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Abstract
Parasitic plants are plants that connect with a haustorium to the vasculature of another, host, plant from which they ab-
sorb water, assimilates, and nutrients. Because of this parasitic lifestyle, parasitic plants need to coordinate their lifecycle
with that of their host. Parasitic plants have evolved a number of host detection/host response mechanisms of which the
germination in response to chemical host signals in one of the major families of parasitic plants, the Orobanchaceae, is a
striking example. In this update review, we discuss these germination stimulants. We review the different compound classes
that function as germination stimulants, how they are produced, and in which host plants. We discuss why they are reli-
able signals, how parasitic plants have evolved mechanisms that detect and respond to them, and whether they play a role
in host specificity. The advances in the knowledge underlying this signaling relationship between host and parasitic plant
have greatly improved our understanding of the evolution of plant parasitism and are facilitating the development of more
effective control measures in cases where these parasitic plants have developed into weeds.

Introduction
Parasitic plants rob all or a large part of the water, assimi-
lates, and nutrients that they need for growth and develop-
ment from the host on which they grow, making many of
them important agricultural weeds (Hearne, 2009; Parker,
2012; Rodenburg et al., 2016). This parasitic lifestyle requires
a close coordination with the lifecycle of the host. This holds
especially true for the parasitic plants of the Orobanchaceae,
such as Alectra and Striga spp. (witchweeds) and Orobanche,
and Phelipanche spp. (broomrapes) that are completely
dependent on a host for survival. Hereto, they have evolved

a number of host detection/host response mechanisms of
which the germination in response to chemical host signals
is critically important. This phenomenon was first discovered
in the mid-1900s (Brown et al., 1949). In this update review,
these germination stimulants are discussed, including how
ubiquitous they are and to which chemical classes they be-
long. An intriguing question is whether these signals convey
specificity to the host parasite relationship and—with an
emphasis on the most important class of germination
stimulants, the strigolactones—what determines their reli-
ability as host presence signals. Related to this is the
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question of why hosts produce germination stimulants. This
is discussed in relation to the fact that the germination
stimulants have other, beneficial, roles for the host produc-
ing them. One of the most astounding adaptations that par-
asitic plants evolved is the capacity to repurpose the latter
signals as germination stimulants. This is reviewed elsewhere
in this issue (see Nelson et al., this issue). Here, we focus on
the role these receptors may play in host specificity of para-
sitic plants.

The lifecycle of parasitic plants
Parasitic plants produce large numbers of seeds that—simi-
lar to nonparasitic, wild, angiosperms—are dormant when
shed from the mother plant. Under favorable temperature
and moisture conditions, dormancy is released, which sensi-
tizes the seeds towards their germination stimulant
(Matusova et al., 2004; Figure 1). Although the mechanism
underlying these changes in dormancy is still not completely
understood, gibberellic acid and abscisic acid (ABA) seem to
play important roles (Yao et al., 2016b; Bao et al., 2017).
While nonparasitic angiosperms require factors such as light
and an optimal temperature for induction of germination
after dormancy release, parasitic plant seed germination
requires the presence of a chemical signal indicative of the
vicinity of a host, called a germination stimulant (Matusova
et al., 2004; Figure 1). In the absence of a germination stimu-
lant, the seeds will gradually resume their dormant state
(Matusova et al., 2004; Song et al., 2005). One to 2 d after
perception of the germination stimulant, the radicle emerges
from the seed, reaching a length of a few millimeters up to
1 cm. Perception by the parasite of host-derived com-
pounds, called haustorium-inducing factors, subsequently
results in the formation of a special invasive organ, the

pre-haustorium, characterized by the swelling of the radicle
tip and proliferation of haustorial hairs on the surface (Cui
et al., 2018; Goyet et al., 2019; Wada et al., 2019; Figure 1).
Upon contact with the host root, the prehaustorium devel-
ops intrusive cells that penetrate the root forming the haus-
torium, a physiological bridge between the vascular system
of the parasite and that of the host through which the para-
site withdraws water and nutrients (Losner-Goshen, 1998;
also see Yoshida et al. in this issue). In witchweeds, this con-
nection consists of a xylem–xylem connection while broom-
rapes establish connections with both the phloem and the
xylem (Westwood, 2013). The connection may fail, which is
called post-attachment resistance or incompatible interac-
tion, and may be due to a hypersensitive reaction, cell death,
and the accumulation of phenolic compounds, among
others (Cissoko et al., 2011; Huang et al., 2012; Mutuku
et al., 2019). In the case of a compatible attachment, the
parasite further develops belowground for a few weeks be-
fore emerging from the soil. The lifecycle is then completed
with a vegetative phase, flowering, and seed production
(Figure 1).

Figure 1 Lifecycle of root parasitic plants. Seed dormancy release
(usually called preconditioning) occurs when exposed to the proper
environmental conditions (warm temperature and high moisture).
Seed germination occurs upon detection of host germination stimu-
lants by nondormant seeds. Seedlings develop haustoria when ex-
posed to haustorium-inducing factors. The haustorium establishes a
connection with the host vasculature, after which a seedling develops
that grow belowground for several weeks until emergence. The
emerged parasite develops aboveground, flowers, and produces seeds
that contribute to the seed bank.

ADVANCES

• In the past decade, the roles of germination
stimulants and their perception in regulating
the lifecycle of orobanchaceous root parasitic
plants have been uncovered.

• Over 35 different strigolactones have been
discovered in a large array of plant species and
shown to induce the germination of a range of
orobanchaceous parasitic plant species.

• Strigolactones are allelochemical cues for
(symbiotic) microorganisms and plant
hormones that regulate several developmental
processes.

• The germination stimulant receptor in parasitic
plants evolved from an ancestral homolog of
the strigolactone hormone receptor.

