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a b s t r a c t 

Aquatic ecosystems are affected by multiple environmental stressors across spatial and temporal scales. 

Yet the nature of stressor interactions and stressor-response relationships is still poorly understood. This 

hampers the selection of appropriate restoration measures. Hence, there is a need to understand how 

ecosystems respond to multiple stressors and to unravel the combined effects of the individual stressors 

on the ecological status of waterbodies. Models may be used to relate responses of ecosystems to environ- 

mental changes as well as to restoration measures and thus provide valuable tools for water management. 

Therefore, we aimed to develop and test a Bayesian Network (BN) for simulating the responses of stream 

macroinvertebrates to multiple stressors. Although the predictive performance may be further improved, 

the developed model was shown to be suitable for scenario analyses. For the selected lowland streams, 

an increase in macroinvertebrate-based ecological quality (EQR) was predicted for scenarios where the 

streams were relieved from single and multiple stressors. Especially a combination of measures increasing 

flow velocity and enhancing the cover of coarse particulate organic matter showed a significant increase 

in EQR compared to current conditions. The use of BNs was shown to be a promising avenue for sce- 

nario analyses in stream restoration management. BNs have the capacity for clear visual communication 

of model dependencies and the uncertainty associated with input data and results and allow the com- 

bination of multiple types of knowledge about stressor-effect relations. Still, to make predictions more 

robust, a deeper understanding of stressor interactions is required to parametrize model relations. Also, 

sufficient training data should be available for the water type of interest. Yet, the application of BNs may 

now already help to unravel the contribution of individual stressors to the combined effect on the eco- 

logical quality of water bodies, which in turn may aid the selection of appropriate restoration measures 

that lead to the desired improvements in macroinvertebrate-based ecological quality. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1

s

e  

c

l

T

s

t  

T

h

2

e

a

2

i

h

0

. Introduction 

The ecological status of water bodies is affected by multiple 

tressors acting over multiple spatial and temporal scales (Allan 

t al., 1997; Frissell et al., 1986; Roth et al., 1996), such as in-

reasing water temperature, changes in flow, reduction of morpho- 

ogical heterogeneity and increasing nutrient loads ( Friberg, 2010 ; 

ockner et al., 2010 ). Moreover, these stressors may interact, having 

ynergistic, antagonistic or additive effects on the ecological sta- 
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us of freshwater bodies ( Jackson et al., 2016 ; Piggott et al., 2015).

he combined effects of these multiple interacting stressors are, 

owever, still poorly understood ( Folt et al., 1999 ; Jackson et al., 

016 ), since stressor-response relationships observed in controlled 

xperiments are specific to organisms, stressors and environments 

nd are therefore difficult to extrapolate to the field ( Jackson et al., 

016 ). 

The lack of understanding of the combined effects of multiple 

nteracting stressors may also explain why knowledge of the effect 

f specific management interventions on ecological water quality 

s still limited ( Palmer et al., 2005 ; Pander and Geist, 2013 ). Con-

equently, a high proportion of restoration measures are ineffec- 

ive, even now ( dos Reis Oliveira et al., 2020 ; Palmer et al., 2010 ).
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ence, to increase the effectiveness of restoration measures, we 

rst need to increase our knowledge of how ecosystems respond 

o multiple stressors and to unravel the contribution of the indi- 

idual stressors to their combined effect on the ecological status 

f waterbodies. 

Model simulations provide the opportunity to relate the state 

f an ecosystem to environmental changes as well as to restora- 

ion measures and simultaneously provide understanding of the 

nderlying ecological interactions. Consequently, models may be 

sed to predict the effects of management interventions on ecosys- 

em states in space and time and thus provide valuable tools 

or water management. Over the last decades, several ecological 

rediction models have been developed, ranging from mechanis- 

ic representations of environmental processes to food web mod- 

ls and statistical data-driven models ( Janssen et al., 2015 ). For 

he latter, techniques have been used such as decision trees, ar- 

ificial neural networks, generalised linear and additive models, 

uzzy logic models and Bayesian Networks (BNs) ( Pistocchi, 2018 ). 

he construction of such statistical ecological prediction models 

an be data-driven, knowledge-based or a combination of both 

 Mouton et al., 2009 ; van Echelpoel, 2020 ). A review of the ad-

antages and drawbacks of selected modelling techniques indi- 

ated that BNs are promising tools for the combined application 

f expert knowledge and ecosystem measurements ( de Vries et al., 

020a ; van Echelpoel, 2020 ). 

BNs are causal network models in which nodes depict (envi- 

onmental) factors and in which dependencies between nodes are 

xpressed as probabilistic relationships ( McCann et al., 2006 ). The 

ain advantage of this type of model is that the full range of avail-

ble knowledge on cause-effect relations can be used, originating 

rom experts, mechanistic modelling output, literature and exper- 

mental and observed data ( Landuyt et al., 2013 ; McCann et al., 

006 ), integrating the scattered knowledge on cause-effect rela- 

ions in water bodies. Moreover, in these models, samples with 

ncomplete datasets can still provide knowledge ( Barton et al., 

012 ). The uncertainty associated with the input data is explic- 

tly accounted for, and the predicted outcome is reported as like- 

ihoods ( Uusitalo, 2007 ). In addition, BNs provide a visualisation 

f the causal relationship between the predictors, which helps 

ith communication of the model. Limitations of this model type 

re the lack of representation of feedback-loops, and the require- 

ent for discretising continuous data ( Uusitalo, 2007 ). However, 

or evaluating stressor-effect relations in water bodies we con- 

idered that the numerous advantages of BNs outweighed these 

rawbacks. The aim of the present study was therefore to develop 

nd test a Bayesian Network for simulating responses of stream 

acroinvertebrates to multiple stressors. Since we anticipated that 

tressor-effect relationships would be context-specific, model pre- 

ictions were approached using water-type and region-specific re- 

ationships ( de Vries et al., 2020b ). To this end, a BN model was

eveloped which included the links between macroinvertebrate- 

ased ecological quality and stream characteristics for a single wa- 

er type, the temperate, sandy lowland streams within the North- 

estern European plain. The availability of an extensive dataset 

ith measurements of multiple stressors and ecological responses 

or Dutch lowland streams enabled us to develop this BN-model. 

he developed model was then applied to predict the influence of 

tream restoration management scenarios on ecological quality as 

epresented by macroinvertebrates. 

