
Section 7.

2. Related work in analysis of human
judgements in Music Information Retrieval

Disagreement between human annotators is a well-
known problem in a wide variety of tasks in mir
research. The lack of an exact task specification, the dif-
ferences in the annotators’ experiences, musical back-
ground, skill level, and instrumental preference, or the
use of different annotation tools are some of the pos-
sible causes of disagreement between annotators (Balke
et al., 2016; Salamon, Gómez, Ellis, & Richard, 2014;
Salamon & Urbano, 2012). Annotator disagreement has
previously been studied in the contexts of genre classifi-
cation (Lippens, Martens, & De Mulder, 2004; McVicar
et al., 2016; Seyerlehner, Widmer, & Knees, 2011), audio
music similarity (Flexer, 2014; Flexer & Grill, 2016;
Jones, Downie, & Ehmann, 2007), music structure anal-
ysis (Nieto, Farbood, Jehan, & Bello, 2014; Paulus
& Klapuri, 2009; Smith, Burgoyne, Fujinaga, De Roure,
& Downie, 2011), melody extraction (Balke et al., 2016;
Bosch & Gómez, 2014), musical tempo extraction and
beat tracking (McKinney, Moelants, Davies, & Kla-
puri, 2007), ratings of guitar tabs (Macrae&Dixon, 2011)
and human harmony annotations (Ni et al., 2013). Nev-
ertheless, the extent of human disagreement and their
impact on these tasks is commonly not taken into
account when creating new music information retrieval
methods.

The extent to which human judgements coincide
is often referred to as inter-annotator agreement (or
inter-rater reliability, concordance). The goal of study-
ing inter-annotator agreement is to measure the amount
of homogeneity or consensus between different anno-
tators (or raters). With high inter-annotator agreement,
annotators can be used interchangeably without hav-
ing to worry about the categorisation being affected by
a significant annotator factor. In other words, if inter-
changeability of annotators is guaranteed, then their
labels (or ratings) can be used with confidence without
asking which annotator produced them. Conversely, if
the ratings are effected by the raters and interchange-
ability is not guaranteed, the raters should probably
be taken into account when interpreting the ratings
(Gwet, 2010).

To study inter-annotator agreement, several mea-
sures have been introduced, of which joint proba-
bility of agreement is the simplest and least robust
measure. Several formal methods have been introduced
that improve simple calculations of joint probability.
For example, Kappa (κ) statistics such as Cohen’s κ

(for two raters) (Cohen, 1960) and Fleiss’s κ (for any
number of raters) (Fleiss, 1975) correct for the amount
of agreement that could be expected through chance.
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Cohen’s κ was for example used in a study into the mood
recognition of Chinese pop music (Hu & Yang, 2017).
Jones et al. used Fleiss’s κ to analyse human simi-
larity judgments of symbolic melodic similarity and
audio music similarity (Jones et al., 2007). Balke et al.
(2016) adapted Fleiss’ Kappa for evaluating multiple
predominant melody annotations in jazz recordings
(Balke et al., 2016).

In this study, in addition to pair-wise analyses and
descriptive statistics of our dataset, we use Krippen-
dorff ’s α to assess the inter-annotator agreement between
the chord labels of popular music from four annota-
tors. A more versatile statistic, Krippendorff ’s α (Krip-
pendorff, 1970) assesses the agreement achieved among
observers who rate a given set of objects in terms of
the values of a variable. Krippendorff ’s α accepts any
number of observers and can be applied to nominal,
ordinal, interval and ratio levels of measurement. Fur-
thermore, it is able to handle missing data and corrects
for small sample sizes. Schedl, Eghbal-Zadeh, Gomez,
and Tkalčič (2016) used Krippendorff ’s α to investigate
the agreement of listeners on perceptual music aspects
(related to emotion, tempo, complexity and instrumen-
tation) of classical music.

3. Chordify Annotator Subjectivity Dataset

In this section, we introduce a new dataset contain-
ing chord labels for 50 songs from 4 different anno-
tators, time-aligned with commercially available audio
recordings. Each transcription represents the subjective
opinion of one out of four harmony experts in pop-
ular music. After a brief introduction to the Billboard
dataset, the following sections detail the annotation pro-
cedure of the Chordify Annotator Subjectivity Dataset
(casd).

Burgoyne et al. (2011) introduced theBillboard dataset
containing chord label annotations for songs sampled
from the Billboard ‘Hot 100’ music charts, the defini-
tive weekly ranking of the most popular songs in North
America (Bradlow & Fader, 2001). Each Billboard anno-
tation represents the consensus of two experts in jazz
and popular music for a popular song. This data set has
quickly become a standard reference set for several mir
tasks relating to harmony such as ace. Therefore, we
model our data set after the Billboard. Specifically, we (a)
sample songs from the Billboard to have a widely used
and accepted reference annotation to compare the anno-
tation from our annotators to, and (b) employ a similar
annotator selection process. In this way, our dataset can
be seen as an incremental step for the Billboard dataset
to include multiple annotators for the study of annotator
subjectivity.

3.1. Song selection

Currently available chord-label annotation datasets con-
taining more than one reference annotation are limited
by size and song sampling strategy (e.g. Ni et al., 2013) or
lack a standardised chord-label encoding (e.g. De Clercq
&Temperley, 2011). Therefore, we selected 50 songs from
the Billboard dataset that have a stable online presence
in widely accessible music repositories (e.g. official artist
YouTube channel uploads), with chord-label annotations
in an encoding that is standardised in mir research.

In this way, listening to the songs is easy, stimulat-
ing future research with the dataset. After searching the
YouTube website for the title and artist tags of the Bill-
board dataset, we ranked the results of each query by
number of plays and selected the top 50 songs by this
ranking. At the time they were collected, the least-viewed
song in the dataset had 76,000 plays and themost-viewed
song over 13 million plays, and an average of 11.9 unique
chords according to the Billboard reference annotations.

3.2. Annotator selection

To ensure we obtained high-quality transcriptions, we set
out to find annotators who studied music and harmony
at the undergraduate or graduate level. Furthermore, to
ensure familiarity with the music used in this study, we
searched for annotators who were experienced in play-
ing (e.g. in cover bands) as well as transcribing popular
music. We found four annotators that were successful
professional musicians with a broad knowledge of har-
mony and chords, who have an academic degree inmusic
and have between 15 and 25 years of experience on their
primary instrument.

Annotator 1 (A1) is a professional music transcriber
and composer of popular and classical music. A1’s tran-
scriptions have been published by several publishing
houses and websites. A1 studied music theory and com-
position and has been an active guitar player for 15
years.

Annotator 2 (A2) studied guitar at a conservatoire and
has been playing the guitar and drums for 19 years. A2
plays in several bands semi-professionally, runs a music
production company and teaches guitar and drum.

Annotator 3 (A3) studied piano and composition at
the undergraduate level. A3 is a prize winning composer
for film, television and commercials, and has been play-
ing piano for 25 years. In addition to being a composer,
A3 plays piano in several cover bands and works as a
professional pop music transcriber.

Annotator 4 (A4) is a classically trained pianist who
has been playing popular and classical music for over
20 years. After graduating from a conservatoire, A4
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studied new music, sound design and contemporary
music composition at the graduate level. A4 furthermore
teaches piano lessons, works as a producer and plays in
several bands.

