
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Evaluation of Container Overlays for Secure Data Sharing

Shakeri, S.; Veen, L.; Grosso, P.
DOI
10.1109/LCNSymposium50271.2020.9363266
Publication date
2020
Document Version
Final published version
Published in
Proceedings, 2020 IEEE 45th Local Computer Networks Symposium on Emerging Topics in
Networking
License
Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):
Shakeri, S., Veen, L., & Grosso, P. (2020). Evaluation of Container Overlays for Secure Data
Sharing. In H-P. Tan, L. Khoukhi, & S. Oteafy (Eds.), Proceedings, 2020 IEEE 45th Local
Computer Networks Symposium on Emerging Topics in Networking: LCN Symposium 2020 :
17-19 November 2020, Sydney, Australia (pp. 99-108). IEEE.
https://doi.org/10.1109/LCNSymposium50271.2020.9363266

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://doi.org/10.1109/LCNSymposium50271.2020.9363266
https://dare.uva.nl/personal/pure/en/publications/evaluation-of-container-overlays-for-secure-data-sharing(4d662cac-e715-48ca-b70f-c9191b13b9e4).html
https://doi.org/10.1109/LCNSymposium50271.2020.9363266

Evaluation of Container Overlays for Secure Data
Sharing

Sara Shakeri
Multiscale Networked Systems group

University of Amsterdam
Amsterdam, The Netherlands

s.shakeri@uva.nl

Lourens Veen
Netherlands eScience Center
Amsterdam, The Netherlands

l.veen@esciencecenter.nl

Paola Grosso
Multiscale Networked Systems group

University of Amsterdam
Amsterdam, The Netherlands

p.grosso@uva.nl

Abstract—There are many organizations interested in sharing
data with others, and they can do this only if a secure platform
is available. Such platforms, often referred to as Digital Data
Marketplaces (DDMs), require that all of the transactions follow
the agreements which are established by the participating organi-
zations. However, translating high-level sharing policies and setting
up such an infrastructure is still a big challenge.

Our work shows that containers and overlay networks can be
deployed to construct a sharing platform considering security and
performance aspects. We introduce an architecture for handling
sharing requests in a container-based platform with focusing
on improving security. We define three container connectivity:
Overlay per DDM, Overlay per request, and Overlay per group.
Our security analysis shows that the method ”Overlay per request”
is more secure against cross-container attacks. In terms of the time
taken to complete the sharing requests, the difference between
methods is small.

I. INTRODUCTION

Data sharing is becoming increasingly important in science
as well as in industry. Combining shared data allows for richer
analysis and deeper insights, such as in many Machine Learning
applications. This can only be achieved if this exchange fulfills
the desired level of privacy and security of each participating
party.

Examples with which we are familiar are in the health and
logistics domains [13], [34]: in the first case, personalized
medicine requires input from multiple care providers about an
individual while maintaining privacy; in the second, efficient
transport of goods relies on real-time data and correlation be-
tween different logistics organizations, while avoiding exposure
of information that can be exploited by competitors.

Sharing data via a secure platform relies on agreed-upon
sharing policies that determine who can access what and how.
Only if the platform strictly enforces their sharing policies will
organizations trust to share their data on it.

Digital Data Marketplaces (DDMs) aim to meet this demand,
and significant research efforts are ongoing at the moment to
develop DDM prototypes [34].

In general, the participating organizations in a DDM can
share two kinds of resources: software and data [19], [33].
The major consideration in a DDM is that all of the trans-
actions between algorithm suppliers and data suppliers and
their customers have to be done based on the pre-established

policies [23], [24]. These policies should be deployed when
digital resources are being shared. We call them DDM policies
in the rest of this paper. However, architectures for secure data-
sharing platforms and methods for enforcing these high-level
policies in the infrastructure in practice are still a matter of
research.

Our contribution to the DDM development efforts focuses
on the mechanisms for DDM policy enforcement in the infras-
tructure. To achieve this goal, we propose to use containeriza-
tion [3]. More specifically we propose to use overlay networks
to provide the connection between containers and at the same
time provide isolation between sharing requests by deploying
the appropriate network configuration [11], [14].

Containers are a lightweight virtualization solution that
shares the OS kernel. Unlike virtual machines (VMs), they
have better resource utilization and are easier and faster to
deploy. In a container-based data sharing platform, containers
are acting on behalf of participating parties. Therefore, each
sharing request consists of a number of containers (depending
on the number of participating parties) that are connected
together for performing sharing transactions. However, due
to lack of isolation in container-based setups, in a sharing
environment constructed from containers, data confidentiality is
at risk. Providing more isolation in a container-based network
will decrease the probability of specific kinds of attacks and
this will improve network security [31]. There are two types of
isolation that should be provided in a container-based network:
1) isolation between containers and their host and 2) isolation
between containers themselves. Multiple studies have been
done with the focus of bringing isolation between containers
and their host suggesting hardware and software solutions
by utilizing Linux kernel security modules [9], [17], [25].
However, there lacks an in-depth study of providing isolation
between containers themselves, which is of prime importance
for improving security especially in a data sharing platform. In
fact, lack of isolation between containers of sharing requests
may lead to different kinds of attacks between containers like
ARP spoofing or MAC flooding that will affect the shared
data confidentiality [22], [26]. In this paper, we define different
possible container connectivity types in a container-based DDM
with the goal of improving security by controlling cross-

978-1-7281-8314-5/20/$31.00 ©2020 IEEE 99

20
20

 IE
EE

 4
5t

h
LC

N
 S

ym
po

si
um

 o
n

Em
er

gi
ng

 T
op

ic
s i

n
N

et
w

or
ki

ng
 (L

C
N

 S
ym

po
si

um
) |

 9
78

-1
-7

28
1-

83
14

-5
/2

0/
$3

1.
00

 ©
20

20
 IE

EE
 |

D
O

I:
10

.1
10

9/
LC

N
Sy

m
po

si
um

50
27

1.
20

20
.9

36
32

66

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on October 20,2021 at 15:13:15 UTC from IEEE Xplore. Restrictions apply.

container connectivity and providing isolation between sharing
requests.