. Methods 

.1. Study area 

The studied lowland streams were located on the ice-pushed 

idges in the Veluwe area in the centre of the Netherlands ( Fig. 1 ).
2 
he land use in the catchments consisted of agricultural fields, ur- 

an areas and deciduous and coniferous woodlands. Mean annual 

ainfall in the study area was 850 mm and daily temperature var- 

ed between -16 and 29 °C. The flow velocities in the groundwater- 

nd precipitation-fed streams varied strongly (10-80 cm/s). The 

tream bottoms consisted of sand and gravel. 

.2. Macroinvertebrate and environmental data 

The data was collected by the Dutch Water Authority ‘Vallei and 

eluwe’ during regular monitoring programmes over the period 

981-2017. In total, 208 sites in the upper courses of the lowland 

treams were selected. At these sites macroinvertebrate abundance 

ata was collected as a part of regular monitoring programs. For 

ach macroinvertebrate sample the ecological quality ratio (EQR) 

as calculated according to the Dutch assessment system, which 

xpresses the ecological quality of a water body (ranging from 0- 

.0) as a fraction of the reference situation (1.0) ( Van der Molen 

t al., 2016 ). In addition, for each macroinvertebrate sample, the 

ean preference score (ranging from 1-5) for several environ- 

ental variables of all species present in that sample was calcu- 

ated using relative abundance frequencies. To this end, an envi- 

onmental preference dataset was used ( Verberk et al., 2012 ). En- 

ironmental variables that were monitored at the same locations 

nd at the same moment as the macroinvertebrate samples in- 

luded water temperature, dissolved oxygen concentration, stream 

elocity, shading, total phosphorous concentration, biological oxy- 

en demand, chlorophyll concentration, stream gradient, silt cover, 

acrophyte cover, coarse particular organic matter cover, and the 

resence of wood and gravel. However, not all variables were mea- 

ured at all sites and on all occasions and therefore only envi- 

onmental monitoring data was included when macroinvertebrate 

bundance data and at least a single environmental variable were 

onitored simultaneously. This resulted in a set of 933 samples 

 Fig. 1 ). 

.3. BN theory 

In short, BNs consist of causal network structures in which 

odes, representing important system variables, are related to each 

ther through arrows, representing dependencies ( Charniak, 1991 ). 

he state of a node is determined by the states of its parent nodes. 

his approach is described by Bayes’ theorem, in which prior prob- 

bilities are updated given the likelihood of the data to generate a 

osterior probability distribution ( Ellison, 2004 ) . The type of rela- 

ion between a node and its parent nodes, as well as the associated 

ncertainty, are recorded in a conditional probability table (CPT). 

CPTs can be based on multiple types of data, including ex- 

ert knowledge, process-based modelling output, literature-based 

alues, experimental and observational data. Observational data is 

referred, but when gaps are present in the dataset, other types 

f evidence may be used to quantify the relationships between 

he nodes. CPT relations that are initially based on expert knowl- 

dge can also be trained by using field observations. Hence, BNs 

ave the advantage of being able to deal with incomplete datasets, 

nd of providing ways to combine different sources of knowledge 

 Uusitalo, 2007 ). 

A BN captures relations between a set of variables, which may 

e uncertain, probabilistic, or imprecise. When the predictions are 

sed in decision making, the explicit reporting of the associated 

ncertainty and the variability in the model results provides an 

dvantage of this approach over deterministic methods that lack 

his reporting ( McCann et al., 2006 ). Another advantage of BNs 

s that calculations can be made in the two directions of the ar- 

ows between the nodes: the values of child nodes can be calcu- 

ated given the values of the parent nodes and vice versa. Conse- 
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Fig. 1. Study area with sampling sites in the selected streams. 
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uently, BNs can be used to predict the outcome of scenarios given 

 set of causal variables, but also as diagnostic tools to deduce the 

robabilities of causes given the observed consequences, by using 

he dependencies in the model structure backwards ( Barton et al., 

012 ; McCann et al., 2006 ). 

.4. Model development 

A five-step model development process was adopted ( Marcot 

t al. 2006 ) following several guidelines ( Aguilera et al., 2011 ;

hen and Pollino, 2012 ; Landuyt et al., 2013 ). 1) Model struc- 

ure: An influence diagram was set up showing the causal relations 

etween the environmental variables and the macroinvertebrate- 

ased EQR. 2) Model parametrisation: The CPTs picturing the rela- 

ionships between the nodes in the model structure were defined 

sing expert knowledge, and model-based and literature-based re- 

ationships. In this step also continuous variables were discretized. 

) Model training: The CPTs were trained using observations. 4) 

odel testing: Model performance was tested using independent 
3 
bservations. 5) Model application: A final model version for ap- 

lication was trained using all available data. 

