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The agency of computer vision models
as optical instruments

THOMAS SMITS
Utrecht University, The Netherlands

MELVIN WEVERS
University of Amsterdam, The Netherlands

ABSTRACT

Industry and governments have deployed computer vision models to make
high-stake decisions in society. While they are often presented as neutral
and objective, scholars have recognized that bias in these models might
lead to the reproduction of racial, social, cultural and economic inequity.
A growing body of work situates the provenance of bias in the collection
and annotation of datasets that are needed to train computer vision mod-
els. This article moves from studying bias in computer vision models to the
agency that is commonly attributed to them: the fact that they are universally
seen as being able to make biased decisions. Building on the work of Bruno
Latour and Jonathan Crary, the authors discuss computer vision models
as agential optical instruments in the production of contemporary visuality.
They analyse five interconnected research steps — task selection, category
selection, data collection, data labelling and evaluation — of six widely cited
benchmark datasets, published during a critical stage in the development of
the field (2004-2020): Caltech 101, Caltech 256, PASCAL VOC, ImageNet,
MS COCO and Google Open Images. They found that, despite all sorts
of justifications, the selection of categories is not based on any general
notion of visuality, but depends heavily upon perceived practical applica-
tions, the availability of downloadable images and, in conjunction with data
collection, favours categories that can be unambiguously described by text.
Second, the reliance on Flickr for data collection introduces a temporal bias
in computer vision datasets. Third, by comparing aggregate accuracy rates
and ‘human’ performance, the dataset papers introduce a false dichotomy
between the agency of computer vision models and human observers.
In general, the authors argue that the agency of datasets is produced by
obscuring the power and subjective choices of its creators and the count-
less hours of highly disciplined labour of crowd workers.
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In the last 10 years, the field of computer vision transformed dramatically. In
the early 2000s, the communis opinio was that it would take decades before
computers would gain a high-level understanding of digital images. However,
by 2015, The Guardian announced that algorithms had become ‘better than
humans at recognising images’ (Hern, 2015). Following the rapid develop-
ment of the field, scientists, governments and industry professionals have
employed computer vision models to make high-stake decisions in society.
They are used for a wide range of tasks, such as automatic inspection in man-
ufacturing, controlling industrial processes, medical diagnostics, policing,
surveillance, navigation (self-driving cars), the organization of visual data
(on social media), personalized marketing and a plethora of military applica-
tions.

While many view computer vision models as objective, scientific, or
progressive, scholars increasingly recognize that they reflect, reinforce and
introduce racial, social, cultural and economic inequities (Benjamin, 2019;
Crawford et al., 2019; Eubanks, 2019; O’Neil, 2017). Barocas et al. (2019: 33)
note that computer vision models, and machine learning applications in gen-
eral, propagate ‘inequalities in the state of the world through the stages of
measurement, learning, action and feedback’ The field of machine learning
fairness, an interdisciplinary field with strands in computer science, science
and technology studies, law and ethics (Verma and Rubin, 2018), has explored
when and how these disparities, commonly referred to as biases, become
‘harmful, unjustified, or otherwise unacceptable’ and proposed ‘interven-
tions to mitigate such disparities’ (Barocas et al., 2019: 33). While most efforts
focused on improving or fine-tuning algorithms, recent studies argue that
issues surrounding accountability, transparency and ethics in computer vision
models are primarily rooted in the collection, annotation and organization of
the large datasets that are needed to train them (Jo and Gebru, 2020; Zou and
Schiebinger, 2018).

Rather than looking at the biased, harmful or unjust decisions that
computer vision models make, this article studies the agency that is com-
monly attributed to these models: the fact that they are universally seen as
being able to make decisions in the first place. Next to the supercharged forms
of agency that some (popular) scientists have ascribed to ‘general’ artificial
intelligence, even a nuanced view of the power of computer vision models that
explicitly seeks to take humans and humanity into account’ notes that they
are already able to ‘reach or exceed the performance of human experts’ (Akata
et al., 2020).
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This article starts with the observation that, for computer vision mod-
els to be biased, they need to be conceptualized as agential subjects that can
observe and act independently from humans. Following the work of Bruno
Latour (1987), we describe this attribution of agency as a form of inverted
instrument agency. In his seminal Science in Action, Latour urges us to open
the black boxes of scientific instruments and recognize their agency in the
production of knowledge. To most people, this idea still feels counterintui-
tive. The Hubble telescope does not see anything by itself; the researcher looks
through it. An MRI scanner does not discover the disease; the doctor uses the
scanner to make the diagnosis. While other highly complex optical instru-
ments are described as tools without agency, developers of computer vision
models commonly present them as intelligent agents that can see for them-
selves.

