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CHAPTER 1

Introduction
1.1 From sliding a bookcase over the floor to skating

on ice: What controls the sliding friction?
When one tries to slide a bookcase over the floor, a force prevents it from moving.
No matter what — and in which direction — it will act to hold the bookcase in place.
The resistance to sliding, the friction force, can be overcome if one push hard enough
and, obviously, it would have helped if one had emptied the bookcase first.

Although friction is a part of everyday life, the physics behind it is still not
properly understood. For example, is the force required to slide a bookcase over
the floor dependent on the number of legs? Intuitively we could argue that with
more legs, the area within which friction is generated has been increased. This is
not true, sliding a bookcase on its side, or with eight furniture legs instead of four,
results in a similar friction force. While the contact area, i.e., the number of furniture
legs, may not directly influence the friction, the interface does: the geometry of the
surfaces and its roughness control the friction force. Sliding furniture with pointy
legs over a floor with little irregularities can be very difficult and, horribly, can
lead to scratches on the floor. Furthermore, the type of floor strongly influences the
experienced resistance; a wooden, tile, or carpet flooring, or — why not? — an icy
surface influence how hard one has to push.

Surface roughness

Figure 1.1: How to slide a bookcase over the floor?
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In this thesis, we make a contribution to answering the seemingly simple question,
‘What controls sliding friction?’ We aim to bridge the gap between macroscopic
observed sliding friction and the underlying microscopic behaviour at the interface
between the sliding surfaces (the ‘interface geometry’). We use a combination of
experimental and numerical techniques and focus on the sliding friction for three
very different types of surfaces, namely (wet) sand, ice, and a collection of artificial
surfaces whose geometry we can precisely control. (i) We perform sliding friction
experiments on partially water-saturated sand. Adding water to sand strongly
influences the mechanical behaviour of this granular material; a sandcastle can be
constructed only with sand to which some, but not too much, water is added to. We
show that, together with the slider geometry, the water fraction determines how
hard it is to slide over the sand and how deep the trace that is left after passing is.
(ii) In addition, we measure the slipperiness of ice and discuss why this surface is
extraordinary slippery. We ‘skate’ on a miniature ice skating rink and measure the
sliding friction on ice as a function of temperature, contact pressure, and speed. In
our experiments, we show that ice is not always slippery: The slipperiness of ice
can be suppressed by increasing the contact pressure, set by the geometry of skate
and its surface roughness, or lowering the temperature. (iii) In the final chapter
of the thesis, we explore how one can tune the sliding friction using geometrically
controlled surfaces. We demonstrated that well-designed surface roughness and
control of the (mis)match the surface roughness on the sliders allows one to vary the
friction force by more than an order of magnitude.

1.2 Sliding friction in the past

Overcoming the resistance to sliding when moving objects relative to each other,
was — and still is — a costly problem; it has been estimated that a third of the world
energy consumption is spent on friction and wear [1]. The study of sliding friction,
wear, and lubrication is called tribology, this term was coined in the 20th century [2].
The prefix tribo- is Greek for rubbing; the field was initially defined as “the science
and technology of interacting surfaces in relative motion and of related subjects and
practices.” Although this definition came much later, the applications or problems
of tribology are ancient. A famous example comes from ancient Egypt. Various
tomb drawings demonstrate how the ancient Egyptians transported large stones and
even complete statues on sledges pulled by many men [3–5]. Intriguingly, in one of
these drawings, one person pours water onto the sandy surface in front of the sledge
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(see Fig. 4.1 in Chapter 4 for one of these tomb drawings). Water may influence the
friction between a sledge and the sand. This is like walking on the beach: slightly
wet sand makes the walk easier than dry sand. The addition of some — but not too
much — water to sand can therefore make the transportation of statues over sand
easier [6]. The tomb drawings suggest, although still widely debated [5, 7–9], that
the Egyptians already made use of this knowledge and can be considered as some of
the earliest tribologists.

The moving of large stones and colossal cultural statues has been reported fre-
quently [10]. Many (tribological) solutions have been developed and applied, rang-
ing from simple manpower and a sledge to the use of log rollers, horsepower, and
spiked-wheeled cars. Another creative solution was developed in the 15th century:
Chinese builders transported a massive stone over a distance of 70 km using an
artificial ice road to build the famous Forbidden City [11]. This imperial palace
complex in Beijing was constructed between 1406 and 1420 and was in use by many
emperors up to 1912. A quarried stone with a weight of 300 tons was heaved to
the Forbidden City using rolling logs in summer. In winter, workers poured water

Figure 1.2: ‘The Large Stone Carving’ (left) is placed as a ramp flanked by stairs towards
the Hall of Preserving Harmony, Baohe dian (right top). The heaviest stone of the
Forbidden City is 16 m by 3 m by 1.7 m with a weight of 200 tons [10]. It originally
weighted roughly 300 tons; when it was re-hewn in 1761, its weight was reduced to
about 200 tons. The chiselled ornamentations on the stone include the dragon (right
bottom), the symbol of celestial power. The pictures are from www.dpm.org.cn.
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along the transportation road to create a slippery ice track and slide the huge block
along the ice. Once the rock was in place, it formed a ramp flanked by stairs towards
the Hall of Preserving Harmony (Baohe dian) as can be seen in Figure 1.2. In Ming
dynasty times, the emperor was brought from his residence, the Palace of Heavenly
Purity in the inner court, to this hall in the outer court before attending a grand
ritual or ceremony to change into ceremonial robes. It has been argued that the
Chinese builders preferred wooden logs and slippery ice as the load was too heavy
for wheeled carriages [11].

1.3 The laws of friction, a macroscopic approach
Leonardo da Vinci (1452–1519) can be seen as the father of modern tribology. In his
notebooks an incredible amount of tribological studies are discussed: He reported
studies in friction, wear, and bearings which include a full circular ball bearing
design [12, 13]. In his sliding experiments, a block is horizontally pulled over a
substrate with the use of weights, a connecting string, and a pulley (see Fig. 1.3).
The observations of da Vinci, however, remained unpublished in his notebooks and
were only re-discovered in the 1960s [14]. Independently, 200 years later Guillaume
Amontons arrived at similar conclusions for the sliding friction of dry solids [15].
After the contribution of Charles-Augustin de Coulomb in 1785, their findings can
be summarised in three laws:

• The friction force is directly proportional to the normal force

• Friction is independent of the apparent area of contact between the two surfaces

• Dynamic friction is independent of the sliding speed

The laws of friction were the result of simple sliding experiments with wooden
blocks: The friction doubles if two identical blocks are stacked, the friction is inde-
pendent of the face of the block on which it is sliding, and friction is not affected by
the sliding speed. These empirical laws are obeyed in most dry sliding systems and,
due to the proportionality of the friction force F to the normal force N, allows the
definition of the friction coefficient:

µ :=
F
N

, (1.1)

The friction coefficient is often quantified for surfaces sliding over each other and
enables prediction of the friction force. When the coefficient of friction is known, the
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friction force can be calculated if the normal force is measured.

Da Vinci did derive Amontons’ laws based on his experiments performed two
centuries before Amontons work. However, he had a different third law of friction;
he stated that the resistance to sliding has a constant value of µ = 0.25. This finding
is quite striking as some materials are certainly more slippery than others: Steel on
ice has a friction coefficient near zero, whereas a rubber shoe on the pavement has
good grip due to a high friction coefficient. The fascinating inconsistency between da
Vinci’s results and modern tribology has been resolved by Dowson et al. [16]. They
re-performed da Vinci’s experiments roughly 500 years later, including an attempt
of recreating the sliding setup. For various objects they quantified the material-
dependent friction coefficient µ. Only when they performed their experiments with
dry wood that were handled and sullied by hand, the performed measurements
indeed correspond to a friction coefficient of roughly 0.25. Dowson et al. wrote: [the

Figure 1.3: Original sketches from Leonardo da Vinci for his experiments on friction
that were reported in his notebooks Codex Atlanticus and Codex Arundel [12, 13, 17].
In the right top, he measured sliding friction between a block and a flat surface with
the use of weights and a pulley system where he calibrated how much weight is
necessary to maintain the block sliding at a constant speed. On the bottom, the sliding
of wooden blocks with various widths and lengths is illustrated. Da Vinci also reported
on (lubricated) rolling friction: In the left top, a cylinder is illustrated that is placed in a
shaped cavity and is rotated with weights.
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sliding surfaces] “were intentionally exposed to fingerprint oils and airborne dust,
resulting in a ‘sullied’ environment.” A small layer of oil (i.e., finger fat) and dust
lubricates the wood-on-wood sliding experiments. “Such a procedure of sample
preparation is entirely reasonable for the time period and suggests an active, dusty,
and dynamic laboratory environment.” [16]. Friction, therefore, often depends
on the experimental conditions. It also teaches us that modern lab experiments,
experiments performed in a clean and well-controlled environment, cannot always
be directly converted to real-life situations.

1.4 Towards a microscopic picture of friction

1.4.1 The real contact area

In order to understand sliding friction in more detail, there is a need to bridge the
gap between the macroscopic and the microscopic scales. One of the intriguing
questions, raised after performing sliding experiments on the macroscale, is why the
sliding friction is independent of the contact area? Intuitively, one could argue that
when the contact area increases, the friction should increase proportionally. The key
ingredient here is surface roughness. Although the friction force is independent of
the apparent contact area, i.e., the area that appears to be in contact when surface
roughness is not considered, it is in fact proportional to the so-called Real Contact
Area (RCA). The irregularities of the surfaces touch and push on each other and the
formed real contact area is directly proportional to both the normal and the friction
force. The friction, therefore, is the result of shearing the microscopic contact points
over each other; see Figure 1.1 for an illustration of the formed contact between a
furniture leg and the floor.

The real contact area was quantified by Bowden and Tabor in the early twentieth
century [18, 19]. They performed loading experiments and measured the electrical
conductivity at the metal-metal interface. They observed that just a fraction of the
apparent contact actually touches. Bowden described this in a BBC radio program
(1950): “... putting two solids together is rather like turning Switzerland upside
down and standing it on Austria – their area of intimate contact will be small.” [20].
The performed tests also demonstrated that the real contact area, the ‘mountains’
of the surfaces in contact, at the metal-metal interface was proportional to the load
pressing the two surfaces together. As the real contact area is proportional to the
load (RCA ∝ N) and the friction force needed to shear the microscopic contact points
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is also proportional to the real contact area (F ∝ RCA), they immediately arrived at
Amontons’ laws: The friction force increases linearly with the normal force and is
independent of the contact area (F ∝ N).

1.4.2 Contact mechanics

The growth of the real contact area with the normal force does depend largely on the
surface materials and their roughness. The study of contact mechanics focuses on the
deformation of solids when they are loaded. The metal-on-metal loading experiment
from Bowden and Tabor emphasised the influence of plasticity. The rough surfaces
are brought into contact and, consequently, first the highest ‘mountains’ will touch
and experience a large contact pressure. When this contact pressure exceeds the
yield stress of the material, the highest ‘mountains’, called asperities, will irreversibly
deform. The asperities in contact will flatten out, and more contact spots between
the asperities of the surfaces will form. The increased real contact area lowers the
contact pressure until the yield stress is not exceeded anymore and the surfaces
are in mechanical equilibrium. The experimental results led Bowden and Tabor to
conclude that, for a rough-on-rough contact, the pressure is constant at the yield
stress and, consequently, the real contact area increases proportionally with the
normal force [19].

The Bowden-Tabor theory was, however, conflicting with elastic Hertz theory
which describes that for a sphere touching a flat surface the real contact area grows
sublinearly with the loading force and, therefore, is inconsistent with Amontons’
laws. Hertz developed a theory in 1882 that describes the contact formation between
smooth and non-adhering elastic surfaces [21, 22]. He proposed that surfaces re-
versibly deform as a rubber ball pressed onto a table: The curved elastic surface is
flattened out and, after unloading, relaxes back to its initial form. Many theories are
introduced to avoid some of the assumptions inherent to Hertz theory, which include
surface roughness, adhesion, and plasticity. Greenwood and Williamson did, for
example, apply Hertz theory on the asperity-scale [23]. They approximated a rough
surface as a distribution of spherical asperities that all individually deform based
on Hertz theory. They found that under these assumptions, the real contact area is
proportional to the applied load [22]. However, it is widely accepted — including by
Greenwood himself [24] — that modelling the real contact area with the macroscopic
(non-adhesive) Hertzian theory on the asperity-level is limited. The surface height
variations on the nanoscale, the asperities on the asperities [25], and the influence of
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plasticity limit the application and highlight the influence of the broad domain of
length scales of the surface roughness. The real contact area must be determined for
surface height variations in the range from the atomic level up to the macroscopic
size of the slider geometry [26].

Many authors have contributed to the field of contact mechanics in an attempt to
include all realistic effects: elasticity, plasticity, and adhesion [27–32]. Recently, the
pioneering work of Persson (2002) provided an alternative model that considers
the fractal nature of surfaces — the asperities on the asperities — and also pre-
dicts a linear dependence between the real contact area and the normal force [33].
Furthermore, experimental techniques, such as (frustrated) total internal reflection
microscopy [34, 35] and fluorescence microscopy [36, 37] allow surpassing the ex-
isting limitations and enable quantifying the real contact area which, normally, is
difficult to measure as it is buried between the two loaded surfaces. We can attempt
to summarise saying that elastic, elastoplastic or plastic behaviour in the micro-
contacts can largely depend on the normal force while at the macroscopic level the
approximation of a linear increase of the contact area with normal force is regularly
observed for many surfaces of practical interest.

1.4.3 Shearing the surfaces

The contact mechanics, the deformation of solids in contact, teaches us that the real
contact area at the sliding interface strongly depends on the surface topography [38].
The friction force therefore results from the resistance to slide these loaded asperities
over each other. The development of the atomic force microscope made it possible
to study sliding friction at the atomic scale; one surface is pushed with a cantilever
on another surface where the deflection of the cantilever, which acts as a spring, can
be converted to the exerted contact forces [39]. These sliding experiments serve as a
model experiment for single asperity contact where the measured friction force as a
function of the sliding distance displays the atomic-scale periodicity [40]. Various
studies emphasise the influence of energy dissipation, phonon-phonon interaction,
thermal vibrations and, in particular, adhesive interactions on the sliding friction
[40–42]. The adhesive interactions between loaded asperities results in ‘glueing’
them together, e.g., by the van der Waals forces [33]. Adhesion can increase the
sliding friction significantly; a smooth elastic rubber can reach a friction coefficient
of around 2 [43]. In contrast, a lack of adhesive friction can result in extremely low
friction. This so-called structural lubricity can be achieved for periodic surfaces
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where, based on their commensurability at the nanoscale, the real contact area and
the resulting number of adhesive bonds is low [44]. The adhesive friction force is
therefore dependent on the interface geometry.

In addition to adhesive friction, the resistance to sliding can also be the result of
plastic deformation. The shear stress on rough surfaces can result in plastic flow;
the yield stress of the softest material is exceeded and will irreversibly flow. This
plastic deformation can occur on the atomic-level — wearing off atom by atom —
or in larger chunks resulting in the formation of debris particles [45–49]. The latter
can result in abrasive wear: scratching the floor when sliding a bookcase over it,
or the gradual reduction of the tread on a tire in contact with the road. Plastic
deformation is not limited to asperity interactions, it can also occur on the scale of
the slider geometry. A rigid slider can, when loaded on a softer surface, indents
the surface and plough through it laterally. Bowden, Moore, and Tabor performed
sliding experiments with metals and wrote: “It is suggested that in general the
frictional force between clean metal surfaces is made up of two parts. The first is
the force required to shear the metallic junctions formed between the surfaces; the
second is the ploughing force required to displace the softer metal from the path of
the harder.” [45]. Plastic deformation of the surfaces does therefore occur on various
length scales. The surface topography, together with loading force and the hardness
of the materials, controls the wear track and, subsequently, the ploughing force.

1.5 Understanding friction from the microscopic
to the macroscopic scale

The macroscopic approach, first described by Leonardo da Vinci, has shown us that
the sliding friction between two surfaces increases proportionally to the normal force
and is independent of the apparent area of contact. The friction coefficient can be
defined as the ratio of the friction force and normal force. A microscopic approach
teaches us that the microscopic surface topography, the irregularities of the surfaces,
determine where the surfaces make contact when loaded and where the consequent
sliding friction occurs. The macroscopic measured friction therefore results from
shearing the microscopic contact points between the surfaces over each other.

In this thesis, we aim to bridge the gap between the macroscopically observed
sliding friction and the underlying microscopic behaviour. We measured the sliding
friction at the macroscopic scale and combine mechanical tests, surface topography
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quantification, and contact mechanics calculations, to connect our large-scale ob-
servations to the underlying microscale mechanisms. We focus on the influence of
interface topography, the geometry of the surfaces and their surface roughness, for
three very different types of surfaces.

(i) We discuss the sliding friction on partially water-saturated granular materials,
specifically sand. Sand is a loose material that consists of a mixture of grains
with sizes that can vary from a micrometre up to a few millimetres. Adding a
small quantity of water to sand strongly influences the mechanical behaviour. The
formation of capillary bridges between the grains results in a capillary pressure
causing an attractive force between the grains: a cohesive network of grains that are
connected with liquid bridges is formed [50]. However, adding too much water to
sand results in coalescence of the capillary bridges and thereby decreases the strong
binding between the grains. The influence of pouring water onto sand — from a
dry pile of sand up to a muddy surface — has been observed for the stiffness of the
mixture [6,51]. The elastic shear modulus varies nonmonotonically with the addition
of water and has an optimum when some, but not too much, water is added. Here,
we question the role of the slider geometry dragged over wet sand, to aim for a
deeper understanding of the sliding friction.

(ii) We discuss the sliding friction on ice that, as any ice skater has observed,
is a surface that is extraordinary slippery. The question why ice is so slippery has
been debated for more than 150 years. Furthermore, ice friction is generated by an
interface that includes many discrete contact points, due to the surface irregularities
on the ice and slider. Understanding how this extended interface impacts the
slipperiness of ice remains difficult to address because the interface is buried between
two bulk materials. With the use of sliding experiments and contact mechanics
calculations, we aim for a deeper understanding on how the surface irregularities of
the surfaces shear over each other.

(iii) We explore how we can tune the sliding friction with geometrically con-
trolled surfaces. Even in everyday scenarios, one can observe that two smooth
surfaces slide more easily over each other than two rough ones. However, at the
microscopic scale the opposite can be observed: periodic roughness can decrease the
sliding friction drastically [44]. The commensurability of periodic nanoscale surfaces
can result in a low amount of adhesive interaction and, therefore, direct variation of
the commensurability enables the sliding friction to be controlled [52, 53]. Here, we
question the influence of macroscopic periodic roughness and their commensurabil-
ity on the sliding friction.
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1.6 Scope of this thesis
In this thesis, we discuss the macroscopic observed sliding friction and the under-
lying microscopic behaviour. First, in Chapter 2, we discuss the experimental and
numerical techniques that are used in the main research chapters (Chapters 3 to 6).
We discuss the two tribometers used to perform sliding tests, as well as the quantifi-
cation of penetration hardness, the characterisation of surface topography, and the
numerical techniques used to calculate the contact mechanics.

In Chapter 3 we discuss the ploughing through dry and wet sand. We perform
experiments where we drag a hemisphere over wetted sand and measure the friction
as a function of the water volume fraction. The slider sinks into the water-sand
mixture and, consequently, ploughs through the sand which leaves a deep trace after
its passage. The measured friction is greatly impacted by both the water fraction
in sand and the chosen geometry: The water fraction controls the hardness of the
water-sand mixture and the geometry of the slider, together with its load, controls
the contact pressure imposed on the wet sand. We observe that both the trace left in
the sand after sliding the hemisphere and the hardness of the water-sand mixture
vary significantly with the water volume fraction. Adding a small amount of water
results in an optimum in the hardness and a resulting minimum in the sliding fric-
tion. We present a ploughing model for the sphere-on-flat geometry that captures
the observed ploughing friction through wet sand.

In Chapter 4 we continue the discussion of partially water-saturated sand and relate
it to the performed transportation of statues by the ancient Egyptians. A Tomb
drawing suggests that water is poured in front of the sledge which is pulled with
the use of manpower. Indeed, adding a bit of water decreases the sliding friction
as we observe — in agreement with earlier studies — for sliding a ‘statue’ over wet
sand in miniature. However, pouring more water to sand results in a muddy surface
that increases the sliding friction again. We discuss the influence of the mechanical
behaviour of (wet) sand on sliding a sledge over sand and show that ploughing
greatly impacts the sliding friction. Pouring a limited amount of water to sand can
reduce the ploughing, thereby decreasing the pulling force required to slide a sledge
on sand.

In Chapter 5 we discuss the slipperiness of ice. Ice friction is critical to winter sports,
glacier movement, and transportation risks. We combine sliding experiments, a
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‘skate’ sliding on a miniature ice skating rink, with contact mechanics calculations
and hardness tests to study this system. We discover that ice friction is low because
of the diffusive motion of surface ice molecules, combined with the exceptional
hardness of ice close to its melting point. It is not always easy to skate on ice, the
slipperiness of ice can be suppressed by a high contact pressure or a low temperature.

In Chapter 6 we explore how one can tune friction with the use of geometrically
patterned surfaces. Sliding friction is often specific to the material and surface
properties and can be hard to predict. Depending on the application, either high
friction for grip, or low friction for easy sliding can be desired. We fabricate sliders
with artificial macroscopic surface patterns and explore how the surface roughness
controls the sliding friction. We show that direct variation of the designed surface
roughness allows the friction force to be varied by more than an order of magnitude.
In addition, with the use of Kirigami metamaterial surfaces the friction can be tuned
externally by a direct variation of its surface roughness.



