
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Datatype defining rewrite systems for naturals and integers

Bergstra, J.A.; Ponse, A.
DOI
10.23638/LMCS-17(1:17)2021
Publication date
2021
Document Version
Final published version
Published in
Logical Methods in Computer Science
License
CC BY

Link to publication

Citation for published version (APA):
Bergstra, J. A., & Ponse, A. (2021). Datatype defining rewrite systems for naturals and
integers. Logical Methods in Computer Science, 17(1), [17]. https://doi.org/10.23638/LMCS-
17(1:17)2021

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://doi.org/10.23638/LMCS-17(1:17)2021
https://dare.uva.nl/personal/pure/en/publications/datatype-defining-rewrite-systems-for-naturals-and-integers(25d7a31d-1a48-4ab0-8855-86feb0aa0145).html
https://doi.org/10.23638/LMCS-17(1:17)2021
https://doi.org/10.23638/LMCS-17(1:17)2021

Logical Methods in Computer Science
Volume 17, Issue 1, 2021, pp. 17:1–17:31
https://lmcs.episciences.org/

Submitted Jan. 15, 2020
Published Feb. 18, 2021

DATATYPE DEFINING REWRITE SYSTEMS FOR NATURALS AND

INTEGERS

JAN A. BERGSTRA AND ALBAN PONSE

Informatics Institute, section Theory of Computer Science, University of Amsterdam
e-mail address: j.a.bergstra@uva.nl
e-mail address: a.ponse@uva.nl

Abstract. A datatype defining rewrite system (DDRS) is an algebraic (equational)
specification intended to specify a datatype. When interpreting the equations from left-to-
right, a DDRS defines a term rewriting system that must be ground-complete. First we
define two DDRSs for the ring of integers, each comprising twelve rewrite rules, and prove
their ground-completeness. Then we introduce natural number and integer arithmetic
specified according to unary view, that is, arithmetic based on a postfix unary append
constructor (a form of tallying). Next we specify arithmetic based on two other views:
binary and decimal notation. The binary and decimal view have as their characteristic that
each normal form resembles common number notation, that is, either a digit, or a string
of digits without leading zero, or the negated versions of the latter. Integer arithmetic in
binary and decimal notation is based on (postfix) digit append functions. For each view we
define a DDRS, and in each case the resulting datatype is a canonical term algebra that
extends a corresponding canonical term algebra for natural numbers. Then, for each view,
we consider an alternative DDRS based on tree constructors that yields comparable normal
forms, which for that view admits expressions that are algorithmically more involved. For
all DDRSs considered, ground-completeness is proven.

1. Introduction

We specify natural number arithmetic and integer arithmetic by algebraic specifications,
according to three different “views”: unary, binary, and decimal notation. This paper
is based on the specifications for natural numbers from [Ber14] that define addition and
multiplication, and we follow the same strategy to develop these different views. Each of the
specifications provided is a so-called DDRS (datatype defining rewrite system) and consists
of a number of equations that define a term rewriting system (TRS) when interpreting the
equations from left-to-right. A DDRS must be ground-complete, that is, terminating and
ground-confluent; for some general information on TRSs see e.g. Terese [Ter03].

The unary view in [Ber14] is defined by a DDRS for which 0 and successor terms
are the normal forms. The unary view is also used to provide a semantic specification of
binary and decimal notation, using operator symbols for appending a digit. These two
positional notations were modified with respect to conventional notations in such a way that

Key words and phrases: Datatype defining rewrite system, Equational specification, Integer arithmetic,
Natural number arithmetic.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-17(1:17)2021
© J.A. Bergstra and A. Ponse
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

17:2 J.A. Bergstra and A. Ponse Vol. 17:1

x + (y + z) = (x + y) + z[CR1]

x + y = y + x[CR2]

x + 0 = x[CR3]

x + (−x) = 0[CR4]

(x · y) · z = x · (y · z)[CR5]

x · y = y · x[CR6]

1 · x = x[CR7]

x · (y + z) = (x · y) + (x · z)[CR8]

Table 1: Axioms for commutative rings

syntactic confusion between these notations cannot arise. It seems to be the case that for
the unary view the specification of the integers is entirely adequate, whereas all subsequent
specifications for binary and decimal view may provide no more than a formalisation of a
topic which must be somehow understood before taking notice of that same formalisation.
It remains to be seen to what extent the DDRSs for the unary case may serve exactly that
expository purpose. Furthermore, each of these DDRSs contains equations for rewriting
constructor terms in one of the other views to a term in the DDRS’s view, e.g., the DDRSs
for the unary view contain the equation 1 = S(0) for the constant 1 in binary view and in
decimal view. The definitions of these DDRSs are geared towards obtaining comprehensible
specifications of natural number and integer arithmetic in binary and decimal view. The
successor function S(x) and predecessor function P (x) appeared to be instrumental auxiliary
functions for this purpose, thereby justifying the incorporation of the unary view as a
separate view.

This paper constitutes a further stage in the development of a family of arithmetical
datatypes with corresponding specifications. The resulting DDRSs incorporate different
views on the same abstract datatype (ADT), where an ADT may be understood as the
isomorphism class of its instantiations. The datatypes considered in [Ber14] are so-called
canonical term algebras (we further discuss these in Section 2).

The strategy of this work is somewhat complicated: on the one hand we look for
specifications that may genuinely be considered introductory, that is, descriptions that can
be used to construct the datatype at hand for the first time in the mind of a person. On the
other hand awareness of the datatype in focus may be needed to produce an assessment of
the degree of success achieved in the direction of the first objective. The described models
aim to represent the natural and integer numbers. The question whether this is really the
case depends on one’s conception of the natural numbers as well as on the requirements one
maintains of the notion of proof. As an independent foundational question, this question is
neither posed nor answered in this paper, though the arguments in favour of the recognition
of representations of natural and integer numbers in the given specifications are in line with
conventional work on abstract datatypes. For such arguments ground-completeness is clearly
an important aspect, and is the key focus of the current paper. The most closely related
work seems to be that of Walters & Zantema [WZ95]; in Section 6 we briefly discuss a
comparison with this work.

The paper is structured as follows. In Section 2 we start with DDRSs for commutative
rings over the signature Σr = {0, 1,−(),+, ·}, which are defined by the axioms Table 1
(we shall often write −t for −(t)). These axioms characterise integer arithmetic, while
leaving open how numbers are represented (apart from the constants 0, 1 ∈ Σr). For the
ADT Z determined by these axioms we introduce two simple DDRSs that both have the
same normal forms. In Section 3 we define two DDRSs for the unary view that relate

Vol. 17:1 DATATYPE DEFINING REWRITE SYSTEMS FOR NATURALS AND INTEGERS 17:3

to the DDRSs for the ring of integers, with numbers represented in unary view, that is,
in a numeral system based on the constant 0 and a unary append constructor (a form of
tallying). Moreover, a part of each of these DDRSs specifies natural number arithmetic.
In Section 4 we define DDRSs for natural number and integer arithmetic that follow the
approach in [Ber14]. These DDRSs combine unary view with binary and decimal view and
are based on digit append constructors. In Section 5 we define similar DDRSs that employ
digit tree constructors instead, which are algorithmically more involved. In Section 6 we
come up with some conclusions. The paper contains two appendices with detailed proofs.

This paper subsumes, and thereby also replaces and improves on, our earlier paper
[BP16a]. The main differences are that the DDRSs defined in Tables 2 – 6 are new, and that
the DDRSs defined in all remaining tables are simplified and contain fewer rules, except those
in Table 13. All termination proofs were found by the tool AProVE [Gie+17], downloads of
these proofs are available at https://arxiv.org/src/1608.06212/anc/.

This paper has been written for the occasion of the retirement of Jos Baeten, lately as
the director of the CWI in Amsterdam. For Alban, Jos was his highly valued second promotor
at the University of Amsterdam. For Jan, in addition to being a former UvA colleague, Jos
has been a highly respected coauthor of many papers. Jos has been participating in the ACP
process algebra project from a quite early stage and the outcome of our joint work has been
important for Jan’s work ever since.

2. DDRSs for the ring of integers

In this section we introduce two DDRSs that both specify the ring of integers. In Section 2.1
we first give a general definition of a DDRS and discuss in what way it specifies a datatype,
and then provide a DDRS for the ring of integers. In Section 2.2 we consider an alternative
DDRS for the ring of integers that is deterministic with respect to rewriting a sum of two
nonnegative closed normal forms.

2.1. A DDRS for the ring of integers. We start with a formal definition of a DDRS.

Definition 2.1. Given a many-sorted signature Σ and a finite set E of equations over Σ, a
specification (Σ, E) is a DDRS (Dataype Defining Rewrite System) if for each sort S in Σ
the following two requirements are satisfied:

(1) there is a closed term of sort S, thus, S is inhabited,
(2) the equations in E over sort S when interpreted from left to right define a ground-

complete TRS.

The datatypes specified by the forthcoming DDRSs are canonical term algebras, which
means that carriers are non-empty sets of closed terms, and for each congruence class of
closed terms, a unique representing term is chosen, and this set of representing closed terms,
the normal forms, is closed under taking subterms.

In this paper we will consider single-sorted DDRSs for integer arithmetic. We require
that for each such DDRS, 0 is a constant in its signature and for each closed term t both
t + 0 = t and t + (−t) = 0 hold (so, e.g. exchanging the roles of 0 and 1 in such a DDRS is
not permitted).

In [BP16, BP16a] we defined a DDRS consisting of fifteen equations for the ADT Z
(which is determined by the axioms for commutative rings in Table 1). Normal forms for

https://arxiv.org/src/1608.06212/anc/

17:4 J.A. Bergstra and A. Ponse Vol. 17:1

x + 0 = x[R1]

0 + x = x[R2]

x + (y + z) = (x + y) + z[R3]

x · 0 = 0[R4]

x · 1 = x[R5]

x · (y + z) = (x · y) + (x · z)[R6]

−0 = 0[R7]

(−1) + 1 = 0[R8]

(−(x + 1)) + 1 = −x[R9]

−(−x) = x[R10]

x + (−y) = −((−x) + y)[R11]

x · (−y) = −(x · y)[R12]

Table 2: The DDRS D1 for the datatype Zr that specifies the ring of integers

this DDRS are 0 for zero, the positive normal forms 1 and t + 1 with t a positive normal
form, and the negations of positive normal forms, thus −t for each positive normal form
t. Clearly, two different closed normal forms have distinct values in Z. The DDRS D1 in
Table 2 over the signature Σr defines the datatype Zr that has the same normal forms and
is hence the same CTA.

Clearly, all equations of D1 are semantic consequences of the axioms for commutative
rings (Table 1). The difference between D1 in Table 2 and the DDRS for Zr defined
in [BP16, BP16a] is that equation [R11] replaces the four equations

1 + (−1) = 0,[r5]

(x + 1) + (−1) = x,[r6]

x + (−(y + 1)) = (x + (−y)) + (−1),[r7]

(−x) + (−y) = −(x + y).[r11]

Theorem 2.2. The DDRS D1 for Zr defined in Table 2 is ground-complete.

Proof. The AProVE tool [Gie+17] finds that this DDRS is terminating. For ground-conflu-
ence, see Corollary 2.4.

2.2. An alternative DDRS for the ring of integers. The DDRS D1 can be simplified
by instantiating some of its equations. In Table 3 we provide the DDRS D2 that also specifies
the datatype Zr, where the differences with D1 show up in the tags: equations [R2′], [R3′]
and [R6′] replace [R2], [R3] and [R6], respectively.

Theorem 2.3. The DDRS D2 for Zr defined in Table 3 is ground-complete.

Proof. The AProVE tool [Gie+17] finds that this DDRS is terminating, so it remains to be
proven that D2 is ground-confluent. Define the set N of closed terms over Σr as follows:

N = {0} ∪N + ∪N−,

N + = {1} ∪ {t + 1 | t ∈ N +},
N− = {−t | t ∈ N +}.