To this end, by utilizing the proposed architecture, we
implement three different overlay setup methods according to
container connectivity types and study how they provide iso-
lation and consequently security between containers of sharing
requests. We also take the performance of each overlay setup
into consideration by measuring the required time to complete a
sharing request in each method. Trade-offs between security and
performance mean that selecting the best overlay setup method
highly depends on specific requirements in each DDM and their
relative importance.

More specifically, the main contributions of this paper are:
• We present a container-based architecture for data sharing

infrastructure that can translate high-level DDM policies
to respective network configurations and run data sharing
requests in practice.

• We present three methods for bringing container connec-
tivity in the proposed architecture with the goal of improv-
ing security with higher isolation between containers of
sharing requests. The presented methods are implemented
by container overlays and are called Overlay per DDM,
Overlay per request, and Overlay per group.

• We study the security aspects of the proposed methods
with respect to how they are secure against the cross-
container type of attacks. In addition, we present a per-
formance evaluation regarding the time taken to complete
a sharing request.

II. DDM POLICIES

The most important part of a secure data sharing platform
is the collection of DDM policies that set the permission and
prohibition rules related to a specific object in a specific loca-
tion. In a data sharing platform, all of the sharing transactions
have to adhere to these established policies to enable secure
digital collaboration. Therefore, in a secure DDM, automatic
handling of users’ requests based on sharing policies has to
be supported. This requires a general description model for
DDM policies that leads to a more straight-forward request
handling in infrastructure. We used and extended the Open
Digital Rights Language (ODRL) to describe these sharing rules
between participating organizations as presented in [29].

Fig. 1 shows examples of policies that can be defined in
a DDM. In a specific scenario the transmission of a digital
object with specific functionality (software or data) to a specific
location is determined, and corresponding policies can be
formulated permitting exactly this scenario. Type A policies
describe processing a data set using software with two parties
involved. The policies differ with respect to which organization
supplies the data, which organization supplies the software,
and which organization controls execution. For example, in the
”Software as a Service” scenario, organization A supplies data
to organization B, which processes it using its own software,
and sends the result back to organization A. The corresponding
policy would then authorize exactly those communications,

Fig. 1: Examples of DDM policies in two Types A: with two
parties involved and B: with two parties and a TTP involved

and no others. Note that the ”Private Operation” policy is
a degenerate case, in which no exchange takes place or is
permitted.

Type B policies involve two parties supplying data and
software to be combined, but now there is a trusted third party
(TTP) controlling execution. Corresponding policies may be
constructed in a similar fashion as for Type A.

While DDM policies describe agreements between parties,
each party in a DDM can define a desired service from the
DDM as a sharing request. A sharing request can also be
defined in the same format of DDM policies in terms of
participating parties and the requested flow of software or
input. The request can be raised by one user of a participating
organization in a DDM, requesting to transfer data or software
for producing and using an output.

III. CONTAINER-BASED DDM ARCHITECTURE

Fig. 2 shows the proposed architecture for constructing a
container-based DDM in which DDM policies will be translated
to deployable network configurations and running sharing re-
quests will feasible by creating requests’ containers and setting
up the connection between them by means of overlay setup. The
main building blocks of the container-based DDM architecture
are:

DDM Policy matching module: A sharing request needs
to be matched with one of the pre-established DDM policies
that are described by ODRL in a DDM. In the policy matching
module, when a sharing request comes in, the module searches
for a policy that is matched with the requested sharing scenario.
If a match is found, the request will be authorized to be
executed on the infrastructure and sent to the request handler.
Otherwise, the request will be rejected at this level.

Request Handler: Request handler is responsible for orches-
trating all of the required steps for running a sharing request: 1)
Creating the list of containers that should be created for running
the sharing request (Container setup) 2) Translating DDM
policies to network configuration (Network policy setup) 3)
Selecting the proper overlay setup for connecting the containers
together (Overlay setup) and 4) Managing the implementation

100

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on October 20,2021 at 15:13:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Container-based DDM architecture

of the container and policy network configuration on already
setup overlays (Request execution).

Overlay setup: In the proposed container-based DDM,
overlays provide the connection between containers. In fact,
different types of connectivity between containers can be im-
plemented by means of overlays that lead to different levels
of isolation between sharing requests. In this work we propose
three overlay setups in a DDM that are described in section V.

Request translator: For implementing a DDM in practice,
the high-level described DDM policies and sharing requests
should be translated to the network configurations. Therefore,
after receiving a sharing request, its corresponding containers,
network policies, and traffic flow will be generated in the
Request translator. Fig. 3 shows an example of the traffic flow
of a sharing request between three organizations A, B, and C.