2

CHAPTER 2

Experimental and
computational techniques

This chapter gives a brief description of the experimental and computational tech-
niques that are used for the research presented in Chapters 3 to 6. We discuss the
two custom-made tribometers used for the horizontal sliding tests (performed in
Chapters 3, 4 and 6) and circular sliding tests (performed in Chapter 5). Before (and
after) sliding, the hardness and the microscopic surface topography of the sliding
surfaces are quantified; We briefly discuss the methods that were used to do so here.
In addition, we introduce the computational techniques that were used to quantify
the contact mechanics of a (spherical) slider on a flat surface (used in Chapter 5).
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2.1 Sliding friction

The sliding experiments are performed with two custom-made tribometers: (a)
horizontal (linear) sliding, based on a commercially available tensile tester, and
(b) circular sliding where a commercially available rheometer is converted to a
tribometer.

2.1.1 Horizontal sliding
A typical sliding experiment is performed by sliding an object with a certain load on
top of a horizontal flat surface, see Figure 2.1 for a schematic illustration of the exper-
imental setup. This custom-made tribometer is based on a commercially available
tensile tester, which consists of a load cell coupled to a stepper motor. We have used
the ZwickRoell Z2.5 tensile tester with an HBM Z6FD1 load cell (precision of 5 mN,
maximum load of 100 N, sampling rate of 50 Hz), initially built to uniaxially stretch
or compress materials to characterise their mechanical properties. The tensile tester
is placed on its side and pulls with a coupled rod or stiff cord on the top surface
with a preset speed in the range of 1 µm/s up to 13 mm/s. To pull horizontally, the

Pulling force F

Sliding distance d

Al
ig

n 
he

ig
ht Sledge

Dead weight

Figure 2.1: Schematic illustration of the experimental setup for horizontal sliding tests.
A slider, for example a sledge, is pulled horizontally over a surface with the use of
a stepper motor. The load cell allows us to monitor the pulling force F and sliding
distance d for an imposed sliding speed v and normal force N. The latter is varied with
placing dead weights on top of the slider.
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Figure 2.2: Pulling force F as a function of sliding distance d for a sledge sliding on a
flat surface. The slider, including certain load placed on top of it, is pulled horizontally
with a sliding speed of 1 mm/s over the fixed bottom plate. Both solids are 3D printed
plastics with the commercially available resin named Clear (see Section 6.2 for more
details). After approximately 5 mm, a stable pulling force is found which represents
the dynamic friction force. In black, red, and blue circles the measured pulling force is
given for a normal force of, respectively, 0.58 N, 1.07 N and 2.05 N. Inset: The measured
friction force F as a function of the imposed normal force N. The dashed line represents
the fit F = µN with µ = 0.147± 0.006.

bottom surface can be aligned vertically.

In Figure 2.2 the pulling force F as a function of sliding distance d is given for a
typical horizontal sliding experiment. Here, a plastic-on-plastic (3D printed with
the commercial available resin named Clear, see Section 6.2 for more details) sliding
experiment is performed at various imposed normal forces N. After approximately
5 mm, a stable pulling force is reached corresponding to the dynamic friction force.
From these experiments, the friction force as a function of the normal force can be
plotted as given in the inset of Figure 2.2. Consequently, the friction coefficient µ,
the ratio of the friction force and normal force, can be calculated: µ = 0.147± 0.006.
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2.1.2 Circular sliding

The circular sliding experiments are performed by a commercially available rheome-
ter (Anton Paar, Dynamic Shear Rheometer 502). This rheometer imposes a rotational
torque to the measuring system, which is a cylinder with a bottom plate or (trun-
cated) cone that is perfectly aligned with the rotation axis. The rheometer measures
the angular displacement and normal force (in the range of 1 mN up to 50 N with
a resolution of 0.5 mN) and, with the use of a quick feedback loop, a constant slid-
ing velocity can be imposed. Rheometers are built to perform rheology tests on
(complex) fluids. The rheometer can apply, and measure torques from 1 nNm up to
230 mNm and, therefore, are very suitable to use as a custom-made tribometer.

To perform the circular sliding experiments, a slider is clamped at the bottom of
the measuring system at a well-defined distance (on the order of 2− 5 mm) from the
rotation axis and pressed against the countersurface; see Figure 2.3. The imposed
rotational speed and measured torque can be converted into a sliding velocity v
and friction force F where the former can be varied from 10−6 up to 10−1 m/s.
During sliding, the normal force (mN precision) is measured and can be controlled
by vertically displacing the rheometer (with sub-µm precision) while holding the

τ
N

Figure 2.3: Schematic illustration of the setup to perform circular sliding experiments.
A slider, here a sphere, is clamped off-axis at the bottom of the measuring system of
the rheometer where, for an imposed rotation speed, the torque τ and normal force
N are monitored. The normal force can be adjusted manually by vertically displacing
the rheometer (with sub-µm precision). In Chapter 5, the setup is used for ice friction
measurements where the setup is thermally isolated and cooled from below.
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Figure 2.4: (a) Friction (red) and normal (black) force as a function of the time t when
sliding a 2 mm stainless steel sphere over a lead surface. The sphere is rotated with a
controlled sliding speed of 0.4 mm/s and is in contact with the lead surface for about
20 seconds due to misalignment between the rotation plane of the sphere and the lead
surface. (b) Friction force as a function of the normal force where the black circles are
the measured data as presented in (a). The red line is a linear fit of the data to calculate
the friction coefficient, here µ = 0.248± 0.001. The red circles represent an average of
the measured data for steps of dN = 0.5 N in normal force.

flat surface in place. In Figure 2.4(a) the friction force F (red circles) and normal force
N (black circles) as a function of the time t are given for a typical circular sliding
experiment: A 2 mm stainless steel sphere is dragged on a lead surface with a sliding
speed of 0.4 mm/s. The misalignment of the rotation axis of the sphere and the
lead surface allows us to perform the sliding experiments over a range of normal
forces. Only in a fraction of the circular sliding movement, the slider makes contact
with the substrate that has its highest loading force N at the lowest point. In this
example, the lowest point of the slider is reached after 10 seconds. The friction force
increases linearly with the normal force [see Fig. 2.4(b)] and a friction coefficient of
µ = 0.248± 0.001 can be found.

For the sliding experiments on ice, as performed in Chapter 5, the setup is
thermally isolated and cooled with a coolant liquid (for a temperature between
−15 °C and 0 °C) or liquid nitrogen (for a temperature between−110 °C and−15 °C).
The temperature of the ice is measured with an embedded thermocouple close to
the surface and controlled with the flow rate of cooling liquid.
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2.2 Penetration hardness
The hardness of a material is the resistance to (local) plastic deformation as a result of
normal (indentation) or tangential (abrasion) stress. Often the term hardness refers to
the yielding compressive pressure of a solid; after (initial) elastic deformation due to
the exerted stress, some solid materials deform irreversibly. Note that depending on
the material, crack formation in a material and, subsequently, full fracture can already
occur directly after elastic deformation. The onset of plastic deformation, including
a quantification protocol, is complicated to define as it depends on the specific
conditions: the material of the test-sample (viscoelastic behaviour, strain-hardening,
purity, heterogeneity), the stress-inducer (geometry, thermal conductivity) and the
external conditions (strain rate, geometry-size) [54, 55].

For example, the hardness of a metal largely varies with the characteristic length
scale on which it is measured [56]. On the nanoscale, the hardness is determined by
the number of intermolecular bonds of the atoms arranged in a crystal lattice. On
larger scales, the influence of polycrystallinity is amplified where the hardness is
mainly set by the crystallographic defects [57]. A metal consists of crystalline grains
in which point and line defects (mainly on the boundary of the grains) can result
in movement and formation of dislocations that, consequently, can result in early
plastic deformation and creep [58].

The quantification of hardness is therefore strongly dependent on the measure-
ment protocol and should be chosen carefully to match the specific conditions of
the application. For example, to test the abrasive hardness of minerals the Mohs
scale for hardness can be applied: The hardness is categorised by investigating on
which reference minerals — from soft talc up to hard diamond — the test sample
leaves a scratch [59]. More quantitative test protocols, mainly in metallurgy, have
been developed and performed to define hardness. Commonly used protocols (and
corresponding scales) are based on Brinell, Vickers, Shore and Rockwell [54, 60, 61].
In these tests, the specific indenter geometry (pyramidal, spheres, cones), indenter
size, strain rate and the loading time are defined.

In Chapters 3 to 5, we quantify the hardness for conditions which resemble the
parameter ranges exercised in the friction experiments: normal force, length scale,
indentation depth, normal- and tangential speed. The hardness can be evaluated
from an indentation experiment where a spherical or conical indenter is pressed on
the flat test-sample; for increasing loading force N the resulting plastic deformation
depth δ is monitored. Here, the penetration hardness can be calculated based on the
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projected contact area Ac of the indenter on the test-sample and the loading force:

Ph =
N
Ac

. (2.1)

See Figure 2.5 for a schematic illustration of the indentation experiment based on a
spherical (radius R) or conical (apex angle α) indenter. The indentation experiments
are performed with a tensile tester (see also Section 2.1.1) which pushes the indenter
vertically into the sample. The monitored indentation depth δ can, for the given
indenter-geometry, be converted to the contact area Ac. For a large range of inden-
tation speeds (1 µm/s up to 13 mm/s) and indentation forces (maximum of 100 N
with a precision of 5 mN), the loading and unloading can be monitored.
When performing an indentation experiment, the stiffness of the measurement sys-
tem also has to be taken into account. The measurement system, i.e., the tensile tester
including the indenter, elastically deforms for increasing load. To correct the mea-
sured indentation depth δ for this elastic behaviour of the system, a reference loading
experiment specific for the indentation setup is performed without the sample. The
indenter is loaded on the sample stage where normally the test sample is placed,
see Figure 2.6 for a typical loading-unloading curve. Here, up to 30 N the loading

Figure 2.5: Schematic illustration of the indentation experiment performed with a
spherical (a) or conical (b) indenter on a flat sample. For an increasing loading force N
the indentation depth δ is monitored. The sphere (radius R) and cone (apex angle α and
maximum radius R) indent the flat surface resulting in a projected contact area Ac with
radius r.
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Compliance of 3.676 ± 0.002 µm/N
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Figure 2.6: The indentation depth δ as a function of the loading force N to quantify the
stiffness of the measurement system used for hardness tests. In this reference loading-
unloading experiment, the indenter is loaded up to 30 N onto the sample stage, i.e.,
where normally the test-sample is placed. No significant hysteresis can be observed
and, consequently, the compliance of the measurement system can be quantified with a
linear fit, see the dashed line. In this example, the compliance is 3.676± 0.002 µm/N.
Subsequently, when a hardness test is performed, the monitored indentation depth is
corrected with the use of the measured compliance of the setup.

and unloading is monitored which, as no significant hysteresis is observed, is purely
elastic. The measured slope of this reference experiment (red dashed line in Fig. 2.6)
reveals the compliance (which is the inverse of the stiffness). In this example, the
compliance of the measurement system is 3.676± 0.002 µm/N. When an indentation
experiment is performed, we correct the monitored indentation depth with the use
of the measured compliance of the specific setup.

In Figure 2.7, two typical indentation experiments are given for (a) a sphere indenting
a lead surface and (b) a cone indenting a water-sand mixture (water volume fraction
of φw = 5%). Both indenters are made from stainless steel which is significantly
harder than the samples which are going to be tested. The measured loading-
unloading curve for both systems shows a large hysteresis; when the indenter starts
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to retract after loading, the measured force immediately drops to zero. This confirms
that during loading, the test-sample has been plastically deformed.

Throughout the loading, the projected contact area Ac increases for the spherical
and conical indenter. The contact area Ac = πr2, with r the radius of the projected
circle, can be calculated based on the measured indentation depth δ. For a sphere-
on-flat geometry [see Fig. 2.5(a)], we can write

r2 = 2Rδ− δ2

≈ 2Rδ .
(2.2)

The approximation is valid for δ� R. For the conical indenter, the contact radius
can be written as

r = tan( 1
2 α)δ . (2.3)

Subsequently, the contact area for the specific geometries can be written in terms of
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Figure 2.7: The indentation depth δ as a function of the loading force N for (a) a
spherical indenter (radius R = 2 mm) pressed onto lead and (b) a conical indenter (apex
angle α = 60°) pressed onto a water-sand mixture (water fraction of φw = 5%). The
loading-unloading curves show full plastic indentation; when the indenter retracts after
loading, the force drops immediately. The red dashed lines show fits based on Eqs. (2.6)
and (2.7) that enables us to calculate the penetration hardness: Lead has a penetration
hardness of Ph = 18.9± 0.1 MPa and the water-sand mixture has a penetration hardness
of Ph = 63.4± 0.3 kPa.
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the indentation depth as

Sphere: Ac = 2πRδ (2.4)

Cone: Ac = π tan2( 1
2 α)δ2 . (2.5)

The penetration hardness can be calculated by fitting the following expressions on
the measured loading-curve (red dashed lines in Fig. 2.7):

Sphere: δ =
1

2πRPh
N (2.6)

Cone: δ =
1√

π tan2( 1
2 α)Ph

√
N . (2.7)

Therefore, the indentation depth increases either linearly or as a square root of the
loading force, set by the geometry of the indenter. When the data as presented in
Figure 2.7 are fitted, we find a penetration hardness of Ph = 18.9± 0.1 MPa for lead
and Ph = 63.4± 0.3 kPa for the water-sand mixture.

The penetration hardness for a sphere-on-flat geometry [Fig. 2.5(a)] is calculated
based on the approximation for the contact radius valid for δ � R as given in
Equation (2.2). For the data presented in Figure 2.7(a), this approximation results in
an underestimation of the penetration hardness of 2.6%; precise calculation based
on Equation (2.2) results in a penetration hardness of Ph = 19.4± 0.1 MPa. The
sphere-on-flat hardness test performed in Chapter 5 results in a relatively large
hardness (Ph ∼ 100 MPa) and, therefore, has a small indentation depth δ compared
with the hardness-tests on a lead surface. The approximation δ� R does therefore
not result in a severe error.

Another sphere-on-flat hardness test which is often used is the Brinell hardness
method. In contrast to the penetration hardness test with a spherical indenter, where
the related area is the projected contact area, the Brinell hardness is calculated based
on the curved contact area:

Ac = 2πRδ

= 2πR
(

R−
√

R2 − r2
)

.
(2.8)

Therefore, the Brinell pressure considers the radial stress in the test sample exerted
by the spherical indenter. For the data presented in Figure 2.7(a), the Brinell hard-
ness results in 18.82± 0.06 MPa, which is 2.9% less than the penetration hardness.
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Somewhat surprising, the approximation made in Equation (2.2) makes that the
contact areas as computed in the Brinell and penetration hardness calculations are
now equivalent. In conclusion, the sphere-on-flat indentation experiments enable us
to calculate the hardness where, for the regime δ� R, the Brinell and penetration
hardness method are equivalent.

2.3 Surface characterisation
One of the major parameters that determines friction is the microscopic surface
topography of the sliding surfaces. Prior to a sliding test, we quantify the topography
of our surfaces with a 3D laser-scanning profilometer (Keyence, VK-X1000). This
contactless profilometer scans with an ultraviolet laser (wavelength of 404 nm) and
measures the intensity of the reflection for every voxel (volumetric pixel). This

(a) Optical image (b) Topography (c) Topography after curvature-subtraction

(d) 3D topography (e) Line profile (f) Line profie after curvature-subtraction
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Figure 2.8: Quantification of the microscopic surface topography of a 2 mm radius
stainless steel sphere based on 3D laser-scanning profilometry. (a) The optical image
of the sphere for an area of 208 by 208 µm. (b-c) The height variation before and after
subtraction of the macroscopic curvature of the sphere. (d) 3D presentation of the
topography including the macroscopic curvature of the sphere. (e-f) The height Z as a
function of the lateral direction before and after subtraction of the curvature. The red
dashed line in (f) represents the root-mean-square height variation Sq.
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intensity as a function of the axial direction has a peak where the surface is located.
Therefore, by accurate peak detection of the reflected light, the height Z can be
quantified as a function of the lateral directions X and Y.

The surfaces are scanned over an area of 208 µm by 208 µm with a lateral resolu-
tion of 138 nm/pixel and 20 nm resolution in the height direction. In Figure 2.8 a
typical measured surface topography is plotted where a stainless steel sphere (radius
of 2 mm) has been used. In addition to the height variation [Fig. 2.8(b)], a bright
field image can be made, as shown in Figure 2.8(a). To quantify the microscopic
surface height profile, the macroscopic curvature (if present) is subtracted from the
measured height; see Figure 2.8(c). In Figure 2.8(e) and (f) the line profiles that,
respectively, include or exclude the surface curvature are plotted. The microscopic
surface roughness can be quantified with the root-mean-square (rms) surface height
variation Sq. For the steel sphere, the calculated surface roughness after curvature
subtraction is Sq = 112 nm which is represented in Figure 2.8(f) with the red dashed
lines.

2.4 Contact mechanics calculations

The resistance against sliding of two surfaces over each other can be understood
as the resistance to shear the loaded microscopic contact points over each other.
This can be quantified based on the stresses on the asperity contact area: the shear
stress σs (tangential stress) and the local contact pressure Pc (normal stress). To
understand the loading of the two surfaces in contact, we perform contact mechanics
calculations. These calculations are performed in Chapter 5 for a sphere-on-flat
(skate on ice) geometry to quantify the real contact area and local contact pressure
based on the mechanical properties and measured surface topography. We use a
tribology simulator (named TRIS, publicly available at Tribonet [62]) to solve the
elastoplastic contact equations through a numerical boundary element model. Based
on the mechanical properties and the surface topographies of the solid surfaces,
the interfacial gap at each of the in-plane coordinates defined by the topography is
calculated for a given normal force. Those locations at which the interfacial gap is
zero form the area of real contact where, in addition, the local contact pressure is
quantified. This calculation is performed by numerically solving the (elastic-fully
plastic) half space model [63–66], which is explained (and experimentally validated)
in more detail in References [62, 66, 67].

In Figure 2.9 a typical result of the numerical model is presented. For a sphere-
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Figure 2.9: The surface topography and contact area when a smooth (Sq = 0 nm),
intermediate rough (Sq = 112 nm) and very rough (Sq = 446 nm) sphere (2 mm radius)
are pressed on a smooth flat surface. The contact area (middle row) for the given surface
topography (top row) is quantified with the Tribology Simulator [62]. In addition, the
lowest row shows the surface topography height Z before contact (black line) and the
gap size in-contact (red line) as a function of the width. The calculations are performed
with an effective elasticity of E* = 0.84 GPa and a hardness of the sphere and the smooth
flat surface of, respectively, 100 MPa and 420 MPa.

on-flat contact system, the interfacial gap δ is calculated for a 2 mm radius sphere
with various surface topographies: A perfectly smooth (Sq = 0 nm), intermediate
rough (Sq = 112 nm) and very rough (Sq = 446 nm) microscopic surface topography.
The intermediate rough surface topography is the measured topography for the
steel sphere as presented in Figure 2.8. The perfectly smooth and very rough surface
topographies are based on artificially reducing/enhancing the measured stainless
steel height variation Z(x, y) with, respectively, a factor of 0 and 4.

When the spheres are pressed against a smooth flat surface, the real contact area
can be quantified as shown in the middle row of Figure 2.9 for a load of 200 mN.
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A circular contact area, with contact radius r = 71 µm, is found for the perfectly
smooth sphere. In contrast, a very rough sphere results in contact spots based on
the asperities of the rough surface topography. The real contact area can then be
quantified for increasing load N (see Fig. 2.10) which largely depends on the surface
topography.

The calculations for the sphere-on-flat contact mechanics illustrate the influence of
the microscopic surface topography and the loading force (often the gravitational
force). Several theoretical frameworks are developed, which combine elasticity,
plasticity, and adhesion, to capture the contact mechanics. Two models, fully elastic
Hertzian contact and fully plastic contact, capture the, respectively, maximum and
minimum of the real contact area which can be reached. We will briefly discuss
the aforementioned models and compare them to the calculated contact area of the
Tribology Simulator for increasing normal load; see Figure 2.10 where the Hertzian
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Figure 2.10: Real contact area RCA as a function of the load N for a sphere (radius
of 2 mm) pressed on a flat surface. The yellow, orange, and red circles represent the
numerically calculated contact area for spheres with a surface roughness of, respectively,
0 nm, 112 nm and 446 nm. The continuous and dashed lines represent, respectively,
the elastic Hertzian contact area [Eq. (2.10)] and the contact area controlled by pure
plasticity [Eq. (2.11) with a hardness of 100 MPa].
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model and plastic contact model are represented as, respectively, the red and yellow
lines.

Hertzian contact

As mentioned in Chapter 1, Hertz developed a theory in the late 19th century to
describe the contact formation between smooth and non-adhering elastic bodies
[21, 22]. Based upon the classical theory of elasticity and continuum mechanics he
describes the elastic, thus reversible, deformation of the solids based on their elastic
properties, which enables us to calculate the contact area RCA and contact pressure
Pc. The Hertzian model for a sphere on a flat surface gives the contact radius r
as [21, 22]:

r3 =
3RN
4E* , (2.9)

where R is the radius of the sphere and N the imposed loading force. The effective

elasticity of the system is given as 1
E* =

1−ν2
1

E1
+

1−ν2
2

E2
which is based on the Young’s

moduli E1 and E2 and the Poisson’s ratios ν1 and ν2 of the two materials. The real
contact area for a sphere pressed on a flat surface is

RCA = πr2 = π

(
3RN
4E*

)2/3
. (2.10)

In Figure 2.10 the real contact area for the same conditions of the performed com-
putational calculations (E* = 0.84 GPa) is given in a continuous yellow line for
increasing force N. As the model matches the calculated RCA for a perfectly smooth
spherical slider, it illustrates that the computational technique results in a purely
elastic contact. Therefore, the contact area is relatively large and increases sublinearly
(RCA ∝ N2/3) with the normal force.