It immediately follows that if t ∈ N , then t is a normal form (no rewrite step applies). In
order to prove ground-confluence of the DDRS D2 it suffices to show that for each closed
term t over Σr, either t ∈ N or t has a rewrite step, so that each normal form is in N . This

Vol. 17:1 DATATYPE DEFINING REWRITE SYSTEMS FOR NATURALS AND INTEGERS 17:5

x + 0 = x[R1]

0 + 1 = 1[R2′]

x + (y + 1) = (x + y) + 1[R3′]

x · 0 = 0[R4]

x · 1 = x[R5]

x · (y + 1) = (x · y) + x[R6′]

−0 = 0[R7]

(−1) + 1 = 0[R8]

(−(x + 1)) + 1 = −x[R9]

−(−x) = x[R10]

x + (−y) = −((−x) + y)[R11]

x · (−y) = −(x · y)[R12]

Table 3: The DDRS D2 for the datatype Zr that specifies the ring of integers

is sufficient because D2 is terminating, all equations of D2 are semantic consequences of the
axioms for commutative rings, and distinct closed normal forms have distinct values in Z.

We prove this by structural induction on t. The base cases t ∈ {0, 1} are trivial. For
the induction step we have to consider three cases:

(1) Case t = −r. Assume that r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [R7],
• if r ∈ N +, then t ∈ N ,
• if r ∈ N−, then t has a rewrite step by equation [R10].

(2) Case t = u + r. Assume that u, r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [R1],
• if r = 1, then apply case distinction on u:

– if u = 0, then t has a rewrite step by equation [R2′],
– if u ∈ N +, then t ∈ N ,
– if u = −1, then t has a rewrite step by equation [R8],
– if u = −(u′ + 1), then t has a rewrite step by equation [R9],
• if r = r′ + 1, then t has a rewrite step by equation [R3′],
• if r = −r′ with r′ ∈ N +, then t has a rewrite step by equation [R11].

(3) Case t = u · r. Assume that u, r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [R4],
• if r = 1, then t has a rewrite step by equation [R5],
• if r = r′ + 1, then t has a rewrite step by equation [R6′],
• if r = −r′ with r′ ∈ N +, then t has a rewrite step by equation [R12].

Corollary 2.4. The DDRS D1 for Zr defined in Table 2 is ground-confluent.

Proof. It suffices to consider the proof of Theorem 2.3 and to observe that each rewrite
step by one of the equations [R2′], [R3′], and [R6′] implies a rewrite step of the associated
equation in D1, which implies ground-confuence.

A particular property of D2 concerns the addition of two nonnegative normal forms.

Proposition 2.5. With respect to addition of two nonnegative closed normal forms, the
DDRS D2 in Table 3 is deterministic, that is, for nonnegative closed normal forms t, t′, in
each state of rewriting of t + t′ to its normal form, only one equation (rewrite rule) applies.

Proof. By structural induction on t′. For t′ ∈ {0, 1} this is immediately clear.

17:6 J.A. Bergstra and A. Ponse Vol. 17:1

If t′ = r + 1, then the only possible rewrite step is t + (r + 1)
[R3′]−→ (t + r) + 1. If r = 1,

this is a normal form, and if r = r′ + 1, the only redex in (t + (r′ + 1)) + 1 is in t + (r′ + 1),
and by induction the latter rewrites deterministically to some normal form u.

Consider this reduction: t + (r′ + 1)→ u′ →→ u (where →→ denotes zero or more rewrite
steps). Then (t + (r′ + 1)) + 1→ u′ + 1→→ u + 1, and in each state of this reduction the
rightmost addition ... + 1 does not establish a new redex according to equations [R1], [R2′]
and [R3′], and results in u + 1, which also is a normal form.

It is clear that for example 1 + t′ with t′ a closed negative normal form also rewrites
deterministically in D2, and that this determinism is not preserved for t + t′ if t = 0, e.g.,

0 + (−(r + 1))
[R11]−→ −((−0) + (r + 1))

 [R3′]−→ −(((−0) + r) + 1)
[R7]−→

[R7]−→ −(0 + (r + 1))
[R3′]−→

−((0 + r) + 1),

or if t is a closed negative normal form (−t′), e.g.,

(−t′) + (−(r + 1))
[R11]−→ −((−(−t′)) + (r + 1))

 [R3′]−→ −(((−(−t′)) + r) + 1)
[R10]−→

[R10]−→ −(t′ + (r + 1))
[R3′]−→

−((t′ + r) + 1).

However, our interest in deterministic reductions concerns nonnegative closed normal
forms and we return to this point in the next section. Finally, note that with respect to
multiplication of two nonnegative normal forms, the DDRS D2 is not deterministic:

0 · (1 + 1)
[R6′]−→ (0 · 1) + 0

 [R4]−→ 0 + 0
[R1]−→

[R1]−→ 0 · 1 [R4]−→

 0.

3. DDRSs for natural number and integer arithmetic in unary view

Given the signature {0, 1,+, ·}, natural number arithmetic can be characterised by the
axioms in Table 4 and we write N for the ADT captured by these axioms. In the remainder
of this paper we will also discuss single-sorted DDRSs for natural number arithmetic. For
each DDRS that specifies natural number arithmetic we require that 0 is a constant in its
signature and that both t + 0 = t and 0 · t = 0 hold for each closed term t.

All DDRSs further discussed in this paper are based on a signature Σ that contains the
unary minus function −() and will be defined in a pairwise manner:

(1) a DDRS (Σ \ {−()}, En) for natural number arithmetic, and
(2) a DDRS (Σ, Ez), where En ⊂ Ez.

In this section we consider a simple form of number representation that is related to
tallying and establishes a unary numeral system based on the constant 0. The unary append
is the one-place (postfix) function

:u1 : Z→ Z
and is an alternative notation for the successor function S(x). The signature we work in is

ΣU = {0,−(), :u1,+, ·}.

Vol. 17:1 DATATYPE DEFINING REWRITE SYSTEMS FOR NATURALS AND INTEGERS 17:7

x + (y + z) = (x + y) + z[Nat1]

x + y = y + x[Nat2]

x + 0 = x[Nat3]

0 · x = 0[Nat4]

(x · y) · z = x · (y · z)[Nat5]

x · y = y · x[Nat6]

1 · x = x[Nat7]

x · (y + z) = (x · y) + (x · z)[Nat8]

Table 4: Axioms for natural number arithmetic

For natural numbers, the intended normal forms are 0 for zero, and applications of the
unary append function that define all successor values: each natural number n is represented
by n applications of the unary append to 0 and can be seen as representing a sequence of
1’s of length n having 0 as a single prefix, e.g.

(0:u1):u1

is the normal form that represents 2 and can be abbreviated as 011. We name the resulting
datatype NU . Clearly, two different closed normal forms have distinct values in N.

For integers, each minus instance −t of a nonzero normal form t in NU is a normal form
over ΣU , e.g.

−((0:u1):u1)

is the normal form that represents −2 and can be abbreviated as −011. We name the
resulting datatype ZU , which satisfies the property that two distinct closed normal forms
have distinct values in Z.

In Section 3.1 we introduce DDRSs based on ΣU . In Section 3.2 we investigate in what
way the DDRS D2 for the ring of integers is related.

3.1. DDRSs for NU and ZU . In the left column of Table 5 we define the DDRS Nat1 for
the datatype NU over the signature ΣU \ {−()}. With the interpretation rule

Jx :u1K = JxK + 1,

it follows that the equations in Table 5 are semantic consequences of the axioms for natural
number arithmetic in Table 4.

The transition to DDRSs for ZU can be taken in different ways. In Table 5 we provide
the DDRS Int1 that defines an extension of Nat1 to integer numbers (thus, to the datatype
ZU). With the above-mentioned interpretation rule it follows that the equations in Table 5
are semantic consequences of the axioms for commutative rings (Table 1).

Theorem 3.1. The DDRSs Nat1 for NU and Int1 for ZU (Table 5) are ground-complete.

Proof. The AProVE tool [Gie+17] finds that the DDRS Int1 is terminating (and therefore
the DDRS Nat1 is terminating as well). It remains to be shown that both these DDRSs are
ground-confluent. We first consider the DDRS Int1. Define the set N as follows:

N = {0} ∪N+ ∪N−,

N+ = {0:u1} ∪ {t :u1 | t ∈ N+},
N− = {−t | t ∈ N+}.

It immediately follows that if t ∈ N , then t is a normal form (no rewrite rule applies). In
order to prove ground-confluence it suffices to show that for each closed term t over ΣU ,

17:8 J.A. Bergstra and A. Ponse Vol. 17:1

x + 0 = x[U1]

x + (y :u1) = (x :u1) + y[U2]

x · 0 = 0[U3]

x · (y :u1) = x + (x · y)[U4]

−0 = 0[U5]

(−(x :u1)):u1 = −x[U6]

−(−x) = x[U7]

x + (−y) = −((−x) + y)[U8]

x · (−y) = −(x · y)[U9]

Table 5: DDRSs Nat1 for NU (left column) and Int1 for ZU that specify natural number
and integer arithmetic

either t ∈ N or t has a rewrite step, so that each normal form is in N . As in the proof of
Theorem 2.3, this is sufficient because Int1 is terminating, all equations of Int1 are semantic
consequences of the axioms for commutative rings, and distinct closed normal forms have
distinct values in Z.

We prove this by structural induction on t. The base case is simple: if t = 0, then t ∈ N .
For the induction step we have to distinguish four cases:

(1) Case t = −r. Assume that r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [U5],
• if r = r′ :u1, then t ∈ N ,
• if r = −(r′ :u1), then t has a rewrite step by equation [U7].

(2) Case t = r :u1. Assume that r ∈ N and apply case distinction on r:
• if r = 0, then t ∈ N ,
• if r = r′ :u1, then t ∈ N ,
• if r = −(r′ :u1), then t has a rewrite step by equation [U6].

(3) Case t = u + r. Assume that u, r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [U1],
• if r = r′ :u1, then t has a rewrite step by equation [U2],
• if r = −(r′ :u1), then t has a rewrite step by equation [U8].

(4) Case t = u · r. Assume that u, r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [U3],
• if r = r′ :u1, then t has a rewrite step by equation [U4],
• if r = −(r′ :u1), then t has a rewrite step by equation [U9].

Ground-confluence of the DDRS Nat1 follows in a similar way by restricting the above
proof to the set of nonnegative normal forms. Moreover, a confluence proof for the DDRS
Nat1 was found by the confluence prover CSI [ZFM11] at http://cocoweb.uibk.ac.at/

(property [CR] and options [2020, TRS, CSI]) with the input file NAT1.trs that is available
at https://arxiv.org/src/1608.06212/anc/.

The following example shows that with respect to addition of negative normal forms,
the DDRS Int1 is not deterministic:

(−011) + 01
[U2]−→ ((−011)1) + 0

 [U6]−→ (−01) + 0
[U1]−→

[U1]−→ (−011)1
[U6]−→

−01. (3.1)

http://cocoweb.uibk.ac.at/
NAT1.trs
https://arxiv.org/src/1608.06212/anc/

Vol. 17:1 DATATYPE DEFINING REWRITE SYSTEMS FOR NATURALS AND INTEGERS 17:9

x + 0 = x[U1]

x + (y :u1) = (x + y) :u1[U2′]

x · 0 = 0[U3]

x · (y :u1) = (x · y) + x[U4′]

−0 = 0[U5]

(−(x :u1)):u1 = −x[U6]

−(−x) = x[U7]

x + (−y) = −((−x) + y)[U8]

x · (−y) = −(x · y)[U9]

Table 6: DDRSs Nat2 for NU (left column) and Int2 for ZU that specify natural number
and integer arithmetic

However, the DDRS Nat1 for NU satisfies the following property.