With this musical expertise, we assume that these
annotators are capable of producing harmonic annota-
tions for popular music, like those created for the Bill-
board dataset. After inviting the annotators to join the
experiment, we reviewed their first 10 transcriptions to
ensure they had sufficient aptitude to continue; all four
annotators completed the initial screening successfully
and were hired to continue to annotate the remaining 40
songs. The annotators were compensated financially for
their annotations at a fixed rate per song.

3.3. Transcription process

To ensure the annotators were all focused on the same
task, we provided them with a guideline for the annotat-
ing process.We asked them to listen to the songs as if they
wanted to play the song on their instrument in a band and
to transcribe the chords with this purpose in mind. They
were instructed to assume that the band would have a
rhythm section (drum and bass) and melody instrument
(e.g. a singer). Therefore, their goal was to transcribe the
complete harmony of the song in a way that, in their view,
best matched their instrument. Their task was therefore
a practical one: to listen to the music and transcribe the
chord labels of the songs as they perceive them, so they
could reproduce what they have heard. This task hence
differs from a music theoretic analysis of a musical score
according to a particular harmony theory and is very sim-
ilar to the set-up in the annotation tasks in Burgoyne
et al. (2011) and Ni et al. (2013).

We used aweb interface to provide the annotators with
a central, unified transcription method. This interface
provided the annotators with a grid of beat-aligned ele-
ments, which we manually verified for correctness. We
assumed that studying chord-label subjectivity beyond
the beat level would have a marginal effect on our find-
ings, because (a) chord labels are rarely notated beyond
the beat level and (b) sub-beat notationwould introduce a
positive bias towards subjectivity. The standard YouTube
web player was used to provide the reference recording of
the song. Through the interface, the annotators were free
to select a chord label for each beat from a drop down
menu with all chord labels that are available in the Bill-
board dataset. If the chord label of their choice was not
available, the annotators notified us and we added the
chord label to the system. In this way, the annotators were
completely free to choose any chord label for each beat.
While transcribing, the annotators were able to watch
and listen to the YouTube video of the song, and if they

wanted, a synthesised version of their chord transcrip-
tion. The chord labels are encoded using the commonly
used chord-label syntax introduced by Harte, Sandler,
Abdallah, andGómez (2005). This syntax provides a sim-
ple and intuitive encoding that is highly structured and
unambiguous to parse with computational means.

In addition to providing chords and information about
their musical background, we asked the annotators to
provide for each song a difficulty rating on a scale of
1 (easy) to 5 (hard), the amount of time it took them
to annotate the song in minutes, and any remarks they
might have on the transcription process.

3.4. Dataset technical specifications

To provide the mir research community with a dataset
that is easily accessible, expandable, encourages repro-
ducibility and stimulates future research into annotator
subjectivity, we adopted a number of standard chord-
label and annotation practices that are commonly used
in mir research.

For each of the 50 songs, the dataset contains the
chord labels provided by our four annotators. In addi-
tion to chord labels, the dataset contains information
about the four annotators, such as musical background,
music education and their main instrument. To promote
and stimulate future research, we include identifiers for
music repositories (e.g. YouTube), allowing researchers
to listen to the tracks easily. Furthermore, we provideBill-
board dataset identifiers which make it possible to cross-
reference our datasetwith data from theBillboard dataset,
ace output from the mirex task, and other datasets that
use these identifiers.

The complete dataset is encoded using the jams for-
mat: a json-annotated music specification for repro-
ducible mir research, which was introduced by
Humphrey et al. (2014). jams provides an interface with
the standard mirex evaluation measures used in this
paper, making it very easy to evaluate and compare anno-
tations. To provide easy access, we have made the dataset
publicly available in a Git repository.5 Through utilis-
ing Git and jams, we encourage the mir community to
exchange, update and expand the dataset.

4. Global view of annotator subjectivity

To obtain a general idea of the degree of annotator sub-
jectivity in our dataset, we first analyse the annotations in
terms of descriptive statistics. First, we analyse the diffi-
culty scores and remarks (see Section 4.1) and the overall
chords the annotators provided (see Section 4.2). Next,

5 https://www.github.com/chordify/CASD

https://www.github.com/chordify/CASD
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we provide an analysis of the differences in chord labels
used by the annotators (see Section 5). Building on these
findings, we will investigate the cause of annotator sub-
jectivity in more detail with more advanced statistical
methods in the sections that follow.

4.1. Reported annotation time and difficulty

Overall, the four annotators (A1, A2, A3, A4) took on
average 20.25 minutes to transcribe a song (σ = 11.55),
with aminimumof 5minutes and amaximumof 60min-
utes. The annotators also ranked their perceived difficulty
of all songs on a scale from 1 (easy) to 5 (difficult). On
average, the annotators gave the songs a difficulty rat-
ing of 2.1 (σ = 1.09). The average annotation times and
reported difficulty for each annotator can be found in
Table 2.

Naturally, the more difficult a song is, the longer it
should take to annotate. We can test this relationship
using Pearson’s correlation coefficient (r). Between the
reported difficulties and annotation times, we find a very
strong positive linear correlation, r=0.93, p � 0.05. The
correlations per annotator appear in Figure 1. The figure
shows that for A1 and A2, the correlation is very strong,
r=0.92 and r=0.84, respectively.A4’smeasurements are
also strongly correlated (r=0.76 );A3 shows a strong cor-
relation that is nonetheless perhaps weaker than the rest
(r=0.61 ). Figure 1 shows that A3’s annotations cluster
around 20–30minutes in length and a reported difficulty
of 2–3, while the other annotators exhibit a wider spread
across both time and difficulty. The outlier in Figure 1,
with a reported difficulty of 1 and a reported annotation
time of 60 minutes, can be explained by it being the first
song annotated by A4, who had to get used to the inter-
face and annotation process. However, in Section 6 we
will see that the order of songs does not have a significant
effect on annotation time and perceived difficulty for any
annotator.

4.2. Chord-label statistics

Turning to the harmonic transcriptions, we investigate
the disagreement in terms of chord labels in our dataset.
To better explain the chord-label content of our dataset,

Figure 1. We find strong (r= 0.93,0.84,0.61,0.76 for A1, A2, A3,
A4), but differing, correlations per annotator between reported
annotation timeand reporteddifficulty from1 (easy) to 5 (hard). In
general, songs perceived as difficult took longer to annotate than
easy songs. Translucent bands around the regression line indicate
the confidence interval for the regression estimate.

we first provide an example of chord labels provided
by the annotators for couple of bars of a given song.
Although the score was not provided to the annotators
during the annotation task, we provide it here to visualise
the chords provided by the annotators. Figure 3 provides
such an example, in which we have aligned the chord
labels of each annotator to the score of Rick James’ ‘Super
Freak’.

This example shows a variety of different types of
annotator disagreement and is taken frombars 24 to 28 of
Super Freak. Here we can see basic disagreements, such as
in the second half of bar 28 where the annotators disagree
on whether the chord is A:min or A:min7 – having
only a single pitch class disagreement (agreeing on A, C,
E but disagreeing on the importance of the pitch G in
the harmony). More complex levels of disagreement are
present for example between E:sus4 and A:min in bar
25. However, when we observe the pitch class content of
these chords we can see the pitches E and A feature in
both chords (E, G#, A, B for E:sus4, and A, C, E for
A:min).