Plastic contact

When two surfaces are pressed onto one another, the highest asperities of the two
surface topographies will make contact and, consequently, experience a large contact
pressure. As Bowden and Tabor already emphasised (see also Chapter 1), the
asperities will irreversibly deform when the contact pressure exceeds the hardness
of the material [19, 22]. Plastic deformation of the asperities will continue up to the
contact pressure is lowered down to the hardness. This flattens out of the asperities
due to plastic deformation result in a contact area described as
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RCA =
N
Ph

, (2.11)

with Ph the lowest hardness of the materials in contact. In Figure 2.10 in the red
dashed line, the contact area is plotted for a penetration hardness of Ph = 100 MPa,
as used in the numerical calculated contact area. It illustrates that the computational
calculation for a very rough sphere (Sq = 446 nm) pressed on a flat surface results in
a contact area which is mainly the result of plastic indentation. Consequently, the
contact area increases linearly with the normal force.
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CHAPTER 3

Ploughing friction on wet sand

In this chapter, the friction for sliding a hemisphere over partially water-saturated
granular materials is investigated as a function of the water volume fraction. We find
that ploughing friction is the main sliding mechanism: The slider leaves a deep trace
in the sand after its passage. In line with previous research and everyday experience,
we find that the friction force varies nonmonotonically with the water volume frac-
tion. The addition of a small amount of water makes the friction force sharply drop,
whereas too much added water causes the friction force to increase again. We present
a ploughing model that quantitatively reproduces the nonmonotonic variation of the
friction force as a function of water volume fraction without adjustable parameters.
In this model, the yield stress of the water-sand mixture controls the depth to which
a hemispherical slider sinks into the sand and, consequently, also the force that is
required to plough through the water-sand mixture.
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3.1 Introduction

The mechanics of sliding over or digging in soil is crucial to many natural phenom-
ena such as plant root growth [68–70], terradynamics [71, 71] and antlion hunting
strategies [72, 73]. Industrially, very similar phenomena control processes in agricul-
ture [74], the production of pharmaceuticals [75] or soil transport through pipes [76]:
The importance of the manipulation of granular materials is difficult to overestimate
since more than 10% of the world energy consumption is spent on it [77]. In all of
the above phenomena and processes, the mechanics of granular materials is greatly
impacted by the presence of small amounts of water.

When water is introduced to a granular system, liquid bridges form between
neighbouring grains and bind them together, resulting in a cohesive material [50,
78–82]. The stiffness of a granular material, quantified, for instance, by the elastic
shear modulus G′, varies nonmonotonically with the addition of liquid [51]. The
stiffness is optimal when small liquid bridges form between the grains, which results
in attractive forces binding the granular material together. At higher water contents,
the capillary bridges start to coalesce, thereby decreasing the shear modulus. This
intricate interplay between mechanical strength and water content can be illustrated
by building sandcastles with sand that has been wetted with a varying amount of
water: The highest sandcastle is constructed by mixing the sand with some (but not
too much) water [83].

Remarkably, sliding friction on water-sand mixtures follows very similar (non-
monotonic) behaviour in which the addition of a few percent of water can greatly
reduce the friction while too much water makes the sand muddy and difficult to
slide over [6]. In this chapter we present sphere-on-sand sliding experiments and
show that the relation between the friction force and stiffness is fully described by a
ploughing model that takes advantage of the simple sphere-on-flat geometry.

3.2 Experiments

In the sliding experiments, we use the custom-made tribometer (see Section 2.1.1 for
more details) to horizontally slide a stainless steel hemisphere of radius R = 52.5 mm
over a water-sand mixture [Fig. 3.1(a)]. The normal force N is controlled by filling
the hemisphere with dead weights. At a sliding speed of 4 mm/s over a total sliding
distance of 130 mm the friction force F is monitored. Variation of the sliding speed
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in the range from 0.1 mm/s to 13 mm/s does not lead to an appreciable change
in friction force in this regime. All experiments are performed using polydisperse
(100− 1000 µm grains) ISO 679 standard sand, which is first dried in an oven and
cooled down to room temperature. Subsequently, the sand is thoroughly mixed with
demineralised water and compacted by repeated tapping.

In addition to the forces, the final radius r of the track drawn in the water-sand
mixture perpendicular to the movement is measured. This enables us to calculate
the ploughing cross section AP and the projected contact area Ac [Fig. 3.1(b-c)]. The
penetration hardness, the contact pressure at yielding, can then be obtained from the
contact area Ac: Ph = N/Ac. Note that, in contrast to the indentation experiments
discussed in Section 2.2, the dynamic contact area while sliding is only based on the
front part of the sphere: Ac =

1
2 πr2. Using varying dead weights, the normal force

was varied from 2.5 N up to 16 N for each water-sand mixture and subsequently the

(b) Front view (c) Top view

R
N

r
F

(a) Side view

FN

Ploughing

P

r

δ

Figure 3.1: Schematic representation of the ploughing experiment. a) Side view:
Normal (N) and frictional (F) forces which act on the sliding hemisphere. b) Front
view: The hemisphere with radius R, where the ploughing cross section AP (red) can
be calculated using the track radius r. c) Top view: The hemisphere with the projected
area of contact Ac (blue).
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track radius is measured, and the average penetration hardness is calculated.
Furthermore, the ploughing cross section AP can be calculated with the track

radius r. The cross section can be written as AP ≈ 4
3 rδ with the depth of penetration

δ ≈ r2

2R if δ << R. Consequently, the ploughing area is AP = 2r3

3R . Note that the
assumption δ << R results in a relative error in AP and µ [with Eq. (3.2)] of less
than 4.5% for r ≤ 20 mm ( r

R ≤ 0.38). However, for r = 40 mm, the relative error
increases to 21%, which results in an underestimation of the friction coefficient for
φw = 0% in Figure 3.2.
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3.3 Results

3.3.1 Ploughing through wet sand

In agreement with earlier measurements [6], we find that the friction coefficient first
decreases as more water is added to the sand, and then increases again (see Fig. 3.2).
What mechanism drives this nonmonotonic variation of the friction force with water
content? In each of the sliding experiments, the hemisphere creates a clear ploughing
track, the width of which can be measured after the sliding stops. Interestingly, we
find that the width of the ploughing track also varies nonmonotonically with the
water volume fraction, just like the friction coefficient (Fig. 3.3): Sliding is more
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Figure 3.2: Evolution of the friction coefficient µ for the water volume fraction φw.
The friction coefficient obtained from the measured friction force and fixed normal
force (N = 7.9 N) in black circles display a nonmonotonic behaviour for increasing
water fractions. With use of the ploughing model, the friction coefficient can be either
modelled based on the ploughing track radius r [Eq. (3.2) in red triangles] or based
on the penetration hardness Ph of the water-sand mixture [Eq. (3.3), dashed line]. The
inset shows the friction force as function of the normal force for various water volume
fraction experimentally (squares) and predicted by the ploughing model based on the
penetration hardness Ph (dashed line).
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difficult when the hemisphere sinks deeper into the sand.
The presence of a ploughing track indicates that during sliding, the water-sand mix-
ture is plastically deformed in both the normal and tangential directions. To quantify
the stresses involved in this plastic deformation we simply divide the external forces
by the area on which they act. In the normal direction, the gravitational force that
acts on the hemisphere is supported by the projected area of contact Ac = 1

2 πr2

[see Fig. 3.1(c)] leading to an average contact pressure of Ph = N/Ac which defines
the penetration hardness of the water-sand mixture, Ph (Fig. 3.4). We find that the
addition of some (but not too much) water has a dramatic effect on the penetration
hardness of the compacted water-sand mixture: While dry sand can only support a
stress of 3 kPa, ideally wetted sand supports up to 80 kPa of normal stress before
showing a marked plastic deformation. When too much water is added to the sand,
the mixture becomes muddy and the penetration hardness drops again to a value of
20 kPa at 25% water volume fraction.

The nonmonotonic behaviour of the penetration hardness is qualitatively similar
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Figure 3.3: Ploughing radius r as a function of water volume fraction φw for a fixed
normal force of N = 7.9 N. Like the friction coefficient, the ploughing track width
(black circles) evolves nonmonotonically with the water content, also shown based on
the ploughing model (dashed line, r =

√
N

1
2 πPh(φw)

). The inset shows images of the

experiments for φw = 0, 8 and 25% with red lines highlighting the ploughing tracks.



3

3.3 Results 35

0 5 10 15 20 25
0

20

40

60

80

100

Pe
ne

tr
at

io
n 

ha
rd

ne
ss

 
P

h (k
Pa

)

Water fraction w (%)

Figure 3.4: Penetration hardness Ph as a function of water volume fraction φw. The
error bars represent the standard deviation. The solid line describes the data based on a
first-order increase due to liquid bridge formation and an exponential decrease based
on the coalescence of these liquid bridges.

to that of the elastic shear modulus. The physics behind the behaviour of the latter
is fully (and quantitatively) understood: The initial increase when small amounts of
water are added is due to the formation of more and more liquid bridges between
neighbouring grains. The subsequent decrease at higher water content results from
the filling up of the bridges: The smaller the liquid bridge, the higher the Laplace
pressure holding two grains together and hence the stiffer the system; ultimately
the coalescence of the liquid bridges at even higher water content leads to an even
smaller modulus, as the Laplace pressure becomes very small [51]. The behaviour of
the modulus can be roughly approximated by first a linear increase with increasing
water content; for a fixed bridge volume the number of bridges scales linearly with
the amount of fluid added [51]. For the decrease of the stiffness, the coalescence of
the liquid bridges is the dominant effect; we can assume that this is a random (Pois-
son) process, so that an exponential decrease of the hardness should be observed for
increasing water content. If we apply the same ideas to the penetration hardness,
we get a very satisfactory description of the data, given by the solid line Figure 3.4.
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3.3.2 The ploughing model
The penetration hardness then controls the depth to which the hemisphere pen-
etrates the water-sand mixture. Therefore, if the load is varied, the contact area
increases until the pressure again reaches the penetration hardness. Consequently,
the ploughing track increases with increasing normal force, as is shown in Figure 3.5
for several water fractions. The dashed line represents the ploughing track radius

based on the calculated average penetration hardness with r(φw, N) =
√

N
1
2 πPh(φw)

.

The ploughing motion of the hemisphere involves an analogous deformation in the
tangential direction.

We now use a well-known method introduced for metal-on-metal ploughing
[45,46] to calculate the ploughing force. Ploughing starts if the tangential pressure on
the water-sand mixture exceeds its penetration hardness Ph; therefore, the ploughing
force can be written in terms of the penetration hardness and the cross-sectional area
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Figure 3.5: Ploughing radius r as a function of normal force N for various water volume
fractions. The squares represent the experimental data and the dashed lines reflects
the model (r =

√
N

1
2 πPh(φw)

) based on the penetration hardness. The radius increases

with the normal force and has a minimum for φw = 8%. Note that the nonmonotonic
behaviour of the track radius for increasing water content holds over the full domain of
normal forces.
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as FP = Ph AP with AP = 2r3

3R [see Fig. 3.1(b)]. Subsequently, the friction coefficient is
the ratio of the ploughing force to the normal force

µ =
Ph AP

N
+ µ0 . (3.1)

To account for the fact that even in the absence of ploughing a frictional force will
resist the sliding, we introduce µ0 as the surface friction contribution. Using the
definition of the penetration hardness and Equation (3.1), the friction coefficient µ

can now be expressed in terms of the ploughing track size as

µ =
4 r(φw, N)

3πR
+ µ0 . (3.2)

Equation (3.2) indeed suggests that the deeper the hemisphere ploughs into the
sand the larger the friction, as observed in Figures 3.2 and 3.3. Furthermore, from
Equation (3.2) we can now calculate the friction coefficient using the imposed normal
force N, the measured track width r and the surface friction contribution µ0. Indeed,
the calculated friction coefficient is in good agreement with the measured friction
coefficient (black circles and red triangles in Figure 3.2).

Alternatively, the friction coefficient can be expressed in terms of the penetration
hardness Ph, the imposed normal force N and the surface friction coefficient µ0:

µ =
4
√

2
3π3/2R

√
N

Ph(φw)
+ µ0 . (3.3)

In Figure 3.2 we plot this function (dashed line) using the relation between penetra-
tion hardness and water content obtained for normal forces ranging from 2.5 N to
16 N in Figure 3.4. Again, we find good agreement between the ploughing model
and the experiment. Finally, Equation (3.3) explicitly predicts a super-linear increase
of the friction force F as a function of the normal force: F ∼ N3/2 + µ0N. We indeed
observe such behaviour for different water-sand mixtures (inset Fig. 3.2); also note
that the nonmonotonic behaviour of the friction force for increasing water content is
sustained over the full range of imposed normal forces probed here.
The only adjustable parameter in the ploughing model is the surface friction con-
tribution, µ0 = 0.21, corresponding to the sliding friction between the hemisphere
and the sand grains. When there is no permanent deformation of the water-sand
packing, we expect the total friction to be equal to µ0: µ = µ0, corresponding to
R = 0 in Equation (3.2). To obtain exactly this type of sliding motion, we now fix
a collection of sand grains to a plate using glue. The hemisphere is then pulled
over these immobilised sand grains using normal forces ranging from 2.5 N up to
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16 N. The measured friction coefficient, µ0 = 0.19± 0.09, is in good agreement with
the value that was used to match the ploughing model to the experimental data in
Figure 3.2: µ0 = 0.21.

3.4 Discussion

We have shown the influence of the hardness on the friction force when a hemisphere
with an imposed normal force ploughs through a water-sand mixture. When the
hardness of the granular material is high, the slider has a small indentation depth
and a shallow ploughing track which, consequently, results in a low friction coeffi-
cient: high hardness is low friction. However, the ploughing model is not limited
to load-controlled sphere-on-flat sliding experiments. In Figure 3.6 the influence
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Figure 3.6: Ploughing force FP as a function of water volume fraction φw. The black
dashed line gives the load-controlled ploughing model [Eq. (3.3)] for sliding a hemi-
sphere (R = 52.5 mm) at a load of N = 7.9 N over a water-sand mixture with a given
hardness Ph (see Fig. 3.4). In the red continuous and dashed lines, the indentation-
controlled ploughing model for a set indentation depth of, respectively, δ = 1 mm and
δ = 2 mm. The indentation depth and the radius of the hemisphere (R = 52.5 mm)
sets the ploughing area AP which are 13.7 mm2 and 38.6 mm2 for, respectively, the red
continuous and dashed lines.
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of load- or indentation-controlled sliding is illustrated where the ploughing force
FP is plotted for increasing water volume fractions. The load-controlled ploughing
force is shown in the dashed line for the experimentally set conditions (N = 7.9 N,
R = 52.5 mm) where the red lines represent the indentation-imposed ploughing
force for, respectively, δ = 1 mm and δ = 2 mm. For a set indentation the plough-
ing area AP is constant and, subsequently, the ploughing force can be written as
FP(φw) = Ph(φw)AP. Therefore, indentation-controlled sliding experiments, where
the ploughing area is fixed, result in a ploughing force that is proportional to the
hardness.

Here we quantify the penetration hardness based on the ploughing track and
normal force when sliding tangentially. The penetration hardness of wetted granular
materials can also be measured by performing indentation experiments as introduced
in Chapter 2 and performed in Chapter 4 which results in qualitatively similar
nonmonotonic behaviour of the penetration hardness as a function of the water
content.

The influence of the large variation of the hardness with the water fraction is not
restricted to pulling a sphere over wetted sand. For example, the impact cratering
of a sphere in a granular material depends strongly on the water fraction. Marston
et al. [84] present experimental results for the penetration of a solid sphere when
released on a granular material. The minimum penetration depth of the object
(corresponding to a zero-impact speed) and yield stress of the granular material
reveal qualitatively similar nonmonotonic behaviour as a function of increasing
water fractions compared to that found here for the width of the ploughing track
and the penetration hardness. Furthermore, the hardness-controlled ploughing
quantified here is not specific for granular materials as ploughing is a typical form
of wear that is generally encountered when one of the two materials is much harder
than the other. In metal-metal systems, the increase of friction with penetration depth
is well known [45, 46]. Friction on ice for instance, depending on the conditions, can
be dominated by ploughing. In Chapter 5 we measure the penetration hardness of
ice and the sphere-on-ice sliding friction as a function of temperature and speed.
Close to the melting point ploughing behaviour is observed; the slider penetrates
the ice and leaves ploughing tracks on the ice surface. Our simple ploughing model
also captures the evolution of sphere-on-ice friction.
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3.5 Conclusion
We have presented sliding experiments of a hemisphere on wetted sand in which
we imposed the normal force and measured the pulling force and the width of the
ploughing track. For a given normal force, both the pulling force and the width of the
ploughing track show a minimum for a water volume fraction of around 10%, where
the measured penetration hardness of the water-sand mixture is maximal. This
behaviour is fully consistent with the ploughing model in which the sphere-on-flat
geometry is exploited to express the friction coefficient as a function of the normal
force and penetration hardness (or ploughing track radius).
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CHAPTER 4

Sliding friction on wet sand

In this chapter, we present sliding experiments of a sledge on partially water-
saturated sand and show that the frictional response is controlled by the penetration
hardness of the granular medium. Adding a small amount of water to sand increases
the hardness which results in a decrease of the sliding friction. Pouring even more
water onto sand results in a decrease of the hardness and a subsequent increase of
the friction. This inverse correlation between hardness of a wetted granular ma-
terial and its frictional response to sliding is found to be due to ploughing of the
sledge. Similar to the sphere-on-flat geometry as presented in the previous chapter,
a sledge-on-flat geometry exhibits ploughing when the penetration hardness of the
water-sand mixture is exceeded which is evident by a trace of the slider left after its
passage. The penetration hardness sets how deep the trace of the slider is which,
in turn, controls the ploughing force. Consequently, increasing the hardness of the
water-sand mixtures makes pulling a sledge over it easier. In addition, we quantify
the critical shear strain which sets the transition of an elastic to plastic response of
(wet) granular materials which enables us to directly relate the shear modulus, in
the elastic regime, to the hardness, in the plastic regime.
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4.1 Introduction
In the previous chapter we have shown that water has a large influence on the
mechanical response of sand. With a small amount of water, a pile of sand can
be made into a sandcastle where, however, too much water results in a muddy
puddle [83]. Similarly, walking on dry or very muddy sand takes effort while, on
the other hand, walking on sand that has been wetted with an intermediate water
volume fraction is easier.

For a sphere-on-flat geometry the penetration hardness, the critical yielding
pressure for plastic flow, as a function of the water volume fraction was quantified
in Chapter 3. Initially, adding water increases the hardness of the granular material
due to formation of liquid bridges between neighbouring grains, this is the so-called
‘pendular regime’ [85, 86]. The water-sand mixture can resist a larger load before
the penetration hardness is reached whereafter the material will irreversibly deform.
Deformation of the granular material results in reorientation of the grains including
breaking and rebuilding of capillary bridges. Pouring even more water onto the sand
decreases the strength of the capillary bridges [51]; the ‘funicular regime’ is reached.
Furthermore, a high water volume fraction eventually results in coalescence of the
liquid bridges, the ‘capillary regime’, which decreases the plastic response of the

Figure 4.1: A wall painting from 1880 B.C. on the tomb of Djehutihotep [4]. A sledge
with a big statue is pulled through the desert, where a person is painted who pours
water onto the sand.
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granular material even more.
The observed ploughing of a hemisphere through the water-sand mixture (Fig. 3.3)

is controlled by the penetration hardness. For a low hardness, the hemisphere sinks
into the wetted sand and leaves a deep trace into it for which a high ploughing force
is observed. Increasing the hardness by adding some - but not too much - water to
the sand decreases the ploughing friction as the slider remains superficial.

For a sledge sliding on sand a qualitatively similar nonmonotonic behaviour of
the friction as a function of water fraction has been observed before [6]. Arguably, the
ancient Egyptians, who transported statues and pyramid blocks per sledge through
the desert, were aware of this as their tomb drawings show a person pouring water
onto the ground in front of their sledge [4]. It therefore appears that the nontrivial
relation between sliding friction on a granular material and water content of a
granular material has been exploited for thousands of years. It was previously shown
that the friction decreases roughly linearly with the increase in shear modulus, which
suggests that when the sand is ‘stiffer’, the friction force decreases [6]. The shear
modulus G′ of a water-sand mixture quantifies the plastic response on deformation
which, similar to the penetration hardness, behaves nonmonotonically as a function
of the water fraction. Adding some water increases the shear modulus of the wetted
sand which, with continuously increasing the water fraction, decreases again [51,87].

However, if the slider leaves a trace in the sand after its passage, the granular
medium is responding plastically rather than elastically and the (linear) elastic
modulus is not the pertinent quantity to consider. Sand grains irreversibly move
when a critical pressure, the penetration hardness Ph, is reached. Therefore, the
sliding friction is controlled by the hardness of the material instead of the linear shear
modulus. In this chapter, we present sliding experiments coupled with hardness
measurements for increasing water volume fractions and show that the sliding
friction is a result of the plastic response of the granular material. Furthermore, the
transition from the elastic to the plastic regime is unravelled which enables us to
explain the link between hardness and stiffness.
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4.2 Experiments

The sliding experiment is performed by pulling a wooden sledge (10.3 cm by 6.8 cm
with a total mass 273 g) horizontally (as described in Section 2.1.1, although per-
formed with a different stepper motor) at a sliding speed of 2 cm/s over a well-mixed
water-sand mixture of known composition. The ‘Iranian sand’, which contains
mainly grains in the 212− 500 µm range, is first dried in an oven (150 °C) and cooled
down to room temperature. Demineralised water is gradually added up to a given
water volume fraction and the thoroughly mixed water-sand mixture is instantly
used. The sledge is pulled over a distance of 10 cm; after 2 cm a stable friction force is
reached, see Figure 4.2(a). The friction force is monitored and the friction coefficient
is calculated.