Proposition 3.2. With respect to addition and multiplication of closed normal forms, the
DDRS Nat1 in Table 5 is deterministic, that is, for closed normal forms t, t′, in each state
of rewriting of t + t′ and t · t′ to their normal form, only one equation (rewrite rule) applies.

Proof. The case for addition is simple: applicability of equations [U1] or [U2] excludes the
other.

The case for multiplication follows by structural induction on t′.

Case t′ = 0. Equation [U3] defines the only possible rewrite step.

Case t′ = r :u1. Equation [U4] defines the only possible rewrite step, resulting in t + (t · r).
By induction, t · r rewrites deterministically to some normal form tn, say t · r = t0 and
t0 → t1 →→ tn for some n > 0. It is easily seen that ti is the only redex in t + ti for i ≤ n,
hence also t + (t · r) rewrites deterministically to t + tn. By the case for addition, the latter
term rewrites deterministically.

3.2. From the ring of integers to unary view. In this section we relate the DDRS D2

for the ring of integers Zr to integer arithmetic as defined in the previous section. If we use
t :u1 as an alternative notation for t + 1 in D2 and then delete all equations that contain
1 as a constant (thus 0:u1 = 1, x · 1 = 1, and (−1):u1 = 0), we obtain the DDRS Int2
given in Table 6, which provides an alternative specification of integer arithmetic over the
signature ΣU comparable to the DDRS Int1 for ZU defined in Table 5. Equations [U2′]
(replacing [U2]) and [U4′] (replacing [U4]) are new. Clearly, [U1] + [U2′] + [U3] + [U4′] define
an alternative DDRS Nat2 for natural number arithmetic, and these equations are semantic
consequences of the axioms for natural number arithmetic (Table 4).

Theorem 3.3. The DDRSs Nat2 for NU and Int2 for ZU (Table 6) are ground-complete.

Proof. The AProVE tool [Gie+17] finds that these DDRSs are terminating, so it remains to
be shown that both these DDRSs are ground-confluent. We first consider the DDRS Int2. It
immediately follows from the proof of Theorem 3.1 that [U2′] admits a rewrite step if [U2]
does, and [U4′] admits a rewrite step if [U4] does. Hence the DDRS Int2 is ground-confluent.

By restricting this proof to the set of nonnegative normal forms, it follows that the
DDRS Nat2 is ground-confluent. Moreover, a confluence proof for the DDRS Nat2 has been
found by the confluence prover CSI [ZFM11] at http://cocoweb.uibk.ac.at/ (property

http://cocoweb.uibk.ac.at/

17:10 J.A. Bergstra and A. Ponse Vol. 17:1

0′ ≡ 1 3′ ≡ 4 6′ ≡ 7

1′ ≡ 2 4′ ≡ 5 7′ ≡ 8

2′ ≡ 3 5′ ≡ 6 8′ ≡ 9

Table 7: Enumeration and successor notation of digits of type Z

[CR] and options [2020, TRS, CSI]) with the input file NAT2.trs that is available at
https://arxiv.org/src/1608.06212/anc/.

Furthermore, Proposition 2.5 and the above proof imply that the DDRS Int2 is deter-
ministic with respect to rewriting a sum of two nonnegative closed normal forms. However,
Int2 is not deterministic with respect to multiplication of two nonnegative normal forms:

0 · (0:u1)
[U4′]−→ (0 · 0) + 0

 [U1]−→ 0 · 0 [U3]−→
[U3]−→ 0 + 0

[U1]−→

 0.

4. DDRSs for combining unary, binary and decimal view

In this section we define various DDRSs for the unary, binary and decimal view. In Section 4.1
we fix a signature that comprises these views. In Section 4.2 we define two canonical term
algebras that represent the unary view: Nubd and Zubd. Their defining DDRSs Natubd and
Intubd, respectively, comprise the conversion from numbers in binary or decimal view to
unary view (hence the ordering in the subscript).

In Section 4.3 we define DDRSs for a binary view of natural and integer arithmetic, and
in Section 4.4 we do the same for a decimal view of natural and integer arithmetic.

4.1. Digits, a large signature, and two canonical term algebras. Digits are elements
of the set D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, ordered in the common way:

0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

For the digits 0, 1, . . . , 8 we denote with i′ the successor digit of i in the given enumeration.
In Table 7 the successor notation on digits is specified as a transformation of syntax, and we
adopt this notation throughout the paper.

In forthcoming DDRSs we will often add tags of the form

[Nn.i]`i=k t = r

with n, k, ` ∈ N (in ordinary, decimal notation) and k < `, which represents the following
`− k + 1 equations:

[Nn.k] t[k/i] = r[k/i], . . . , [Nn.`] t[`/i] = r[`/i],

thus with i instantiated from k to `. Occasionally, we will use this notation with two “digit
counters”, as in

[Nn.i.j]`i,j=k t = r,

NAT2.trs
https://arxiv.org/src/1608.06212/anc/

Vol. 17:1 DATATYPE DEFINING REWRITE SYSTEMS FOR NATURALS AND INTEGERS 17:11

for a concise representation of the following (`− k + 1)2 equations:

[Nn.k.k] t[k/i][k/j] = r[k/i][k/j], . . . , [Nn.k.`] t[k/i][`/j] = r[k/i][`/j],

. . . ,

[Nn.`.k] t[`/i][k/j] = r[`/i][k/j], . . . , [Nn.`.`] t[`/i][`/j] = r[`/i][`/j].

The signature ΣZ considered henceforth has the following elements:

(1) a sort Z,
(2) for digits the ten constants 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
(3) three one-place functions S, P,− : Z → Z, “successor”, “predecessor”, and “minus”,

respectively,
(4) addition and multiplication (infix) +, · : Z× Z→ Z,
(5) two one-place functions (postfix) :b 0, :b 1 : Z→ Z, “binary append zero” and “binary

append one”, these functions will be used for binary notation,
(6) ten one-place functions (postfix)

:d0, :d1, :d2, :d3, :d4, :d5, :d6, :d7, :d8, :d9 : Z→ Z,

“decimal append zero”, ...,“decimal append nine”, to be used for decimal notation.

For the unary view, the normal forms we will consider are the constant (digit) 0 and
the classical successor terms, that is

0, S(0), S(S(0)), ...

and all minus instances −t of each nonzero normal form t, e.g. −(S(S(0))). We shall use
the following abbreviation, where i is a digit: Si(t) stands for i applications of the successor

function S to t, thus S0(t) = t and Si
′
(t) = S(Si(t)).

For the binary view and for the decimal view, we provide one DDRS for each. Normal
forms are all appropriate digits, all applications of the respective append functions to a
nonzero normal form, and all minus instances −t of each such normal form t that differs
from 0. For example,

(9:d7):d5 and ((1:b0):b1):b1

represent the decimal number 975 (with the interpretation rule Jx :d iK = 10 · JxK + i), and
the binary number 1011, respectively (with the interpretation rule Jx :b iK = 2 · JxK + i).

Finally, we will include in forthcoming DDRSs equations for conversion from the one
view to the other.

4.2. Unary view. Replacing the t :u1-occurrences by S(t) in the DDRS Nat2 defined in
Table 6 results in equations [S1] – [S4] in Table 8, which hence define a DDRS for natural
number arithmetic in unary view with successor function. We name this DDRS Natubd and
its CTA Nubd. The equations [Sb.i]1i=0 – [Sd2.i]9i=0 define the conversion of terms that
employ constructors from binary or decimal view to unary view.

Integer arithmetic is obtained by replacing all t :u1-occurrences by S(t) in the DDRS
Int2 defined in Table 6. We name the resuting DDRS Intubd and its CTA Zubd. The proof
of Theorem 3.3 implies the following result.

Theorem 4.1. The DDRSs Natubd and Intubd (Table 8) are ground-complete.

17:12 J.A. Bergstra and A. Ponse Vol. 17:1

x + 0 = x[S1]

x + S(y) = S(x + y)[S2]

x · 0 = 0[S3]

x · S(y) = (x · y) + x[S4]

x :b i = (x · S(1)) + i[Sb.i]1i=0

i′ = S(i)[Sd1.i]8i=0

x :d i = (x · S(9)) + i[Sd2.i]9i=0

−0 = 0[S5]

S(−S(x)) = −x[S6]

−(−x) = x[S7]

x + (−y) = −((−x) + y)[S8]

x · (−y) = −(x · y)[S9]

Table 8: DDRSs Natubd for Nubd (left column) and Intubd for Zubd

Proof. The AProVE tool [Gie+17] finds that these DDRSs are terminating. We first prove
ground-confluence for the DDRS Intubd. It is sufficient to consider the proof of Theorem 3.3:
the renaming to successor terms is not relevant, and the ‘new’ equations [Sb.i]1i=0 – [Sd2.i]9i=0
rewrite to successor terms and thus preserve ground-confluence.

In a similar way it follows that the DDRS Natubd is ground-confluent. Moreover, a
ground-confluence proof for the DDRS Natubd was found by the ground-confluence prover
AGCP [ATK17] at http://cocoweb.uibk.ac.at/ (property [GCR] and options [2020, TRS,
AGCP]) with input https://arxiv.org/src/1608.06212/anc/NATubd.trs.

The equations [S1] – [S4] that define natural number arithmetic with 0 and successor
function are very common (see, e.g. [KV03, UK03, WZ95]). Note that the DDRS Natubd is
deterministic with respect to addition of two normal forms (cf. Proposition 2.5), but not
with respect to their multiplication (cf. counterexample (3.1) in Section 3.2).

4.3. Binary view. In the left column of Table 9 we define the DDRS Natbud for a binary
view of natural numbers that employs the successor function as an auxiliary function.
Leading zeros except for the zero itself are removed by [b1.i]1i=0, and successor terms are
rewritten according to [b2] – [b5].

Theorem 4.2. The DDRS Natbud for Nbud (Table 9) is ground-complete.

Proof. The AProVE tool [Gie+17] finds that this DDRS is terminating. Ground-confluence
follows as in the proof in Appendix A.1 restricted to the set of nonnegative normal forms.

In the right column of Table 9 minus and predecessor are introduced and the transition
from a signature for natural numbers to a signature for integers is made; the rules in this
table define the DDRS Intbud and the canonical term algebra Zbud that is isomorphic to
the canonical term algebra Zubd of the DDRS Intubd in Table 8. The DDRS Intbud contains
twenty-eight (non-parametric) equations for the specification of numbers, addition, and
multiplication. A brief comment on equations [b23] and [b24]:

(−x) :b i

http://cocoweb.uibk.ac.at/
https://arxiv.org/src/1608.06212/anc/NATubd.trs

Vol. 17:1 DATATYPE DEFINING REWRITE SYSTEMS FOR NATURALS AND INTEGERS 17:13

0:b i = i[b1.i]1i=0

S(0) = 1[b2]

S(1) = 1:b0[b3]

S(x :b0) = x :b1[b4]

S(x :b1) = S(x) :b0[b5]

x + 0 = x[b6]

x + 1 = S(x)[b7]

x + (y :b0) = (x + y) + y[b8]

x + (y :b1) = S(x + (y :b0))[b9]

x · 0 = 0[b10]

x · 1 = x[b11]

[b12.i]1i=0

x · (y :b i) = ((x · y) :b0) + (x · i)

i′ = S(i)[bd1.i]8i=1

x :d i = (x · S(9)) + i[bd2.i]9i=0

−0 = 0[b13]

−(−x) = x[b14]

P (0) = −1[b15]

P (1) = 0[b16]

P (x :b0) = P (x) :b1[b17]

P (x :b1) = x :b0[b18]

P (−x) = −S(x)[b19]

S(−1) = 0[b20]

S(−(x :b0)) = −(P (x) :b1)[b21]

S(−(x :b1)) = −(x :b0)[b22]

(−x) :b0 = −(x :b0)[b23]

(−x) :b1 = −(P (x) :b1)[b24]

x + (−y) = −((−x) + y)[b25]

x · (−y) = −(x · y)[b26]

Table 9: DDRSs Natbud for Nbud (left column) and Intbud for Zbud

should be equal to (−(x :b0)) + i, so (−x) :b0 = −(x :b0), and (−x) :b1 is determined by

−(P (x :b0))
[b24]
= −(P (x) :b1).

