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ABSTRACT
Switching between different levels of resolution is essential for multiscale modeling, but restoring details at higher resolution remains challeng-
ing. In our previous study, we have introduced deepBackmap, a deep neural-network-based approach to reverse-map equilibrated molecular
structures for condensed-phase systems. Our method combines data-driven and physics-based aspects, leading to high-quality reconstructed
structures. In this work, we expand the scope of our model and examine its chemical transferability. To this end, we train deepBackmap solely
on homogeneous molecular liquids of small molecules and apply it to a more challenging polymer melt. We augment the generator’s objective
with different force-field-based terms as a prior to regularize the results. The best performing physical prior depends on whether we train for a
specific chemistry or transfer our model. Our local environment representation combined with the sequential reconstruction of fine-grained
structures helps in reaching transferability of the learned correlations.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0039102

I. INTRODUCTION

The demand to further expand the accessible length scale and
timescale in computer simulations for molecular systems remains
consistently high. Breaking the limits of molecular dynamics (MD)
simulations is, therefore, still an area of active research. State-of-the-
art approaches include enhanced-sampling techniques,1 dedicated
hardware,2 and hierarchical multiscale modeling.3–5

Multiscale modeling aims at linking different levels of res-
olution. The reduced resolution in a coarse-grained (CG) model
smooths the energy landscape and, thereby, effectively accelerates
the simulation. On the other hand, atomistic details are sometimes
necessary for a thorough investigation of processes on smaller scales.
The goal is, therefore, to use a CG model with a reduced num-
ber of degrees of freedom where it is possible and switch back to
a higher resolution where it is needed.6,7 However, the process of
reintroducing lost degrees of freedom is challenging as it requires us
to reinsert details with the correct statistical weight: Given the CG

configuration, the generated atomistic structure should follow the
Boltzmann distribution of atomistic microstates.

Existing backmapping schemes typically consist of the follow-
ing steps: At first, an initial atomistic structure is proposed for the
given CG configuration.8 A generic approach for this is to randomly
place the atoms close to their corresponding CG bead center.9,10

Subsequent energy minimization is needed to relax the structures,
and some (typically position restrained) MD simulations have to
be performed to obtain the correct Boltzmann distribution. The
computational effort for the energy minimization and MD simula-
tion schemes can become significant. Furthermore, poorly initial-
ized structures can get trapped into local minima with high energy
barriers. Therefore, human intervention is still required for more
complex molecular structures to obtain a reasonable initial structure.
The computational cost of subsequent energy minimization and MD
simulation procedures can be reduced significantly when presam-
pled fragments of a correctly sampled all-atom structure are used to
generate the initial backmapped configuration.5,7,11,12
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While reverse-mapping of molecular structures is still tack-
led largely by classical methods such as energy minimization and
MD simulation, recent approaches leveraging machine learning
(ML) are receiving growing attention. Wang and Gómez-Bombarelli
used a variational auto-encoder (VAE) to learn a mapping from
an all-atom representation to coarse-grained variables, parameter-
izing the coarse-grained force field and decoding back to atom-
istic details.13 Other approaches, including our previous study and
the work by Li et al., used convolutional conditional generative
adversarial networks (convolutional cGANs) to learn the corre-
spondence between CG and fine-grained configurations.14,15 cGANs
originate from computer vision applications and have shown the
ability to model highly complex and detailed probability distribu-
tions.16 Li et al. used a convolutional cGAN for their study on
backmapping cis-1,4-polyisoprene melts using an image representa-
tion by converting XYZ components of vectors into red–green–blue
(RGB) values.15 Other approaches for generating low-energy geome-
tries for molecular compounds but not specifically designed for
reverse-mapping include autoregressive models,17,18 invertible neu-
ral networks,19 Euclidean distance matrices,20 and graph neural
networks.21

In our previous work, we have introduced deepBackmap
(DBM),14 an approach based on cGANs to directly predict equili-
brated molecular structures for condensed-phase systems. In con-
trast to the work by Li et al., we aim to improve the quality of gen-
erated structures by incorporating prior knowledge into the input
representation as well as the loss function of the generator. We use a
voxel representation to encode spatial relationships and make use of
different feature channels typical for convolutional neural networks
to encode information of the molecular topology. The loss function
of the generator is augmented with a term penalizing configurations
with high potential energy.