After sliding, the penetration hardness Ph of the water-sand mixture is measured
on the same sample with an indentation-experiment. The indenter, a cone with apex
angle α = 75° and base-radius R = 5.05 mm, is pushed vertically at an imposed
speed of 0.1 mm/s in the water-sand mixture and indentation depth δ for increasing
loading force N is monitored [see Fig. 4.2(b)]. The penetration hardness is quantified
as described in Section 2.2.
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Figure 4.2: Typical results for sliding on and indentation of the water-sand mixtures. (a)
The monitored pulling force F as a function of the sliding distance d for water volume
fractions φw of 10%, 1%, and 4% in sand. (b) The measured indentation depth δ as a
function of the loading force N measured directly after the sliding experiment. In this
hardness test a conical indenter with apex angle α = 75° and base-radius R = 5.05 mm
is used.
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4.3 Results and discussion

4.3.1 A sledge on wet sand

The friction coefficient of a sledge sliding over a water-sand mixture is measured
for increasing water volume fractions φw, see Figure 4.3 (blue squares). Adding
some water initially decreases the friction coefficient where, when more water is
added, the friction increases again. This nonmonotonic behaviour is qualitatively in
agreement with earlier measurements where the optimum volume fraction, here 4%,
is set by the grain size distribution of the used granular material [6, 88]. After each
sliding experiment, the slider leaves a trace in the water-sand mixture marking the
width and sliding distance of the sledge. This so-called ploughing track indicates
that, indeed, during sliding, the water-sand mixture is plastically deformed.
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Figure 4.3: Evolution of the friction coefficient µ (blue squares) and the penetration
hardness Ph (red circles) for the water volume fraction φw. The friction coefficient
obtained from the measured friction force (for a fixed normal force of 2.7 N) displays a
nonmonotonic behaviour for increasing water volume fractions. A similar nonmonotic
behaviour for increasing water volume fractions is found for the obtained penetration
hardness where the minimum in friction corresponds to the maximum in hardness at
the water volume fraction of φw = 4%. The error bars represent the standard deviation.
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The deformation of the water-sand mixture is a result of the pressure exerted
by the sledge along the normal direction which exceeds the critical pressure of the
granular material. In Chapter 3 the penetration hardness Ph is calculated based on
the observed ploughing track and normal force along sliding. By performing an
indentation-experiment with a conical indenter, a qualitatively similar dependence
of the penetration hardness with the water volume fraction is observed (Fig. 4.3
red circles). Note that both the magnitude and water volume fraction domain is
significantly smaller compared to the observed penetration hardness in Chapter 3.
We interpret both observed decreases based on the smaller average grain sizes of the
used sand here and the less firm packing of the wet sand prior to the tests [51, 88,89].
The nonmonotonic behaviour of the sliding friction and the penetration hardness
for increasing water volume fractions indicates a direct relation between the two;
for increasing hardness of the water-sand mixture, pulling a sledge over it becomes
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Figure 4.4: Parametric plot of the friction coefficient µ as a function of the penetration
hardness Ph, both obtained as a function of the water volume fraction φw as given in
Fig. 4.3. A roughly linear decrease of the friction coefficient for increasing hardness
is found; it becomes easier to slide over a hard water-sand mixture. Note that water
volume fractions higher than 7% are excluded from the analysis, high water fractions
(‘slurry sand’) results in a very heterogeneous water and air distribution in the sand
packing.
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easier. This is quantified in Figure 4.4 where the sledge-on-sand friction coefficient is
shown to decrease approximately linearly with increasing penetration hardness.

4.3.2 The transition from elastic to plastic response of
wet sand

The sliding friction coefficient therefore decreases linearly with increasing shear
modulus G′ [6]; here we show that this linearity is also retrieved for the penetration
hardness Ph of the water sand-mixture. The question then remains how the elastic
and plastic response relate to each other. The water-sand mixture can hold a finite
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Figure 4.5: a) The penetration hardness Ph as a function of the shear modulus G′ for
different water volume fractions in sand. The shear modulus, reused from Fig. 4b in Ref.
[6], and the penetration hardness are both obtained with so-called ‘Iranian sand’ (grain
sizes of 212− 500 µm). A roughly linear dependence is found: Ph = γcG′ + 1528 with
γc = 0.030 the critical shear strain. b) The friction coefficient µ as a function of the shear
modulus G′ for three sand types, reused from Fig. 5 in Ref. [6]. Furthermore, on the
upper x-axis the penetration hardness Ph is given derived from the linear dependency
with the shear modulus. The three sand-types ‘Nemour’, ‘Iranian’ and ‘ISO’, with,
respectively, grain sizes in the ranges of 150− 300 µm, 212− 500 µm and 100− 1000 µm,
were mixed with varying amounts of water.
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deformation in the elastic regime before it fails whereafter a plastic (irreversible)
deformation occurs. This finite deformation, the critical shear strain γc, defines the
transition between elastic and plastic behaviour. To be able to quantify this critical
shear strain, we can use the measured penetration hardness and shear modulus as
a function of the water volume fraction. The latter was published previously for
‘Iranian’ sand for the same range of water volume fractions, see Figure 4 from Fall
et al. [6]. The penetration hardness increases linearly with the shear modulus, see
Figure 4.5(a), as Ph ∼ γcG′ with γc = 3% the critical shear strain. The critical strain
of yielding is a constant for the given system and does not depend notably on the
water volume fraction. For soft solids in general, it has indeed been shown that the
critical shear strain for a given system (emulsion, microgel suspensions, foams, gels)
is reasonably constant [90].

The puzzle from the data of Fall et al. is that the friction coefficient decreases
linearly for increasing shear modulus for different types of sand. Now, using the
relationship between penetration hardness and shear modulus, we can calculate
the penetration hardness for various types of sand as shown in Figure 4.5(b). The
observed linear dependence of the friction coefficient on the hardness is a result of
the geometry, in this case a flat slider over a flat sand surface. For a sphere-on-flat
geometry, as presented in Chapter 3, a quantitative relation is found for the hardness
dependency of the friction coefficient (µ ∼ P−1/2

h ). Due to the simple geometry, the
relevant contact areas in the normal- and tangential direction can be calculated based
on the measured ploughing track which, in the end, controls the friction coefficient
for sliding. A peculiar pressure dependent friction was shown before by Crassous
et al. [73] for sliding along a sandy slope. Objects on an inclined granular surface
close to the avalanche threshold only slide for a narrow range of applied pressures.
Sliding occurs only when the granular surface may be slightly deformed by the
slider weight, but not enough to create a rim able to stop the object.

These results therefore show that the relation between the sliding friction and the
(linear) shear modulus shown in Fall et al. [6] can be understood by considering the
(non-linear) penetration hardness that turns out to be roughly proportional to the
shear modulus [Fig. 4.5(a)]. The penetration hardness then allows for a quantitative
explanation of ploughing friction.
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4.4 Conclusion
In conclusion, we have performed sliding experiments of a sledge on wetted sand
and measured the penetration hardness of this granular material. A roughly inverse
correlation between the penetration hardness and sliding friction coefficient is ob-
tained, which is due to ploughing. During sliding, the sledge irreversibly moves
the grains, as is evident by a trace in the sand after the passage of the sledge. This
trace is less pronounced if the hardness is increased by adding a small amount of
water to the sand which, subsequently, results in less friction. Therefore, increasing
the hardness of the water-sand mixtures makes pulling a sledge over it easier. This
seems already to be experienced by the ancient Egyptians, where by pouring water
in front of a sledge the sliding friction is decreased.

Pulling a sledge over sand results in irreversible movement of the grains and
therefore the water-sand mixture is responding plastically. However, the mixture
can hold a finite deformation elastically where the ‘stiffness’ can be quantified by the
shear modulus G′. We found that the penetration hardness increases linearly with
increasing shear modulus as Ph ∼ γcG′ with γc = 3% the critical shear strain which
sets the transition from elastic to plastic response. Therefore, after the critical shear
strain, the granular material will respond plastically and ploughing will occur. The
transition from elastic to plastic deformation and the amount of ploughing during
sliding is of interest in many applications, where sliding of a sledge over sand is one
of them.
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CHAPTER 5

Sliding friction on ice

We present sphere-on-ice friction experiments as a function of temperature, con-
tact pressure, and speed. At temperatures well below the melting point, friction is
strongly temperature dependent and follows an Arrhenius behaviour, which we
interpret as resulting from the thermally activated diffusive motion of surface ice
molecules. We find that this motion is hindered when the contact pressure is in-
creased; in this case, the friction increases exponentially, and the slipperiness of the
ice disappears. Close to the melting point, the ice surface is plastically deformed due
to the pressure exerted by the slider, a process depending on the slider geometry and
penetration hardness of the ice. The ice penetration hardness is shown to increase
approximately linearly with decreasing temperature and sublinearly with indenta-
tion speed. We show that the latter results in a nonmonotonic dependence of the
ploughing force on sliding speed. Our results thus clarify the complex dependence
of ice friction on temperature, contact pressure, and speed.
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5.1 Introduction

It is commonly believed that ice is slippery due to the presence of a layer of liquidlike
water on the surface of ice which acts as a lubricant. However, the origin of this
layer and the resulting lubrication have been and remains debated for more than
150 years [91–104]. The lubricating layer that allows ice skating has been attributed
to pressure-induced [92] or friction-induced [93] melting of the ice surface and to the
presence of a premelted layer of ice [94]. More recently, authors have suggested that
the diffusion of water molecules over the ice surface is responsible for low ice friction
at high temperatures and low sliding speeds [105]. Furthermore, reciprocated ball-
on-ice friction measurements performed using a tuning fork have recently revealed
that -during reciprocated sliding [106] on ice- a lubricating, viscous mixture of liquid
water and ice particles dominates the frictional behaviour [107]. In the context of
each of these proposed lubrication mechanisms, the local contact pressure exerted at
the slider-on-ice interface is a crucial parameter that remains ill understood.

In this chapter, we therefore take a closer look at this local contact pressure
and show that (i) the hardness of ice displays a strong temperature and strain
rate dependence that, close to melting, leads to rich ploughing behaviour that
is controlled by the temperature, sliding speed, surface topography, and surface
geometry; (ii) friction on ice increases exponentially with the local contact pressure,
suggesting that this pressure frustrates the mobility of the lubricating layer; (iii)
in the water-immersed sphere-on-artificial ice experiment, we observe the onset
of mixed lubrication at sliding speeds above 1 m/s, indicating that most of our
ball-on-ice experiments are likely boundary lubricated.

5.2 Experiments

To investigate the slipperiness of ice, we move a spherical slider over an ice surface.
The custom-made circular sliding setup is adapted, see Section 2.1.2 for more details,
where the slider is clamped and rotated at a distance of 5 mm from the rotation axis.
The imposed rotation speed and the measured torque can thus be converted into
a sliding velocity and a friction force, respectively. We vary the sliding speed from
10−6 up to 10−1 m/s and measure the normal force N and friction force F exerted
at the slider-on-ice interface. The flat ice surface with a controlled temperature is
established by repeatedly adding a small amount of demineralised water on top of
the already-frozen water. As the added water initially melts the top surface of the
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Material Radius Roughness Hardness Elastic modulus Poisson’s ratio

(mm) (nm) (GPa) (GPa) (-)

Silicon
carbide

0.75,
6.00

140 27.0 410 0.14

Soda-
lime
glass

1.84 98, 222,
575, 3077

5.7 65 0.22

Sapphire 1.59 28 21.6 2 0.29

Stainless
steel

≈ 22 856 2.0 200 0.28

Table 5.1: Mechanical and geometrical details of the sliders used in the friction
experiments.

ice, a smooth polycrystalline ice surface is formed.

As sliders, we use silicon-carbide spheres (from Latech), soda-lime glass spheres
(from SiLibeads), a sapphire sphere (from Edmund Optics) and a model ice skate
(stainless steel), see Table 5.1 for details. The microscopic surface topography of
the sliders is measured by laser-scanning profilometry as described in Section 2.3.
We do not observe significant changes in the surface topography of the sliders after
the friction experiments and therefore conclude that the sliders do not wear during
the friction experiments. The surface roughness values listed in Table 5.1 refer to
the root-mean-square (rms) height variation Sq from the profilometry experiments,
after subtracting the curvature of the spheres. As the surface roughness is known to
influence the local contact pressure at interfaces, we vary the surface roughness of
the soda-lime sliders by inserting them one at a time in a container with sandpaper
walls and shaking them for 2 hours to obtain a roughened surface. By varying the
sandpaper grits (P3000, P2500, and P150), the resulting surface topography can be
controlled (Sq = 222 nm, 575 nm, and 3077 nm, respectively). To approximate an
ice-skate-on-ice interface in the experiments, we cut a 5-mm piece out of an actual
ice skate. This model skate has a width of 1.67 mm and a radius of curvature (along
the length) of 22 m. The front and back edges of the model skate are rounded off.

To quantify the penetration hardness Ph of the ice, we perform indentation
experiments in which a stainless-steel sphere with radius R = 1.6 mm is pushed
onto the ice at various temperatures and preset indentation speeds vind, resulting in
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plastic deformation of the ice. The indentation depth δ and indentation force N are
measured up to a maximum load of 80 N, see the Appendix A.1. The penetration
hardness is quantified over the measured indentation range from 25 to 75 N; for
more details see Section 2.2.

Using the mechanical properties of the slider and the ice and the surface topog-
raphy of the slider, we perform contact calculations as described in Section 2.4 to
solve the elastoplastic contact equations through a numerical boundary element
model. Here, we make use of the fact that the ice surface has an elastic modulus and
Poisson’s ratio of 0.75 GPa and 0.33, respectively [108]. The hardness is measured
independently as a function of temperature and velocity. As the surface roughness
of ice is relatively low [Sq = 61 nm, calculated for the measured surface topography
of Figure 5.3(b) bottom] and without a long-range curvature, the surface topography
of the sliders dominates the contact calculations. Including the ice topography raises
the contact pressure only 4%, and, therefore, the surface topography of ice can be
neglected.

5.3 Results

5.3.1 Temperature dependence
Figure 5.1 shows the friction coefficient µ as a function of temperature for the two
types of SiC spheres and the model skate. In agreement with earlier measurements
[108], we find that the temperature dependence of the friction coefficient can be
captured by an Arrhenius-type equation:

µ = c e∆E/kBT , (5.1)

with fitting parameter c = 1.5× 10−4 and activation energy ∆E = 11.5 kJ/mol. As
reported in Reference [108], this activation energy matches the activation energy for
ice-surface diffusion [109,110], suggesting that the diffusion of water molecules over
the ice surface plays an important role in ice friction. For temperatures above−20 °C,
the spherical slider displays a friction coefficient that is higher than the friction
coefficient predicted by the Arrhenius equation and increases with temperature up
to the melting point of ice. This increase in friction with temperature is the result of
ploughing friction; the slider plastically indents the ice in the normal direction and
consequently ploughs through the surface in the lateral direction [111]. The pressure
that the slider exerts on the ice surface controls the magnitude of the ploughing force.
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Figure 5.1: Friction coefficient µ as a function of the temperature T for various sliders
on ice. At a constant sliding speed vs of 0.38 mm/s, a small sphere (radius R = 0.75 mm,
blue circles), a big sphere (R = 6 mm, red circles), and a model ice skate (R ≈ 22 m,
width 1.67 m, and length 5 mm; black squares) are slid over an ice surface at a normal
force of 2.5 N. Far from the melting point, the friction coefficient follows an Arrhenius
temperature dependence with an activation energy of ∆E = 11.5 kJ/mol. Close to the
melting point, the friction coefficient increases rapidly as the sliders start to plough
through the ice. The error bars represent the standard deviation.

To further investigate the influence of contact pressure and quantify the ploughing
force, we vary the contact pressure exerted by the slider by varying its curvature.

5.3.2 Ploughing

In Chapter 3 we have discussed the sliding of a spherical slider ploughing through
partially water-saturated granular materials. The presented ploughing model quan-
titatively reproduces the measured ploughing force based on the geometry and the
hardness Ph of the material. The model is not specific for granular materials as
ploughing is a typical form of wear that is generically encountered when one of the
two contacting materials is much harder than the other. The ploughing force for the
measured sphere-on-ice geometry can be calculated by considering plastic indenta-
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Figure 5.2: (a) Penetration hardness Ph of ice as a function of temperature, obtained
from indentation experiments at a speed of vind = 3.8 µm/s. Indentation is performed
with a sphere pushed into the ice at various temperatures; see inset (left bottom) for a
schematic illustration. The indentation depth δ and force N are monitored to calculate
the Ph. The error bars, defined by the standard deviation in the penetration hardness, are
smaller than the symbols used. A linear decrease of Ph with temperature is found (black
line) up to −1.5 °C when pressure-induced melting sharply decreases the hardness.
Upper inset: Ph versus vind for various temperatures. (b) Friction coefficient µ as a
function of the normal force N for a small (radius R = 0.75 mm, blue open and filled
circles) and large (R = 6.00 mm, red filled circles) SiC spherical slider. The ploughing
model [lines, Eq. (5.2)] matches the observed friction coefficient. Inset: schematic
illustration of ploughing in ice. The spherical slider of radius R indents the ice in the
normal direction with a depth δ and cross section AP.

tion in the normal direction, which occurs when the contact pressure exceeds the
penetration hardness Ph of the ice. This penetration hardness decreases linearly with
increasing temperature [see Fig. 5.2(a)] up to −1.5 °C when pressure melting sharply
decreases the hardness. Similarly as described in Chapter 3, the sphere plastically
indents the ice with a depth δ until the contact area Ac has increased enough to
support the imposed normal force N [see inset Fig. 5.2(b) and Appendix A.1]. This
indentation results in scratching laterally into the ice with a ploughing area AP and
a ploughing force FP which, based on the geometry, results in a ploughing friction
coefficient:
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µP =
APPh(T)

N

=
4
√

2
3π3/2R

√
N

Ph(T)
.

(5.2)

Figure 5.2(b) indeed confirms that both a decrease of the radius (red-filled compared
to blue-filled circles) and a decrease of hardness (blue-filled compared to blue open
circles) result in an increase in ploughing force; the ploughing model captures the
experimentally measured variations in the friction coefficient without adjustable
parameters. This result is also reflected in the different amounts of ploughing for
different spherical sliders observed in Figure 5.1.

These insights into the phenomenon of ploughing translate to the practice of ice
skating. During ice skating, low sliding friction is desired to achieve a high sliding
speed, but, simultaneously high friction is required to enable changing the sliding
direction. Therefore, the blades of ice skates have a large radius of curvature in the
sliding direction, R = 3− 22 m, and sharp edges with a flat or even negative radius
of curvature along the width [112]. A low coefficient of friction can be expected if
the skate is perfectly aligned with the ice surface, but if the skate is tilted, a quick
increase of the friction coefficient is found [96, 113]. A tilt of the skate results in
(deeper) indentation of the ice and therefore an increase of the friction, particularly in
the direction perpendicular to the length of the skate because sliding in this direction
involves a larger ploughing area. This larger ploughing force gives the skater the
opportunity to push forward and make turns. In Figure 5.1, the friction coefficient of
a 5-mm section of a long skate blade is measured as a function of temperature (black
squares). A large decrease of the friction coefficient with increasing temperature
can be found up to −8 °C, whereafter the friction increases again due to ploughing.
The minimum friction for the model ice skate is found for T = −7.7 ± 2.3 °C with
µ = 0.039± 0.003.

Therefore, sliding on ice is largely temperature dependent and can be captured
with an Arrhenius-type equation in the elastic regime. Close to the melting point,
when the slider plastically indents the ice surface, the friction coefficient increases
due to ploughing, where the magnitude of ploughing is set by (a) the hardness of the
ice, (b) the slider geometry (radius of curvature), and (c) the exerted normal force.
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5.3.3 Local contact pressure

Conventional liquid lubrication is essentially a competition between squeeze flow
and sliding (or rolling) induced entrainment of the lubricant. The squeeze flow is
driven by an externally applied normal force, which sets the local pressure expe-
rienced by the lubricant. To investigate the influence of this local contact pressure
on the slider-on-ice friction, we vary the microscopic surface topography of the
spherical slider; the sharper the roughness peaks on the slider, the higher the local
contact pressure [114]. In Figure 5.3(a), we report the friction force as a function of
normal force, measured for glass spheres with surface roughnesses Sq from 98 nm
to 3077 nm. We find that the smoothest sphere displays a friction coefficient that
is equal to that reported in Figure 5.1 at the corresponding temperature, here set
to −50 °C, and described by the Arrhenius equation, Equation (5.1). The spheres
with higher surface roughness, and therefore a higher contact pressure, display a
significantly higher friction coefficient. For T = −30,−70 and−90 °C, a qualitatively
similar result is found.

To quantify the contact pressure Pc, we perform contact calculations in which the
mechanical properties of the slider and the ice, and the measured surface topography
of the slider form the input. The interfacial gap, at each of the in-plane coordinates
defined by the topography, forms the output of the calculation for a given normal
force. Those locations at which the interfacial gap is zero form the area of real contact
where, in addition, the local contact pressure is quantified. See Section 2.4 for a full
description of the contact calculations including the comparison to elastic and plastic
contact mechanics models. In Figure 5.3(c), we plot the measured surface topography
and the calculated area of real contact for glass spheres with increasing roughness at
a temperature of −50 °C. We find that the relatively smooth spheres [Sq = 98 nm;
Fig. 5.3(c), left panel] primarily deform the ice elastically at an average contact
pressure of 35 MPa. This result is independent of temperature because the elastic
modulus of the ice (and the slider) does not change significantly with temperature.
The situation is different for balls with a relatively high surface roughness [Sq =

3077 nm or higher; Fig. 5.3(c), right panel]. As the surface roughness is increased
above this level, the calculated average contact pressure increases up to 85 MPa,
which equals the hardness of the ice, indicating that plasticity plays an important
role in the contact formation for these rougher spheres. The hardness of the ice
decreases linearly with temperature and limits the maximal contact pressure; the
contact pressure in this regime of plastic deformation varies from 130 MPa at −90 °C
to 70 MPa at −30 °C (see Appendix A.3). Note that the contact pressure in both the
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Figure 5.3: (a) Friction force as a function of normal force measured for glass spheres
with surface roughness Sq of 98, 222, 575, and 3077 nm at a temperature of −50 °C
and sliding speed of 0.38 mm/s. The smoothest sphere displays a friction equal to that
reported in Fig. 5.1, which can be described by the Arrhenius equation [Eq. (5.1)]. For
increasing surface roughness, a higher friction force is measured. (b) Surface topography
and corresponding ploughing depth δ in the ice after a sphere with the highest (top)
and lowest (bottom) roughness slides over it at a normal force of 0.21 N. The calculated
plastic indentation depth δ for a normal force of 0.21 N is added in light gray in the
insets. (c) Surface topography (top) and calculated area of real contact (bottom) for the
same glass spheres at T = −50 °C at a normal force of 0.5 N. A transition from primarily
elastic contact for a smooth slider towards elastoplastic contact for a rough slider can be
observed.

plastic and the elastic regime is almost independent of the normal force because the
area of real contact increases linearly with normal force; see Appendix A.3.