Equations [b21] and [b22] can be explained in a similar way:

S(−(x :b0)) should be equal to − (P (x :b0)) = −(P (x) :b1),

S(−(x :b1)) should be equal to − (P (x :b1)) = −(x :b0).

Normal forms for Zbud are 0, 1, all applications of :b0 and :b1 to a nonzero normal form,
and all minus instances −t of each such normal form t that differs from 0.

Note that the equations in Table 9 are semantic consequences of the axioms for com-
mutative rings (Table 1), and that two distinct closed normal forms have distinct values
in Z.

Theorem 4.3. The DDRS Intbud for Zbud (Table 9) is ground-complete.

Proof. The AProVE tool [Gie+17] finds that the DDRS Intbud is terminating. In Appen-
dix A.1 we prove that the DDRS Intdub is ground-confluent.

17:14 J.A. Bergstra and A. Ponse Vol. 17:1

1? ≡ 9 4? ≡ 6 7? ≡ 3

2? ≡ 8 5? ≡ 5 8? ≡ 2

3? ≡ 7 6? ≡ 4 9? ≡ 1

Table 10: 10’s complement notation for decimal digits

4.4. Decimal view. We provide DDRSs for the decimal view that are straightforward
generalizations of Natbud and Intbud to the decimal view. In the left column of Table 11
we define the DDRS Natdub for decimal natural numbers that defines the canonical term
algebra Ndub, the datatype in which unary and binary view are derived representations. This
DDRS consists of twelve (parametric) equations, and another one for conversion from binary
view (72 equations in total). The datatype Ndub is isomorphic to the canonical term algebra
Nubd of the DDRS Natubd in Table 8. Leading zeros except for the zero itself are removed by
[d1.i]9i=0, and successor terms are rewritten according to [d2.i]8i=0 – [d5]. In equation [d8],
the notation +10 is used for a nested sum:

x +1 y = x + y and for n = 1, ..., 9, x +n+1 y = (x +n y) + y.

Rewriting from binary notation is part of this DDRS, and the equation scheme [db1.i]1i=0
serves that purpose. Clearly, two distinct closed normal forms have distinct values in N,
and all equations in Natdub are semantic consequences of the axioms for natural number
arithmetic (Table 4).

Theorem 4.4. The DDRS Natdub for Ndub (Table 11) is ground-complete.

Proof. The AProVE tool [Gie+17] finds that this DDRS is terminating. Ground-confluence
follows as in the proof in Appendix A.2, restricted to the set of nonnegative normal forms.

Before we extend the DDRS Natdub to the integers, we define “10’s complement”,
notation i?, for digits i ∈ {1, ..., 9} in Table 10, which can be characterised by the equation
scheme

i? = 10− i.

In Table 11, we define the DDRS Intdub in which minus and predecessor are added. In
rule scheme [d24.i]9i=1 we employ the notation i?. The canonical term algebra thus defined
is named Zdub and is isomorphic to Zubd of the specification in Table 8. The DDRS Intdub
contains 126 equations in total, including two for conversion from binary view.

The (twenty) equations captured by [d21] – [d24.i]9i=1 can be explained in a similar
fashion as was done in the previous section for [b21] – [b24], for example,

(−5):d3

should be equal to −(5:d 0)+3 = −(4:d 7), and this follows immediately from equation [d24.3].
The equations of the DDRS Intdub are semantic consequences of the equations for

commutative rings (Table 1). It is also clear that two distinct closed normal forms have
distinct values in Z.

Theorem 4.5. The DDRS Intdub for Zdub (Table 11) is ground-complete.

Proof. The AProVE tool [Gie+17] finds that this DDRS is terminating. In Appendix A.2
we prove that the DDRS Intdub is ground-confluent.

Vol. 17:1 DATATYPE DEFINING REWRITE SYSTEMS FOR NATURALS AND INTEGERS 17:15

0:d i = i[d1.i]9i=0

S(i) = i′[d2.i]8i=0

S(9) = 1:d0[d3]

S(x :d i) = x :d i
′[d4.i]8i=0

S(x :d9) = S(x) :d0[d5]

x + 0 = x[d6]

x + i = Si(x)[d7.i]9i=1

x + (y :d0) = x +10 y[d8]

[d9.i]9i=1

x + (y :d i) = Si(x + (y :d0))

x · 0 = 0[d10]

x · i′ = (x · i) + x[d11.i]8i=0

[d12.i]9i=0

x · (y :d i) = ((x · y) :d0) + (x · i)

x :b i = (x + x) + i[db1.i]1i=0

−0 = 0[d13]

−(−x) = x[d14]

P (0) = −1[d15]

P (i′) = i[d16.i]8i=0

P (x :d0) = P (x) :d9[d17]

P (x :d i
′) = x :d i[d18.i]8i=0

P (−x) = −S(x)[d19]

S(−i′) = −i[d20.i]8i=0

S(−(x :d0)) = −(P (x) :d9)[d21]

[d22.i]8i=0

S(−(x :d i
′)) = −(x :d i)

(−x) :d0 = −(x :d0)[d23]

(−x) :d i = −(P (x) :d i
?)[d24.i]9i=1

x + (−y) = −((−x) + y)[d25]

x · (−y) = −(x · y)[d26]

Table 11: DDRSs Natdub for Ndub (left column) and Intdub for Zdub that specify natural
number and integer arithmetic in decimal view, employing i? from Table 10

5. DDRSs with digit tree constructors

Having defined DDRSs that employ (postfix) digit append functions in Sections 3 and 4, we
now consider the more general digit tree constructor functions. For the binary view, this
approach is followed by Bouma & Walters in [BW89]; for a view based on any radix
(number base), this approach is further continued in Walters [Wal94] and Walters &
Zantema [WZ95], where the constructor is called juxtaposition because it goes with the
absence of a function symbol in order to be close to ordinary decimal and binary notation.

We extend the signature ΣZ defined in Section 4.1 with the following three functions
(infix):

û , b̂ , d̂ : Z× Z→ Z,
called “unary digit tree constructor function”, “binary digit tree constructor function”, and
“decimal digit tree constructor function”, and to be used for unary, binary notation and
decimal notation, respectively. The latter two constructors serve to represent positional
notation and satisfy the semantic equations

Jx b̂ yK = 2 · JxK + JyK and Jx d̂ yK = 10 · JxK + JyK.

For integer numbers in decimal view or binary view, normal forms are the relevant digits,
all applications of the respective constructor with left argument a nonzero normal form and

17:16 J.A. Bergstra and A. Ponse Vol. 17:1

x û (y û z) = (x û y) û z[ut1]

x + 0 = x[ut2]

x + (y û 0) = (x + y) û 0[ut3]

x · 0 = 0[ut4]

x · (y û 0) = (x · y) + x[ut5]

−0 = 0[ut6]

−(−x) = x[ut7]

0 û (−(x û 0)) = −x[ut8]

(x û 0) û (−(y û 0)) = x û (−y)[ut9]

(−(x û 0)) û 0 = −x[ut10]

(−(x û 0)) û (y û 0) = (−x) û y[ut11]

(−(x û 0)) û (−(y û 0)) = −((x + y) û 0)[ut12]

x + (−y) = −((−x) + y)[ut13]

x · (−y) = −(x · y)[ut14]

Table 12: DDRSs Natut for Nut (left column) and Intut for Zut that specify natural number
and integer arithmetic in unary view with unary digit tree constructor

right argument a digit, and all minus instances −t of each such nonzero normal form t, these
satisfy J−(t)K = −(JtK). E.g.,

(9 d̂ 7) d̂ 5 and ((1 b̂ 0) b̂ 1) b̂ 1

represent the decimal number 975 and the binary number 1011, respectively, and the normal
form that represents the additional inverse of the latter is −(((1 b̂ 0) b̂ 1) b̂ 1). A minor
complication with decimal and binary digit tree constructors is that we now have to consider
rewritings such as

2 d̂ (1 d̂ 5) = (2 + 1) d̂ 5 = 3 d̂ 5 (= 35),

which perhaps are somewhat non-intuitive. For integers in unary view, thus with unary digit
tree constructor, this complication is absent (see Section 5.1).

We keep the presentation of the resulting DDRSs (those defining the binary and decimal
view are based on Walters [Wal94] and Walters & Zantema [WZ95]) minimal in the
sense that equations for conversion from the one view to the other are left out. Of course, it
is easy to define such equations. Also, equations for conversion to and from the datatypes
defined in Section 4 are omitted, although such equations are also easy to define.

5.1. Unary view with digit tree constructor. For naturals in this particular unary
view, normal forms are 0 and expressions t û 0 with t a normal form (thus, with association
of û to the left). Of course, the phenomenon of “removing leading zeros” does not exist in
this unary view. The resulting datatype Nut is defined by the DDRS Natut in Table 12.

The constructor û is an associative operator, as is clear from rule [ut1] (in contrast to
digit tree constructors for the binary and decimal case). Moreover, the commutative variants
t û r and r û t rewrite to the same normal form, which also is implied by the semantics for
closed terms:

J0K = 0, Jx + yK = JxK + JyK,
Jx û yK = JxK + JyK + 1, Jx · yK = JxK · JyK.

Vol. 17:1 DATATYPE DEFINING REWRITE SYSTEMS FOR NATURALS AND INTEGERS 17:17

Clearly, all equations in Natut are semantic consequences of the axioms for natural number
arithmetic (Table 4) and two distinct closed normal forms have distinct values in N.

The extension to integer numbers can be done in a similar fashion as in the previous
section, thus obtaining normal forms of the form −(t) with t a nonzero normal form in
Nut. However, also terms of the form x û (−y) and variations thereof have to be considered.
We define the DDRS Intut in Table 12 and we call the resulting datatype Zut. Adding
the interpretation rule J−xK = −JxK, it can be easily checked that also [ut6] − [ut14] are
semantic consequences of the axioms for commutative rings, and that two distinct closed
normal forms have distinct values in Z.

Theorem 5.1. The DDRSs Natut and Intut (Table 12) are ground-complete.

Proof. The AProVE tool [Gie+17] finds that both these DDRSs are terminating. In Appen-
dix B.1 we prove that the DDRS Intut is ground-confluent.

Ground-confluence of the DDRS Natut easily follows by restricting this proof to the
set of nonnegative normal forms. Moreover, a ground-confluence proof for this DDRS was
found by the ground-confluence prover AGCP [ATK17] at http://cocoweb.uibk.ac.at/

(property [GCR], options [2020, TRS, AGCP]) with the input file NATut.trs available at
https://arxiv.org/src/1608.06212/anc/.

5.2. Binary view with digit tree constructor. For naturals in binary view with the
binary digit tree constructor, the associated datatype Nbt is defined by the DDRS Natbt in
Table 13 (in the left column). In [KW16] it is proven that the associated TRS is terminating.

In [WZ95], Walters & Zantema provide a rewriting system for integer arithmetic
with next to juxtaposition and minus, also addition, subtraction and multiplication, and
prove its ground-completeness with respect to any radix (number base). In Table 13 we
define the DDRS Intbt that defines the datatype Zbt as a variant of this rewriting system
without subtraction (using the binary digit tree constructor). Clearly, two distinct closed
normal forms have distinct values in Z. Furthermore, the equations in Table 13 are semantic
consequences of the axioms for commutative rings (Table 1).

Theorem 5.2. The DDRSs Natbt and Intbt (Table 13) are ground-complete.

Proof. The AProVE tool [Gie+17] finds that both these DDRSs are terminating (as reported
in [KW16]). In Appendix B.2 we prove that the DDRS Intbt is ground-confluent.