• Strigolactones exhibit large structural diversity;
however, the biological relevance of this
diversity is unclear.
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What are germination stimulants?
Germination stimulants trigger the germination of obligate
root parasitic plants of the Alectra, Striga, Orobanche, and
Phelipanche genera. Facultative root parasites of the
Orobanchaceae such as Rhinantus and Triphysaria spp. ger-
minate in water and do not seem to require a germination
stimulant. The latter also holds for seeds of parasitic plants
from other families such as mistletoes and Cuscuta spp.
Germination stimulants are identified using a bioassay: after
a dormancy releasing treatment, parasite seeds are incu-
bated with a root exudate or pure compounds and germina-
tion is evaluated (Box 1). Bioassay-guided fractionation can
be used to elucidate the chemical nature of the germination
stimulant after which analytical methods can be used for
germination stimulant quantification (Box 1; Cook et al.,
1972; Sato et al., 2003, 2005; Flokova et al., 2020). The first
class of germination stimulants to be discovered was the
strigolactones (Box 2; Table 1; Cook et al., 1972; Butler,
1995). Since their discovery, compounds from many other
chemical classes have been isolated from root exudates of
parasitic plant hosts or microorganisms and shown to dis-
play a certain level of witchweed (Striga spp.) and/or
broomrape (Phelipanche and Orobanche spp.) seed germina-
tion inducing activity in vitro. However, for many such
compounds there are no indications that they play a role
in vivo.

The strong stimulation of strigolactone exudation by low
phosphorus availability suggests that parasitic plant infection
is higher under conditions of low phosphorus availability
(Yoneyama et al., 2007a; Jamil et al., 2011, 2012b, 2013). This

indeed seems to be the case in the African continent where
the progressive degradation of soil fertility seems to coincide
with an increase in witchweed invasion. In developed coun-
tries, Striga spp. are not an agricultural problem, but the
broomrapes are, despite the usually sufficient availability of
phosphate fertilizers. Possibly, ample phosphate availability
in developed world agriculture and consequently lower exu-
dation of strigolactones by agricultural crops has resulted in
selection pressure on broomrapes to respond to other
chemicals as germination stimulants. Examples are the
broomrape Orobanche cumana that parasitizes sunflower
(Helianthus annuus) and germinates in response to dehydro-
costuslactone (Joel et al., 2011) and the broomrape
Phelipanche ramosa that is adapted to rapeseed (Brassica
napus) and germinates in response to 2-phenylethyl isothio-
cyanate, a glucosinolate breakdown product (Auger et al.,
2012; Figure 2). It is as yet unclear what—in vivo—the rela-
tive contribution is of the strigolactone(s) that these hosts
also produce [sunflower also exudes the strigolactone helio-
lactone, which also induces germination in O. cumana
(Ueno et al., 2014)] and these other germination stimulants
to the infection success of the parasites. An intriguing ques-
tion is also what adaptations evolved in the germination
stimulant receptors of these parasites to enable the germina-
tion response to other chemical compounds. It is likely that
there are other host-specific parasites that may have
adapted to nonstrigolactone germination stimulants, giving
them an exclusive niche as a parasite of a specific host.
However, in broomrape hosts pea (Pisum sativum) and
tomato (Solanum lycopersicum), for example, there is clear

BOX 1
Analysis of germination stimulants. The discovery of germination stimulants started in the mid-1900s with the
finding that root exudates of certain plant species induce the germination of seeds of Striga hermonthica (Brown
et al., 1949) and reached a turning point 25 years later with the isolation and structural characterization of strigol
(Cook et al., 1972). Ever since, bioassays and analytical chemistry have played an almost equally important role in
studies on parasitic plant seed germination. For a bioassay, seeds of the parasitic plant under study are imbibed
and incubated for 1 to 2 weeks at elevated temperatures to release their dormancy (a process referred to as pre-
conditioning), which induces sensitivity to the germination stimulant(s) (Matusova et al., 2004; Figure 1). As a
source of germination stimulants, (partially purified) root exudates, root extracts, and chemicals/standards can
be used. These are applied to the pre-conditioned seeds which are subsequently incubated for a number of days
after which germination is scored. A bioassay is suitable for screening of root exudates, for example of genotypes,
for quantitative differences in germination stimulant activity. A bioassay does not allow conclusions on the
chemical identity or number of different stimulant(s) present in the sample and the presence of inhibitors
may cause a bias in the biological conclusions (Sato et al., 2003). Analytical tools, on the other hand, allow
the detection and quantification of individual germination stimulants in a root exudate, such as for example the
strigolactones that are analyzed using multiple reaction monitoring (MRM)-LC–MS/MS (Floková et al., 2020).
For both assays, the instability of strigolactones combined with the very low produced amounts (in cotton in the
order of 2–15 pg/plant/day; [Sato et al. 2005]) and the complexity of matrices make their isolation from root
exudates and/or extracts and analysis difficult (Floková et al., 2020). The application of phosphorus starvation
to the plants to be analyzed highly enhances the production and exudation of strigolactones, and therefore their
detectability. Regardless of whether a root exudate or root extract is used for the analysis of strigolactones, a
step of concentration and complexity reduction of the matrix using solid phase extraction is usually necessary
(Floková et al., 2020).
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evidence that strigolactones are the main germination stim-
ulant (Dor et al., 2011; Pavan et al., 2016).

Indeed, natural variation as well as induced mutations
resulting in a decrease in strigolactone production have
resulted in lower levels of germination and, hence, a certain
degree of resistance against witchweeds and broomrapes in
a number of crop species (Dor et al., 2011; Jamil et al.,
2012a; Pavan et al., 2016). Also, a change in the strigolactone
composition was shown to result in a lower induction of
germination and, consequently, field resistance, as was
shown for sorghum genotypes in which orobanchol is the
predominant strigolactone instead of 5-deoxystrigol
(Gobena et al., 2017). The important role of germination
stimulants in the lifecycle of these parasitic plants has made
them an interesting target for control (Box 3; Khan et al.,
2008; Cardoso et al., 2011; Cimmino et al., 2014; Fernández-
Aparicio et al., 2016; Masteling et al. 2019).