Model structure (step 1) 

The constructed BN represents a causal network of the envi- 

onmental factors that influence macroinvertebrate assemblages. 

he chosen outcome variable was the EQR. The development 

f the early stages of the model structure was described in 

keffington et al., 2014 s. Based on literature and input from stream 

acroinvertebrate experts, the key environmental factors that in- 

uence the EQR in this specific water type and region were se- 

ected, including temperature, oxygen concentration, flow velocity, 

ood quality and substrate variability ( Sandin and Johnson, 2004 ; 

erberk et al., 2012 ; Verdonschot et al., 1998 ). These factors score 

he response to the environmental variables on a scale from 0-1, 

hus giving the user the opportunity to see which stressor is most 

imiting for a high EQR. The optimal values of these key factors 

ere based on water-type and region-specific preferences of the 

eference macroinvertebrate assemblage ( Verdonschot et al., 20 0 0 ). 

ext, predictors of those environmental variables that span local 
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Fig. 2. Model structure of the BN relating the macroinvertebrate-based EQR to environmental variables. BOD: Biological Oxygen Demand, CPOM: Coarse particular organic 

matter, DO: Dissolved oxygen concentration, FQ: Food quality. 
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Table 1 

Tested model settings. 

Model setting Tested settings 

Number of discretisation classes 4, 5, 6 

Discretisation method Equal Interval, Equal Frequency 

Trait preference nodes Present, absent 
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t
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o
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u
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o regional spatial scales were included, resulting in the model 

tructure depicted in Fig. 2 . The selection of the included variables 

as made to cover all relevant processes from reach- to catch- 

ent scale, but at the same time aimed to limit model complex- 

ty. In addition to the environmental variables, five nodes were 

ncluded that represent the average preference score of the ob- 

erved macroinvertebrate assemblage for the variables flow ve- 

ocity, CPOM, silt, gravel and wood. These scores are based on a 

reference database that lists species-specific preferences for envi- 

onmental variables, based on experimental and distribution data 

 Verberk et al., 2012 ), and range from 1 (low preference) to 5 (high

reference). Inclusion of these nodes served as an additional source 

f information about the quality of a water body based on the pref- 

rences of the local macroinvertebrate assemblage. 

Model parametrisation (step 2) 

Initially, the relationships between the nodes in the model 

ere based on literature, mechanistic modelling outcomes and ex- 

ert judgement ( Table A.1 ). When possible, a relationship was ex- 

ressed as an equation. Discretisation was either based on equal 

ntervals or on equal frequency to assure an even spread of data 

 Chen and Pollino, 2012 ). The number of discretisation classes for 

ach node was either 4, 5 or 6, balancing a minimum resolution 

o picture environmental processes with sufficient data availability 

er class. 

Training and testing of the network (step 3 and 4) 

Step 3) and 4) were combined in a k-fold cross-validation con- 

ext ( Marcot, 2012 ). The dataset was split into 3 parts, of which

 parts were used for training the network and 1 part for testing 

he network performance. For a stable validation outcome among 

rained model variations, subsets of data for cross-validation can 

e made using stratified classes. Although this was not applied 

ere, the subsets of data did have a similar distribution of EQR 

lasses. Model training and testing was done for 3 consecutive 

uns, where in each run another part of the dataset was used 

or testing. The resulting metrics were then averaged for over- 

ll model performance. Cross-validation was performed on sev- 

ral model variations to test the influence of differences in struc- 

ure and parametrisation on the prediction performance, i.e. dis- 
4 
retisation method, number of discretisation classes and the inclu- 

ion/exclusion of nodes representing macroinvertebrate preference 

ata ( Table 1 ). Sensitivity analysis of the network was performed 

o identify the factors that had the strongest influence on the tar- 

et node. 

It was thought more valuable to compare the model results as a 

ontinuous EQR-value to observed continuous values, as the use of 

QR classes would not be informative enough in practice. Conven- 

ional metrics such as the number of correctly classified instances 

nly use the classified output of the model, expressed as discrete 

alues, and are therefore less suitable for testing the performance 

f the model in predicting the actual continuous EQR. Therefore, 

n this study, performance was tracked using the correlation be- 

ween the observed and predicted EQR-scores ( Marcot, 2012 ), al- 

hough the performance might be more strictly assessed than by 

sing class-based metrics. The EQR scores used were expected val- 

es predicted by the target node, which is the average of the dis- 

retized classes weighted by the probability of occurrence. 

To develop and test the BN model, the Netica BN software was 

sed as a modelling shell (Norsys, 1998). This software provides a 

raphical user interface, can handle input of continuous data, pro- 

ides ways to perform sensitivity analysis and can work in batch 

ode to more easily run the model for multiple sites. 

Scenario analysis (step 5) 

Based on the performance analysis, the best performing model 

ariation was selected. Next, this model was trained with all avail- 

ble data ( Marcot, 2006 ) ( Table A.3 ) and subsequently applied to 

redict the influence of stream restoration management scenarios 

n macroinvertebrate-based ecological quality. To this end, sites 
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Table 2 

Restoration scenarios. T: Temperature, S: Shading, V: Flow velocity, TP: Total 

phosphorous concentration, CPOM: Coarse particular organic matter, Sub: 

Substrate. 

Scenario Stressor alleviation 

T Decrease temperature to 10 °C 
S Increase shading to 100% 

V Increase flow velocity to 0.5 m/s 

TP Decrease TP to 50 μg/L 

CPOM Increase CPOM cover to 70% 

Sub Add presence of wood and gravel 

T + V Adjust temperature and velocity 

T + CPOM Adjust temperature and CPOM 

T + Sub Adjust temperature, wood and gravel 

S + V Adjust shading and velocity 

S + CPOM Adjust shading and CPOM 

S + Sub Adjust shading, wood and gravel 

V + TP Adjust velocity and TP 

V + CPOM Adjust velocity and CPOM 

V + Sub Adjust velocity, wood and gravel 

TP + CPOM Adjust TP and CPOM 

TP + Sub Adjust TP, wood and gravel 

CPOM + Sub Adjust CPOM, wood and gravel 

All All of the above scenarios combined 

Table 3 

Performance of model variations from the model evaluation as spearman rank cor- 

relation between observed and predicted EQR scores. Correlations are averaged over 

three pairs of training & test data sets. For all correlations p ≤0.05. Trait preference 

nodes indicate preference for environmental factors as indicated by the observed 

assemblage. 