Ground-confluence of Natbt follows in a similar way by restricting this proof to the set
of nonnegative normal forms.

5.3. Decimal view with digit tree constructor. For the specification of naturals in
decimal view with the decimal digit tree constructor we make use of successor terms in order
to avoid (non-parametric) equations such as

1 + 1 = 2, . . . , 9 + 8 = 1 d̂ 7, 9 + 9 = 1 d̂ 8,

. . . ,

1 · 1 = 1, . . . , 8 · 9 = 7 d̂ 2, 9 · 9 = 8 d̂ 1.

http://cocoweb.uibk.ac.at/
NATut.trs
https://arxiv.org/src/1608.06212/anc/

17:18 J.A. Bergstra and A. Ponse Vol. 17:1

0 b̂ x = x[bt1]

x b̂ (y b̂ z) = (x + y) b̂ z[bt2]

0 + x = x[bt3]

x + 0 = x[bt4]

1 + 1 = 1 b̂ 0[bt5]

x + (y b̂ z) = y b̂ (x + z)[bt6]

(x b̂ y) + z = x b̂ (y + z)[bt7]

x · 0 = 0[bt8]

0 · x = 0[bt9]

1 · 1 = 1[bt10]

x · (y b̂ z) = (x · y) b̂ (x · z)[bt11]

(x b̂ y) · z = (x · z) b̂ (y · z)[bt12]

−0 = 0[bt13]

−(−x) = x[bt14]

1 b̂ (−1) = 1[bt15]

(x b̂ 0) b̂ (−1) = (x b̂ (−1)) b̂ 1[bt16]

(x b̂ 1) b̂ (−1) = (x b̂ 0) b̂ 1[bt17]

x b̂ (−(y b̂ z)) = −((y + (−x)) b̂ z)[bt18]

(−x) b̂ y = −(x b̂ (−y))[bt19]

1 + (−1) = 0[bt20]

(−1) + 1 = 0[bt21]

(−1) + (−1) = −(1 b̂ 0)[bt22]

x + (−(y b̂ z)) = −(y b̂ (z + (−x)))[bt23]

(−(x b̂ y)) + z = −(x b̂ (y + (−z)))[bt24]

x · (−y) = −(x · y)[bt25]

(−x) · y = −(x · y)[bt26]

Table 13: DDRSs Natbt for Nbt (left column) and Intbt for Zbt for natural number and integer
arithmetic in binary view with binary digit tree constructor

The associated datatype Ndt is defined by the DDRS Natdt in Table 14 (left column). In
equations [dt10.i]9i=1 we use the notation ∑ix

for i− 1 repeated applications of + with association to the left, thus∑1x = x and for i = 1, ..., 8,
∑i+1x = (

∑ix) + x.

Observe that equations [dt2.i]9i=0 are instances of their binary counterpart [bt2] (see
Table 13), although the AProVE tool [Gie+17] finds that the DDRS Natdt is terminating if
we replace [dt2.i]9i=0 by

x d̂ (y d̂ z) = (x + y) d̂ z,

and also a ground-confluence proof can be easily given. The reason for this replacement
concerns the generalization to integer arithmetic, as discussed below.

The extension to integers is given by the DDRS Intdt in Table 14, which defines the
datatype Zdt. Clearly, two distinct closed normal forms have distinct values in Z. Further-
more, the equations in Table 14 are semantic consequences of the axioms for commutative
rings (Table 1).

In contrast to the approaches in Walters [Wal94] and Walters & Zantema [WZ95]
with juxtaposition, we now make use of successor terms, and the DDRS presented here is
composed from rewrite rules for successor, rewrite rules defined in [Wal94] and [WZ95], and
combinations thereof.

Vol. 17:1 DATATYPE DEFINING REWRITE SYSTEMS FOR NATURALS AND INTEGERS 17:19

0 d̂ x = x[dt1]

[dt2.i]9i=0

x d̂ (y d̂ i) = (x + y) d̂ i

S(i) = i′[dt3.i]8i=0

S(9) = 1 d̂ 0[dt4]

S(x d̂ i) = x d̂ i′[dt5.i]8i=0

S(x d̂ 9) = S(x) d̂ 0[dt6]

x + i = Si(x)[dt7.i]9i=0

[dt8.i]9i=0

x + (y d̂ i) = Si(y d̂ x)

x · 0 = 0[dt9]

x · i =
∑ix[dt10.i]9i=1

[dt11.i]9i=0

x · (y d̂ i) = ((x · y) d̂ 0) + (x · i)

−0 = 0[dt12]

−(−x) = x[dt13]

S(−i′) = −i[dt14.i]8i=0

S(−(x d̂ 0)) = −(x d̂ (−1))[dt15]

S(−(x d̂ i′)) = −(x d̂ i)[dt16.i]8i=0

1 d̂ (−1) = 9[dt17]

1 d̂ (−i′) = i∗[dt18.i]8i=1

i′ d̂ (−1) = i d̂ 9[dt19.i]8i=1

i′ d̂ (−j′) = i d̂ j∗[dt20.i.j]8i,j=1

(x d̂ 0) d̂ (−i) = (x d̂ (−1)) d̂ i∗[dt21.i]9i=1

[dt22.i.j]8i,j=0

(x d̂ i′) d̂ (−j′) = (x d̂ i) d̂ (j′)∗

(−x) d̂ y = −(x d̂ (−y))[dt23]

x d̂ (−(y d̂ i)) = −(((−x) + y) d̂ i)[dt24.i]9i=0

x + (−y) = −((−x) + y)[dt25]

x · (−y) = −(x · y)[dt26]

Table 14: DDRSs Natdt for Ndt (left column) and Intdt for Zdt, for natural number and
integer arithmetic with decimal digit tree constructor (using the notations i′ from
Table 7 and i? from Table 10)

The above-mentioned equation x d̂ (y d̂ z) = (x + y) d̂ z is replaced by the ten equa-
tions [dt2.i]9i=0 because we failed to find a TRS that employed this equation and that could
be proven terminating by the AProVE tool. For uniformity, we also replaced the decimal
counterpart of equation [bt18] (see Table 13), that is

x d̂ (−(y d̂ z)) = −((y + (−x)) d̂ z)

by the ten equations [dt24.i]9i=0.

Theorem 5.3. The DDRSs Natdt and Intdt (Table 14) are ground-complete.

Proof. The AProVE tool [Gie+17] finds that both these DDRSs are terminating. In Appen-
dix B.2 we prove that the DDRS Intdt is ground-confluent.

Ground-confluence of Natdt follows in a similar way by restricting the proof to the set
of nonnegative normal forms.

We finally note that when we convert the DDRSs from Table 14 to base 2, we obtain
alternative DDRSs for the canonical term algebras Nbt and Zbt that are also ground-complete.

17:20 J.A. Bergstra and A. Ponse Vol. 17:1

6. Conclusions

This paper is about defining (by means of trial and error) DDRSs for natural number and
integer arithmetic rather than about the precise analysis of the various rewriting systems
per se. What matters in addition to readability and conciseness of each DDRS is at this
stage a proof that it is terminating and ground-confluent (and thus ground-complete), and
furthermore that the (intended) normal forms are natural and convincing, while the rewriting
systems are comprehensible.

In Section 2 we provided two DDRSs for the datatype Zr, the ring of integers with the
set N of normal forms defined by

N = {0} ∪N + ∪N−, N + = {1} ∪ {t + 1 | t ∈ N +}, N− = {−t | t ∈ N +}.

Each of these DDRSs consists of twelve equations. Perhaps the DDRS D2 is most attractive:
it is comprehensible and deterministic with respect to addition of nonnegative closed normal
forms. We leave it as an open question whether Zr can be specified by a DDRS with fewer
equations (preserving the set N as normal forms). Another open question is to find a DDRS
for Zr and N that is also deterministic with respect to rewriting t · t′ for nonnegative closed
normal forms t and t′.1 One more open question is whether Zr can be specified by a complete
term rewriting system with the same normal forms.

In Section 3 we provided two DDRSs for natural number and integer arithmetic in unary
view, based on the constant 0 and unary append. Both DDRSs for integer arithmetic contain
only nine equations and we leave it as an open question whether the resulting canonical term
algebra ZU can be specified as a DDRS with fewer equations. Concerning their counterparts
that define natural number arithmetic (Nat1 and Nat2, both containing four equations), the
DDRS Nat1 is deterministic with respect to addition and multiplication of closed normal
forms (Proposition 3.2). Furthermore, the DDRSs Nat1 and Nat2 are attractive, if only
from a didactical point of view:

(1) Positive numbers are directly related to tallying and admit an easy representation and
simplifying abbreviations for normal forms, such as 011 for (0:u1):u1, or even 11 or ||
when removal of the leading zero in positive numbers is adopted.

(2) Natural number arithmetic on small numbers can be represented in a comprehensible
way that is fully independent of the learning of any positional system for number
representation, although names of numbers (zero, one, two, and so on) might be very
helpful.2 Furthermore, notational abbreviations for units of five, like in

1111��� 1111��� 11 or ||||�� ||||�� || or 011111 11111 11

can be helpful because 0111111111111 (thus twelve) is not very well readable or easily
distinguishable from 011111111111 (thus eleven).

With respect to negative numbers, similar remarks can be made, but displaying computations
according to the DDRSs Int1 and Int2 will be more complex and bracketing seems to be
unavoidable. Consider for example

(−(||)) + ||||�� ||||�� || = (−(||) |) + ||||�� ||||�� | = (−(|)) + ||||�� ||||�� | = . . .

1Note that the alternative for equation [R6] suggested by the DDRS Int2, does not solve this open question.
2In English, Dutch and German, this naming is up to twelve independent of decimal representation, and

in French this is up to sixteen.

Vol. 17:1 DATATYPE DEFINING REWRITE SYSTEMS FOR NATURALS AND INTEGERS 17:21

Although it can be maintained that as a constructor, unary append is a more illustrative
notation than the successor function, it is of course only syntactic sugar for that function.

Furthermore, if we add the predecessor function P (x) to the DDRSs defined in Section 3
by the three equations

[P1] P (0) = −(0:u1), [P2] P (x :u1) = x, [P3] P (−x) = −(x :u1)

we find that the resulting DDRSs improve on those for unary view defined in [BP16a] in
terms of simplicity and number of equations. Finally, if we also add the subtraction function
x− y by the single equation

[Sub] x− y = x + (−y)

this also improves on the specification of integer arithmetic in unary view in Walters &
Zantema [WZ95], which does not employ the unary minus function and contains seventeen
rules, and thus eighteen rules when adding the minus function by the rewrite rule

−x → 0− x.

However, we should mention that the normal forms for negative numbers in [WZ95] are
P (0), P (P (0)), ..., instead of −(0:u1),−((0:u1):u1),

In Section 4 we considered the question how to specify a datatype of integers as an
extension of the naturals as specified in [Ber14]. In this case, the unary view leads to
satisfactory results, but with high inefficiency. For the binary view and the decimal view
based on the unary append functions as discussed in this section, such extensions are
provided, but the resulting rewriting systems are at first sight significantly less concise and
comprehensible. Some additional notes:

(1) The three DDRSs for integers given in Section 4 each produce an extension datatype for
a datatype for the natural numbers. An initial algebra specification of the datatype of
integers is obtained from any of the DDRSs given in [Ber14] by
• taking the reduct to the signature involving unary, binary, and decimal notation only,
• expanding the signature with a unary additive inverse and a unary predecessor function,
• adding rewrite rules (in equational form) that allow for the unique normalisation of

closed terms involving the minus sign, while making sure that these rewrite rules
(viewed as equations) are semantic consequences of the equations for commutative
rings.