Building on the recent interest in the connection between bias and
datasets in the field of machine learning fairness, we use visual culture theo-
rist Jonathan Crary’s (1992) concept of the optical instrument to discuss com-
puter vision models as agential optical tools in the production of contempo-
rary visuality. In doing so, we shed light on the distribution of agency between
computer vision models and the humans that develop, deploy, operate and are
processed by them, and draw lines between what computer vision models can
see and what humans can see through them.

How can we approach computer vision models as optical instruments?
This article closely scrutinizes the six papers that describe the benchmark
datasets that have shaped the field of computer vision during a critical stage
in its development (2004-2020): Caltech 101, Caltech 256, PASCAL VOC,
ImageNet, MS COCO and Google Open Images (Table 1). While improve-
ments in the accuracy of algorithms can be achieved by small teams of
researchers, as the introduction of convolutional neural networks demon-
strates (Krizhevsky et al., 2012), the construction of a new benchmark data-
set, which consists of vast amounts of annotated data, requires an enormous
effort and investment. These benchmark sets are not only used to train new
models but also to measure and compare their performance. As a result, the
six benchmark dataset papers are central to the field of computer vision and
have been cited thousands of times (see Table 1). The power to shape the field
of computer vision thus firmly resides with institutions that have the required
means to produce benchmark datasets.

After an introduction to the concept of optical instrument, a concise
explanation of computer vision models and sections on biased datasets and
methodology, this article describes how the six dataset papers produce the
inverted instrument agency of computer vision models. We follow the five
essential elements of every dataset paper: task description, category selec-
tion, data collection, data annotation and evaluation. While these elements
are often presented sequentially, this article demonstrates that they are heavily
interconnected and that the interplay between them fundamentally shapes the
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computer vision model. After analysing the five steps, we show that the agency
of computer vision models is produced by obscuring the power and subjec-
tive choices of dataset creators and the countless hours of highly disciplined
and regulated labour of crowd workers. In general, we argue that, if we want
to understand how computer vision models make biased decisions, we should
approach them in a holistic manner.

COMPUTER VISION MODELS AS OPTICAL
INSTRUMENTS

The central premise of the field of visual culture studies holds that visuality is
an ‘historical construction’ (Crary, 1992: 1). This means that the social interac-
tions between humans, optical instruments and the world determine what we
can see and how we see it. A change in one element will lead to changes in the
two others. As a result, visuality has an historical dimension: what humans can
see changes over time.

What role do optical instruments play in the production of visuality?
Crary described how the dominant narrative of modern visuality is techno-
centric, viewing the invention of new instruments as the driving force behind
changes in visuality. In contrast, he argued that optical instruments not only
produce but that they are also products of visuality. Furthermore, their role
in the production of visuality can only be understood in relation to that of
the observer: the human that sees the world through them. In Crary’s view,
a desire to see the world differently can lead to novel uses of old instruments
and the invention of new ones, which, together with the changed status of the
observer, can shape new forms of visuality.

Crary wrote his influential work on 19th-century visuality while his
own visual world was transforming radically. He argued that computers fun-
damentally changed the status of the observer (p. 1). They supplanted the
‘historically important functions of the human eye’ by digital streams of data
where images no longer referred to any position of an observer in a real world.
As a result, digital images and derivative technologies, such as ‘robotic image
recognition, relocated ‘vision to a plane severed from a human observer’ (p. 2).

Following Crary, we see optical instruments not solely as tools that
enable humans to observe the world in a certain way. Human observers and
instruments both have agency in the sense that visuality, that which can be
seen, takes shape in the constant interaction between the two. In contrast to
Crary’s view that digital image technology severs images from human observ-
ers, this article underlines the role of human agents, such as computer scien-
tists and crowd workers, in the creation of computer vision models. The desire
of computer scientists to see the world in a certain way influences the charac-
teristics of computer vision models as optical instruments, i.e. what humans
can see through them. Because computer vision models are now applied in a
wide variety of fields, these optical instruments have fundamentally shaped
our contemporary visuality.
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HOW DO COMPUTERS SEE?

