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Robert van Rooij and Katrin Schulz
Institute for Logic, Language and Computation (ILLC)
University of Amsterdam

Abstract

In this paper we argue that the antecedent of a (non-analytic) conditional is causally
relevant to the consequent, ... at least if standard background conditions hold. Natural
counterexamples to the causal relevance analysis are argued to be cases where the standardly
assumed background condition(s) do not hold.
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Causal Relevance: Semantics or pragmatics?

Causality even for Even-if conditionals.

1 Introduction

The following sentence is inappropriate and misleading:

(1) If it was sunny in Berlin yesterday, there are COVID casualties in Brazil today.

Why? Because this conditional sentence strongly suggests that what happened in Berlin (the
antecedent) is relevant to what happens in Brazil (the consequent). The sentence is misleading
because we know no such relevance relationship exists.

Although what makes this conditional sentence misleading is clear, the standard semantic
analyses of conditionals by themselves do not predict that anything is wrong with it, because
they do not make relevance as part of the meaning of conditionals. According to one such
theory (e.g. Adams, 1975), the only thing that counts for the meaning of conditional is that
the consequent is likely, or probable, given the antecedent. Given that the consequent of the
above conditionals is likely, or even certain, Adams’ semantic analysis does not predict that
the whole conditional sentences is appropriate to use. The same prediction follows from the
other popular semantic analysis of conditional sentences (e.g., Stalnaker, 1968; Kratzer, 2012),
which demands, instead of relevance, that the consequent is true in all most similar/normal
antecedent worlds.

We will discuss two ways to tackle this problem: according to the first semantic solution
(e.g. Douven, 2008, 2016) conditionals are used as explanations, and relevance is built in
into the meaning of the conditional. We discuss two probabilistic ways to work out such a
semantic approach. On the first semantic analysis, ‘If A, then C’ (from now on abbreviated
by A ⇒ C) is assertable if p(C|A) − p(C|¬A) = ∆PC

A >> 0. This analysis seems natural
from a psychological point of view, because measure ∆PC

A is used frequently to measure the
learned association between A and C (cf. Shanks, 1995). Unfortunately, the use of this notion
gives rise to various empirical problems. These problems motivate a second causality-based
semantic analysis proposed by van Rooij & Schulz (2019). Unfortunately, it turns out that
this analysis won’t be appropriate for all (indicative) conditionals, because the analysis is
problematic for some examples where causal relevance seems explicitly denied. To meet these
problems, we discuss the natural pragmatic solution: conditional A⇒ C is true, or assertable,
if P (C|A) ≈ 1, but relevance comes out because of the implicature that the consequent is not
believed. Although this analysis seems appealing, we will still argue in favour of a slightly
adapted causal analysis after all, according to which the measure of causal power is influenced
by background conditions as well.

2 Two relevance-based analyses of conditionals

One consequence of standard analyses of conditionals is their acceptance of an inference known
as conjunction sufficiency, that A,C |= A ⇒ C, i.e., the assumption that the (known)
truth of A and C suffices for the assertion of (indicative) conditional A⇒ C, also without any
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connection between A and C. This principle, however, seems ad odds with an appropriate use
of conditionals, as exemplified by (1) and (2):

(2) If I raise my little finger, there will be rainfall this winter.

where we should suppose that the finger is indeed raised and that there will be rainfall.
Conjunction sufficiency is problematic as well if there is a connection, but where the connection
is not of the right kind, for instance because the antecedent made the consequent not likely
enough or led to it only through an indeterministic process:

(3) a. If he worked hard, he passed (he worked hard, but he passed only because he
cheated, too).

b. If the coin was tossed, it fell heads.

Arguably, these examples are odd, because of a lack of (enough) relevance between antecedent
and consequent. If one takes conditionals A ⇒ C to express a positive relevance relation
between antecedent and consequent (Douven, 2008; Spohn, 2013), what comes to mind is
that instead of demanding that the conditional probability of C given A, p(C|A) is high, one
demands that this probability is higher than that of p(C), i.e., p(C|A) >> p(C), or equivalently,
∆PC