Table 2. Overview of annotators, their primary instrument, musical background and average (and standard deviation) annotation time
(in minutes), number of chord labels per song, and reported difficulty statistics. Difficulty is reported on a scale from 1 (easy) to 5 (hard).

Annotator Primary instrument Background/occupation Annotation time (min) Reported difficulty
Unique Chord
labels per song

A1 Guitar Transcriber, composer 23.10 (14.91) 2.40 (1.16) 9.46 (5.13)
A2 Guitar Musician, teacher 15.66 (9.91) 1.60 (1.18) 9.42 (4.20)
A3 Piano Transcriber, composer 22.00 (7.42) 2.42 (0.73) 12.44 (5.83)
A4 Piano Composer, producer 26.10 (12.18) 1.96 (1.07) 8.86 (4.70)
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A similar disagreement can be found when exploring
the difference between F:maj and A:min from bar 24.
F:maj and A:min are similar in pitch-class make up
(F, A, C for F:maj, and A, C, E for A:min), sharing the
pitch classes A and C. Observing the beginning of bar 28,
we can see the annotators disagree on whether the first
two beats of each bar are in Dmajor (with A1 specifying
the power chord D:5) or A minor as perceived by A3.
This disagreement features prominently throughout the
piece and could be attributed to the harmonic disagree-
ment present between the falling bass guitar riffs that
relate more to D and the piano part that relates more to A.
Interestingly, the guitar players in our dataset more often
choose the chords that related to the guitar part of the
piece, while the piano players in our dataset more often
choose the chords that related to the piano part. This
example is also interesting harmonically, due to the N.C.
notated above the stave over the guitar riff, indicating
‘no chord’, which suggests no chord should be inferred
because the arranger of this score does not consider this
to be a harmony. However, it is important to note here
that the annotators did not have access to the score. Their
task was to transcribe the harmony by ear, and as such,
this kind of information was not available to the annota-
tors. Consequently, these parts are in fact annotated with
chord labels by each annotator.

For all songs in our dataset, we analyse the chord-
label annotations in several ways. First, we investigate
which chord labels are used in our dataset and how
much overlap in chord-label vocabularies there is among
annotators. We investigate this overlap on the level of
string representation of the chord labels, and as such at
this point do not take mitigating factors such as enhar-
monic equivalence into account. This analysis will pro-
vide a general indication of annotator subjectivity in our
dataset, as it shows the difference in the use of absolute
chord label strings among annotators. Then we analyse
the number of unique chord labels in a song and its
reported difficulty. Further on in this paper, in Section 5,
we will analyse the agreement between annotators using
standard chord-label overlap measures.

4.2.1. Chord-label vocabularies
On average, the four annotators (A1, A2, A3, A4) used
10.3 unique chord labels per song (σ = 5.2), with a
minimum of 3 and a maximum of 27 unique chord
labels. Individually, the averages per annotator were
9.46 unique chord labels (σ = 5.13), 9.42 unique chord
labels (σ = 4.2), 12.44 unique chord labels (σ = 5.83)
and 8.86 unique chord labels (σ = 4.7) for A1, A2, A3
and A4, respectively. These statistics are similar to what
was found by Burgoyne et al. (2011) in the Billboard

dataset, in which songs contain on average 11.8 unique
chord labels.

Altogether, the annotators used 290 unique chord
labels in their transcriptions. The most frequently used
chords are common chord labels such asG:maj,C:maj,
D:maj, andA:maj. AnnotatorsA1,A2,A3 andA4 used
148, 127, 201 and 120 unique chord labels respectively.
The intersection of the unique chords of all annotators
contains only 56 chord labels, corresponding to less than
20 percent of all chord labels in the dataset, which already
provides some evidence that each annotator uses a dis-
tinct set of chord labels. The intersection set contains only
two enharmonically equivalent chords and only three
inverted chords: F:maj/3, E:maj/2, D:maj/5. Nev-
ertheless, inversions are generally used by all annotators.
Around 11 percent of the chord labels in the dataset
are inversions. Nevertheless, the annotators differ in the
amount of chord labels that are inversions. Of all the
chord label tokens that the annotators A1, A2, A3 and A4
use, 8, 4, 15 and 16 percent are inversions, respectively.
Of their unique chord label types, 26, 27, 43, 39 percent
are inversions for A1, A2, A3, and A4 respectively. This
seems to suggest that while there is relatively little dis-
agreement on pitch spelling, there is a large amount of
disagreement on the level of inversions. If we consider all
possible inversions of a chord label, we find a total of 139
unique chord labels, and an intersection size of only 38
chord labels, corresponding with 27 percent of all chord
labels in the dataset.

The intersection sizes for unique chord labels for all
songs for each pair of annotators can be found in Figure 2.
This figure shows that A1 and A3 share the most chord
labels (104). Fewer chord labels are shared between A2
and A4 than with the rest. This is interesting, as A1 and
A3 are both guitar players, and A2 and A4 are piano
players. This seems to suggest that our piano players are
on average more diverse in terms of their chord-label

Figure 2. Pairwise intersection sizes of all 290 unique chord
labels in the dataset for all annotators. On average, the annotators
share around half of their chord label vocabulary with the other
annotators.
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Figure 3. Bars 24–28 of Rick James’ ‘Super Freak’. The figure shows the musical score aligned with the chord labels provided by the
annotators. A star (�) indicates a repetition of the previous chord label. Note that the annotators transcribed the harmony of the song
solely by ear from the original audio recording. The score was not provided to the annotators.
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vocabulary, while the guitar players seem to be more
similar to each other in their chord-label vocabulary –
although the usual caveats with respect to small sample
size apply.

4.2.2. Difficulty versus number of chord labels in a
song
It can be expected that songs with a large number of
unique chord labels, and therefore a large number of
chord changes should be harder to transcribe than songs
with a small number of unique chord labels. We indeed
find a positive correlation between the reported difficulty
of a song and the number of unique chord labels for that
song. In Figure 4, the number of unique chords used by
an annotator for a song is plotted against that annota-
tors’ reported difficulty for that song. Furthermore, in
Figure 5 the number of unique chords used by an annota-
tor for a song is plotted against that annotators’ reported
annotation time for that song.

We find a strong positive correlation between the aver-
age reported difficulty and average number of unique
chords, r=0.80, p � 0.01. Nevertheless, when we turn
to individual annotators, we see that not all correlations
are similar for all annotators. For A1 (r=0.79) and A4
(r = 0.75) the degree of correlation is comparable, but
the correlations for A2 (r=0.67) and A3 (r=0.65) are
strong but somewhat weaker.

In an inspection of Figure 4, we see that some songs
are annotated with a low number of unique chords,
but with a relatively high difficulty. When we look
at those transcriptions, we find indeed a low number

Figure 4. Reported difficulty and number of chord labels per
song are strongly correlated, with r = 0.79, 0.75, 0.67, 0.65 and
p< 0.01 for A1, A2, A3, A4. The larger the number of unique
chords used, the more difficult to annotate was the song
perceived.