Strigolactones are the major class of germination
stimulants
Strigolactones are a plant hormone

About 35 years after the identification of the first germina-
tion stimulant, strigol (Box 1), plant science was rocked by
the discovery that the strigolactones are not just signaling
molecules for parasitic plants, but that they also facilitate
root colonization by arbuscular mycorrhizal (AM) fungi, as
inducers of hyphal branching, a process preceding root colo-
nization (Akiyama et al., 2005). Another 3 years later, two

elusive phenomena—the branched/tillered phenotype of a
series of max/rms/dwarf mutants in Arabidopsis thaliana
(Arabidopsis), pea, and rice (Oryza sativa), respectively, and
the genes that encode strigolactone biosynthesis—came to-
gether in back-to-back publications on the discovery that
strigolactones are the long sought after hormone that con-
trols branching in plants (Gomez-Roldan et al., 2008;
Umehara et al., 2008). The authors showed that two carot-
enoid cleavage dioxygenases, CAROTENOID CLEAVAGE
DIOXYGENASE 7 AND 8 (CCD7 and CCD8), are required
for the biosynthesis of the branching hormone, strigolactone
(Figure 3). What is still unclear after all these years, however,
is which strigolactone-like/derived molecule is actually the
internal hormone signal that controls branching. Mutations
in CCD7 and CCD8 indeed result in a measurable decrease
(or complete disappearance) in the level of strigolactones in
root extracts and root exudates (Gomez-Roldan et al., 2008;
Umehara et al., 2008; Vogel et al., 2010; Kohlen et al., 2012),
but the evidence that these molecules are also active in the
shoot is lacking (Xie et al., 2016). Despite this caveat in our
knowledge, the two papers from 2008 triggered an ava-
lanche of research on hormonal functions of the strigolac-
tones. This research linked with the reported positive effect
of phosphorus shortage on strigolactone production
(Yoneyama et al., 2007b; Lopez-Raez et al., 2008), thought to
stimulate root colonization by AM fungi under low phos-
phorus conditions (Bouwmeester et al., 2007). A number of
studies showed that phosphorus starvation-induced

BOX 2
Discovery of strigolactone germination stimulants. The structure of the first strigolactone, strigol, was elucidated
in 1972 (Cook et al., 1972; Table 1 and Figure 2). About 20 years later, sorgolactone was identified in the root
exudates of sorghum as germination stimulant of Striga asiatica and S. hermonthica (Hauck et al., 1992; Table 1
and Figure 2). Alectrol (later renamed to orobanchyl acetate) was identified in the root exudate of cowpea and
shown to be germination stimulant of Alectra vogelii and Striga gesnerioides (Müller et al., 1992). Strigol, initially
discovered in nonhost cotton, was later also detected in the root exudates of several true Striga hosts (proso mil-
let and maize and, in trace amounts, in sorghum; Siame et al. 1993). Later these hosts were shown to mainly pro-
duce other strigolactones, such as 5-deoxystrigol, sorgolactone, and sorgomol in sorghum and the noncanonical
strigolactones, zealactone and zeapyranolactone in maize, and not or only very little strigol (Charnikhova et al.,
2017, 2018; Mohemed et al., 2018; Table 1 and Figure 2). The name strigolactones was coined in 1995 to desig-
nate a, by then, small class of chemically similar compounds with Striga germination stimulant activity (Butler
1995). However, in 1998, it was shown that a compound also belonging to the strigolactones, orobanchol—iso-
lated from the root exudate of red clover (Trifolium pratense L.)—induces germination of a broomrape
(Orobanche minor; Yokota et al., 1998). A decade later, germination of another broomrape, Phelipanche ramosa
L., was reported to be induced by solanacol, 20-epi-orobanchol, and orobanchol, three strigolactones identified in
the root exudate of Nicotiana tabacum L. (Xie et al., 2007; Figure 2). A range of additional strigolactones have
since been identified and to date about 35 strigolactones have been (tentatively) identified (Table 1
and Figure 2). Intriguingly, most of the broomrape germination stimulants are orobanchol-type strigolactones
(with a-oriented C-ring), while most Striga germination stimulants are strigol-type strigolactones (with b-oriented
C-ring; Figure 2). The strigolactones can be further subdivided into canonical strigolactones with intact tricyclic
lactone (ABC-rings) while noncanonical strigolactones—discovered in the past decade or so—only have the C-20

R-configured D-ring in common with the canonical strigolactones (Abe et al., 2014; Ueno et al., 2014; Kim et al.,
2014; Al-Babili and Bouwmeester, 2015; Charnikhova et al., 2017; Figure 2). They have germination stimulant
activity towards broomrapes as well as Striga spp.
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strigolactone production is required for the adaptation of
shoot (reduced branching/tillering) and root architecture
(increased lateral root outgrowth) to these conditions
(Koltai et al., 2010; Umehara et al., 2010; Kohlen et al., 2011;
Ruyter-Spira et al., 2011). For other hormonal roles reported
for the strigolactones, the link with phosphorus is less clear,
but could play a role in the positive regulation by strigolac-
tones of secondary stem growth, leaf senescence, and
drought tolerance (Al-Babili and Bouwmeester, 2015; Yang
et al., 2019). Finally, there are indications that strigolactones
also affect the recruitment of other, possibly beneficial,
microorganisms in the rhizosphere (Schlemper et al., 2017;
Carvalhais et al., 2019).

These crucial hormonal and signaling roles for the host
make strigolactones the ideal host presence signal for the
parasitic plants, as even under very high selection pressure
by parasitic plants, the host cannot evolve a complete ab-
sence of strigolactones. At first glance, the upregulation of
strigolactone production under low phosphorus, however,
does not seem an advantage for the parasitic plants, which
results in higher parasitic plant seed germination and infec-
tion under conditions of low P availability and therefore re-
duced host vigor. It is unclear whether the parasites have
also evolved mechanisms to compensate for that. On the
other hand, since strigolactones are plant hormones, their
upregulation under low phosphorus availability also has

Figure 2 Structures of root parasitic plant germination stimulants.
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physiological consequences in the host. Branching/tillering is
reduced, drought tolerance increased, leaf senescence stimu-
lated, and root architecture changed through increased out-
growth of lateral roots (Snowden et al., 2005; Umehara
et al., 2008; Ruyter-Spira et al., 2011; Haider et al., 2018). All
these adaptations may be positive for the parasite as well.
A large part of the physiological effects of strigolactones in
the host is effectuated through an interaction with auxin,
for example by affecting auxin transport (Van Rongen et al.,
2019). Auxin plays an important role in the establishment of
a connection between the parasite and host vasculature
(Harb et al., 2004) and it seems that disturbance of normal
auxin transport in strigolactone mutants results in higher
susceptibility toward parasitic plant infection (Cheng et al.,
2017).