Spheres that deform the ice plastically will plough through the ice when tan-
gentially loaded. In Figure 5.3(b), top, we plot the ploughing track that was left on
the ice after a sphere with high roughness, Sq = 3077 nm, slid over the ice surface
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with a normal force of N = 0.21 N and a speed of v ≈ 5 mm/s. In contrast, spheres
with low roughness Sq = 98 nm do not leave visible damage after sliding on the
ice [Fig. 5.3(b), bottom], as expected based on the fact that the calculated average
contact pressure for these balls in contact with ice is smaller than the penetration
hardness of the ice. Although the plastification during sliding increases the friction
force, it only provides a small contribution. The maximum friction due to ploughing,
represented by the arrow in Figure 5.3(a), can only explain 30% of the observed
variation in friction with roughness (see Appendix A.4). Therefore, we measure and
calculate the interfacial shear stress σs, which is the friction force divided by the area
of real contact at which the friction force is generated.

Perhaps somewhat surprisingly, in the elastic regime, σs increases exponentially
for increasing contact pressure Pc; see inset of Figure 5.4 for −50 °C. Qualitatively
similar results are found for T = −30,−70, and −90 °C; the lowest roughness has
a shear stress expected based on the Arrhenius behaviour, while increasing the
contact pressure up to the penetration hardness of the ice results in an exponential
increase of the shear stress. These results are summarised in Figure 5.4 (triangles),
where the contact pressure and shear stress are normalised by, respectively, the
penetration hardness of the ice Ph and the Arrhenius temperature dependence of
the friction coefficient e∆E/kBT . The exponential increase of interfacial shear stress
with pressure is also known as piezo-viscosity; the viscosity of a confined lubricant
increases exponentially with the mechanical pressure [115, 116]. The viscosity η is
then described empirically as

η = ηref e
Pc
β . (5.3)

Here, the pressure-viscosity parameter β sets the increase of the viscosity with the
exerted pressure starting from the unconfined viscosity ηref. For sliding friction on
ice, a qualitatively similar process occurs; the shear stress increases when the contact
pressure on the mobile layer is increased. From Figure 5.4, we can model the shear
stress as:

σs = σ0 e
∆E
kBT e

b Pc
Ph(T) , (5.4)

with σ0 = 2.1 kPa and b = 3.4. The shear stress is set by the mobility of the ice
surface, which is decreased, or “frustrated”, for increasing contact pressures up to
the plastic limit. The piezo-viscous effect on the shear stress could be interpreted as a
result of confinement; the surface water molecules become more strongly confined at
the slider-on-ice interface with increasing contact pressure. For nanoconfined water
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Figure 5.4: Normalised shear stress σs/e∆E/kBT as a function of the normalised contact
pressure Pc/Ph for various sliders, surface roughnesses, and temperatures at a sliding
speed of 0.38 mm/s. The solid line is a fit using Eq. (5.4). Triangles from light green to
dark green correspond to glass spheres with a surface roughness Sq of 98, 222, 575, and
3077 nm, where upward, right, down, and left-pointing triangles are measurements
at T = −90, −70, −50, and −30 °C, respectively. The blue, red, and cyan circles
correspond to, respectively, small SiC (R = 0.75 mm), a large SiC (R = 6 mm), and a
sapphire sphere (R = 1.59 mm) at T = −90 °C for closed and −50 °C for open markers.
The error bars represent the standard deviation in the measured friction force. Inset:
shear stress as a function of the contact pressure for various glass sliders with increasing
surface roughness at T = −50 °C and a sliding speed of 0.38 mm/s.

molecules, it has been observed that the (apparent) viscosity increases when the
gap size is decreased to less than a nanometer [117–119]. Additionally, we include
in Figure 5.4 the measurements for the small (0.75-mm radius) and large (6.00-mm
radius) SiC spheres and a low-roughness sapphire sphere (1.59-mm radius). For these
three spheres, the calculated shear stress and contact pressure based on the measured
friction force and surface topography (T = -50 and -90 °C; see Appendix A.3) match
well with the fit made for the glass spheres. A “slippery” state can therefore only be
reached when the exerted contact pressure is sufficiently small, which is the case for
a slider (or skate) with a small surface roughness and a large curvature.

Overall, we observe an increase of the friction force when the local contact
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pressure is increased. Next to, perhaps, a minor contribution due to ploughing, the
increase of friction can be explained by a piezo-viscous effect; for increasing contact
pressure up to the plastic limit, the shear stress increases exponentially.

5.3.4 Sliding speed
For a traditional lubricant -for example, a thick grease in a journal bearing- the
friction coefficient strongly depends on the sliding velocity. As the sliding speed
increases, more lubricant is entrained into the contact resulting in a pressure in
the lubricant that can partially support the external load: This process is known
as mixed lubrication. At yet higher sliding speeds, the friction may increase with
velocity because the lubricant forms a continuous film that separates the solids and
undergoes Newtonian flow: Viscous dissipation within the lubricant is responsible
for the friction in the hydrodynamic lubrication regime [120, 121].

To investigate the slider-on-ice friction in the context of lubrication, we per-
form friction experiments at velocities ranging from 1 µm/s to 10 cm/s and find
a nonmonotonic relation between friction and sliding velocity at a temperature of
−20 °C [Fig. 5.5(a), red triangles]. This velocity dependence of the friction can be
fully explained using a velocity-dependent ploughing model: During sliding, the
slider plastically indents the ice in the normal direction at an indentation speed vind

which is a fraction of the sliding speed vs (approximately 4%, see Appendix A.2).
Consequently, the indentation depth sets the ploughing area AP, the projected cross-
sectional area over which the slider ploughs through the ice. Both during indentation
and (subsequent) ploughing, the velocity-dependent penetration hardness of the ice
controls the normal and tangential pressure at the interface. Remarkably, the pene-
tration hardness is highly speed dependent; for increasing indentation speed, the
penetration hardness increases, as can be seen in the inset of Figure 5.2(a) for various
temperatures. The hardness of ice for temperatures up to −25 °C has been studied
before for various loading times when a sphere is pushed into the ice [122–124]
and for various impact velocities with a short contact time when a steel sphere is
dropped onto the ice [125, 126]. Although both measurement methods and the used
definition of hardness vary, an increase of the hardness with decreasing temperature
and increasing speed was also observed in these experiments. This observation is in
qualitative agreement with our findings for a broad temperature and indentation
speed domain. However, the linear dependence of the hardness on temperature in a
broad domain from −110 °C almost up to melting that we report here, to the best of
our knowledge, has not been observed before.
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Figure 5.5: Friction coefficient µ as a function of the sliding speed vs for a smooth
glass sphere (surface roughness Sq = 98 nm). All measurements were performed with
increasing and decreasing sliding velocity to confirm that hysteresis was absent. (a) At
−20 °C (red triangles), a nonmonotonic dependence of the friction on the sliding speed
is found, which can be understood based on ploughing [Eq. (5.5), red line]. (b) At−50 °C
(green triangles) and −90 °C (blue triangles), velocity strengthening of the friction is
observed, which can be qualitatively described as a result of a stress-augmented thermal
process; the stress exerted by the slider at the interface decreases the effective activation
barrier, resulting in a logarithmic increase of the stress with the rate or velocity. (c) Dry
(open markers) and water-lubricated (solid markers) friction on artificial ice (HDPE)
(using the same glass slider) at room temperature and at a normal force of 1 N. The
error bars represent the standard deviation in the measured friction force. In panel (c),
the error is of the order of the symbol size.
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As the velocity domain during ice skating is broad, from standing still up to
moving at about 30 m/s, the velocity dependence of the hardness of the ice is of
key importance. Thus far, most calculations of friction on ice used either a constant
or linear dependence of the hardness on velocity [99, 101, 127–129]. The ploughing
force is set by both the penetration hardness in the normal direction (at vind) and by
the penetration hardness in the tangential direction (at vs). Consequently, we can
write, for the friction coefficient,

µP =
4
√

2N
3π3/2R

Ph(T, vs)

Ph(T, vind)3/2 . (5.5)

For the data shown in Figure 5.5(a), with a set sliding speed vs, the corresponding
indentation speed vind for the spherical slider with radius R and average normal
force N can be calculated directly (see Appendix A.2). Therefore, without adjustable
parameters, the ploughing contribution can now be calculated for the −20 °C data
and, as shown with the red line in Figure 5.5(a), this calculation is in reasonable
agreement with the measured friction coefficient; the ploughing model captures the
nonmonotonic dependence of friction on sliding speed.

At T = −50 and −90 °C [Fig. 5.5(b)], we find velocity-dependencies that cannot
be described based on ploughing. This result is expected as, at low temperatures,
the penetration hardness of the ice increases and the ice can accommodate the
normal force through elastic deformations. At −90 °C (blue markers in Fig. 5.5),
we observe -in agreement with earlier measurements [108] - velocity strengthening
friction; the friction coefficient increases logarithmically from a friction coefficient
of µ ≈ 0.55 at µm/s speeds up to µ ≈ 0.9 for speeds on the order of cm/s. A
logarithmic increase with speed has been described before for Eyring processes; a
stress (or force) can effectively decrease the Arrhenius energy barrier and therefore
influence the rate of the process; the Arrhenius process for the ice surface is the
diffusive motion of the weakly bonded surface water molecules. In such so-called
stress-augmented systems, the relation between the applied stress, or force, and
the velocity is logarithmic [47, 48], like we observe here. The −50 °C case seems to
be in between the behaviour of the −20 and the −90 °C cases, sharing some of the
features of both. A detailed (quantitative) understanding of these observations is
not available yet.
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5.3.5 Substrate
As the large velocity dependence of ice friction is often attributed to water lubrication,
we finally investigate the role of water lubrication in our friction experiments. We
replace the ice surface with a material that has similar mechanical properties: high-
density polyethylene (HDPE, elastic modulus 1.1 GPa, surface roughness of 207 nm;
from Simona). In Figure 5.5(c), the dry (open circles) and water-lubricated (closed
circles) friction coefficients, measured at a normal force of 1 N, are plotted as a
function of sliding speed. The significant decrease of the water-lubricated friction
coefficient observed at sliding speeds higher than 1 m/s indicates the onset of mixed
lubrication. At larger sliding speeds, which we cannot reach using our current
experimental setup, elastohydrodynamic lubrication is expected to occur. These
measurements suggest that, at least up to sliding speeds of 1 m/s, the slipperiness of
ice is not the result of mixed or hydrodynamic lubrication from a liquid water film.
However, we note that the onset of mixed lubrication can also depend on the surface
chemistry and would occur at lower speeds if the contact pressure was reduced.

Altogether, the speed dependence of sliding on ice depends strongly on the
contact regime, elastic or plastic deformation. When the contact of the slider on ice
is mainly elastic, as observed for low temperatures and smooth spherical sliders, the
observed friction can be linked to the mobility of confined water. However, for a
plastic contact, the friction is set by the amount of ploughing, which largely depends
on the hardness, the slider geometry, and the exerted normal force.

5.4 Discussion
One interesting observation that merits discussion is that during ploughing, tracks
and debris particles can be formed when the temperatures and contact pressures are
high. Under these conditions, the dynamics of ice debris particles are expected to
become important, particularly if the sliding motion is reciprocated on a relatively
small section of the ice. Indeed, we have observed that when our sphere is made
to oscillate over the same surface area (an option that is readily available on the
rheometer) at −5 °C, the frictional response does not reached a steady state after
2 minutes. This was measured with a smooth glass sphere oscillating at a frequency
of 20 Hz, with an amplitude of 100 µm and normal force of 2 N.

Another point is that the chemical nature of the slider can be of importance for
the frictional behaviour. In winter sports, hydrophobic coatings are used to reduce
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the friction [98, 130]. Although sliding on snow, which is a soft porous media of ice
and water, is very different than sliding on an ice surface, an influence of the wetting
properties could be expected. In our study, the sliders (Table 5.1) are all hydrophilic,
and this may explain why there is little variation in the friction that was measured
with the various materials. In this context, it would be interesting to conduct similar
ice friction experiments with hydrophobic materials in the future.

The thermally activated diffusive motion of surface molecules could also be
interpreted as a result of the presence of a premelted (quasi)liquid water layer.
This liquidlike layer, starting from one bilayer up to 45 nm, grows above a critical
temperature, which has been experimentally reported in the range of −70 up to
−2 °C [103, 104, 131–134]. However, in the given temperature domain, we measure a
continuous decrease of the friction, independent of the presence or thickness of a
liquidlike water layer. Therefore, we interpret the measured Arrhenius behaviour of
the friction coefficient as a result of ice-surface diffusion.

In the mid-20th century, frictional melting of the ice was already been suggested
as an explanation for the slipperiness of ice [93]. The heat locally generates a lubri-
cating water film that, with increasing sliding velocity, eventually results in a full
water film that separates the surfaces (aquaplaning). We observe that ice remains
highly slippery at speeds as low as 1 µm/s for−20 °C; therefore, ice remains slippery
down to very low sliding speeds, where the rate at which energy is injected into the
interface becomes negligible compared to that at higher sliding speeds. This result
indicates that the friction coefficient is not very sensitive to frictional heating. We
interpret that, for the given microsurface and macrosurface geometry, the slipper-
iness up to a speed of at least 1 m/s is not the result of mixed or hydrodynamic
lubrication. Additionally, the slipperiness does not vary significantly when a silicon
carbide or a glass slider is used, although the thermal conductivity of these materials
differs by 2 order of magnitude.

5.5 Conclusion

In summary, temperature, pressure, and speed each have an important impact on
ice friction, largely through the hardness of the ice. This hardness increases with
decreasing temperature and increasing strain rate (indentation speed). On the other
hand, the contact pressure exerted at the slider-on-ice interface is set by the slider
topography and geometry. When this contact pressure approaches the ice hard-
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ness, ploughing friction becomes dominant. This ploughing friction depends on
the sliding speed because the rate at which the slider indents the ice in the normal
direction and ploughs through the ice in the tangential direction varies with the
sliding speed and the speed-dependent hardness. Alternatively, at contact pressures
significantly below the ice hardness, no ploughing occurs, and the friction is ad-
hesive in nature. In this elastic regime, ice friction is low and set by the mobility
of the confined water at the slider-on-ice interface. Ice friction in this regime is
inversely proportional to the mobility of water molecules at the free ice surface,
which can be viewed as an activated process with an Arrhenius temperature depen-
dence. Increasing the local contact pressure exerted at the slider-on-ice interface
leads to increased confinement and an exponential increase in interfacial shear stress.

Ice friction is thus low due to the high mobility of the water molecules at the
slider-on-ice interface at temperatures close to the ice melting point. This slipperiness
can be suppressed by increasing the local contact pressure towards the ice hardness.
It is the exceptionally high hardness of ice, close to its melting point, that enables the
slipperiness of ice and distinguishes ice from other solids. In practice, this means
that the optimal ice skate is very smooth and has sharp edges. When the smooth
surface makes contact with the ice, the contact pressure, and therefore the sliding
friction, is low. When the skate is tilted, the sharp edge plastically penetrates the ice,
leading to high ploughing friction that enables grip, which is necessary to accelerate
and turn.



5

68 5. Sliding friction on ice



6

CHAPTER 6

Sliding friction of geometrically
controlled surfaces

It is our everyday experience that two smooth surfaces slide more easily over each
other than two rough ones. Counterintuitively, roughness at the nanoscale can
lead to superlubricity, where the roughness actually decreases friction to extremely
low values. Structural superlubricity is a property of periodic surfaces, and is
attributed to the commensurability of the two surfaces sliding past each other. Here
we investigate surfaces with macroscopic periodic roughness sliding over each
other, allowing to directly vary the (in)commensurability of the roughness. We
show that the roughness allows to tune the friction coefficient by more than an
order of magnitude, which can be explained completely by a simple geometrical
model. A Kirigami metamaterial surface allows us to show that this understanding
of geometrical friction can be used to externally control the friction in a single system
by externally controlling its roughness.
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6.1 Introduction
The resistance to sliding of objects is experienced daily, but remains ill-understood.
The friction force is often specific to the conditions and, therefore, hard to predict.
Various parameters such as geometry, load or surface roughness can alter the sliding
friction significantly. Often, low friction is desired in biological and industrial tribo-
logical systems; it has been estimated that a third of the world energy consumption
is spent on friction and, therefore, a better understanding of it would have a large
impact [1]. In contrast, high friction can be beneficial as well; the rubber of a shoe on
the pavement or a finger on a tennis racket desire high grip and no slip [135, 136]. A
good control of friction is therefore of interest in many applications: high friction
for grip and low friction for easy sliding. We show here that direct control may be
achieved by controlling the (macroscopic) surface topography.

Surface roughness alters the friction force significantly; in general the larger
the roughness, the larger the friction. However, the precise influence of the local
surface height variation on the friction is hard to predict and control [137–140]. Often
a combination of abrasion (wear, plastic deformation) [48, 141, 142], interlocking
[143,144], and squeezing out the lubricant if present [37,145,146] are the main reasons
for the increase of friction. At the nanoscale, the potential of controlling friction
by surface topography has been shown previously [52, 53, 147–149]. Depending
on the commensurability of periodic nanoscale surfaces, the friction force can be
modified to extremely low values. This so-called structural lubricity enables the
friction force to be controlled over a large domain based on the (in)commensurability
of surface roughness [44]. In this chapter, we explore the ability to modify the friction
force with macroscopic periodic surface roughness on custom-made surfaces. We
show that the friction force for a dry and rigid system can be modified based on
well-designed periodic surface roughness.

The use of artificial manufactured surface roughness, or surface patterning, is
well established. The ridges on a bottle of water [150] or the grooves in an anti-slip
floor surface [151] are designed to increase the grip. These millimetre-size ridges
and grooves give the opportunity to squeeze out any (slippery) liquid and, by elastic
deformation of the surfaces, they interlock which results in grip. In contrast, surface
patterning on the sub-millimetre scale can be manufactured on bearing-shafts to
increase the slipperiness: The surface patterning increases the durability of the
lubricated system as it entraps wear debris and can act as a lubricant reservoir [152].
However, controlled friction in dry systems based on designed surface roughness is
often limited by wear and rigidity.
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Based on (digital) fabrication techniques, we design macroscopic roughness on
rigid surfaces and measure the friction to slide one patterned surface over the other.
With direct control on the (in)commensurability and slope of the periodic surface
height variation, we manage to vary the friction force by more than an order of
magnitude. In addition, we show that with Kirigami metamaterial surfaces the
periodic surface roughness can be varied externally which, subsequently, enables
direct control of the sliding friction.

6.2 Experiments

6.2.1 Sawtooth patterned surfaces
We perform sliding experiments with geometrically controlled surfaces to monitor
the influence of macroscopic periodic roughness on the friction force. One of the
designed surface patterns is the so-called sawtooth-pattern: a macroscopic periodic
roughness that is based on a row of identical triangular prisms. The prisms are based
on isosceles triangles with a controlled interior angle θ and depth of 20 mm. For a
fixed height h of 3 mm, we fabricate the sawtooth pattern as macroscopic surface
patterning for over a length of 60 mm. The top surface is pulled over a bottom
surface where, for simplicity, the top surface pattern is present as a single sawtooth.

The macroscopic periodic roughness is fabricated on the surfaces of plastic,
aluminium, and stainless steel objects; see also Table 6.1. The plastic surfaces are
manufactured with digital fabrication techniques. A commercially available resin,
named Clear, is 3D printed with the Form 3 (Formlabs). Based on stereolithogra-

Material Material Fabrication technique Resolution Roughness

name type (µm) (µm)

Plastic Clear Stereolithography 25.0 3.454

Aluminium 6082-T6 Wire electrical discharge 5.0 0.705

Stainless steel AISI 316 Wire electrical discharge 5.0 0.470

Kirigami Mylar Laser cutting (2.0” lens) 1.0 0.073

Table 6.1: Details of the materials used for the custom-made surfaces. The listed
resolutions are for the fabrication of flat surfaces. The listed roughness Sq is the root-
mean-square surface height variation which is quantified as described in Section 2.3.
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Material Patterning Gravitational force FG Friction coefficient µ0

(N) (-)

Aluminium Sawtooth 1.18, 1.67, 2.69 0.23± 0.02

Aluminium on
stainless steel

Sawtooth 1.18, 1.67, 2.69 0.21± 0.02

Stainless steel Sawtooth 1.53, 2.03, 3.00 0.18± 0.03

Plastic Sawtooth 0.61, 1.10, 2.09 0.12± 0.01

Plastic Sinusoidal 1D 0.61, 1.10, 2.09 0.12± 0.01

Plastic Sinusoidal 2D 0.85, 1.34, 2.32 0.12± 0.01

Plastic on
Kirigami

Sawtooth on
Kirigami

0.32, 0.61, 1.10 0.20± 0.01

Table 6.2: Details of the sliding experiments performed for the various materials and
surface patterns. The gravitational force FG is controlled by placing dead weights on the
slider. The listed microscopic friction coefficient µ0 is the measured coefficient without
the patterning, i.e., the plate-on-plate friction coefficient.

phy, the liquid resin is cured into hardened plastic by photopolymerization with a
print-resolution (both axis and lateral) of 25 µm [153]. For the aluminium (6082-T6
aluminium alloy) and stainless steel (AISI 316) surfaces, wire electrical discharge
machining is used; the patterning is fabricated by removing material with electrical
discharges (sparks) from a 0.25 mm brass wire. This technique has a resolution of
5.0 µm for the fabrication of mm-size macroscopic surface roughness. However, the
resolution of this technique is significantly less for the fabrication of high surface
slopes in µm-size surface patterns. The microscopic surface topography — the
microscopic surface roughness — of all materials is measured prior to sliding by
laser-scanning profilometry as described in Section 2.3. The calculated root-mean-
square surface height variation Sq is listed in Table 6.1.