A regular discretization of 3D space prohibits scaling to larger
spatial structures. Therefore, we use an autoregressive approach that
reconstructs the fine-grained structure incrementally, atom by atom.
In each step, we provide the convolutional generator only with local
information, making the method scalable to larger system sizes and
applicable to condensed phase systems.

In this work, we explore the model’s capability with respect
to chemical transferability: we probe model generalization beyond
the chemistry used for training. We recycle the learned local cor-
relations to make predictions for molecules absent from the train-
ing set. We argue that our sequential approach combined with the
local-environment representation is well suited to achieve chemical
transferability, as long as the generation of one atom only relies on
short-range force-field related features. We hypothesize that these
atomic environments strongly overlap across chemistry, as sug-
gested by the successes of ML for various electronic properties.22

We train the model on molecular liquids of small molecules: octane
and cumene. After training, we deploy the model on a more chal-
lenging polymeric melt: syndiotactic polystyrene (sPS). sPS is well
suited for our study as it is sufficiently complex but still has some
features in common with octane and cumene and, therefore, allows
for a better understanding of the limits of generalization. The per-
tinent but imperfect match between the small molecules and poly-
mer make for a more stringent backmapping exercise. Furthermore,
we insert two different physical priors into the generator’s objec-
tive based on the molecular force field. We compare their impact

on the performance of the model, especially regarding chemical
transferability.

II. MACHINE LEARNING MODEL
In the following, we will briefly summarize the approach and

then focus on new extensions and applications of our model DBM.
For a more detailed description of the model, the reader is referred
to our recent publication.14

A. Setup
We recall the notation for the coarse-grained and atomistic

resolutions, as well as the backmapping procedure:

Coarse-grained resolution: Let {AI = (RI , CI)∣I = 1, . . . , N} denote
the set of N coarse grained beads, where I(i) is the index of the
bead that contains the atom with index i. Each bead has position
RI ∈ R3 and bead type CI .

Atomistic resolution: Let {ai = (ri, ci)∣i = 1, . . . , n} denote the set of
n atoms, with position ri ∈ R3 and atom type ci. We denote φI
⊂ {ai∣i = 1, . . . , n} as the set of atoms contained in the coarse-
grained bead AI .

Backmapping: This requires us to generate a set of n atom posi-
tions r1, . . . , rn conditional on the coarse-grained (CG) struc-
ture, given by the N beads A1, . . . , AN , as well as the atom types
c1, . . . , cn. We express this problem as a conditional probability
p(r1, . . . , rn∣c1, . . . , cn, A1, . . . , AN).

Our ML technique takes examples of corresponding coarse-
grained and fine-grained configurations as input and, from these
training data, learns to generate further samples from the condi-
tional distribution p.

Learning to sample from p(r1, . . . , rn∣c1, . . . , cn, A1, . . . , AN)

directly causes several problems: (1) The trained model is fixed on
the system size and atom ordering used during training. (2) The
model becomes specific for the given molecules, and thus, chem-
ical transferability cannot be achieved. (3) A dense system has an
overwhelming number of degrees of freedom. A one-shot method,
which generates all coordinates of the system at once, would have
to solve an unreasonably high dimensional problem. Applications to
the condensed phase are, therefore, limited.

To avoid these problems, we factorize p in terms of atomic
contributions, where the generation of one specific atom becomes
conditional on CG beads as well as all the atoms previously recon-
structed.18 We, therefore, train a generative network, G, to generate
and refine the atom positions sequentially.

The backmapping scheme hereby consists of two steps: In the
first step, an initial structure is generated using the factorization

p(r1, . . . , rn∣c1, . . . , cn, A1, . . . , AN)

=
n

∏
i=1

p(rS(i)∣rS(1), . . . , rS(i−1), cS(1), . . . , cS(i), A1, . . . , AN),

(1)

where S sorts the atoms in the order of reconstruction and
{rS(1), . . . , rS(i−1)} correspond to atoms that have been already recon-
structed. The dependence on earlier predictions of G makes our
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approach autoregressive. In the second step, we want to refine the
generated structures, since this approach can still lead to misplaced
atoms that blow up the potential energy of the system. To this end,
we perform a sampling scheme inspired by Gibbs sampling, which
iteratively resamples along the sequence S several times.23 Each fur-
ther iteration still updates one atom at a time but uses the knowledge
of all other atoms. Our experiments confirmed that such sampling
leads to a good approximation of p, even with a small number of
iterations and fixing the atom ordering.