Number of 

classes 

Trait preference 

nodes included Discretisation method 

Equal interval Equal frequency 

4 N 0.25 0.26 

Y 0.24 0.28 

5 N 0.27 0.26 

Y 0.27 0.29 

6 N 0.25 0.32 

Y 0.27 0.35 
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ere relieved from either one or multiple stressors ( Table 2 ), in 

hich only combinations of scenarios that targeted at least two 

ifferent key factors were considered. A comparison was made be- 

ween the effect of removing single and multiple stressors per 

tream or stream stretch. 

. Results 

The first steps in developing the model were constructing 

he network structure and then informing it with literature- and 

xpert-based knowledge (step 1 and 2). In the third step, the 

nowledge-informed network was trained using actual monitor- 

ng data. Training the network with monitoring data resulted in 

djusted probabilities, directly affecting 17 nodes, with a maxi- 

um change in probabilities of 60%. For instance, there was a rel- 

tively high number of high-gradient streams in the dataset. Con- 

equently, the corresponding probabilities were adjusted such that 

or any new datapoint without observations for stream gradient, 

he model assumed a higher prior probability that it is a high gra- 

ient stream. This in turn altered the prediction of the status of 

he target node, the ecological quality expressed by the EQR. This 

djustment is reflected by the larger bar in the top right node of 

ig. 3 b compared to Fig. 3 a. 

In step 4 of the model development, the network was tested 

sing a part of the dataset applying a 3-fold cross-validation. The 

erformance of the tested model variations ( Table 3 ) was ex- 

ressed as correlations between the observed and the predicted 

QR scores and showed scores up to 0.35, expressing a relatively 

oor predictive performance. The model variation performing best 
5 
as obtained by incorporating 6 discretisation classes, using equal 

requency discretisation, and including the trait preferences nodes. 

The sensitivity analysis shows the influence of the environ- 

ental factors on macroinvertebrate-based EQR, the target node, 

n decreasing order ( Fig. 4 ), revealing that temperature, velocity 

nd CPOM had the strongest influence, whereas the factors macro- 

hytes, stream gradient and total phosphorous concentration had a 

ery limited influence. 

This best performing model variation was subsequently applied 

o compare the model EQR predictions with the observed EQR per 

tream ( Fig. 5 ), showing that in half of the cases, the EQR was pre-

icted well. 

This concerned mainly streams with a relatively low EQR. In 

ontrast, in the other half of the streams, having a relatively high 

bserved ecological water quality, the predicted EQR was lower 

han the observed EQR. In these underpredicted cases, either the 

odel judged the environmental variables too severely, or the ob- 

erved EQR was overrepresenting the actual ecological quality, as 

 result of a too optimistic underlying assessment system. To gain 

ore insight into these underpredictions, the two most deviating 

ases, the Zwaanspreng and Egelbeek, were considered in more 

etail. To this end, the average preference score of the macroin- 

ertebrate assemblage was calculated for each sample for the fac- 

or flow velocity, one of the most influential environmental vari- 

bles ( Fig. 4 ) and the only factor for which enough preference data 

as available ( Fig. 6 ). The mean flow velocity preference scores for 

hese samples was relatively high (mean preference score: 3.6 out 

f 5), and also the flow velocity was generally high (mean 0.31 

/s). Likewise, the observed EQR was also high (mean 0.81). This 

oints to the model having underpredicted the EQR of these sites, 

ased on the factor flow velocity. However, flow velocity is only 

ne of the factors determining the EQR and therefore, also other 

actors might have contributed to the underestimated EQR. How- 

ver, as there is insufficient data available for the actual assem- 

lage preference for the other environmental factors, we could not 

valuate the contribution of these factors to the underpredictions 

f the EQR. 

In the scenario analysis (step 5), the model was used to predict 

he effect of relieving the stream from single and multiple stressors 

n the target node, the EQR. For all streams combined, significant 

ifferences in EQR were observed when compared with the current 

onditions ( Fig. 7 a). Yet, for scenarios involving the relief of a sin-

le stressor, more negative than positive effects were observed. In 

ontrast, when a combination of stressors was removed, the ma- 

ority of scenarios showed positive effects on the EQR. In some of 

he streams, the effects of taking away the stressors could not be 

redicted (not shown), which might be due to inconsistencies be- 

ween the observed and the scenario-based variables in the model, 

here nodes receive contradicting input. When the scenario effects 

ere considered per individual stream, there was a high variation 

n the results ( Fig. A1 ). Nevertheless, for half of the streams clear 

anagement effects were still observed. To illustrate this, the Hi- 

rdense beek and Tongerense beek were considered in more de- 

ail, because these streams showed the clearest effects of stres- 

or relief and had the largest dataset, respectively. Moreover, the 

pecificity of the predictions was increased when the samples were 

rouped in stream stretches that represent a specific waterbody 

ubtype within similar surrounding conditions, as can be seen for 

he upstream stretch of the stream Hierdense beek ( Fig. 5 ). For 

his stretch of the Hierdense beek and for the stream Tongerense 

eek several positive effects of management scenarios were ob- 

erved ( Fig. 7 b, 7 c). Relieving the stream from most single stres- 

ors and stressor combinations increased the EQR. In contrast, sce- 

arios involving an increase in velocity showed negative effects on 

he EQR, except when this measure was combined with increased 

POM cover, where a strong positive effect was seen. Especially the 
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Fig. 3. BN model for relating the macroinvertebrate-based EQR to environmental variables a) before and b) after training with monitoring data. Node bar plots describe the 

prior probabilities of states. For node colours, see Fig. 2 . Node states are listed in Table A.2 . 

c

o

h

4

N

q

m

t

t

m

t

q

p

ombined approaches that increased CPOM cover and flow velocity 

r CPOM cover and substrate quality (wood and gravel presence) 

ad a positive effect on the mean EQR of both streams. 