Fig. 3: A sharing request’s traffic flow

Request execution: After an overlay is set up, containers and
their corresponding policies are created on the overlay, and the
request is executed by sending traffic between containers based
on the requested traffic flow. Considering the request shown
in Fig.3, three containers will be created for this request, the
network policies will be deployed to allow required data transfer
and then data will be transferred between these containers
according to steps of traffic flow.

IV. CONTAINER CONNECTIVITY TYPES

With the goal of improving security in a DDM by isolating
sharing requests’ containers, different possible container con-

nectivity types in a DDM should be investigated. As a matter
of fact, with less connectivity comes a higher level of isolation
and consequently, the network will be more secure [31].

In this section, we define three different container connec-
tivity types in a DDM based on the network accessibility of a
container to other containers. We do this by considering that a
container’s network accessibility depends on overlay network
configuration and the method of allocating containers to the
overlay.

DDM connectivity (Fig. 4a): In this type of connectivity,
all of the containers are allocated to one overlay network and
therefore all of them are connected together. From a security
perspective, in this type, if for example a container of a request
of organization B is compromised (the white circle in the
center) all of the other containers in the DDM are at risk.
This type has the highest attack surface and the lowest level of
isolation between requests’ containers. However, this method
has low overhead in terms of network setup. For setting up a
DDM in this method just one overlay needs to be set up and
then the network will be ready to start sharing transactions.

Request connectivity (Fig. 4b): In this type, there is one
overlay for each single sharing request. Therefore, only the
containers related to the same request are in the same overlay.
As is shown in Fig. 4b, the connection between containers
is automatically limited by just being in the same overlay.
In this connectivity type, if a container is compromised, only
the containers that are related to that sharing request will
be affected. Therefore, this method has the highest level of
isolation.

However, in this type, one overlay has to be set up for each
single sharing request to connect its containers together. This
will lead to a substantial delay in setting up the network and
will negatively affect the time of completing a sharing request.
By increasing the number of sharing requests, this delay can
disrupt the network availability that in delay-sensitive requests
is not negligible.

Group connectivity (Fig. 4c): As an intermediate type
between the two previous ones, we define Group connectivity
type. In this type, the requests and their respective containers
will be assigned to different groups. Containers related to the
same group will be in the same overlay network. For grouping
the requests, we consider two characteristics:

• The set of participating organizations in the DDM: this
is the list of organizations in a DDM that are involved
in sharing transactions in a DDM. For example in Fig. 1,
there will be two lists of participating organizations. (A,
B) for sharing requests of Type A and (A, B, C) for sharing
requests of Type B.

• The owner of the request: this is the organization that
has submitted the request and will use the output of the
request. Referring back to the ”Sharing Results” scenario
in Fig. 1, organization A is the owner of the request
because it is using the output of the sharing transactions.

All sharing requests can be expressed with the same formalism,
as Group ((Set of participating parties), owner of request).

101

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on October 20,2021 at 15:13:15 UTC from IEEE Xplore. Restrictions apply.

(a) DDM Connectivity type:
all of the containers are con-
nected to each other.

(b) Request Connectivity type: containers of the same
request are connected to each other.

(c) Group Connectivity type: containers of the same group
are connected to each other.

Fig. 4: Three container connectivity types in a DDM

For example Group ((A,B),A) defines Two organizations A,
B are involved in sharing transactions and requests have been
submitted by organization A. Therefore, in a DDM with two
organizations A, B, and a TTP (organization C), four different
groups are defined. As is shown in Fig. 4c, organization A
requests’ containers are isolated from organization B requests’
containers. In this case, if a container is compromised (the
white circle) only the containers in the same group will be
affected, which means that the attack surface is less than the
DDM connectivity type. In addition, the number of overlay
networks that have to be set up matches the number of groups.
This leads to less delay in network setup time compared to the
Request connectivity type.

V. OVERLAY SETUP

Overlay setup plays an important role in providing this
isolation. In this section, we present the method of setting up
DDMs according to container connectivity types by means of
container overlays and explain the policy enforcement method
in each setup. In the following we focus on DDMs with
three participating organizations, but that this is just to show
the overall operations of the system and that the insights
are clearly applicable. In all setups, for constructing a DDM
with organizations A, B, and C, we consider three machines
acting as the organization’s node in the DDM. Containers of
each organization will be created on its own node. Note that
regardless of which organization has submitted the request,
containers act on behalf of participating organizations and will
be created on the organizations’ node.

1) Method 1: Overlay per DDM (Fig. 5a): This method
constructs the DDM according to the DDM connectivity type.
In this method, all of the containers related to different sharing
requests will be running inside one overlay network for the
whole DDM. For setting up this configuration, we created one
Kubernetes [7] cluster and connected all of the containers in the
cluster by a Calico overlay network [1]. We selected Calico as it
is deployable in most cloud environments in addition to being
an efficient and scalable container networking plugin that is
integrated with Kubernetes. Calico uses BGP for routing among
worker nodes. A Calico node contains two processes: Felix and
Bird. Felix programs host route tables and Bird is responsible
for route sharing among nodes [10]. After installing Calico, it

uses IP-in-IP for encapsulating container’s packets, which are
then routed by the host through a specific interface. With this
implementation all containers are connected to each other at
layer 3 and inside one overlay network.

