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Chapter 1

General introduction

If this introduction were written ten years ago, it could begin with a hymn of praise
for the human visual system and its incredible achievement in object recognition. It
could emphasize how the brain is the only known system that is able to accurately and
efficiently perform this task. Back then, visual object recognition was an extremely
difficult computational problem; so difficult that even the most advanced computer
models and algorithms were not sufficiently advanced to simulate humans’ incredible
performance. Nowadays however, boosted by larger datasets and growing computa-
tional power, advances in artificial neural networks have led to vision systems that are
starting to rival human accuracy in basic object recognition tasks. This chapter will still
start with a description of the human visual system and its praiseworthy performance.
Next, it provides a brief overview of the relevant psychological, neuroscientific and
computational work on object recognition. Throughout, it outlines how the work
presented in this thesis aims to contribute to our understanding of object recognition
in the human brain, and how recent advances in a class of computational models
called deep convolutional neural networks might mimic and elucidate the processes
underlying human recognition. Finally, a brief overview of the remaining chapters in
this thesis is provided.

Seemingly without any effort, our brain makes sense of the light that is pro-
jected onto our retina, and in the blink of an eye we recognize the objects surrounding
us. Unlike a camera, which simply stores raw visual information projected from the
physical world, we understand our environment in terms of a constellation of vivid
visual features, structures and objects. This performance is especially impressive given
that object recognition is a computationally demanding process. A single object, for
example a banana, can generate a virtually infinite number of different retinal projec-
tions based on many factors, such as its viewpoint, lighting or its ripeness. Moreover,
objects from the same category may vary in color, size, texture and other features.
In addition to the objects that we already know, recognition often generalizes easily
to new, previously unseen exemplars. To make it even more complicated, objects in
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the real world rarely appear in isolation. We see the world in scenes, where objects
are embedded and often partially occluded in rich and complex surroundings. How
does the brain extract and transform diagnostic low-level visual features into robust
visual representations, whilst there are so many factors that affect the appearance of
natural object categories? And how are these representations mapped onto high-level
structure, meaning and memory? Visual perception is the organization, identification
and interpretation of visual information in order to represent and understand the
outside world. The visual cortex is one of the best characterized areas of the human
brain and decades of research have focused on these questions.

From raw sensory input to complex feature constellations

It all starts when light falls onto the lens of our eyes, and is projected onto our retina.
Light is composed of photons, that make up electromagnetic waves. The retina is tiled
with four different types of light sensitive photoreceptors that each respond differen-
tially to electromagnetic frequencies. Activation is then fed forward through bipolar
cells and ganglion cells, via the optic nerve, of which half of the axons crosses over
in the optic chiasm and a synaps in the lateral geniculate nucleus (LGN) to the cortex,
with most of the fibers terminating in the primary visual cortex (V1). Apart from V1,
many other cortical visual areas have been identified. Early studies with patients with
damage to certain areas (lesions) have provided strong evidence that damage to dif-
ferent cortical regions may lead to selective impairments (Bodamer, 1947; Dejerine,
1892; Jackson, 1876; Kleist, 1934; Lewandowsky, 1908; Newcombe, 1969; Wilbrand,
1892; Zeki, 1993), including, for example, achromatopsia (impairment of color vision)
and prosopagnosia (impairments in the recognition of faces). Findings from electro-
physiological and neuroimaging studies have subsequently identified areas that are
specialized to represent different types of information. Some areas preferably respond
to simple stimuli such as oriented contrasts (Hubel & Wiesel, 1968) or textures; other
areas only become active when a specific (more complex) object is visible, such as a
face or a bicycle (Downing et al., 2006; Epstein & Kanwisher, 1998). In the last few
decades, researchers have identified more than 40 separate maps in the brain that are
selectively tuned to specific visual features, such as color (Zeki et al., 1998) or motion
(Zihl et al., 1983). Why has the brain evolved with so many visual areas? The classic
hypothesis is that the areas form a hierarchy or a ‘pathway’, in which each area incre-
mentally expands on the representation derived by computations and processing in
earlier areas, each time representing the sensory input in a different way. The ventral
pathway (also referred to as the “what” pathway) has been shown to play a key role
in the computations underlying the identification and recognition of objects (Goodale
et al.,, 1992). This pathway extends from V1 through a series of stages, V2, V3, V4, to
the inferior temporal (IT) region. Going forward in this ventral pathway, cell responses
gradually become size and position invariant, as well as selective for increasingly com-
plex features. An alternative hypothesis is that for each particular visual feature that
we can perceive (e.g. colors or textures), there is a dedicated system in the brain con-
taining several visual maps. These different visual maps designed for various visual
tasks such as color or face perception, are then distributed over the posterior brain,
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involving both more basic processes and higher-order processing (De Haan & Cowey,
2011).

Feed-forward vs. feedback processing in object recognition

Following a pathway from ‘simple’ to ‘more complex’ feature constellations, object
recognition has traditionally been seen as the result of a processing pipeline in which,
after detection of low-level features (e.g. edges or orientations), grouping and seg-
mentation of the relevant features form the basis on which higher level operations
like object recognition can operate (Riesenhuber & Poggio, 1999; Serre et al., 2005).
In this pipeline, grouping of information may occur based on relatively simple cues
like motion, orientation or collinearity (Mack et al., 1990). By sequentially building up
increasingly complex feature conjunctions, a single feed-forward sweep through this
pipeline may suffice to perform ‘core object recognition’’ (DiCarlo et al., 2012; Serre
et al., 2007) (Figure 1.1A).

Indeed, the speed and efficiency of behavior suggest that a fast feed-forward
buildup of perceptual activity should be sufficient for object recognition. For example,
rapid categorization experiments showed that humans produced extremely fast and re-
liable behavioral responses about the category of objects in natural scenes (Thorpe et
al., 1996). If participants only needed to make an eye movement towards the relevant
category, this could even be done within 120 ms (Kirchner & Thorpe, 2006). Looking at
the brain, electroencephalography (EEG) measures of visual responses to different ob-
ject categories already started to diverge at 150 ms after stimulus onset (Thorpe et al.,
1996; VanRullen & Thorpe, 2001). In this feedforward account of object recognition,
the role of the early retinotopic visual cortex (i.e., V1/V2) is limited to performing basic
computations of the visual input and feeding the output to higher areas for more com-
plex processing. This seems more probable than the recurrent processing account of
object recognition: with roughly ten synapses from the retina to high-level visual areas,
that each take around 10-20 ms to transfer information, behavioral responses occur-
ring within 250 ms after stimulus onset are likely to be produced by processing that
is largely feed-forward because it is too early for global recurrent processing to play a
role (Lamme & Roelfsema, 2000).

However, the visual system is clearly not a strict feed-forward hierarchy: it contains
an abundance of horizontal and feedback connections that support recurrent compu-
tations (Felleman & Van Essen, 1991). Several studies have suggested that information
coded in early visual areas still remains functionally relevant for categorical representa-
tions at later time points (Cichy et al., 2014). Moreover, there have been studies show-
ing that the disruption of visual processing, beyond feed-forward stages (e.g. >150 ms
after stimulus onset, or after object-selective activation of higher-order areas) can lead
to decreased object recognition performance. For example, TMS studies have shown
that categorization (Camprodon et al., 2010) and detection (Koivisto et al., 2011) of
objects in natural scenes is affected when activity in early visual areas is disrupted after
the feed-forward sweep. This suggests that activity in early visual areas (V1/V2) remains

The ability to rapidly recognize objects despite substantial appearance variation
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functionally important for categorization, even after the ‘first round’ of computations.

Contrary to the classical view of the visual hierarchy, it has been proposed that a
rapid, global percept of the input (gist) precedes a slow and detailed analysis of the
scene (Biederman, 1972; Hochstein & Ahissar, 2002; Oliva, 2005; Oliva & Schyns, 1997),
or accompanies detailed feature extraction (Rousselet et al., 2005; Wolfe et al., 2011).

Recently, a growing body of literature suggests that while feed-forward activity may
suffice to recognize isolated objects that are easy to discern, the brain employs increas-
ing feedback or recurrent processing for object recognition under more ‘challenging’
natural conditions (Groen, Jahfari, et al., 2018; Kar et al., 2019; Rajaei et al., 2019;
Tang et al., 2018). One way in which feedback is thought to facilitate object recogni-
tion is through ‘visual routines’ such as curve tracing and figure-ground segmentation.
When performing a visual object recognition task, the visual input (stimulus) elicits a
feed-forward drive that rapidly extracts basic image features through feedforward con-
nections (Lamme & Roelfsema, 2000). For simple tasks, such as recognizing whether
an object is animate or inanimate, or for recognizing clear, isolated objects in sparse
scenes, this set of features might be informative enough for successful recognition.
While for more detailed tasks or for detecting objects embedded in more complex
scenes, the jumble of visual information (‘clutter’) may forward an inconclusive set of
features. For those images, extra visual operations ('visual routines’), such as scene
segmentation and perceptual grouping are required. These processes require feed-
back activity, because they rely on the integration of line segments and other low-level
features that are encoded in early visual areas (Crouzet & Serre, 2011; Epshtein et
al., 2008; Hochstein & Ahissar, 2002; Lamme & Roelfsema, 2000; Petro et al., 2014;
Roelfsema et al., 1999; Self et al., 2019; Zheng et al., 2010). But when is an image
considered complex? And how does the brain pick up that an image is complex and
that it should therefore employ more extensive processing?

Natural scene statistics index complexity

The scenes that we encounter in our everyday environment do not contain randomly
sampled pixels, but they adhere to specific low-level regularities called natural scene
statistics. Natural scene statistics have been demonstrated to carry diagnostic infor-
mation about the visual environment: for example, slopes of spatial frequency spectra
estimated across different spatial scales and orientations (‘spectral signatures’) are in-
formative of scene category and spatial layout (Greene & Oliva, 2009b, 2009a; Oliva &
Torralba, 2001). Similarly, the width and shape of histograms of local edge information
estimated using single- and multi-scale non-oriented contrast filters have been shown
to systematically differ with scene category and complexity (Brady & Field, 2000; Tad-
mor & Tolhurst, 2000). Scene complexity reflected in local contrast distributions can
be estimated using an early visual receptive field model that outputs two parameters,
contrast energy (CE) and spatial coherence (SC), approximating the scale and shape of
a Weibull fit to the local contrast distribution (Figure 1.1C). Earlier studies have shown
that visual activity evoked by natural scenes can be well described by scene complex-
ity, suggesting that the brain is adapted or tuned to those statistical regularities and
potentially using them during visual perception (Brady & Field, 2000; Ghebreab et al.,
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2009; Scholte et al., 2009).

Importantly, CE and SC are computed in a biologically plausible way, using a sim-
ple visual model that simulates neuronal responses in one of the earliest stages of
visual processing. Specifically, they are derived by averaging the simulated population
response of LGN-like contrast filters across the visual scene (Ghebreab et al., 2009).
Similar to other models of representation in early vision (e.g. Rosenholtz et al. (2012)),
these two-parameters thus provide a compressed representation of a scene. Given
that CE and SC inform about the strength and coherence of edges in a scene, they
are possibly involved in the formation of the initial coarse percept of a scene. In turn,
by providing the system with a measure of the ‘inherent segmentability’ of the scene,
they could serve as a complexity index that affects subsequent computations towards a
task-relevant visual representation. Indeed, prior work reported effects of scene com-
plexity on both neural responses and behavior (Groen, Jahfari, et al., 2018), indicating
enhanced recurrent activity for more complex scenes.

In Chapter 2 of this thesis, we formally modeled the influence of natural scene
complexity on perceptual decision-making in an animal detection task. Differences
in complexity were task-irrelevant, i.e. not diagnostic of the presence of the target.
Our results indicated that scene complexity modulates perceptual decisions through
the speed of information processing and evidence requirements, suggesting that the
brain is sensitive to low-level regularities even when the task goal is to extract high-
level object category information. Having gathered additional evidence for the behav-
ioral relevance of scene complexity, we attempted to dissociate the contributions of
the two different axes describing the image complexity ‘space’ (contrast energy and
spatial coherence). In chapter 3, we evaluated whether the effects of complexity on
neural responses and behavior could be attributed to the computation of SC and CE
directly, as a general measure of complexity, or indirectly, as diagnostic information
to estimate other task-relevant scene properties. Using EEG measurements and back-
ward masking, we systematically investigated whether scene complexity influenced the
involvement of recurrent processing in object recognition.

To summarize, a growing body of literature suggests that we do not necessarily
need to always ‘segment’ the object from the scene, enabling very rapid object recog-
nition. Only when the image is cluttered and chaotic or when we perform specific
tasks that rely on explicit encoding of spatial relationships between parts, we need to
employ extra ‘visual routines’. While this view seems to mostly emphasize that object
recognition relies on the integration of features that exclusively belong to the object,
there is also evidence that humans can exploit scene regularities to efficiently search
for target objects (Castelhano & Heaven, 2010; Malcolm et al., 2014; Torralba et al.,
2006) and use these predictions to facilitate object recognition.

Interaction between scenes and objects

Much of what we know about object recognition emerged from the study of simple,
isolated objects and the evaluation of corresponding behavior and neural activity. Vi-
sual objects in the real world, however, rarely appear in isolation; they co-vary with
other objects and environments. In turn, a scene often holds clues about the object
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identity or where to search for it (Auckland et al., 2007; Bar, 2004; Bar & Ullman, 1996;
Biederman et al., 1982; Greene et al., 2015; Joubert et al., 2008; Oliva & Torralba,
2007; Sun et al., 2011; Vo et al., 2019; Zimmermann et al., 2010). The real world is
structured in predictable ways on multiple levels: object-context relations are usually
coherent in terms of their physical and semantic content, and they generally occur in
typical configurations. The human visual system seems to be sensitive to this structure.
For example, participants show enhanced performance for objects appearing in typical
locations (e.g. shoes in the lower visual field), and neural representations are sharper
as compared to objects appearing in atypical locations (Kaiser et al., 2019). When
multiple scene elements are arranged in typical relative positions, cortical processing
is more efficient (Kaiser et al., 2019; Kaiser & Cichy, 2018). Additionally, objects ap-
pearing on a congruent background (e.g. a toothbrush in a bathroom) are detected
more accurately and quickly than objects in an unexpected environment (Davenport
& Potter, 2004; Greene et al., 2015; Munneke et al., 2013). Overall, results show that
visual processing is tuned to the properties of the real world. So how does scene in-
formation influence object recognition? Different accounts of object recognition in
scenes propose different ‘loci’ for contextual effects (Oliva & Torralba, 2007; V6 et al.,
2019). It has been argued that a bottom-up visual analysis is sufficient to discriminate
between basic level object categories, after which context may influence this process
in a top-down manner by priming relevant semantic representations, or by constraining
the search space to the most likely objects (e.g. Bar (2003)). Recent studies have also
indicated that low-level features of a scene (versus high-level semantic components)
can modulate object processing (Lauer et al., 2018; Vo et al., 2019) by showing that
seemingly meaningless textures with preserved summary statistics contribute to the
effective processing of objects in scenes. In chapter 4 of this thesis, we manipulated
information from objects and their backgrounds to better understand how information
of the background affects the recognition of objects (Figure 1.1D). Linking human vi-
sual processing to performance of models from computer vision (that are described
in more detail in the next section) we evaluated what type of computations might un-
derlie the segregation of objects from their backgrounds and the interaction between
them.

Probing cognition with deep convolutional neural networks

As already mentioned in the first paragraph of this chapter, the ‘problem’ of object
recognition in natural scenes has not only occupied researchers interested in human
behavior. Object recognition in natural scenes is one of the most studied problems in
computer vision, in which decades of research have been spent on the development
of models that could recognize an object by first segmenting the relevant ‘region’
from the background and tracing its outline. Despite these efforts, such models never
reached human-level performance in general object recognition tasks. In 2012, the suc-
cess of a model called ‘AlexNet’ led to a paradigm shift in the field of computer vision
(Krizhevsky et al., 2012). Since then, this class of computational models called deep
convolutional neural networks (DCNNSs), inspired by the hierarchical architecture of the
ventral visual stream, have become the most popular approach to object recognition
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problems. Compared to earlier object recognition algorithms, DCNNs need relatively
little preprocessing. While prior models required, for example, hand-engineering of
certain filters and preprocessing steps, DCNNs can learn these things by extensive
experience with many different examples. This independence from prior knowledge
and human effort in feature design was a major advantage, and led to a huge jump in
performance.

DCNNs as models of human visual processing

DCNNs and the visual system share two important characteristics. First, both have
receptive fields that increase in size along the hierarchy. DCNNs employ receptive
fields that act like filters covering the entire input image to exploit the fact that nat-
ural images contain strong spatially local correlations. This mimics how the primate
visual cortex efficiently accomplishes visual recognition tasks. Second, the further in-
formation progresses in the network, the more complex the features become. Various
studies have found striking similarities between the respresentations within the artifi-
cial neural networks and the cascade of processing stages in the human visual system.
In particular, it has been shown that internal representations of these models are hi-
erarchically similar to neural representations in early visual cortex (V1-V3), mid-level
(V4), and high-level (IT) cortical regions along the visual ventral stream. For exam-
ple, neural activity in early areas of visual cortex, as measured with BOLD-MRI, show
the highest correspondence with the early layers of DCNNs while higher cortical ar-
eas show the highest correspondence with later DCNN layers (Eickenberg et al., 2017
Guglu & Gerven, 2015; Seeliger et al., 2018; Seibert et al., 2016; Wen et al., 2018).
MEG/EEG studies have furthermore shown that early layers of DCNNs explain more of
the variance in neural activity early in time, whereas later layers seem to better explain
late activity (Cichy et al., 2016; Ramakrishnan et al., 2016). In addition, DCNNs have
been shown to predict neural responses in IT, much better than any other computa-
tional model (Khaligh-Razavi & Kriegeskorte, 2014; Kubilius et al., 2018; Schrimpf et
al., 2018; Yamins et al., 2014). Based on all these previous findings, it has been argued
that DCNNSs could function as computational models for biological vision (Kietzmann,
McClure, et al., 2019; Kriegeskorte, 2015; Lindsay, 2020).

There are, of course, many limitations and non-trivial differences between DCNNs
and the human visual system. For example, while the brain is abundant with lateral
and feedback connections (Felleman & Van Essen, 1991), most DCNNs are generally
feed-forward. The backpropagation algorithm is not considered biologically-plausible
enough to be an approximation of how the visual system learns, and there is a stark
difference between the simplicity of the model neurons in neural network models and
the complexity of real neurons (to name a few). DCNNs often make different types of
errors (e.g. Baker et al. (2018) or Geirhos, Rubisch, et al. (2018)). Moreover, several
studies have shown how DCNNS are often overly sensitive to changes in the image
that would not fool a human observer (Szegedy et al., 2013), and how adding vari-
ous types of noise, occlusion or blur or even one pixel to standard images leads to a
decrease in recognition performance for DCNNS, while leaving human performance
intact (Geirhos, Temme, et al., 2018; Ghodrati et al., 2014; Su et al., 2019). Unlike hu-
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mans, DCNNSs are not robust to simple manipultations and tend to generalize poorly
beyond the dataset on which they were trained (Serre, 2019).

Still, DCNNs are capable of solving many of the computational problems during
visual processing, and on this merit alone one might argue that they deserve our at-
tention as computational models for the human visual system. Possibly, some of the
solutions DCNNs provide are similar to biological vision; at the very least, they can be
used to explore and generate new hypotheses about the computational mechanisms
(Cichy & Kaiser, 2019). Importantly, DCNNs give us the ability to test and compare
their performance to humans. By investigating these models, we can perform experi-
ments that would not be possible otherwise, and subsequently gain new insights into
how actual neural networks work.

A zoo of artificial animal models

One way of using deep convolutional neural networks to understand human cognition
is by using them in a way similar to how we might utilize animal models (Scholte, 2018).
An animal model for cognition typically emerges when an animal shows behavior that
can be studied in a systematic fashion; such a model becomes even more interest-
ing when the underlying anatomy, architecture and/or physiology of the animal can
be linked to the behavior of interest. Current implementations of DCNNs are being
studied mostly because they demonstrate an impressive performance on both object
and scene recognition. Since these are computer models, we can easily change the
architecture or compare different architectures to evaluate the mechanisms that pro-
duce this behavior. For example, we can compare different functional architectures or
differences in information flow (e.g. feed-forward vs. recurrent; Kietzmann, Spoerer,
et al. (2019)) and compare the performance (Figure 1.1B). Leveraging DCNNs as ani-
mal models, in chapter 3, we systematically investigated whether recurrent processing
is required for figure-ground segmentation during object recognition, by comparing
recognition performance in different feed-forward and recurrent DCNN architectures.

In addition to manipulating the structure of the DCNNSs, we can also manipulate
visual input and evaluate how different models deal with variations in sensory input
(‘psychophysics’) during training (e.g. Xu et al. (2018)) and testing (e.g. Wichmann et
al. (2017); Kubilius et al. (2016), Ghodrati et al. (2014); Geirhos et al. (2017)), just like
in experiments with human participants. In chapter 4, we controlled the information
in objects and backgrounds, as well as the relationship between them to manipulate
object-background congruence. We found that with an increase in network depth,
there is an increase in the distinction between object- and background information.
Importantly, we also found that less deep networks benefited from training on images
with objects without a background, while this benefit was decreased or even absent for
deeper networks. Overall, our results indicate that scene segmentation, the isolation
of an object from its background, is implicitly performed by a network of sufficient
depth, without dedicated routines or operations.

Interestingly, DCNNs also allow for the simulation of different ‘learning environ-
ments’ or experimental paradigms, by changing the methods and material used dur-
ing training. For example, by changing initial conditions prior to training (Mehrer et
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al., 2020), evaluating the influence of training (Storrs et al., 2020), or by training them
on different tasks (e.g. to categorize different scene categories, rather than objects
(Zhou et al., 2014) to learn more about potential task- or category-related differences
in the internal representations and behavior. Groen, Greene, et al. (2018), conducted
a series of analyses to assess the contribution of DCNN layers to fMRI responses in
scene-selective cortex, comparing DCNNs that were trained using either object or
scene labels. While they did not observe strong differences in terms of their ability
to explain fMRI responses, the correlation between layers of both networks decreased
for higher/later layers. In chapter 5, we show how training models on different goals
(manmade vs. natural scenes, or animate vs. inanimate objects) can elucidate the role
of perceptual demands during different experiments.