. Discussion 

The aim of our study was to develop and test a Bayesian 

etwork for simulating macroinvertebrate-based ecological water 
6 
uality based on the responses of stream macroinvertebrates to 

ultiple stressors. The model was developed for a specific wa- 

er type in a single region, where multiple stressors affected 

he stream ecosystem quality. Although surrounded by substantial 

argins of uncertainty (as seen in Fig. 7 ), the BN clearly showed 

he positive influence of restoration measures on the ecological 

uality of the studied lowland streams. Below we will discuss the 

erformance of the BN in the scenario analyses, the complexity of 
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Fig. 4. Sensitivity analysis for the best performing model variation. For abbrevia- 

tions, see Table 2 . 

Fig. 6. Observed flow velocity (m/s) and average abundance-weighted flow- 

preference score for the macroinvertebrate assemblages present in samples from 

the streams Egelbeek and Zwaanspreng. Preference scores rane from 1 to 5. The 

colours of the points indicate the observed EQR. 

p

b

s

4

o

Fig. 5. Comparison of mean EQR model predictions and mean EQR observations for the 

whiskers extending to -/ + 1.5 ∗ IQR. Statistical pairwise differences were calculated using

7 
redicting the effects of multiple stressors on macroinvertebrate- 

ased ecological quality and how this approach can be applied in 

tream restoration management. 

.1. BN model development 

BNs are promising as tools in restoration management, as they 

ffer a way to include expert knowledge with associated uncer- 
studied streams. Boxes are inter-quartile ranges (IQR, 25 th to 75 th percentile) with 

 Wilcoxon test, ∗: p < = 0.05, ∗∗: p < = 0.01, ∗∗∗: p < = 0.001, ∗∗∗∗: p < = 0.0 0 01. 
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Fig. 7. Model predictions of restoration scenarios. For scenario abbreviations, see Table 2 . Asterisks indicate significant differences in EQR compared to the current conditions 

(CC) (Wilcoxon test). a) Model predictions of restorations for all streams combined (based on a total number of 9891 model runs, with a variable number of model runs per 

scenario due to inconsistencies). b) Model predictions of restoration scenarios for the Hierdense beek (upstream) (based on a total of 215 model runs). c) Model predictions 

of restoration scenarios for the Tongerense beek (based on a total number of 1552 model runs). 

8 
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ainties in combination with monitoring data and output from 

rocess-based modelling. In addition, the explicit expression of the 

ssociated uncertainty and the clear visualisation of the causal 

odel structure are advantages of this technique, which make 

t a suitable tool to support water managers in decision making 

 Barton et al., 2012 ; Uusitalo, 2007 ). However, to be able to train

he knowledge-informed network using observations, for each pair 

f connected nodes, there should be a set of data available that 

overs the full range of all possible combinations of node states 

 Cain, 2001 ). This is a requirement which may be difficult to com- 

ly with in practice, especially when the focus is on a specific wa- 

er type. 

In the development of our BN model, choices had to be 

ade to deal with the inherent complexity of aquatic ecosys- 

ems. To this end, the main predictors of the macroinvertebrate- 

ased EQR were selected. However, there was a trade-off between 

he desired model complexity and the availability of training data, 

here a lack of data would decrease model performance (see also 

arcot et al., 2006 ). Hence, to select the optimal model varia- 

ion, multiple model structures and parameterisations were tested. 

n the comparison of these slightly adjusted models, equal fre- 

uency discretisation gave better predictive performance than dis- 

retisation based on predefined class boundaries (however, com- 

are Boets et al., 2015 ). Although all discretisation methods imply a 

implification of continuous data ( Aguilera et al., 2011 ), using equal 

requency discretisation ensures that each class of a node is repre- 

ented equally in the data, which supports a better training of the 

onditional probabilities in the network. Also, the inclusion of the 

reference nodes slightly improved the predictions. 

Our results showed the impact of restoration measures in the 

cenario analysis compared to the current situation, but the over- 

ll absolute performance of the BN model was still limited. Es- 

ecially for streams with a high observed ecological quality, the 

QR was underpredicted by the model. This might be partly due 

o gaps in the dataset, consequently, it was not possible to train 

ach knowledge-based CPT with observed data ( Table A.3 ). A pos- 

ible explanation may also be that the model only predicts the ef- 

ects of changes in environmental factors on macroinvertebrates, 

hereas in reality, dispersal and biotic interaction filters also de- 

ermine the macroinvertebrate assemblage composition and there- 

ore the ecological quality of a specific site ( Poff, 1997 ). In addi-

ion, the interactions between environmental factors are not com- 

letely understood and cannot be fully incorporated. Moreover, 

he model is static and therefore assumes that the assemblage 

s in equilibrium with the environmental conditions at each site 

 Austin, 2002 ), but this is not always the case ( Belyea and Lan-

aster, 1999 ; Wiens, 1984 ). Together, these complexities, which are 

ot well understood, could have influenced the performance of the 

odel. 

Therefore, the current model is not yet thought to be accept- 

ble for application as such, given that predictions are not yet in 

ccordance with the observations. With a more complete dataset, 

esting of additional model variations and an increased insight in 

tressor interactions to improve model relations, this model type 

ight be further applied as a tool in restoration management. 