(2) The DDRSs for the binary view and the decimal view are hardly intelligible unless one
knows that the objective is to construct a commutative ring. A decimal normal form is
defined as either a digit, or an application of a decimal append function :d i to a nonzero
normal form (for all digits i). This implies the absence of (superfluous) leading zeros,
and the closed normal forms thus obtained correspond bijectively to the nonnegative
integers (that is, N). Incorporating all minus instances −(t) of each nonzero normal
form t yields the class of closed normal forms.

(3) Understanding the concept of a commutative ring can be expected only from a person
who has already acquired an understanding of the structure of integers and who accepts
the concept of generalization of a structure to a class of structures sharing some but not
all of its properties.

In other words, the understanding that a DDRS for the integers is provided in the
binary view and in the decimal view can only be communicated to an audience under
the assumption that a reliable mental picture of the integers already exists in the

17:22 J.A. Bergstra and A. Ponse Vol. 17:1

minds of members of the audience. This mental picture, however, can in principle be
communicated by taking notice of the DDRS for the unary view first. This conceptual
(near) circularity may nevertheless be considered a significant weakness of the approach
of defining (and even introducing) the integers as an extension of naturals by means of
rewriting.

In Section 5 we discussed some alternatives for the above-mentioned DDRSs based
on papers of Bouma & Walters [BW89], Walters [Wal94], and Walters and Zan-
tema [WZ95] in which digit tree constructors are used. In [Wal94], Walters presents a
TRS based on juxtaposition as a tree constructor for integer arithmetic with addition and
subtraction that is ground-complete and parametric over any radix. In [WZ95], Walters
and Zantema extend this TRS with multiplication and prove ground-completeness, using
semantic labelling for their termination proof, and judge this TRS — named JP (juxtapo-
sition) — to have good efficiency and readability (in comparison with some alternatives
discussed in that paper). In [KW16], Kluiving and van Woerkom showed termination of
the two DDRSs Natbt and Intbt for arithmetic over N and Z that employ the binary tree
constructors (Table 13) with the tool AProVE [Gie+17]. Furthermore, they also proposed
a TRS for arithmetic over the natural numbers employing decimal tree constructors and
proved termination with AProVE. However, its natural extension to a TRS for integer
arithmetic could not be proven terminating, probably due to its size. This finally led us
to the DDRSs Natdt and Intdt (Table 14). We leave it as an open question whether Zdt
(the datatype defined by Intdt) can be specified with fewer equations in such a way that a
termination proof can be found with AProVE (or another tool).

A general property of the DDRSs defined in this paper is that the recursion in the
definitions of addition and multiplication takes place on the right argument of these operators
(as is common), if necessary first replacing negation. We could have used recursion on
the left argument instead, obtaining symmetric versions of these DDRSs (for natural
number arithmetic with successor function, this is done in e.g. Bouma & Walters [BW89],
Walters [Wal90], and Zantema [Zan03]).

Of course, many normal forms in decimal notation have names that confirm their
base, for example “six hundred eighty-nine” 〈ae〉 or “six hundred and eighty-nine” 〈be〉.
A decimal notation as 689 is so common that one usually does not question whether it
represents (6:d 8):d 9 or (6 d̂ 8) d̂ 9 or some other formally defined notation. Nevertheless, as
we have seen, different algorithmic approaches to for example addition may apply, although
one would preferably not hamper an (initial) arithmetical method with notation such as
x d̂ (y d̂ z) and rewrite rules such as x d̂ (y d̂ z)→ (x + y) d̂ z, and for this reason we have a
preference for the DDRSs that employ the various append constructors.

In Table 15 we present the rule count of the DDRSs for decimal representation of natural
number and integer arithmetic defined in this paper, and that of the TRSs considered in
Walters & Zantema [WZ95] (the TRS named DA is based on digit append constructors
and is discussed below). Note that we do not count equations that define the informal extra

operators such as +10 (Table 11) and
∑1, ...,

∑9 (Table 14), which were used only to get
a readable table. For a fair comparison in the case of the decimal append functions we
also leave out the equations for conversion to binary view. This shows that our DDRSs are
relatively concise, but we note that we did not succeed in getting a more extended overview
on specifications for natural number and integer arithmetic, and that it might well be that
we missed relevant TRSs.

Vol. 17:1 DATATYPE DEFINING REWRITE SYSTEMS FOR NATURALS AND INTEGERS 17:23

Name Natdub Natdt DA(10) Intdub Intdt JP(10)

rule count 70 71 235 124 276 438

rule schemes 12 11 10 26 26 30

extra operators S(x) S(x) s(x), ?δ0 S(x), P (x) S(x) x− y

Table / reference 11 14 [WZ95] 11 14 [WZ95]

Table 15: Rule count for decimal natural and integer arithmetic, where DA(10) and JP(10)
both originate from [WZ95] instantiated for base 10.

For each DDRS it may be taken for a quality criterion if normalising reductions are
not excessively long. We leave it as an open question for each of the systems presented
to find meaningful upper bounds (in terms of n) of the number of steps of the longest
reduction which can be made from a ground term of size n. Especially for the cases of binary
and decimal numbers it is interesting to compare these values with the number of steps
needed for instance when performing leftmost innermost normalisation where addition and
multiplication are performed by means of the standard (“school”) algorithms, or even with
faster algorithms like Schönhage-Strassen for multiplication.

We have proven that all DDRSs considered in this paper are ground-complete, and both
their termination proofs and all associated TRSs used for these proofs can be found at
https://arxiv.org/src/1608.06212/anc/. It should be noted that handwritten ground-
confluence proofs of the size recorded in Appendices A and B are error-prone; however, our
proofs can be automated as was shown by van Woerkom in [Woe17], which also contains
a general theorem about this type of ground-confluence proofs (Thm.1). Furthermore, with
the confluence prover CSI [ZFM11], confluence proofs were found for the DDRSs for natural
number arithmetic with unary append Nat1 (Table 5) and Nat2 (Table 6), thus these DDRSs
are complete. For all other DDRSs defined in this paper, confluence can be disproven by
CSI. Finally, the tool AGCP [ATK17] found ground-confluence proofs for the DDRSs for
natural number arithmetic with unary append Natubd (Table 8) and with unary digit tree
constructor Natut (Table 12), and also for the DDRSs Nat1 and Nat2, but for none of the
remaining DDRSs.

We briefly discuss two other, comparable approaches to arithmetic that are also based
on some form of digit append constructors for representing numbers. First, in [WZ95]
Walters and Zantema introduce a TRS which they named DA (for “digit application”)
with addition and multiplication on natural numbers. The authors prove termination by
recursive path ordering and confluence, and also judge this TRS to have good efficiency
and readability. Secondly, in [CMR97], Contejean, Marché and Rabehasaina intro-
duce integer arithmetic based on balanced ternary numbers, that is, numbers that can be
represented by a digit append function :t with digits −1, 0, 1 and semantics JiK = i and
Jx :t iK = 3 · JxK + i (see, e.g., Knuth [Knu97]) and provide a TRS that is confluent and
terminating modulo associativity and commutativity of addition and multiplication.

Based on either a DDRS for the natural numbers or a DDRS for the integers one may
develop a DDRS for rational numbers in various ways. It is plausible to consider the meadow
of rational numbers of [BT07] or the non-involutive meadow of rational numbers (see [BM15])

https://arxiv.org/src/1608.06212/anc/

17:24 J.A. Bergstra and A. Ponse Vol. 17:1

or the common meadow of rational numbers (see [BP15]) as abstract algebraic structures for
rationals in which unary, binary, and decimal notation are to be incorporated in ways possibly
based on the specifications presented above. Furthermore, one does well to consider the
work discussed in [CMR97] on a TRS for rational numbers, in which arithmetic for rational
numbers is specified (this is the main result in [CMR97], for which the above-mentioned work
on integer arithmetic is a preliminary): the authors specify rational numbers by means of a
TRS that is complete modulo associativity and commutativity of addition and multiplication,
taking advantage of Stein’s algorithm for computing gcd’s of nonnegative integers without
any division3 (see, e.g., [Knu97]).

A survey of equational algebraic specifications for abstract datatypes is provided by
Wirsing [Wir91]. In [BT95] one finds the general result that computable abstract datatypes
can be specified by means of specifications which are confluent and terminating term rewriting
systems. Some general results on algebraic specifications can be found in [BWP84, BT87,
CJ98]. More recent applications of equational specifications can be found in [BT07].

Acknowledgement

Many thanks to Wijnand van Woerkom for carefully identifying errors and gaps in an earlier
version of this work, and for some very useful suggestions, including those for better rewrite
rules for the DDRS Intdt (Table 14). Furthermore, his help in proving termination of some
of the larger DDRSs with the AProVE tool and providing these proofs was crucial4 and
led to the webarchive https://arxiv.org/src/1608.06212/anc/. Also, many thanks to
three reviewers for their careful and comprehensive reports, and very helpful suggestions.

References

[ATK17] Aoto, T., Toyama, Y., and Kimura, Y. (2017). Improving rewriting induction approach for proving
ground confluence. In D. Miller (Ed.): Proceedings of the 2nd International Conference on Formal
Structures for Computation and Deduction, FSCD 2017, volume 84 of LIPIcs, pp. 7:1–7:18.
Web interface for the ground-confluence prover AGCP: http://cocoweb.uibk.ac.at/ (choose
property [GCR] and options [2020, TRS, AGCP], last accessed 4 January 2021).

[Ber14] Bergstra, J.A. (2014). Four complete datatype defining rewrite systems for an abstract datatype
of natural numbers. Electronic report TCS1407v2, University of Amsterdam, Informatics Insti-
tute, section Theory of Computer Science (August 2014), https://ivi.fnwi.uva.nl/tcs/pub/
tcsreports/TCS1407v2.pdf.

[BM15] Bergstra, J.A. and Middelburg, C.A. (2015). Division by zero in non-involutive meadows. Journal
of Applied Logic, 13(1):1–12 (https://doi.org/10.1016/j.jal.2014.10.001). Preprint available
at https://arxiv.org/abs/1406.2092 [math.RA] (2014, 9 June).

[BP15] Bergstra, J.A. and Ponse, A. (2015). Division by zero in common meadows. In R. de Nicola
and R. Hennicker (Eds.): Software, Services, and Systems, Lecture Notes in Computer Science,
Vol. 8950, Springer, pp. 46–61. Revised version: https://arxiv.org/abs/1406.6878v3 [math.RA]
(2019, 14 August).

[BP16] Bergstra, J.A. and Ponse, A. (2016). Fracpairs and fractions over a reduced commutative ring. Inda-
gationes Mathematicae, 27:727–748 (https://doi.org/10.1016/j.indag.2016.01.007). Preprint
available at https://arxiv.org/abs/1411.4410v2 [math.RA] (2016, 22 Jan).

3Apart from halving even numbers, which is easy in binary notation, but can otherwise be specified with
a shift operation.

4For example, we were able to use AProVE’s web interface to prove termination of the DDRS Natdt, but
for the DDRS Intdt this was only possible after reducing this DDRS to base 2.

https://arxiv.org/src/1608.06212/anc/
http://cocoweb.uibk.ac.at/
https://ivi.fnwi.uva.nl/tcs/pub/tcsreports/TCS1407v2.pdf
https://ivi.fnwi.uva.nl/tcs/pub/tcsreports/TCS1407v2.pdf
https://doi.org/10.1016/j.jal.2014.10.001
https://arxiv.org/abs/1406.2092
https://arxiv.org/abs/1406.6878v3
https://doi.org/10.1016/j.indag.2016.01.007
https://arxiv.org/abs/1411.4410v2

Vol. 17:1 DATATYPE DEFINING REWRITE SYSTEMS FOR NATURALS AND INTEGERS 17:25

[BP16a] Bergstra, J.A. and Ponse, A. (2016). Three datatype defining rewrite systems for datatypes
of integers each extending a datatype of naturals. Available at https://arxiv.org/abs/1406.