B. Local representation and feature embedding
We use deep convolutional neural networks (deep CNNs),

motivated by the impressive developments for generative tasks in
computer vision.16,24 In order to leverage CNNs for our task, an
explicit spatial discretization of ambient space is required. To this
end, we use a voxel-based representation. One-hot encoding of the
atom positions, where each atom is assigned to its nearest voxel,
leads to severe sparsity hindering learning. Therefore, we encode
atoms and CG beads with a smooth density, γ(x) and Γ(x), respec-
tively, modeled using Gaussian distributions

γi(x) = exp(−
(x − ri)

2

2σ2 ), (2)

where x is the spatial location in Cartesian coordinates expressed on
a discretized grid. The density is centered around particle position ri
with Gaussian width σ, treated as a hyper-parameter.

For each atom to be placed, a unique representation is gen-
erated by means of the density of particles placed around it. We
assume locality by limiting the amount of information about the
environment to a cutoff rcut and sum over all atoms or beads within
a cubic environment of size 2rcut centered on the current atom of
interest. In our previous work, we motivated the local environment
representation with the high computational costs of regular 3D grids
(thus, representing the whole structure at once gets infeasible) and
the scalability to larger system sizes. In this study, we also emphasize
the gains of a local environment description for achieving chemi-
cal transferability. It only encodes small-scale features that are not
necessarily unique for a given molecule, and thus, the learned local
correlations are more likely to generalize.

Another key for the chemical transferability of DBM is feature
embedding. Similar to the three feature channels found for RGB
images, we store a number of feature channels in each voxel that rep-
resent the presence of other atoms or beads of a certain kind. In our
current implementation, we made feature mapping rather flexible
such that it can be defined individually by the user. Atom types can
be distinguished not only by elements but also by chemical similar-
ity, i.e., atoms of a given type can be treated as identical in the MD
simulation. Furthermore, the user can add channels to distinguish
the functional form of interaction with the current atom of inter-
est. Interaction types can include bond, bending angle, torsion, and
Lennard-Jones. Similarly, separate channels can be used to encode
the different coarse-grained bead types. This feature representation
is permutationally invariant with respect to the ordering of atoms
in the local environment. It is well suited for achieving chemical
transferability as it focuses on local geometries determined by the
underlying force field, rather than features specific to the molecule.

C. Generative model
We train our model using the generative adversarial approach.

GANs yield strong results when aiming at high-quality generative
tasks, in particular on high-dimensional and hard to model image
spaces.16 The generator, G, is trained against a second network, the
critic C. While the critic C, is trained to learn a distance metric
between generated and reference data, the generator, G, is trained
to minimize the distance.

We use a cGAN to generate new atom positions. For the atom
i contained in the bead I, the input for G is made up from a random
noise vector z ∼ N(0, 1) and the conditional input ui ∶= {ξi, ΞI(i), ci}

consisting of the local environment representation for atoms ξi and
for beads ΞI(i), as well as the current atom type ci. The output of the
generator G is a smooth-density representation γ̂i ∶= G(z, ui).

The critic network C is trained to distinguish between reference
densities γi related to the conditional input ui and generated densi-
ties γ̂i = G(ui, z). We can write the basic loss function for the critic
as

LC = E
i
[C(ui, γi) − C(ui, G(ui, z))], (3)

and for the generator, we obtain a loss function purely affected by
generated data,

LG = E
i
[C(ui, G(ui, z))]. (4)

D. Extensions
We reimplemented the model using the python

package PyTorch.25 The code can be found at
https://github.com/mstieffe/deepBM. In the following, we want to
focus on the differences in the model compared to our previous
study.