Finally, with these models, we can even ‘damage’ or ‘lesion’ certain regions in the
network and evaluate how this influences the model's performance. In chapter 5,
we evaluated object and scene categorization in a brain-injured patient with severe
object agnosia and category-specific impairments. By removing connections to later
layers in our artificial network, we ‘mimicked lesions’ to higher-order areas in the visual
processing stream, and showed an overlap in response patterns.
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Figure 1.1: Overview of the approach taken in this thesis. A) Schematic representa-
tion of visual processing B) Schematic overview of a Deep Convolutional Neural Net-
work (ResNet-10; He et al. (2016)). By comparing feedforward and recurrent DCNNs
architectures, ‘lesioning’ or manipulating the network, we can explore the underly-
ing computations that produce behavior. C) scene complexity as indexed by two pa-
rameters. Spatial Coherence (SC) describes the shape of the contrast distribution: it
varies with the amount of scene fragmentation (scene clutter). Contrast Energy (CE)
describes the scale of the contrast distribution: it varies with the distribution of local
contrasts strengths.Figure adapted from Groen et al. (2013). D) Example of object-
context manipulation by placing objects onto homogenous (segmented), congruent
and incongruent backgrounds.
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Aims and outline of this thesis

The main focus of this thesis is to study to what extent the human brain is influenced
by real-world properties during object perception. More specifically, it sets out to
investigate how different functional architectures or differences in information flow
(feedforward vs. recurrent) extract information from objects and their backgrounds
during object recognition. Additionally, it showcases a potential role for DCNNs as
artificial animal models of human visual processing.

In Chapter 2, participants performed an animal detection task on low, medium
or high complexity scenes as determined by two biologically plausible natural scene
statistics, contrast energy (CE) or spatial coherence (SC). While prior work already
reported effects of scene complexity on neural responses and behavior, these effects
were not formally modeled using perceptual decision making models. In addition,
there was no in-depth attempt to dissociate the contributions of the two different
axes describing the image complexity ‘space’ (CE and SC). Diffusion modeling on
the reaction times showed that the speed of information processing was affected by
low-level scene complexity. Separate manipulation of the two parameters refined
these observations by showing that isolated manipulation of SC resulted in weaker
but comparable effects, with an additional change in response boundary, whereas the
variation of only CE had no effect.

In Chapter 3, we evaluated whether these behavioral effects were directly based
on the computation of SC and CE, as a general measure of image complexity, or
indirectly, as diagnostic information to estimate other task-relevant scene properties.
Our results suggest the former, as we show that how object recognition is resolved
depends on the complexity of the context: for objects presented in isolation or
in ‘simple’ environments, object recognition appears to be mostly dependent on
the object itself, resulting in a situation that can likely be solved within the first
feed-forward sweep of visual information processing. When the environment is more
complex, recurrent processing appears to be necessary to group the elements that
belong to the object and segregate them from the background.

In Chapter 4, we investigated the extent to which object and context informa-
tion is represented and used for object recognition in different deep convolutional
neural networks. We show that more layers (i.e. a deeper network) are associated
with ‘'more’ or better segmentation, by virtue of increasing selectivity for relevant
constellations of features. This process is similar, at least in terms of its outcome, to
figure-ground segmentation in humans and might be one of the ways in which scene
segmentation is performed in the brain using recurrent computations.

In Chapter 5, we examined what happens when visual information can no longer be
reliably mapped onto existing conceptual knowledge. In this study, we evaluated
object and scene categorization in a brain-injured patient MS, with severe object
agnosia and category-specific impairments. We show that category-specific effects,
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at least for patient MS, cannot be explained by a purely semantic disorder (i.e. by
category membership only). Using Deep Convolutional Neural Networks as ‘artificial
animal models’ we further explored the type of computations that might produce
such behavior. Overall, DCNNs with ‘lesions’ in higher order areas showed similar
response patterns, with decreased performance for manmade (experiment 1) and
living (experiment 2) things.

Finally, in Chapter 6, we summarize the main findings of this thesis and discuss
their implications for our understanding of object recognition in natural scenes.



Chapter 2

Low-level image statistics in
natural scenes influence
perceptual decision-making

Abstract A fundamental component of interacting with our environment is gathering
and interpretation of sensory information. When investigating how perceptual infor-
mation influences decision-making, most researchers have relied on manipulated or
unnatural information as perceptual input, resulting in findings that may not general-
ize to real-world scenes. Unlike simplified, artificial stimuli, real-world scenes contain
low-level regularities that are informative about the structural complexity, which the
brain could exploit. In this study, participants performed an animal detection task on
low, medium or high complexity scenes as determined by two biologically plausible
natural scene statistics, contrast energy (CE) or spatial coherence (SC). In experiment
1, stimuli were sampled such that CE and SC both influenced scene complexity. Diffu-
sion modeling showed that both the speed of information processing and the required
evidence were affected by low-level scene complexity. Experiment 2a/b refined these
observations by showing how isolated manipulation of SC resulted in weaker but com-
parable effects, whereas manipulation of only CE had no effect. Overall, performance
was best for scenes with intermediate complexity. Our systematic definition quanti-
fies how natural scene complexity interacts with decision-making. We speculate that
CE and SC serve as an indication to adjust perceptual decision-making based on the
complexity of the input.

This chapter is published as: Seijdel, N., Jahfari, S., Groen, l.LLA. & Scholte, H.S. (2020).
Low-level image statistics in natural scenes influence perceptual decision-making. Sci-
entific Reports 10, 10573. https://doi.org/10.1038/s41598-020-67661-8
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Introduction

During decision-making, observers extract meaningful information from the sensory
environment in a limited amount of time. In recent computational accounts of percep-
tual decision-making, sensory evidence for a decision option is integrated and accumu-
lates over time until it reaches a certain boundary (Gold & Shadlen, 2007; Heekeren et
al., 2008). Across these computational accounts, the speed of evidence accumulation
is thought to depend on the quality or strength of sensory information available (the
drift rate, as formalized with the well-known drift diffusion model (Ratcliff & McKoon,
2008).

In the current study, we aimed to investigate how decision-making processes are in-
fluenced by low-level image properties, diagnostic of scene complexity. While multiple
studies have shown that specific image properties (such as spatial frequency, or stim-
ulus strength) interact with decision-making, they manipulate visual information into
“unnatural” stimuli. For example, we recently showed that image quality modulates
response inhibition, and decision-making processes (Jahfari et al., 2015), by manipulat-
ing the spatial frequencies of images. Ultimately, however, our goal is to understand
how decision processes are influenced by information in natural scenes (Malcolm et
al., 2016). The scenes that we encounter in our everyday environment do not contain
randomly sampled pixels, but adhere to specific low-level regularities called natural
scene statistics. Natural scene statistics have been demonstrated to carry diagnostic
information about the visual environment: for example, slopes of spatial frequency
spectra estimated across different spatial scales and orientations (‘spectral signatures’)
are informative of scene category and spatial layout (Greene & Oliva, 2009b, 2009a;
Oliva & Torralba, 2001). Similarly, the width and shape of histograms of local edge
information estimated using single- and multi-scale non-oriented contrast filters have
been shown to systematically differ with scene category and complexity (Brady & Field,
2000; Ghebreab et al., 2009; Scholte et al., 2009).

Earlier studies have shown that visual activity evoked by natural scenes can be well
described by scene complexity, suggesting that the brain is adapted or tuned to those
statistical regularities (Ghebreab et al., 2009; Scholte et al., 2009), and potentially using
them during visual perception. Scene complexity reflected in local contrast distribu-
tions can be estimated using an early visual receptive field model that outputs two pa-
rameters, contrast energy (CE) and spatial coherence (SC), approximating the scale and
shape of a Weibull fit to the local contrast distribution, respectively (see Supplementary
section 1). CE and SC reflect different aspects of the local contrast distribution: CE
approximates the scale parameter of the Weibull fit and reflects the average local con-
trast strength in an image. SC approximates the shape parameter of the Weibull fit and
reflects to what degree the contrast distribution resembles a power law or Gaussian
distribution. Cluttered or complex scenes, with high CE/SC values, have more Gaus-
sian (bell-shaped) distributions compared to sparse or simple scenes with low CE/SC
values (power-law shaped), that often contain one or a few salient objects (Figure 2.1;
adapted from Groen et al. (2013)).

Importantly, CE and SC are computed using a simple visual model that simulates
neuronal responses in one of the earliest stages of visual processing. Specifically,
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they are derived by averaging the simulated population response of LGN-like contrast
filters across the visual scene (Scholte et al., 2009). Similar to other models of
representation in early vision (e.g. Rosenholtz et al. (2012)), these two-parameters
thus provide a compressed representation of a scene. In turn, they could serve as a
complexity index that affects subsequent computations towards a task-relevant visual
representation.

more energy

CE

less energy

.
,* more coherent SC less coherent
’

¢ .

Figure 2.1: A Subselection of stimuli plotted against their CE and SC values. Figure
adapted from Groen et al. (2013). SC (the approximation of the ~y parameter of the
Weibull function) describes the shape of the contrast distribution: it varies with the
amount of scene fragmentation (scene clutter). CE (the approximation of the [
parameter of the Weibull function) describes the scale of the contrast distribution: it
varies with the distribution of local contrasts strengths. Four representative pictures
are shown in each corner of the parameter space. Images that are highly structured
(e.g., a street corner) are found on the left, whereas highly cluttered images (e.g., a
forest) are on the right. Images with higher figure-ground separation (depth) are
located on the top, whereas flat images are found at the bottom.

Here, we investigated whether task-irrelevant manipulations of SC and CE inter-
act with perceptual decision-making by using the drift-diffusion model (DDM). By
considering response time distributions for both correct and incorrect choices, the
DDM models the speed of evidence accumulation, as well as the amount of evidence
required to make a decision. In experiment 1, stimuli were selected such that both
CE and SC co-varied with scene complexity, with increasing values representing more
complex natural scenes. This is the 'natural situation’, since SC and CE are typically
correlated within our natural environment. To refine the observations in experiment
1, in experiment 2a and 2b, we also selected stimuli in such a way that the effects for
both parameters could be evaluated separately.
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Figure 2.2: Experimental design and methods. A) Examples of the stimuli used in ex-
periment 1, 2a and 2b. Images varied both in SC and CE (red = low, green = medium,
blue = high) in experiment 1. To investigate whether it is meaningful to differentiate
between SC and CE, the two parameters were manipulated separately in experiments
2a (SC) and 2b (CE). For each condition, 80 animal and non-animal scenes were se-
lected. B) Experimental paradigm. Participants categorized scenes based on the pres-
ence or absence of an animal. On half of the trials, participants were asked to respond
as quickly as possible (“speed trials”), as indicated by a pre-cue. On the other half of
the trials, participants had to respond as accurate as possible (“accurate trials”). C)
Schematic representation of the Drift Diffusion Model. From a starting point z, infor-
mation begins to accumulate in favor of one of the options with drift rate v until it
reaches a boundary a, and the decision is made. Non-decision time T'err captures the
processes that are unrelated to decision-making, such as response execution.

Materials and methods

Experiment 1

In experiment 1, we investigated the combined influence of SC and CE on decision-
making. As SC and CE are generally highly correlated, varying them together provides
the strongest manipulation of information. We expected the drift rate to decrease with
increased scene complexity, with an additional shift in the amount of evidence required
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(boundary) reflecting potential strategic adjustments to the complexity of the scene.

Participants

Twenty participants (7 males) aged between 18 and 25 years (M = 21.9, SD = 1.9) with
normal or corrected-to-normal vision, gave written informed consent prior to partici-
pation and were rewarded with research credits or monetary compensation. The ethics
committee of the University of Amsterdam approved the experiment. All experimen-
tal protocols and methods described below were carried out in accordance with the
guidelines and regulations of the University of Amsterdam.

Stimuli

480 images (640*480 pixels, full-color) were obtained from a previous study by Groen
et al. (2010). The complete image set contained 7200 scenes from online databases,
including the INRIA holiday database (Jegou et al., 2008), the GRAZ database (Opelt
et al., 2006), ImageNet (Deng et al., 2009) and the McGill Calibrated Color Image
Database (Olmos & Kingdom, 2004). For each scene, we computed CE and SC values
using the model described in Ghebreab et al. (2009) and Groen et al. (2013), and
selectively sampled scenes for three conditions: low, medium and high (Figure 2.2).
Each condition contained 160 scenes, half of which contained an animal. Importantly,
within conditions, animal and non-animal scenes were matched in CE and SC values
such that these two categories did not differ from each other in mean or median values
(mean: all t(158) < 1.14, all p > 0.26, median: all z < 1.08, all p > 0.28).

Procedure

Participants performed an animal/non-animal categorization task (Thorpe et al., 1996)
(Figure 2.2). Scenes were presented in randomized sequence, for a duration of 100
ms. Between trials, a fixation-cross was presented with a semi-randomly duration (350,
400, 450, 500 or 550 ms), averaging to 450 ms. There were two trial instructions, that
appeared on screen before every trial in randomly alternating blocks of 20 trials: on
“speed trials”, participants were asked to respond as fast as possible, whereas on "ac-
curacy trials”, they responded as accurately as they could. While instruction influences
both the accuracy and duration of decisions, the ease of evidence accumulation (drift
rate) should remain constant (Ratcliff, 2014). Using a Speed-Accuracy manipulation
allows for a stronger and more sensitive test of the influence of scene complexity on
perceptual decision-making. If animal detection in more complex scenes is indeed
associated with more cautious or elaborate processing, performance in the high con-
dition should be most affected for “speed trials, in which extensive visual processing
is potentially limited by time constraints. Therefore, we aimed to specify how the pro-
cessing of natural scenes can modulate decision-making processes when participants
emphasize accuracy - and allow ample time for processing - or speed. Every scene
was presented once for both instructions (960 trials in total). Keyboard buttons were
switched halfway (based on a simultaneous EEG study). Comparing % errors in blocks
before and after the switch did not indicate switch costs: Mbefore = 0.13, SD = 0.15;
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Mafter = 0.16, SD = 0.11, only taking participants into account for which the same in-
struction was repeated before and after the switch, averaged across experiments. On
speed trials, participants received feedback on their response time (“on time” < 500 ms
> “too slow"”). On accuracy trials, participants were presented with “correct” and “in-
correct” feedback. When participants didn’t respond, “miss” appeared on screen.
Par-ticipants were seated ~90 cm from the monitor such that stimuli subtended
~10x14° of visual angle. Images were presented at eye-level on a 23-inch Asus LCD
display (sRGB, 2.27 gamma, 1.31 dE) with a spatial resolution of 1080*1920 pixels, at
a refresh rate of 60Hz, using Presentation (version 17.0, Neurobehavioral Systems,
Inc.). The ambient illumination in the room was kept constant across different
participants.

Hierarchical Drift Diffusion Model

We fitted a hierarchical version of the DDM (HDDM; Wiecki et al. (2013)) using the RT
distributions of correct and incorrect responses. HDDM uses a hierarchical Bayesian
estimation, that uses MCMC sampling to estimate the joint posterior distribution of
all model parameters, and has been described as method of preference in estimat-
ing drift rates for a small number of observations (in the order of 100-20; Ratcliff &
Childers (2015)). HDDM assumes that during decision-making, information begins to
accumulate from a starting point z, in favor of one of the options with drift rate v until
it reaches a boundary a, and the decision is made. Non-decision time Terr captures
the processes that are unrelated to the decision-making, such as response execution.
(Figure 2.2).

First, we evaluated five models in which drift rate (v) and boundary (a) were ei-
ther fixed or varied across trial type (speed, accurate) and/or scene complexity (low,
medium, high). Using the Deviance Information Criterion (DIC) for model selection we
established that, next to varying response boundary across trial type (ADIC = -3404
compared to fixed), varying both parameters across scene complexity was justified to
account for the data (Spiegelhalter et al., 2002). This fit produced lower DIC values
compared to a fit in which the drift rate (ADIC = -133.3), response boundary (ADIC =
-40.4) or both (ADIC = -68.1) were fixed across complexity. Then, to assess the trial-
by-trial relationship between scene complexity and drift rate (v) and boundary
separation (a), we fitted eighteen alternative regression models. Both linear models
(SC/CE centered around zero), and second-order polynomial models (quadratic) were
fitted to examine whether the relationship was curvilinear (e.g. followed an inverted
U-shape). We never included both scene statistics simultaneously, as their high corre-
lation leads to multicollinearity and unstable coefficient estimates. To take into
account the effect of task instruction on the response boundary a, we estimated two
intercepts for this parameter (speed and accuracy) using the depends_on key
argument. For each model, we ran four separate chains with 5,000 samples. The first
200 samples were discarded (burn), resulting in a trace of 19200 samples. Models
were tested for convergence using visual inspection of the group level chains and the
Gelman-Rubin statistic, which compares the intra-chain variance of the model to the
intra-chain vari-ance of the different runs. It was checked that all group-level
parameters had an Rhat between 0.98-1.02. For the best fitting model (lowest DIC),
we ran posterior predictive checks by averaging 500 simulations generated from the
model’s posterior to confirm
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it could reliably reproduce patterns in the observed data. Bayesian hypothesis testing
was performed on the group-level posterior densities for means of parameters. The
probability measure P was obtained by calculating the percentage of the posterior <
0 (see Supplementary section 2).

Experiment 2

A key question is whether the effects found in experiment 1 are driven by the two scene
statistics together, as they are generally highly correlated in our natural environment,
or whether one of them is the primary cause, as suggested by the SC preference in
our optimal HDDM model. To refine our interpretation, we systematically manipulated
SC while keeping CE constant (experiment 2a) and vice versa (experiment 2b). Exper-
imental procedure and analyses occurred as in experiment 1, except where otherwise
indicated.

Participants

Twenty-four participants (4 males; aged 18-28 years, M = 21.8, SD = 2.7) participated in
experiment 2a; Twenty-seven participants (7 males; aged 18-27 years, M = 21.4, SD =
2.5) participated in experiment 2b. All participants gave written informed consent prior
to participation and were rewarded with research credits or monetary compensation.
The ethics committee of the University of Amsterdam approved the experiment, and all
experimental protocols and methods described below were carried out in accordance
with the guidelines and regulations.

Stimuli

A new selection of 480 scenes was composed from the same image set as in experiment
1, except that each condition was now defined by either its SC (experiment 2a) or its
CE (experiment 2b) values while the other was kept constant at intermediate values
(Figure 2.2).

Hierarchical Drift Diffusion Model

In experiment 2a we established that, next to varying response boundary across trial
type (ADIC = -3426 compared to fixed), varying both parameters across SC was justi-
fied to account for the data. This fit produced lower DIC values compared to a fit in
which the drift rate (ADIC = -70.5), response boundary (ADIC = -60.3) or both (ADIC
= -27.8) were fixed across complexity. Next, we evaluated nine regression models to
assess the trial-by-trial relationship between scene complexity (indexed solely by SC),
and drift rate and response boundary. For experiment 2b model selection indicated
that a model in which, apart from varying response boundary across trial type, the pa-
rameters were fixed across CE best explained the observed data. This fit produced
lower DIC values compared to a fit in which the drift rate (ADIC = -44.7), response
boundary (ADIC = -76.7) or both (ADIC = -48.5) were allowed to vary across
complex-ity. Thus, variability in CE alone seems to have no influence on the speed of
evidence
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accumulation or the amount of information required to make a decision. As such, fur-
ther regression analyses were not justified.

Data and code availability

Data and code to reproduce the analyses are available at the Open Science
Framework (https://doi.org/10.17605/OSF.I0/J2AB9) and at https://github.com/
noorseijdel/2019_scenestats.

Results

Experiment 1

Data from one participant were excluded for excessive errors (>23%, 2.8 SD > mean).
RTs <100 ms were considered “fast guesses” and removed. The repeated-measures
ANOVA on RT (on correct trials) revealed main effects of both instruction (speed, ac-
curate) and scene complexity (low, medium, high), but no interaction effect, F(36) =
0.261, p > 0.77. Similarly, the repeated-measures ANOVA on error rates revealed main
effects but no interaction effect, F(36) = 0.177, p > 0.83. As expected, responses were
faster and less accurate when given a “speed” instruction, in comparison to “accu-
rate”. Because there was no interaction, RTs and error rates were collapsed over speed
and accurate trials to further understand how scene complexity modulates decision-
making. Bonferroni correction was used for all comparisons.

A repeated-measures ANOVA, with factor scene complexity differentiated RTs
across the three conditions, F(2,36) = 19.81, p < .001, 7721"" = .524 (Figure 2.3.
Participants responded slower for high (complex) scenes than for medium-, t(18) =
-7.293, p < .001, and low scenes, t(18) = -3.914, p = .001. There was also a main
effect on error rates, F(2, 36) = 14.26, p < .001, 772”‘" = .442. Participants made more
errors for high scenes than for medium, t(18) = -4.493, p < .001, and low scenes, t(18)
= -2.752, p = .013. Remarkably, participants made fewer mistakes on medium scenes
than on low SC/CE scenes, t(18) = 3.405, p = .003 (Figure 2.3)

Thus, based on the reaction times and error rates, we were able to observe a de-
crease in performance for low and high complexity scenes. To understand this
decrease in performance, we modeled the decision variables drift rate (speed of
evidence accu-mulation) and response boundary (evidence requirements). Relative to
the null model, the model in which only drift rate was affected by both SC and SC?
provided the best fit (ADIC = -71.0, Figure 2.3), compared to models only including
the centered or squared SC values and/or including a varying response boundary (see
Supplemen-tary section 2). That is, low and high SC were associated with a decreased
drift rate (inverted U-shape; P < 0.001), as indicated by a negative shift in the
posterior distri-bution. In other words, scene complexity influences the speed of
information accu-mulation, resulting in higher reaction times and more errors for low
and high complex scenes.
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Figure 2.3: Effects of Spatial Coherence and Contrast Energy on animal vs. non-animal
categorization. A) Examples of the stimuli used in experiment 1. Images varied both
in SC and CE (red = low, green = medium, blue = high). B/C) Results of experiment
1 indicate worse performance for images with high SC/CE, as indicated by higher RTs
and lowered accuracy. Error bars represent 1 SEM. * = p < .05, ** = p < .01, Bonferroni
corrected. Task performance was best for medium SC/CE images. D) Schematic rep-
resentation of the linear and quadratic terms included in the regression model. E) Low
or high complexity (SC, strongly correlated to CE) was associated with a lower rate of
evidence accumulation.
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Experiment 2
Results experiment 2a

One participant did not complete the experiment and was excluded from analyses.
In contrast to experiment 1, the repeated-measures ANOVA on error rates and RTs
showed, apart from the main effects of instruction and scene complexity, an interac-
tion effect, F(42) = 4.351, p = 0.0189. Therefore, results were analyzed separately for
“speed” and “accurate” trials to further understand how SC differentially impacts fast
or accurate decision strategies.

The repeated-measures ANOVA revealed no main effect of SC on RTs for
speeded or accurate trials (all p > 0.104). For error rates, there was a main effect of
SC on speed trials, F(1, 44) = 9.189, p < .001, 1721"" = .295. Participants made fewer
er-rors for medium SC scenes compared to both low, t(22) = 3.294, p = 0.003 or high,
t(22) = -4.346, p < .001 (Figure 2.4). Notably, SC had no effect on choice errors when
participants were motivated to be accurate (p > .103)

Relative to the null model, the model in which drift rate and response boundary
were affected by SC + SC? provided the best fit (ADIC = -21; Figure 2.4). As in
experiment 1, low and high SC were associated with a decreased drift rate (inverted
U-shape), as indicated by negative shifts in the posterior distribution (P < .001). Addi-
tionally, those scenes were associated with a decreased response boundary (P < .001;
Figure 2.4), potentially to still allow for a timely response. Thus, SC influences the
speed of information accumulation and the evidence requirements, resulting in more
errors for low and high complex scenes when pressed for time.