A = p(C|A)− p(C|¬A) >> 0.
If this is all that is demanded, this gives rise to a number of surprising predictions. First,

on this analysis Contraposition (A⇒ C ∴ ¬C ⇒ ¬A) and (the conditional variant of) Denying
the Antecedent (A ⇒ C ∴ ¬A ⇒ ¬C) are predicted to be valid (Suppes, 1970), in spite of
many counterexamples. Furthermore, although Transitivity (A ⇒ B,B ⇒ C ∴ A ⇒ C)
and Strengthening of the Antecedent (A ⇒ C ∴ (A ∧ B) ⇒ C) are correctly predicted to be
invalid (or so we think, following Adams, 1975), under the above ∆PC

A relevance-based analysis
of conditionals, counterexamples to such inferences can be found very easily. For linguistic
reasons, however, such counterexamples should be really exceptional, because strengthening of
the antecedent, for instance, is important for licensing of NPIs in antecedents of conditionals.
Indeed, for Stalnaker (1975) these are pragmatic reasonable inferences.

Consider the example due to Eells & Sober (1983) illustrated by the picture below. In
the story that belongs to this picture, individuals either smoke, S, or not, ¬S, at time 1, t1.
At later time t2 they either get heart attacks, H, or not, and still later, at t3, they either
experience heart pains, P or not. For the picture, we started with 100 representative smokers
and 100 representative non-smokers. Note that S ⇒ H and H ⇒ P both hold according to
the ∆P -based analysis: p(H|S) = a > b = p(H|¬S) and p(P |H) = 79

110
> 40

90
= p(P |¬H) (in

fact, both p(P |S ∧H) = w > x = p(P |S ∧ ¬H) and p(P |¬S ∧H) = y > z = p(P |¬S ∧ ¬H)
hold). Still it won’t be the case that S ⇒ P holds according to the ∆P analysis, because
p(P |S) = 45

100
< 74

100
= p(P |¬S).

S

H

P ¬P

¬H

P ¬P

a

w x

100

60 40

30 30 15 25

¬S

H

P ¬P

¬H

P ¬P

b

y z

100

50 50

49 1 25 25

The reason that transitivity doesn’t go through here is that the probability of getting heart
pains depends in this story not just on whether one had a heart attach at t2, but also on whether
one smoked at t1. In the story, the probability of pain given heart attack and smoking is less
than the probability of pain given heart attack and not smoking. To get transitivity, we need
to make three assumptions: (i) the probability of having heart pains at t3 depends only on
whether there has been a heart attack at t2, and is thus independent on what happened at t1.
Thus, p(P |H ∧S) = p(P |H ∧¬S) and p(P |¬H ∧S) = p(P |¬H ∧¬S). In causal modelling this
is known as the Markov property. The second assumption, (ii), is that to determine whether

3



H ⇒ P holds, we should not only check whether p(P |H) > p(P |¬H), but we should also hold
the other (background) factors (in this case only whether S) constant, thus we should check
whether p(P |H ∧ S) > p(P |¬H ∧ S) and p(P |H ∧ ¬S) > p(P |¬H ∧ ¬S) hold. (this holds in
this case). Conditions (i) and (ii) strongly suggest that the conditionals should be given a
causal relevance analysis, because this is how causal relevance is determined. But to assure
transitivity, we need a third assumption, (iii), as well: there is no other factor at t2 caused
by S that is causally relevant to what happens at t3. If we make all these three assumptions,
we can easily prove that transitivity holds, also on our suggested analysis of conditionals:
S ⇒ H,H ⇒ P |= S ⇒ P . Condition (iii) is a minimality assumption (enforced by, e.g.,
the probability functions with maximal entropy): the assumption that there are no (for S, H
and P relevant) other direct causal relevance relations than those mentioned: only S ⇒ H
and H ⇒ P . Indeed, if we added S ⇒ D and D ⇒ ¬P for new proposition D as premisses, it
wouldn’t follow anymore that the indirect causal relation S ⇒ P is predicted to hold.

The minimality assumption on causal relations can also explain why inferences like Strength-
ening of the Antecedent (A ⇒ C ∴ (A ∧ B) ⇒ C) and Contraposition (A ⇒ C ∴ ¬C ⇒ ¬A)
– although not valid in general – go through in most cases. Strengthening holds, because by
minimality B 6⇒ ¬C. Contraposition holds because from A ⇒ C and the assumption that C
can only be caused by A due to the minimality inference, it follows that A ⇔ C and we can
thus conclude from ¬C that ¬A.