1. Regularization and normalization
We use a variant of adversarial models where the Wasserstein

distance, which arises from the idea of optimal transport, serves as
a metric to measure the similarity between the target and the gener-
ated distributions.26 Computing the Wasserstein distance directly is
intractable, as it involves computing the infimum over the set of all
possible joint probabilities of the target and generated distribution.
Instead, we are able to use a dual representation of the Wasserstein
distance, which is based on the Kantorovich–Rubinstein duality, and
use the critic C to approximate it.27 For this purpose, the critic C has
to be constrained to the set of one-Lipschitz functions. Two major
approaches for achieving this are regularization and normalization.

a. Gradient penalty. A differentiable function is one-Lipschitz
if and only if it has gradients everywhere with norm at most one.
A soft version of this constraint is enforced with a penalty on the
gradient norm28

LC = E
i
[C(ui, γi) − C(ui, G(ui, z))

+ λgp(∥ ∇ũi ,γ̃i C(ũi, γ̃i)∥2 − 1)2
], (5)

where (ũi, γ̃i) is interpolated linearly between pairs of points (ui, γi)and [ui, G(ui, z)]. The prefactor λgp scales the weight of the gradient
penalty. The additional term in the loss function may be considered
a regularizer for the complexity of the critic C.

APL Mater. 9, 031107 (2021); doi: 10.1063/5.0039102 9, 031107-3

© Author(s) 2021

https://scitation.org/journal/apm
https://github.com/mstieffe/deepBM


APL Materials ARTICLE scitation.org/journal/apm

b. Spectral normalization. The Lipschitz constant of a linear
function is its largest singular value (spectral norm). The one-
Lipschitz constraint can, therefore, be achieved by applying spectral
normalization to all the weights in the network,

W →
W

σ(W)
, (6)

where σ(W) is the largest singular value of W.29

In our previous study, we used only regularization, but in this
study, we found that combining regularization and normalization
leads to the best results.

2. Physical prior
We collapse the generated smooth-density representation γ̂i

back to point coordinates by computing a weighted average, dis-
cretized over the voxel grid,

r̂i = ∫ dx γ̂i(x) ≈∑
m
∑

k
∑

l
xmklγ̂i(xmkl). (7)

This density-collapse step is differentiable, and thus, the point coor-
dinates can be used to incorporate a physical prior, p, in the loss
function for the generator. p is built on force-field-based energy con-
tributions and penalizes high-energy structures. It, thereby, effec-
tively narrows down the functional space of the generator. Adding
p with appropriately low weight to the loss function helps steering
the optimization and regularizes the generator. It aims at improv-
ing generalization and accelerating convergence. p depends on the
set of atoms corresponding to a coarse-grained bead, φI for ref-
erence atoms, and φ̂I for generated atoms, as well as reference
atoms NI in the local neighborhood of different beads. In the fol-
lowing, εt refers to the potential energy of specific intramolecular
and intermolecular interactions, where t runs over the interaction
types: intramolecular bond, angle, and dihedral, and non-bonded
Lennard-Jones. While bonded interactions are expressed via har-
monic (bond, angle, improper dihedral) or periodic (proper dihe-
dral) potentials, non-bonded interactions follow the Lennard-Jones
potential

VLJ(r) = 4ϵ[(
σ
r
)

12
− (

σ
r
)

6
], (8)

where ϵ is the depth of the potential well and σ is its characteristic
distance. In this study, we compare two different prior types.

a. Energy minimizing. The first prior p1 aims at minimizing the
potential energy of generated structures,

p1(φI , φ̂I , NI) =∑
t

λtεt(φ̂I , NI). (9)

b. Energy matching. The second prior p2 penalizes discrep-
ancies between the potential energies of generated and reference
structures,

p2(φI , φ̂I , NI) =∑
t

λt ∣εt(φI , NI) − εt(φ̂I , NI)∣. (10)

The prefactor λt scales the weight of a given interaction term.
Overall, we use the following loss function for the generator:

LG = E
I
[ E

i∈θI
[C(ui, G(ui, z))] + p(φI , φ̂I , NI)], (11)

where θI = {i∣ai ∈ φI} is the set of atom indices for atoms contained
in φI and p is one of the prior terms defined above.

E. Implementation details
We use 3D convolutional neural networks (CNNs) with resid-

ual connections similar to our previous work.30

The model is trained for 60 epochs in total using a batch size
of 64. We start training with λt = 0 and increase it in small incre-
ments to λt = 4 × 10−2 for non-bonded Lennard-Jones interactions
and λt = 4 × 10−3 for bonded interactions during training. The final
values for λt are obtained in a hyper-parameter search optimiz-
ing the overall performance of the model. Treating all interaction
terms equally (e.g., setting λt = 4 × 10−2 for all terms) leads to only
marginal improvement regarding covalent interactions but signif-
icantly higher Lennard-Jones energies. On the other hand, setting
λt = 0 for all covalent terms but keeping λt = 4 × 10−2 for Lennard-
Jones makes the training unstable. We use the Adam optimizer with
learning rates 5 × 10−5 for the generator and 10−4 for the critic. The
prefactor scaling the weight of the gradient penalty term is set to
λgp = 0.1. The critic C is trained five times in each iteration, while
the generator G is trained just once.