Policy enforcement method: In this method, DDM policies
are enforced by Calico network policy rules. Calico filters the
traffic between containers by generating iptable rules in the
host machine of containers. Considering data flow in Fig. 3 as
an example, the policy rules of any request allows any traffic
according to request traffic flow (source and destination) and
forbids any traffic from any other container.

1

2 kind: GlobalNetworkPolicy
3 metadata:
4 name: ’req1-from-org.A-to-org.B’
5 spec:
6 selector: id.container == ’org.A’
7 types:
8 - Egress
9 egress:

10 - action: Allow
11 destination:
12 selector: id.pod == ’org.B’
13 ---
14 kind: GlobalNetworkPolicy
15 metadata:
16 name: ’req1-to-org.B-from-org.A’
17 spec:
18 selector: id.container == ’org.B’
19 types:
20 - Ingress
21 ingress:
22 - action: Allow
23 source:
24 selector: id.pod == ’org.A’

Listing 1: An example of Calico network policy
that allows traffic from container org.A to container
org.B related to request1.

Listing 1 shows an example of Calico network policy deployed
for ”Sharing Results” scenario in Fig. 1. It allows any traffic
from a container of organization A to a container of organiza-
tion B and forbids any other traffic to these two containers.

2) Method 2: Overlay per Request (Fig. 5b): In this method,
all of the connections are based on the Request connectivity
type. We used Docker Swarm cluster technology for implement-
ing this method as it is the available technology for running

102

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on October 20,2021 at 15:13:15 UTC from IEEE Xplore. Restrictions apply.

(a) Overlay per DDM network setup, one cluster consisting of three
virtual machine

(b) Overlay per Request network setup, one cluster consisting of three
virtual machines

(c) Overlay per Group network setup, four clusters consisting of one or
two virtual machines

Fig. 5: Overlay network setup in a DDM

multiple overlays between the same nodes in one cluster [12],
[18]. We first create a specific overlay for each request and then
create related containers inside that overlay network. Therefore,
there is one specific bridge for each requests’ container in each
host, and containers of different requests are not connected to
each other. Fig. 5b shows that as an example four different
overlay networks have been created for running four sharing
requests in DDM. Docker Swarm uses VXLAN for packet
encapsulation in overlay.

Policy enforcement method: DDM policies are enforced by
separating sharing requests via one overlay per request. In fact,
defining firewalling rules between containers is not possible
and the connection should be confined by overlays. Unlike in
the overlay per DDM method, where containers are connected
to each other in the network layer but traffic is controlled by
filtering rules, in this method there is no network connectivity
between containers of two different requests.

3) Method 3: Overlay per Group (Fig. 5c): This method
implements the Group connectivity type. A separate overlay is
created for each group and the traffic of requests’ containers
of each group should be filtered by network filtering rules. We
could not use Swarm as it can not implement the filtering rules
between containers of a group. Therefore, we used Kubernetes.
Considering the four groups that are needed for constructing a
DDM with two participating organizations and one other orga-
nization as a TTP, we need four overlay networks. As we can
just create one overlay in each Kubernetes cluster, we created
four Kubernetes clusters, one for each group. Depending on the
participating organizations, two or three virtual machines are
involved in each cluster. We used Calico as overlay technology
in each cluster. As a result, all of the containers related to the

same group are connected via one overlay network, but there
is no connection between the containers in different groups.

Policy enforcement method: Policy enforcement in this
method is implemented using Calico network policies. We
define the Calico network policy based on DDM policies and
the permitted traffic flow of a request for containers inside a
group.

VI. SECURITY

In a sharing transaction three main aspects of security should
be provided in a DDM.

Availability: All of the resources should be available for
running authorized sharing transactions by organizations. In
other words, during running multiple sharing requests at the
same or different hosts, all of the related containers should be
available for any kind of legitimate traffic transmission.

Confidentiality: Access to unauthorized data should be
forbidden. When a container is compromised it may be able
to have access to unauthorized data related to another request
that is stored in the host machine.

Integrity: An organization that is not authorized should
not be able to change data. This can be violated when a
compromised container can have access to data related to other
organizations and stored in the host machine.

[31] provides a clear classification of kinds of attacks
that can happen in a container-based platform: application to
container, host to container, container to host, and container to
container. Given our focus in this research, we consider only
the container-to-container attack type; the other three types of
attacks are out of scope of this paper.

In Container to container kind of attacks a compromised
container executing a request in a DDM attacks containers of

103

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on October 20,2021 at 15:13:15 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Cross-container attack analysis of method 1(Overlay per DDM), method 2(Overlay per request), and method 3(Overlay per group)

Attack Type Attack Scenario Security

Method1 Method2 Method3

ARP Spoofing The compromised container can have access to all unauthorized data sets which are related to other requests High High High

Malware Spread A malicious container may spread a malware across container that is connected to Low High Medium

L3 DoS Attack A compromised container might flood the other container related to another request at layer 3 by ping of death or ICMP flooding Low High Medium

Application DoS Attack A compromised container might flood the other container related to another request at application layer by SYN flood or HTTP flood High High High

other sharing requests. Other containers can be in the same
or in different hosts. We classify the container to container
attacks that are presented in [31] to three main possible attack
scenarios:

ARP Spoofing: A compromised request’s container may
gain access to confidential data via a ARP (Address Resolution
Protocol) spoofing attack on other requests’ containers. Method
1 is secure against this kind of attack because Calico makes the
connection between containers on layer 3 and therefore, ARP
spoofing can not happen [16]. This is also true about method
3, as it also uses Calico. In method 2 as the containers are
connected to different bridges and they are not in the same
local area network, ARP spoofing can not happen between
them. Therefore, these three methods are all secure against ARP
Spoofing.