Figure 5. Annotation time and number of chord labels per
song are strongly correlated, with r = 0.86, 0.73, 0.74, 0.69 and
p< 0.01 for A1, A2, A3, A4. The larger the number of chords used,
the more time it took to annotate.

of unique chord labels, but with a high amount of
detail. These chord labels are often intricate labels with
added sevenths, ninths or thirteenths, or inversions (e.g.
C#:min7/b7 or Bb:min9/b3), which are harder to
play and transcribe. These differences among annotators
help to understand the subjectivity of perceived difficulty:
for some annotators difficulty is about the amount of
(change in) chord labels per song, while others report
songs to be more difficult if the chord labels themselves
are more complex.

5. Chord-label annotator subjectivity

In this section, we examine a set of formal measures
of inter-annotator agreement. First, in Section 5.1, we
discuss the average pairwise agreement among the anno-
tators of casd using the standard mirex evaluation mea-
sures. After that, in Section 5.2, we discuss the agreement
of the annotators with the original Billboard reference
annotations that are commonly used as a ground truth
in computational harmony research. Finally, although
pairwise comparisons are intuitively easy to understand,
we need to take into account that a certain amount of
agreement could be attributed to chance. Therefore, in
Section 5.3, we discuss the more sophisticated Krippen-
dorff ’s α coefficients that measure the inter-annotator
agreement of the chord labels provided by the annotators.

5.1. Average pairwise chord-label agreement

In general, one would expect annotators to agree mostly
on fundamental properties of chord labels (e.g. root
notes) and would disagree more on intricate parts of
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Figure 6. Average pairwise agreement of several MIREX evaluations of all songs in the dataset. Annotator agreement decreases with
increased chord-label granularity. The chequerboard-like pattern reveals that for each level of granularity, the level of agreement
decreases when inversions are taken into account. Billboard dataset IDs can be found below the columns; average reported difficul-
ties can be found above the columns. The numbers on the right show the average agreement for each chord granularity level. Columns
are ordered by increasing average pairwise agreement.

chord labels (e.g. inversions and seventh intervals). To
investigate how the annotators differ in terms of chord
label choice at different chord label granularities, we cal-
culate the average pairwise agreement between all anno-
tators. To this end, we compare the annotations of each
annotator with each of the three other annotators, result-
ing in three agreement scores. The average of these scores
shows the average agreement of the four annotators in
their transcriptions of each song.

By agreement, we refer to the standardmirexweighted
chord symbol recall (wcsr) metrics, i.e. the proportion
of correct labels weighted by song duration, after the
chord labels from the annotators have been simplified to
one of seven following vocabularies: root only compares
the root of the chords; majmin only compares major,
minor and no-chord labels; mirex considers a chord label
correct if it shares at least three pitch classes with the
reference label; thirds compares chords at the level of
root and major or minor third; triads compares at the
level of triads (major, minor, augmented, etc.), i.e. in
addition to the root, the quality is considered through a
possibly altered fifth; sevenths compares all above plus
any notated sevenths; tetrads compares at the level of
the entire quality in closed voicing, i.e. wrapped within a
single octave. Extended chords (9ths, 11ths and 13ths)
are rolled into a single octave with any upper voices
included as extensions. For example, C:7 and C:9 are
equivalent but C:7 and C:maj7 are not. For majmin,
thirds, triads, tetrads and sevenths, we also test
with inversions: majmin_inv, thirds_inv, etc.

Before computing the agreement, mir_eval first
separates each chord label into three parts: the root,
the set of root-invariant intervals and the bass interval.
Depending on the vocabulary, mir_eval then com-
pares the corresponding parts. root for example com-
pares only the root note, while majmin requires equal
roots as well as the intervals subject to the reference chord
quality being major or minor. For a detailed explanation

of these measures, we refer the reader to the standardised
mir evaluation software package mir_eval by Raffel
et al. (2014) and the mirex ace website.6

The pairwise agreement among all annotators for all
50 songs and all evaluation methods can be found in
Figure 6. The rows correspond to the mirex evalua-
tions; columns correspond to songs. The corresponding
Billboard dataset IDs can be found below the columns,
and the corresponding average reported difficulty scores
can be found above the columns. The rows are ordered
by average column value, increasing from low to high
average agreement. The figure shows that overall, aver-
age agreement decreases with an increase in chord-label
granularity: annotators agree more on the root notes
(root) than on complex chords (e.g. sevenths). Never-
theless, we find that the average agreement of root notes
is only 0.76, with some scores as low as 0.005. This is
surprising, as one would assume that annotators would
in general agree on root notes and disagree more on the
more intricate chord labels.

The root-note disagreement propagates through the
disagreement of the other evaluations, which can be
seen in the decreasing average agreements plotted at
the right x-axis of the figure. This shows that as chord
labels become more complex, agreement decreases. The
average agreement scores for the remaining chord-label
granularities can be found in Table 3.

Tuning. We investigated whether the low root note
agreement could be caused by tuning issues. After all,
the right amount of tuning deviation from 440Hz con-
cert tuning in an audio recording could cause annota-
tors to disagree on root notes by exactly one semitone,
resulting in zero root note agreement. Using the Pearson
correlation coefficient to measure linear correlation, we
found no significant correlation between absolute tun-
ing (as measured using the method proposed by Mauch

6 http://www.music-ir.org/mirex/wiki/2017:Audio_Chord_Estimation

http://www.music-ir.org/mirex/wiki/2017:Audio_Chord_Estimation
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Table 3. Average (x) and standard deviation (σ ) pairwise agree-
ment results between all annotators. Agreement decreases with
increased chord granularity and is significantly lower when inver-
sions are taken into account.

Chord label vocabulary x σ

ROOT 0.76 0.19
MAJMIN 0.73 0.20
MAJMIN_INV 0.67 0.24
MIREX 0.74 0.18
THIRDS 0.74 0.19
THIRDS_INV 0.67 0.24
TRIADS 0.71 0.21
THIRDS_INV 0.65 0.24
TETRADS 0.57 0.24
TETRADS_INV 0.52 0.24
SEVENTHS 0.60 0.24
SEVENTHS_INV 0.54 0.25

& Dixon, 2010) and agreement, nor could we find a sig-
nificant correlation between absolute tuning deviation
from 440Hz and agreement. To test the impact of indi-
vidual detuned songs on the overall agreement, we iter-
atively removed the top most detuned songs from 1 to
15, and tested whether agreement significantly changes.
Still, no significant change in agreement was found. This
suggests that the tuning difference found in the audio
of our dataset is not a major contribution to annotator
disagreement.

The amount of detail an annotator can give to a chord
label does not end with just the set of pitches. Inversions
are an important aspect of harmony and arguably open
to a certain degree of subjectivity. For example, when
annotating a song that contains a guitar and a bass gui-
tar, in which the guitarist plays a single chord while the
bass guitar plays a descending arpeggio of that chord, an
annotator could choose to annotate just the single guitar
chord for the entire part but could also choose to include

the moving bass line, thereby interpreting it as a new
inversion of the same chord for each bass note. Neither
of these options is objectively wrong.

As a visual example of disagreement, Figure 7 shows
the differences between annotators for a particular song
on the level of chroma over time (i.e. a chromagram).
Chroma captures the pitch-class content of a chord label
in terms of the 12 pitch classes folded into a single octave.
We extracted these chroma using the mir_eval soft-
ware by Raffel et al. (2014). The figure reveals that the
annotators all agreed on the pitch classes of the opening
chord of the song. Nevertheless, we see that A1 used a
lownumber of chord-label changes, while the otherswere
more meticulous in their chord-label choice.