As in our previous work, we train the model recurrently on
atom sequences containing either all heavy (carbon) or light (hydro-
gen) atoms corresponding to a single coarse-grained bead. While CG
force fields might lead to the sharing of an atom between two neigh-
boring beads (see Sec. III), the reconstruction of the atom is assigned
to only one of the two beads. This assignment has no impact on
the local environment representation of the atoms (except a shift of
the center) but might affect the order of reconstruction. For heavy
atoms, we remove intramolecular hydrogen atoms from the local
environment representation. In the training mode, the initial local
neighborhood for a sequence is generated from training data. After
each step, the generated atom density is added to the local envi-
ronment representation for the next atom in the sequence until all
atoms of the sequence are generated. In the evaluation mode, no
training data are used and all environment atoms are generated
autoregressively.

We reduce the rotational degrees of freedom by aligning the
local environment according to the position of the central bead and
the difference vector to a bonded bead. This leaves one rotational
degree of freedom around the director axis, for which we augment
the training set by means of rotations. To further improve the quality
of reconstructed structures, we feed different orientations about the
said axis during prediction and choose the structure with the lowest
energy from the generated ensemble. We use four iterations to refine
the structures.

III. COMPUTATIONAL METHODS
This study is based on two molecular liquids: octane and

cumene, as well as a syndiotactic polystyrene (sPS) melt. All data
were generated using the molecular dynamics package GROMACS
(version 4.6 for sPS, 5.0 for octane and cumene, but the version does
not affect the outcome of the simulations).31 Molecular dynamics
simulations were performed in the NPT ensemble using the veloc-
ity rescaling thermostat and the Parrinello–Rahman barostat. An
integration time step of 1 fs was used.
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FIG. 1. All-atom and coarse-grained rep-
resentations of different molecules. A
similar coarse-to-fine mapping is used
for all molecules (beads denoted A for
the chain backbone and B for the phenyl
ring). We employ the chemical transfer-
ability of our ML model DBM by training it
solely on octane and cumene structures
and then apply it to the more challenging
system of syndiotactic polystyrene.

The atomistic data for sPS were reported by Liu et al.;32 the
underlying force field is based on the work of Müller-Plathe.33

Replica exchange MD simulation, a temperature-based enhanced-
sampling technique, was used to sample the system. Each snap-
shot contains 36 chains consisting of ten monomers. For additional
details regarding the simulations, the reader is referred to the work
of Liu et al.32 The coarse-grained model of sPS was developed by
Fritz et al.34 It represents a polymer as a linear chain, where each
monomer is mapped onto two CG beads of different types, denoted
A for the chain backbone and B for the phenyl ring (see Fig. 1). The
center of bead A is the center of mass of the CH2 group and the
two neighboring CH groups, which are weighted with half of their
masses. Bead B is centered at the center of mass of the phenyl group.
Bonds are created between the backbone beads A–A and between
backbone and phenyl-ring beads A–B.

The atomistic data for the liquids of octane and cumene were
generated using the Gromos force field, and the topologies were gen-
erated by AUTOMATED TOPOLOGY BUILDER.35 Notably, the Gro-
mos and sPS force fields differ in parameterization strategies, leading
to evident inconsistencies for both intramolecular and intermolec-
ular interactions. Octane and cumene simulation boxes contained
215 and 265 molecules, respectively. Both systems were sampled at
350 K. Similar to the sPS mapping, cumene was mapped onto three
CG beads: two beads of type A for the backbone, each containing
a methyl group and sharing the CH group connected to the phenyl
ring, and one bead of type B for the phenyl ring. Octane was mapped
onto four beads of type A (Fig. 1), where neighboring A beads share
a CH2 group.