Strigolactones display large structural diversity

So far, about 35 different strigolactones have been (tenta-
tively) identified (Figure 2 and Table 1; Box 2; Cook et al.,
1972; Hauck et al., 1992; Müller et al., 1992; Siame et al.,
1993; Yokota et al., 1998; Xie et al., 2007; Abe et al., 2014;
Kim et al., 2014; Ueno et al., 2014; Charnikhova et al., 2017,
2018). Different plant species usually exude different mix-
tures of several strigolactones. Many labs have investigated
the structure–activity relationship of strigolactones and ger-
mination in different parasitic plant species. Eleven natural
strigolactones were assessed for their germination-inducing

activity in Orobanche minor (Kim et al., 2010). The
monohydroxy-strigolactones (20-epi-orobanchol, orobanchol,
and sorgomol) were most active while the lipophilic strigo-
lactones without oxygen-containing substituents (sorgolac-
tone and 5-deoxystrigol) were the least active (Xie et al.,
2007; Xie et al., 2008; Kim et al., 2010). For S. hermonthica,
germination bioassays using structurally distinct strigolac-
tones showed that strigol-type strigolactones induce higher
germination than orobanchol-type (Nomura et al., 2013),
while most of the broomrape germination stimulants are
orobanchol-type strigolactones (Box 2). The so-called nonca-
nonical strigolactones have germination stimulant activity
toward broomrapes as well as Striga species. However, this
observation is based on results with only a limited number
of parasitic plant species.

The strigolactone concentrations required for the induc-
tion of germination of parasitic plants vary from pM to mM,
depending on the strigolactone, likely as a result of differen-
ces in the parasitic plant germination stimulant receptor or
downstream signaling, possibly reflecting the co-evolution of
the parasitic plant species with its hosts (Kim et al., 2010;
Kisugi et al., 2013; Yoneyama et al., 2018b). It is tempting to
speculate that parasitic plants and/or pathogenic microor-
ganisms [that have also been suggested to be attracted by
strigolactones (López-Ráez et al., 2017)] have exerted a selec-
tive pressure driving changes in strigolactone structure
(while keeping the specificity for symbiotic organisms such

BOX 3
Germination stimulants as target for parasitic weed management. Several parasitic plant species developed into
agricultural weeds that cause tremendous yield losses in quite a number of crops. Rodenburg estimated that due
to Striga infection in rice alone a yearly yield loss occurs of US $200 million (Rodenburg et al., 2016). Striga seed
production per plant ranges between 5,000 and 84,000 seeds sometimes even reaching 200,000 (Hearne, 2009).
The large number of seeds per plant and a long seed viability in the soil of up to 20 years contribute to the
build-up of a seed bank and high infestation rates in the field. Different strategies to tackle the parasitic weed
problem have been described including the use of herbicides, hand-pulling, etc. (Parker, 2012), but here we focus
on methods that make use of or interfere with germination stimulants (Cardoso et al., 2011; Fernández-Aparicio
et al., 2016). Germination stimulants are produced and exuded by true parasitic plant hosts but also by non-
hosts. These nonhost plants have been widely used as intercrops and trap crops that induce massive germination
but cannot be infected (intercrop) or are ploughed under after infection (trap crop) and therefore deplete the
parasitic seed bank. The effect of intercrops seems to be enhanced by the release of allelopathic compounds that
hamper the growth of or even kill the parasitic plant (Khan et al., 2008). A solution along the same line is the
use of chemical analogs of the strigolactones that are applied to an infested field to induce suicidal germination
(Samejima et al., 2016; Uraguchi et al., 2018; Kountche et al., 2019). Also, a range of plant- and microbe-produced
compounds have been suggested to be suitable for this purpose (Cimmino et al., 2014; Masteling et al., 2019).
Reduction of parasitic plant seed germination could be another strategy for parasitic weed control. In pea, field
screening for resistance against Orobanche crenata resulted in the identification of a partially resistant cultivar
that exudes lower amounts of strigolactones (Pavan et al., 2016). The same holds true for rice where strong ge-
netic variation for the amount of strigolactones exuded by the roots correlated with differences in Striga suscep-
tibility (Jamil et al., 2012a). Low germination-based resistance can also be achieved through the type of strigolac-
tone that is exuded. For instance, in sorghum the resistant genotype SRN39 was found to exude orobanchol
instead of 5-deoxystrigol that is exuded by susceptible cultivars (Mohemed et al., 2016, 2018; Gobena et al.,
2017).
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as the AM fungi), which has resulted in the large structural
diversity in the strigolactones as we know it today. Parasitic
plants, in turn, seem to have evolved mechanisms to per-
ceive the different strigolactones, resulting in the large num-
ber of receptor copies found in the genomes of parasitic
plants. With more in-depth studies, new natural strigolac-
tones will be discovered and their structures determined.
These will be tested with various parasitic plant species, and
this should gradually improve our understanding of the rela-
tionship between strigolactone structure and activity as ger-
mination stimulants.