Figure 6 also shows that for each evaluation measure,
the agreement is lower if we take into account inversions.
On average the difference is around 5 percentage points,
for example, majmin ≈ 0.73 and majmin_inv ≈0.67,
although the difference in agreement for individual songs
can be very large: up to 31 percentage points. All differ-
ences (i.e. the five pairs of X vs. X_inv) are significant
in a Wilcoxon signed-rank test to assess whether the
results of evaluating a chord granularity level have the
same distribution as when taking into account inver-
sions (e.g. majmin vs. majmin_inv), with p � 0.001.
This shows that for any chord-label type, the amount of
annotator subjectivity significantly increases when tak-
ing into account inversions. This effect is visualised in
Figure 8 which shows the pairwise agreement between
all annotators for all mirex evaluations for all songs.

One could argue that one aspect of a reported diffi-
culty for a song has to do with an annotator’s uncertainty
about which chord labels to choose for that song: if the
annotators find a song to be relatively simple on average,

Figure 7. Visualisation of annotator subjectivity at the pitch class level, for all four annotators for the Billboard dataset song with ID 995.
The y-axes represent the 12 pitch classes for each annotator; the x-axes represent time in terms of beats. Comparing the chromagrams
reveals large differences in chord detail between annotators.
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Figure 8. Pairwise agreement among four annotators for all MIREX
chord granularity levels. Agreement is significantly lower when
inversions are taken into account (� vs �_inv) with (p � 0.001).

one would expect their chord labels to be relatively more
similar. In our dataset, we find indeed that on average,
the annotators disagree more when they perceive a song
to be more difficult. The average agreement is inversely
correlated with the average reported difficulty, r=−0.6,
p � 0.01.

5.2. Annotator agreement with Billboard
annotations

The relatively low overall chord-label agreement between
annotators shown in the previous section raises ques-
tions on the creation of one-size-fits all chord-label
annotations, which are almost universally used for
research relating to computational harmony analysis.
One approach to solving the problem of how to create
chord-label annotations with the broadest appeal is cre-
ating a consensus annotation from multiple annotations.
This was proposed and presented in theBillboard dataset.
The annotations in this dataset are the result of a meta-
annotator creating a consensus from two annotations
(Burgoyne et al., 2011). Assuming that a consensus anno-
tation is on average closer to individual annotations than
annotations of individuals are to each other, we hypoth-
esise that our annotators would agree on average more
with the Billboard annotation than with each other. To
test this, we evaluate the annotations fromA1,A2,A3 and
A4 on the corresponding Billboard dataset annotation.

Figure 9 shows the pairwise agreement between the
annotators and the Billboard annotations for all mirex
evaluations. Just like in the results of Sections 5.1 and 5.2,
the figure shows again that overall agreement decreases
with an increase in chord-label granularity: annotators
agree more on the root notes (root) than on complex
chords (e.g. sevenths) of the Billboard annotations. We
find that the average agreement of root notes is only
0.77 (σ = 0.16), with some scores as low as 0.19. The
agreement scores for the other chord-label granularities
can be found in Table 4.

Figure 9. Agreement of our four individual annotators with the
consensus from the Billboard annotation for all MIREX chord granu-
larity levels. Agreement is significantly lower when inversions are
taken into account (� vs. �_inv) with (p � 0.001).

Table 4. Average (x) and standard deviation (σ ) agreement
results between the annotators and the Billboard annotations.
Agreement decreases with increased chord granularity and is sig-
nificantly lower when inversions are taken into account.

Chord label vocabulary x σ

ROOT 0.77 0.16
MAJMIN 0.77 0.16
MAJMIN_INV 0.72 0.19
MIREX 0.77 0.13
THIRDS 0.75 0.16
THIRDS_INV 0.70 0.19
TRIADS 0.71 0.18
TRIADS_INV 0.66 0.20
TETRADS 0.57 0.22
TETRADS_INV 0.54 0.23
SEVENTHS 0.63 0.21
SEVENTHS_INV 0.59 0.23

Figure 9 shows again that for each evaluationmeasure,
the agreement is lower if we take into account inver-
sions. On average the difference is around 5 percentage
points, for example majmin ≈ 0.77 and majmin_inv ≈
0.72, although the difference in agreement for individ-
ual songs can be very large: up to 62 percentage points.
All differences in agreement are significant in aWilcoxon
signed-rank test to assess whether the results of evaluat-
ing a chord granularity level have the same distribution
as when taking into account inversions, p � 0.001. This
shows that for any chord-label type, the amount of anno-
tator subjectivity significantly increases when taking into
account inversions.

A first comparison of the agreements from Figures 8
and 9 seems to imply that annotators overall agree a lit-
tle bit more with the Billboard annotations than with
each other. Nevertheless, only one of the differences is
significant in a Mann–Whitney U-test, which assesses
whether the results of annotator agreement have the same
distribution as Billboard agreement, with p>0.05. Thus
being the sevenths_inv, p<0.05. While these results
show us that there is no significant difference between
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Table 5. MIREX 2017 ACE evaluation results. Evaluation results consistently surpass the subjectivity ceiling found in the HASD.

Dataset ROOT MAJMIN MAJMIN_INV SEVENTHS SEVENTHS_INV

HASD 0.76 0.73 0.67 0.6 0.54
Isophonics2009 0.87 (KBK) 0.87 (KBK) 0.83 (KBK) 0.76 (KBK) 0.73 (KBK)
Billboard2012 0.86 (KBK) 0.86 (KBK) 0.83 (KBK) 0.63 (WL) 0.61 (JLW)
Billboard2013 0.81 (KBK) 0.78 (KBK) 0.76 (KBK) 0.58 (WL) 0.56 (JLW)
JayChou29 0.83 (WL) 0.82 (WL) 0.79 (WL) 0.62 (WL) 0.59 (WL)
RobbieWilliams 0.89 (KBK) 0.88 (KBK) 0.85 (KBK) 0.83 (KBK) 0.81 (KBK)
RWC-Popular 0.87 (KBK) 0.87 (KBK) 0.81 (KBK) 0.70 (WL) 0.68 (JLW)
USPOP2002Chords 0.82 (KBK) 0.81 (WL) 0.78 (JLW) 0.69 (WL) 0.66 (JLW)

Note. kbk, Korzeniowski, Böck, Krebs, and Widmer (2017); wl, Wu, Feng, and Li (2017); jlw, Jiang, Li, and Wu (2017).

Figure 10. Krippendorff’s α inter-rater agreement of all songs in the dataset. The chequerboard-like pattern reveals that for each level
of granularity, the level of agreement decreases when inversions are taken into account. Billboard dataset IDs can be found below the
columns; average reported difficulties can be found above the columns. The numbers on the right show the average agreement for each
chord granularity level. Columns are ordered by increasing average pairwise agreement.

inter-annotator pairwise agreement and the annotators’
agreement with the Billboard annotations, we can also
measure the magnitude of the difference between groups
through theCommon-Language Effect Size (cl). cl gives
a description of the probability that a score sampled at
random from one distributionwill be greater than a score
sampled from some other distribution. We find cl rang-
ing between 0.48 and 0.56 for the chord granularities,
indicating a roughly equal chance of annotators agreeing
more with the Billboard annotations than with the other
annotators. These results show that annotators do not sig-
nificantly agree more with a Billboard annotation than
with the annotations from the other three annotators.