Douven (2008) also argued that for a relevance-based analysis of (indicative) conditionals
of form A⇒ C it is insufficient to just demand that ∆PC

A > 0. He did so for a rather different
reason than we did above, however, and claimed that conditionals require something else as
well. Douven demanded that on a proper relevance-based analysis of conditional A ⇒ C, it
should not only be that (i) p(C|A) > p(C|¬A), but also that (ii) p(C|A) should be high, i.e.,
close to 1.

Interestingly, this combination of demands means that p(C|A)− p(C|¬A) should be close

to 1 − p(C|¬A), which means in turn that p(C|A)−p(C|¬A)
1−p(C|¬A)

= ∆∗PC
A should be high. But this

later measure is exactly how Cheng’s (1997) notion of causal power can be estimated (under
certain conditions), and van Rooij & Schulz (2019) show that on a causal power analysis, many
conditionals, including diagnostic ones, can be handled naturally. Moreover, under the pro-
posed causal power analysis of conditionals and the above mentioned minimality assumption
(due to the attested fact (cf. Mill, 1843; Brem & Rips, 2000) that hearers typically ignore
alternative causes of C on interpreting A ⇒ C), it immediately follows that assertability of
the conditional normally ‘goes by’ the corresponding conditional probability, p(C|A). A good
analysis of conditionals should also account for ‘analytic’ conditionals like ‘If x is a bachelor,
x is a man’. Fortunately, our analysis in terms of ∆∗PC

A can, because if A |= C and p(C) 6= 1,
it follows immediately that ∆∗PC

A = 1, its maximal value.

3 A pragmatic analysis of relevance

According to the semantic analyses of conditionals discussed in the previous section, the
antecedent should be positively relevant to the consequent. But it is clear that this is not
always the case: there are examples where positive relevance is not required:

(4) a. If Mary leaves the party early, Bill will be unhappy,
b. but if Mary doesn’t leave the party early, Bill will still be unhappy.

This suggests that the presumed positive relevance of the antecedent should be due to a prag-
matic cancellable implicature. A pragmatic strategy presupposes a semantic analysis of indica-
tive conditionals. What should the basic semantic analysis be? Although they have something
to say for themselves, we strongly believe that the material or strict conditional account of
indicative conditionals won’t do, for one thing because such analyses predict that indicative
conditionals always allow for inferences like ‘strengthening of the antecedent’, ‘transitivity’
and ‘contraposition’, which seems false. For another thing, with such semantic analyses it is
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hard to capture the intuition that the probability of the conditional ‘If I pick an ace, it is going
to be the ace of clubs’ intuitively ‘goes with’ the corresponding conditional probability.

The most direct route to account for the above intuition is that conditional ‘If A, then C’
(abbreviated from now by A ⇒ C) just expresses the speakers’ conditional probability of C
given A, i.e., p(C|A). But we don’t want to assume that the assertability value of A⇒ C,
i.e. AV(A ⇒ C) is simply p(C|A). The reason is that for assertability we have to take into
account pragmatic presuppositions and implicatures as well (cf. Skyrms, 1980). Instead, let
us assume with Skyrms that the basic assertability value of ‘If A, then C’, BAV(A ⇒ C),
is p(C|A). The assertabiility value of the indicative conditional A ⇒ C, i.e., AV(A ⇒ C), is
then based on its basic assertability value plus the (uncancelleble) appropriateness condition
that A is really possible, i.e., 0 << p(A), and some cancellable pragmatic implicatures.

It only seems natural that the conditional is asserted because the alternative assertion that
the consequence is believed/known C could not yet be appropriately made. Thus, A ⇒ C
conversationally implies that p(C) << 1. Let’s see how this works out:

1. BAV(A⇒ C) ≈ 1, and thus p(C|A) ≈ 11 by assertion.

2. p(C) << 1 by implicature.

3. p(C|A)− p(C) >> 0 by 1 and 2.

4. p(C|A) >> p(C|¬A), because p(C|A) >> p(C) iff p(C|A) >> p(C|¬A).

5. Thus AV(A⇒ C) = p(C|A)−p(C|¬A)
1−p(C|¬A)

≈ 1 because p(C|A) ≈ 1 (from 1).