The sliding experiments are performed with the custom-made horizontal sliding
setup as introduced in Chapter 2; we pull the top surface horizontally at an imposed
constant sliding speed of 1 mm/s over the bottom surface. The pulling force FT is
monitored as a function of the sliding distance d while the gravitational force FG is
controlled by placing dead weights on the slider; see Table 6.2.
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Figure 6.1: Designs for the 1D (a) and 2D (b) sinusoidal patterned surfaces. The height
Z of the surface is defined by Equations (6.1) and (6.4).

6.2.2 Sinusoidal patterned surfaces
In order to study the influence of commensurability, we also design a sinusoidal
pattern, 3D printed with the hardened resin Clear, with a length and width of,
respectively, 60 mm and 20 mm (which are the same as for the sawtooth patterned
surfaces). The height profile Z is defined as

Z(x) = b sin(
2π

a
x) , (6.1)

with b the amplitude and a the wavelength; see Figure 6.1(a) for the design. The
angle θ of this sinusoidal patterning can be defined based on the surface slope
tan(θ) = ∂Z

∂x which can be written as

θ = tan−1
(

2π

a
b cos(

2π

a
x)
)

. (6.2)

Consequently, the maximum angle of the surface pattern is:

θmax = tan−1
(

2πb
a

)
. (6.3)

The manufactured top surface has a wavelength of atop = 5.44 mm and amplitude
b = 1.5 mm which results in θmax = 60°. Several bottom surfaces are fabricated
with wavelengths starting from abottom/atop = 0.8 up to abottom/atop = 2.4 with a
constant amplitude b of 1.5 mm.

In addition, surfaces with a macroscopic periodic roughness in 2D are fabricated,
as can be seen in Figure 6.1(b). The height Z can be described as

Z(x, y) = bx sin(
2π

ax
x) by sin(

2π

ay
y) , (6.4)
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with ax = ay = 10.88 mm, and bx = by =
√

3 mm which results in a maximum pat-
terning angle of θmax = 60°. The top and bottom surfaces have the same patterning
with 5 periods in the x and y direction. For both sinusoidal patterns, the pulling
force FT are measured for sliding horizontally at a preset sliding speed of 1 mm/s
for various applied gravitational forces FG; see Table 6.2.

6.2.3 Kirigami metamaterial
We perform sliding tests in which a sawtooth patterned top surface slides on a
Kirigami metamaterial surface. Kirigami is the Japanese artform of paper cutting
where, with a well-designed pattern, the flat sheet reforms in a 3D structure while
stretching out. We laser-cut a pattern in a Mylar sheet that has a thickness of 125 µm,
a width of 50.67 mm, and a length of 85 mm. As design we use a triangular pattern,
see Figure 6.2. This patterning is based on an array of unit cells (see the black lines
in Fig. 6.2) where the unit cell is a rhombus; a quadrilateral where all four sides have
the same length l0. Two straight cuts (red line in Fig. 6.2) along the sides of the unit

α1

α2

δ
l0

Figure 6.2: Design for the Kirigami metamaterial surface made with a 125 µm thin
Mylar (polyethylene) sheet, see the gray area. The red lines represent the cuts fabricated
in the sheet; the periodic patterning is based on a unit cell that is arranged in a triangular
lattice. The unit cell (black lines) is a rhombus, the four sides have a length l0 = 4.5 mm
and the interior angles are α1 = 60° and α2 = 120°. Two straight cuts, as represented by
red lines, are made along the top two sides and, therefore, connect at the top and leave
a length of δ = 0.7 mm intact.
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Figure 6.3: A fabricated Kirigami metamaterial surface. When the thin sheet is
stretched uniaxially, the surface exhibits a roughness which consists of triangular scales
pointing out-of-plane.

cell were made which are connected at the top corner and leave a length δ intact.
Inspired by Reference [154], we design the Kirigami pattern with interior angles of
the unit cell of α1 = 60° and α2 = 120°, side length of l0 = 4.5 mm and cuts with a
length of 3.8 mm (δ = 0.7 mm). The patterning is made along the full width of the
sheet and for a length of L0 = 63.08 mm.

The Kirigami sheets exhibit an out-of-plane roughness when stretched uniaxially;
triangular ‘scales’ are formed where the height of the formed roughness can be
amplified with the set strain as can be seen in Figure 6.3. In the sliding experiments,
we have clamped both long sides of the Kirigami patterned sheet and, with the use
of a micro-screw, stretch it uniaxially up to a length L. Consequently, we monitor
the strain ε which is defined as

ε :=
L− L0

L0
, (6.5)

where L and L0 are, respectively, the deformed and undeformed length of the
Kirigami patterned part of the surface. For a set strain, we quantify the horizontal
pull force FT when sliding against and along the formed Kirigami-scales at various
applied gravitational forces FG, see Table 6.2.
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6.3 Results

6.3.1 Macroscopic periodic roughness controls friction

Experimental results

We start by discussing the results for the sawtooth patterned surfaces. A top surface
with a single triangular prism is slid horizontally over a surface with the designed
sawtooth pattern [Fig. 6.4(a) top]. The pulling force FT as a function of the sliding
distance d is monitored which results in a square-wave function [Fig. 6.4(a) bottom].
When the slider moves uphill over the bottom surface, a high and constant tangential
force is measured. Subsequently, when the top of the sawtooth pattern is reached,
the force drops and a constant (negative) force is found up until the slider is back
down again.

The plateau values Fmax and Fmin for, respectively, uphill and downhill sliding
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Figure 6.4: Sliding experiments with sawtooth patterned surfaces. (a) Experimental
setup visualised from the side of the sliding experiment and the monitored pulling
force FT as a function of distance d. As macroscopic roughness, a sawtooth pattern is
fabricated with a fixed height of 3 mm and controlled angle θ. The observed square
wave of the pulling force is shown for θ = 45° and θ = 60° in, respectively, black
and gray. (b) Friction coefficient µ as a function of the angle θ for the maximum (red),
average (green) and minimum (blue) friction, either measured (circles) or calculated
(continuous lines) with Eqs. (6.8) to (6.10).
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are set by the angle θ of the sawtooth pattern. The magnitude of both Fmax and
Fmin increase when the patterning angle θ increase. In Figure 6.4(b) the influence of
the angle θ is observed for maximum (red), minimum (blue) and average (green)
macroscopic friction coefficient µ which is defined as the ratio of the measured
tangential to the normal (gravitational) force. The gravitational force FG is given by
the mass of the dead weights on top of the slider and the slider itself, see Table 6.2.
The friction depends strongly on the angle θ of the macroscopic periodic roughness
of the sliders; for example, the maximum friction coefficient for θ = 60° is µmax = 3.4.
Furthermore, the average friction coefficient can increase by more than an order of
magnitude when the patterning angle θ is varied from 20° to 60°.

A simple geometrical model for the measured sliding friction

The significant influence of the angle θ on the friction coefficient can be understood by
considering the force balance, illustrated in Figure 6.5. The maximum macroscopic
friction coefficient, defined as the ratio of tangential to gravitational force, can be
written as

µmax =
FT

FG

=
FN sin(θ) + FF cos(θ)
FN cos(θ)− FF sin(θ)

,
(6.6)

where FN and FF are, respectively, the normal and friction force for sliding the
patterned top surface uphill. In the uphill direction, the friction force is set by the
microscopic friction coefficient µ0: FF = µ0FN. The microscopic friction coefficient
is measured during flat-on-flat sliding, i.e., θ = 0°, with the same materials under
the same conditions and is found to be 0.23± 0.02 for the aluminium sliders; see
Table 6.2. Alternatively, this flat-on-flat friction coefficient can be derived from the
tilt angle θ0. A flat surface will continuously slide over a tilted bottom surface for a
minimum angle θ0 which results in a definition of the microscopic friction coefficient
of

µ0 = tan(θ0) . (6.7)

Note that the tilt angle here is defined for the dynamic sliding condition. For the
quantification of the static macroscopic friction coefficient, we expect that the related
static tilt angle can be used that is defined based on the — slightly higher — static
friction coefficient. Consequently, Equation (6.6) can be rewritten in terms of the
microscopic angle θ0:
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θ

FG

FT

FN

FF

θ

Figure 6.5: Schematic illustration, including a force balance, for sliding two sawtooth
patterned surfaces with patterning angle θ over each other. FG is the gravitational force,
FN the normal force, FF the friction force and FT the horizontal pulling force.

µmax = tan(θ + θ0) . (6.8)

Similar to the maximum friction coefficient, the minimum friction coefficient can be
derived likewise where the patterning angle is negative:

µmin = tan(−θ + θ0) . (6.9)

Furthermore, the average macroscopic friction coefficient is

µaverage =
tan(θ + θ0) + tan(−θ + θ0)

2
. (6.10)

In Figure 6.4 the model is shown as the continuous lines and captures the frictional
behaviour of sawtooth patterned surfaces. The measured microscopic friction co-
efficient µ0 for the aluminium sliders was used to calculate the microscopic angle
θ0 = 13° [Table 6.2 and Eq. (6.7)]. The blue dashed area in Figure 6.4 represents the
zone which is experimentally unreachable; due to the nonzero microscopic angle
θ0 of the surface, the macroscopic friction coefficient reaches infinity at the critical
angle θc = 90− θ0 = 77°. Above this critical angle, the interlocking of the surfaces
results in suppressing the sliding motion.

The friction can therefore be modelled based on the patterning angle θ of the macro-
scopic periodic surface roughness, and the microscopic sliding friction which can
be represented with the microscopic angle θ0 of the sliders. The latter can be var-
ied by using different slider materials (see Table 6.1) which indeed have various
microscopic friction coefficients µ0 as listed in Table 6.2. These materials, aluminium
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Figure 6.6: The maximum and minimum friction coefficient, normalised with the
material-specific angle θ0 = tan−1(µ0) where µ0 is the microscopic friction coefficient,
for increasing angle θ. For various materials, aluminium, aluminium on stainless steel,
stainless steel, and plastic sliders (more details listed in Table 6.1) the sliding experiments
are performed (see Table 6.2 for more details). The red and blue continuous lines
represent, respectively, the calculated maximum [Eq. (6.8)] and minimum [Eq. (6.9)]
friction coefficient.

stainless steel, and plastic, all exhibit the expected increase in friction as a func-
tion of the angles θ0 and θ. In Figure 6.6, the measured maximum and minimum
friction coefficient, normalised with the material-dependent angle θ0, are given for
increasing patterning angle θ. In addition, we plot µmax and µmin (continuous lines)
calculated from the model that indeed predicts the measured friction. A systematic
deviation between the measurements and the calculation for µmin can be observed;
we interpret this deviation as a result of a tilt of the slider when it slides down along
the sawtooth pattern. The rod pulling on the slider and attached to the stepper motor
is compressed when sliding down because of the negative force. Consequently, the
rod will slightly buckle which allows the slider to tilt and thereby decreasing its
effective angle θ during sliding down the sawtooth pattern.
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Size of the macroscopic periodic roughness

We have shown that the friction can be tuned with a designed periodic roughness
and can be modelled based on the angle θ of the roughness and the microscopic
friction coefficient µ0 of the sliding surfaces. The measured, and designed, friction
coefficient of the sawtooth patterned surfaces is, however, not entirely independent
of the height of the patterns. Decreasing the height of the designed sawtooth‘s
from 3 mm down to the µm scale would offer the opportunity to implement the
tuning of the friction in various tribological applications; lifting up and down the top
surface for 3 mm is for many sliding systems impractical. The potential of (periodic)
roughness on the µm scale to improve the often-lubricated tribological performance
is already known [152]. Artificial roughness can eliminate the influence of wear
debris, controls the contact area or improve a lubricated sliding system [152,155–157].
We therefore quantify the influence of the height of the surface patterns on the sliding
friction and find that, unfortunately, the resolution of the fabrication technique limits
the ability to tune the friction for small-scale sawtooth patterned surfaces.

The pulling force for an aluminium top surface with a single sawtooth, height of
3 mm and angle θT of 45°, is measured when sliding over an aluminium surface with
decreasing patterning height; see Figure 6.7. We observe plateaus in the measured
pulling force when sliding up and down the patterning for approximately the first
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Figure 6.7: Pulling force FT as a function of the sliding distance d for a sawtooth
patterned (θ = 45°) surface fabricated in aluminium with a stepwise decreasing height
h. The sliding speed is set at v = 0.05 mm/s for an imposed gravitational load of
FG = 0.72 N. On the right, the measured pulling force for sliding over a single sawtooth
pattern is given for various sliding speed.
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8 teeth. However, for the smaller sawtooth‘s with heights down to 17 µm, only
peaks in the pulling force are found. To increase the resolution of the monitored
friction force, the sliding speed is decreased down to 0.05 mm/s. In Figure 6.7
the effect of speed is shown for sliding over a single sawtooth. As the sampling
frequency of the tensile tester is 50 Hz, the sliding distance per datapoint increases
from 1 µm/datapoint to 200 µm/datapoint for respectively 0.05 mm/s and 10 mm/s.

We calculate the maximum friction coefficient as a function of the patterning
height h, shown as red circles in Figure 6.8(a). The continuous line represents the
maximum friction coefficient based on the geometrical model [Eq. (6.8)]. As expected,
the sliding friction for a sawtooth pattern with a height of 3 mm is in agreement
with the model. However, a significant decrease of the sliding friction is observed
when the height of the sawtooth is smaller than 200 µm. This can be explained
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Figure 6.8: (a) Friction coefficient µ for sliding on a sawtooth patterned surface as
a function of the pattern height h. The measured maximum friction coefficient is
presented as circles and squares for surfaces where patterning angle θtheoretical was
attempted to hold constant at, respectively, 45° and 20°. The lines show the theoretical
friction coefficient µmax [Eq. (6.8)]. As a result of the limited resolution of the fabrication
technique, the angle θ decreases significantly for decreasing patterning height. The
black triangles are the friction coefficient µmax calculated based on the measured angle
θmeasured. (b) The line profiles, the height Z as a function of the width, for three sawtooth
patterns with decreasing height. The black line represents the measured line profile
where the gray line shows the profile that was attempted to be fabricated. The angle
θmeasured can be quantified based on the slope of the line profiles.
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with the limited resolution of the fabrication technique. When an angle θ = 45° is
aimed for, the actual angle is smaller when the patterns are small. We characterise
the angles of the manufactured sawtooth patterned surfaces with 3D laser-scanning
profilometry (see Section 2.3 for more details) prior to the sliding test. In Figure 6.8(b)
the measured height profile Z as a function of the width w is given, shown as black
continuous line for three sawtooth patterns with decreasing height. Indeed, for a
sawtooth with a height of 3 mm, the angle is 45° as can be calculated based on the
slope of the measured height profile. However, the angle decreases to 40° when the
height is lowered to 218 µm and gradually decreases further to 12° for a patterning
height of 17 µm. Based on the measured angle θmeasured for a given height of the
sawtooth pattern, the expected maximum friction coefficient µmax can be calculated
[Eq. (6.8)] and is given in Figure 6.8 as the black-filled triangles. This is in reasonable
agreement with the measured sliding friction and, therefore, explains that when a
high angle of 45° can not be achieved for sub-mm patterning, the sliding friction
decreases. The influence of the limited fabrication resolution is smaller when a
smaller angle θ is designed; the red squares in Figure 6.8 represent the measured
maximum friction coefficient for a sawtooth patterned surface with an angle of 20°.
Up to a height of 35 µm the patterning can be fabricated with only a small decrease
of the angle down to 15°.

Although the decrease of friction for decreasing height of the patterning can be
qualitatively explained with the decrease in the fabricated angle θ, full agreement
between the measured and calculated friction coefficient is not achieved. We inter-
pret this discrepancy as a result of the surface roughness on the sawtooth pattern;
the 3 mm high sawtooth has the expected root-mean-square surface roughness of
Sq = 0.705 µm (Table 6.1) where, however, the smallest designed sawtooth (a height
of 17 µm) has an increased roughness of Sq = 1.695 µm (measured for a limited area
of 32.7 µm by 208 µm). The increase of surface roughness could explain the under-
estimation of the friction coefficient of, on average, 0.21 for the model compared
with the data of θ = 45° for patterning heights lower than 200 µm. We therefore
suggest that the increased roughness results also in an increased microscopic friction
coefficient µ0 which, in general, for flat-on-flat sliding experiments can be expected;
two rough surfaces slide less easy over each other than two smooth ones.

We can therefore decrease the height of the designed periodic surface roughness
to tune friction, but the fabrication technique limits the design. We interpret the
observed decrease of the maximum friction coefficient for surface patterns below a
height of 200 µm as a result of not reaching the high target angle θ. The decrease of
friction for decreasing patterning height is partly compensated with the increase in
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surface roughness. We therefore would expect that with an increase of the fabrication
precision the tuning of friction could also be performed for smaller patterns.

6.3.2 (In)commensurability of macroscopic periodic rough-
ness

In reality two surfaces are rarely commensurable, and it is therefore interesting
to study the sliding friction of incommensurable surfaces. Perhaps the most in-
teresting observation is that when the sliders are incommensurable, the sliding
friction is controlled by the lowest angle θ of the two related surfaces. In Figure 6.9
(in)commensurable sawtooth patterned surfaces are shown; in (a) the friction coeffi-
cient is plotted for increasing angle of the top surface θT when sliding over a surface
with a set angle θB = 45°. In the domain θT < θB, the measured friction varies with
the angle θT and agrees with the model [Eqs. (6.8) to (6.10)]. However, for θT > θB
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Figure 6.9: (a) Friction coefficient µ as a function of the patterning angle θT of the top
surface which is pulled over a surface with a constant patterning angle of θB = 45°. The
maximum, average and minimum friction coefficient are represented in, respectively,
red, green, and blue. The observed sliding friction is set by the lowest angle of the top
and bottom surface. The continuous lines and dashed lines represents the expected
friction based on, respectively, θT and θB [Eqs. (6.8) to (6.10)]. (b) Friction coefficient
µ for sliding on a surface with a quasi-random surface roughness as a function of the
sliding distance d. The sliding friction can be predicted based on the lowest angle of the
top and bottom surface (continuous lines).
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the friction remains constant and is set by the patterning angle of the bottom surface;
the horizontal dashed lines represent the expected friction coefficient for a constant
angle θB = 45° [Eqs. (6.8) to (6.10)]. This suggests that sliding on a surface with a
quasi-randomly macroscopic surface roughness can be understood based on the
lowest angle of the two surfaces. As an example, we perform a sliding experiment
on a quasi-random patterned surface; see Figure 6.9(b). We slide a top surface with
θT = 45° over this designed surface and plot the friction coefficient as a function
of the sliding distance d together with the calculated friction coefficient based on
the lowest angle of the two surfaces. The model is indeed in agreement with the
measured sliding friction coefficient and show that the maximum tuning is limited
by the top surface; although sliding over a high angle as θB = 60°, the maximum
friction is set by the top surface with θT = 45°.

Incommensurability therefore restricts the domain of tuning; the friction is set
by the lowest angle of the macroscopic roughness of the surfaces. The influence
of mismatching surfaces is not restricted to sawtooth patterned surfaces. In Fig-
ure 6.10(a) the influence of commensurability is shown for sliding surfaces with a
sinusoidal patterned surface. The height Z of the sinusoidal pattern is designed
with a controlled wavelength a and a fixed amplitude b = 1.5 mm [Eq. (6.1)]. A top
surface, which contains 6 periods with a set wavelength (atop = 5.44 mm), is pushed
over several bottom surfaces where the wavelengths abottom is varied. We observe
a peak in the friction coefficient when the two surfaces have a commensurable pe-
riodicity of surface patterns: abottom/atop = 1 and 2. The increase of friction is the
result of a matching periodicity of the patterns; when the surfaces fit into each other,
the high surface angle θ of the sinusoidal patterning can be reached and increases
the sliding friction. The maximum, minimum, and average friction coefficient for
commensurable sliding can be calculated based on the simple geometrical model
[Eqs. (6.8) to (6.10)] and the angle θ of the sinusoidal patterned surfaces [Eq. 6.3]. The
model, represented as the open circles in Figure 6.10, matches the measured sliding
friction. Note that the tuning of the friction coefficient is limited when high ratios
abottom/atop are set; the maximum angle θmax of the sinusoidal surfaces decreases for
increasing wavelength abottom. Tuning with commensurable sinusoidal surfaces is
therefore possible, although for higher ratios abottom/atop limited due to the signifi-
cant decrease of the angle θ. When the two sinusoidal surfaces are incommensurable,
we observe a decrease of the sliding friction. When the designed surfaces do not fit
into each other, and therefore the surface angles θ in contact are small, the resulting
sliding friction is low. The average friction coefficient converges to the lowest limit
for these sliding surfaces: the microscopic friction coefficient, i.e., the flat-on-flat
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Figure 6.10: Friction coefficient µ for 1D and 2D patterned surfaces as a function of
the commensurability. (a) The sliding friction as a function of the ratio of wavelengths
of the 1D sinusoidal patterned surfaces. The open circles show the friction coefficient
expected for full-commensurable sinusoidal patterned surfaces (at abottom/atop = 1
and 2 based on Eq. (6.3). (b) The sliding friction as a function of the rotation angle φ

between the 2D sinusoidal patterned surfaces.

sliding friction µ0 = 0.12.