IV. RESULTS
In the present work, we want to probe the chemical transfer-

ability of DBM. To this end, we train the model solely on a dataset
consisting of small molecules but validate it on a challenging poly-
mer melt. The training set contains 3225 and 2120 molecules of
octane and cumene in the liquid state, respectively, both simulated
at T = 350 K. After training was completed, we applied DBM to
720 chains (7200 monomers) of sPS melt at T = 568 K. The tem-
perature discrepancy for the test and training sets arises from the
different boiling and melting points of the molecules, as we wish to
probe the model’s chemical transferability in its liquid state. How-
ever, as we have shown in our previous work, DBM is robust against
temperature changes: the learned local correlations are weakly sen-
sitive to temperature.14 Furthermore, we want to investigate the

impact of different force field-based priors used during training of
the model. We evaluate and compare the performance of different
models regarding their ability to reproduce structural and energetic
features of the sPS reference atomistic configurations.

A. Local structural and energetic features
Figures 2–4 show distribution functions for structural and

energetic properties of sPS reference structures (“AA”) and struc-
tures generated with DBM. The model was trained using three dif-
ferent prior configurations: prior p1 (“energy minimizing”), prior p2
(“energy matching”), and no prior. For a thorough comparison, we
show results for the chemically specific models, i.e., trained directly
on sPS (left), and chemically transferred models, i.e., trained solely
on octane and cumene configurations (right).

We first analyze the angle distributions shown in Fig. 2.
The largest discrepancy between chemically specific and chemically
transferred models can be found in the C–C–C backbone-angle dis-
tributions [panels (a) and (b)]. While models trained directly on sPS
are able to reproduce the distribution with high accuracy, models
trained solely on octane and cumene lead to overly broad distribu-
tions. Surprisingly, for the other angles shown [panels (c)–(h)], the
opposite holds: Models trained on sPS generate slightly too narrow
distributions compared to the reference configurations, but distri-
butions generated with models trained on octane and cumene are
remarkably close to the reference system. Apparently, the prior type
used during training seems to only have a marginal effect on the
angle distributions.

Next, we focus on the dihedral distributions displayed in Fig. 3.
Again, the largest discrepancy between models trained on the differ-
ent training sets can be found for the distributions of the C–C–C–C
backbone dihedral [panels (a) and (b)], which is well reproduced
by models trained on sPS directly, but models trained on octane
and cumene fail to reproduce the height of the main peak and are
not able to reproduce the side peak. Similarly, the performance for
the C–C–C–H backbone dihedral [panels (e) and (f)] is also slightly
worse for models trained only on the octane and cumene datasets.
On the other hand, improper dihedrals of the phenyl rings [panels
(c), (d), (g), and (h)] are reproduced virtually equally well for both
training sets. While the generated improper dihedrals are slightly
too narrow compared to the reference distributions, we emphasize
the small range of angles due to the imposed planarity of the ring.
The prior used does not influence the generated dihedral distri-
butions. Performance varies between scenarios and interactions, as
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FIG. 2. Canonical distributions for sPS at T = 568 K. (a)-(h) Various angle terms
for reference structures (“AA”) and structures generated with our method (“DBM”)
using different priors during training are shown. Left: Chemically specific model
trained on the sPS liquid at T = 568 K. Right: Chemically transferred model trained
on octane and cumene liquids at T = 350 K.

reported by the Jensen–Shannon divergence between reference and
backmapped distributions (see Table S1 in the supplementary mate-
rial). We did not observe clear trends of the quality of reconstruction
between bending angle and dihedral.

The impact of the prior becomes most significant for the
Lennard-Jones energies, shown in Figs. 4(a)–4(d) obtained for each
sPS chain separately. Regarding models trained on sPS, both prior
p2 and no prior lead to a good match with the reference distribu-
tion. While the carbon-only Lennard-Jones energies match well, the
generated distributions show slightly large high-energy tails. On the
other hand, prior p1 over-stabilizes the system leading to a signifi-
cant shift of the distributions toward lower energies. This is reason-
able, since p1 aims at minimizing the energy of generated structures

FIG. 3. Canonical distributions for sPS at T = 568 K. Various dihedral terms for ref-
erence structures (“AA”) and structures generated with our method (“DBM”) using
different priors during training are shown. (a), (b), (e), and (f) Proper dihedral; (c),
(d), (g), and (h) improper dihedral. Left: Chemically specific model trained on the
sPS liquid at T = 568 K. Right: Chemically transferred model trained on octane
and cumene liquids at T = 350 K.