.2. Multiple-stressor effects on macroinvertebrate-based ecological 

uality 

Waterbodies are generally subjected to multiple stressors 

 Birk, 2018 ). This creates a complex task for water managers who 

im to improve the ecological status of stream ecosystems. In ad- 

ition, stressor interactions may take place that either enhance the 

dded effects of additional stressors (synergism) or decrease these 

m

9 
ombined effects (antagonism) ( Folt et al., 1999 ). Such interactive 

ffects are specific to stressors, organisms and environments and 

onsequently are difficult to predict ( Jackson et al., 2016 ). With this 

dded complexity, simulating ecological quality remains a complex 

ask, as our study showed. 

Despite this complexity, the present BN scenario analyses 

howed that ecological quality can be improved when the streams 

re relieved from specific stressors or combinations thereof, 

hereas other restoration scenarios may prove to be less effec- 

ive. For the studied streams, the strongest positive effect resulted 

rom increasing flow velocity in combination with the presence of 

POM, whereas only improving flow velocity yielded no positive 

ffect. This may be explained by the interaction between flow ve- 

ocity and CPOM: only increasing stream velocity would not safe- 

uard the variation in flow required for patches of coarse mate- 

ial to persist, providing necessary habitat for stream organisms 

 de Brouwer et al., 2019 ). To gain more insight in the interaction

etween flow velocity and CPOM cover, these key environmen- 

al factors could be included in the network in more detail than 

hey are now. The added value of combining restoration scenarios 

as also observed for the scenarios that enhanced the presence of 

ood and gravel substrate and the cover of CPOM. In the scenarios 

here the streams are relieved from the individual stressors, al- 

eady a positive impact is seen, but when the stream is relieved 

rom both stressors simultaneously, the macroinvertebrate-based 

cological quality improves even more than expected based on the 

ontributions of the single stressors, which could point at a pos- 

tive synergistic interaction of stressor relief. Similarly, such inter- 

ctive effects on macroinvertebrates have been observed for other 

nvironmental stressors (Beermann et al., 2018; Jackson et al., 

016 ). Yet, for the other combined scenarios in the present study 

here multiple stressors were adjusted, no interactive effects were 

bserved. Indeed, also for other water bodies it was reported that 

dditive effects of multiple stressors prevail (Gieswein et al., 2017). 

owever, the current model is partly knowledge-informed and not 

ompletely based on data. This is especially the case for the target 

ode, where the relationship picturing the combination of multiple 

tressors into a combined response was based on expert knowl- 

dge. 

To better quantify the interactions between the stressors of 

nterest, additional statistical analyses could be carried out on a 

ore extensive dataset ( Feld et al., 2016 ; Glendell et al., 2019 ).

n addition, experiments may help to disentangle the interactive 

ffects of multiple stressors ( Elbrecht et al., 2016 ; Verberk et al., 

016 ). Only when we have more knowledge about the nature and 

nteractions of stressor-response relationships for specific species 

nd complete assemblages, can we develop modelling of multi- 

le stressor impacts further. In turn, the application of models can 

how us where these knowledge gaps persist and where additional 

xperiments might be needed to better understand underlying pro- 

esses. Consequently, BNs and other approaches are complemen- 

ary in their contribution to an increase of the understanding of 

ultiple stressor effects. 

Apart from the interaction between stressors, other studies 

howed that choosing measures based on identifying multiple 

tressors covering the entire catchment proved to be more effec- 

ive ( dos Reis Oliveira et al., 2020 ; Feld et al., 2011 ; van Puijenbroek

t al., 2019 ). This illustrates the significance of simultaneously con- 

idering multiple stressors over multiple scales for effective stream 

estoration. 

In conclusion, the present model exercise demonstrated that 

pplying different scenarios enhances the understanding of the 

ffects of combinations of measures on macroinvertebrate-based 

cological quality and may aid in selecting and prioritizing the 

ost promising restoration measures, as discussed below. 
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.3. BNs as tools in restoration management 

Nowadays, in the practice of stream restoration, the selected 

easures are still strongly based on assumptions rather than 

roofs of their positive effects on the ecological status of stream 

cosystem ( dos Reis Oliveira et al., 2020 ), which was the main mo-

ivation to perform the present study. The application of the cur- 

ent BN model indeed enhanced the insights into the possible ef- 

ects of management scenarios on the ecological quality as repre- 

ented by macroinvertebrates. Hence, these model predictions may 

e used to inform water managers which measures to prioritize 

n restoration management to effectively alleviate stress. This in- 

reases the chance that the applied restoration measures do in- 

eed lead to the desired improvement in the ecological status 

f stream ecosystems. Whereas we used the BN model to show 

he relative impact of (combinations of) restoration measures on 

acroinvertebrate-based ecological quality, such models can also 

e used ‘backwards’ in a diagnostic approach to find causes for ob- 

erved symptoms ( Feld et al., 2020 ; Trigg et al., 20 0 0 ). 

Ideally, a model performing well, tailored to the study area, 

ould give insight into which environmental factors would pro- 

uce most effect. For the manager, the next step would be to iden- 

ify how these variables might be targeted, by linking these to ac- 

ual restoration measures. However, this prioritisation is often not 

ust based on the outcome of the model. In these scenario analy- 

es, the use of site-specific knowledge would permit the manager 

o decide which variables to prioritize, for example, knowledge of 

he possibility and cost of certain measures, and of restoration ef- 

orts and disturbances that have taken place in the past. 

As shown here, scenario analyses can be especially informative 

n situations where multiple stressors are acting. In the case of a 

ingle dominant stressor, a specific measure may be more easily 

elected, but for a situation with a more even contribution of mul- 

iple stressors, selecting and prioritizing restoration measures may 

ot be straightforward. In these cases, scenario analyses may help 

o choose a combination of measures to alleviate the pressure on 

he ecosystem and to improve the ecological water quality. 