Results experiment 2b

Two participants were excluded because of excessive errors (>25%) or excessive
omissions (>40%). A repeated-measures ANOVA with factors scene complexity (low,
medium, high) and instruction (speed, accurate) revealed no interaction effects for
RTs, F(48) = 0.093, p > 0.9, or errors, F(48) = 1.216, p > 0.3. Consistently, no main
effect of CE was observed on RTs or errors when speeded and accurate trials were
collapsed (Figure 2.5; all p > 0.306).

Discussion

This study systematically investigated the interaction between low-level statistics in
natural scenes and perceptual decision-making processes. Results indicate that scene
complexity, as indexed by two parameters (SC, CE), modulates perceptual decisions
through the speed of information processing. Experiment 2a/b refined these obser-
vations by showing how the isolated manipulation of SC alone results in weaker yet
comparable effects, whereas the manipulation of CE has no effect. By using natural
stimuli, we show that task performance was best on medium complex images. Over-
all, these results show that very basic properties of our natural environment influence
perceptual decision-making.
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Figure 2.4: Effects of SC (controlling for Contrast Energy) on decision-making. A) Ex-
amples of the stimuli used in experiment 2a. Images only varied in SC, while CE was
kept constant (red = low SC, green = medium SC, blue = high). B) Results showed
no influence of SC on RT. C) Performance was most optimal for images with medium
SC complexity in the speed condition, as indicated by a higher accuracy. Error bars
represent 1 SEM. * = p < .05, ** = p < .01, Bonferroni corrected. D) Schematic rep-
resentation of the linear and quadratic term included in the regression model. E/F)
Negative shifts in the posterior distributions indicated that low or high complexity (SC)
was associated with a lower rate of evidence accumulation and required less evidence
to reach a decision (inverted U-shape).
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Figure 2.5: Effects of CE (controlling for Spatial Coherence) on decision-making. A)
Examples of the stimuli used in experiment 2b. Images only varied in CE, while SC
was kept constant (red = low CE, green = medium CE, blue = high CE). B/C) Results
of experiment 2b showed no influence of CE on RT or percentage or errors.

SC and CE together provide a compressed representation of scene complexity.
While CE captures information about the amount and strength of edges in a scene, SC
indexes higher-order correlations between them, giving an indication of the amount
of clutter. In earlier work by Scholte et al. (2009) and Groen et al. (2013); Groen et
al. (2016), differences in CE were shown to mainly influence the early part of the ERP,
while SC effects arose later (up to 300 ms). In the current study, influences on percep-
tual decision-making seem to be mainly driven by SC. In experiment 1, when SC and
CE were both manipulated, model selection indicated a better fit when changes in drift
rate were related to SC (as compared to CE), and in experiment 2 only effects of SC
were found. Still, there seems to be an additional influence of CE. The finding that there
is no interaction between trial type and complexity condition in Experiment 1 indicates
that even for trials in which there is ample time to process the image, scene complexity
influences this process. Thus, while participants were faster and more susceptible to
making errors when emphasizing speed (compared to accuracy), emphasis on speed
or on accuracy did not change the magnitude of the scene complexity effect on both
reaction times and errors. We interpret this as showing that the simultaneous manip-
ulation of SC and CE leads to the strongest effects (as compared to experiment 2). In
experiment 2a, in which CE was not manipulated, accuracy was decreased for low and
high complexity trials only when participants were pressed for time. This suggests that
for low and high complexity scenes, visual information processing might be too slow
to produce correct responses, especially when participants are motivated to respond
quickly and have lower evidence requirements in comparison to accurate instruction
trials. In experiment 2a, low and high complexity scenes were, apart from drift rate,
also associated with a lowered response boundary. Overall these results suggest that
SC is weighed differently when manipulated in isolation. One explanation for the dif-
ferences between experiment 1 and 2a could be the inherent correlation between the
parameters in the real world, as isolating the influence of both parameters separately
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could have led to an ‘unnatural’ sub-selection. For this reason, we cannot attribute our
results from experiment 2 exclusively to the scene statistics. Whether this is a robust
effect should emerge from future research.

From previous studies, using artificial manipulation of stimulus quality, one would
expect performance decreases for more complex scenes. For instance, the search
slope of reaction times increases with the number of distractors in conjunction search
(Wolfe, 1994) and degrading stimulus quality (via spatial filtering) reduces the rate of
evidence accumulation (Jahfari et al., 2013). Intuitively ‘low’ SC scenes are easiest:
those scenes are sparser and typically contain the most distinct figure-ground seg-
mentation. Surprisingly, our results suggest a more complex pattern. In experiment 1
and 2a, performance was better on ‘medium’ than on ‘low’ scenes. Responses to nat-
ural scenes are often hard to predict from studies using artificial stimuli (Felsen & Dan,
2005) because the scenes do not contain simple isolated patterns. But why would
scenes with medium SC/CE be processed more efficiently? We outline a number of
possible reasons below.

First, it could be that scenes with medium complexity are most commonly en-
countered in daily life, and that the visual system has become tuned to the statistical
regularities of medium scenes (Geisler & Diehl, 2003; Olshausen & Field, 1996),
resulting in optimized visual processing.Secondly, it could be the degree to which
object context facilitates the recognition process. In natural scenes, objects
appearing in a familiar background are detected more accurately and quickly than
objects in an unexpected environment (Davenport & Potter, 2004; Greene et al.,
2015; Neider & Zelinsky, 2006). Here, most of the ‘low’ scenes contained little
context because the backgrounds were, generally, homogeneous, providing no ‘cues’
about animal presence or absence. For ‘high’ images, on the other hand, there may
have been too much distraction by spatially unorganized clutter, which does not offer
useful cues for animal detection. Third, SC and CE could be related to certain object
properties, such as animal size or centrality (the location of the animal in the scene).
Additional HDDM analyses however indicated that SC contributed to perceptual
decision-making independent of object size, whereas object centrality had no effects
(Supplementary Figures S4-S6). Finally, SC/CE could be used as diagnostic
information, serving as a building block towards estimating other relevant properties
in a scene (e.g. scene clutter, naturalness). Since SC correlates with naturalness ratings
(Groen et al., 2013) and, animals are potentially more strongly associated with natural
environments, SC could be a diagnostic feature for the animal/non-animal
discrimination task. Indeed, post-hoc evaluation of the responses in experiment 1 and
2a indicated a change in bias towards one of the response options (animal or non-
animal), depending on the SC value of the scene. However, the pattern of errors,
evaluated for animal and non-animal trials separately, was only partly consistent with
a naturalness bias (Supple-mentary Figures S7 and S8). In the DDM, effects of a
response bias can be explained either by changes in starting point (Az) or by changes
in drift rate (Av; (Mulder et al., 2012)) or the starting point of the drift rate. Additional
modelling suggests that a potential response bias was not reflected in a change in
the starting point, and the RT patterns for correct and incorrect trials in our dataset
were more in line with a drift bias account (see Supplementary section 5). Crouzet &
Serre (2011) have shown
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that low-level image properties such as SC and CE can relate to human performance
in an animal detection task. When they trained a classifier to distinguish between
animal/non-animal images based on the Weibull parameters (5 and ), classification
performance was above chance, but relatively poor compared to alternative models
which included more complex visual features, including oriented contrast (V1-like
features) and combinations of oriented linear filter responses (mid-level and higher
level features). Moreover, the least animal-like stimuli corresponded to more complex
backgrounds, while our analyses of response bias (see Supplementary section 4)
suggest the opposite pattern. This suggests that the relation between SC, naturalness
and animal detection is not trivial and can vary with stimulus set or image database.
Here, we carefully selected images to capture a broad range of CE and SC values,
and ensured that animal presence was balanced within each condition. Therefore we
believe that the current study is a more sensitive test of effects of low-level contrast
statistics on perceptual discrimination than previous post-hoc assessments.

In conclusion, the current study provides clear evidence that SC and CE influ-
ence perceptual decision-making in an animal detection task. We propose that,
because SC and CE could be plausibly computed in early stages of visual processing,
they could indicate the need for more cautious or elaborate processing by providing
the system with a global measure of scene complexity (Groen, Jahfari, et al., 2018).
Future studies should pinpoint whether this effect is based on the computation of
SC and CE directly, as a general measure of complexity, or indirectly, as diagnostic
information to estimate other task-relevant scene properties. Given that the rate of
evidence accumulation depends on the complexity of the scene, this complexity-
dependent adaptation could be reflected in the amount of evidence that is considered
sufficient for generating a response. This adaptation, or flexible processing, can help
to calibrate the decision process to maximize the goal at hand (e.g. to be accurate or
quick).



SUPPLEMENT TO CHAPTER 2 27

Supplement to Chapter 2

1. Computation of SC and CE

The following section describes the main computational steps. The code to run the
model on an arbitrary input image is available on Github'.

Natural image statistics: local contrast distribution regularities.

Natural images exhibit much statistical regularity, one of which is present in the
distribution of local contrast values. It has been observed (Simoncelli, 1999; Geuse-
broek and Smeulders, 2002, 2005) that properties that are inherent to natural images,
such as spatial fragmentation (generated by the edges between the objects in the
scene) and local correlations (due to edges belonging to objects in the image) results
in contrast distributions that range between power law and Gaussian shapes, and
therefore conform to a Weibull distribution. This regularity (systematic variation in
the contrast distribution of natural images) can therefore be adequately captured by
fitting a Weibull function of the following form:
G—w

p(f) =ce 77

Where ¢ is a normalization constant that transforms the frequency distribution into
a probability distribution. The parameter y, denoting the origin of the contrast distri-
bution, is generally close to zero for natural images. We normalize out this parameter
by subtracting the smallest contrast value from the contrast data, leaving two free pa-
rameters per image, [ (beta) and 7 (gamma), that represent the scale (beta) and shape
(gamma) of the distribution (Geusebroek & Smeulders, 2002, 2005). Beta varies with
the range of contrast strengths present in the image, whereas gamma varies with the
degree of correlation between contrasts.

LGN model of local contrast statistics: contrast energy and spatial coherence.

In previous work, we found that the beta and gamma parameters of the Weibull dis-
tribution can be approximated in a physiologically plausible way by summarizing re-
sponses of receptive field models to local contrast (Scholte et al., 2009). Specifi-
cally, summing simulated receptive field responses from a model of the parvocellular
and magnocellular pathways in the LGN led to accurate approximations of beta and
gamma, respectively. In subsequent papers (Groen et al., 2013, 2017) an improved
version of this model was presented in which contrast was computed at multiple spa-
tial scales and the LGN approximations were estimated not via summation but by av-
eraging the local parvocellular responses (for beta) and by averaging and divisively
normalizing the magnocellular responses for gamma (mean divided by standard de-
viation). To distinguish the Weibull fitted parameters from the LGN approximations,
the LGN-approximated beta value was defined as Contrast Energy (CE) and the LGN-
approximated value of gamma as spatial coherence (SC). These modifications, as well

Thttps://github.com/irisgroen/LGNstatistics
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as specific parameter settings in the model, were determined based on comparisons
between the Weibull fitted values and the CE/SC values, as well as model fits to EEG
responses, in separate, previously published image sets (Ghebreab et al., 2009, Scholte
et al., 2009). We outline the main computational steps of the model below:

Main computational steps of the model

Step 1: RGB to color opponent space. For each image, the input RGB values were
converted to opponent color space using the Gaussian color model described in
(Geusebroek, Van den Boomgaard, Smeulders & Geerts, 2001), yielding 3 opponent
color values per pixel (grayscale, blue-yellow, red-green; Koenderink, Van De Grind &
Bouman, 1972).

Step 2: Multi-scale local contrast detection. Each color opponent layer was
convolved with isotropic exponential filters (Zhu and Mumford, 1997) at five octave
scales (Croner and Kaplan, 1995). Two separate filter sets were used: smaller filter
sizes (0.12, 0.24, 0.48, 0.96, and 1.92 degrees) for CE and larger filter sizes (0.16,
0.32, 0.64, 1.28, and 2.56 degrees) for SC (Ghebreab et al., 2009). Following the LGN
suppressive field approach (Bonin et al., 2005), all filter responses were rectified and
divisively normalized.

Step 3: Scale selection. Per parameter (CE or SC) and color-opponent layer,
one filter response was selected for each image location from their respective filter set
using minimum reliable scale selection (Elder and Zucker, 1998). In this MIN approach,
the smallest filter size that yields an above-threshold response is preferred over other
filter sizes. Filter-specific noise thresholds were determined from a separate image set
(Corel database) (Ghebreab et al., 2009).

Step 4: Spatial pooling. Applying the selected filters for each image location
results in two contrast magnitude maps: one highlighting detailed edges (from the
set of smaller filter sizes, for CE) and the other more coarse edges (from the set
of larger filter sizes, for SC) per color opponent-layer. To simulate the different
visual field coverage of parvo- and magnocellular pathways, a different amount
of visual space was taken into account for each parameter in the spatial pooling
step. For CE, the central 1.5 degrees of the visual field was used, whereas for SC,
5 degrees of visual field was used. Finally, the estimated parameter values were
averaged across color-opponent layers resulting in a single CE and SC value per image.

2. HDDM model comparison and convergence

First, we evaluated five models in which drift rate (v) and boundary (a) were either
fixed or varied across trial type (speed, accurate) and/or scene complexity (low,
medium, high).
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Table 2.1: HDDM model to determine whether varying across scene complexity was #o account for
the data. We evaluated five models in which drift rate (v) and boundary (a) were either fixed or varied across trial
type (speed, accurate) and/or scene complexity (low, medium, high).

drift rate (v) boundary (a) DIC-exp1 DIC-exp2a DIC-exp2b
model 0 - - -11453.46 -8545.74 -7240.21
model 1 - instruction -14857.92 -11971.86 -10109.50
model 2 complexity instruction -14885.64 -11939.36 -10064.76
model 3 - instruction, complexity -14792.76 -11929.10 -10032.79
model 4  complexity instruction, complexity -14926.04 -11999.62 -10060.99

Then, to assess the trial-by-trial relationship between scene complexity and drift
rate (v) and boundary separation (a), we fitted eighteen alternative regression models.

Table 2.2: HDDM Regression models. Drift rate v and boundary a were ei-
ther allowed to vary across scene complexity (indexed by SC or CE) or fixed.
Both linear models (SC/CE centered around zero), and second-order polyno-
mial models (quadratic) were fitted to examine whether the relationship was
curvilinear (e.g. followed an inverted U-shape).

drift rate (v) boundary (a) both (v, a)

SC model 1 model 2 model 3

SC? model 4 model 5 model 6

SC + Sc? model 7 model 8 model 9
CFE model 10 model 11 model 12

CFE? model 13 model 14 model 15

CE + CE* model 16 model 17 model 18

Table 2.3: Means of the posterior distributions.

parameter  Experiment 1  Experiment 2a

t 0.18 0.23

z 0.27 0.29

v_Intercept 3.69 3.16
v_SC 0.23 -0.14

v_SC? -0.96 -1.43
a_Intercept(Ac) 1.93 1.85
a_Intercept(Sp) 1.46 1.47
a_SC - -0.02

a_SC? - -0.39

3. HDDM analyses incorporating contextual factors

The following section describes the methods for the additional analyses to evaluate
potential contextual factors that could correlate with SC and limit the detection
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Figure 2.6: Example of computing object (animal) coverage and centrality. Object size
was computed by taking the percentage of the image that was covered by the animal
(manually segmented). Object centrality was computed by taking the distance from
the center of mass (CoM) of the animal to the center of the screen (length of green
dotted line, in pixels).

task. Specifically, we parameterized two characteristics, object size and centrality.
We have focused on these two factors, because just like CE and SC, they were
image-computable, i.e. they could be derived by performing calculations on the pixels
in the image.

Computing contextual factors

Object size was computed by taking the percentage of the image that was covered
by the animal (manually segmented). Object centrality was computed by taking the
distance in pixels from the center of mass (CoM) of the animal (computed by inter-
preting the image as a 2D probability distribution) to the center of the screen (see
Supplementary Figure 2.6).

Evaluating the relationship with SC and CE

There was no correlation between SC or CE and object coverage (experiment 1; SC: r
=0.018; CE: r = 0.025) or centrality (SC: r = -0.13; CE: r = -0.09). To evaluate whether
SC explains unique variance after accounting for these properties, we included both
variables in our HDDM regression analysis, alongside SC.

For experiment 1, results showed an influence of object size (coverage) on the drift
rate, with a higher drift rate for images with larger animals as indicated by a positive
shift in the posterior distribution (Supplementary Figure S2; P < .001). For object cen-
trality, however, we found no effect, and inspection of this variable indicated a low
variability: most animals were located quite central. In experiment 2a, as in experi-
ment 1, larger animals were associated with a higher drift rate (Supplementary Figure
S3; P < .001). Most importantly, for both experiments, the effect of SC remained.
This indicates that, even though object size has an influence on the rate of evidence
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Figure 2.7: Effects of SC/CE (experiment 1) on drift rate, accounting for object size
and centrality. Bigger animals were associated with a higher rate of evidence accu-
mulation. The effects of SC+SC2 remained, indicating that, even though object size
has an influence on the rate of evidence accumulation, SC continues to explain unique
variance in the speed of information processing.

accumulation, SC continues to explain unique variance in the speed of information pro-
cessing. In other words, SC contributes to perceptual decision-making independent
of object size, whereas object centrality has no effects.

Full description and code definitions can be found on Github?

4. Behavioral analysis evaluating animal/non-animal bias

To investigate whether participants’ response bias (towards animal or non-animal) dif-
fered with scene complexity, we computed the % animal choices for each participant.
Differences between the three conditions (low, med, high) were statistically evaluated
using a repeated-measures ANOVA.

For experiment 1, results indicated, apart from a general bias towards the non-
animal option (animal choice < 50% for all conditions), that the % animal-responses
increases with scene complexity, F(36) = 9.76, p < 0.001, 7721"” =.351 (Supplementary
Figure S4). Participants chose ‘animal’ more often in the high and medium complexity
scenes as compared to low, t(18) = -5.104, p < .001; t(18) = -2.698, p = .044 (Bonfer-
roni corrected). Similar effects were found for experiment 2a (Supplementary Figure
S5). There, the percentage of animal responses increased with SC, F(44) = 6.63, p
=0.003, ?P%" = .232. Participants chose ‘animal’ more often in the high scenes

2https://github.com/noorseijdel/201 9_scenestats/blob/master/notebooks/Notebook_SceneStats_
Context.ipynb
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Figure 2.8: Effects of SC (experiment 2a) on drift rate and response boundary, ac-
counting for object size and centrality. Bigger animals were associated with a higher
rate of evidence accumulation. Again, the effect of SC2 remained, indicating that even
though object size has an influence on the rate of evidence accumulation, SC continues
to explain unique variance in the speed of information processing.

as compared to low, t(22) = -3.365, p = .008 (Bonferroni corrected). In the current
experiment, half of the trials in each condition contained an animal. Therefore, this
response bias towards animal or non-animal trials can result in an increase in errors
in the low and high condition. Analysis of the error rates separately for animal and
non-animal trials, indicated for both experiment 1 and experiment 2a that most errors
in the low condition were made for animal-trials. In those trials, participants thus
seem to ‘miss’ the animal more often. Errors in high scenes, however, were seemingly
not caused by the response bias: while participants reported more animals on non-
animal trials (compared to low and medium), they made as many errors on animal trials.

5. HDDM Regression analyses evaluating response bias effects

Following Supplementary section 4, to assess whether SC biases the response
(towards animal or non-animal) reflected in changes in the starting point, we fitted
several HDDMRegressor models: 1. one model in which we estimate only the
response bias z for every complexity condition (low, med, high), such that the bias
for animal stimuli is z and the bias for non-animal stimuli is 1-z (z = 0.5 for unbiased
decisions in HDDM. 2. one model in which we estimate both v and z. This way, we
could measure response-bias (in favor of animal or non-animal) and drift rate for the
three conditions (low, med, high) while assuming the same drift rate for both stimuli.
3. one model in which we estimate v, z and a for every complexity condition. 4. one
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Figure 2.9: Response bias effects in experiment 1. A) apart from a general bias to-
wards the non-animal option (animal choice < 50% for all conditions), the % animal-
responses increased with scene complexity. B) percentage of errors from experiment
1, separately for animal and non-animal trials.
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Figure 2.10: Effects of SC on animal/non-animal responses in experiment 2a. A) Similar
to experiment 1, the % animal-responses increased with SC. B) Percentage of errors
from experiment 2a, plotted separately for animal and non-animal trials.
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Figure 2.11: Using HDDMStimCoding to evaluate potential biases towards
animal/non-animal across the different conditions for the data obtained in experiment
1.

model in which we estimate v, z and a for every complexity condition and, using the
depends_on key argument, two intercepts for a (speed, accurate) 5. same model as
the previous model (4), now using ‘medium’ as the intercept for z

However, with the properties of our observations and design, models defined
in this way do not converge, which makes the interpretation of the parameters
uninformative. The traces are non-stationary, and the autocorrelation is high. The
histograms look serrated. Full description and code definitions can be found on
Github?®

Then, we fit one model using HDDMStimCoding, in which we estimate v, z for
every complexity condition, and a for every complexity condition + speed/accuracy
instruction. This model converges. As shown in the figure (Supplementary figure
S9) below, the obtained posteriors for z do not differ across our low, med, or high
condition. Hence, this evaluation shows no effect of condition (low, med, high) on z
when it is allowed to vary.

In the DDM, effects of a response bias can be explained either by changes in
starting point (Az) or by changes in drift rate (Av; Mulder, Wagenmakers, Ratcliff,
Boekel & Forstmann, 2012)) or the starting point of the drift rate. Additional modeling
suggests that a potential response bias was not reflected in a change in the starting
point and the RT patterns for correct and incorrect trials in our dataset were more in
line with a drift bias account:

3 https://github.com/noorseijdel/2019_scenestats/blob/master/notebooks/Notebook_SceneStats_
ResponseBias.ipynb
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Figure 2.12: Possible effects of bias on choice behavior (following figure 2 from Mul-
der et al. (2012)). A) Effects of bias explained by the drift-diffusion model. When prior
information is invalid ('low’, "high’) for the choice at hand, subjects will have slower and
less correct choices compared with choices where no information is provided (neutral,
‘medium’). These effects can be explained by changes in the starting point or the drift
rate of the accumulation process. B) Both accounts have different effects on RT and
accuracy data. C) The data from our current experiment is more in line with a drift rate

account of response bias.
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Chapter 3

Recurrent processing during
object recognition: it depends on
the need for scene segmentation

Abstract While feed-forward activity may suffice for recognizing objects in sparse
scenes, additional visual operations that aid object recognition might be needed for
more complex scenes. One such additional operation is figure-ground segmentation;
extracting the relevant features and locations of the target object while ignoring
irrelevant features. In this study of 60 participants, we show objects on backgrounds of
increasing complexity to investigate whether recurrent computations are increasingly
important for segmenting objects from more complex backgrounds. Three lines
of evidence show that recurrent processing is critical for recognition of objects
embedded in complex scenes. First, behavioral results indicated a greater reduction
in performance after masking objects presented on more complex backgrounds;
with the degree of impairment increasing with increasing background complexity.
Second, electroencephalography (EEG) measurements showed clear differences in the
evoked response potentials (ERPs) between conditions around 200ms - a time point
beyond feed-forward activity and object decoding based on the EEG signal indicated
later decoding onsets for objects embedded in more complex backgrounds. Third,
Deep Convolutional Neural Network performance confirmed this interpretation;
feed-forward and less deep networks showed a higher degree of impairment in
recognition for objects in complex backgrounds compared to recurrent and deeper
networks. Together, these results support the notion that recurrent computations
drive figure-ground segmentation of objects in complex scenes.