Malware Spread: A malicious container may spread mal-
ware across multiple containers that are connected to it. This is
an east-west traffic that may not be detected by network policies
because there is no detection of the content of transferred data
among containers. In this type of attack, all of the containers
that are connected to the malicious container are at risk and
the confidentiality and even integrity of DDM is affected.
Comparing the three different methods, as there is no network
connection between each two request’s containers in method
2, it can provide more security than method 1. As in method
3 containers are distributed in groups, its security against this
kind of attack is higher than method 1 and lower than method
2.

Denial of Service (DoS) Attacks: In DoS attacks in a
container-based infrastructure, a compromised container can
send a huge amount of traffic to other containers, interrupt
their service, and affect the availability of DDM. We classify
possible DoS attacks into two categories of ”L3 DoS attacks”
and ”Application layer DoS attacks”.

In L3 DoS attacks, for example, a malicious container
overwhelms the other container by sending a large number
of echo-requests to affect its functionality. The isolation level
between containers of different requests plays a major role in
mitigating this kind of attack. As there is no network connection
between different requests’ containers in method 2, it is the
most secure method comparing to two other methods. However,
in method 1 containers are all connected together and it does
not have a mechanism for mitigating this kind of attack. Method
3 is more secure than method 1. It takes advantage of the
distribution of requests between different overlay groups and

this will decrease the number of requests that may be affected
by this kind of attack.

In application layer DoS attacks, due to the fact that in the
current setup of all methods, no session can be established
between containers of different requests all of the methods are
secure.

Table I summarizes the security analysis of proposed meth-
ods. It shows the degree of security of each method. We
defined high, medium and low as qualitative metrics where high
means more protection against the attack considered. Method 2
provides the most security against all kinds of attacks, because
setting up an overlay network for every single request increases
cross-container isolation between different requests’ containers.

VII. PERFORMANCE ANALYSIS

In this section we analyze the performance of the proposed
methods by measuring the time taken to complete a sharing
request in each method.

A. Experiment settings
Hardware specification: Our experiments were performed

on three servers, connected by 10 Gigabit Ethernet. Each server
is equipped with a dual 10-core Intel Xeon E5-2690 2.9GHz
processor and 8GB memory.

Software specification: We used Ubuntu 18.04 and Linux
kernel 4.15.0 as the host OS, Docker Community Edition 18.09,
Kubernetes 1.18 for managing containers, and Calico version
3.8 to implement the overlay networks.

We performed a number of experiments aimed at assessing
the times required to complete a request in the proposed
methods. In each experiment, we first selected the type of
requests, either Type A or Type B based on the pattern shown in
Fig. 1. We then, simultaneously, submitted a group of requests
consisting of a mix of sharing scenarios from the chosen type.
Following group sizes are considered:

group size ∈ {10, 20, 30, 40, 50}

Each sharing request consists of two main steps: 1) setting
up the network, and 2) transferring the shared data based on the
request’s traffic flow. We measured the average network setup
time, the average transfer time, and finally the average total time
for completing a request. We repeated every experiment three
times to ensure consistency of the results. For every repeat,
the mean of the quantity of interest was calculated across the
group of requests. In the plots the mean and standard deviation
of these means is shown.

104

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on October 20,2021 at 15:13:15 UTC from IEEE Xplore. Restrictions apply.

Setting up the network in methods 1 and 3 involves creating
the request’s containers and deploying the network policies
between them. In method 2, an overlay is established for each
request and the request’s containers are then allocated to the
overlay. Next, the shared data transfer is executed by sending 1
GByte traffic for each traffic flow of the request using iperf3 [5].

B. Experiment results
• Setup time: Fig. 6 shows the average setup time of each

request. Setup time increases in all three methods with
increasing number of requests. Method 2 has the largest
setup time and method 3 has the smallest. Note that in our
experimental setup, in method 3 two clusters are used and
half of the group size is running in each cluster. Therefore,
setup time of method 3 should be compared to the setup
time of method 1 at half the group size. For example, setup
time of 40 requests in method 3 is almost equal to setup
time of 20 requests of method 1.

10 20 30 40 50
Number of Requests

0

25

50

75

100

125

150

175

200

ne
tw
or
k s

et
up
 ti
m
e
pe
r r
eq
ue
st
(se

co
nd
)

Type A

10 20 30 40 50
Number of Requests

0

25

50

75

100

125

150

175

200
Type B

Method 1 (Overlay per DDM) Method 2 (Overlay per request) Method 3 (Overlay per Group)

Fig. 6: Network setup time as a function of the number of
requests for the three methods. Setting up an overlay network
(green) takes more time than configuring traffic filters (blue)
within an existing overlay network. Using one overlay per group
is fastest, but most of the apparent difference is due to having
more resources available (see main text).