The biosynthesis of strigolactones is only partially
elucidated
Strigolactones were initially considered to be sesquiterpene
lactones (Butler, 1995; Yokota et al., 1998). However, root
exudates from plants treated with the carotenoid biosynthe-
sis inhibitor fluridone and maize mutants deficient in carot-
enoid biosynthesis induced lower Striga seed germination

than the untreated and wild-type controls, respectively, indi-
cating that the maize germination stimulants—which were
assumed to be strigolactones—derive from the carotenoids
(Matusova et al., 2005). After the discovery that strigolac-
tones are also plant hormones that control branching/tiller-
ing, forward genetics analyses of more branching/high
tillering mutants helped the community to start to unravel
strigolactone biosynthesis and signaling. Identification of
the genes underlying these mutations and their functional
characterization resulted in the discovery of several key
strigolactone biosynthetic genes: b-CAROTENE ISOMERASE,
D27; CCD7 (MAX3/RMS5/DAD3/HTD1/D17), and CCD8
(MAX4/RMS1/DAD1/D10; Morris et al., 2001; Stirnberg et al.,
2002; Sorefan et al., 2003; Booker et al., 2004, 2005; Foo
et al., 2005; Ishikawa et al., 2005; Snowden et al., 2005; Arite
et al., 2007; Simons et al., 2007; Drummond et al., 2009; Lin
et al., 2009; Drummond et al., 2012; Figure 3). D27 encodes
a b-carotene isomerase, converting all-trans-b-carotene into
9-cis-b-carotene (Alder et al., 2012; Bruno and Al-Babili,

Figure 3 Schematic representation of strigolactone biosynthesis in a number of different plant species. Bold arrows indicate elucidated enzymatic
steps; broken arrows indicated postulated biosynthetic steps. CL, carlactone; CLA, carlactonoic acid; MeCLA, methylcarlactonoate; 5DS, 5-deoxy-
strigol; 4DO, 4-deoxyorobanchol.
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2016; Abuauf et al., 2018). 9-Cis-b-carotene is cleaved by
CCD7 into 9-cis-b-apo-10-carotenal and b-ionone (Alder
et al., 2012). The former is further converted by CCD8 into
carlactone (Alder et al., 2012; Al-Babili and Bouwmeester,
2015). It is currently assumed that carlactone is the precur-
sor for all strigolactones.

The identification of biosynthetic steps downstream of
carlactone is more challenging as mutants do not display a
(clear) branching/tillering phenotype. To a certain extent,
this also holds true for the CYP711AV1 cytochrome P450,
MORE AXILLARY GROWTH1, MAX1. MAX1 was discovered
through forward genetics in Arabidopsis, which only has one

Table 1 Overview of all strigolactones identified to date

Type Name Plant speciesa Referencesb

Strigol-type SLs 5-Deoxystrigol Lotus japonicus, Sorghum bicolor,
Pennisetum typhoideum,
Nicotiana tabacum

(Akiyama et al., 2005; Awad et al.,
2006; Xie et al., 2013)

Strigol Gossypium hirsutum, Sorghum
bicolor, Panicum miliaceum

(Cook et al., 1966; Siame et al.,
1993)

Strigyl acetate Gossypium hirsutum (Cook et al., 1966)
Sorgomol Sorghum bicolor (Xie et al., 2008)
Sorgolactone Sorghum bicolor (Hauck et al., 1992)
Strigone Houttuynia cordata (Kisugi et al., 2013)
4a-Hydroxy-5-deoxystrigol/
Ent-2’-epi-orobanchol

Vigna unguiculate, Trifolium
pratense, Nicotiana tabacum

(Ueno et al., 2011; Xie et al., 2013)

4a-Acetoxy-5-deoxystrigol/
Ent-2’-epi-orobanchyl acetate

Vigna unguiculate, Trifolium
pratense, Nicotiana tabacum

(Ueno et al., 2011; Xie et al., 2013)

7b-Hydroxy-5-deoxystrigol Houttuynia cordata (Yoneyama et al., 2018b)
Orobanchol-type SLs 4-Deoxyorobanchol Oryza sativa, Nicotiana tabacum (Umehara et al., 2008; Xie et al.,

2013)
Orobanchol Trifolium pratense, Oryza sativa,

Nicotiana tabacum, Sorghum
bicolor, Solanum lycopersicum,
Medicago sativa, Pisum sativum

(Yokota et al., 1998; Awad et al.,
2006; Xie et al., 2007;
López-Ráez et al., 2008;
Yoneyama et al., 2008; Jamil
et al., 2011)

Orobanchyl acetate Vigna unguiculata, Trifolium
pratense, Pisum sativum, Glycine
max

(Müller et al., 1992; Yokota et al.,
1998; Xie et al., 2008; Yoneyama
et al., 2008)

Solanacol Nicotiana tabacum, Solanum
lycopersicum

(Xie et al., 2007; López-Ráez et al.,
2008)

Solanacyl acetate Nicotiana tabacum (Xie et al., 2007, 2013)
Fabacol Pisum sativum (Xie et al., 2009a)
Fabacyl acetate Pisum sativum (Xie et al., 2009a)
7-Oxoorobanchol Linum usitatissimum, Cucumis

sativus
(Xie et al., 2009b; Khetkam et al.,

2014)
7-Oxoorobanchyl acetate Linum usitatissimum, Cucumis

sativus
(Xie et al., 2009b; Khetkam et al.,

2014)
7a-Hydroxyorobanchol Cucumis sativus (Khetkam et al., 2014)
7a-Hydroxyorobanchyl acetate Cucumis sativus (Khetkam et al., 2014)
7b-Hydroxyorobanchol Cucumis sativus (Khetkam et al., 2014)
7b-Hydroxyorobanchyl acetate Cucumis sativus (Khetkam et al., 2014)
Medicaol Medicago truncatula (Tokunaga et al., 2015)

Noncanonical SLs Zealactone Zea mays (Charnikhova et al., 2017; Xie
et al., 2017)

Zeapyranolactone Zea mays (Charnikhova et al., 2018)
Avenaol Avena strigosa (Kim et al., 2014)
Heliolactone Helianthus annuus (Ueno et al., 2014)
Carlactone Arabidopsis thaliana, Oryza sativa (Seto et al., 2014)
Carlactonoic acid Arabidopsis thaliana, Oryza sativa,

Selaginella moellendorffii, Populus
trichocarpa

(Abe et al., 2014; Yoneyama et al.,
2018a)