This chapter is under review as: Seijdel, N.*, Loke, J.*, van de Klundert, R., van der
Meer, M., Quispel, E., van Gaal, S., de Haan, E.H.F. & Scholte, H.S. (n.d.). Recurrent
processing during object recognition: it depends on the need for scene segmentation
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Significance statement

The incredible speed of object recognition suggests that it relies purely on the fast
feed-forward buildup of perceptual activity. However, this view is contradicted by stud-
ies showing that disruption of recurrent processing leads to decreased object recogni-
tion performance. Here we resolve this issue by showing that how object recognition
is resolved depends on the context in which the object is presented. For objects pre-
sented in isolation or in ‘simple’ environments, feed-forward activity seems sufficient
for successful object recognition. However, when the environment is more complex,
recurrent processing is necessary to group the elements that belong to the object and
segregate them from the background.

Introduction

The efficiency and speed of the human visual system during object categorization sug-
gests that a feed-forward sweep of visual information processing is sufficient for suc-
cessful recognition (VanRullen & Thorpe, 2002). For example, when presented with
objects in a rapid serial visual presentation task (RSVP; Potter & Levy (1969)), or during
rapid visual categorization (Thorpe et al., 1996), human subjects could still successfully
recognize these objects, with EEG measurements showing robust object-selective ac-
tivity within 150 ms after object presentation (VanRullen & Thorpe, 2001). Given that
there is substantial evidence for the involvement of recurrent processing in figure—
ground segmentation (Lamme & Roelfsema, 2000; Wokke et al., 2012), this seems
inconsistent with recognition processes that rely on explicit encoding of spatial rela-
tionships between parts and suggest instead that rapid recognition may rely on the
detection of an ‘unbound’ collection of image features (Crouzet & Serre, 2011).
Recently, a multitude of studies have reconciled these seemingly inconsistent find-
ings by indicating that recurrent processes might be employed adaptively, depending
on the visual input: while feed-forward activity might suffice for simple scenes with
isolated objects, more complex scenes or more challenging conditions (e.g. objects
that are occluded or degraded), may need additional visual operations (‘routines’) re-
quiring recurrent computations (Groen, Jahfari, et al., 2018; Kar et al., 2019; Rajaei et
al., 2019; Tang et al., 2018). For simple scenes, rapid recognition may thus rely on a
coarse and unsegmented feed-forward representation (Crouzet & Serre, 2011), while
for more cluttered images recognition may require explicit encoding of spatial relation-
ships between parts. In other words, for those images, extra visual operations to group
parts of the object, and to segment this object (‘figure’) from its background might
be needed. Several studies have already shown that the ‘segmentability’ of a natural
scene might influence the degree of recurrent processing. For example, Koivisto et
al. (2014) reported that masking, a technique shown to affect mainly recurrent but not
feed-forward processing (Fahrenfort et al., 2007), was more effective for objects that
were rated as being ‘difficult to segregate’. Also in a more recent study we showed
that natural scene complexity, providing information about the ‘segmentability’ of a
scene, modulates the degree of feedback activity in the brain (Groen, Jahfari, et al.,
2018). However, both studies did not test for effects of segmentation explicitly and
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used natural scenes that were uncontrolled. Therefore, we here systematically investi-
gated whether scene complexity influenced the extent of recurrent processing during
object recognition. To this end, participants performed an object recognition task with
objects embedded in backgrounds of different complexity (Figure 3.1), indexed by two
biologically plausible measures: the spatial coherence (SC) and contrast energy (CE)
(Ghebreab et al., 2009; Groen et al., 2013; Scholte et al., 2009). In half the trials, we
impaired feedback activity with visual-masking. In addition to behavioral measures,
we measured EEG responses to examine the time-course of visually evoked activity.
Besides human participants, we also investigated recognition performance in Deep
Convolutional Neural Networks (DCNNs), which received identical visual stimuli as our
human participants, and performed a five-choice recognition task.

A convergence of results indicated that recurrent computations were critical for
recognition of objects in complex environments, i.e. objects that were more difficult
to segment from their background. First of all, behavioral results indicated poorer
recognition performance for objects with more complex backgrounds, but only when
feedback activity was disrupted by masking. Second, EEG measurements showed clear
differences between complexity conditions in the ERPs around 200ms - a time point
beyond the first feed-forward visual sweep of activity. Additionally, object category
decoding based on the multivariate EEG patterns showed later decoding onsets for
objects embedded in more complex backgrounds. This indicated that object repre-
sentations for more complex backgrounds emerge later, compared to objects in more
simple backgrounds. Finally, DCNN performance confirmed this interpretation; feed-
forward networks showed a higher degree of impairment in recognition for objects in
complex backgrounds compared to recurrent networks. Together, these results sup-
port the notion that recurrent computations drive figure-ground segmentation of ob-
jects in complex scenes.

Materials and methods

Subjects main experiment

Forty-two participants (32 females, 18-35 years old) took part in a first EEG experi-
ment. Data from two participants were excluded from further analysis due to technical
problems. We used this first dataset to perform exploratory analyses and optimize our
analysis pipeline (Figure 3.2). To confirm our results on an independent dataset, an-
other twenty participants (13 females, 18-35 years old) were measured. Data from one
participant were excluded from ERP analyses, due to wrong placement of electrodes
1 and 12.

Stimuli

Images of real-world scenes containing birds, cats, fire hydrants, frisbees or suitcases
were selected from several online databases, including MS COCO (Lin et al., 2014), the
SUN database (Xiao et al., 2010), Caltech-256 (Griffin et al., 2007), Open Images V4
(Kuznetsova et al., 2020) and LabelMe (Russell et al., 2008). These five categories were
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@ bird | cat | fire hydrant | frishee | suitcase C:B: bird | cat | fire hydrant | frisbee | suitcase

2000 ms 2000 ms

500 ms

masked unmasked

Figure 3.1: Stimuli and experimental paradigm. A) Exemplars of two categories (cat,
fire hydrant) from each stimulus complexity condition. Backgrounds were either uni-
form (segmented; black), or had low (red), medium (green) or high (blue) CE and SC
values. B) Experimental design. On masked trials, the stimulus was followed by a dy-
namic mask (5x100 ms); on unmasked trials this was replaced by a blank screen (500
ms). Participants were asked to categorize the target object by pressing the corre-
sponding button on the keyboard.
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Figure 3.2: Experimental procedure. Sixty-two participants took part in the EEG ex-
periment. Data from forty participants were used to perform exploratory analyses. The
resulting data (twenty participants) were used to confirm our results. For the decod-
ing analyses, five new participants took part in a separate experiment to characterize
multivariate EEG activity patterns for the different object categories.

selected because a large selection of images was available in which the target object
was clearly visible and not occluded. For each image, one CE and one SC value was
computed using the model described in Ghebreab et al. (2009), Scholte et al. (2009)
and Groen et al. (2013). Computing these statistics for a large set of scenes results in
a two-dimensional space in which sparse scenes with just a few scene elements sep-
arate from complex scenes with a lot of clutter and a high degree of fragmentation.
Together, CE and SC appear to provide information about the ‘segmentability’ of a
scene (Groen et al., 2013; Groen, Jahfari, et al., 2018). High CE/SC values correspond
with images that contain many edges that are distributed in an uncorrelated manner,
resulting in an inherently low figure-ground segmentation. Relatively low CE/SC val-
ues on the other hand correspond with a homogenous image containing few edges,
resulting in an inherently high figure-ground segmentation (Figure 3.1). Each object
was segmented from their real-world scene background and superimposed on three
categories of phase scrambled versions of the real-world scenes. This corresponded
with low, medium and high complexity scenes. Additionally, the segmented object
was also presented on a uniform gray background as the segmented condition (Figure
3.1). For each object category eight low CE/SC, eight medium CE/SC and eight high
CE/SC images were selected, using the cut-off values from Groen, Jahfari, et al. (2018),
resulting in 24 images for each object category and 120 images in total. Importantly,
each object was presented in all conditions, allowing us to attribute the effect to the
complexity (i.e. segmentability) of each trial, and rule out any object-specific effects.



42 CHAPTER 3. RECURRENT PROCESSING FOR SCENE SEGMENTATION

Experimental design

Participants performed a 5-choice categorization task (Figure 3.1), differentiating im-
ages containing cats, birds, fire hydrants, frisbees and suitcases as accurately as possi-
ble. Participants indicated their response using five keyboard buttons corresponding
to the different categories. Images were presented in a randomized sequence, for a
duration of 34 ms. Stimuli were presented at eye-level, in the center of a 23-inch ASUS
TFT-LCD display, with a spatial resolution of 1920*1080 pixels, at a refresh rate of 60
Hz. Participants were seated approximately 70 cm from the screen, such that stimuli
subtended a 6.9° visual angle. The object recognition task was programmed in- and
performed using Presentation (Version 18.0, Neurobehavioral Systems, Inc., Berkeley,
CA, www.neurobs.com). The experiment consisted of 960 trials in total, of which 480
were backward masked trials and 480 were unmasked trials, randomly divided into
eight blocks of 120 trials for each participant. After each block, participants took a
short break. The beginning of each trial consisted of a 500 ms fixation period where
participants focused their gaze on a fixation cross at the centre of the screen. In the un-
masked trials, stimuli were followed by a blank screen for 500 ms and then a response
screen for 2000 ms. In order to disrupt recurrent processes (Breitmeyer & Ogmen,
2000; Fahrenfort et al., 2007; Lamme et al., 2002), in the masked trials, five randomly
chosen phase-scrambled masks were presented sequentially for 500 ms. The first mask
was presented immediately after stimulus presentation, each mask was presented for
100 ms; Figure 3.1). The ambient illumination in the room was kept constant across
different participants.

Subjects pattern localizer

Five new participants took part in a separate experiment to characterize multivariate
EEG activity patterns for the different object categories. For this experiment, we mea-
sured EEG activity while participants viewed the original experimental stimuli followed
by a word (noun). Participants were asked to only press the button when the image
and the noun did not match to ensure attention (responses were not analyzed). A clas-
sifier was trained on the EEG data from this experiment, and subsequently tested on
the data from the main experiment using a cross-decoding approach. All participants
had normal or corrected-to-normal vision, provided written informed consent and re-
ceived monetary compensation or research credits for their participation. The ethics
committee of the University of Amsterdam approved the experiment.

Deep Convolutional Neural Networks (DCNNS)

First, to investigate the effect of recurrent connections, we tested different architec-
tures from the CORnet model family (Kubilius et al., 2018); CORnet-Z (feedforward),
CORnet-R (recurrent) and CORnet-S (recurrent with skip connections). Then, to further
evaluate the influence of network depth on scene segmentation, tests were conducted
on three deep residual networks (He et al., 2016) with increasing number of layers;
ResNet-10, ResNet-18 and Resnet-34. “Ultra-deep” residual networks are mathemat-
ically equivalent to a recurrent neural network unfolding over time, when the weights
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between their hidden layers are clamped (Liao & Poggio, 2016). This has led to the
hypothesis that the additional layers function in a way that is similar to recurrent pro-
cessing in the human visual system (Kar et al., 2019). Pre-trained networks were fine-
tuned on images from the MSCoco database (Lin et al., 2014), using PyTorch (Paszke
et al., 2019). After initialization of the pretrained network, the model’s weights were
fine tuned for our task, generating 5 probability outputs (for our 5 object categories).
To obtain statistical results, we finetuned the networks ten times for each architecture.

EEG data acquisition and preprocessing

EEG was recorded using a 64-channel Active Two EEG system (Biosemi Instrumenta-
tion, Amsterdam, The Netherlands, www.biosemi.com) at a 1024 Hz sample rate. As in
previous studies investigating early visual processing (Groen et al., 2013; Groen, Jah-
fari, et al., 2018), we used caps with an extended 10-10 layout modified with 2 addi-
tional occipital electrodes (11 and 12, which replaced F5 and F6é). Eye movements were
recorded with additional electro-oculograms (VEOG and hEOG). Preprocessing was
done using MNE software in Python (Gramfort et al., 2014) and included the following
steps for the ERP analyses: 1) After importing, data were re-referenced to the aver-
age of two external electrodes placed on the mastoids. 2) A high-pass (0.1Hz, 0.1Hz
transition band) and low-pass (30Hz, 7.5 Hz transition band) basic FIR filters were se-
quentially applied. 3) an Independent Component Analysis (ICA; Vigario et al. (2000))
was run in order to identify and remove eye-blink and eye-movement related noise
components (mean = 1.73 of first 25 components removed per participant). 4) epochs
were extracted from -200 ms to 500 ms from stimulus onset. 5) trials were normalized
by their 200 ms pre-stimulus baseline. 6) 5% of trials with the most extreme values
within each condition were removed, keeping the number of trials within each condi-
tion equal. 7) data were transformed to current source density responses (Perrin et al.,
1989).

Statistical analysis: behavioral data

Choice accuracy was computed for each condition in the masked and unmasked trials
(Figure 3.3). Differences between the conditions were tested using two-factor (Scene
complexity: segmented, low, med, high; Masking: masked, unmasked) repeated-
measures ANOVAs. Significant main effects were followed up by post-hoc pairwise
comparisons between conditions using Sidak multiple comparisons correction at o =
0.05. Behavioral data were analyzed in Python using the following packages:
Statsmodels, SciPy, NumPy, Pandas, Matplotlib and Seaborn (Jones et al., 20071,
McKinney & Others, 2010; Oliphant, 2006; Seabold & Perktold, 2010).

Statistical analysis: EEG - event related potentials

EEG analyses were carried out in Python, using the MNE software. For each partici-
pant, the difference in event-related potential (ERP) to scene complexity was computed
within masked and unmasked conditions, pooled across occipital and peri-occipital
electrodes (Oz, POz, O1, 02, PO3, PO4, PO7, PO8). This was done by subtracting
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the signal of each complexity condition (i.e. low, medium or high) from the segmented
condition. Doing so enabled us to investigate differences between low, medium and
high complex scenes regardless of masking effects. Based on the exploratory dataset,
we established five time windows by performing t-tests on every time point for each
condition and selecting windows in which the amplitude differed from zero for all com-
plexity conditions (low, med, high). Then, a repeated measures ANOVA with factor
Complexity (low, medium, high) and Masking (masked, unmasked) was performed on
the average activity in these established time windows.

Statistical analysis: EEG - multivariate classification

The same preprocessing pipeline was used as for the ERP analyses. To evaluate how
object category information in our EEG signal evolves over time, cross-decoding anal-
yses were performed by training a Support Vector Machine (SVM) classifier on all trials
from the pattern localizer experiment (performed by five different subjects) and test-
ing it on each of the main experiment conditions. Object category classification was
performed on a vector of EEG amplitudes across 22 electrodes, including occipital
(11, Iz, 12, O1, Oz, O2), peri-occipital (PO3, PO7, POz, PO4, PO8), and parietal (Pz,
P1-P10) electrodes. EEG activity was standardized and averaged across the five time
windows derived from the ERP analyses. Statistical significance was determined us-
ing a Wilcoxon signed-rank test, and corrected for multiple comparisons using a false
discovery rate (FDR) of 0.05.

Data and code availability

Data and code to reproduce the analyses are available at the Open Science Framework
(#ru26k) and at https://github.com/noorseijdel/2020_EEG_figureground

Results

Behavior

During the task, participants viewed images of objects placed on top of a gray (seg-
mented), low, medium or high complexity background. On each trial, they indicated
which object category the scene contained, using the corresponding keyboard but-
tons. In half of the trials, the target image was followed by a dynamic backward mask
(5%x100 ms); the other half of the trials was unmasked (Figure 3.1). Accuracy (percentage
correct trials) was computed for each participant. A repeated measures ANOVA on the
exploratory dataset (N = 40), with factors background (segmented, low, medium, high)
and masking (masked, unmasked) indicated, apart from main effects, an interaction ef-
fect. Results indicated that masking impaired performance for objects presented on
more complex backgrounds stronger than for less complex backgrounds (F(3,117) =
185.6748, p < .001). Post-hoc comparisons showed that for masked trials, accuracy
decreased for both medium (t(39) = 2.88, p(Sidak-corrected) = 0.038) and high (t(39)
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= 3.84, p(Sidak-corrected) = 0.003) complexity condition compared to the low condi-
tion (all other p > .203). For unmasked trials, all conditions differed from each other,
with an incremental decrease in accuracy for objects presented on more complex back-
grounds. Analysis of the confirmatory dataset (N = 20) indicated similarly, apart from
the main effects, an interaction between masking and background complexity. For
masked trials, there was a larger decrease in performance with an increase in back-
ground complexity, (F(3, 57) = 101.3338, p < .001). Post-hoc comparisons showed
that for masked trials, accuracy decreased for both medium and high complexity con-
ditions compared to the segmented (t(19) = 3.47, p(Sidak-corrected) = 0.003, (t(19) =
3.47, p(Sidak-corrected) = 0.003) and low conditions (t(19) = 4.23, p(Sidak-corrected)
< .001, (t(19) = 4.31, p(Sidak-corrected) < .001). For unmasked trials, all conditions
differed from each other with the exception of medium - high, with an incremental
decrease in accuracy for objects presented on more complex backgrounds.

Accuracy (% correct)

exploratory set (N = 40) confirmatory set (N = 20)
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Figure 3.3: Human performance on the object recognition task. Performance (per-
centage correct) on the 5-option object recognition task. For masked trials, perfor-
mance decreased with an increase in background complexity. The left panel shows
results from the exploratory set, on the right results from the confirmatory set are plot-
ted. Error bars represent the bootstrap 95% confidence interval, dots indicate the
average performance of individual participants. Significant differences are indicated
with a solid (unmasked) or dashed (masked) line.

Network performance

Next, we presented the same images to Deep Convolutional Neural Networks with
different architectures. For the CORnets (Figure 3.4, left panel), a non-parametric
Friedman test differentiated accuracy across the different conditions (segmented, low,
medium, high) for all architectures, Friedman's Q(3) = 27.8400; 24.7576; 26.4687 for
CORnet-Z, -RT -S respectively, all p < .001. A Mann-Whitney U test on the difference
in performance between segmented and high complexity trials indicated a smaller
decrease in performance for CORnet-S compared to CORnet-Z (Mann-Whitney U =
100.0, n1 = n2 = 10, p < .001, two-tailed). For the ResNets (Figure 3.4, right panel),
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a non-parametric Friedman test differentiated accuracy across the different conditions
for ResNet-10 and ResNet-18, Friedman’s Q(3) = 23.9053; 22.9468, for ResNet-10 and
ResNet-18 respectively, both p <.001. A Mann-Whitney U test on the difference in per-
formance between segmented and high complexity trials indicated a smaller decrease
in performance for ResNet-34 compared to ResNet-10 (Mann-Whitney U = 100.0, n1
=n2 =10, p < .001, two-tailed). Overall, in line with human performance, results
indicated a higher degree of impairment in recognition for objects in complex back-
grounds for feed-forward or more shallow networks, compared to recurrent or deeper
networks.

CORnets ResNets
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Figure 3.4: Deep Convolutional Neural Network performance on the object recogni-
tion task. Performance (percentage correct) on the 5-option object recognition task.
Networks were finetuned on the 5 target categories, top-1 accuracy was computed.
For the CORnets (left panel) performance of the feedforward architecture decreased
with an increase in background complexity. For recurrent architectures, this decrease
was less prominent. For CORnet-s, there was no difference between conditions. Error
bars represent the bootstrap 95% confidence interval.

EEG - event related potentials

To investigate the time-course of figure-ground segmentation in visual cortex, evoked
responses to the masked and unmasked scenes were pooled across occipital and peri-
occipital electrodes (Oz, POz, O1, O2, PO3, PO4, PO7, PO8), for each condition. Dif-
ference waves were generated by subtracting the signal of each condition from the
segmented condition (Figure 3.5B/E). Doing so enabled us to eliminate the effect of
masking on the EEG signal, and to investigate differences between low, medium and
high complex scenes. For each participant, data was averaged across five time win-
dows (based on analyses on the exploratory dataset; see Materials and methods).

For every time window, a Repeated Measures ANOVA was performed on the av-
erage EEG amplitude of the difference waves, with Complexity (low, med, high) and
Masking (masked, unmasked) as within subject factors. Results on the confirmatory
dataset (Figure 3.5D/E/F) showed no main- or interaction effects in the first time win-
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Figure 3.5: ERP results. A) Average ERP amplitude for segmented, low, medium and
high complexity scenes for an occipital-peri-occipital pooling of EEG channels (Oz,
POz, O1, 02, PO3, PO4, PO7, PO8) for masked and unmasked trials. Shaded regions
indicate SEM across participants. Mask onsets are indicated with thin dashed lines
(bottom panel only) B) Difference waves were generated by subtracting the signal of
each condition from the segmented condition. C) Based on significant timepoints in
the exploratory dataset, five time windows were defined: 92-115 ms; 120-150 ms; 155-
217 ms; 221-275 ms; 279-245 ms) Symbol markers indicate main or interaction effects,
asterisk: main effect of condition; diamond: main effect of masking, plus: interaction
effect. D/E/F) Analyses repeated for the confirmatory dataset.



48 CHAPTER 3. RECURRENT PROCESSING FOR SCENE SEGMENTATION

dow (92-115 ms; Figure 3.5F). Critically, differences between Complexity conditions
only emerged in time window 2 and 3 (120-150 ms: F(36) = 22.87, 7721”‘" = .56, p
< .001; 155-217 ms: F(36) = 24.21, 7*?%" = 57, p < .001), suggesting a differential
con-tribution of recurrent processing to object recognition in varying complexity
scenes. In time window 2, there was a main effect of Masking (F(18) = 5.38, 772”‘"
= .576, p = .03. Only in time window 4 (221-275 ms), an interaction effect of Masking
and Complexity, F(18) = 59.60, n?Per = 07, p < .001 started to emerge.