The current model was designed and trained for a single area 

nd water type. When applied to other areas, the main model 

tructure can still be used as a starting point, although the choice 

or key environmental factors, parametrisation of the CPTs, calibra- 

ion and validation should be carried out in a way tailored to the 

ater type and region of interest. 

Ultimately, in the application of BNs, challenges remain with 

he abovementioned complexities. In addition, Kaikkonen et al. 

2021) list the remaining challenges of BNs used in environmental 

anagement, such as models lacking validation, unclear discretisa- 

ion methods, and lack of clarity about the source of expert knowl- 

dge. Indeed, most BN applications fail to test the predictive ability 

f the model (Death et al., 2015). As described here, discretisation 

nd validation of the model outcomes is not straightforward. Bet- 

er reporting of such challenges associated with these technical as- 

ects may therefore improve future robustness of BN applications. 

n addition, recent technical developments might further increase 

he possibilities of BN applications, such as the use of hybrid net- 

orks that can represent continuous variables without the infor- 

ation loss associated with discretisation ( Kaikkonen et al., 2021 ). 
10 
The success of applying BNs for similar purposes in the future 

epends on the availability of high-quality data and the possibility 

o include a more fundamental understanding of the complexity of 

cosystems, with context-specific knowledge on how interactions 

etween multiple stressors affect macroinvertebrate assemblages. 

he current approach has contributed to an increased understand- 

ng of the complexity of these aquatic ecosystems. Moreover, our 

tudy showed how BNs can be used in a scenario analysis to select 

nd prioritize the most promising restoration measures. 

. Conclusions 

In this study, the application of BNs for simulating the effects 

f multiple stressors on macroinvertebrate-based ecological water 

uality was tested. Although the predictive performance can be 

urther improved, our application illustrated how these models can 

e used to increase our knowledge of how ecosystems respond 

o multiple stressors. To make predictions more robust, a deeper 

nderstanding of stressor interactions is required. Also, sufficient 

raining data should be available for the water type of interest. 

till, BNs allow us to make steps in unravelling the contribution 

f the individual stressors to their combined effect on the ecolog- 

cal quality of water bodies. This in turn may aid the selection of 

ppropriate restoration measures that lead to the desired improve- 

ents in ecological water quality. 
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Table A1 

Node description, type and equation. E: Expert knowledge-based relationship, L: literature-based, M: relation taken from process-based model. Clip is a Netica function, returning x unless x < min, in which case it returns min, 

or x > max, returning max. 

Node name (unit) 

[Abbreviation] Node description Node type Knowledge base CPT equation 

Shading (%) [ S ] Percentage of the river 

area which is shaded 

Input NA 

Air temperature ( °C) [ T air ] Mean maximum July Air 

Temperature 

Input NA 

Flow velocity (m/s) [ V ] Flow velocity Input NA 

Stream gradient (m/km) 

[ Sgr ] 

Stream gradient Input NA 

Macrophytes (%) [ M ] Cover percentage of 

Macrophytes 

Input E M = 

((
− S 

30 
+ 

100 
30 

)
∗

(
clip 

(
0 , 1 , 

(
TP 

200 

)))
∗ ( clip (0 , 1 , (−2 V + 2))) 

) 1 
3 ∗ 100 

Organic load (mg O2/L) 

[ OL ] 

Biological Oxygen Demand Input E OL = 

T water 

3 
+ 

A 
50 

+ 

M 
25 

Max. DO (mg/L) [ DO max ] Maximum Dissolved 

Oxygen at a given 

temperature 

Input L ( Chapra, 1997 ) DO _ Max = 14 . 6096 − (0 . 40455 ∗ T water ) + (0 . 0080231 ∗ T wate r 
2 ) − (0 . 0 0 0 0794339 ∗ T water 

3 ) 

DO (mg/L) [ DO ] Actual Dissolved Oxygen 

Concentration 

Input L ( Chapra, 1997 ) DO = DO Max − OL + 2 . 66 V 0 . 67 + 

M 
50 

− 0 . 00266 A 

Temperature ( °C) [ T w ] Water temperature Input M ( Bartholow, 2002 ) T w = 4 . 81 − 0 . 0716 S + 0 . 822 T air 

Algae (μg chl-a/L) [ A ] Chlorophyll concentrations Input E A = 350 ∗
(
clip 

(
0 , 1 , 

(
TP 

600 

))
∗

(
−
(

S 
30 

)
+ 

(
100 
30 

))
∗

(
1 

1+ exp (−0 . 5 ∗(T water −15)) 

)) 1 
3 

P-tot (μg/L) [ TP ] Total phosphorus 

concentrations 

Input NA 

Silt (%) [ Si ] Cover percentage of silt Input E Si = (−80 V + 40) + clip (−10 , 10 , (−15 Sgr + 10)) 

CPOM (%) Cover percentage for 

Coarse Particulate Organic 

Matter 

Input E CPOM = (−(200 V ) + 105) + clip (−10 , 10 , (−(15 Sgr ) + 10)) 

Gravel [ G ] Presence of gravel Input NA 

Wood [ W ] Presence of wood Input NA 

Macroinvertebrates - 

Substrate [ M sub ] 

Aggregated suitability 

score of substrate 

Key factor E M Sub = 

((
1 − | 0 . 5 − CPOM 

100 
| ) ∗ (1 − ( Si / 100)) ∗ ( clip (0 , 1 , W )) ∗ ( clip (0 , 1 , G )) 

)0 . 25 

Macroinvertebrates - 

Velocity [ M V ] 

Aggregated suitability 

score for flow velocity 

Key factor E M V = clip (0 , 1 , (4 V − 0 . 2)) 

Macroinvertebrates - Food 

Quality [ M FQ ] 

Aggregated suitability 

score of food quality 

Key factor E M FQ = CPOM / 100 

Macroinvertebrates - 

Dissolved Oxygen [ M DO ] 

Aggregated suitability 

score of dissolved oxygen 

concentration 

Key factor E M DO = clip (0 , 1 , ( DO / 7)) 

Macroinvertebrates - 

Temperature [ M T ] 

Aggregated suitability 

score of temperature 

Key factor E M T = clip 
(
0 , 1 , 

(
−( T w 

10 
) + 2 

))

Macroinvertebrates [ M ] Aggregated suitability 

score for 

macroinvertebrates, taking 

geometric mean and 

applying weight to lower 

values. 