Methyl carlactonoate Arabidopsis thaliana (Abe et al., 2014; Seto et al., 2014)
3-Hydroxycarlactone Oryza sativa (Baz et al., 2018)
Lotuslactone Lotus japonicus (Xie et al., 2019)
Putative SL in rice Oryza sativa (Yoneyama et al., 2018b)
Putative SL in black oat Avena strigosa (Yoneyama et al., 2018b)

aFor some SLs (5-deoxystrigol, 4-deoxyorobanchol, orobanchol, orobanchyl acetate) only representative plant species with more than two reports are shown.
bOnly the first report per plant species is shown here.
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copy of the gene (Booker et al., 2005), but no max1 mutants
are known for rice likely because it has four or five homo-
logs (Zhang et al., 2014). Biochemical characterization of
MAX1 homologs from various plant species showed they
can be classified into three types (Seto et al., 2014; Zhang
et al., 2014, 2018; Yoneyama et al., 2018a; Figure 3). The A1
MAX1s, including AtMAX1 and its homologs from tomato
and poplar, convert carlactone into carlactonoic acid. The
A2 MAX1s (rice Os900 and the Selaginella SmMAX1a/b)
produce 4-deoxyorobanchol from carlactone. The A3-type
MAX1s display both activities, and include rice Os1400 and
maize ZmMAX1b.

So far, very few other downstream enzymes involved in
the diversification of strigolactone biosynthesis in other
plant species have been identified. In Arabidopsis, carlacto-
noic acid is methylated into methyl carlactonoate by an as
yet unknown methyl transferase (Abe et al., 2014; Seto et al.,
2014). Using transcriptomics and co-expression analysis,
LATERAL BRANCHING OXIDOREDUCTASE, LBO, was identi-
fied and shown to reversibly convert methyl carlactonoate
into 10-hydroxymethyl carlactonoate (10-HO-MeCLA; Brewer
et al., 2016; Yoneyama et al., 2020; Figure 3). Through RNA-
seq and co-expression gene network analysis, a cytochrome
P450, CYP722C, was identified in cowpea (Vigna unguicu-
lata) and tomato that catalyses the conversion of carlacto-
noic acid to orobanchol (Wakabayashi et al., 2019; Figure 3).
Intriguingly, the homolog from cotton (Gossypium arbor-
eum), GaCYP722C, catalyzes the formation of the strigol-
type strigolactone, 5-deoxystrigol, from carlactonoic acid
(Wakabayashi et al., 2020) similar to LjCYP722C from Lotus
japonicus (Mori et al., 2020). Taken together, this suggests
that the CYP722C family is essential for the production of
canonical strigolactones in dicots (Wakabayashi et al., 2020).
To gain a better understanding of the importance of the
structural diversity in the strigolactones, elucidation of their
biosynthesis is imperative.

Strigolactone production is regulated by environmental

conditions

The evolution of a dual role for strigolactones as plant hor-
mones and rhizosphere signaling molecules has resulted in
quite a complex regulation of their biosynthesis, on the one
hand, to control development, and on the other hand, to
mediate symbiosis, both in response to environmental
conditions and in crosstalk with other plant hormones
such as auxin, cytokinin, ABA, ethylene, and gibberellins
(Cheng et al., 2013; Al-Babili and Bouwmeester, 2015). As
described above, under phosphorus shortage, plants se-
crete strigolactones to attract AM fungi (Gutjahr, 2014).
Indeed, strigolactone biosynthesis and production are in-
duced by phosphorus (and nitrogen) shortage in many
plant species, including Arabidopsis, rice, maize, sorghum,
red clover, tomato, and sunflower (Yoneyama et al., 2007a,
2007b; Lopez-Raez et al., 2008; Umehara et al., 2010; Jamil
et al. 2011, 2012b, 2013; Kohlen et al., 2011; Ueno et al.,
2014; Ravazzolo et al., 2019). The elevated strigolactone

production under nutrient deficiency mainly results from
the upregulation of transcription of the strigolactone bio-
synthetic genes (D27, CCD7, CCD8, MAX1), as observed in
rice, Medicago truncatula, and tomato (Bonneau et al.,
2013; Sun et al., 2014; Wen et al., 2016; Wang et al., in
press). In contrast, transcript levels of strigolactone biosyn-
thesis and transporter genes are down-regulated with suffi-
cient phosphorus supply, as shown for CCD8 and the
strigolactone transporter PhPDR1 in petunia (Breuillin
et al., 2010; Kretzschmar et al., 2012). Interestingly, strigo-
lactone exudation by Physcomitrella patens was also
shown to be increased by phosphorus starvation, suggest-
ing that the role of strigolactones and their regulation by
phosphorus availability in plants are evolutionarily con-
served (Decker et al., 2017).

Strigolactones are perceived by several different receptors

Forward genetics studies in Arabidopsis, rice, and petunia
(Petunia hybrida) have identified an a/b-fold hydrolases,
DWARF14 (D14), as the strigolactone hormone-receptor in
angiosperms (Arite et al., 2009; Gaiji et al., 2012; Hamiaux
et al., 2012; Waters et al., 2012). In parallel, a homolog of
D14, HYPOSENSITIVE TO LIGHT (HTL) or KARRIKIN
INSENSITIVE2 (KAI2), was discovered as the receptor of karri-
kins (KARs), butenolide compounds present in smoke that
stimulate the seed germination of fire-succession land plants
(Sun and Ni, 2011; Waters et al., 2012). D14 is only present
in seed plants but KAI2 is present in algae, mosses, and all
vascular land plants (Lopez-Obando et al., 2016), suggesting
that KAI2 perceives an unknown ligand, coined the KAI2-
Ligand (KL), and that this predates KAR perception (Conn
and Nelson, 2016). Most likely, D14 evolved via duplication
from the ancestral KAI2 (Delaux et al., 2012; Waters et al.,
2012; Conn and Nelson, 2016). Both D14 and KAI2 have the
catalytic triad residues, Ser95–Asp217–His246, capable of hy-
drolyzing butenolide substrates (Nakamura et al., 2013; De
Saint Germain et al., 2016; Yao et al., 2016a). However, it is
under debate whether this catalytic activity is required for
signaling (Shabek et al., 2018; Seto et al., 2019; Yao and
Waters, 2020). Genome/transcriptome analysis of parasitic
plants showed that they have one D14 (Das et al., 2015),
which likely encodes the receptor of endogenous strigolac-
tones of the parasites (Xu et al., 2018). Two groundbreaking
studies showed that parasitic Orobanchaceae have multiple
KAI2/HTL copies that encode the receptor for the percep-
tion of exogenous, host strigolactones (Conn et al., 2015;
Toh et al., 2015; and Nelson et al., this issue). The work
showed that in these parasites KAI2/HTL duplicated, and
neo-functionalized for the detection of strigolactones, result-
ing in a clade that contains 12 S. hermonthica HTLs
(ShHTL4-11) as well as four to six copies in broomrapes
such as O. cumana, Phelipanche aegyptiaca, Orobanche cer-
nua, and O. minor (based on transcriptomes not genome
sequences; Conn et al., 2015).