EEG multivariate classification

To further investigate the representational dynamics of object recognition under dif-
ferent complexity conditions, multivariate decoding analyses were performed on the
averaged activity in the five time windows (Figure 3.6. To control for response-related
activity (keyboard buttons were fixed across the task), a cross-decoding analysis was
performed, by training the classifier on all trials from an independent pattern localizer
experiment, and testing it on each of the main experiment conditions (see Methods for
details). For unmasked trials, a Wilcoxon signed-rank test on the exploratory dataset
indicated successful decoding for segmented trials in all five time windows (Z = 100, p
<0.001;Z = 89, p < 0.001; Z = 30, p < 0.001; Z = 131, p < 0.001; Z = 141, p < 0.001)
and low trials in the first three time windows (92-115 ms; 120-150 ms; 155-217 ms; Z
=198, p=0.007; Z =82, p < 0.001; Z = 61, p < 0.001). For objects on medium com-
plex background, successful above-chance decoding emerged slightly later, in time
windows 2 and 3 (Z = 200, p = 0.012; Z = 110, p < 0.001). For objects on high com-
plex background, there was successful decoding in time window 3, Z=216, p = 0.045.
For masked trials, there was successful decoding for the segmented objects in time
windows 1, 3 and 4, Z = 113, p < 0.001; Z = 183, p = 0.004; Z = 186, p = 0.004,
followed by later additional decoding of low (155-217 ms), Z = 138, p = 0.001, and
high (221-275 ms) complexity trials, Z = 157, p = 0.003. There were no significant time
windows for medium complexity trials. All p-values reported were corrected by FDR
= 0.05. Finally, we aimed to replicate these findings in the confirmatory dataset (N
= 20). Overall, results indicated fewer instances of successful object decoding, and if
present, slightly delayed compared to the exploratory set. For unmasked trials, results
from the Wilcoxon Signed-Ranks test indicated successful decoding for segmented
trials in all time windows except the second (92-115 ms; 155-217 ms; 221-275 ms;
279-245 ms), Z = 27, p = 0.006; Z = 18, p = 0.003; Z=0, p < 0.001; Z= 35, p =
0.011. There were no other significant time windows from other unmasked
conditions. For masked trials, there was significant decoding for segmented trials in
time window 3 and 4 (155-217 ms; 221-275 ms), Z = 36, p = 0.031; Z = 38, p =
0.031, and for low trials in time window 2, Z = 36 , p = 0.050. Overall, these
findings showed that dif-ferent objects evoked reliably different sensor patterns
when presented in isolation or in ‘simple’ environments, within the first feed-forward
sweep of visual information processing. Additionally, results indicated decreased
and later decoding for objects embedded in more complex backgrounds, suggesting
that object representations for objects on complex backgrounds emerge later.
Finally, these findings also indicate that the object category representations
generalized across tasks and participants.
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Figure 3.6: Cross-decoding results using the pattern localizer. Decoding object cat-
egory in EEG signal for masked and unmasked trials with varying complexity in the
five time windows. Shaded error bars represent the bootstrap 95% confidence inter-
val. Significant results from the Wilcoxon signed-rank test are indicated with a bold
x (corrected for multiple comparisons using a false discovery rate of 0.05), a triangle
indicates p = 0.0496.

Discussion

This study systematically investigated whether recurrent processing is required
for figure-ground segmentation during object recognition. A converging set of
behavioral, EEG and computational modelling results indicate that recurrent compu-
tations are required for figure-ground segmentation of objects in complex scenes.
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These findings are consistent with previous findings showing enhanced feedback for
complex scenes (Groen, Jahfari, et al., 2018), and visual backward masking being
more effective for images that were ‘more difficult to segment’ (Koivisto et al., 2014).
We interpret these results as showing that figure-ground segmentation, driven by
recurrent processing, is not necessary for object recognition in simple scenes but it is
for more complex scenes.

Effects of scene complexity using artificial backgrounds

In an earlier study, using natural scenes, we already showed that feedback was selec-
tively enhanced for high complexity scenes, during an animal detection task. While
there are numerous reasons for using naturalistic scenes (Felsen et al., 2005; Felsen &
Dan, 2005; Talebi & Baker, 2012), it is difficult to do controlled experiments with them
because they vary in many (unknown) dimensions. Additionally, SC and CE (measures
of scene complexity) could correlate with other contextual factors in the scene (e.g. SC
correlates with perception of naturalness of a scene (Groen et al., 2013), and could
be used as diagnostic information for the detection of an animal. Additionally, pre-
vious research has shown that natural scenes and scene structure can facilitate object
recognition (Davenport & Potter, 2004; Kaiser & Cichy, 2018; Neider & Zelinsky, 2006).
Results from the current study, using artificial backgrounds of varying complexity, repli-
cate earlier findings while allowing us to attribute the effects to SC and CE, and the
subsequent effect on segmentability. A limitation of any experiment with artificially
generated (or artificially embedded) images is that it's not clear whether our findings
will generalize to ‘real images’ that have not been manipulated in any way. Together
with the previous findings, however, our results corroborate the idea that more exten-
sive processing (possibly in the form of recurrent computations) is required for object
recognition in more complex, natural environments (Groen, Jahfari, et al., 2018; Kar et
al., 2019; Rajaei et al., 2019; Tang et al., 2018).

Time course of object recognition

Based on the data from the exploratory dataset (N = 40), we selected five time win-
dows in the ERPs to test our hypotheses on the confirmatory dataset. For our occipital-
peri-occipital pooling, we expected the first feedforward sweep to be unaffected by
scene complexity. Indeed, amplitudes of the difference waves, averaged across the
selected time windows, indicated no influence of masking or scene complexity early in
time (94-110 ms). The observation that all three difference waves deviated from zero,
however, indicates that there was an effect of segmentation. In this early time win-
dow, background presence thus seems to be more important than the complexity of
the background. This difference could be attributed to the detection of additional low-
level features in the low, medium and high complexity condition, activating a larger set
of neurons that participate in the first feedforward sweep (Lamme & Roelfsema, 2000).
In the second and third time window (120-217 ms), differences between the complexity
conditions emerge. We interpret these differences as reflecting the increasing need for
recurrent processes. Our results are generally consistent with prior work investigating
the time course of visual processing of objects under more or less challenging condi-
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tions (Cichy et al., 2014; Contini et al., 2017; DiCarlo & Cox, 2007, Rajaei et al., 2019,
Tang et al., 2018). In line with multiple earlier studies, masking left the early evoked
neural activity (<120 ms) relatively intact, whereas the neural activity after ~150 ms was
decreased (Boehler et al., 2008; Del Cul et al., 2007; Fahrenfort et al., 2007; Koivisto
& Revonsuo, 2010; Lamme et al., 2002; Lamme & Roelfsema, 2000).

Decoding results corroborated these findings, showing decreased or delayed decod-
ing onsets for objects embedded in more complex backgrounds, suggesting that ob-
ject representations for those images emerge later. Additionally, when recurrent pro-
cessing was impaired using backward masking, only objects presented in isolation or
in ‘'simple’ environments evoked reliably different sensor patterns that our classifiers
were able to pick up (Figure 3.6.

Influence of backward masking

Based on the strong interaction effect on behavior, it is tempting to conclude that
complexity significantly increases the effect of masking on recognition accuracy. How-
ever, performance on all unmasked trials was virtually perfect (96-97%) raising con-
cerns about ceiling effects obscuring the actual variation between these conditions
(Uttl, 2005). Therefore, although masked stimuli show a decrease in performance along
increases in complexity; base on the current results we cannot conclude that this is be-
cause of masking (i.e. reducing recurrent processes). We do not claim that unmasked
segmented, low, med, or high images are equally difficult or processed in the same
way (we actually argue for the opposite), but apparently the brain is capable of arriving
at the correct answer with enough time. It is hard to come up with an alternative (more
difficult) task without affecting our experimental design and subsequent visual process-
ing (e.g. stimulus degradation generally affects low-level complexity; reducing object
size or varying object location creates a visual search task that could benefit from spa-
tial layout properties). Combined fMRI and EEG results from an earlier study already
showed that for complex scenes only, early visual areas were selectively engaged by
means of a feedback signal (Groen, Jahfari, et al., 2018). Here, using controlled stim-
uli and backward masking, we replicate and expand on these findings. Importantly,
results from both EEG and deep convolutional neural networks support the notion
that recurrent computations drive figure-ground segmentation of objects in complex
scenes.

Consistency of object decoding results

In the exploratory set, results from the multivariate decoding analyses indicated early
above chance decoding for ‘simple’ scenes (segmented and low) in both unmasked
and masked trials. For more complex scenes decoding emerged later (medium) or
was absent (high) for unmasked trials. In the confirmatory set, however, there were
fewer instances of successful object decoding, and if present, successful decoding was
delayed. A potential explanation for this finding could be that the sample size in the
confirmatory dataset was inadequate for the chosen multivariate decoding analyses,
resulting in reduced statistical power. A simulation analysis on the exploratory set, in
which we randomly selected 20 participants (repeated 1000 times) indicated reduced
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decoding accuracy, similar to our confirmatory results. Our choice for the number of
participants in the confirmatory dataset thus does not seem to be sufficient (Supple-
mentary Figure 3.7).

Probing cognition with Deep Convolutional Neural Networks

One way to understand how the human visual system processes visual information
involves building computational models that account for human-level performance un-
der different conditions. Here we used Deep Convolutional Neural Networks, because
they show remarkable performance on both object and scene recognition (e.g. Rus-
sakovsky et al. (2015); He et al. (2016)). While we do not aim to claim that DCNNs
are identical to the human brain, we argue that studying how performance of differ-
ent architectures compares to human behavior could be informative about the type
of computations that are underlying this behavior. In the current study, it provides an
additional test for the involvement of recurrent connections. Comparing the (behav-
joral) results of DCNNs with findings in humans, our study adds to a growing realization
that more extensive processing, in the form of recurrent computations, is required for
object recognition in more complex, natural environments (Groen, Jahfari, et al., 2018;
Kar et al., 2019; Rajaei et al., 2019; Tang et al., 2018).

Conclusion

Results from the current study show that how object recognition is resolved depends
on the context in which the target object appears: for objects presented in isolation or
in ‘simple’ environments, object recognition appears to be dependent on the object
itself, resulting in a problem that can likely be solved within the first feedforward sweep
of visual information processing. When the environment is more complex, recurrent
processing is necessary to group the elements that belong to the object and segregate
them from the background.
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Figure 3.7: Simulation analysis on the exploratory set. Random selection of 20 partici-
pants (repeated 1000 times) indicated reduced chances of finding significant decoding
results. Plotted are the proportion (number of instances divided by 1000) in which the
results remained significant.
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Chapter 4

Depth in convolutional neural
networks solves scene
segmentation

Abstract Feedforward deep convolutional neural networks (DCNNs) are, under specific
conditions, matching and even surpassing human performance in object recognition in
natural scenes. This performance suggests that the analysis of a loose collection of im-
age features could support the recognition of natural object categories, without dedi-
cated systems to solve specific visual subtasks. Research in humans however suggests
that while feedforward activity may suffice for sparse scenes with isolated objects, addi-
tional visual operations (‘routines’) that aid the recognition process (e.g. segmentation
or grouping) are needed for more complex scenes. Linking human visual processing to
performance of DCNNs with increasing depth, we here explored if, how, and when ob-
ject information is differentiated from the backgrounds they appear on. To this end, we
controlled the information in both objects and backgrounds, as well as the relationship
between them by adding noise, manipulating background congruence and systemat-
ically occluding parts of the image. Results indicate that with an increase in network
depth, there is an increase in the distinction between object- and background informa-
tion. For more shallow networks, results indicated a benefit of training on segmented
objects. Overall, these results indicate that, de facto, scene segmentation can be per-
formed by a network of sufficient depth. We conclude that the human brain could
perform scene segmentation in the context of object identification without an explicit
mechanism, by selecting or “binding” features that belong to the object and ignoring
other features, in a manner similar to a very deep convolutional neural network.

This chapter is published as: Seijdel, N., Tsakmakidis, N., de Haan, E.H.F, Bohte,
S.M., & Scholte, H.S. (2020). Depth in convolutional neural networks solves scene seg-
mentation. PLoS Computational Biology, 16(7), €1008022. doi:10.1371/journal.pcbi.
1008022.
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Author summary

To what extent do Deep Convolutional Neural Networks exhibit sensitivity to scene
properties (e.g. object context) during object recognition, and how is this related to
network depth? Linking human visual processing to performance of feed-forward DC-
NNs with increasing depth, our study explored if and how object information is dif-
ferentiated from the backgrounds they appear on. We show that with an increase in
network depth, there is a stronger selection of parts of the image that belong to the
target object, compared to the rest of the image. In other words, network depth fa-
cilitates scene segmentation. Given that the operations of a very deep network can
be performed by a recurrent network, we speculate that the human brain could per-
form scene segmentation, in the context of object identification, without an explicit
mechanism using recurrent processing.

Introduction

Visual object recognition is so swift and efficient that it has been suggested that a fast
feed-forward sweep of perceptual activity is sufficient to perform the task (DiCarlo &
Cox, 2007; Serre et al., 2007; VanRullen & Thorpe, 2002). Disruption of visual process-
ing beyond feed-forward stages (e.g. >150 ms after stimulus onset, or after activation
of higher order areas) can however lead to decreased object recognition performance
(Camprodon et al., 2013; Koivisto et al., 2011), and a multitude of recent findings
suggest that while feed-forward activity may suffice to recognize isolated objects that
are easy to discern, the brain employs increasing feedback or recurrent processing for
object recognition under more ‘challenging’ natural conditions (Groen, Jahfari, et al.,
2018; Herzog & Clarke, 2014; Kar et al., 2019; Rajaei et al., 2019). When performing
a visual object recognition task, the visual input (stimulus) elicits a feed-forward drive
that rapidly extracts basic image features through feedforward connections (Lamme
& Roelfsema, 2000). For sparse scenes with isolated objects, this set of features ap-
pears to be enough for successful recognition. For more complex scenes, however,
the jumble of visual information (‘clutter’) may be so great that object recognition can-
not rely on having access to a conclusive set of features. For those images, extra visual
operations ('visual routines’), such as scene segmentation and perceptual grouping,
requiring several iterations of modulations and refinement of the feedforward activity
in the same and higher visual areas, might be necessary (Hochstein & Ahissar, 2002;
Howe, 2017; Lamme et al.,, 2002; Wyatte et al., 2014). While this view emphasizes
that object recognition relies on the integration of features that belong to the object,
many studies have shown that features from the background can also influence the
recognition process (Bar & Ullman, 1996; Davenport, 2007; Davenport & Potter, 2004;
Greene et al., 2015; Joubert et al., 2008; Rémy et al., 2013; Sun et al., 2011). For
example, objects appearing in a familiar context are detected more accurately and
quickly than objects in an unfamiliar environment, and many computational models of
object recognition (in both human and computer vision), use features both from within
the object and from the background (Fink & Perona, 2004; Riesenhuber & Poggio,
1999; Torralba et al., 2006). This shows that when subjects recognise an object, figure-
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ground segmentation has not always occurred completely. One way to understand
how the human visual system processes information involves building computational
models that account for human-level performance under different conditions. Here we
investigate Deep Convolutional Neural Networks (DCNNs). DCNNs are being studied
often because they show remarkable performance on both object and scene recogni-
tion, rivaling human performance. Recent evidence shows that the depth of DCNNs
is of crucial importance for this recognition performance (Russakovsky et al., 2015). In
addition to better performance, deeper networks have also been shown to be more
human-like (making errors similar to human subjects; Kheradpisheh et al. (2016)). More
layers seem especially important when scenes are more difficult or challenging, e.g. be-
cause of occlusion, variation, or blurring, where elaborate processing is required (Kar
et al., 2019; Rajaei et al., 2019). The very deep residual networks used in current ob-
ject recognition tasks are nearly equivalent to a recurrent neural network unfolding
over time, when the weights between their hidden layers are clamped (Liao & Poggio,
2016). This has led to the hypothesis that the additional layers function in a way that
is similar to recurrent processing in the human visual system, and that these additional
layers are solving the challenges that are resolved by recurrent computations in the
brain. In the current study, we explore how the number of layers (depth) in a DCNN
relates to human vision and how depth influences to what degree object segmentation
occurs. While we certainly do not aim to claim that DCNNs are identical to the human
brain, we argue that they can be studied in a way similar to the way in which we use
animal models (DNimals; Scholte (2018)]). First, we focused on the question to what
extent DCNNs exhibit the same sensitivity to scene properties (object context) as hu-
man participants. To this end, we presented seven Residual Networks (ResNets; He et
al. (2016)) with an increasing number of layers and 40 human participants with images
of objects that were either presented on a uniform background (segmented), or on top
of congruent or incongruent scenes and evaluated their performance. Additionally, for
the DCNNSs, we controlled the amount of information in the objects and backgrounds,
as well as the relationship between them by adding noise or systematically occlud-
ing parts of the image. Next, we investigated the role of segmentation on learning
(“training’), by training the DCNNs on either segmented or unsegmented objects. A
convergence of results indicated a lower degree of segregation between object- and
background features in more shallow networks, compared to deeper networks. This
was confirmed by the observation that more shallow networks benefit more from train-
ing on pre-segmented objects than deeper networks. Overall, deeper networks seem
to perform implicit ‘segmentation’ of the objects from their background, by improved
selection of relevant features.
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Figure 4.1: Stimuli and experimental design. A) Exemplars of the different object
categories (cut-out objects from ImageNet validation set). 27 object categories were
used in this experiment (subordinate level, based on ImageNet categories). In total,
each category contained 10 exemplars. B) Stimuli were generated by placing the ob-
jects onto white, congruent and incongruent backgrounds (512*512 pixels, full-color).
Backgrounds were sampled from the SUN2012 database (Xiao et al., 2010). For hu-
man participants, objects were downsized and placed in one of nine possible locations
(3*3 grid). For DCNNSs, objects were bigger and placed centrally. C) Participants per-
formed on an object recognition task. At the beginning of each trial, a fixation-cross
was presented in the center of the screen for 2000 ms, followed by an image. Images
were presented in randomized sequence, for a duration of 32 ms, followed by a mask,
presented for 300 ms. After the mask, participants had to indicate which object they
saw, by clicking on one of 27 options on screen using the mouse. After 81 (1/3) and
162 (2/3) trials, there was a short break. D) Human performance (% correct) on the
object recognition task. Participants performed best for segmented objects, followed
by congruent and incongruent respectively. Error bars represent bootstrap 95% con-
fidence intervals.
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Results

Experiment 1
Human performance

In experiment 1, participants viewed images of real-world objects placed onto white
(segmented), congruent and incongruent backgrounds (Figure 4.1A/B). Images were
presented in randomized sequence, for a duration of 32 ms, followed by a mask, pre-
sented for 300 ms. After the mask, participants indicated which target object was
presented, by clicking on one of 27 options on screen using the mouse (Figure 4.1C;
see Materials and methods). Accuracy (percentage correct) was computed for each
participant. A non-parametric Friedman test differentiated accuracy across the three
conditions (segmented, congruent, incongruent), Friedman'’s )(2) = 74.053, p < .001.
Post-hoc analyses with Wilcoxon signed-rank tests indicated that participants made
fewer errors for segmented objects, than the congruent, W = 741, p <.001, and in-
congruent condition, W = 741, p < .001 (Figure 4.1D). Additionally, participants made
fewer errors for congruent than incongruent trials, W = 729, p < .001. Overall, results
indicate that when a scene is glanced briefly (32 ms, followed by a mask), the objects
are not completely segregated from their background and semantic consistency infor-
mation influences object perception.

Model performance

For human participants, results indicated that (at a first glance) features from the back-
ground influenced object perception. Do DCNNs show a similar pattern and how is
this influenced by network depth? To investigate the effect of network depth on scene
segmentation, tests were conducted on seven deep residual networks (ResNets) with
increasing number of layers (6, 10, 18, 34, 50, 101, 152). This approach allowed us
to investigate the effect of network depth (adding layers) while keeping other model
properties as similar as possible.

We presented 38 different subsets of 243 stimuli to the DNNs, each subset consist-
ing of the same number of images per category and condition that human observers
were exposed to (81 per condition, 3 per category). Following the procedure for com-
paring human performance, a non-parametric Friedman test differentiated accuracy
across the three conditions (segmented, congruent, incongruent) for all networks. Us-
ing Post Hoc Wilcoxon signed-rank tests with Benjamini/Hochberg FDR correction, dif-
ferences between the conditions were evaluated for all networks (Figure 4.2; signifi-
cant differences indicated with a solid line). Results indicated both a substantial over-
lap and difference in performance between human participants and DCNNs (Figure
4.2). Both were better in recognizing an object on a congruent versus an incongruent
background. However, whereas human participants performed best in the segmented
condition, DCNNs performed equally well (or better) for the congruent condition. Per-
formance for the incongruent condition was lowest. This effect was particularly strong
for more shallow networks (ResNet-6, ResNet-10), and got smaller as the networks got
deeper. A Mann-Whitney U test on the difference in performance between congruent
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and incongruent trials indicated a smaller decrease in performance for incongruent tri-
als for ResNet152 compared to ResNet6 (Mann-Whitney U = 1420.0, nl = n2 = 38,
p < .001, two-tailed) For ‘ultra-deep’ networks it mattered less if the background was
congruent, incongruent or even present, behavior that humans also exhibit when these
images are shown unmasked. Remarkably, performance of the most shallow network
(ResNet-6) was better for the congruent condition compared to the segmented con-
dition. These results suggest that parts of co-varying backgrounds or surroundings
influence the categorization of the objects. In other words, there is ‘leakage’ of the
natural (congruent) background in the features for classification, predominantly for the
more shallow networks. For object recognition in a congruent scene this is not nec-
essarily a problem, and can even increase or facilitate performance (as compared to
the segmented condition). For objects on an incongruent background, however, this
impairs classification performance. These results suggest that one of the ways in which
network depth improves object classification, is by learning how to select the features
that belong to the object, and thereby implicitly segregating the object features from
the other parts of the scene.