• Transfer time: Fig. 7 shows the average transfer time.
Transfer time in Type B is larger than Type A for all
methods. That is because of the difference between the
number of transactions in requests of Type A (1.43 on
average) and requests of Type B (3). As for the setup time,
method 3 is faster than method 1, however, it has more
resources available.
These performance results differ between requests of Type
A and Type B. Also, for Type A and method 2, transfer
time decreases with increasing group size, which is unex-
pected. For Type B, a decrease relative to method 1 is also
visible for larger group sizes.
To investigate this further we plot the exact transfer time
of each individual request for different group sizes for both
type A and type B of Method 2 (Fig. 9). When increasing
the number of requests and having more containers to set
up at the same time, the average setup time increases, as
was shown in Fig. 6. As the group size becomes larger
more requests are running in parallel, which increases
resource contention and slows down the requests.

For Type A (Fig. 9, top row), less data is transferred and
the transfer step is shorter. As result the cluster spends
more time in setting up and shutting down the networks.
Therefore, the requests are scattered in time, which leads
to fewer transfers running in parallel and lower average
transfer time. This effect becomes larger for larger group
sizes and it explains the decrease of transfer time for Type
A groups over 30.

10 20 30 40 50
Number of Requests

0

50

100

150

200

250

300

350

tra
ns

fe
r t

im
e

pe
r r

eq
ue

st
(se

co
nd

)

Type A

10 20 30 40 50
Number of Requests

0

50

100

150

200

250

300

350
Type B

Method 1 (Overlay per DDM) Method 2 (Overlay per request) Method 3 (Overlay per Group)

Fig. 7: Transfer time as a function of the number of requests in
three methods. A separate overlay network per request appears
to be much faster than using a single network, but is mostly
a result of the requests being scheduled differently. See Fig. 9
and the text.

• Total time: Fig. 8 shows the average total time of complet-
ing a request. The overall time for Type B is more than
Type A in all methods. For Type A, average total time
in method 2 is less than method 1, whereas for Type B
method 1 is faster. In both types of requests method 3 is
taking less time, and roughly half of the time of method
1, that is due to the fact that it has more resources.

10 20 30 40 50
Number of Requests

0

100

200

300

400

500

to
ta

l t
im

e
pe

r r
eq

ue
st

(se
co

nd
)

Type A

10 20 30 40 50
Number of Requests

0

100

200

300

400

500
Type B

Method 1 (Overlay per DDM) Method 2 (Overlay per request) Method 3 (Overlay per Group)

Fig. 8: Total time to complete a request as a function of the
number of requests in three methods. For Type A requests, an
overlay per request was measured to be faster, due mainly to the
way the requests were scheduled here. The results for Type B
are more representative, and show that an overlay per request
is slower than using a single overlay network for the whole
DDM. Overlay per group is on par with overlay per DDM
when resource differences are taken into account.

VIII. DISCUSSION

In this section we will discuss in more detail the implications
of our findings. We are particularly interested in how the three

105

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on October 20,2021 at 15:13:15 UTC from IEEE Xplore. Restrictions apply.

5 10 15 20 25 30 35 40 45
Time

2

4

6

8

10

R
e
q
u
e
st
 n
u
m
b
e
r

group10

20 40 60 80 100
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

R
e
q
u
e
st
 n
u
m
b
e
r

group20

50 100 150 200 250
Time

0

5

10

15

20

25

30

R
e
q
u
e
st
 n
u
m
b
e
r

group30

50 100 150 200 250
Time

0

5

10

15

20

25

30

35

40

R
e
q
u
e
st
 n
u
m
b
e
r

group40

50 100 150 200 250 300 350 400
Time

0

10

20

30

40

50

R
e
q
u
e
st
 n
u
m
b
e
r

group50

20 40 60 80 100 120 140
Time

2

4

6

8

10

R
e
q
u
e
st
 n
u
m
b
e
r

group10

50 100 150 200 250
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

R
e
q
u
e
st
 n
u
m
b
e
r

group20

50 100 150 200 250 300 350 400
Time

0

5

10

15

20

25

30

R
e
q
u
e
st
 n
u
m
b
e
r

group30

100 200 300 400 500
Time

0

5

10

15

20

25

30

35

40

R
e
q
u
e
st
 n
u
m
b
e
r

group40

100 200 300 400 500 600 700
Time

0

10

20

30

40

50

R
e
q
u
e
st
 n
u
m
b
e
r

group50

Fig. 9: Transfer time of each request for Method 2 and different group sizes, for Type A (top row) and Type B (bottom row).
The requests are submitted at time zero. Each request’s bar starts when the setup step of the request is done and the transfer step
starts, and ends when the transfer finishes. For large group sizes (rightmost plots), there is on average less overlap between the
requests, causing them to complete more quickly. The total time required to execute all requests is still larger for larger groups
of requests. The effect is much stronger for Type A (top row) than for Type B (bottom row) requests.

methods compare with respect to security and performance, so
an optimal setup can be chosen when implementing a DDM.
For Type A, in our experiment method 2 was faster than the
other methods. However, our results indicate that this may be
partially caused by the Swarm scheduler, and more research is
needed into the scheduling behaviour of Kubernetes and Swarm
to see how this affects performance for this use case. For Type
B, method 2 is slightly slower than the others, and this can be
considered as a more general result.

While method 2 is the slowest method, it is also the most
secure one. Method 1 is the fastest but the least secure, and
method 3 is in between from both perspectives. In general, the
performance difference between methods is small however, so
in most cases method 2 will be preferred.

The presented experiments show the performance of the
proposed methods when the system is under pressure. In a real-
world system, loads will vary with time. In these experiments,
all of the requests arrived at the same time, which can be
considered as a worst-case scenario. However, the results are
consistent across different load levels which suggest that the
conclusions will hold for lower load levels as well.