In addition to the receptor HTL, other components are
required for the induction of germination (Figure 4).
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Intriguingly, both D14 and KAI2/HTL require the same F-
box protein MORE AXILLARY GROWTH2 (MAX2) for sig-
nal transduction (Stirnberg et al., 2002; Nelson et al., 2011;
Waters et al., 2012). However, interaction of D14 or KAI2/
HTL with MAX2 results in different physiological responses
as their downstream signaling partners are different
(Nelson et al., 2011; Chevalier et al., 2014; Waters et al.,
2015; Yao and Waters, 2020). MAX2 activates the ubiquiti-
nation of specific target proteins, which belong to the
SUPPRESSOR OF MAX2-LIKE family (Figure 4). Since
MAX2 is present in parasitic plant genomes, and ShMAX2
can rescue Arabidopsis max2, it is highly likely that per-
ception of strigolactones in parasitic plants is also MAX2
dependent (Liu et al., 2014; Conn et al., 2015; Bunsick
et al., 2020). Strigolactone binding to HTL induces a con-
formational change that facilitates MAX2 binding. Upon
MAX2 binding to HTL, the proteasome-mediated degrada-
tion of repressor SMAX1 is activated, which eventually
results in seed germination (Bunsick et al., 2020; Khosla
et al., 2020; Figure 4).

Protein crystallography and computational modeling have
shown that the parasite-specific clade HTLs have larger bind-
ing pockets than KAI2 (Xu et al., 2018). Hence, these HTLs
can interact with the bulkier strigolactones as shown by
Arabidopsis kai2 mutant complementation studies and

competition assays with the fluorescent analog substrate
yoshimulactone green (Conn et al., 2015; Toh et al., 2015;
Tsuchiya et al., 2015; also see Nelson et al., this issue).
Intriguingly, these HTLs have lost responsiveness to (the less
bulky) KAR, the high-affinity substrate of KAI2 (Xu et al.,
2018).

Although the divergent clade HTLs across different para-
sitic plant species have more than 50% sequence identity,
their affinity toward different strigolactones varies consider-
ably (Conn et al., 2015; Xu et al., 2018; Zhang et al., 2020).
The main structural variation between HTLs occurs in the
V-shape helical cap domain, at the entrance of the binding
pocket, which is formed by helices aD1 and aD2. Changes
in the amino acid composition of aD1 affect its position rel-
ative to aD2, thus creating binding pockets with different
volumes (Xu et al., 2018). Several studies have suggested
that the main factor determining the affinity of the HTLs for
specific strigolactones is the architecture and size of this
binding pocket (Xu et al., 2018; Zhang et al., 2020). For
example, ShHTL7 has evolved to have less bulky amino acid
residues, which results in enlargement of the binding pocket.
Indeed, upon complementation of the Arabidopsis kai2 mu-
tant with ShHTL7, germination of Arabidopsis could be trig-
gered by pM concentrations of GR24 (Toh et al., 2015).
Particularly, ShHTL4,6-10 display a high affinity to natural

Figure 4 Schematic representation of the perception of germination stimulants through the HTL receptors and the effect of differences in affinity.
Germination stimulants (GS1 and 2) bind to an HTL that then recruits MAX2. The activated complex degrades downstream repressor,
SMAX, which results in de-repression of gene expression and induces germination. In case of low affinity of the HTL present in the seed for the
host germination stimulant, signal transduction and germination do not occur. Host-specific germination in root parasitic plants could be driven
by affinity differences between HTLs for host-produced germination stimulants.
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strigolactones (Toh et al., 2015; Tsuchiya et al., 2015; Zhang
et al., 2020). It is tempting to speculate that the differences
in affinity for different strigolactones between the HTLs are
the underlying mechanism for host specificity in germination
(Figure 4).

Germination stimulants play a role in host
specificity
In vitro assays have shown that different parasitic plant spe-
cies mount distinct responses to different germination
stimulants. For instance, O. cumana has a higher germina-
tion rate with strigol than fabacyl acetate, while O. hedera
showed a higher response to fabacyl acetate than strigol
(Fernández-Aparicio et al., 2010). Something similar holds
true for the witchweeds. S. hermonthica ecotypes collected
from maize and sorghum responded differentially to the
exudates of maize (Zea mays), cowpea (Vigna unguiculata),
and the synthetic germination stimulant GR24 (Matusova
and Bouwmeester, 2006). The best in vivo example of the
importance of germination stimulants in determining host
specificity is the Striga resistance of the sorghum (Sorghum
bicolor) genotypes that produces orobanchol instead of the
5-deoxystrigol that is produced by susceptible genotypes
(Mohemed et al., 2016; Gobena et al., 2017; Mohemed et al.,
2018). Intriguingly, pearl millet (Pennisetum glaucum), which
has been shown to produce orobanchol-type strigolactones,
and maize, producing noncanonical strigolactones, are
also severely infested by S. hermonthica. Two ecotypes of
S. hermonthica collected from sorghum and millet, displayed
very different germination when exposed to a sorghum root
exudate (Awadallah and Dafaallah, 2020) and vice versa, ger-
mination of S. hermonthica collected from sorghum was
much lower with pearl millet root exudate (Nasreldin, 2018).
These differences become even more puzzling by the obser-
vation that in regions dedicated to the cultivation of sor-
ghum, S. hermonthica displayed rapid adaptation upon
introduction of new host species that were initially not
infected. Curiously, species such as barley (Hordeum vulgare),
wheat (Triticum aestivum), and teff (Eragrostis tef)—which
are considered nonhost species for Striga—have shown se-
vere infestations over time (Ejeta, 2007). This suggests that
Striga can rapidly adapt to a new host, including to its ger-
mination stimulants. The mechanism underlying this adap-
tation has not been elucidated. Based on amplified fragment
length polymorphism analysis, S. asiatica ecotypes adapted
to different hosts were indeed genetically distinguishable
(Botanga et al., 2002), albeit a study conducted in Ethiopia
did not find this for S. hermonthica (Welsh, 2011).