Then, to determine whether the experimental observations above can be approxi-
mated by recurrent computations, we additionally tested three different architectures
from the CORnet model family (Kubilius et al., 2018); CORnet-Z (feedforward),
CORnet-R (recurrent) and CORnet-S (recurrent with skip connections). The shift in
performance from CORnet-Z to CORnet-S showed the same pattern as the shift from
ResNet-6 to ResNet-18. This overlap suggests that the pattern of results for deeper
ResNets can be approximated by recurrent computations. Because the different
CORnet models did not only differ with respect to ‘recurrence’, but also contained
other architectural differences (CORnet-Z not only is feedforward, but it is also
shallower than CORnet-S), the differences between the networks could stem from
the difference in information flow (feedforward vs. recurrent), or from the different
amount of parameters in each network. Taking the results from the ResNets and
CORnets together, these findings suggest that one of the ways in which network
depth improves object classification, is by learning how to select the features that
belong to the object, and thereby implicitly segregating the object features from
the other parts of the scene. To confirm this hypothesis, and to gain more insight
into the importance of the features in the object vs. the background, Gaussian noise
was added to either the object, the background, or both (Figure 4.2B). When noise
was added to the complete image (object included), performance decreased for all
conditions and all networks. When noise was added to the object only, classification
performance also decreased for all conditions Crucially, this decrease was modest for
the congruent and particularly severe for the incongruent condition. This indicates
that for the congruent condition, also in the no-noise manipulation, performance
is heavily dependent on the background for classification. The other side of this
conclusion, that in the incongruent condition the features in the background interfere
with object classification, is confirmed by the observation that this condition improves
when noise is added to the background.
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To further investigate the degree to which the networks are using features from the
object and/or background for classification, we systematically occluded different parts
of the input image by sliding a gray patch (of either 64*64, 128*128 or 256*256 pix-
els) across the image in 32 pixel steps. We evaluated the changes in activation of the
correct class after occlusion of the different image parts, before the softmax activation
function (compared to activation for the ‘original’ unoccluded image). We reasoned
that, if the activity in the feature map changed after occluding a patch of the image,
that those pixels were important for classification. For this analysis, positive values
indicate that pixels are helping classification, with higher values indicating a higher im-
portance. This reveals the features to be far from random, uninterpretable patterns.
For example, in Figure 4.3, results clearly show that the network is localizing the object
within the scene, as the activity in the feature map drops significantly when the object
(china cabinet in this example) is occluded. To evaluate whether deeper networks are
better at localizing the objects in the scene, while ignoring irrelevant background in-
formation, we quantified the importance of features in the object vs. background by
averaging the change in the feature map across pixels belonging to either the object
or the background (‘importance’). For each image, importance values of the objects
and backgrounds were normalized by dividing them by the activation for the origi-
nal image. Because performance of ResNet-6 for the ‘original’ unoccluded images
was already exceptionally low, the averaged interference was hard to interpret and
remained low, due to many near-zero values in the data. Therefore, we took into ac-
count only images that were classified correctly (correct class within Top 5 predictions),
resulting in an unequal number of images for each network. Mann-Whitney U tests
with Benjamin/Hochberg FDR correction indicated a smaller influence (importance) of
background pixels on classification for deeper networks. For those models, pixels from
the object had a smaller impact as well, for the segmented and congruent condition.
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Figure 4.3: Systematic occlusion of parts of the image. A) Examples where we oc-
cluded different portions of the scene, and visualized how the classifier output for the
correct class changed (before the softmax activation function). Images were occluded
by a gray patch of 128x128 pixels, sliding across the image in 32 pixel steps. Impor-
tance is defined as the relative change in activation after occluding that part of the
image (compared to the activation of the ‘original’ unoccluded image) and is com-
puted as follows: original activation - activation after occlusion / original activation.
This example is for illustrative purposes only; maps vary across exemplars. B) The rel-
ative change in activation (compared to the original image), after occluding pixels of
either the object or the background, for the different conditions (segmented, congru-
ent, incongruent). For each image, importance values of the objects and backgrounds
were normalized by dividing them by the activation for the original image, resulting
in the importance ratio. Error bars represent the bootstrap 95% confidence interval.
Non-significant differences are indicated with a solid line below the graph.
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Figure 4.4: Analysis repeated with a smaller (64x64) and larger (256x256) patch. A)
visualization of the change in classifier output for the correct class, before the soft-
max activation function after occlusion by a 64x64 patch, sliding across the image in
32 pixel steps. B) The relative change in activation (compared to the original image),
after occluding pixels of either the object or the background, for the different con-
ditions (segmented, congruent, incongruent). For each image, importance values of
the objects and backgrounds were normalized by dividing them by the activation for
the original image, resulting in the importance ratio. Error bars represent the 95%
confidence interval. C/D) Repeated for a large patch (256x256 pixels).

Next, we tested how training was influenced by network depth. If deeper networks
indeed implicitly learn to segment object from background, we expect them to show
a smaller difference in learning speed, when trained with segmented vs. unsegmented
stimuli (as compared to shallow networks).

Experiment 2

Experiment 1 indicated that, when trained on ImageNet, the networks are influenced
by visual information from both the object and the background region. In experiment
2, we investigated the influence of background on classification performance when
the networks are trained on visual information from the object region only. To do so,
we trained four networks (ResNet-6, ResNet-10, ResNet-18, ResNet-34) on a dataset
with objects that were already segmented, and on a dataset in which they were un-
segmented (i.e. objects embedded in the scene). All images were resized to 128x128
pixels. We used more shallow networks and fewer object classes to reduce computa-
tion time. To obtain statistical results, we reinitialized the networks with different seeds
and repeated the process for 10 different seeds.

Accuracy of the ResNets was evaluated after each epoch (100 in total) on the valida-
tion sets. Results indicated a higher classification accuracy in the early stages of training
for the networks trained on segmented objects compared to the networks trained on
unsegmented objects (Figure 4.5). Statistical analyses comparing the average accura-
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cies of the first 10 epochs for networks trained on segmented vs. unsegmented ob-
jects indicated significant differences for all models (Mann-Whitney U-statistic: U=5.0,
p < .001., for ResNet 6, 10, 18 and 34 respectively). In the later stages, accuracy be-
tween the two types of models (trained on unsegmented vs. segmented) was similar.
Results also indicated a difference between the more shallow networks (ResNet-6),
where there is a difference in accuracy between segmented and unsegmented objects
for all training epochs, and the deeper networks. For the deeper networks, the differ-
ence in accuracy quickly diminishes and finally disappears. Shallow networks trained
on segmented stimuli also converged (stabilized) earlier than when they were trained
on unsegmented images. Statistical analyses comparing the ‘speed of convergence’
indicated significant effects of visual training diet (segmented vs. unsegmented) across
multiple initialization conditions of the networks, for the more shallow networks (Mann
Whitney-U statistic U =0, p <.001; U = 20.0, p = .012 for ResNet-6 and ResNet-10, re-
spectively). For this analysis, the speed of convergence was defined as the first epoch
at which 95% of the maximum accuracy was reached. Deeper networks thus seem to
learn to ‘segment’ the objects from their background during training.
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Figure 4.5: Accuracy during training on segmented vs. unsegmented stimuli. Net-
works trained on segmented objects achieve better classification accuracy in the early
stages of training than the networks trained on unsegmented objects for shallow net-
works (ResNet6, ResNet10), and they converge in less epochs. Individual data points
indicate the moment of convergence, defined as the first epoch to reach 95% of the
maximum accuracy across all epochs.

To better understand the inner workings of our models, we visualized the filter acti-
vations of each convolution layer. Visualizing the filter activations of each convolution
layer of the networks provides us with heatmaps that show features of a given image,
that a corresponding filter is tuned to. This gives an idea of which parts of the image
contained the most important features for classification. To obtain these heatmaps, we
extracted all the filter activations from the different layers (one 2D-array per filter) for
a specific image. Then, for each layer, we summed the absolute value of those arrays
together.

Looking at the heatmaps of networks trained on segmented vs. unsegmented
data (see Figure 4.6), we see that the heatmaps of the networks trained on
segmented ob-jects contain no background activations. For networks trained on
unsegmented objects (full images), however, we see that the backgrounds are
gradually suppressed inside the network. This indicates that the networks learn to
attend to important features (i.e. the objects) and almost eliminate completely the
influence of the background, when the depth or capacity of the network is sulllcient.
This suggests that the network learns to segment the objects before classifying.



67

ResNet-6  segmented ResNet-10 segmented
o Jefolof o fole]c]eofefoofo] Ja]e]d
unsegmented unsegmented

3
&

EANEDE IEEOEDOnEne

ResNet-18  segmented

-

unsegmented

HifgNbEanaOEEnann

ResNet-34 segmented

unsegmented

Pl Pad fa] o f- - Jafef-Jefefefofe] ]| |- |aln]#]s]®

Figure 4.6: Visualization of the filter activations of each convolution layer for the
different networks. All the filter activations from the different layers (one 2D-array
per filter) for a specific image were extracted. heatmaps were generated by summing
the absolute value of those arrays together. The lightest part of these heatmaps
contain the most important features for classification. Maps for ResNet-34 were
resized for visualization purposes.

Discussion

We investigated the extent to which object and context information is represented
and used for object recognition in trained Deep Convolutional Neural Networks (DC-
NNs). Experiment 1 showed both a substantial overlap, and a difference in perfor-
mance between human participants and DCNNSs. Both humans and DCNNs are better
in recognizing an object on a congruent versus an incongruent background. However,
whereas human participants performed best in the segmented condition, DCNNs per-
formed equally well (or better) for the congruent condition. Performance for the incon-
gruent condition was lowest. This effect was particularly strong for more shallow net-
works. Further analyses, investigating which parts of the image were most important
for recognition, showed that the influence of the background features on the response
outcome was relatively strong for shallow networks and almost absent for deeper net-
works. For shallow networks, the results of experiment 2 indicated a benefit of training
on segmented objects (as compared to unsegmented objects). For deeper networks,
this benefit was much less prominent. Training on segmented images thus reduced the
difference in performance between shallow and deeper networks.

The current results suggest that there is no discrete ‘moment’ at which segmen-
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tation is successful or ‘done’. We interpret these findings as indicating that with an
increase in network depth there is better selection of the features that belong to the
output category (vs. the background), resulting in higher performance during recogni-
tion. Thus, more layers are associated with ‘more’ or better segmentation, by virtue of
increasing selectivity for relevant constellations of features. This process is similar, at
least in terms of its outcome, to figure-ground segmentation in humans and might be
one of the ways in which scene segmentation is performed in the brain using recurrent
computations.

Explicit vs. implicit models of grouping and segmentation

Classic models focussing on grouping and segmentation presume an explicit process
in which certain elements of an image are grouped, whilst others are segregated from
each other, by a labelling process (Neisser & Becklen, 1975; Treisman, 1999). Several
studies have established the involvement of such explicit grouping mechanisms during
specific visual tasks. For example, different curve tracing paradigms require grouping
of spatially separate contour segments (Roelfsema et al., 1999), and recent findings
by Doerig et al. (2019), comparing a wide range of computational models, indicate
that an explicit grouping step is crucial to explain different (un)crowding phenomena.
Adding explicit segmentation mechanisms to DCNNs is promising to explain human
behavior in tasks that require integrating and grouping of global features, or shape-
level representations. Our results from behavioral experiments with segmented and
unsegmented objects show that when the task is object recognition an explicit seg-
mentation step is typically not necessary. We show that with an increase in network
depth, there is a stronger influence of the features that belong to the object on recog-
nition performance, showing that ‘implicit’ segmentation occurs. When this process
becomes more efficient (with a deeper network, or recurrent processing) the result is
a situation in which, just as in ‘explicit’ segmentation, the network (or visual system)
knows which features belong together, and which ones do not. Previous studies have
already looked into DCNN performance on unsegmented images (Cadieu et al., 2014;
Cichy et al., 2017), or have even shown a decrease in classification accuracy for un-
segmented, compared to segmented objects (Kheradpisheh et al., 2016)). In those
images, however, objects were placed on a random background, thereby often incon-
gruent (or coincidentally, congruent). In the current study, by manipulating the rele-
vance and usefulness of the background information, we could disentangle whether
this decrease was due to a segmentation problem, or the presence of incongruent,
misleading information.

Contextual effects in object recognition

Different accounts of object recognition in scenes propose different loci for contextual
effects (Oliva & Torralba, 2007; V& et al., 2019). It has been argued that a bottom-up
visual analysis is sufficient to discriminate between basic level object categories, after
which context may influence this process in a top-down manner by priming relevant
semantic representations, or by constraining the search space of most likely objects
(e.g. Bar (2003)). Recent studies have also indicated that low-level features of a scene
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(versus high-level semantic components) can modulate object processing (V6 et al.,
2019) by showing that seemingly meaningless textures with preserved summary statis-
tics contribute to the effective processing of objects in scenes. Comparably, in the
current study the DCNNs were agnostic to the meaning of the backgrounds, as they
were not trained to recognize, for example, kitchens or bedrooms. The current re-
sults show that visual context features may impact object recognition in a bottom-up
fashion, even for objects in a spatially incongruent location. Previous studies have
indicated that explicitly augmenting DCNNs with human-derived contextual expecta-
tions (likelihood, scale and location of a target object) was able to improve detection
performance, potentially indicating a difference in contextual representations in the
networks and the humans (Katti et al., 2019). In the current study, findings show that
only training DCNNs on a large dataset (ImageNet), enables them to learn human-like
contextual expectations as well.

Feed-forward vs. recurrent processing

Instead of being an ultra-deep feedforward network, the brain likely uses recurrent
connections for object recognition in complex natural environments. There are a mul-
titude of findings that have firmly established the involvement of feedback connec-
tions during figure-ground segmentation. For example, behavior and neural activity in
V1 evoked by figure-ground stimuli are affected by backward masking (Lamme et al.,
2002), region-filling processes that are mediated by feedback connections lead to an
enhanced neural representation for figure regions compared to backgrounds in early
visual areas (Self & Roelfsema, 2014), responses by neurons showing selectivity to bor-
der ownership are modulated depending on the location of a ‘figure’ relative to other
edges in their receptive field (Heydt, 2015), and the accuracy of scene segmentation
seems to depend on recurrent connections to sharpen the local elements within early
visual areas (Self et al., 2019) (and there are many more). The current results do not
speak to those findings, but merely indicate that a very deep feedforward architecture
is capable of obtaining a ‘segmented’ representation of an object, without recurrent
projections. The interpretation that deeper networks are better at object recogni-
tion, because they are capable of limiting their analysis to (mostly) the object —when
necessary- is consistent with the idea that deeper networks are solving the challenges
that are resolved by recurrent computations in the brain (Liao & Poggio, 2016). Pre-
vious findings comparing human behavior or the representational geometry of neural
responses to DCNNs (e.g. (Doerig et al., 2019; Khaligh-Razavi & Kriegeskorte, 2014))
often use images that contain (mostly) frontal views of objects on uniform backgrounds.
For segmented objects, on a white or uniform background, all incoming information
is relevant and segmentation is not needed. For those scenes, feed-forward activity in
the brain may suffice to recognize the objects (Groen, Jahfari, et al., 2018). In line with
those findings, we also see that even very shallow networks are able to perform well
on those scenes. For more complex scenes, on the other hand, the first feed-forward
sweep might not be not sufficiently informative, and correctly classifying or recognizing
the object might require additional processing. For those scenes, we see a decrease
in classification performance, mainly for the more shallow networks. These findings
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are in line with the global-to-local (or coarse-to-fine) processing framework, in which a
coarse visual representation is acquired by the initial feedforward sweep. If this coarse
representation is not informative enough to solve the task at hand, additional, more
sophisticated visual processes (‘routines’) can be recruited to refine this representation
(Crouzet & Serre, 2011; Epshtein et al., 2008; Groen, Jahfari, et al., 2018; Hochstein &
Ahissar, 2002; Lamme & Roelfsema, 2000; Petro et al., 2014; Zheng et al., 2010).

Background congruency

In human natural vision, extraction of gist can lead to a set of expectations regarding
the scene’s composition, indicating the probability of the presence of a certain ob-
ject in a scene, but also its most probable locations (Greene et al., 2015; Rémy et al.,
2013). In the current study, in incongruent scenes, objects did not only violate the
overall meaning of the scene category (semantic violation), but were also placed in a
position that was not predicted by the local structure of the scene (syntactic violation).
On top of that, objects in the human categorization task were placed in a semi-random
location across trials to make the task more difficult. This spatial uncertainty, however,
has the additional benefit that it makes the task more comparable to the task we ask
DCNNs to perform, as DCNNs have no knowledge about the spatial location. A pi-
lot study using stimuli with centered 3D-rendered objects indicated no difference in
performance between congruent and incongruent images. While this is contrary to
published literature (Munneke et al., 2013), there are several factors that might explain
this difference. First of all, we used 3D-rendered, computer generated objects, placed
on natural scenes (real-world pictures, Supporting Figure 4.7). The difference in visual
quality and ‘style’ between the object and the background might have influenced per-
ception, by making it easier to distinguish them from each other. A second reason
might be the size of the objects. Compared to the stimuli used by Davenport & Potter
(2004) or Munneke et al. (2013), our objects were quite large, in order to obtain good
network performance.

Conclusion

With an increase in network depth there is better selection of the features that belong
to the output category. This process is similar, at least in terms of its outcome, to
figure-ground segmentation in humans and might be one of the ways in which scene
segmentation is performed in the brain.

Materials and methods

Experiment 1
Ethics statement

All participants provided written informed consent and were rewarded with research
credits or received a monetary compensation. The experiment was approved by the
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ethics committee of the University of Amsterdam.

Participants

40 participants (9 males) aged between 18 and 30 years (M = 22.03, SD = 3.02) with
normal or corrected-to-normal vision, took part in the experiment. Data from the first
two participants were excluded from further data analyses due to technical problems.

Networks

We used Residual Networks (ResNets; He et al. (2016)) as a method to systematically
manipulate network depth because this type of network consists of a limited number
of fixed components that can be up-scaled without altering the architecture in another
way. To evaluate whether the performance of ultra-deep ResNets can be approximated
by recurrent computations, we al;so tested three different architectures from the COR-
net model family (Kubilius et al., 2018); CORnet-Z (feedforward), CORnet-R (recurrent)
and CORnet-S (recurrent with skip connections). Our implementation uses the PyTorch
deep learning framework (Paszke et al., 2019) and the torchvision package. ResNet-6
was trained on ImageNet (Russakovsky et al., 2015) with 1 GPU. The other ResNets
were downloaded (pretrained).

Stimuli

Images of 27 different object categories were generated by placing cut-out objects
from the ImageNet validation set onto white (segmented), congruent and incongruent
backgrounds. The categories were defined at a (sub)ordinate level, based on ImageNet
categories: acoustic guitar, airliner, bathtub, birdhouse, cab, canoe, cellular telephone,
china cabinet, dishwasher, grand piano, laptop, limousine, loudspeaker, mailbox, mi-
crophone, microwave, park bench, pirate ship, printer, remote, rocking chair, school-
bus, screen, speedboat, sports car, table lamp, wall clock (Figure 1A). There were
ten exemplars for every object category. Backgrounds were sampled from a large
database of images obtained from the SUN2012 database (Xiao et al., 2010) (512*512
pixels, full-color). For each category, three typical backgrounds were selected using
the five most common places where this object was found within the database (sorted
by number of instances inside each scene type). Three atypical backgrounds were man-
ually chosen (Figure 1B). In total, the stimulus set contained 810 images with a congru-
ent background, 810 with an incongruent background and 270 images with segmented
objects. To familiarize human participants with the categories, one of the ten exem-
plars for each category was randomly selected and used in a practice-run. Using the
remaining nine exemplars - three for each condition (segmented, congruent, incongru-
ent) - 243 images were generated for the actual experiment. Each exemplar was only
presented once for each participant. To ensure participants processed the complete
image, exemplars were downsized and placed in one of 9 possible locations (3x3 grid).
Importantly, to rule out any effect of ‘exemplar-complexity’ (e.g. one guitar being eas-
ier to recognize than another) or an interaction between the object, location and the
background, all possible exemplar-background-location combinations were balanced
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over participants. For DCNNSs, to make the comparison with human participants more
valid and to estimate the reliability of the effects in our experiment, we showed differ-
ent subsets of 243 stimuli to the DCNNs, each subset consisting of the same number
of images per category and condition that human observers were exposed to (81 per
condition, 3 per category).

Experimental procedure

Participants performed on an object recognition task (Figure 1C). At the beginning of
each trial, a fixation-cross was presented for 2000 ms, followed by an image. Images
were presented in randomized sequence, for a duration of 32 ms, followed by a mask.
The masks consisted of scrambled patches of the images and was presented for 300
ms. After the mask, participants had to indicate which object they had seen, by clicking
on one of 27 options on screen using the mouse. After 81 (1/3) and 162 (2/3) trials,
there was a short break. Using this paradigm, our human object recognition task was
closely analogous to the large-scale ImageNet 1000-way object categorization for
which the DCNNs were optimized and thus expected to perform well.

Statistical analysis: human performance

Accuracy (percentage correct) was computed for each participant. Differences in ac-
curacy between the three conditions (segmented, congruent, incongruent) were sta-
tistically evaluated using a non-parametric Friedman test. A significant main effect was
followed up by Wilcoxon signed-rank tests using a Bonferroni correction at = 0.05,
p-values reported in the main text are the adjusted p-values. Data were analyzed in
Python.

Statistical analysis: DCNNs

For each of the images, the DCNNs (ResNet-6, ResNet-10, ResNet-18, ResNet-34,
Resnet-50, ResNet-101, ResNet-152) assigned a probability value to each of the 1000
object categories it had been trained to classify. For each condition (segmented, con-
gruent, incongruent) the Top-5 Error (%) was computed (classification is correct if the
object is among the objects categories that received the five highest probability as-
signments). Then, to gain more insight in the importance of the features in the object
vs the background for classification, we added Gaussian noise to either the object,
background, or to both (the complete image) and evaluated performance.

Experiment 2

Results from experiment 1 suggested that information from the background is present
in the representation of the object, predominantly for more shallow networks. What
happens if we train the networks on segmented objects, when all features are related
to the object? To further explore the role of segmentation on learning, we trained
ResNets differing in depth on a dataset with objects that were already segmented,
and a dataset in which they were intact (i.e. embedded in a scene).
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Networks

As in experiment 1, we used deep residual network architectures (ResNets) with in-
creasing number of layers (6, 10, 18, 34). Networks were implemented using the Keras
and Theano code libraries (Chollet & Others, 2015; The Theano Development Team et
al., 2016). In this implementation, input images were 128x128 randomly cropped from
a resized image. We did not use ResNets with more than 34 layers, as the simplicity of
the task leads to overfitting problems for the ‘ultra-deep’ networks.

Stimuli

To train the networks, a subset of images from 10 different categories were selected
from ImageNet. The categories were: bird 1t/m 7, elephant, zebra, horse. Using multi-
ple different types of birds helped us to increase task difficulty, enforcing the networks
to learn specific features for each class. The remaining (bigger) animals were added for
diversity. From this subselection, we generated two image sets: one in which the ob-
jects were segmented, and one with the original images (objects embedded in scenes).
Because many images are needed to train the models, objects were segmented using
a DCNN pretrained on the MS COCO dataset (Lin et al., 2014), using the Mask R-CNN
method (He et al., 2018) (instead of manually). Images with object probability scores
lower than 0.98 were discarded, to minimize the risk of selecting images with low qual-
ity or containing the wrong object. All images were resized to 128x128 pixels. In total,
the image set contained ~9000 images. 80% of these images was used for training,
20% was used for validation.

Experimental procedure

First, we trained the different ResNets for 100 epochs and monitored their accuracy af-
ter each epoch on the validation sets. Then, we reinitialized the networks with different
seeds and repeated the process for 10 different seeds to obtain statistical results.