In contrast to humans, computers have no specific input channel for visual
information. Just like all other information, they handle images as sequences
of numbers. Integer values between 0 and 255 denote the visual intensity of a
pixel, a small square, on a screen. Computers process digital images as three-
dimensional matrices (# [height] x # [width] x # [depth/colours]) of numbers.
Colour is expressed by stacking three layers of intensities, containing values of
red, green and blue (RGB-values). For humans, pixels operate as ‘visual signi-
fiers’ (Mitchell, 1992). The contours of a human face or the pointy ears of a cat
appear to us in the relationships between pixels.

Computer vision models rely on the mathematical relationships
between pixels to describe and analyse digital images. Until the early 2000s,
most techniques were rule-based, meaning that the code looked for pre-deter-
mined (combinations of) pixel relationships that the computer scientist asso-
ciated with a particular visual signal. Deep learning algorithms learn these
regularities between pixels. They can derive the rules, often called features,
that can best predict a specific set of objects from a collection of annotated
images. Convolutional neural networks, the most commonly used type of
algorithm, learn the optimal combination of different types of convolutions
- a mathematical process that strengthens, distorts, weakens and compresses
the mathematical relationships between pixels — to best find the visual features
that denote a particular visual sign, such as a cat. This information is stored in
the model. The shape of the data set thus determines the shape of the model.

Computer vision models require extensive collections of annotated
images to be able to learn these rules and to subsequently produce accurate
predictions. As a result, as the creators of the MS COCO dataset note, these
datasets of images not only provide a ‘means to train and evaluate algorithms,
they [also] drive research in new more challenging directions’ (Lin et al., 2014:
2). The paper describing Google’s Open Images dataset notes that ‘the need of
gargantuan amounts of annotated data to learn fron is at the ‘core’ of the suc-
cess of modern computer vision techniques (Kuznetsova et al., 2018).

Biased datasets

The field of machine learning fairness includes a wide variety of approaches.
Computer scientists have mostly focused on ‘algorithmic methods to mitigate
biases, viewing the dataset as fixed’ (Holstein et al., 2019). However, contribu-
tions to this field from other disciplines have increasingly pointed out how
data collection, annotation and organization fundamentally shape the perfor-
mance, and possible bias, of computer vision models. Drawing lessons from
archives and libraries, Jo and Gebru (2020) argue for a new specialization
in machine learning that focuses on ‘methodologies for data collection and
annotation. Other examples include the careful auditing of existing computer
vision datasets, scrutinizing their geo-diversity (Shankar et al., 2017), skin
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colour and gender (Buolamwini and Gebru, 2018), age and gender (Dulhanty
and Wong, 2019), and social class (DeVries et al., 2019).

Next to these large-scale audits, others looked at ways to mitigate
bias by removing or adding specific annotations. In February 2020, Google
announced that its Cloud Vision service would no longer label persons as
either ‘male’ or female’ noting that ‘a persons gender cannot be inferred
by appearance’ (Business Insider, 2020). Some of the original developers of
ImageNet (Yang et al., 2020) have taken the almost exact opposite route by
arguing that additional large-scale annotation of gender, age and skin colour
of the person category would lead to a more representative dataset and, as a
result, fairer algorithms.

Less interested in ways to mitigate, or solve, the problem of bias in com-
puter vision models, scholars in the humanities have studied the epistemo-
logical and normative assumptions that undergird computer vision models.
In contrast to the focus on fairness in other approaches, Crawford and Paglen
(2019) argue in their online essay ‘Excavating AT that there is no ‘neutral’
vantage point ‘that training data can be built upon’ The collection, categoriz-
ing and ‘automatic interpretation’ of images is always political: ‘who gets to
decide what images mean and what kinds of social and political work those
representations perform?’ Similar to Crawford and Paglen, instead of propos-
ing ways to mitigate the bias in computer vision datasets, this article points to
one of the most central assumptions of computer vision models: the notion
that they are able to see independently from humans. We show how this idea
fundamentally shapes computer vision datasets.