A similar influence of commensurability has been observed in nanotribology and
is called structural lubricity: the friction force approaches zero when sliding two
atomically incommensurable surfaces over each other [52, 158–160]. The structural
superlubricity of two graphite surfaces has been shown by Dienwiebel et al. [52].
Graphite has an atomic hill-and-valley landscape in a hexagonal manner which,
when rotated, only is commensurable every 60°. The graphite-on-graphite friction
reaches ultralow values which, when rotated, shortly increases every 60°. In Fig-
ure 6.10(b), we show that structural lubricity is not limited to the microscale; 2D
macroscopic surface roughness based on a hill-and-valley landscape [see Eq. (6.4)]
permits control on the friction coefficient through the rotation angle φ. We perform
sliding experiments with the custom-made 2D patterned surfaces and measure the
sliding friction as a function of the rotation angle φ between the two surfaces. Only
when the surfaces are in registry, i.e., at φ = 0° and every following 90° rotation, a
high friction coefficient can be observed. Similarly as to what was observed for the
1D sinusoidal patterned surfaces, the friction coefficient decreases when rotated out
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of registry.
In general, tuning sliding friction is limited when the designed surfaces are

incommensurable. However, with the use of 2D macroscopic surface patterns, the
commensurability can be controlled with the rotation of the sliding surface and,
subsequently, the sliding friction can be tuned. We continue the exploration of tuning
(asymmetric) sliding friction with external parameters with sliding on a Kirigami
metamaterial surface. This patterned surface allows us to control the surfaces rough-
ness externally by applying a tensile stress.

6.3.3 Sliding friction on a Kirigami metamaterial
Tuning friction with macroscopic surface topography does also facilitate asymmetric
sliding friction; an asymmetry in the surface patterning can result in a different
sliding friction based on the sliding direction [161, 162]. With the use of Kirigami
metamaterial surfaces, the surface roughness can be controlled externally which
results in an asymmetric surface patterning and, consequently, an asymmetric sliding
friction [163, 164]. Kirigami is a Japanese artform of paper cutting where, with
repetitive patterns, highly stretchable and 3D objects can be achieved from a flat
sheet [165–167]. With a well-designed patterning of cuts, out-of-plane texturing can
be formed for increasing in-plane uniaxial strain. Rafsanjani et al. made use of this
technique to tune on-demand the texturing of a Kirigami metamaterial sheet [154].
The authors designed a bioinspired ‘snake’ that, due to repeated stretching and
releasing of the Kirigami skin, can crawl forward; this is indeed very similar to
the scaled skin of snakes which enable them to propel themselves [168, 169]. This
metamaterial crawler was fabricated by attaching a Kirigami-pattered sheet to the
surface of a soft cylindrical actuator that extends axially upon inflation. When
inflated, the Kirigami skin, due to the increase of strain, forms an out-of-plane
texturing. The formed texture interlocks at the rough substrate where it is placed
on and, with cycled inflation, the crawler performs locomotion. The formation of
on-demand texturing, based on Kirigami ‘scales’ point out-of-plane, is very similar
to the sawtooth patterns. Therefore, in addition to interlocking due to the formation
of anchoring points, the Kirigami metamaterial surface does allow tuning the friction
by externally controlling its roughness.
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Figure 6.11: Sliding experiments on a Kirigami metamaterial. (a) A Kirigami patterning
is laser-cut in a Mylar sheet. (b) A macroscopic out-of-plane surface roughness, i.e.,
scales pointing outwards, can be actuated for increasing in-plane uniaxial strain ε.
(c) Kirigami angle θK for increasing strain ε. The black continuous line is a fit, see
Appendix B.1 for more details. (d) Side-view of the sliding experiment when sliding
against the formed Kirigami scales. The slider has a single sawtooth pattern with an
angle of θT = 45°. (e) Pulling force FT as a function of the sliding distance d when the
slider is pulled against the Kirigami scales pointing upward with an angle of θK = 23°.
In continuous red and blue lines, the calculated friction coefficient for, respectively, the
maximum [Eq. (6.8)] and minimum [Eq. (6.8)]. (f) Friction coefficient µ as a function of
the measured Kirigami angle θK for sliding against the scales. In continuous lines the
calculated friction coefficients are shown [Eqs. (6.8), (6.9), and (B.2)]. (g-i) The sliding
experiment when performed along the Kirigami scales.
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To demonstrate the capability of Kirigami metamaterials to tune the friction,
we laser cut a Mylar sheet with a triangular pattern (see Section 6.2 for more ex-
perimental details) and perform sliding experiments while controlling the in-plane
uniaxial strain ε. In Figure 6.11(a) and (b) we visualise from top the response of
the Kirigami metamaterial for increasing strain. The scales point upwards with
an angle θK that can be quantified visually from the side; see Figure 6.11(c). We
perform sliding experiments with a single sawtooth (θT = 45°) patterned plastic
surface pulled horizontally against and along the Kirigami scales as visualised in,
respectively, Figure 6.11(d) and (g). The pulling force FT for sliding on the Kirigami
surface, at a controlled angle of θK = 23°, as a function of the sliding distance is
given in Figure 6.11(e) and (h) for, respectively, sliding against and along the scales.
The measured pulling forces indeed roughly have a square wave shape, similarly
as was found for the sawtooth patterned surfaces. The square wave is disturbed
by periodic peaks in the pulling force, located when the slider reaches the top of
the Kirigami scales. The end of the Kirigami scale acts as an anchoring point, i.e., it
grips the top surface. Only when the pulling force has been sufficiently increased,
the slider jumps over the scale and the interlocking is released. With the remaining
plateaus in the square wave, that can again be quantified with Fmax and Fmin, the
upward and downward macroscopic friction coefficient can be calculated for the set
gravitational force FG.

In Figure 6.11(f) and (i), the maximum, minimum, and average friction coefficient
is given as a function of θK when sliding against and along the Kirigami scales.
Similar as for the sawtooth patterned sliders, the maximum and minimum friction
coefficient can be modelled with Equations (6.8) and (6.9), shown as the red and
blue continuous lines. Again, the smallest angle θ, that is either the Kirigami scale
angle θK or the angle of the top surface θT, sets the friction coefficient. The measured
maximum and minimum friction coefficient is, therefore, very anisotropic: it depends
on the sliding direction and shows strongly asymmetric friction.

In addition, the measured average friction coefficient [shown as the green circles
in Fig. 6.11(f)] is very high and seems to be rather θK-independent when sliding
against the pattern. It increases smoothly with θK when sliding with the pattern,
shown as the green circles in Figure 6.11(i). The high and rather constant value of
the friction when sliding against the pattern is likely due to sticking of the material
on the top. This asymmetry of the Kirigami metamaterial decreases with increasing
strain and can be geometrically calculated, as discussed in Appendix B.1. The green
lines in Figure 6.11(f) and (i) are the weighted average friction coefficient based on
the asymmetric path lengths [respectively Eqs. (B.2) and (B.3)].
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Kirigami metamaterial surfaces, or even metamaterials in general [170], allows
us to control the sliding friction externally based on the formation of 3D texturing.
Next to the asymmetric friction based on interlocking, a Kirigami metamaterial does
also facilitate sliding friction with an on-demand tunable friction coefficient.

6.4 Discussion and conclusion
We have presented sliding experiments of sliders with various macroscopic surface
patterning and shown the influence of the patterning slope and the commensurability
of the surfaces. A simple geometrical model describes the measured sliding friction
based on the macroscopic geometry together with the microscopic friction coefficient
µ0. The influence of macroscopic geometrical patterns on friction can be applied to
various tribological systems; earthquake dynamics [143] and anisotropic friction by
surface patterns [171, 172] have been modelled based on their macroscopic surface
geometry. A similar model has been introduced to describe the microscopic friction
coefficient based on the surface height variations of surfaces [173, 174]. However,
modelling the influence of the surface roughness with this geometrical model was
not satisfactory; the real contact area that is formed and the shear stress prior to
sliding on the asperity-level is rather more complex [114]. In the model presented
here, we separate the rather complex (adhesive) friction coefficient µ0 from the
geometrical part for macroscopic surface roughness.

In summary, with artificial macroscopic surface roughness the sliding friction
can be tuned by more than an order of magnitude which can be explained using
a simple geometrical model that takes into account the interlocking between the
two surfaces. The slope, quantified with the angle, of the surface patterning and the
commensurability of patterned surfaces enables direct control on the sliding friction.
In addition, a Kirigami metamaterial surface allows to apply this understanding of
geometrical friction to enable external and on-demand control of the friction force.
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APPENDIX A

Sliding friction on ice

A.1 The penetration hardness of ice

The penetration hardness Ph is quantified with an indentation experiment where a
sphere with a radius of R = 1.6 mm is pushed into the ice surface, see Section 2.2 for
more details. For an indentation velocity vind of 3.8 µm/s the indentation depth δ as
a function of the loading force N is plotted in Figure A.1 for several temperatures.

The measured penetration hardness, see Figure 5.2, is fitted with a polynomial
regression on the variables temperature T (in °C) and the logarithm of the indentation
speed ln(vind) with, respectively, 1 and 3 degrees:

Ph(T, vind) = P00 + P10T + P01 ln(vind)

+ P11 T ln(vind) + P02 ln(vind)
2

+ P12 T ln(vind)
2 + P03 ln(vind)

3 .

(A.1)

The fit parameters found, with a resulting coefficient of determination of R2 = 0.8885,
are P00 = 8.041× 108, P10 = −3.337× 106, P01 = 1.465× 108, P11 = −2.645× 105,
P02 = 8.936 × 106, P12 = −6.282 × 103, and P03 = 1.792 × 105. For a constant
indentation speed of vind = 3.8 µm/s, as used in Figures 5.2 and A.1, this fit
results in a penetration hardness that linearly decreases with temperature as Ph =

(−1.01 T + 19.2)× 106.

Close to the melting point, pressure melting occurs; the melting temperature of
ice decreases with increasing pressure because the liquid-phase density is lower than
the solid phase. The pressure that has to be exceeded to melt ice is described by the
Clausius-Clapeyron equation [175]:
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Figure A.1: Indentation depth δ as a function of the force N for an indentation speed
of 3.8 µm/s captured with a hardness test for various temperatures.

Pm =
L

T0∆V
T = −13.5× 106 T , (A.2)

with L = 3.34× 105 J/kg the latent heat of fusion, T0 = 0 °C the freezing point of
water at a pressure of 1 bar, and ∆V = −9.05× 10−5 m3/kg the change in specific
volume from solid to liquid. For temperatures higher than −1.5 °C, the pressure
necessary for pressure melting is lower than the penetration hardness. Therefore, the
limiting pressure for −1.5 °C up to 0 °C in Figure 5.2 is described by the Clausius-
Clapeyron equation.

A.2 Ploughing model
A spherical slider ploughing through ice, similar as ploughing through granular
materials as described in Chapter 3, occurs when the contact pressure exceed the
penetration hardness. In this plastic regime, the sphere indents into ice up to the
contact area Ac can support the normal force: Ac = N

Ph(T)
. This contact area, the

projected area of contact in the normal direction, which is in contact with the ice
surface, is Ac =

1
2 πr2, with r the radius of the ploughing track. The final depth of
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indentation δ can be written, with the use of δ ≈ r2

2R for δ << R, as δ = N
πRPh(T)

.
Consequently, this indentation results in scratching ice with a ploughing area AP

and a ploughing force FP = APPh(T). The ploughing area is the cross-sectional area
AP ≈ 4

3 rδ, and it can be rewritten as

AP =
4
√

2
3π3/2R

N3/2

Ph(T)3/2 , (A.3)

which results in a ploughing force of

FP = APPh(T) =
4
√

2
3π3/2R

N3/2√
Ph(T)

. (A.4)

With µP = FP/N, we get Equation (5.2).

Velocity-dependent ploughing model
To take into account the velocity dependency of the penetration hardness, as is
shown in the inset of Figure 5.2(a) and fitted with Equation (A.1), the ploughing
model has to be modified. Two velocities, and therefore two penetration hardnesses,
are involved in ploughing: the indentation speed vind in the normal direction, where
the ice is indented by the slider; and the sliding speed vs in the tangential direction,
the speed at which the final ploughing occurs. As the ploughing area AP is set by
the indentation in the normal direction, the corresponding penetration hardness is
at the indentation speed:

AP =
4
√

2
3π3/2R

N3/2

Ph(T, vind)3/2 . (A.5)

The subsequent ploughing force is then based on the penetration hardness at the
sliding speed and the calculated ploughing area AP:

FP =
4
√

2
3π3/2R

Ph(T, vs)

Ph(T, vind)3/2 N3/2 . (A.6)

Based on the sphere-on-ice geometry, we can calculate the indentation speed corre-
sponding to the sliding speed and subsequently calculate the related penetration
hardness for the ploughing force. The ratio of the related speeds is:

vind
vs

=
δ

r
=

√
N

2πR2Ph(T, vind)
. (A.7)
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Figure A.2: Penetration hardness in the normal direction (red) and tangential direction
(black) as a function of sliding speed for ice at a temperature of −20 °C based on
Eq. (A.1). The calculated indentation speed corresponding to the set sliding speed is
given in the inset and as top axes for sliding a glass sphere (R = 1.84 mm) at a normal
force of 2.5 N over ice at −20 °C, Eq. (A.7). The indentation speed is around 4% of the
sliding speed, and consequently, the penetration hardness in the normal direction is
smaller than the penetration hardness in the tangential direction.

This nonlinear equation can be numerically solved to yield an indentation speed
vind for a given sliding speed vs. For a glass sphere sliding over ice at −20 °C, the
resulting indentation speed as a function of the sliding speed is given in the inset
of Figure A.2; the indentation speed is, in general, a fraction of the sliding speed,
around 4%. Consequently, for a given sliding speed, we can calculate the penetration
hardness in the normal and tangential directions; see Figure A.2. Finally, the friction
force and friction coefficient can be calculated based on Equation (A.6), where the
indentation speed is based on numerically solving Equation (A.7).
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A.3 Contact mechanics

Soda-lime glass

To quantify the real contact area (RCA) and the average contact pressure Pc of the
spherical sliders on ice, we use the Tribology Simulator (from Tribonet [62]). Based
on the surface topography of the slider and the mechanical properties of the slider
and the ice surface, the simulator solves the elastoplastic contact equations through
a numerical boundary element model. The plastic limit is set by the penetration
hardness of the ice in the normal direction, calculated for the set sliding speed
vs = 0.38 mm/s and temperature T, with the use of Equations (A.1) and (A.7).
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Figure A.3: Pressure P as function of the temperature T for glass spheres with surface
roughnesses 98, 222, 575, and 3077 nm at a normal force of 500 mN. The smoothest
sphere is mainly elastic where, for increasing surface roughnesses, the pressure increases
until the plastic limit is reached. The dashed and solid lines are, respectively, the
elastic Hertzian pressure and the penetration hardness Ph of the ice. For the latter, the
penetration hardness in the normal direction for the set sliding speed of 0.38 mm/s
is used. Inset: RCA as a function of the normal force N. Indenpendent of the surface
roughness, the real contact area increases linearly with the normal force. Therefore, the
contact pressure is almost independent of the normal force.
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In Figure A.3, the contact pressure as a function of temperature is given for glass
spheres with surface roughness Sq from 98 nm to 3077 nm. The dashed and solid
lines represent, respectively, the elastic Hertzian contact pressure [176] and the
plastic limit given by the penetration hardness as N/Ph. For increasing surface
roughnesses, the contact mechanics convert from a mainly elastic contact to a plastic
contact. The RCA increases linearly, even for the relatively smooth sphere, with the
normal force, as is given in the inset of Figure A.3. Therefore, the contact pressure is
almost independent of the normal force.



A.3 Contact mechanics 99

Silicon carbide
In Figure A.4, the real contact area for the SiC spheres is given as a function of the
normal force. Both spheres, with radii of 6.00 (red) and 0.75 mm (blue), have a
mainly elastic contact with the ice surface at −50 °C (open circles) and at −90 °C
(closed circles). The large sphere has a large RCA and, due to the finite size of the
measured surface topography (208 by 208 µm), can only be calculated up to 400 mN.
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Figure A.4: Contact mechanics of the SiC spheres sliding on ice and RCA as a function
of normal force N for a sphere with a radius of 6.00 mm (red) and 0.75 mm (blue) at
temperatures of −50 °C (open circles) and −90 °C (closed circles). The dashed lines
represent the elastic Hertzian pressure. The solid and dotted lines are, respectively, the
plastic limit set by the penetration hardness at temperatures of −50 °C and −90 °C.
Inset: surface topography (left) and calculated area of real contact (right) for the SiC
spheres.
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Sapphire
The contact mechanics for a sapphire sphere on ice are given in Figure A.5. The
contact is mainly elastic due to the low surface roughness (28 nm). Therefore, the
RCA increases, as expected for an elastic Hertzian contact [176], sublinearly with the
normal force. The RCA for a normal force of 500 mN is used to quantify the shear
stress and contact pressure.
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Figure A.5: Contact mechanics of a sapphire sphere (radius of 1.59 mm) sliding on ice
and RCA as a function of the normal force N at temperatures of −50 °C (open circles)
and −90 °C (closed circles). The dashed line represents the elastic Hertzian pressure
and the solid and dotted lines are, respectively, the plastic limit set by the penetration
hardness at temperatures of −50 °C and −90 °C. Inset: surface topography (left) and
calculated area of real contact (right) for the sapphire sphere.
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A.4 Ploughing on the microroughness scale

Ploughing not only occurs on the macroscale of the slider-on-ice contact; single
asperities can plastically deform the ice and therefore plough through it tangentially.
In Figure 5.3(b), the ploughing tracks that were left on the ice after a sphere slid
over the ice surface are given. For a high surface roughness, Sq = 3077 nm, the
measured ploughing area (AP = 7.8× 10−11 m2) results in a friction coefficient based
on ploughing of µP = 0.07 [for N = 0.21 N, penetration hardness in the normal
direction Ph = 194 MPa and using Equation (5.2)]. As the increase in the friction
coefficient for the highest surface roughness relative to the lowest surface roughness
is ∆µ = 0.24, the ploughing can only explain 30% of the increased friction. Based
on the measured surface topography, a ploughing area of (AP = 12.2× 10−11 m2)
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Figure A.6: Normalised effective shear stress (σs − σP)/e∆E/kBT as a function of
the normalised contact pressure Pc/Ph for various sliders, surface roughnesses, and
temperatures at a sliding speed of 0.38 mm/s. Here, the effective shear stress is based
on the measured friction force, excluding the ploughing contribution. The ploughing
can explain up to 40% of the observed increased friction. The dashed line is a fit using
Eq. (5.4). The same symbols and colours are used as in Fig. 5.4. Inset: effective shear
stress σs − σP as a function of the contact pressure Pc for various glass sliders with
increasing surface roughness at T = −50 °C and a sliding speed of 0.38 mm/s.
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can be calculated [see gray area in the top panel of Fig. 5.3(b)]. As the orientation
of the sphere on ice is not the same, a small difference is found compared with
the measurements in both the ploughing track and the ploughing area. Now, the
ploughing can explain 40% of the observed increased friction.

In Figure A.6, the increase of shear stress with increasing contact pressure where
the ploughing is excluded is given. For the ploughing stress σP = FP/RCA, a
ploughing force based on the quantified plastic indentation of the surface topography
is used. We can model the effective shear stress σs − σP as Equation (5.4) with
σ0 = 3.4 kPa and b = 2.6. Consequently, if ploughing is taken into account, the
shear stress set by the mobility of the ice surface is, although smaller, still the main
contribution to the friction force.



APPENDIX B

Sliding friction of geometrically
controlled surfaces

B.1 Geometrical friction model for Kirigami
metamaterial surfaces

For the sliding experiments on a Kirigami metamaterial surface, we slid a single
sawtooth-patterned (θT = 45°) plastic surface horizontally against and along the
Kirigami scales. Consequently, the slider moved up and down over the Kirigami
patterned surface. The resulting Kirigami texturing was asymmetric; as such, the
horizontal sliding lengths for moving up and down the scales were not equal. In
order to calculate the average macroscopic friction coefficient based on the simple
geometrical model, a weighted average friction coefficient had to be quantified for
the specific geometry.

In Figure B.1, a schematic representation of the sliding experiment is given from
a side view. The formed scales of length l0 (thick black and red lines) point out of
the plane with an angle θK, which is set by the strain ε. In Figure 6.11(c) the angle θK

is quantified for increasing uniaxial strain and fitted with the use of

θK = p1
√

ε + bε + c , (B.1)

with p1 = 102.40, p2 = −48.89, and p3 = −0.21 and θK in degrees. The Kirigami
patterned sheet has, as seen from the side, two overlapping rows of Kirigami scales,
which are represented as black and red triangles in Figure B.1. The top surface
made the transition between sliding up and down when it was in contact with both
overlaying rows (the black and red scales as presented in Fig. B.1). Consequently,
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Figure B.1: Schematic illustration of the performed sliding experiments on a Kirigami
metamaterial, illustrated from the side. A slider with a sawtooth-patterned surface with
angle of θT was pulled horizontally over the scales of the Kirigami patterned surface.
Consecutive lines of scales were formed which halfway overlapped in depth; see the
thick black and red lines.

the sliding lengths s1 and s2 for sliding up and down can be defined. The weighted
average friction coefficient for sliding against and along the Kirigami patterned
surface can be defined as

µagainst =
s2

s1 + s2
tan (θT + θ0) +

s1

s1 + s2
tan (−θK + θ0) (B.2)

µalong =
s1

s1 + s2
tan (θK + θ0) +

s2

s1 + s2
tan (−θT + θ0) . (B.3)

To calculate the weighted average friction coefficient, we expressed the sliding
lengths s1 and s2 in terms of the quantified strain ε and angles θK and θT. The overlap
between the Kirigami patterning is half of the triangle base length l. Therefore,
sliding only occurred on the top part of the pattern, as shown by the red- and grey-
filled triangles in Figure B.1. These top triangles have side lengths of l/2 and l0/2
and the same interior angle of θK. Consequently, the sliding paths s1 and s2 can be
written as

s1 + s2 = l/2 , (B.4)

which can also be defined in terms of ε and l0 with l = (1 + ε)l0 as

s1 + s2 = (1 + ε)l0/2 . (B.5)
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Figure B.2: The average friction coefficient as a function of the Kirigami patterning
angle θK. The two dashed lines represent the weighted average friction coefficient
for sliding a sawtooth patterned top surface with an angle of θT of 45° horizontally
against or along the formed scales of the Kirigami metamaterial. The Kirigami angle
θK is calculated with Eq. (B.1) for a given strain ε, and the weighted average friction
coefficient is subsequently plotted based on Eqs. (B.2) and (B.3). As a reference, the
average friction coefficient for a symmetric sliding path, i.e. for s1 = s2, is included as
the continuous line. Inset: the sliding lengths s1 and s2 as a function of the Kirigami
angle θK. In addition, the total length l/2 = s1 + s2 is included.