Thus, the demand that relevance measure ∆∗PC
A should be high discussed in section 2 falls

out as a pragmatic implicature! The idea is that (i) a standard semantic analysis suffices
according to which BAV(A ⇒ C) = p(C|A) ≈ 1, and (ii) that causal relevance follows as a
pragmatic cancellable conversational implicature. The implicature of (4-a) that Bill’s un-
happiness would be caused by Mary’s leaving early is cancelled by (4-b).

Also for counterfactual, or subjunctive conditionals the antecedent is normally causally
relevant to the consequent. Indeed, such conditionals have much in common with indicative
conditionals, although in contrast to indicative conditionals, for counterfactuals it is typically
assumed that p(A) = 0, if p is the current subjective probability function (cf. Stalnaker,
1975). Indeed, Adams (1975) proposed that for counterfactuals we should look at the prior
probability state, where A was still possible. This gives rise to the correct predictions for
many examples, but not all. To see this, look at the following examples due to Morgenbesser
and Edgington, respectively:

(5) a. If John had bet on heads, he would have won.
b. If John had caught the flight, he would be in Paris now.

Intuitively, BAV(A ⇒ C) would be 1
2

for (5-a), because we assume that the past chance of
winning conditional on betting heads was 1

2
. Similarly, we may be almost certain about (5-b),

given that we take the past chance of being in Paris conditional on taking the flight to Paris
to be very high. However, suppose for (5-a) that we know that the coin came up heads. We
then can be certain that John would have won, because how the coin would have landed would
not have been influenced by my betting on the outcome. An analogous situation can arise
with respect to (5-b) as described by Edgington (1995). Assume that we know that the plane
crashed because the on-board computer broke down. Given this, we should have a probability
close to 0 in (5-b), because if John had caught the flight, he would be dead now. Thus, Adams’
prior probability account is not completely correct:2 we have to take into account facts that
occurred later, but that were causally independent of the antecedent.

In the above cases the antecedent was causally relevant to the consequent. But it seems
that that doesn’t always have to be the case.3 Consider the following variant of Tichy’s (1976)

1On a Kratzerian analysis, it is demanded that p(C|A) = 1 and the same reasoning goes through.
2Skyrms (1980) argued for a prior propensity analysis to account for other counterexamples.
3Consider also an example by Stalnaker (1968), ‘If the Chinese enter the Vietnam conflict, the United States

will use nuclear weapons,’ uttered by someone who believed (in the 1960s) that the US was going to use nuclear

5



well-known example due to Frank Veltman:

Suppose that Jones always flips a coin before he opens the curtains to see what the
weather is like. Heads means he is going to wear his hat in case the weather is fine,
whereas tails means he is not going to wear his hat in that case. Like above, bad
weather invariably makes him wear his hat. Now suppose that today heads came
up when he filipped the coin, and that it is raining. So, Jones is wearing his hat.

Now the question is whether the following sentence is acceptable:

(6) If the weather had been fine, Jones would (still) have been wearing his hat.

Intuitively, the answer is ‘yes’. This means that we conclude that the antecedent doesn’t have
any causal effect on the consequent. It seems that the use of ‘still’, like in (6), indicates that
causal relevance doesn’t play a role here, suggesting that the inference to causal relevance is
indeed a cancellable conversational implicature.

4 Some doubts on the semantic/pragmatic picture

First, there are doubts about the semantic analysis that BAV(A ⇒ C) = p(C|A). Roth-
schild (2013) argues by example that at least sometimes p(A ⇒ C) 6= p(C|A). As it turns
out,4 to account for Rothschild’s example, BAV(A⇒ C) should not be equated with p(C|A),
but rather with Pearl’s (2000) causal measure p(C|do(A)) that he used to analyse coun-
terfactual conditionals (see also Schulz (2011)). Pearl’s p(C|do(A)) can be estimated by∑

bi∈B p(bi) × p(C|A, bi), a measure already proposed by Skryms (1984) to account also
for indicative conditionals. Here B = {bi} is the partition of the set of worlds still possi-
ble into causally relevant background conditions for C.5 Notice that the new proposal that
BAV(A ⇒ C) = p(C|do(A)) is still compatible with the pragmatic analysis: by a similar

reasoning as above it now follows that AV(A ⇒ C) = p(C|do(A))−p(C|do(¬A))
1−p(C|do(¬A))

≈ 1, due to the

cancellable implicature that C is not believed.6

Second, Krzyzanowska (2019) and Skovgaard-Olsen et al. (2019) argue on experimental
grounds against the above pragmatic analysis: the relevance effect doesn’t seem to be
cancellable, which according to Griceans is a defining feature of conversational implicatures.
They point out, for instance, that an attempt to cancel the relevance effect by an explicit
denial is rated by participants as completely inappropriate:

(7) *If Mary left the party early, Bill was unhappy, though these things have nothing to do
with each other.