Methodology: archeologies of datasets

Crawford and Paglen (2019) describe the methodology of their project as an
‘archeology of datasets. While computer scientists mostly see the development
of computer vision models as a technical endeavour, Crawford and Paglen
argue that these models are shaped by different social and political contexts.
Their method is clearly inspired by other media archeological approaches,
which study why a certain medium ‘is able to be born . . . picked up and sus-
tain itself in a cultural situation’ (Parikka, 2012: 6). Instead of following teleo-
logical and technocentric accounts of ‘new media, media archeologists attempt
to uncover the specific ‘historical context’ that produced them (Gitelman and
Pingree, 2003: xiv).

Crawford and Paglen (2019) focus on unearthing what they describe as
the three most important layers of the ‘overall architecture’ of computer visions
datasets: the taxonomy of the categories in the dataset, the individual classes
and the individually labelled images. By looking closely at the politics of label-
ling, they show that datasets are not only built around ‘unsubstantiated and
unstable epistemological and metaphysical assumptions about the nature of
images, labels, categorization, and representation’ but that these assumptions
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also ‘hark back to historical approaches where people were visually assessed
and classified as a tool of oppression and race science.

This article expands the ‘archaeology of datasets’ method in three ways.
First, we move from an overall critique of computer vision models to a study
of the scientific process that produces them. Following Latour (1987: 13-15),
instead of analysing the models as closed systems, we attempt to be present
when the ‘black boxes are being closed’ By following the computer scientists
and identifying the five essential steps of our six dataset papers, we show that
the labelling of images, on which Crawford and Paglen (2019) focus, is only
one of the elements that determines the shape of computer vision datasets.
Second, we reveal and critique one of the most central assumptions of com-
puter vision datasets: the notion that they can see the world independently
from humans.

HOW DATASETS DETERMINE HOW COMPUTERS SEE

Gebru et al. (2020) note that, despite the importance of datasets for the devel-
opment and performance of computer vision models, there is no standardized
process for documenting them. To increase the transparency and account-
ability of data creation and use in machine learning, they call for ‘datasheets
for datasets, that document the ‘motivation, composition, collection process
[and] recommended uses” of datasets. Despite the lack of standardized doc-
umentation, in our study of six benchmark computer vision dataset papers
(see Table 1), we found that they all roughly follow five research steps: task
selection, category selection, data collection, data labeling and evaluation. We
argue that the interplay between these steps determines how the computer
vision models perform as optical instruments.

1. Task selection

Computer vision models cannot interpret images in the same highly contex-
tual ways as humans. To have computers understand images, which computer
scientists sometimes describe as the ‘ultimate goal’ (Lin et al., 2014) or ‘holy
grail’ (Krishna et al., 2016), datasets developers divided the task of complete
‘scene understanding’ into more manageable sub-tasks. The three most com-
mon are image classification, object detection and (pixel) segmentation. In
image classification, an algorithm predicts the presence or absence of at least
one of the n categories of the dataset (Everingham et al., 2010: 305). Object
detection involves the localization and prediction of one or more instances of
one or more of the » categories of the dataset. In the easiest version of this task,
the algorithm must localize and correctly identify a single instance of a single
category (draw a bounding box around every single horse) and in the hard-
est version multiple instances of multiple categories (draw a bounding box
around two horses, three persons and a car) (Lin et al., 2014). Segmentation
involves the prediction of each pixel to one of the n categories of the dataset.
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The categories can be both ‘things, like a chair or a person, but also ‘stuff’,
like wall or sand. Rather than drawing a bounding box, the algorithm draws
a precise line around the object, segmenting it from the background or from
other objects.

These three distinct tasks show that the dataset paper encodes or con-
ceptualizes visual meaning as the co-occurrence and interplay of distinct
visual elements, which can be clearly and unambiguously labelled, in a single
image. The tasks assume that computer vision models can mimic, approach or
emulate human visual understanding, by deducing meaning from analysing
the relations between the visual elements of a single image. The ‘holy grail’ of
scene understanding reduces the meaning of an image to its visual elements.
Even if all these visual elements could be clearly and unambiguously identi-
fied, which is highly unlikely, computer vision models would still be unable
to understand an image in the same way as humans, as this depends on see-
ing it in wider textual and visual contexts that depend on the position of the
observer.