The transition for the top surface between sliding up and down the Kirigami patterns
can be defined in the condition θK < θT when both tips of the surface patterns are in
contact with the opposite surface. The tangent points are defined as P and Q (see
Fig. B.1). With the use of the origin O, the (x,y) coordinates for both points can be
written as

xP

yP

 =

 s1

l0 sin(θK)/2− s1 tan(θK)

 (B.6)

xQ

yQ

 =

 s1 + s2

l0 sin(θK)/2

 (B.7)
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In addition, the points P and Q can be related to the geometry of the slider as

tan(θT) =
yQ − yP

xQ − xP
. (B.8)

Therefore, with the use of Equations (B.5) through (B.8), the lengths s1 and s2 can be
written as

s1 =
(1 + ε)l0

2[1 + tan(θK)/ tan(θT)]
(B.9)

s2 =
(1 + ε)l0

2[1 + tan(θT)/ tan(θK)]
. (B.10)

In the inset of Figure B.2, the sliding lengths as a function of the angle θK are given.
Here, s1, s2 and the total length l/2 = s1 + s2 are plotted, where the increasing strain
ε is transferred to the found angle θK with Equation (B.1). Using the calculated
sliding lengths s1 and s2, the weighted average friction coefficient for sliding against
and along the Kirigami surface can be derived (see Fig. B.2). As a reference, the
average friction coefficient for a symmetric sliding path (s1 = s2) is included as the
continuous line. Due to the sharp scale when sliding against, and the long upward
path s1 when sliding along the Kirigami surfaces, the average friction coefficients for
Kirigami are higher than for a symmetric commensurable case.
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Summary

From pushing a bookcase over the floor to the relative motion of tectonic plates
or sliding a newly hewn statue over land — as the ancient Egyptians did — to ice
skating on frozen canals, a resistance against sliding counteracts all these movements
and tries to hold the surfaces in place.

Leonardo Da Vinci already observed that this friction force increases linearly
with the normal force, or with the mass of the sliding object. In terms of the opening
example, it is therefore better to empty the bookcase prior to sliding it over the floor.
The ratio of the friction force and the normal force is known as the friction coefficient
µ and can be defined for the specific sliding system. Typically, a bookcase has a
friction coefficient in the range of µ ≈ 0.2− 0.4, largely depending on the exact
conditions and materials. A wide variety of friction coefficients can be found. For
example, ice can be as slippery as µ = 0.07, whereas a rubber shoe on the pavement
has good grip due to a friction coefficient around 0.8.

It is complex to predict a friction coefficient and even more difficult to control it. In
this thesis, we make a contribution to answering the seemingly simple question,
‘What controls sliding friction?’ We aimed to bridge the gap between macroscop-
ically observed sliding friction and the underlying microscopic behaviour at the
interface between the sliding surfaces. We performed sliding experiments using
various shapes — spheres, plates, model ice skates — and various degrees of surface
roughness — as smooth as a magnifying glass or as rough as sandpaper — to mea-
sure the friction force. We focused on three very different types of surfaces, namely
wet sand, ice, and a collection of artificial surfaces whose geometry we can precisely
control, to gain a better understanding of the sliding friction and, where possible,
control over sliding friction.
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After a general introduction and description of the experimental and computational
techniques in Chapters 1 and 2, Chapter 3 describes the ploughing friction on wet
and dry sand. The mechanics of granular materials such as sand is greatly impacted
by the presence of a small amount of water; this dynamic is something that we
can experience in daily life as well. For example, walking on the beach is easier on
slightly wet sand, but sand that is too muddy or too dry costs more effort. When
water is added to sand, liquid bridges form between neighbouring grains which bind
them together, resulting in a cohesive material. Adding more water to the mixture
generates coalescence of the liquid bridges and thereby decreases the strength of
the binding between the grains. In Chapter 3, we study the influence of the water
volume fraction in sand on sliding friction and question the role of the slider ge-
ometry. To measure this, we slid a hemisphere over partially saturated sand and
found that the addition of a small amount of water makes the friction force sharply
drop, whereas too much added water causes the friction force to increase again.
We found that ploughing is the main mechanism as is evident by a deep trace in
the sand after the passage of the slider. How deep the hemisphere sinks into the
wet sand is controlled by the hardness of the water-sand mixture which is greatly
influenced by the presence of a small amount of water. The hardness sets the size
of the ploughing trace and the force required to plough through the water-sand
mixture. We present a ploughing model that quantitatively reproduces the observed
ploughing friction based on the hardness of the water-sand mixture. Adding some —
but not too much — water results in an increase in hardness, a shallow trace in the
sand and, consequently, less ploughing friction for the hemisphere.

The influence of water on sand seemed to be known by the ancient Egyptians; a cele-
brated tomb drawing suggests that for the transportation of a large statue through
the desert, one person was pouring water in front of the sledge to decrease the
friction. In Chapter 4, we recreated the transportation of a ‘statue’ over wet sand in
miniature. We measured the sliding friction of a sledge with a dead weight as the
‘statue’ on wet sand and measured the hardness of the water-sand mixture directly
after sliding. As expected, the sliding friction of a sledge on wet sand is strongly
influenced by the water fraction. By adding a small amount of water, the hardness
of the wet sand is at its maximum and the sliding sledge will not plough through it,
thereby minimising the sliding friction. Thus, pouring a limited amount of water in
front of a sledge greatly reduces the manpower necessary to transport a statue.
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In Chapter 5, we address the slipperiness of ice. We slid various types of ice skates
over a miniature ice skating rink while measuring the friction force as a function
of temperature, geometry and speed. It is commonly believed that ice is slippery
due to the presence of a thin layer of liquid water on top of the ice surface which
lubricates the surface. The origin of this liquid water, however, remains highly
debated. The first and since disproven explanation was based on pressure melting,
wherein the local pressure of a skate on the ice results in the ice melting into liquid
water. However, pressure melting requires unrealistically high contact pressures,
in particular at ice temperatures below −3.5 °C, which are easily reached in frozen
canals and on speed skating rinks. In our experiment, we measured the friction
coefficient and, combined with contact mechanics calculations, observed that ice is
slippery because of the diffusive motion of surface ice molecules. Ice is not always
slippery; the mobility of the surface ice molecules — and therefore the slipperiness
of the ice — can be suppressed by a high contact pressure or a low temperature.
In addition, we observed rich ploughing close to the melting point, controlled by
the hardness of the ice and the surface geometry. A ploughing model can therefore
not only reproduce the measured friction when scratching (wet) sand but is also
applicable to ice skating. We concluded that it is the high mobility of molecules in
the outermost layer of the ice combined with the exceptional hardness of ice close
to its melting point that cause its slipperiness. Ice friction can be minimised by
curtailing the contact pressure, a factor already controlled by ice skaters: the optimal
ice skate has a smooth bottom (low pressure) for low friction and sharp edges (high
pressure) for grip.

In Chapter 6, we explored how one can tune friction with surfaces whose roughness
can be precisely controlled. Roughness influences sliding friction even in everyday
scenarios; two smooth surfaces slide more easily over each other than two rough
ones. However, the direct influence of surface roughness is often hard to foresee
and control. Customising friction for a specific application with a tuning param-
eter, such as surface roughness, would be of interest; high friction for grip and
low friction for easy sliding. In this chapter, we investigated the sliding friction
between geometrically patterned surfaces, i.e., surface patterns of a few millimetres
in height. We demonstrated that well-designed surface roughness and control of
the (mis)match between the surface roughness on the surfaces allows one to vary
the friction force by more than an order of magnitude. The sliding friction can
therefore be directly controlled by the interface geometry of the macroscopic surface
patterns on custom-made surfaces. We include a simple geometrical model that
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quantitatively reproduces the tuning of friction with macroscopic surface patterns.
In addition, we discuss the sliding friction on Kirigami metamaterial surfaces that
allow friction to be tuned externally by a direct variation of its roughness. Kirigami
is a Japanese artform in which a sheet of paper can be transformed into 3D structures
based on cutting. We make use of a Kirigami cutting pattern to increase surface
roughness by uniaxially stretching out the flat sheet. External control of surface
roughness thus allows the sliding friction to be tuned on a Kirigami metamaterial
surface.

Overall, this thesis provides new insights into the slipperiness of sand, ice, and
geometrically controlled surfaces, including their dependency on the microscopic
behaviour of the sliding interface. We show that the microscopic and macroscopic
geometry of the surfaces together with (i) the water fraction in sand, (ii) the tempera-
ture of ice and (iii) the (mis)match between the surface roughness on the surfaces,
control the sliding friction (see Fig. S.3).
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Figure S.3: Friction force as a function of the mass of the slider, summarising the influ-
ence of (i) water fraction on the sliding friction of sand, (ii) the temperature of ice on its
slipperiness, and (iii) artificial surface roughness on the sliding friction of geometrically
controlled surfaces. The continuous lines represent the normalised measured data for
sand, ice, and geometrically controlled surfaces as presented in Chapters 3, 5 and 6. The
blue and red regimes represent the slippery (µ . 0.07) and highly non-slippery (µ & 1)
regimes. ‘Dry sand’ and ‘Wet sand’ are the measured friction for sliding a hemisphere
over sand with a water volume fraction of φw = 0% and φw = 8%, respectively (see
Fig. 3.2). ‘Ice at −0.5 °C’, ‘Ice at −10 °C’, and ‘Ice at −100 °C’ represent the sliding
friction on ice for sliding a small sphere (R = 0.75 mm), a big sphere (R = 6 mm) and a
model ice skate, respectively (see Figs. 5.1 and 5.2). ‘Geometrically controlled surfaces’ is
the measured sliding friction between two aluminium sliders with a sawtooth-patterned
surface (θ = 70°, see Fig. 6.4).
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Samenvatting

Van het over de vloer duwen van een boekenkast tot het langs elkaar schuren
van twee tektonische platen, of van het voortschuiven van een nieuw gebeiteld
standbeeld (zoals de oude Egyptenaren het deden) tot schaatsen over bevroren
grachten — er is een weerstand die al deze vormen van glijden tegenwerkt en
probeert de oppervlakken op hun plaats te houden.

Leonardo Da Vinci observeerde al dat deze wrijvingskracht lineair toeneemt met
de normaalkracht, ook wel beschreven met het gewicht van het glijdende object.
In het openingsvoorbeeld is het dus beter de boekenkast leeg te ruimen voordat
deze over de vloer wordt geschoven. De verhouding van de wrijvingskracht tot
de normaalkracht wordt ook wel de wrijvingscoëfficiënt µ genoemd en kan voor
elk specifiek wrijvingssysteem worden vastgesteld. Een boekenkast heeft door-
gaans een wrijvingscoëfficiënt in het bereik van µ ≈ 0.2− 0.4, afhankelijk van de
exacte omstandigheden en materialen. Er bestaan dus grote verschillen in wrij-
vingscoëfficiënten. IJs bijvoorbeeld kan zo glibberig zijn als µ = 0.07, terwijl een
rubberen schoen op de stoep grip heeft met een wrijvingscoëfficiënt rond de 0.8.

Het voorspellen van een wrijvingscoëfficiënt is complex, het regelen ervan nog
lastiger. In dit proefschrift wordt een bijdrage geleverd aan het antwoord op de
ogenschijnlijk simpele vraag “Waardoor wordt de wrijvingskracht bepaald?” Het
onderzoek was erop gericht de kloof te overbruggen tussen de macroscopisch
geobserveerde wrijvingskracht en het onderliggende microscopische gedrag op
het grensvlak tussen de glijdende oppervlakken. Hiervoor zijn glij-experimenten uit-
gevoerd met verscheidene vormen (bollen, platen en een modelschaats) en verschei-
dene gradaties van ruwheid (van zo glad als een lens tot zo ruw als schuurpapier),
waarbij steeds de wrijvingskracht werd gemeten. We hebben drie verschillende
soorten oppervlakken gebruikt, namelijk nat zand, ijs en een reeks kunstmatige
oppervlakken. Van deze laatste kon de precieze geometrie worden ingesteld, om
zo meer kennis te vergaren over de wrijvingscoëfficiënt en deze waar mogelijk te
beheersen.
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Na een algemene introductie en een beschrijving van de toegepaste experimentele en
numerieke technieken in Hoofdstukken 1 en 2, wordt in Hoofdstuk 3 de glijweer-
stand over nat en droog zand beschreven. De mechanica van granulaire materialen
zoals zand wordt sterk beı̈nvloed door de aanwezigheid van water, zelfs in een
kleine hoeveelheid — een effect dat in het dagelijks leven ook kan worden ervaren:
bij bijvoorbeeld een strandwandeling loopt gedeeltelijk nat zand immers het makke-
lijkst, terwijl volledig droog of heel modderig zand het wandelen erg moeilijk kan
maken. Wanneer water wordt toegevoegd aan zand ontstaan vloeistofbruggen
tussen de zandkorrels, die deze aan elkaar binden; daardoor ontstaat een samen-
hangend materiaal. Het toevoegen van meer water aan het mengsel veroorzaakt
echter dat de waterbruggen samenvloeien, waardoor de sterkte van de binding
afneemt. In Hoofdstuk 3 wordt daarom verslag gedaan van onderzoek naar de
invloed die de volumefractie van water in zand heeft op de wrijvingskracht, en naar
de rol van de geometrie van het glijdende object. Hiervoor is een halve bol over
gedeeltelijk verzadigd zand getrokken, waaruit bleek dat de toevoeging van een
kleine hoeveelheid water de wrijvingskracht sterk doet dalen, terwijl een grotere
hoeveelheid toegevoegd water de wrijvingskracht weer laat toenemen. Ploegen is
het belangrijkste mechanisme dat hier speelt, wat zichtbaar is aan een diep spoor in
het zand wanneer het glijdende object gepasseerd is. Hoe diep de halve bol in het
natte zand wegzakt, wordt bepaald door de hardheid van het water-zandmengsel,
die weer sterk afhangt van de hoeveelheid water die in dit mengsel aanwezig is. De
hardheid bepaalt de grootte van het ploegspoor en de wrijvingskracht die nodig is
om door het water-zandmengsel te ploegen. In dit hoofdstuk wordt een ploegmodel
gepresenteerd dat de gemeten wrijvingskracht kwantitatief reproduceert, gebaseerd
op de gemeten hardheid van het water-zandmengsel. Het toevoegen van een beetje
— maar vooral niet te veel — water aan zand geeft een toename van de hardheid,
een ondiep spoor in het zand, en daardoor minder ploegfrictie voor de glijdende
halve bol.

De invloed van water op de mechanica van zand lijkt al bekend te zijn geweest bij
de oude Egyptenaren; een befaamde muurtekening in een tombe suggereert dat
tijdens het vervoer van een groot standbeeld door de woestijn een persoon water
op de grond voor de gebruikte slede giet om de wrijvingskracht te verlagen. In
Hoofdstuk 4 wordt de wrijvingskracht beschreven van een slede waarop als ‘stand-
beeld’ een gewicht is gezet en die over nat zand wordt getrokken. Direct na de
wrijvingstest is de hardheid van het gebruikte water-zandmengsel gekwantificeerd.
Zoals verwacht, bleek de weerstand die wordt ervaren sterk afhankelijk van de
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waterfractie in het zand. Wanneer een kleine hoeveelheid water wordt toegevoegd,
is de hardheid van het water-zandmengsel maximaal, waardoor de glijweerstand
minimaal is. Het toevoegen van een kleine hoeveelheid water, in de glijrichting vóór
de slede, geeft dus een sterke afname van de kracht die nodig is om deze voort te
trekken.

In Hoofdstuk 5, wordt de glibberigheid van ijs besproken. We laten verschillende
typen schaatsen over een miniatuur schaatsbaan glijden, terwijl we de wrijvingskracht
als functie van de temperatuur, de geometrie en de snelheid hebben gemeten. Alge-
meen wordt aangenomen dat ijs glibberig is door de aanwezigheid van een dunne
laag water op het ijsoppervlak die als smeermiddel dient. Het ontstaan van deze
vloeibare waterlaag blijft echter een onderwerp van hevige discussie. De eerste en
sindsdien weerlegde verklaring was gebaseerd op smelten door druk: de lokale
druk van een schaats op het ijs zou veroorzaken dat het ijs smelt. Voor dit smeltef-
fect is echter een onrealistisch hoge druk nodig, zeker bij temperaturen lager dan
−3.5 °C, die veelvuldig voorkomen in bevroren grachten en ijsbanen. In dit onder-
zoek is de wrijvingscoëfficiënt gemeten, waarna met berekeningen op basis van de
contactmechanica is beschreven dat ijs glibberig is door de diffuse beweging van
watermoleculen aan het oppervlak. Ook laten we zien dat ijs niet altijd glibberig is;
de mobiliteit van de watermoleculen aan het oppervlak en dus de glibberigheid van
ijs kan worden onderdrukt door de contactdruk te vergroten of de temperatuur te
verlagen. Bovendien treedt nabij het smeltpunt van het ijs ploegen op, als gevolg
van de hardheid van het ijs en de geometrie van de oppervlakken. Een ploegmodel
is dus niet alleen toepasbaar op krassen door (nat) zand maar ook op schaatsen op
ijs. We concluderen dat de hoge mobiliteit van watermoleculen aan het oppervlak en
de exceptioneel hoge hardheid van ijs nabij het smeltpunt samen de glibberigheid
van ijs veroorzaken. IJswrijving kan worden geminimaliseerd door de contactdruk
te beperken, iets wat schaatsers van nature al doen: de optimale schaats heeft een
gladde onderkant met door de lage druk een lage wrijvingsweerstand, en scherpe
randen die ter plaatse zorgen voor de hoge druk die nodig is voor een goede grip.

In Hoofdstuk 6 beschrijven we hoe wrijving kan worden geregeld met opper-
vlakken waarvan de ruwheid kan worden gekozen. De ruwheid heeft invloed op de
wrijvingsweerstand, zoals iedereen weet uit dagelijkse situaties: twee gladde opper-
vlakken glijden gemakkelijker over elkaar dan twee ruwe. Echter, hoe de oppervlak-
teruwheid de wrijving precies beı̈nvloedt, is vaak moeilijk te voorzien en te regelen.
Het voor een specifiek doeleinde aanpassen van de wrijving, door het instellen van
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een enkele parameter zoals de oppervlakteruwheid, kan aantrekkelijk zijn. Voor dit
hoofdstuk is de wrijvingsweerstand onderzocht tussen oppervlakken met daarop
geometrische patronen van een paar millimeter in hoogte. Daaruit blijkt dat goed ont-
worpen oppervlakteruwheden en een nauwkeurig geregelde (mis)match tussen deze
oppervlakteruwheden het mogelijk maken de wrijvingskracht te variëren met meer
dan een orde van grootte. De wrijvingsweerstand kan dus worden geregeld door
middel van de grensvlak-geometrie van de macroscopische oppervlaktepatronen op
de gefabriceerde oppervlakken. In dit hoofdstuk is daarom een simpel geometrisch
model toegevoegd dat kwantitatief reproduceert hoe de wrijvingsweerstand kan
worden geregeld met de geometrische oppervlaktepatronen. Een voorbeeld van
dit regelen van de wrijvingsweerstand is Kirigami. Kirigami is een oude Japanse
kunstvorm waarbij papier door snijden kan worden omgevormd in 3D-constructies.
Voor het onderzoek is gebruikgemaakt van een Kirigami-snijpatroon waarbij door in
één richting aan het vel papier te trekken de oppervlakteruwheid kan worden verg-
root. We laten zien dat deze externe regeling van de oppervlakteruwheid van een
metamateriaaloppervlak als Kirigami het mogelijk maakt de glijweerstand te regelen.

Samenvattend, dit proefschrift geeft nieuwe inzichten in de wrijving van zand, ijs en
een reeks kunstmatige oppervlakken waarvan de precieze geometrie kan worden
ingesteld. Daarbij blijkt de wrijving afhankelijk van het gedrag van de glijdende
grensvlakken op microscopische schaal. De microscopische en macroscopische
geometrie van de oppervlakken bepalen samen met (i) de waterfractie van zand, (ii)
de temperatuur van ijs en (iii) de (mis)match tussen de oppervlakteruwheden van
de oppervlakken de glijweerstand (zie Fig. S.4).
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Figure S.4: De wrijvingskracht als functie van de massa van het glijdende object. Dit
figuur vat de invloed samen van (i) de waterfractie op de wrijvingskracht van zand,
(ii) de temperatuur van ijs op de glibberigheid ervan, en (iii) kunstmatige oppervlak-
teruwheden op de wrijvingskracht van geometrisch geprepareerde oppervlakken. De
lijnen geven de genormaliseerde gemeten data voor zand, ijs en geometrisch geprepa-
reerde oppervlakken weer zoals beschreven in Hoofdstukken 3, 5, en 6. De blauw en
rood gekleurde gebieden geven de regimes met lage (µ . 0.07) en hoge wrijving (µ & 1)
aan. De lijnen die zijn gemarkeerd met ‘Droog zand’ en ‘Nat zand’ geven de gemeten
wrijvingskracht voor het schuiven van een halve bol over zand met een waterfractie van
respectievelijk φw = 0% en φw = 8% (zie Fig. 3.2). Bij de lijnen gemarkeerd met ‘IJs van
−0.5 °C’, ‘IJs van −10 °C’, en ‘IJs van −100 °C’ is dat de gemeten wrijvingskracht op
ijs met de aangegeven temperatuur, van respectievelijk een kleine bol (R = 0.75 mm),
een grote bol (R = 6 mm), en een modelschaats (zie Figuren 5.1 en 5.2). ‘Geometrisch
geprepareerde oppervlakken’ markeert de lijn van de gemeten wrijvingskracht tussen
twee glijdende objecten van aluminium met een zaagtand-patroon op het oppervlak
(θ = 70°, zie Fig. 6.4).
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