It is still an enigma whether strigolactone receptors,
encoded by the HTLs, play a role in this host specificity and
adaptation and, if so, what the underlying mechanisms
are. A transcriptomics study on the effect of the host on
S. hermonthica gene expression demonstrated an influence
of the host on parasite gene expression, including genes in-
volved in defense, pathogenesis, and plant hormone re-
sponse (Lopez et al., 2019). As pointed out by the authors,

these observations made during the vegetative stage of the
parasite indicate the importance of studies to investigate
the host–parasite interaction beyond the haustorial
connection.

In the witchweeds, strigolactones are the main germina-
tion stimulants. However, in the broomrapes, there are sev-
eral examples of other, sometimes structurally similar,
compounds that act as germination stimulants in, so it
seems, very specific host–parasite combinations. These com-
pounds sometimes resemble the strigolactones, but some
are quite structurally different, which raises the question if
these germination stimulants are perceived by an HTL re-
ceptor and if so, how this receptor evolved affinity for such
different molecules. A striking example is the response of a
B. napus P. ramosa ecotype that responds to 2-phenylethyl
isothiocyanate (Matusova and Bouwmeester, 2006; Auger
et al., 2012; Figure 2). Strigolactones have not yet been iden-
tified in the root exudate of B. napus (Auger et al., 2012)
possibly because the Brassicaceae are not a host to AM
fungi. Also intriguing is the host specificity of O. cumana
that parasitizes sunflower and responds to the sesquiterpene
lactones dehydrocostus lactone, costunolide, tomentosin,
and 8-epixanthatin as germination stimulants (Joel et al.,
2011; Raupp and Spring, 2013) but also to the strigolactone
heliolactone (Ueno et al., 2014; Figure 2). Interestingly, seeds
of P. ramosa do not respond to sesquiterpene lactones
showing the specificity of the O. cumana receptor, possibly
HTL, for these compounds. A rigorous evaluation of the af-
finity of the HTLs of these different parasitic plant species
for these (putative) germination stimulants from other
chemical classes should provide more insight into the re-
markable examples of the evolution of germination
stimulant-mediated host specificity.

Concluding remarks
Research done in the past 10–20 years has greatly improved
our knowledge on the biological relevance of germination
stimulants, for both root parasitic plants as well as their
hosts. This particularly concerns our knowledge on the di-
verse roles of strigolactones as well as their biosynthesis and
perception, but also the discovery of alternative, nonstrigo-
lactone, germination stimulants. So far the involvement of
germination stimulants has only been demonstrated in the
broomrapes and witchweeds. Facultative parasites from the
Orobanchaceae and parasitic plants from other families are
assumed not to use any host presence cues, such as germi-
nation stimulants. However, it would seem that the re-
sponse to host cues confines an evolutionary advantage also
for facultative parasites. The expansion of KAI2/HTLs that
now was also demonstrated for the facultative parasite
Phtheirospermum japonicum (Conn et al., 2015) suggests we
may have overlooked such cues and more careful germina-
tion assays should show if this is true (see Outstanding
questions box).

What we have learned from the strigolactones is that evo-
lution in a parasite of a developmental dependence on a
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host signal must make use of an essential host molecule
that cannot easily disappear under selection pressure. The
enormous structural diversity that we are uncovering in the
strigolactones suggests that this selection pressure does exist,
and is resulting in an arms race-like diversification in chemi-
cal structure to secure specificity in beneficial signaling rela-
tions and exclude pathogens. Why, however, most plant
species produce blends of different strigolactones remains a
conundrum. Possibly they are involved in additional under-
ground signaling relations that we have not identified yet
with different strigolactones mediating different relations.
Examples of the latter could be the role of strigolactones as
signals for other beneficial microorganisms such as
phosphate-solubilizing and nitrogen-fixing bacteria (see
Outstanding questions box).

So indeed, the obvious biological importance for the host
makes the strigolactones a reliable germination stimulant,
but an intriguing question remains how the parasites have
evolved mechanisms to deal with low phosphorus availabil-
ity, as under these conditions, germination-stimulant pro-
duction and therefore infection is high, as is especially clear
in the witchweeds. As discussed, in the broomrapes, selec-
tion for other germination stimulants seems to have oc-
curred. This possibly removed the link between the
germination stimulant and low phosphorus, which could be
a selective advantage, provided that the new germination
stimulant is also essential for the host and cannot easily be
selected against. The sunflower and rapeseed germination
stimulants for O. cumana and P. ramosa possibly fulfill these
requirements because they represent secondary metabolites
that may play an essential role in pathogen or insect

protection of the host. The evolution of new germination
stimulants requires also evolution of new receptors in the
parasites. The expansion of the HTL receptor clade in para-
sitic plants represents an intriguing science field. Further bio-
chemical characterization of the receptors and what
determines their expression, as well as the possibility to ma-
nipulate their expression in a model parasite will allow us to
further unravel the role of these receptors in the interaction
of hosts and parasites, including the extent to which they
contribute to host specificity (see Outstanding questions
box).
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