2. Category selection

Because developers of datasets see vision as derived from the interplay between
different visual elements, the selection of these elements is foundational to the
functioning of the model as an optical instrument. The six dataset papers offer
several overlapping rationales for their choice of categories. They all refer to
some sort of representativeness, the need for ‘practical applications’ and the
practicalities of dataset collection, meaning the categories must be present on
a large number of images that are easily accessible on the internet (Lin et al,,
2014).

Developers of the older datasets readily acknowledged the almost ran-
dom selection of their categories. The developers of Caltech 101 noted that
they selected them by ‘flipping through the pages of the Webster Collegiate
Dictionary’ (Fei-Fei et al., 2004). Because datasets became increasingly bigger
and, as a result, more expensive to produce, authors came up with elaborate
justifications for their categorizations. MS COCO is a prime example of this
practice. Its developers obtained an initial list by combining the 20 categories
of the PASCAL VOC dataset with a subset of a list containing 1,200 words that
‘denote visually identifiable objects’ In the next stage, ‘several children rang-
ing in ages 4 to 8 were asked to identify every object they regularly saw ‘in
indoor and outdoor environments. The authors of the paper then voted ‘on a
1 to 5 scale for each category taking into account how commonly they occur,
their usefulness for practical applications, and their diversity relative to other
categories. Finally, all categories for which it proved difficult to easily obtain
a large number (> 5000) of images on the internet were removed, leaving the
authors with 92 categories (Lin et al., 2014: 3-4).

The selection of categories of the widely used ImageNet dataset might
seem more rigorous. The selection is based on WordNet, a database of word
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classifications which uses synsets, groups of synonyms, to organize the entire
English language. These synsets are part of a taxonomy that orders them from
general concepts to more specific ones. While ImageNet indeed started as an
effort to collect images for all the noun synsets of WordNet, the final selec-
tion of categories for the image classification and object detection tasks is only
very loosely related to the WordNet structure. Yang et al. (2020) note that all
the algorithms that competed in the image classification task of the yearly
ImageNet Large Scale Visual Recognition (ILSVR) challenge, which accom-
panied ImageNet between its creation in 2010 and 2017, were trained on the
same subset of 1,000 categories. Describing the challenge, Russakovsky et al.
(2015) noted that these 1,000 categories were selected ‘randomly . . . followed
by manual filtering to make sure the object categories were not too obscure’
The algorithms that competed in ILSVR’s object detection challenge were
trained on an even smaller subset of 200 categories that were ‘hand-selected’
as being ‘basic-level object categories that would be easy for people to identify
and label’ (Russakovsky et al., 2015: 11).

Crawford and Paglen (2019) overemphasize the intentional political
and underestimate the chaotic nature of dataset categories and their hierar-
chies. While ImageNet indeed contains 2,833 subcategories with the top-level
category ‘person;, including highly problematic racial and gendered ones like
‘closet queen’ and ‘prima Donna, almost no algorithm trained on ImageNet
will take these categories into account because they were not included in the
1,000 or 200 categories of the image classification or object detection tasks,
respectively. In the end, in spite of all sorts of justifications, the creators of
the datasets mostly selected the categories without referring to hierarchical
taxonomies or any general notion(s) of visuality.

3. Data collection

After the categories have been determined, the next step involves finding
images to populate them. The categorization and collection steps should not
be seen as distinct operations. In all papers, the availability of downloadable
images via data providers, such as Bing, Google Images or Flickr, determined
whether a category was included in the dataset. For example, Griffin et al.
(2007) noted that, in creating Caltech 256, they dropped 48 of the original
304 categories because they were unable to download more than eight ‘good
images. For the exact opposite reason, Caltech 101 contained the category
‘snoopy” and Caltech 256 the category ‘Cartman’ (Fei-Fei et al., 2004; Griftin
et al., 2007). The category Cartman serves no purpose in relation to the tasks
of computer vision models but, as a result of the popularity of the animated
series South Park in 2007, was probably easy to populate.