Data and code availability

Data and code to reproduce the analyses are available at the Open Science Framework
(#gb89%u) and at https://github.com/noorseijdel/2019_scenecontext
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Supplement to Chapter 4
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Figure 4.7: Human performance (% correct) on the object recognition task, using cen-
tered 3D-rendered objects on white, congruent or incongruent backgrounds. Perfor-

mance was higher for the segmented condition, compared to congruent and incon-
gruent.



Chapter 5

Visual features drive the
category-specific impairments of
categorization tasks in a patient
with object agnosia

Abstract Object and scene recognition both require mapping of incoming sensory in-
formation to existing conceptual knowledge about the world. A notable finding in
brain-damaged patients is that they may show differentially impaired performance
for specific categories, such as for “living exemplars”. While numerous patients with
category-specific impairments have been reported, the explanations for these deficits
remain controversial. In the current study, we investigate the ability of a brain-injured
patient with a well-established category-specific impairment of semantic memory to
perform two categorization experiments: ‘natural’ vs. ‘manmade’ scenes (experiment
1) and ‘living’ vs. ‘non-living’ objects (experiment 2). Our findings show that the pattern
of categorical impairment does not respect the natural/living versus manmade/non-
living distinction. This suggests that the impairments may be better explained by dif-
ferences in visual features, rather than by category membership. Using Deep Con-
volutional Neural Networks (DCNNs) as ‘artificial animal models’ we further explored
this idea. Results indicated that DCNNs with ‘lesions’ in higher order layers showed
similar response patterns, with decreased relative performance for manmade (experi-
ment 1) and living (experiment 2) items, even though they have no semantic category
knowledge, beyond the pure visual domain. Collectively, these results suggest that
the direction of category-effects to a large extent depends, at least in MS’ case, on the
degree of perceptual differentiation called for.

This chapter is in preparation as: Seijdel, N., Scholte, H.S., & de Haan, E.H.F (n.d.).
Visual features drive the category-specific impairments on categorization tasks in a
patient with object agnosia

75
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Introduction

Object or scene recognition requires mapping of incoming sensory information to ex-
isting conceptual knowledge about the world. A notable finding in brain-damaged pa-
tients is that they may show differentially impaired knowledge of, most prevalently, liv-
ing things compared to non-living things (Gainotti, 2000). For many years, researchers
have been investigating these category-specific semantic deficits. While they generally
have been taken as strong evidence for a disturbance of semantic memory, recent find-
ings have highlighted the importance of controlled experimental tasks and perceptual
differences. To date, the debate remains unsettled on how this distinction in break-
down of semantic knowledge along the natural/living versus manmade/non-living axis
arises (Capitani et al., 2003; Gainotti, 2000; Young et al., 1989).

Some studies have suggested that evolutionary pressures have led to a specialized,
distinct neural mechanism for different categories of knowledge (e.g. animals, plants
and artefacts), and that category-specific deficits arise from damage to one of these
distinct neural substrates (Caramazza & Shelton, 1998; Nielsen, 1946). However, the
most widespread views currently hold that they emerge because living and non-living
things have different processing demands (i.e. they rely on different types of informa-
tion). The first (most dominant) of those theories assumes that the storage of semantic
information is divided into parts dominated by different knowledge aspects (e.g. per-
ceptual, functional) and proposes that the dissociation arises from a selective break-
down of perceptual compared to functional associative knowledge. While man-made
objects have ‘clearly defined functions’ and are mostly differentiated by their functional
qualities, animals have less defining functions and are mostly distinguishable in terms
of their visual appearance (Warrington & Shallice, 1984). This 'differential weighting’
of perceptual and associative attributes might underlie the dissociation between living
and non-living things. Later on this theory was revised to also include other modality-
specific knowledge channels, such as a ‘motor-related’ channel, to support findings
indicating greater impairments for certain more ‘'motor-related’ or ‘manipulable’ items
(such as tools or kitchen utensils) compared to larger manmade objects (such as vehi-
cles) (Warrington & McCarthy, 1987).

A number of studies have emphasized the importance of intercorrelations amongst
individual semantic features. This intercorrelation theory states that concepts are rep-
resented as patterns of activation over multiple semantic properties within a unitary
distributed system. This intercorrelation theory is appealing in that it does not rely
on damage to specific subtypes of attribute (visual, associative, motor) to produce
category-specific deficits (Caramazza et al., 1990; Caramazza & Shelton, 1998; Tyler &
Moss, 2001).

Another account holds that living items contain a larger number of structurally sim-
ilar exemplars (e.g. many different types of trees), requiring a more fine-grained visual
analysis for successful recognition (Sartori et al., 1993). In order words, it could be in-
herently more difficult to visually recognize living things compared to non-living things.
This view of the structural description system, and their account for category-specific
impairments is consistent with work on normal subjects and animal studies (Gaffan &
Heywood, 1993). In line with these findings, a more recent study by (Panis et al., 2017)
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suggested that category-specific impairments may be explained by a deficit in recur-
rent processing between different levels of visual processing in the inferotemporal cor-
tex. According to them, category-specificity has a perceptual nature, and the direction
can shift, depending on perceptual demand. High structural similarity between stored
exemplars might be beneficial for integrating local elements and parts into whole rep-
resentations because the global and local features of these exemplars are more stable
and more highly correlated in the real-world than the features from categories with
low structural similarity. At the same time however, high structural similarity may be
harmful for matching or precise recognition operations, because there may be more
competition between the activated representations (Gerlach, 2009).

Here it's also important to note that different tasks have been used to evaluate
patients’ ability to recognize objects from different categories. Category-specific
impairments have been established both using semantic memory experiments or
visual recognition tasks at different levels (picture naming, picture-word matching,
categorization). The differences in perceptual demand for these tasks (i.e. on which
perceptual information they depend) might underlie the differences in category-
specificity that have previously been found.

In the current study, we investigate the ability of a brain-injured patient with a
category-specific impairment of semantic memory to perform scene- and object-
categorization tasks (Figure 5.1). This patient, MS, has played a crucial role in the
development of theories on category-specificity, showing a very clear category-
specific deficit on semantic category fluency tests in previous studies. He has shown
to perform better than control participants on non-living categories and significantly
worse on living items (Young et al., 1989). A recent study showed that his impairments
have remained unchanged for more than 40 years (De Haan et al., 2020). MS’
problems with living items relative to non-living ones is apparent across a variety of
tasks, including mental imagery, retrieval of information and visual recognition (Mehta
et al., 1992). However, there is a striking dissociation between MS' preserved ability
to access information about category membership in an implicit test (by priming
identification of living and non-living items with related category labels), where there
is no difference between the categories, and his severe problems in accessing such
information in an explicit test (Young et al., 1989). These findings suggest that it's an
“access” rather than a “storage” problem. Thus, the question remains as to whether
MS can access stored representations of visual stimuli and, if so, what the relationships
are between perceptual demand, recognition and semantic memory.

Here, two types of questions were addressed. The first - in order to investigate
whether or not his category-specific impairment is dependent on perceptual factors -
concerned MS’ ability to either categorise visual images as depicting ‘natural’ vs. ‘man-
made’ scenes (experiment 1) or to categorise visual objects are ‘living’ vs. ‘non-living’
things (experiment 2). Our findings show a dissociation between the two tasks, with
better performance for inanimate objects, compared to animate objects (as is usu-
ally the case), and better performance for naturalistic scenes compared to manmade
scenes.

The second question concerned the type of computations that might underlie the
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Figure 5.1: Stimuli and experimental paradigm. A) Examples (not part of actual stim-
ulus set) of the two categories in experiment 1 (manmade vs. natural) and experiment
2 (inanimate vs. animate). B) Experimental design. After a 2000 ms blank screen, the
stimulus was shown for 100 ms, followed by a 400 ms blank screen. Then, the image
reappeared, and MS was asked to categorize the stimulus by pressing the correspond-
ing button.

observed behavior. Recently, a class of computational models, termed deep convo-
lutional neural networks (DCNNSs), inspired by the hierarchical architectures of ventral
visual streams demonstrated striking similarities with the cascade of processing stages
in the human visual system (Cichy et al., 2016; Gicli & Gerven, 2015; Khaligh-Razavi
& Kriegeskorte, 2014). In particular, it has been shown that internal representations of
these models are hierarchically similar to neural representations in early visual cortex
(V1-V3), mid-level (area V4), and high-level (area IT) cortical regions along the ven-
tral stream. Therefore, we evaluated performance of different DCNN architectures
and compared it to MS’ behavior. Results indicated that ‘adding lesions’ to higher-
order layers of a DCNN resulted in response patterns similar to those of MS, with
decreased performance for manmade (experiment 1) and living (experiment 2) things.
Altogether, results from the current study indicate that, at least in specific cases such
as MS, category-specific impairments can be explained by perceptual aspects of ex-
emplars within different categories, rather than semantic category-membership.
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Materials and methods

Case history

MS is a former police cadet who contracted herpes encephalitis in 1970 (for a full
case description see also Ratcliff (1982)). Most of the ventral temporal cortex of both
hemispheres was destroyed, extending to occipital cortex on the right, leaving him
with a complete left homonymous hemianopia. He suffers from achromatopsia (Chad-
wick et al., 2019; Mollon et al., 1980), has severe object agnosia and prosopagnosia
(e.g. Newcombe et al. (1989)), but is able to read accurately. His comprehension of
what he reads is affected by an impairment of semantic memory. His semantic memory
impairment is more marked for living than for non-living things (De Haan et al., 2020;
Young et al., 1989).

Anatomical scans (Smits et al., 2019) revealed an, at least partially, intact primary
visual cortex (V1) in both hemispheres. Further inspection of the anatomical scan sug-
gests that this part of cortex in the right hemisphere, that could consist of parts of V1
to V4, is disconnected from subsequent cortical areas.

Stimuli
Scenes

240 images (640*480 pixels, full-color) of real-world scenes were obtained from a pre-
vious unpublished study by Chow-Wing-Bom et al. (2019). Of these 240 images, 80
images were labeled natural (>90% naturalness rating in an independent experiment),
80 images were man-made (<10% naturalness rating) and 80 images were ambiguous
(between 10-90% naturalness rating). Ambiguous trials were collected for a differ-
ent purpose and are not analyzed in the current study. The stimulus set contained a
wide variety of different outdoor scenes including beaches, mountains, forests, streets,
buildings and parking lots.

Objects

80 images (512*512 pixels) of animals (dogs, cats, butterflies and flies) and inanimate
objects (cars, busses, cabinets and chairs) were selected from several online databases,
including MS COCO (Lin et al., 2014), the SUN database (Xiao et al., 2010), Caltech-256
(Griffin et al., 2007), Open Images V4 (Kuznetsova et al., 2018) and LabelMe (Russell
et al., 2008).

Experimental design

During the experiments, stimuli were presented for 100 ms, followed by a 500 ms blank
screen. Then, the stimulus reappeared for 2000 ms and MS was asked to categorize
the image as accurately as possible using one of two corresponding response buttons.
Stimuli were presented in a randomized sequence, at eye-level, in the center of a 23-
inch ASUS TFT-LCD display (1920*1080 pixels, at a refresh rate of 60 Hz), while MS
was seated approximately 70 cm from the screen. The task was programmed in- and
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performed using Presentation (Version 18.0, Neurobehavioral Systems Inc., Berkeley,
CA, www.neurobs.com). After every 40 trials there was a short break. During the task,
EEG was recorded.

Statistical analysis: behavioral data

Choice accuracies were computed for each condition in both experiments (Figure 5.2).
Differences between the conditions were tested using two-tailed permutation testing
with 5000 permutations. Behavioral data were analyzed and visualized in Python using
the following packages: Statsmodels, SciPy, NumPy, Pandas and Seaborn (Jones et al.,
2001; McKinney & Others, 2010; Oliphant, 2006; Seabold & Perktold, 2010).

Deep Convolutional Neural Networks (DCNNS)

First, to evaluate how many layers were sufficient to accurately perform the catego-
rization tasks, tests were conducted on four deep residual networks (ResNets; He et al.
(2016)) with increasing number of layers; ResNet-6, ResNet-10, ResNet-18 and
Resnet-34. Pre-trained networks were fine-tuned to perform either the manmade vs.
natural categorization task, or the animate vs. inanimate categorization task, using
PyTorch (Paszke et al., 2019). Training data was obtained using the SUN2012 database
(Xiao et al., 2010) for manmade an natural scenes, and ImageNet (Russakovsky et al.,
2015) for animate and inanimate objects. All sets contained a representative variety of
different categories, similar to the stimuli used in the experimental task. Each model
was initial-ized five times with different seeds to perform statistical analyses. For
ResNet-10, the most shallow network that was able to successfully perform the task
(>95% accuracy on all conditions), we evaluated categorization performance after
‘lesioning’ higher-order layers. To this end, we removed one of the ‘building blocks’,
while keeping the skip connection intact.

Data and code availability

Data and code to reproduce the analyses are available at the Open Science Framework
(#9h7mf) and at https://github.com/noorseijdel/2020_Object_agnosia.

Results

First, categorization performance (proportion correct) of MS was computed for both
categorization tasks. Results from two-sample permutation tests with 5000 permuta-
tions indicated higher performance for natural (experiment 1) and inanimate (experi-
ment 2) images (p = 0.007, p = 0.016, respectively). Thus, in the scene categorization
task, MS was significantly better at classifying visually the natural compared to man-
made environments. In contrast, on the object categorisation task, he was significantly
better at assigning the inanimate than the animate exemplars to the correct category.
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Figure 5.2: Behavioral results of patient MS in experiment 1 and 2. A) Results from
experiment 1 (manmade vs. natural) Accuracy (proportion correct) per condition. Hori-
zontal black lines indicate the results of two sample permutation tests, two-tailed using
5000 permutations. Error bars represent the bootstrap 95% confidence interval. * = p
< 0.05. B) Results from experiment 2 (animate vs. inanimate).
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Figure 5.3: Performance of ResNets with different depth (number of layers) on the
images from experiment 1 and 2. The ResNets were pretrained on ImageNet, and fine-
tuned on an independent set of manmade and natural scenes and images containing
inanimate and animate objects.

ResNet-10, -18 and -34 all showed virtually perfect performance for both tasks, for
all categories (Figure 5.3). For the most shallow network, ResNet-6, there was a slight
decrease in performance, specifically for manmade (experiment 1) and animate objects
(p = 0.02, p = 0.03, respectively). Overall these results indicate that performance of a
shallow ResNet-6 may decrease in a similar fashion as MS. This supports the idea that
performance is decreased for specific categories because those stimuli (in our dataset)
are more difficult. Still, even for a shallow ResNet-6, the two-option categorization
tasks seems too easy.

Finally, we evaluated the performance of ResNet-10 after ‘lesioning’ higher-order
layers (Figure 5.4A). In order to mimic lesions to higher-order areas in the visual pro-
cessing stream, we removed connections to the final building block of the network
(Block 4). Permutation tests with 5000 permutations between ResNet-10 without and
with lesion, indicated a decrease in performance after elimination of higher-order lay-
ers, specifically for manmade (experiment 1) and animate (experiment 2) images (both
p < .001). For natural scenes, there was a slight increase in performance after the re-
moval of higher order layers (p = 0.023). Lesions in earlier layers of the network (blocks
1-3) resulted in a strongly biased response, in which the network generally classified
all images as belonging to the same category (Supplementary Figure 5.5). The direc-
tion of this bias was variable across different initializations, suggesting that the earlier
layers are crucial to obtain a useful representation, and the bias was not caused by the
current stimulus set.
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Figure 5.4: ResNet-10 performance on the images from experiment 1 and 2. A)
Schematic representation of ResNet-10. ResNet are built by stacking blocks (contain-
ing the convolution, batch normalization and pooling operations). Bypassing the differ-
ent blocks, skip connections add the input directly to the next block. Here, we added
a lesion to ResNet-10 by removing block 4. B) Performance of ResNet-10, with and
without lesion, on the categorization tasks.
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Discussion

We evaluated the extent to which MS’ ability to recognize visual information shows
selective impairments for semantic categories. Our findings show a dissociation be-
tween two associated tasks (categorization of manmade vs. natural scenes and an-
imate vs. inanimate objects), with better performance for inanimate objects, com-
pared to animate objects (as is usually the case), and better performance for natu-
ralistic scenes compared to manmade scenes. Overall, these results indicate that the
category-specific effects, at least for patient MS, are better explained as a visual im-
pairments, invalidating the idea that this is a purely semantic disorder (i.e. by category
membership only). This is in line with earlier findings from Young et al. (1989), and sug-
gests that, similar to findings in earlier studies by Gerlach (2001) and Lag (2005), the
direction of category-effects to a large extent depends on the degree of perceptual
differentiation called for. Using Deep Convolutional Neural Networks as ‘artificial ani-
mal models’ (Scholte, 2018) we further explored the type of computations that might
underlie such behavior. Overall, DCNNs with ‘lesions’ in higher order areas showed
similar response patterns, with decreased performance for manmade (experiment 1)
and living (experiment 2) things.

Category selectivity in the visual ventral stream

There is an ongoing debate on the emergence of category selectivity in the visual
ventral stream of healthy subjects. A popular view is that observed category effects
indicate a high-level representation in which neurons are organised around either ob-
ject category or correlated semantic and conceptual features (Konkle & Oliva, 2012;
Kriegeskorte et al., 2008; Mahon et al., 2009). An alternative view is that categorical
responses in the ventral stream are driven by combinations of more basic visual prop-
erties that covary with different categories (Andrews et al., 2015; Long et al., 2018).
The conflation of visual and semantic properties in object images means that category-
selective responses could be expected under both accounts. Results from the current
study do not speak to these findings, nor include/exclude the possibility for object
category-selective responses driven by categorical or semantic properties. However,
these findings do indicate that in object recognition impairments (following brain dam-
age to certain regions), apparent category-selectivity can emerge based on basic visual
properties.

Object representations in IT

A question that remains unresolved in this study is which visual features might be in-
volved in classification of the different categories, i.e. which dimensions in stimulus or
object space are utilized by MS. Recent work by Bao et al. (2020) shows that specializa-
tion of different categories in certain regions in IT can be explained by two dimensions,
progressing from animate to inanimate (dimension 1), and from more stubby to spiky
(dimension 2). Following these dimensions, lesions to different parts of IT should lead
to agnosias in specific sectors of object space. For example, the observation that MS’
specifically does not recognize insects (which are generally considered more ‘spiky’
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than mammals, Supplementary Figure 5.6) as being animate might be explained by a
disturbed ‘spiky animate corner’ in object space.

Effect of typicality on category-membership decisions

The typicality of a target object is known to influence category-membership decisions
(Shoben, 1982). For a given semantic category, the more typical members can be
accepted as belonging to that category more quickly than less typical members. In
earlier studies, MS also showed faster reactions to more typical exemplars (Young et
al., 1989). However, on top of this ‘typicality effect’, MS showed faster responses to
non-living things than living things. In the current study, performance on experiment 2
was merely decreased for insects (Supplementary Figure 5.6). One explanation could
be that insects are less typical for the ‘animate’ condition than mammals, and therefore
performance was decreased for these images.

Objects vs. scene categorization

Perceiving a scene involves different information than recognition of objects. Object
and scene recognition both require mapping of low-level incoming sensory information
to high-level representations and semantic knowledge. Following the reverse hierarchy
theory (Hochstein & Ahissar, 2002), coarse and global information is extracted before
detailed information becomes available. In particular, this theory suggests that the
rapid categorization of real-world scenes with minimal effort (Greene & Oliva, 2009b;
Potter, 1975) may be mediated by a global percept of the conceptual ‘gist’ of a scene.
Thus, low- and mid-level properties may be particularly diagnostic for the behavioral
goals specific to scene perception, while object recognition might depend on more
extensive processing of high-level properties (Groen, Jahfari, et al., 2018; Groen et
al., 2017). In the current study, the natural/man-made distinction may be made before
basic-level object distinctions. MS could have relied on this global percept, or ‘gist’ for
experiment 1, while this information would not suffice or be informative for experiment
2.

Overall, these results suggest that semantic impairments for certain categories can,
at least in MS’ case, be explained by differences in perceptual demand and early vi-
sual features, rather than by category membership. Additionally, these findings show
that utilizing different DCNN architectures (with and without virtual lesions) offers a
promising framework when studying human visual cognition.
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Supplement to Chapter 5
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Figure 5.5: ResNet-10 performance on the images from experiment 1 and 2 after
removing block 1, 2, 3 and 4.
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Chapter 6

Summary and Discussion

We see the world in scenes, where objects are embedded and often partially occluded
in rich and complex surroundings containing additional objects. How does the brain
extract and transform diagnostic low-level visual features into richer representations
that facilitate recognition, whilst there are so many factors that affect the appearance
of natural object categories? In this thesis, | examined to what extent object and back-
ground information is represented and used for object recognition in human subjects
and in deep convolutional neural networks. More specifically, | evaluated how different
functional architectures or differences in information flow (feed-forward vs. recurrent)
exhibit sensitivity to natural scene properties. My experiments focused on the role
of natural scene complexity, as indexed by two biologically plausible image statistics,
and the manipulation of ‘informative’ (congruent) information in visual scenes. Over-
all, results show that recognizing objects in simple scenes can occur in a feed-forward
manner, on the basis of a first, coarse representation. For more complex scenes or
more challenging situations, additional extensive processing (in the form of recurrent
computations) are required. Additionally, results indicate that object recognition can
be performed based on feature constellations, without any determination of boundary
or segmentation. Finally, it showcases a potential role for DCNNs as artificial animal
models of human visual processing. In the following sections | will discuss the obtained
results in more detail. Throughout, | will discuss their implications for our understand-
ing of object recognition in natural scenes. Finally, | will go into the broader context
of our research and discuss some outstanding questions.

Motivation and summary of the results

The initial motivation came from the findings in Groen, Jahfari, et al. (2018), where we
found that object detection was more difficult for scenes with low spatial coherence
(SC) and high contrast energy (CE), i.e., high SC/CE values. CE and SC are computed
using a simple visual model that simulates neuronal responses in one of the earliest
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stages of visual processing. Specifically, they are derived by averaging the simulated
population response of LGN-like contrast filters across the visual scene (Ghebreab
et al., 2009; Scholte et al., 2009). In turn, they could serve as a complexity index
that affects subsequent computations towards a task-relevant visual representation.
Combined fMRI and EEG results from that study showed that for complex scenes only,
early visual areas were selectively engaged by means of a feedback signal. These
findings suggested that when the initial global scene impression signals the presence
of a high SC/CE scene (indicating that it contains clutter), the visual system has to
perform more effortful detailed analysis of the scene, which involves recruitment of
information from early visual areas.