The inappropriateness of (7) suggests that it is impossible to make a conditional claim if
antecedent and consequent have nothing to do with each other. However, that doesn’t mean
that the relevance effect of the antecedent is thus not due to an implicature. It just means, or
so we will argue, that the inference to a relevance relation comes about in another way.

weapons in any case. Douven (2016) proposes that Stalnaker’s example is not a counterexample to a relevance-
based analysis because this is a concessive conditional for which the analysis does not apply. We think such an
‘ambiguity’-analysis is an all too easy way out.

4Due to space limitations we cannot explain this here, unfortunately.
5If each element of the partition B is probabilistically independent of A, p(C|do(A)) = p(C|A). According to

Kaufmann (2004), for the determination of p(A ⇒ C) =
∑

bi∈B p(bi) × p(C|A, bi), it doesn’t have to be that B is
a partition of causally relevant background factors.

6Note, though, that for Rothchild’s example also
p(C|do(A))−p(C|do(¬A))

1−p(C|do(¬A))
= p(C|do(A) = p(¬D), thus the example

does not show anything about a preference for an analysis of p(A ⇒ C) as p(C|do(A)) compared to the causal
relevance-based analysis.
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5 Causal relevance w.r.t. background assumptions

To work towards our proposal for how the implicature comes about, let us look again at
(6), on the assumption that we interpret the conditional in terms of an intervention. Given
that (6) is appropriate, we can learn something about the underlying causal model. First,
BAV(A ⇒ C) can only be high in case p(C|do(A)) is high. If we know, or strongly believe,
that p(C) ≈ 0, this means that A has a positive causal effect on C, and thus that the causal
picture is either A →+ C, or something of which it is is part. In case C is already known,
however, BAV(A⇒ C) can only be high in case the causal model must be such that A doesn’t
make any difference anymore. This can be if A is causally completely unrelated to C. However,
based on the inappropriateness of examples like (7), that seems unnatural. Another possibility
is that now A is only a contributing cause of C, and the causal model is an AND-gate of the
form A →+ C +← B: A and B are both causally necessary conditions for C to hold. The
latter seems to hold in the example involving Jones and his hat.

Before we take background, or enabling, assumptions into account, let us first see how
the measure ∆∗PC

A that we discussed in section 2 for the analysis of conditionals follows from
Cheng’s (1997) causal analysis. To do so, assume with Cheng (1997) that events of type a
have unobservable causal powers to produce events of type c denoted by pac. Causal power
pac is taken to be a local property of a, and thus very different from p(c|a) = p(a∧c)

p(a)
, which is

only a global property. We assume for now that events of type c are either due to events of
type a, or due to other events of type o, thus the relevant causal structure is an OR-gate like
A →+ C +← O, and p(c|¬a,¬o) = 0. It follows that p(c) can be determined as follows:

(8) p(c) = p(a)× pac + p(o)× poc − (p(a ∧ o)× pac × poc).

From this we immediately derive pac, the causal power of a to generate c. This is nothing
else but the probability of c, conditional on a and ¬o:

(9) pac = p(c|a,¬o).7

One problem with this notion is that it depends on o, and this is not always observable.
Fortunately, if we assume that a and o are, or are believed to be, independent, Cheng (1997)
shows that we can estimate pac after all. The estimation of pac given the above OR-gate is
exactly the probabilistic relevance notion that we mentioned in section 2:

(10) pac = p(c|a)−p(c|¬a)
1−p(c|¬a) = ∆∗P c

a .

So far, to determine pac it was assumed that a by itself can cause c. Of course, this is a
simplification for almost all cases of causal attributions. Striking a match, for instance, does
not by itself cause it to light. Certain background, or enabling conditions have to be
in place: there must be oxygen in the environment, the match must be dry, etc.. In fact,
for deterministic causation we can think of ∆∗P c

a = pac as modelling the probability of the
background conditions. Suppose that a can interact with b to cause c. The causal power of
conjunctive cause ab to produce c is then

(11) pab,c = p(c|a,¬o, b) = P (c|a,b)−p(c|¬a,b)
1−p(c|¬a,b) = ∆∗bP

c
a .