Extracting images from the internet using keyword searches favours
visual concepts that can be unambiguously described in a textual form. As
Yang et al. (2020) point out, non-visual categories, such as ‘philanthropist’, are
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harder, if not impossible, to populate. This problem is also demonstrated by
the ‘long-tail’ of most datasets: the phenomenon that some categories contain
thousands of images, while many more only contain a few. The tail of JFT,
an internal computer vision dataset used at Google as the basis for its Open
Images dataset (see next paragraph), is so long that it holds 3,000 categories
with less than 100 images and 2,000 categories with less than 20 images per
category.

The most explicit connection between the categorization and collec-
tion step can be found in the methodology of the Open Images dataset. Its
19,794 image-level categories were not predetermined by the authors but
derived from the algorithmically generated labels of JFT. This dataset holds a
billion occurrences, or ‘instances), of 18,291 categories on 300 million images
(Hinton et al., 2015). The images were labelled by an algorithm that uses a
‘complex mixture of raw web signals, connections between web-pages and
user feedback’ (Sun et al., 2017: 3). The creators of Open Images downloaded
all images with a Creative Commons licence (CC-BY) from Flickr and used a
classifying algorithm trained on JFT to label these 9 million images. Just like
ImageNet, Open Images does not use all of the 19,794 labels for the object
detection task. Here the authors simply selected 600 categories they ‘deemed
important and with a clearly defined spatial extent as boxable’ (Kuznetsova
et al, 2018: 4). As Figure 1 shows, these 600 categories overlap with many of
the categories of the other major datasets.

Most importantly, the availability of images and, as a result, the selec-
tion of categories depends on the services used to download them. Caltech
256 used scripts to perform key-word searches for the categories on Google
Images and PicSearch (Griffin et al., 2007). ImageNet used ‘several image
search engines’ (Deng et al., 2009). In 2010, PASCAL VOC set a new stan-
dard by only using Flickr. According to the authors, the ‘personal photos” of
the site, which were not ‘taken by, or selected by, vision/machine learning
researchers), resulted in a ‘very unbiased dataset’ (Everingham et al., 2010:
305). MS COCO and Open Images followed the example set by PASCAL
VOC.

Although humans upload millions of images to the internet, these are
not unbiased reflections of our visuality. Moreover, since we started uploading
images on a large scale, the places where we share and store these images regu-
larly changed. Stuart (2019) explains the success of Flickr as resulting from the
need for a place to ‘store, organize, and share’ digital images, as well as for the
connections that could be made with other like-minded people. While users
were uploading 4.3 million images to Flickr each day in 2010, 10 years later,
traffic has largely flowed to ‘image-centric smartphone applications such as
Instagram and Snapchat’ (Stuart, 2019: 224). Because computer vision datas-
ets continue to use Flickr, they not only provide computer vision models with
a culturally, but also an historically biased reflection of visuality. This point
is underlined by the inclusion of technologies that have rapidly disappeared
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Figure 1. Network of (shared) categories between Caltech 101, Caltech 256, PASCAL
VOC, ImageNet, MS COCO and Google Open Images (based on Everingham et al.,
2010; Fei-Fei et al., 2004; Griffin et al., 2007; Kuznetsova et al., 2018; Lin et al.,

2014; Russakovsky et al., 2015). Figure made using Gephi (ForceAtlas2 graph layout
algorithm).

from our visual world, such as ‘iPod’ (Caltech 256, ImageNet, Open Images),
in the categories of the datasets.

While scholars are increasingly concerned by the gender, racial and
cultural bias of computer vision datasets, the temporal bias has received
almost no attention. Bridle (2018: 44) argues that deep learning models do not
account for the sometimes rapid changes in human experience: “That which is
gathered as data is modeled as the way things are, and then projected forward
— with the implicit assumption that things will not radically change or diverge
from previous experience! More worrisome, deep learning models play an
active role in maintaining the status quo of their data: ‘computation does not
merely govern our actions in the present but constructs a future that best fits

Visual Communication 21(2)



its parameters. The amplification of a certain visuality via datasets is a defin-
ing characteristic of computer vision models as optical instruments: especially
if unrecognized in public and scientific discourse, it gives them greater agency
in the joint production of visuality between humans, instruments and the
observable visual world.