In chapter 2, we wondered whether these low-level, task-irrelevant properties
would also influence perceptual decision-making. In addition, we attempted to
dissociate the contributions of the two different axes describing the image complexity
‘space’ (CE and SC). We used regression analyses in which we included both linear
terms as well as second-order polynomials to examine whether the relationship
between SC/CE and two parameters from the Drift Diffusion Model (DDM; Ratcliff &
McKoon (2008); Wiecki et al. (2013)) was linear or curvilinear (e.g. followed an inverted
U-shape). Results indicated that scene complexity, as indexed by our two parameters
(SC, CE), modulated perceptual decisions through the speed of evidence accumula-
tion. Our results indicated that the speed of evidence accumulation was related to
differences in both SC (linear) and SC2 (inverted U-shape). That is, low and high SC
were associated with a decreased drift rate, as indicated by a negative shift in the
posterior distribution. A second experiment refined these observations by showing
how the isolated manipulation of SC alone resulted in weaker yet comparable effects,
whereas the manipulation of CE had no effect. Overall, these results showed that very
basic properties of our natural environment influence perceptual decision-making.
Because SC and CE could be plausibly computed in early stages of visual processing,
they could indicate the need for more cautious or elaborate processing by providing
the system with a global measure of scene complexity.

A question that arose from these findings, was whether the effects were driven
by SC and CE ‘itself’ (low-level regularities) or because they covary with other sources
of information in the scene. SC and CE clearly covary with interesting properties of
natural scenes, but exactly because of this covariance it is difficult to isolate their
impact on visual processing. Therefore, in chapter 3, we explored whether these
effects could be based on the computation of SC and CE more directly, as a ‘general
measure’ of complexity, or indirectly, as diagnostic information to estimate other
task-relevant scene properties (e.g. naturalness). To this end, we manually segmented
the objects from their real-world scene backgrounds and superimposed them on
phase scrambled versions of the real-world scenes. For each complexity condition,
backgrounds were selected using the same cut-off values from Groen, Jahfari, et al.
(2018), and each object was presented in all conditions. This allowed us to evaluate
the influence of SC and C'E and the subsequent effect on segmentability, while
removing any (irrelevant object and context information. Additionally, in half the
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trials, we hindered recurrent processing with visual backward-masking (Fahrenfort
et al., 2007). A convergence of results indicated that recurrent computations were
increasingly important for recognition of objects in more complex environments
(i.e. objects that were more difficult to segment from their background). First of all,
behavioral results indicated poorer recognition performance for objects with more
complex backgrounds, but only when feedback activity was disrupted by masking.
Second, EEG measurements showed clear differences between complexity conditions
in the ERPs around 200 ms - a time window beyond the first feed-forward visual
sweep of activity (Lamme & Roelfsema, 2000). Additionally, object category decoding
based on the multivariate EEG patterns showed later decoding onsets for objects
embedded in more complex backgrounds. This indicated that object representations
for more complex backgrounds emerge later, compared to objects in more simple
backgrounds. Finally, Deep Convolutional Neural Network (DCNN) performance
confirmed this interpretation; feed-forward network architectures showed a higher
reduction in recognition performance for objects in more complex backgrounds
compared to networks equipped with recurrent connections (Kubilius et al., 2018).

A limitation of any experiment with artificially generated (or artificially embed-
ded) images is that it is unclear whether the findings generalize to ‘real images’
that have not been manipulated in any way. Together with the previous findings,
however, our results corroborate the idea that more extensive processing (in the
form of recurrent computations) is required for object recognition in more complex,
natural environments (Groen, Jahfari, et al., 2018; Kar et al., 2019; Rajaei et al,,
2019; Tang et al., 2018). Nonetheless, the manipulation of SC/CE using artificial
vs. naturalistic backgrounds led to slightly different patterns of results. Using artificial
backgrounds, scene complexity showed to have a linear effect (seen in chapter
3). When using natural scenes, results showed enhanced performance for medium
complex trials (Chapter 2 and Groen, Jahfari, et al. (2018); inverted U-shape). While
there are several other factors that could explain this discrepancy (described in the
next section), we wondered to what degree real-world scene context influenced
recognition performance. Furthermore we wanted to compare the process of scene
segmentation for object recognition between human and artificial neural networks in
the hope that this could give insight into the question how scene segmentation might
be implemented computationally.

Therefore, in chapter 4, we evaluated how object and context information is
represented and used for object recognition in different DCNNs. More specifically,
we investigated how the number of layers (depth) in a DCNN influences scene
segmentation and how this compares to human behavior.

Experiment 1 showed both substantial overlap, and differences in performance
between human participants and DCNNs. Both humans and DCNNs were better
in recognizing an object when it was placed on a congruent versus an incongruent
background. However, whereas human participants performed best in the segmented
condition (object on homogenous background), DCNNs performed equally well (or
better) for the congruent condition. Performance for the incongruent condition was
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lowest. This effect was particularly strong for more shallow networks. Notably, the
shift in performance from the most shallow network to deeper networks (ResNets;
He et al. (2016)) showed the same pattern as the shift from a shallow feedforward
architecture to a recurrent architecture (CORnets; Kubilius et al. (2018)], suggesting
that there is a functional equivalence between additional nonlinear transformations
and recurrence.

Further analyses, investigating which parts of the image were most important for
recognition (Zeiler & Fergus, 2014), showed that the influence of background features
on the response outcome was relatively strong for less deep networks and almost
absent for deeper networks. These findings suggest that one of the ways in which
network depth improves object classification, is by learning how to select the features
that belong to the object, and thereby implicitly segregating the object features
from the other parts of the scene. To complement these findings, we performed an
additional experiment in which we tested how training was influenced by network
depth. If shallow networks fail to correctly recognize objects, merely because they
do not learn to implicitly segment the object from the background (while deeper
networks do), we expected them to show a larger increase in performance when
trained with segmented vs. unsegmented stimuli (as compared to deeper networks).
Indeed, results indicated a benefit of training on segmented objects (as compared to
unsegmented objects) for more shallow networks. For deeper networks, this benefit
was much less prominent. Training on segmented images thus reduced the difference
in performance between shallow and deeper networks.

Deep convolutional neural networks thus seem to learn high-level concepts such as ob-
jects based on low-level visual input, without existing conceptual knowledge of these
concepts. In chapter 5, we examined visual processing in a situation in which visual
information can no longer be reliably mapped onto existing conceptual knowledge.
To this end, we evaluated object and scene categorization in a brain-injured patient
MS, with severe object agnosia and category-specific impairments. Our findings show
a dissociation between two semantically associated tasks (categorization of manmade
vs. natural scenes and animate vs. inanimate objects), with better performance for
inanimate objects, compared to animate objects (as is usually the case), and better
performance for naturalistic scenes compared to manmade scenes. Using Deep
Convolutional Neural Networks as ‘artificial animal models’ (Scholte, 2018) we further
explored the type of computations that might produce such behavior. Overall,
DCNNs with ‘lesions’ in higher order areas showed similar response patterns, with
decreased performance for manmade (experiment 1) and living (experiment 2) things.
This indicates that behavioral category representations (and subsequent impairments)
might be explained by a difference in low-level image statistics or physical properties
of the stimuli, and thus by a difference in visual input that they provide to the visual
system. Altogether, results from this study indicated that, at least in specific cases
such as MS, category-specific impairments can be explained by perceptual aspects of
exemplars within different categories, rather than semantic category-membership.

Taken together, our results suggest that recognizing objects in simples scenes,
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or categorizing very dissimilar target options (e.g. in terms of global properties) could
occur on the basis of a first, coarse representation, often described as visual gist
(Greene & Oliva, 2009b; Oliva & Torralba, 2006; Torralba & Oliva, 2003). Overall, our
findings are line with theories of visual processing proposing that a global impression
of the scene accompanies (Rousselet et al., 2005; Wolfe et al., 2011) or precedes
(Hochstein & Ahissar, 2002) detailed feature extraction (“coarse-to-fine” processing
Hegdé (2008)]). The current results add to this view by showing how this complexity
could arise, and what type of functional architecture might produce this behavior. Our
results suggest that ‘core object recognition’ can occur in a feed-forward manner when
the visual input is ‘simple’, but that recurrent computations aid object recognition
performance in more challenging conditions. Additionally, our results show that for
object recognition, an explicit segmentation step is potentially not necessary. This is
in line with recent findings from Tang et al. (2018) and Rajaei et al. (2019), where they
showed that backward masking led to a large reduction in human object recognition
performance for partially visible or occluded objects. Similarly, both studies found
that (more shallow) feed-forward architectures were not robust to partial visibility or
occlusion of objects, and that adding recurrent computations led to improvements.
From a perspective of vision as subservient to action, this makes sense: if certain
visual elements form an object in the first sweep of information, the aim of the brain is
often to use this information to characterize or interact with the object, not to go back
or zoom in on all possible details about its constituting elements. In order words: to
recognize a cat, we do not necessarily need to know where its’ legs are (or whether
it still has all four). If the first sweep of information is insufficient, it might pay off to
wait a little longer and implement recurrent computations to gather more evidence
(chapter 2) and obtain a sufficiently detailed representation.

Manipulations of visual processing

The central aim of this thesis was built around two different ways of evaluating vi-
sual processing: 1) increasing task difficulty, thereby enhancing the need for recurrent
computations, and 2) the effect of decreased quality of visual processing by interfer-
ing with recurrent processing or investigating a patient with bilateral temporo-occipital
damage. There are a myriad of ways to interfere with visual processing and our design
choices have undoubtedly affected our results. Here | will describe the most important
varieties in our experimental paradigms, and their implications for our interpretations.
To increase the need for recurrent computations, we mostly focused on the low-
level complexity of the visual input (chapter 2-3) and the manipulation of congruent
vs. incongruent context information (chapter 4). However, there were several other
varying factors in our experimental paradigms.
For example, the amount of response options varied between the different studies,
potentially influencing the level of categorization required to accurately perform the
task. Objects can be categorized at different levels of abstraction, from superordinate
(e.g. animal vs. no-animal in chapter 2 and chapter 5), ordinate (or ‘basic’, e.g. dog or
cat; chapter 3), to more subordinate (e.g. school bus or sports car; Chapter 4). At the
perceptual level, features to account for distinct object categories may have differed
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between the tasks and decreasing the amount of response options may have influenced
the amount and/or type of information necessary to analyze the scene (Macé et al.,
2009; Rosch et al., 1976). For example, to distinguish between an animate or inanimate
object one might rely on more global features, whereas to identify a certain object
out of twenty-seven options (chapter 4) more detailed (local) information is needed to
accurately distinguish between them.

What is clear from all studies reported in this thesis is that object recognition can
(almost) always be solved, given enough time, a-priori knowledge or visual processing
capacity. Therefore, in most experiments we additionally manipulated the quality or
opportunity for recurrent processing to take place. In the experiments with human par-
ticipants, we shortened presentation times (ranging from 34 - 100 ms) or applied visual
backward-masking. In chapter 5, visual processing of patient MS was severely impaired
by lesions to most of the ventral temporal cortex of both hemispheres. For the DCNNs
we manipulated network depth, the presence or absence of recurrent connections and
the removal of certain connections to ‘mimic’ lesions.

Taken together, these (sometimes subtle) differences in experimental paradigms
and procedures can explain some of the discrepancies in our current findings. For ex-
ample, in chapter 2, using naturalistic scenes and a superordinate type of task, medium
scene complexity was associated with an increased speed of evidence accumulation
and enhanced behavioral performance. In that chapter, we discuss several explana-
tions for why scenes with medium CE/SC values could be processed more efficiently,
including higher daily frequency (as in, occurring more often in the ‘real-world’) or the
amount of contextual information. In chapter 3, using five ‘basic-level’ objects em-
bedded in artificially generated backgrounds, higher scene complexity led to an incre-
mental decrease in performance (with visual backward masking). This suggests that
low complex naturalistic scenes might be processed differently than artificial scenes.
Whether this is because of task demand, expectations or context is unclear from the
current results, and should emerge from future research.

Probing cognition with DCNNs

Classic models of object recognition focusing on grouping and segmentation presume
an explicit process in which certain elements of an image are grouped, whilst others
are segregated from each other, by a labelling process. Our results from behavioral
experiments in DCNNs show that, when the task is object recognition, an explicit seg-
mentation step might not be necessary. We interpret these findings as indicating that
with an increase in network depth there is better selection of the features that belong
to the output category (vs. the background), resulting in higher performance during
recognition. Thus, more layers are associated with ‘more’ or better segmentation, by
virtue of increased selectivity for relevant constellations of features. There is thus no
discrete ‘moment’ at which segmentation is successful or ‘done’. This process is simi-
lar, at least in terms of its outcome, to figure-ground segmentation in humans and we
speculate that it might be one of the ways in which scene segmentation is performed
in the brain (using recurrent computations). What these results additionally show is
that certain psychological concepts or classifications (e.g. ‘object’ and 'background’)
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make distinctions that are not recognized by deep convolutional neural networks, and
potentially fail to capture the computations of visual processing. For example, while
edges and borders of objects were traditionally seen as very important for success-
ful recognition, the current results suggest that we do not necessarily need to detect
those in many everyday behaviors. For these networks, objects are not ‘things’ that
‘exist’ in a certain location with a clear boundary. Visual properties from all regions
in the image are processed, and together result in a robust representation that the
network can utilize for classification. Thus, on the basis of low-level input features that
map reliably enough onto high-level feature constellations. The ‘invention’ of deep
convolutional neural networks as computational models of the human visual system
in this sense allows addressing questions that previously could not be answered (or
had not been asked). Without the constraints of experimental set-ups, using DCNNs
enables us to ask questions about the underlying mechanisms producing behavior. In-
stead of building an experiment on the building blocks of psychological concepts, we
can explore the borders of experimental manipulations and start asking ‘when’ and
'how’ questions. Crucially, this serves as hypothesis generation, and any obtained new
insight from DCNNs will need to be verified and confirmed in human data. Of course,
counterarguments can be made to this approach. First, of all, DCNNs are far, far away
from being an ultimate model explaining all biological visual processing (Cichy & Kaiser,
2019; Kriegeskorte, 2015; Lindsay, 2020). They generally lack many types of biological
properties that are known to be involved in neural processing, they makes different
types of errors compared to humans, they generalize poorly beyond the datasets on
which they are trained, etc. Clearly, DCNNs are very different from a biological visual
system. A second, and perhaps more important, counterargument is that the search
space might be too large to solve. It is probably impossible or unfeasible to explore
the immense zoo of different architectures, combined with an infinite number of pos-
sibilities to investigate different visual diets, training regimes and tasks. One fruitful
approach to help navigate or constrain the search space is by combining knowledge
from biological vision with existing models. Over the last years there has been an
increase in research aiming to augment or equip DCNNs with additional biologically-
inspired features and mechanisms. For example, by implementing biological attention
mechanisms (Lindsay & Miller, 2018), artificial spiking neural networks (Tavanaei et al.,
2019); biological learning rules (Pozzi et al., 2018), or recurrent computations to cap-
ture the representational dynamics of the human visual system (Gli¢li & Gerven, 2017;
Kietzmann, McClure, et al., 2019). Overall, the combination of research in both human
and artificial vision offers a promising framework for the investigation of both human
visual processing and the development of computational models.
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Nederlandse samenvatting
(Summary in Dutch)

Schijnbaar zonder enige inspanning interpreteren onze hersenen het licht dat op ons
netvlies wordt geprojecteerd, en in een oogwenk herkennen we de voorwerpen om
ons heen. In tegenstelling tot een camera, die slechts ruwe visuele informatie opslaat
die vanuit de fysieke wereld wordt geprojecteerd, begrijpen we onze omgeving in ter-
men van levendige visuele kenmerken, structuren en objecten. Deze prestatie is vooral
indrukwekkend omdat objectherkenning een rekenintensief proces is. Een enkel voor-
werp, bijvoorbeeld een banaan, kan voor een vrijwel oneindig aantal verschillende pro-
jecties op ons netvlies zorgen, afhankelijk van vele factoren, zoals het gezichtspunt, de
belichting of zelfs de rijpheid. Bovendien kunnen objecten uit dezelfde categorie ver-
schillen in kleur, grootte, textuur en andere kenmerken. Om het nog ingewikkelder te
maken zien we maar zelden een object op zichzelf. We zien de wereld in scénes, waar-
in objecten zijn ingebed en vaak gedeeltelijk verborgen zijn in een rijke en complexe
omgeving. Hoe verwerken de hersenen deze visuele informatie en transformeren ze
die tot robuuste visuele representaties van objecten en structuren?

We weten dat het visuele systeem hiérarchisch is opgebouwd. Dat betekent dat de
visuele informatie van ‘vroege visuele gebieden’, zoals de primaire visuele cortex, naar
hogere of latere visuele gebieden gaat. Hoe verder de informatie in de hiérarchie komt,
hoe complexer de wijze is waarop die informatie verwerkt wordt. Door achtereenvol-
gens steeds complexere kenmerkcombinaties op te bouwen, zou een enkele golf van
activiteit door deze gebieden kunnen volstaan om een object te herkennen. Deze golf
van activiteit van vroege naar latere visuele gebieden wordt ook wel de feedforward
sweep genoemd (zie ook Figuur 1 uit de introductie). Na deze feedforward sweep,
is het verwerken echter nog niet altijd afgelopen. Terugkerende signalen vanuit de
hogere gebieden kunnen de lagere hersengebieden heractiveren via feedback verbin-
dingen. Dit wordt ook wel recurrent processing genoemd.

Het hoofddoel in dit proefschrift is het onderzoeken in hoeverre het menselijk brein
beinvloed wordt door eigenschappen van onze natuurlijke omgeving tijdens het her-
kennen van objecten. We hebben met name onderzocht hoe verschillende functionele
architecturen of verschillen in informatieverwerking (feedforward of recurrent proces-
sing) informatie onttrekken aan objecten en hun achtergronden.
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Om dit psychobiologische proces goed te begrijpen hebben we verschillende
experimenten uitgevoerd en verschillende technieken gebruikt. Om de complexiteit
van een afbeelding te kwantificeren hebben we gebruik gemaakt van modellen die de
statistische eigenschappen van plaatjes berekenen (op een manier die het brein ook
zou kunnen uitvoeren). Deze plaatjes hebben we vervolgens laten zien in
psychologische experimenten, gecombi-neerd met EEG metingen en beslismodellen
om de hersenactiviteit en de processen die optreden tijdens visuele verwerking in
kaart te brengen. Bovendien hebben we computermodellen gebruikt als
‘kunstmatige diermodellen’ van het visuele systeem in mensen, om op die manier
meer te leren over de berekeningen die ten grondslag liggen aan succesvolle
objectherkenning. Lange tijd waren computers niet in staat om objecten net zo goed
te herkennen als mensen. Tegenwoordig, gestimuleerd door grotere datasets en
toenemende rekenkracht, hebben de vorderingen in kunstmatige neurale netwerken
geleid tot ‘visuele systemen’ die beginnen te concurreren met men-sen. Aangezien het
hier om computermodellen gaat, kunnen we de architectuur ge-makkelijk wijzigen,
bepaalde gebieden in het netwerk ‘beschadigen’, of verschillende architecturen met
elkaar vergelijken om de mechanismen of berekeningen die tot ob-jectherkenning
leiden te evalueren. Naast het manipuleren van de architectuur, kunnen we ook visuele
input manipuleren en evalueren hoe verschillende modellen omgaan met variaties in
zintuiglijke input, net als in experimenten met menselijke deelnemers.

In Hoofdstuk 2 onderzochten we of de complexiteit van een plaatje beinvloedt
hoe de hersenen het plaatje verwerken tijdens het nemen van een beslissing. Om
dit te onderzoeken vroegen we deelnemers om wisselend zo snel of zo accuraat
mogelijk aan te geven of ze een dier herkenden in verschillende scénes met een lage,
gemiddelde of hoge complexiteit (gekwantificeerd door twee statistieken). Analyses
met behulp van beslismodellen toonden aan dat de snelheid van informatieverwerking
werd beinvloed door de complexiteit van de scéne. Afzonderlijke manipulatie van de
twee statistieken verfijnde deze waarnemingen door aan te tonen dat de effecten met
name te wijden waren aan de mate van coherentie in de scene.

In Hoofdstuk 3, evalueerden we of deze gedragseffecten direct gebaseerd waren op
de berekening van SC en CE, als een soort algemene maat voor beeldcomplexiteit, of
meer indirect, als diagnostische informatie om andere taak-relevante eigenschappen
in te schatten. Onze resultaten suggereren het eerste, omdat we laten zien dat hoe
objectherkenning wordt opgelost afhangt van de complexiteit van de context, ook als
die context geen taak-relevante eigenschappen bevat: voor objecten die geisoleerd
of in ‘eenvoudige’ omgevingen worden aangeboden lijkt objectherkenning vooral
afhankelijk te zijn van het object zelf, wat resulteert in een situatie die waarschijnlijk
kan worden opgelost binnen de eerste feed-forward sweep van visuele informatiever-
werking. Wanneer de omgeving complexer of chaotischer is, lijkt recurrent processing
nodig om de elementen die bij het object horen te groeperen en het object ‘uit te
lichten’ van de achtergrond.

In Hoofdstuk 4, onderzochten we de mate waarin object- en contextinformatie wordt
gerepresenteerd en gebruikt voor objectherkenning in verschillende kunstmatige
neurale netwerken. We laten zien dat architecturen met meerdere lagen van verwer-
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king (d.w.z. een dieper netwerk) of architecturen met feedback connecties beter
in staat zijn om een object te scheiden ten opzichte van de achtergrond, op
grond van een toenemende selectiviteit voor de relevante kenmerken.

Tenslotte hebben we in Hoofdstuk 5 onderzocht wat er gebeurt als visuele
informatie niet langer betrouwbaar vertaald kan worden naar bestaande
conceptuele kennis. In deze studie testten we object- en scéneherkenning in een
patiént met hersenbe-schadigingen. Een opmerkelijke bevinding bij deze patiént
was dat hij een specifieke prestatievermindering vertoonde voor bepaalde
categorieén, zoals voor ‘levende dingen’ ten opzichte van 'niet-levende dingen’.
De resultaten in hoofdstuk 5 laten zien dat de categorie-specifieke effecten,
althans voor deze patiént, niet verklaard kunnen worden door een semantische
stoornis alleen. Met behulp van de kunstmatige neurale netwerken probeerden we
ook hier weer te onderzoeken welk type bere-keningen dergelijk gedrag zou
kunnen produceren. Over het algemeen vertoonden de netwerken met
‘beschadigingen’ in hogere gebieden (en niet vroege gebieden) vergelijkbare
reactiepatronen, met verminderde prestaties voor kunstmatige scenes en levende
dingen.

Samenvattend toont het onderzoek in dit proefschrift aan dat hoe objectherkenning
wordt opgelost in het brein afhangt van de context waarin het object verschijnt: voor
objecten gepresenteerd in een eenvoudige omgeving (bijvoorbeeld een vogel in een
strakblauwe lucht), kan herkenning waarschijnlijk worden opgelost binnen de eerste
feed-forward sweep van visuele informatieverwerking, gebaseerd op een ongebonden
verzameling van beeldkenmerken. Voor meer complexe scénes of in meer uitdagende
situaties, is aanvullende activiteit (in de vorm van in de vorm van recurrente bereke-
ningen) nodig, om de elementen die bij het object horen te groeperen en te scheiden
van de drukke achtergrond.
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