3280v4 [cs.LO], 18 July 2016.
[BT95] Bergstra, J.A. and Tucker, J.V. (1995). Equational specifications, complete term rewriting systems,

and computable and semicomputable algebras. Journal of the ACM, 42(6):1194–1230.
[BT87] Bergstra, J.A. and Tucker, J.V. (1987). Algebraic specifications of computable and semicomputable

data types. Theoretical Computer Science, 50(2):137–181.
[BT07] Bergstra, J.A. and Tucker, J.V. (2007). The rational numbers as an abstract data type. Journal

of the ACM, 54(2), Article 7.
[BW89] Bouma, L.G. and Walters, H.R. (1989). Implementing algebraic specifications. In J.A. Bergstra,

J. Heering, and P. Klint (Eds.): Algebraic Specification (Chapter 5), Addison-Wesley, pp. 199–282.
[BWP84] Broy, M., Wirsing, M., and Pair, C. (1984). A systematic study of models of abstract data types.

Theoretical Computer Science, 33(2):139–174.
[CMR97] Contejean, E., Marché, C., and Rabehasaina, L. (1997). Rewrite systems for natural, integral, and

rational arithmetic. In H. Comon (Ed.): Rewriting Techniques and Applications, 8th International
Conference, RTA-97, Lecture Notes in Computer Science, Vol. 1232, Springer, pp. 98–112.

[CJ98] Gaudel, M.-C. and James, P.R. (1998). Testing algebraic data types and processes: a unifying
theory. Formal Aspects of Computing, 10(5-6):436–451.

[Gie+17] Giesl, J., Aschermann, C., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Hensel, J., Otto,
C., Plücker, C., Schneider-Kamp, P., Thomas Ströder, T., Swiderski, S., and Thiemann, R.
(2017). Analyzing program termination and complexity automatically with AProVE. Journal of
Automated Reasoning , 58(1):3–31 (https://doi.org/10.1007/s10817-016-9388-y).
Web interface for AProVE: http://aprove.informatik.rwth-aachen.de/ (last accessed 5 Janu-
ary 2021).

[KV03] Klop, J.W. and Vrijer, R.C. de (2003). First-order term rewriting systems. Chapter 2 in [Ter03],
pp. 24–59.

[KW16] Kluiving, B. and Woerkom, W.K. van (2016). Number representations and term rewriting. Honours
project BSc Computer Science and BSc Artificial Intelligence, University of Amsterdam (January
31, 2016). Available at https://arxiv.org/abs/1607.04500v1 [cs.LO], 15 Jul 2016.

[Knu97] Knuth, D.E. (1997). The Art of Computer Programming, Volume 2 (3rd Edition): Seminumerical
Algorithms. Addison-Wesley.

[Ter03] Terese (2003). Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science,
Vol. 55, Cambridge University Press.

[UK03] Urso, P. and Kounalis, E. (2003). “Term partition” for mathematical induction. In R. Nieuwenhuis
(Ed.): Rewriting Techniques and Applications, 14th International Conference, RTA-03, Lecture
Notes in Computer Science, Vol. 2706, Springer, pp. 352–366. Extended version available at
https://hal.inria.fr/inria-00072023/document (2006).

[Wal90] Walters, H.R. (1990). Hybrid implementations of algebraic specifications. In H. Kirchner, W. Wech-
ler (Eds.): Algebraic and Logic Programming, Lecture Notes in Computer Science, Vol. 463,
Springer, pp. 40–54.

[Wal94] Walters, H.R. (1994). A complete term rewriting system for decimal integer arithmetic. Report
CS-R9435, CWI. Available at http://oai.cwi.nl/oai/asset/5140/5140D.pdf.

[WZ95] Walters, H.R. and Zantema, H. (1995). Rewrite systems for integer arithmetic. In J. Hsiang (Ed.):
Rewriting Techniques and Applications, 6th International Conference, RTA-95, Lecture Notes in
Computer Science, Vol. 914, Springer, pp. 324–338. Preprint available at http://oai.cwi.nl/

oai/asset/4930/4930D.pdf.
[Wir91] Wirsing, M. (1991). Algebraic Specification. In: Handbook of Theoretical Computer Science,

Vol. B, MIT Press, pp. 675–788.
[Woe17] Woerkom, W.K. van (2017). Rascal Tooling for Datatype Defining Rewrite Systems. Honours

extension of BSc. thesis Artificial Intelligence, University of Amsterdam, 52 pages (July 2017).
Available at https://scripties.uba.uva.nl/search?id=633785.

[ZFM11] Zankl, H., Felgenhauer, B., and Middeldorp, A. (2011). CSI - A confluence tool. In N. Bjørner
and V. Sofronie-Stokkermans (Eds.): CADE 2011, Lecture Notes in Computer Science, Vol. 6803,
Springer, pp. 499–505.
Web interface for CSI: http://cocoweb.uibk.ac.at/ (last accessed 4 January 2021).

https://arxiv.org/abs/1406.3280v4
https://arxiv.org/abs/1406.3280v4
https://doi.org/10.1007/s10817-016-9388-y
http://aprove.informatik.rwth-aachen.de/
https://arxiv.org/abs/1607.04500v1
https://hal.inria.fr/inria-00072023/document
http://oai.cwi.nl/oai/asset/5140/5140D.pdf
http://oai.cwi.nl/oai/asset/4930/4930D.pdf
http://oai.cwi.nl/oai/asset/4930/4930D.pdf
https://scripties.uba.uva.nl/search?id=633785
http://cocoweb.uibk.ac.at/

17:26 J.A. Bergstra and A. Ponse Vol. 17:1

[Zan03] Zantema H. (2003). Termination. Chapter 6 in [Ter03], pp. 181–259.

Appendix A. DDRSs with digit append constructors, ground-confluence

In this appendix we prove ground-confluence of the DDRSs Intbud and Intdub. In both proofs
we adopt the approach used in the proof of Theorem 2.3.

A.1. Binary view: Intbud, the DDRS for Zbud.
This DDRS is defined in Table 9. Define the set N of closed terms over ΣZ as follows:

N = {0} ∪N+ ∪N−,

N+ = {1} ∪ {t :b0, t :b1 | t ∈ N+},
N− = {−t | t ∈ N+}.

It immediately follows that if t ∈ N , then t is a normal form (no rewrite rule applies).
In order to prove ground-confluence of this rewriting system, it suffices to show that for

each closed term t over ΣZ, either t ∈ N or t has a rewrite step, so that each normal form is
in N . We prove this by structural induction on t.

The base cases are simple: if t ∈ {0, 1} then t ∈ N , and if t = i′ for some i ∈
{1, 2, 3, 4, 5, 6, 7, 8}, then t has a rewrite step by equation [bd1.i]. For the induction step we
distinguish eight cases:

(1) Case t = S(r). Assume that r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [b2],
• if r = 1, then t has a rewrite step by equation [b3],
• if r = r′ :b0, then t has a rewrite step by equation [b4],
• if r = r′ :b1, then t has a rewrite step by equation [b5],
• if r = −1, then t has a rewrite step by equation [b20],
• if r = −(r′ :b0), then t has a rewrite step by equation [b21],
• if r = −(r′ :b1), then t has a rewrite step by equation [b22].

(2) Case t = P (r). Assume that r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [b15],
• if r = 1, then t has a rewrite step by equation [b16],
• if r = r′ :b0, then t has a rewrite step by equation [b17],
• if r = r′ :b1, then t has a rewrite step by equation [b18],
• if r ∈ N−, then t has a rewrite step by equation [b19].

(3) Case t = −r. Assume that r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [b13],
• if r = 1, then t ∈ N ,
• if r = r′ :b i, then t ∈ N ,
• if r ∈ N−, then t has a rewrite step by equation [b14].

(4) Case t = r :b0. Assume that r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [b1.0],
• if r ∈ N+, then t ∈ N ,
• if r ∈ N−, then t has a rewrite step by equation [b23].

(5) Case t = r :b1. Assume that r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [b1.1],
• if r ∈ N+, then t ∈ N ,

Vol. 17:1 DATATYPE DEFINING REWRITE SYSTEMS FOR NATURALS AND INTEGERS 17:27

• if r ∈ N−, then t has a rewrite step by equation [b24].
(6) Case t = u + r. Assume that u, r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [b6],
• if r = 1, then t has a rewrite step by equation [b7],
• if r = r′ :b0, then t has a rewrite step according to equation [b8],
• if r = r′ :b1, then t has a rewrite step according to equation [b9],
• if r ∈ N−, then t has a rewrite step according to equation [b25].

(7) Case t = u · r. Assume that u, r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [b10],
• if r = 1, then t has a rewrite step by equation [b11],
• if r = r′ :b i, then t has a rewrite step according to [b12.i],
• if r ∈ N−, then t has a rewrite step by equation [b26].

(8) Case t = r :d i for i ∈ D. Now t has a rewrite step by equation [bd2.i].

This concludes our proof.

A.2. Decimal view: Intdub, the DDRS for Zdub.
This DDRS is defined in Table 11. Recall that we write D for the set of all digits.

Define the set N of closed terms over ΣZ as follows:

N = {0} ∪N+ ∪N−,

N+ = D \ {0} ∪ {t :d i | t ∈ N+, i ∈ D},
N− = {−t | t ∈ N+}.

It immediately follows that if t ∈ N , then t is a normal form (no rewrite rule applies). In
order to prove ground-confluence of this rewriting system, it suffices to show that for each
closed term t over ΣZ, either t ∈ N or t has a rewrite step, so that each normal form is in
N . We prove this by structural induction on t.

The base cases are trivial: if t ∈ D, then t ∈ N . For the induction step we distinguish
eight cases:

(1) Case t = S(r). Assume that r ∈ N and apply case distinction on r:
• if r = i for i ∈ {0, 1, . . . , 8}, then t has a rewrite step by equation [d2.i],
• if r = 9, then t has a rewrite step by equation [d3],
• if r = r′ :d i for i ∈ {0, 1, . . . , 8}, then t has a rewrite step by equation [d4.i],
• if r = r′ :d9, then t has a rewrite step by equation [d5],
• if r = −i′ for i ∈ {0, 1, . . . , 8}, then t has a rewrite step by equation [d20.i],
• if r = −(r′ :d0), then t has a rewrite step by equation [d21],
• if r = −(r′ :d i

′) for i ∈ {0, 1, . . . , 8}, then t has a rewrite step by equation [d22.i].
(2) Case t = P (r). Assume that r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [d15],
• if r = i′ for i ∈ {0, 1, . . . , 8}, then t has a rewrite step by equation [d16.i],
• if r = r′ :d0, then t has a rewrite step by equation [d17],
• if r = r′ :d i

′ for i ∈ {0, 1, . . . , 8}, then t has a rewrite step by equation [d18.i],
• if r ∈ N−, then t has a rewrite step by equation [d19].

(3) Case t = −r. Assume that r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [d13],
• if r ∈ N+, then t ∈ N ,
• if r ∈ N−, then t has a rewrite step by equation [d14].

17:28 J.A. Bergstra and A. Ponse Vol. 17:1

(4) Case t = r :d0. Assume that r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [d1.0],
• if r ∈ N+, then t ∈ N ,
• if r ∈ N−, then t has a rewrite step by equation [d23].

(5) Case t = r :d i for i ∈ {1, 2, . . . , 9}. Assume that r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [d1.i],
• if r ∈ N+, then t ∈ N ,
• if r ∈ N−, then t has a rewrite step by equation [d24.i].

(6) Case t = u + r. Assume that u, r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [d6],
• if r = i for i ∈ {1, 2, . . . , 9}, then t has a rewrite step by equation [d7.i],
• if r = r′ :d0, then t has a rewrite step by equation [d8],
• if r = r′ :d i for i ∈ {1, 2, . . . , 9}, then t has a rewrite step by equation [d9.i],
• if r ∈ N−, then t has a rewrite step by equation [d25].