IX. RELATED WORK

We expect the adoption of DDMs to increase in the coming
years. The research and efforts to arrive at working platforms
are ongoing. Several initiatives tackle the problem to establish
the contracts between parties. For example in the Dutch logis-
tics sector, which we are familiar with, has defined iSHARE [6].
iSHARE is a uniform set of agreements for identification,

authentication, and authorization to share the logistics data in
a safe and controlled fashion. This system can be used by all
parties which have activity in the logistics sector. However,
efforts like this do not define, as we do, an effective architecture
for deploying the contracts and agreements in infrastructure
to make a DDM work in practice, by using container overlay
networks.

In regard to the evaluation of overlay technologies’ per-
formance there is a number of previous studies that have
provided us with guidelines. The authors in [21] investigated the
possibility of deploying Osmotic Computing environments in
order to deploy distributed microservices among Cloud, Edge,
and IoT devices. In particular, they deployed two different
microservices: FTP and CoAP inside Docker containers orches-
trating by Kubernetes. In order to find the best overlay solution,
they performed scalability analysis on four different network
overlays: OVN [15], Calico, Weave [8], and Flannel [4]. [27]
proposes a solution for connecting containers utilizing EVPN
and ILA as overlay technologies. They study the performance of
Cilium/eBPF in network filtering. Authors in [30], evaluate the
scalability of Calico and Cilium [2] as two popular overlay tech-
nologies by measuring the network throughput with increasing
the number of containers and the number of deployed network
policies between containers. Finally, the work in [32] presents
a performance analysis of different methods of bringing the
network connectivity between containers including overlays. In
our work, we do consider these efforts and we move further to
identify the better-suited overlay setups depending in relation
to the data sharing request characteristics.

106

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on October 20,2021 at 15:13:15 UTC from IEEE Xplore. Restrictions apply.

Different methods have been studied for providing security
in docker containers. For example, [26] and [20] utilize Linux
Kernel security modules like Apparmor [9] and SELinux [17]
to enhance access control mechanism of the containers and
provide more protection of the host against a malicious con-
tainer. [25] studies a virtualized trusted platform (vTPM) in
a container-based architecture for protecting containers from a
malicious host. The main focus of these works is about limiting
the container’s ability to access the resources of the host but not
about the connection between containers in the network layer.

Authors in [22] discuss important security issues of Docker
containers and proposed solutions. They also propose an al-
gorithm to tackle Dos attack issues by limiting container
resources. [28] perform a comprehensive study about security
of docker containers and denotes the possible vulnerabilities
in docker containers and the available solutions in literature
works. It also specifically investigate the inter-container attacks
and suggest container network separation method as a solution,
however, no practical solution is presented. In this paper,
we focus on providing the network layer isolation between
containers by means of overlay setups specifically for data
sharing services in a DDM.

X. CONCLUSION

We propose in this paper a container-based Digital Data
Marketplace, and we introduce an architecture for implementing
sharing requests and deploying high-level DDM policies in
infrastructure. We studied the use of container overlay networks
for this application and how they affect the security and
performance of the network.

We propose three different methods for setting up overlay
networks between containers which provide different levels
of isolation. To evaluate each method, we study how they
are secure against cross-container network attacks. This work
shows that the ’Overlay per request’ method is more secure
than the other methods as it provides better isolation between
requests. We also compared the time required to complete
a sharing request between the methods. The three methods
perform similarly, although the ”Overlay per request” method
is slower than the others in larger type of requests.

Our future work will focus on building a more complete
DDM involving multiple sites and applications running across
the DDM using a cross-domain overlay network. We also want
to evaluate if a per-request selection of overlay setup meth-
ods can be more efficient while providing sufficient security.
Finally, we intend to investigate how dynamic programmable
network architectures can be used to improve system perfor-
mance and security.

ACKNOWLEDGMENT

This work is supported by the Netherlands eScience Center
and NWO under the project SecConNet. We want to specifically
thank Rena Bakhshi for the useful discussions and feedback.

REFERENCES

[1] “Calico,” https://docs.projectcalico.org/v2.0/introduction/, 2019, [Online;
accessed Jan-2020].

[2] “Cilium,” https://docs.cilium.io/en/v1.5/, 2019, [Online; accessed Jan-
2020].

[3] “Docker,” https://www.docker.com/, 2019, [Online; accessed Jan-2020].
[4] “Flannel,” https://github.com/coreos/flannelflannel, 2019, [Online; ac-

cessed June-2019].
[5] “iPerf,” https://iperf.fr/, 2019, [Online; accessed Jan-2020].
[6] “iSHARE,” https://www.ishareworks.org/en/node/6, 2019, [Online; ac-

cessed June-2019].
[7] “Kubernetes,” https://kubernetes.io/docs/tutorials/kubernetes-basics/,

2019, [Online; accessed Jan-2020].
[8] “Weave Net,” https://www.weave.works/oss/net/, 2019, [Online; accessed

Jan-2020].
[9] “AppArmor,” https://wiki.archlinux.org/index.php/AppArmor, 2020, [On-

line; accessed May-2020].
[10] “Calico Routing Modes,” https://octetz.com/docs/2020/2020-10-01-

calico-routing-modes/, 2020, [Online; accessed May-2020].
[11] “Container Networking,” https://thenewstack.io/container-networking-

breakdown-explanation-analysis/, 2020, [Online; accessed Jan-2020].
[12] “Docker overlay networks,” https://docs.docker.com/network/overlay/,

2020, [Online; accessed May-2020].
[13] “Enabling Personal Intervention,” https://delaat.net/epi/, 2020, [Online;

accessed Jan-2020].
[14] “Networking,” https://docs.docker.com/v17.09/engine/userguide/networking/,

2020, [Online; accessed Jan-2020].
[15] “OVN,” https://github.com/ovn-org/ovn-kubernetes, 2020, [Online; ac-

cessed Jan-2020].
[16] “Prevent DNS (and other) spoofing with Calico,”

https://www.tigera.io/blog/prevent-dns-and-other-spoofing-with-calico/,
2020, [Online; accessed May-2020].