These Billboard annotations are a staple dataset used
in training ace systems. In 2017, the best performing
algorithm in the mirex ace task on datasets that inter-
sect with the hasd (Billboard2012 and Billboard2013)
reported accuracy scores of 0.86, 0.86, 0.83, 0.63 and
0.61 for root, majmin, majmin_inv, sevenths and sev-
enths_inv, respectively.7 Table 5 presents the results for
all datasets in the mirex ace task. Although our dataset
only overlaps with the Billboard2012 and Billboard2013
datasets, they all contain comparable music in terms of
genre and popularity. Comparing these to the average
pairwise agreement scores found in our dataset shows
that the state-of-the-art ace algorithms perform beyond
the ‘subjectivity ceiling’ found in our dataset, which

7 http://www.music-ir.org/mirex/wiki/2017:Audio_Chord_Estimation_Results

suggest that they are overfitting to a single subjective
annotation.

5.3. Krippendorff’s α inter-annotator agreement

While the pairwise tests in the previous sections pro-
vide a musically informed view on the average pairwise
agreement between the annotators, it does not account
for agreement by random chance. Therefore, we also
evaluate the four annotators’ chord-labels using Krippen-
dorff ’s α measure of inter-annotator agreement (Krip-
pendorff, 1970).

Krippendorff ’s α measures the agreement between
annotators on the labelling of units (in our case beats)
on a scale from 0 (no agreement) to 1 (full agreement).
α becomes negative when disagreement is beyond that
what can be expected from chance. Values between 0.4
and 0.75 represent a fair agreement beyond chance. To
be able to evaluate the chord labels at the different mirex
granularity levels, we re-label the chord labels. We fol-
low the standardised mirex chord vocabulary mappings
that were introduced by Pauwels and Peeters (2013). Cal-
culating α for each chord label granularity provides a
detailed view into the chance-corrected agreement of the
annotators’ annotations in our dataset.

Figure 10 shows Krippendorff ’s α coefficients of all
annotators for all songs for all chord-label granularities.
Similar patterns as in the average pairwise agreement in

http://www.music-ir.org/mirex/wiki/2017:Audio_Chord_Estimation_Results
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Figure 6 can be observed. A higher inter-annotator agree-
ment can be found in root notes (root), with decreasing
agreement for more complex chord-label granularities.
As a general baseline, α ≥ 0.8 is often brought forward as
good agreement, and α ≥ 0.667 for where ‘tentative con-
clusions are still acceptable’ (Krippendorff, 2004). With
the exception of root, we find that the average α ≤
0.667 indicating a fair inter-annotator agreement. Nev-
ertheless, overall α is quite low for the other chord-label
granularities, with arithmetic means ranging from 0.63
(thirds, σ = 0.18) to 0.42 (tetrads_inv, σ = 0.17).
The figure exhibits the same chequerboard-like pattern as
in Figure 6, indicating that the inter-annotator agreement
for chord-label granularities is lower when inversions are
taken into account. In summary, accounting for agree-
ment by random chance using Krippendorff ’s α, we find
a quite low inter-rater agreement across all annotators.

6. Individual differences in annotation ability

The previous sections highlight several areas of variance
among the annotators: annotation time, chord vocabu-
lary, how difficulty is perceived and their agreement with
the Billboard reference annotation. In order to formalise
the potential causes of this variance, we examine the cor-
relation of these annotator behaviourmeasures (reported
annotation time, reported annotation difficulty andnum-
ber of unique chords used) with the annotators’ agree-
ment with the Billboard reference annotation. Here, we
use the Billboard reference annotation as a ground truth
in explaining how the annotators’ perceived difficulty in
transcribing a song relates to their chord-label agreement
for that song. In particular we are interested to investi-
gate if each annotator is indeed unique, and whether they
have a particular pattern of sensitivity to chord labels that
influence how difficult they perceive a song to be.

Put more formally, we are interested in describing the
variability among the annotators in terms of a potentially
lower number of unobserved variables called factors. To
do so, we first perform an exploratory factor analysis to
uncover the underlying structure of the measurements
from our annotators. This analysis suggests a model that
describes an annotator’s performance as depending on
four difficulty factors that have high explanatory power.
Using the factor model as a basis for a confirmatory fac-
tor analysis, we verify the plausibility of the exploratory
model and test for the presence of higher level factors, the
effects of song length and learning, and whether annota-
tors differ significantly from each of the factors – or in
other words, what exactly causes annotators’ transcrip-
tions to vary.

In the following sections, we report on the findings
of an exploratory and confirmatory factor analysis, of

which the detailed statistical intricacies can be found in
Koops (2019).

6.1. Exploratory factor analysis

To investigate the number of factors (or dimensional-
ity) that could explain our set of measures, we begin
with an exploratory factor analysis. Both parallel analy-
sis (Humphreys & Montanelli, 1975) and Velicer’s map
criterion (Velicer, 1976), two common techniques for
choosing the dimensionality suggest that four factors are
sufficient. Table 6 presents the four-factor solution, using
the principal factor method (similar to principal compo-
nent analysis but allowing for an additional error sources
for each measure) with an oblique rotation (oblimin)
to maximise interpretability. The pattern in the load-
ings (correlations between the factors and the original
measures) lends itself to a clear and meaningful inter-
pretation of the factors. Factor 1 represents a baseline,
triad-level difficulty (Triad Difficulty), Factor 2 repre-
sents additional difficulty arising from sevenths (Sevenths
Difficulty) and Factor 4 represents additional difficulty
arising from inversions (Inversions Difficulty). Factor 3
(Annotation Difficulty) collects all three of the annotator-
dependent difficulty measures, suggesting that there is
indeed a distinct difficulty aspect to some songs that goes
beyond triads, sevenths and inversions.

Because we used an oblique rotation rather than an
orthogonal one, correlations among the factors were pos-
sible, and all four of the factors are intercorrelated pos-
itively, suggesting that a higher level, general difficulty
factor may be present that is partially responsible for all
four lower level types of difficulty. The communalities
(h2 or proportion of variance explained for each mea-
sure) are very high for the mirex vocabularies, showing
that the four-factor model does an excellent job explain-
ing these measures. The annotator-dependent indica-
tors have lower communalities, especially the number of
unique chords, but still represent a good fit. Overall, the
four-factor exploratory model explains 92 percent of the
variance in the data we collected.

In summary, the exploratory factor analysis suggests
that annotator’s performance depends on a baseline
triad-level difficulty, additional difficulty arising from
sevenths or inversions, and a further chord difficulty
factor; it also suggests that there may be a general dif-
ficulty factor contributing to each of the four difficulty
types. As a final check on the four-factor model, we
compared three- and five-factor models as alternatives.
Neither alternative was compelling. A three-factormodel
simply eliminates Factor 4 (Inversions Difficulty), which
has considerable explanatory value; the extra factor in a
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Table 6. Exploratory factor analysis of annotation difficulty indicators (Oblimin Rotation).