(7) Case t = u · r. Assume that u, r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [d10],
• if r = i′ for i ∈ {0, 1, . . . , 8}, then t has a rewrite step by [d11.i],
• if r = r′ :d i for i ∈ D, then t has a rewrite step by equation [d12.i],
• if r ∈ N−, then t has a rewrite step by equation [d26].

(8) Case t = r :b i for i ∈ {0, 1}. Now t has a rewrite step by equation [db1.i].

This concludes our proof.

Appendix B. DDRSs with digit tree constructors, ground-confluence

In this appendix we prove ground-confluence of the DDRSs Intut, Intbt, and Intdt, respectively.
In all proofs we adopt the approach used in the proof of Theorem 2.3.

B.1. Unary view: the DDRS Intut for Zut.
This DDRS is defined in Table 12. Define the signature Σut = {0,−(), û ,+, ·}, and the
set N of closed terms over Σut as follows:

N = {0} ∪N+ ∪N−,

N+ = {0 û 0} ∪ {t û 0 | t ∈ N+},
N− = {−t | t ∈ N+}.

It immediately follows that if t ∈ N , then t is a normal form (no rewrite rule applies). In
order to prove ground-confluence, it suffices to show that for each closed term t over Σut,
either t ∈ N or t has a rewrite step, so that each normal form is in N . We prove this by
structural induction on t.

The base case is trivial: if t = 0, then t ∈ N . For the induction step we distinguish four
cases:

(1) Case t = −r. Assume that r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [ut6],
• if r = r′ û 0, then t ∈ N ,
• if r = −(r′ û 0), then t has a rewrite step by equation [ut7].

(2) Case t = v û r. Assume that v, r ∈ N and apply case distinction on r:
• if r = 0, then apply case distinction on v:

Vol. 17:1 DATATYPE DEFINING REWRITE SYSTEMS FOR NATURALS AND INTEGERS 17:29

– if v = 0, then t ∈ N ,
– if v = v′ û 0, then t ∈ N ,
– if v = −(v′ û 0), then t has a rewrite step by equation [ut10].
• if r = r′ û 0, then apply case distinction on v:

– if v = 0, then t has a rewrite step by equation [ut1],
– if v = v′ û 0, then t has a rewrite step by equation [ut1],
– if v = −(v′ û 0), then t has a rewrite step by equation [ut11].
• if r = −(r′ û 0), then apply case distinction on v:

– if v = 0, then t has a rewrite step by equation [ut8],
– if v = v′ û 0, then t has a rewrite step by equation [ut9],
– if v = −(v′ û 0), then t has a rewrite step by equation [ut12].

(3) Case t = v + r. Assume that v, r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [ut2],
• if r = r′ û 0, then t has a rewrite step by equation [ut3],
• if r = −(r′ û 0), then t has a rewrite step by equation [ut13].

(4) Case t = v · r. Assume that v, r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [ut4],
• if r = r′ û 0, then t has a rewrite step by equation [ut5],
• if r = −(r′ û 0), then t has a rewrite step by equation [ut14].

This concludes our proof.

B.2. Binary view: Intbt, the DDRS for Zbt.
This DDRS is defined in Table 13. Define the signature Σbt = {0, 1,−(), b̂ ,+, ·}, and
the set N of closed terms over Σbt as follows:

N = {0} ∪N+ ∪N−,

N+ = {1} ∪ {t b̂ 0, t b̂ 1 | t ∈ N+},
N− = {−t | t ∈ N+}.

It immediately follows that if t ∈ N , then t is a normal form (no rewrite rule applies), and
that two distinct elements in N have distinct values in Z. In order to prove ground-confluence
of this rewriting system, it suffices to show that for each closed term t over Σbt, either t ∈ N
or t has a rewrite step, so that each normal form is in N . We prove this by structural
induction on t.

The base cases are simple: if t ∈ {0, 1}, then t ∈ N . For the induction step we distinguish
four cases:

(1) Case t = −r. Assume that r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [bt13],
• if r ∈ N+, then t ∈ N ,
• if r ∈ N−, then t has a rewrite step by equation [bt14].

(2) Case t = r b̂ u. Assume that r, u ∈ N and apply case distinction on u:
• if u ∈ {0, 1}, then apply case distinction on r:

– if r = 0, then t has a rewrite step by equation [bt1],
– if r ∈ N+, then t ∈ N ,
– if r ∈ N−, then t has a rewrite step by equation [bt19].
• if u = u′ b̂ j, then t has a rewrite step by equation [bt2],
• if u = −1, then apply case distinction on r:

17:30 J.A. Bergstra and A. Ponse Vol. 17:1

– if r = 0, then t has a rewrite step by equation [bt1],
– if r = 1, then t has a rewrite step by [bt15],
– if r = r′ b̂ 0, then t has a rewrite step by equation [bt16],
– if r = r′ b̂ 1, then t has a rewrite step by equation [bt17],
– if r ∈ N−, then t has a rewrite step by equation [bt19].
• if u = −(u′ b̂ j), then t has a rewrite step by equation [bt18].

(3) Case t = u + r. Assume that u, r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [bt4],
• if r = 1, then apply case distinction on u:

– if u = 0, then t has a rewrite step by equation [bt3],
– if u = 1, then t has a rewrite step by equation [bt5]
– if u = u′ b̂ j, then t has a rewrite step by equation [bt7],
– if u = −1, then t has a rewrite step by equation [bt21],
– if u = −(u′ b̂ j), then t has a rewrite step by equation [bt24],
• if r = r′ b̂ i, then t has a rewrite step by [bt6],
• if r = −1, then apply case distinction on u:

– if u = 0, then t has a rewrite step by equation [bt3],
– if u = 1, then t has a rewrite step by equation [bt20]
– if u = u′ b̂ j then t has a rewrite step by equation [bt7],
– if u = −1, then t has a rewrite step by equation [bt22],
– if u = −(u′ b̂ j), then t has a rewrite step by equation [bt24],
• if r = −(r′ b̂ i), then t has a rewrite step by equation [bt23].

(4) Case t = u · r. Assume that u, r ∈ N and apply case distinction on r:
• if r = 0, then t has a rewrite step by equation [bt8],
• if r = 1, then apply case distinction on u:

– if u = 0, then t has a rewrite step by equation[bt9],
– if u = 1, then t has a rewrite step by equation[bt10],
– if u = u′ b̂ j, then t has a rewrite step by equation [bt12],
– if u ∈ N−, then t has a rewrite step by equation [bt26],
• if r = r′ b̂ i, then t has a rewrite step by equation [bt11],
• if r ∈ N−, then t has a rewrite step by equation [bt25].

This concludes our proof.

B.3. Decimal view: Intdt, the DDRS for Zdt.
This DDRS is defined in Table 14. Recall that D = {0, 1, 2, ..., 9} and define the signature
Σdt = {+, ·, d̂ ,−(), i | i ∈ D}, and the set N of closed terms over Σdt as follows:

N = {0} ∪N+ ∪N−,

N+ = D \ {0} ∪ {t d̂ i | t ∈ N+, i ∈ D},
N− = {−t | t ∈ N+}.

It immediately follows that if t ∈ N , then t is a normal form (no rewrite rule applies). In
order to prove ground-confluence of this rewriting system, it suffices to show that for each
closed term t over Σdt, either t ∈ N or t has a rewrite step, so that each normal form is in
N . We prove this by structural induction on t.

The base cases are simple: if t ∈ D, then t ∈ N . For the induction step we have to
distinguish five cases:

Vol. 17:1 DATATYPE DEFINING REWRITE SYSTEMS FOR NATURALS AND INTEGERS 17:31

(1) Case t = −r. Assume that r ∈ N and apply case distinction on r:
• if r = 0 then t has a rewrite step by equation [dt12],
• if r ∈ N+, then t ∈ N ,
• if r ∈ N−, then t has a rewrite step by equation [dt13].

(2) Case t = S(r). Assume that r ∈ N and apply case distinction on r:
• if r = i for i ∈ D \ {9}, then t has a rewrite step by equation [dt3.i],
• if r = 9, then t has a rewrite step by equation [dt4],
• if r = r′ d̂ i for i ∈ D \ {9}, then t has a rewrite step by equation [dt5.i],
• if r = r′ d̂ 9, then t has a rewrite step by equation [dt6],
• if r = −i′ for i ∈ D \ {9}, then t has a rewrite step by equation [dt14.i],
• if r = −(r d̂ 0), then t has a rewrite step by equation [dt15],
• if r = −(r d̂ i′) for i ∈ D \ {9}, then t has a rewrite step by equation [dt16.i].

(3) Case t = r d̂ u. Assume that r, u ∈ N and apply case distinction on u:
• if u ∈ D, then apply case distinction on r:

– if r = 0, then t has a rewrite step by equation [dt1],
– if r ∈ N+, then t ∈ N ,
– if r ∈ N−, then t has a rewrite step by equation [dt23].
• if u = u′ d̂ i for i ∈ D, then t has a rewrite step by equation [dt2.i],
• if u = −i for i ∈ D \ {0}, then apply case distinction on r:

– if r = 0, then t has a rewrite step by equation [dt1],
– if r = 1 and u = −1, then t has a rewrite step by equation [dt17],
– if r = 1 and u = −i′ for i ∈ D \ {9}, then t has a rewrite step by equation [dt18.i],
– if r = i′ and u = −1 for i ∈ D \ {9}, then t has a rewrite step by equation [dt19.i],
– if r = i′ and u = −j′ for i, j ∈ D\{9}, then t has a rewrite step by equation [dt20.i.j],
– if r = r′ d̂ 0 and u = −i for i ∈ D\{0}, then t has a rewrite step by equation [dt21.i],
– if r = r′ d̂ i′ and u = −j′ for i, j ∈ D \ {9}, then t has a rewrite step by equa-

tion [dt22.i.j],
– if r ∈ N−, then t has a rewrite step by equation [dt23].
• if u = −(u′ d̂ i), then t has a rewrite step by equation [dt24.i].

(4) Case t = r + u. Assume that r, u ∈ N and apply case distinction on u:
• if u = i for i ∈ D, then t has a rewrite step by equation [dt7.i],
• if u = u′ d̂ i for i ∈ D, then t has a rewrite step by equation [dt8.i],
• if u ∈ N−, say u = −u′, then t has a rewrite step by equation [dt25].

(5) Case t = r · u. Assume that r, u ∈ N and apply case distinction on u:
• if u = 0, then t has a rewrite step by equation [dt9],
• if u = i for i ∈ D \ {0}, then t has a rewrite step by equation [dt10.i],
• if u = u′ d̂ i for i ∈ D, then t has a rewrite step by equation [dt11.i],
• if u ∈ N−, then t has a rewrite step by equation [dt26].

This concludes our proof.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. DDRSs for the ring of integers
	2.1. A DDRS for the ring of integers
	2.2. An alternative DDRS for the ring of integers

	3. DDRSs for natural number and integer arithmetic in unary view
	3.1. DDRSs for NU and ZU
	3.2. From the ring of integers to unary view

	4. DDRSs for combining unary, binary and decimal view
	4.1. Digits, a large signature, and two canonical term algebras
	4.2. Unary view
	4.3. Binary view
	4.4. Decimal view

	5. DDRSs with digit tree constructors
	5.1. Unary view with digit tree constructor
	5.2. Binary view with digit tree constructor
	5.3. Decimal view with digit tree constructor

	6. Conclusions
	Acknowledgement
	References
	Appendix A. DDRSs with digit append constructors, ground-confluence
	A.1. Binary view: Intbud, the DDRS for Zbud
	A.2. Decimal view: Intdub, the DDRS for Zdub

	Appendix B. DDRSs with digit tree constructors, ground-confluence
	B.1. Unary view: the DDRS Intut for Zut
	B.2. Binary view: Intbt, the DDRS for Zbt
	B.3. Decimal view: Intdt, the DDRS for Zdt