[17] “SecurityEnhancedLinux,” https://en.wikipedia.org/wiki/Security-
Enhanced-Linux, 2020, [Online; accessed May-2020].

[18] “Use bridge network,” https://docs.docker.com/network/bridge/, 2020,
[Online; accessed May-2020].

[19] M. Ali, R. Dhamotharan, E. Khan, S. U. Khan, A. V. Vasilakos, K. Li,
and A. Y. Zomaya, “Sedasc: Secure data sharing in clouds,” IEEE Systems
Journal, vol. 11, no. 2, pp. 395–404, June 2017.

[20] E. Bacis, S. Mutti, S. Capelli, and S. Paraboschi, “Dockerpolicymodules:
Mandatory access control for docker containers,” in 2015 IEEE Confer-
ence on Communications and Network Security (CNS), 2015, pp. 749–
750.

[21] A. Buzachis, A. Galletta, L. Carnevale, A. Celesti, M. Fazio, and
M. Villari, “Towards osmotic computing: Analyzing overlay network
solutions to optimize the deployment of container-based microservices
in fog, edge and iot environments,” in 2018 IEEE 2nd International
Conference on Fog and Edge Computing (ICFEC), May 2018, pp. 1–
10.

[22] J. Chelladhurai, P. R. Chelliah, and S. A. Kumar, “Securing docker con-
tainers from denial of service (dos) attacks,” in 2016 IEEE International
Conference on Services Computing (SCC), 2016, pp. 856–859.

[23] L. Gommans, J. Vollbrecht, B. G. de Bruijn, and C. de Laat, “The service
provider group framework: A framework for arranging trust and power to
facilitate authorization of network services,” Future Generation Computer
Systems, vol. 45, pp. 176 – 192, 2015.

[24] D. Harris, L. Khan, R. Paul, and B. Thuraisingham, “Standards for secure
data sharing across organizations,” Comput. Stand. Interfaces, vol. 29,
no. 1, pp. 86–96, Jan. 2007.

[25] S. Hosseinzadeh, S. Laurén, and V. Leppänen, “Security in container-
based virtualization through vtpm,” in 2016 IEEE/ACM 9th International
Conference on Utility and Cloud Computing (UCC), 2016, pp. 214–219.

[26] F. Loukidis-Andreou, I. Giannakopoulos, K. Doka, and N. Koziris,
“Docker-sec: A fully automated container security enhancement mech-
anism,” in 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), 2018, pp. 1561–1564.

[27] L. Makowski and P. Grosso, “Evaluation of virtualization and traffic
filtering methods for container networks,” Future Generation Computer
Systems, vol. 93, pp. 345 – 357, 2019.

[28] A. Martin, S. Raponi, T. Combe, and R. D. Pietro], “Docker
ecosystem – vulnerability analysis,” Computer Communications,
vol. 122, pp. 30 – 43, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0140366417300956

107

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on October 20,2021 at 15:13:15 UTC from IEEE Xplore. Restrictions apply.

[29] S. Shakeri, V. Maccatrozzo, L. Veen, R. Bakhshi, L. Gommans, C. de
Laat, and P. Grosso, “Modeling and matching digital data marketplace
policies,” in 2019 15th International Conference on eScience (eScience),
2019, pp. 570–577.

[30] S. Shakeri, N. van Noort, and P. Grosso, “Scalability of container
overlays for policy enforcement in digital marketplaces,” in 2019 IEEE
8th International Conference on Cloud Networking (CloudNet), 2019, pp.
1–4.

[31] S. Sultan, I. Ahmad, and T. Dimitriou, “Container security: Issues,
challenges, and the road ahead,” IEEE Access, vol. 7, pp. 52 976–52 996,
2019.

[32] K. Suo, Y. Zhao, W. Chen, and J. Rao, “An analysis and empirical study
of container networks,” in IEEE INFOCOM 2018 - IEEE Conference on
Computer Communications, April 2018, pp. 189–197.

[33] D. Thilakanathan, S. Chen, S. Nepal, R. Calvo, and L. Alem, “A
platform for secure monitoring and sharing of generic health data in the
cloud,” Future Generation Computer Systems, vol. 35, pp. 102 – 113,
2014, special Section: Integration of Cloud Computing and Body Sensor
Networks; Guest Editors: Giancarlo Fortino and Mukaddim Pathan.

[34] L. Zhang, R. Cushing, L. Gommans, C. De Laat, and P. Grosso,
“Modeling of collaboration archetypes in digital market places,” IEEE
Access, vol. 7, pp. 102 689–102 700, 2019.

108

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on October 20,2021 at 15:13:15 UTC from IEEE Xplore. Restrictions apply.