Factor 1 Factor 2 Factor 3 Factor 4
Indicator Triad Difficulty Sevenths Difficulty Annotation Difficulty Inversions Difficulty h2

Loadings
MIREX vocabulary

THIRDS 0.96 0.02 0.01 −0.01 0.96
MAJMIN 0.95 0.05 −0.03 0.03 0.97
TRIADS 0.92 0.02 0.09 0.01 0.96
ROOT 0.92 0.03 0.01 0.01 0.91
MIREX 0.94 −0.02 0.02 0.00 0.88
THIRDS_INV 0.46 0.15 0.11 0.55 0.97
MAJMIN_INV 0.47 0.15 0.05 0.58 0.99
TRIADSlowbar;INV 0.48 0.12 0.14 0.53 0.98
SEVENTHS 0.18 0.92 −0.04 0.22 0.98
TETRADS 0.19 0.89 0.05 −0.24 0.98
SEVENTHS_INV −0.10 0.97 0.00 0.23 0.99
TETRADS_INV −0.08 0.94 0.08 0.20 0.98

Difficulty rating −0.04 0.00 0.94 −0.06 0.83
Annotation time 0.07 −0.03 0.88 0.00 0.83
Number of unique chords −0.07 0.02 0.80 0.01 0.60

Intercorrelations (proportion variance explained on diagonal)
Factor 1 0.39
Factor 2 0.67 0.26
Factor 3 0.49 0.36 0.17
Factor 4 0.39 0.29 0.24 0.10

Note. N= 200. The largest factor loading for each indicator appears in boldface. Factor 1 seems to represent a baseline, triad-level difficulty, Factor 2 additional
difficulty arising from sevenths, Factor 4 additional difficulty arising from inversions and Factor 3 a chord-complexity factor beyond these components that also
contributes to annotators’ perceived difficulty. h2 = communality, the percent of variance per indicator explained by the factor model.

Estimates from the R psych package, version 1.7.8, using the principal-factor method (Revelle, 2018).

five-factor model, in contrast, has no obvious interpre-
tation and no items with loadings of greater magnitude
than the four-factor model.

6.2. Confirmatory factor analysis

The exploratory factor analysis suggests a basic under-
lying model for how annotators’ perceived difficulty in
transcribing a song relates to their agreement with the
Billboard reference annotation for that song. The factors
in this model are inter-correlated, suggesting that there
may also be a higher order common cause of difficulty.
Exploratory factor analysis is limited, however, in its abil-
ity to specify the factor structure further, and it also offers
no good way to test for the effect of external factors, such
as song length and learning effects. It also makes it diffi-
cult to separate which aspects of the model are common
to all annotators from those aspects that differ among
annotators, i.e. potential aspects where annotator subjec-
tivity is at work. We thus use the four-factor model as
a basis for a confirmatory factor analysis, where we can
verify the plausibility of the exploratory model and test
for (1) the presence of the General Difficulty factor, (2)
the effects of song length and learning, and (3) individual
differences among annotators.

Our first step in the confirmatory analysis is to define
the factors more rigorously. Given the loading patterns
and high intercorrelations in the exploratory model, we
allow Factor 1 (Triad Difficulty) to load on all 12 of the
mirex wcsr measures. All other loadings for this factor

are constrained to zero.We allow Factor 2 (Sevenths Diffi-
culty) to load only the four mirex vocabularies involving
sevenths and Factor 4 (Inversions Difficulty) to load only
on the five vocabularies involving inversions, again con-
straining all other possible loadings on these factors to
zero. Because Factor 1 (Triad Difficulty) loads on every
mirex measure, we know that Factors 2 and 4 are specif-
ically measuring the extra difficulty caused by sevenths
or inversions, independent of the difficulty of identifying
any other harmonic aspects. We allow Factor 3 (Anno-
tation Difficulty) to load only on the three annotator-
dependent measures, reported difficulty, reported anno-
tation time and number of unique chords. To ensure that
the model remains identified given the overlapping fac-
tors, we enforce independence (zero covariance) between
Factor 1 (Triad Difficulty) and Factor 2 (Sevenths Diffi-
culty), and also between Factor 1 (Triad Difficulty) and
Factor 4 (Inversions Difficulty); we allow all other pairs of
factors to covary.

We fit this first-order model to each annotator indi-
vidually and find that the model fits well for Annotators
3 and 4, adequately for Annotator 1, and less well for
Annotator 2. Annotator 2 exhibited so little variance in
difficulty ratings (so many of Annotator 2’s ratings are
1) that it is impossible to estimate an underlying normal
variable reliably. Despite the overall instability of the fit
for Annotator 2, all loadings in this first-order model are
large, statistically significant at the 5% level (p<0.05) and
of comparable magnitude for every individual annotator,
meaning that all four factors are important for all four
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annotators. We accepted the first-order model, and for
further analysis, we assumed that all annotators shared
this four-factor model structure.

6.3. Underlying General Difficulty factor

The four factors (Triad, Sevenths, Annotation and
Inversions Difficulty) are highly inter-correlated, which
suggests that there may be an underlying General Dif-
ficulty factor that is responsible for this correlation, i.e.
a second-order model (see Figure 11). A second-order
model does indeed fit acceptably well and the degrada-
tion in fit from the first-order model is not statistically
significant (p=0.90). Looking in detail at the model
parameters, however, we notice that the loadings on Sev-
enths Difficulty are small and not statistically significant
for any annotator. As such, we also test an even more
parsimonious model wherein the General Difficulty fac-
tor is not allowed to load on Sevenths Difficulty (i.e. we
fix the loading to zero). This second-order model with-
out a connection betweenGeneral Difficulty and Sevenths
Difficulty also fits acceptably well and shows no signif-
icant degradation from the model where the loading
between General Difficulty and Sevenths Difficulty is free

(p=0.44). We accept the presence of a General Diffi-
culty factor and use the model without a connection to
Sevenths Difficulty as our basis for further testing.

Given the General Difficulty factor, we then examine
whether song length or learning affects General Diffi-
culty. As a proxy for learning, we simply use the tranche
in which annotators received each song (first, second or
third). We first test a model with both of these covari-
ates as exogenous predictors ofGeneralDifficulty andfind
that while song length has a significant effect for all anno-
tators, the tranche does not have a significant effect for
any annotator. Removing tranche shows no significant
degradation in model fit (p=0.38 ), but removing song
length degrades model fit substantially (p=0.01 ). We
choose the model with only song length as a predictor of
General Difficulty. Figure 11 depicts this model structure.

6.4. Difference in difficulty factors across
annotators

In order to test whether the latent difficulty factors (Triad,
Sevenths, Annotation, Inversions and General Difficulty)
differ across annotators, we follow the procedure recom-
mended by Brown (2015). After testing for measurement
invariance, differences in factor variances and differences

Figure 11. Second-order factor model for indicators of annotation difficulty. The exploratory factor analysis suggests that annotator’s
performance depends on a baseline triad-level difficulty (Triad Difficulty), additional difficulty arising from sevenths (Sevenths Difficulty)
or inversions (Inversions Difficulty), and a further chord difficulty factor (Annotation Difficulty). A second-order General Difficulty factor
predicts three of the four first-order factors. Loadings are unstandardised and common to all annotators. Intercepts (whichwere common
across annotators) and residual variances (which were not) are omitted for clarity. The largest loading on each factor is set to 1.0 in order
to fix their scales.
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in factor means, we reject the hypothesis of equal factor
variance across annotators (p= .09, but with substantial
degradation in goodness-of-fit statistics), but retain the
hypothesis that the factor means are the same (p = .88).