If b is necessary for c and a and b jointly sufficient, p(c|¬b) = 0 & pab,c = 1, pac = p(b).

With this machinery we can now tackle examples where the antecedent seems (causally) irrel-
evant to the consequent. How is it possible for party-lover Bill that on the one hand (12) and
(4-a)-(4-b), repeated here as (13-a)-(13-b), are appropriate,

(12) Even if Mary leaves the party early, Bill will be happy.

7More generally, we should use p(c|do(a),¬o) using causal intervention, but we ignore that here.
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(13) a. If Mary leaves the party early, Bill will be unhappy,
b. but If Mary doesn’t leave the party early, Bill will still/nevertheless be unhappy.

although on the other hand (7) is inappropriate, suggesting that Mary’s leaving early is taken
to be causally related with Bill’s unhappiness? To tackle this question, let’s say that a stands
for ‘Mary leaves the party early’, c for ‘Bill will be unhappy’, and alternative o for, say,
‘Sue leaves the party early.’ Now consider the following conditional probability tables (where
p(c|a, o, b) = 1− (pab,¬c × pob,¬c):

b a o p(c) p(¬c)
1 1 1 0.97 0.03

1 1 0 0.9 0.1

1 0 1 0.7 0.3

1 0 0 0 1

0 – – 0 1

b a o p(c) p(¬c)
1 1 1 0.97 0.03

1 1 0 0.9 0.1

1 0 1 0.7 0.3

1 0 0 0 1

0 – – 1 0

Table 1 Table 2

The tables differ only in the boxed entries. Notice that according to both tables,

(14) pab,c = p(c|a,¬o, b) = 0.9 = p(c|a,b)−p(c|¬a,b)
1−p(c|¬a,b) = ∆∗bP

c
a .

We will assume that a conditional of the form a ⇒ c is appropriate iff pac is high, where pac
is now determined as follows, taking background b into account as well:

(15) pac = p(c|a,¬o, b)× p(b) + p(c|a,¬o,¬b)× p(¬b).

How can we account for the appropriateness of (12) represented by a ⇒ ¬c? Let’s assume
that Bill’s supposedly unhappiness if Mary leaves the party early is based on the background
assumption that, say, Bill not only loves parties but is even more desperately in love with
Mary. So, what (12) asserts is that pa¬c is high, and it implies that pab,c is high, higher than
pob,c. What is asserted and what is implied are not in contrast with each other according to
table 1, if the speaker has good reason to believe that in contrast to the standard assumption,
background b is false. Similarly, Table 2 can explain why conditionals (13-a) and (13-b)
are both appropriate. These sentences claim that pac and p¬ac are high, respectively, and
according to table 2 this can only be if the background condition b is taken to be false. On
the other hand, it is still the case that a and c (are assumed to) have something to do with
each other, for indeed a has high causal power to produce c in case the assumed background
condition b is in place. Thus, or so we argue, examples like (13-a)-(13-b) do not falsify a
causal relevance analysis of conditionals. However, this causal relevance is dependent on the
standard background assumption, an assumption the speaker implies to be false by (13-b). As
it turns out, the background assumption doesn’t even have to be taken to be standard, it can
also be on issue, as shown by the following example due to Reinhard Muskens:

(16) a. Will Bill be unhappy, if Mary leaves the party early?
b. No, even if Mary leaves early, Bill will be happy.

6 Conclusion

We propose that with a conditional of the form A ⇒ C it always has to be the case that
A is causally relevant to C. This implies that antecedent A normally makes a difference to
C, but that this doesn’t always have to be the case. It is not the case if the standardly,
or on issue, assumed background condition does not hold. One can say that with the use
of conditional A ⇒ C a speaker asserts (and thus not just implies) that on the relevant
background condition, A is causally relevant to C (where this relevance can be negative, as
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in (12)), that (s)he conversationally implies that this background condition holds, but that a
speaker can make clear – e.g. by using markers like ‘still’ and ‘even’ – that the background
condition does not hold.
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