Final E M = 

((
M T ∗ 1 

1+ exp ( −8 ∗M T ) 

)
∗
(
M DO ∗ 1 

1+ exp ( −8 ∗M DO ) 

)
∗
(

M FQ ∗ 1 
1+ exp ( −8 ∗M FQ ) 

)
∗
(
M V ∗ 1 

1+ exp ( −8 ∗M V ) 

)
∗
(
M Sub ∗ 1 

1+ exp ( −8 ∗M Sub ) 

))0 . 2 

11
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Table A2 

Overview of nodes and node states for model version performing best (using equal frequency discretisation) 

Node name State 

1 2 3 4 5 6 

Shading (%) < 16.6 16.6-33.2 33.2-49.8 49.8-66.4 66.4-83 > 83 

Air temperature ( °C) 10-13 13-16.6 16.6-19.9 19.9-23.2 23.2-26.5 > 26.5 

Flow velocity (m/s) < 0.02 0.02-0.1 0.1-0.15 0.15-0.25 0.25-0.33 > 0.33 

Macrophytes (%) < 16.6 16.6-33.3 33.3-49.8 49.8-66 66-83 > 83 

Organic load (mg O2/L) 0-0.7 0.7-1.05 1.05-1.62 1.62-2 2-2.79 > 2.79 

Max. DO (mg/L) < 8.3 8.3-9.6 9.6-10.9 10.9-12.2 12.2-13.5 > 13.5 

DO (mg/L) < 6.8 6.8-8 8-9 9-9.88 9.88-10.7 > 10.7 

Stream temperature ( °C) 1.4-9.2 9.2-10.5 10.5-11.5 11.5-12.9 12.9-14.3 > 14.3 

Algae (μg chl-a/L) < 58 58-117 117-175 175-233 233-292 > 292 

P-tot (μg/L) < 40.1 40.1-50.1 50.1-75.1 75.1-100 100-180 > 180 

Silt (%) < 20 20-40 40-60 60-80 > 80 

CPOM (%) < 20 20-40 40-60 60-80 > 80 

Stream Gradient (m/km) 0-0.5 0.5-1 > 1 

Gravel Present Absent 

Wood Present Absent 

Velocity preference < 0.2 0.2-0.4 0.4-0.6 0.6-0.8 > 0.8 

CPOM preference < 0.2 0.2-0.4 0.4-0.6 0.6-0.8 > 0.8 

Silt preference < 0.2 0.2-0.4 0.4-0.6 0.6-0.8 > 0.8 

Gravel preference < 0.2 0.2-0.4 0.4-0.6 0.6-0.8 > 0.8 

Wood preference < 0.2 0.2-0.4 0.4-0.6 0.6-0.8 > 0.8 

Macroinvertebrates (Sub) < 0.2 (Bad) 0.2-0.4 (Poor) 0.4-0.6 (Moderate) 0.6-0.8 (High) > 0.8 (Good) 

Macroinvertebrates (V) < 0.2 (Bad) 0.2-0.4 (Poor) 0.4-0.6 (Moderate) 0.6-0.8 (High) > 0.8 (Good) 

Macroinvertebrates (FQ) < 0.2 (Bad) 0.2-0.4 (Poor) 0.4-0.6 (Moderate) 0.6-0.8 (High) > 0.8 (Good) 

Macroinvertebrates (DO) < 0.2 (Bad) 0.2-0.4 (Poor) 0.4-0.6 (Moderate) 0.6-0.8 (High) > 0.8 (Good) 

Macroinvertebrates (T) < 0.2 (Bad) 0.2-0.4 (Poor) 0.4-0.6 (Moderate) 0.6-0.8 (High) > 0.8 (Good) 

Macroinvertebrates < 0.2 (Bad) 0.2-0.4 (Poor) 0.4-0.6 (Moderate) 0.6-0.8 (High) > 0.8 (Good) 

Table A3 

Number of cases available per node to train model relations. Counted are the number of 

cases where an observation was available for the node of interest and all of its parent 

nodes. 

Node 

Number of cases available 

for training 

Shading (%) 59 

Air temperature ( °C) 0 

Flow velocity (m/s) 722 

Macrophytes (%) 17 

Organic load (mg O2/L) 1 

Max. DO (mg/L) 0 

DO (mg/L) 1 

Stream temperature ( °C) 916 

Algae (μg chl-a/L) 2 

P-tot (μg/L) 903 

Silt (%) 289 

CPOM (%) 320 

Stream gradient (m/km) 930 

Gravel 191 

Wood 287 

Velocity preference 25 

CPOM preference 0 

Silt preference 0 

Gravel preference 0 

Wood preference 0 

Macroinvertebrates (Sub) 0 

Macroinvertebrates (V) 0 

Macroinvertebrates (FQ) 0 

Macroinvertebrates (DO) 0 

Macroinvertebrates (T) 0 

Macroinvertebrates 0 
12 
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Fig. A1. Model predictions of restoration scenarios for a selection of streams. For scenario abbreviations, see Table 2 . CC gives the model predictions for the current condi- 

tions. 
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