In summary, the General Difficulty factor can explain
both annotators’ perceived difficulty and their agreement
with the Billboard reference annotation; more difficult
songs exhibit less agreement, and our chosen annotator-
dependent measures are consistent with the common
external measures of wcsr. While we find no evidence
of a learning effect from annotation experience, we find
song length has a significant impact on General Diffi-
culty, with longer songs being more difficult on aver-
age. Beyond General Difficulty, further differences in
perceived difficulty or ground-truth agreement can be
explained by four lower level factors:TriadDifficulty, Sev-
enths Difficulty, Inversions Difficulty and Annotation Dif-
ficulty. On average, all annotators found the songs equally
difficult with respect to these factors, but the variance
differs. Finally, even after taking into account the diffi-
culty factors, some annotators are systematically slower
or faster than others.

How should one interpret differences in factor vari-
ances when themeans are the same? Variance in this case
reflects the range of difficulty across the full sample of
songs we asked annotators to transcribe. Low variance
suggests a lack of sensitivity to a particular type of dif-
ficulty; high variance suggests that a particular type of
difficulty is especially important for a particular anno-
tator. Put differently, the results suggest that the core of
annotator subjectivity lies not in differences in raw tran-
scription ability per se, but in the relative importance of
triads, sevenths, inversions and other musical factors for
each annotator.

Looking at a Schmid–Leiman factorisation of the final
model, which separates the loading for eachmeasure into
a portion arising exclusively from General Difficulty and
the portions arising from the residual variance of the
other factors (Schmid & Leiman, 1957), several charac-
teristics of the annotators become clear. Song length has
a slightly weaker effect on General Difficulty for Anno-
tator 4 than for the other annotators, but in general,
it is responsible for about a quarter of the variance in
General Difficulty. For Annotators 1 and 2, the difficulty
ratings, annotation time and number of unique chords
are also influenced to amoderate degree by specificAnno-
tation Difficulty above and beyond the high-levelGeneral
Difficulty, whereas Annotators 3 and 4 exhibit no such
variation. As mentioned earlier, this independent source
of Annotation Difficulty could have something to do with
unusual chords or voicings, but a separate study would
be necessary to analyse this finding more deeply. At the
lower level, we see that Annotator 2 is highly sensitive to

Sevenths Difficulty, and that Annotator 4 is quite sensitive
to Inversions Difficulty. Consistent with the earlier find-
ings, the performance of Annotator 2 is more idiosyn-
cratic with respect to the model than the other three
annotators.

In short, each annotator in our sample is unique,
exhibiting a distinct pattern of sensitivity to particular
types of difficulty in the song sample. Inevitably, these
differing sensitivities lead to differing transcriptions.

7. Conclusion and discussion

In this paper, we presented a new harmonic annotator
subjectivity dataset of annotated chord labels of popular
songs and an analysis of the extent of annotator sub-
jectivity found in this dataset. We have shown that the
annotators in this dataset each use a particular chord-
label vocabulary. The intersection of the four annotators’
chord vocabularies was less than 20 percent of the union
of the four vocabularies.

Furthermore, in a pairwise analysis of the annotations
using the commonly used mirex evaluation measures,
we find that annotators agree on average on only 76 per-
cent of root notes. This disagreement increases with the
complexity of chord labels, with only 59 percent agree-
ment for the most complex vocabulary. Agreement is
even lower whenwe take into account inversions, with an
average of 5 percentage points less agreement for chords
with inversions. Hence, our results are in line with a com-
parable experiment by Ni et al. (2013). Using annotations
from formally trainedmusicians, Ni et al. (2013) reported
annotator subjectivity of around 10% among the annota-
tors when compared to their consensus. Comparable but
slightly higher amounts of average pairwise agreement
can be found in their dataset.

In an inter-annotator agreement analysis using Krip-
pendorff ’s α, we find disagreements that underline the
findings from the pairwise comparisons. Comparing the
annotators and the commonly used standard Billboard
reference annotation, we find that annotators on average
agree just as much with each other as with the Billboard
annotations. This suggests that a consensus annotation
from the Billboard dataset can be regarded as equally
valid as the annotations from our dataset.

The large differences among annotators show that
annotator subjectivity is an important factor in harmonic
transcriptions, which should figure into serious compu-
tational research on harmony. ace in particular should
take annotator subjectivity into account by providing per-
sonalised chord labels, tuned to the idiosyncrasies of each
user.

Ni et al. (2013) similarly found that state-of-the-art
ace systems perform closely to that of the annotators
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found in their dataset when evaluated on the majmin
chord-label granularity. Chord-label estimation perfor-
mances beyond a subjectivity ceiling suggest that state-
of-the-art ace systems are starting to tune themselves to a
particular subjective annotation and could also be power-
ful enough for chord-label personalisation. In fact, a first
approach to such a system has already been introduced
by Koops, de Haas, Bransen, and Volk (2017), showing
that chord labels can be tuned to an annotator’s spe-
cific vocabulary from a representation shared bymultiple
annotators.

It should be noted that the chord-label agreement
measures used in this study are based solely on pitch-class
level comparisons. These agreement measures are com-
monly used in mir computational harmony research, for
example to evaluate the performance of automatic chord
estimation systems. However, these measures are agnos-
tic towards the functional properties of a chord in its
larger tonal context. It would be interesting to investigate
the agreement of the annotators in the casd on a more
functional level, for example using Riemannian analysis.
This could reveal that although annotators disagree on
pitch-class content of the chord labels, they might agree
on the function that chord has in the context of the key
of the song.

We conclude by suggesting that the root causes of
annotator subjectivity should be addressed in future
research. The first instrument of annotators (i.e. a bias
towards listening to the instrument they are accustomed
to listening to), their preferred level of transcription
detail, their musical sophistication (e.g. instrument and
music theory proficiency) and even their harmonic taste
(i.e. simply preferring the sound of a chord over another)
could all be reasons why annotators differ in their tran-
scriptions. Furthermore, a harmonic similarity analysis
of the chord-label annotations provided by annotators
could provide insight into the relative distances between
the annotators’ annotations, if clusters of annotators exist
and if these clusters correlatewith the possible root causes
of annotator subjectivity.

As mentioned in the introduction, a vast amount of
heterogeneous (subjective) harmony annotations can be
found in crowd-sourced repositories. It is currently an
unsolved problem how to computationally find useful
annotations within these repositories and how these can
be used for computational harmony research. A better
understanding of annotator subjectivity would help to
reveal which crowd-sourced chord-label annotations are
within the bounds of subjectivity, therefore appropriate
for research. In the long term, results from the growing
body of work that reveals the extent and cause of annota-
tor subjectivity calls for the development of more flexible
computational harmony mir (e.g. ace) systems that can

take into account annotator subjectivity and the reasons
why annotators may differ. Moreover, it is not unlikely
that annotator subjectivity plays a role in other mir tasks,
as ambiguity plays a large part in music in general.
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