during training, and therefore might not account for the diversity of
generated microstates. For models trained on octane and cumene,
these findings turn around: While using either prior p2 or no prior
leads to significantly high Lennard-Jones energies, prior p1 dramati-
cally improves the performance of the model. Training the model to
minimize the energy seems to help learning more general features
that are better transferable across chemistry. On the other hand,
the energy-matching prior p2 and the absence of prior (only data-
driven) encourage the model to reproduce the features found in the
training set, making them less transferable. This is especially relevant
in the context of possible force-field inconsistencies.
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FIG. 4. Canonical distributions for sPS at T = 568 K. Lennard-Jones energies for
all atoms (a) and (b), Lennard-Jones energies for carbon atoms (c) and (d), and
radial distribution functions, g(r), of the non-bonded carbon atoms (e) and (f)
for reference structures (“AA”) and structures generated with our method (“DBM”)
using different priors during training are shown. Left: Chemically specific model
trained on the sPS liquid at T = 568 K. Right: Chemically transferred model trained
on octane and cumene liquids at T = 350 K.

B. Large-scale structural features
Next, we evaluate large-scale structural features. A first impres-

sion can be gained looking at the pair correlation function, g(r),
shown in Figs. 4(e) and 4(f), obtained for pairs of non-bonded
carbon atoms. All models reproduce the pair correlation function
remarkably well, indicating that the pair statistics of the sPS chains
is reproduced with great accuracy. It more broadly suggests good
agreement regarding local packing.

Beyond pair statistics, we seek to probe and compare the accu-
racy of the generated configurations of the different models at higher

order. The higher dimensionality prevents us from directly visual-
izing the space, and we turn to dimensionality reduction instead.
We build a two-dimensional map representing proximity relation-
ships between sPS monomers and their environments. The pairwise
distance between two such environments is encoded using a sim-
ilarity kernel based on the many-body smooth overlap of atomic
position (SOAP) representation.36 We neglect hydrogen atoms in
the representation. Taking the pairwise similarity for N monomers
into account, we derive an N ×N similarity matrix. We further

FIG. 5. Low-dimensional structural space of condensed-phase configurations at
T = 568 K. For each panel, snapshots are backmapped from identical coarse-
grained configurations, highlighting the overlap between reference and DBM struc-
tures. (a) Landmarks and projections of reference structures and the obtained
cluster centers. (b) Landmarks of reference structures and projections of struc-
tures generated with DBM trained either on sPS or on octane and cumene liquids
trained with prior p1.
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apply Sketchmap to project this high dimensional representation of
conformational space onto a two-dimensional embedding.37,38

Figure 5(a) displays a number of clusters obtained with the
Sketchmap algorithm using reference configurations. We analyze
the local environment of 720 sPS monomers to infer landmarks
(gray) for the two-dimensional map. We use these landmarks to fur-
ther project 1440 additional AA monomer representations (black).
In Fig. 5(b), we project the backmapped structures from correspond-
ing coarse-grained configurations applying a model trained on sPS
(red) or on octane and cumene (blue). Both models were trained
using prior p1; the projections for models trained with different pri-
ors can be found in Fig. 7 of the supplementary material. The pro-
jections of structures generated with DBM overlap significantly with
the reference points, indicating high structural fidelity beyond the
pairwise level.

An in-depth analysis of the low-dimensional maps is shown
in Fig. 6. We identify cluster centers using a k-means algorithm.
We then assign each point of the two-dimensional projection to
its closest cluster. This allows us to compute a confusion matrix
comparing the cluster assignments of reference and backmapped
structures. The diagonal on the confusion matrix hereby refers to
reference and backmapped structures that get mapped into the same
cluster, indicating closeness in conformational space. The results
for the chemically specific and chemically transferred models can
be found in Figs. 6(a)–6(f), respectively. Interestingly, the confu-
sion matrix becomes most diagonal for both training sets if we train
DBM without any prior [Figs. 6(c) and 6(f)]. However, the reduced
CG resolution implies that a single CG configuration will corre-
spond to an ensemble of atomistic microstates. This ensemble might
span a broad region in conformational space, and two microstates

FIG. 6. (Top) Confusion matrix for the different clusters obtained in the two-dimensional Sketchmap. (Bottom) Relative populations of the clusters. (a)–(c) DBM trained on
sPS liquids using (a) prior p1, (b) prior p2, and (c) no prior. (d)–(f) DBM trained on octane and cumene liquids using (d) prior p1, (e) prior p2, and (f) no prior. “ol” refers to the
outlier.
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corresponding to the same CG structure do not necessarily have to
fall into the same cluster. Therefore, it is not clear to what extent
backmapped structures should correctly map to the same clusters
as their corresponding reference structures. More importantly, the
relative cluster populations should match, as this would indicate an
accurate coverage of the conformational space. Regarding models
trained on sPS, we find that both prior p2 and no prior lead to an
excellent match of the relative populations. For models trained on
octane and cumene, all priors lead to comparable accuracy, with
limited reproduction of the relative populations.

V. CONCLUSION
In this study, we probe the chemical transferability of our

machine learning (ML) model deepBackmap (DBM), designed for
backmapping of condensed-phase molecular structures. To this end,
we trained DBM solely on liquid-phase configurations of small
molecules, specifically octane and cumene, and then tested its per-
formance on the more complex system of syndiotactic polystyrene
(sPS) melts. Furthermore, we tested different priors and their impact
on the quality of the backmapped structures.

We observe that the local correlations learned from the chem-
ically transferred models (i.e., octane and cumene) transfer remark-
ably well to sPS. Despite discrepancies for some structural distribu-
tions, such as the angles of the backbone carbon atoms, the overall
quality of the backmapped structures is encouraging. Importantly,
the model performs well in a challenging condensed-phase envi-
ronment and is able to reproduce the distribution of Lennard-Jones
energies with high accuracy. Non-bonded structural features, in par-
ticular the pair correlation function, match the reference distribu-
tions virtually identically. A higher-order investigation, facilitated
by the Sketchmap algorithm, also indicates high structural fidelity.
Although backmapped structures are not necessarily mapped onto
the same cluster as their corresponding reference structures, as
shown by the confusion matrices, DBM is able to cover the cor-
rect spots in conformational space. The relative statistical weight of
generated microstates leaves further room for improvement.

The results shown here indicate that a sequential reconstruc-
tion combined with a local-environment representation is well
suited toward achieving chemical transferability. However, general-
ization shows its limits. For example, the orientation of the phenyl
ring with respect to the backbone cannot be learned from the
octane and cumene structures, leading to misplaced atoms. This
likely explains the limited quality of the carbon-backbone structures
[Figs. 2(a), 2(b), 3(a), and 3(b)]. In addition, force-field inconsisten-
cies between molecules will evidently lead to incoherent conforma-
tional spaces, directly affecting the transferability of backmapping.

We investigated the role of the prior. The different priors only
have a marginal impact on the quality of the covalent interaction
terms. On the contrary, the non-bonded Lennard-Jones interaction
is more sensitive to the prior, as can be seen in the distributions
of Lennard-Jones energies. This can be explained with the func-
tional form of the interactions: While the harmonic or periodic
potentials for the bonded interactions react moderately to shifts
of the atomic arrangement, the Lennard-Jones potential is more
sensitive and small shifts can rapidly change the energy by sev-
eral orders of magnitude. The energy-minimizing prior p1 leads to
high-quality configurations for the chemically transferred DBM but

yields too low energies when trained directly on sPS. The energy-
matching prior p2 has an overall negligible impact compared to
training without any prior. We believe that prior p1 encourages the
model to learn more general aspects, such as increasing the distance
of non-bonded atoms, while prior p2 and no prior (only data-driven)
let the model focus on more specific features, making them less
generalizable.

In general, our approach offers the perspective to efficiently
recycle learned local correlations from small and easy to sample
molecules and deploy them for the backmapping of more com-
plex systems. This can be of tremendous use for generating high
resolution configurations of complex systems, without necessarily
simulating the fine-grained system first.

SUPPLEMENTARY MATERIAL

The supplementary material contains canonical distributions
for cumene and octane using a chemically specific model trained on
octane and cumene, as well as a chemically transferred model trained
on sPS. It also includes the Jenson–Shannon divergence between
reference and backmapped distributions for sPS for various angle
and dihedral terms. Finally, we show the low-dimensional struc-
tural space (Sketchmap) for condensed-phase configurations of sPS
backmapped from identical CG configurations using prior p2 and no
prior.
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