4. Data labelling

The fourth step, the labelling of the collected data with the selected catego-
ries, is by far the most time-consuming and expensive part in the creation
of computer vision datasets. While PASCAL VOC still relied on students
during a single ‘annotation party’ (Everingham et al., 2010), other datas-
ets, such as ImageNet, MS COCO and Open Images, made extensive use of
crowd work platforms, such as Amazon Mechanical Turk. These platforms
pay ‘workers’ small amounts of money to perform minute digital tasks. For
the most straightforward task, workers were asked if an image is of something
or whether a certain category is present on the image. In a slightly more chal-
lenging version of this task, they were asked to assign a category to an image
from a list (Lin et al., 2014). The most difficult task involves drawing a bound-
ing box around the object and labelling it.

It took around 50,000 workers over two years to construct the ImageNet
dataset (Reese and Heath, 2016). Workers spent 70,000 hours, roughly 8 years
of round-the-clock work, to label 2.5 million instances of 91 categories on
the 328,000 images of MS COCO. In a 2010 presentation, ImageNet creator
Fei-Fei Li wondered if the project was ‘exploiting chained prisoners’ (Fei-Fei,
2010). An answer depends on one€’s definition of exploitation and prisoner, but
it is clear that crowd workers were paid very little. Most papers do not reveal
the compensation per label but the Visual Genome dataset, also supervised by
Li, noted that workers could earn between $6-8 per hour if they worked ‘con-
tinuously’ (Krishna et al., 2016). Considering that crowd workers would be
hard-pressed to work regular hours, this reward would fall below the federal
minimum wage of $7.25 per hour and well below any notion of a ‘living wage’
in the vast majority of cases.

Early experiments in crowdsourced annotation, such as LabelMe
(Russell et al., 2008), allowed users to freely choose the parts of the image
they wanted to annotate and their own labels. Later efforts, especially the ones
making use of crowd workers, divided the task into easy but highly repetitive
actions. Dataset creators devised methods to constantly monitor and mea-
sure the performance of workers (Deng et al., 2009; Kuznetsova et al., 2018).
MS COCO made a distinction between ‘good’ and ‘bad’ workers based on
their performance and discarded the annotations of the latter. Datasets like
ImageNet, MS COCO and Open Images also developed special training ses-
sions or tests that workers had to pass before they could start annotating.

The millions of labels, or ‘inscriptions’ in Latour’s (1987) termi-
nology, added by crowd workers, are the essential part of every computer
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vision dataset. However, the fundamental role of workers and their labour is
obscured in the discourse surrounding computer vision models. Echoing the
first pages of Crary’s Techniques of the Observer, Paglen (2016) argues that
we are living in an age of ‘machine-to-machine seeing. We ‘no longer look at
images — images look at us’ Images in datasets are leveraged in algorithms
of (visual) social control without depending on ‘a human seeing-subject’. As
this article shows, quite the opposite is true. The images in these datasets
have been seen by humans. However, the Fordist-like assembly-line produc-
tion of datasets by crowd workers is obscured by the highly potent agency of
computer vision models in popular discourse. In contrast to Paglen, we posit
that computer vision models are not lenses that see images through other
images but that see images through the purposefully obscured, constantly
monitored and highly disciplined labour of thousands of crowd workers.

Paglen (2016) further argues that ‘if we want to understand the invis-
ible world of machine-machine visual culture, we need to unlearn how to see
like humans. For us, this raises the question of who or what is learning to
see like who or what? Computer vision scholars have described scene under-
standing, the ability to understand images in a human-like highly contextual
way, as the ultimate goal of the field. Furthermore, they regularly claimed that
computer vision outperforms human vision. Yet, the practice of dataset cre-
ation shows that the exact opposite is happening. Machines are not learning
to see like humans; humans are disciplined into seeing like machines. Instead
of understanding images in complex and contextual ways, dataset developers
force crowd workers to look at images in the same decontextualized and frag-
mented ways as computer vision models.

5. Evaluation

A widely used graph shows the error rate of the winning algorithms of the
ILSVR challenge and compares them to the ‘human error rate’ (Figure 2). In
2015, the winning algorithm outperformed humans for the first time (3.57%
to 5.1% error rate) (Dodge and Karam, 2017). In the same year, The Guardian
published an article with the headline: ‘Computers are now better than humans
at recognising images’ (Hern, 2015). The high accuracy rates of computer
vision models are an important element of their popular appeal. This shows
that datasets not only provide models with the required training material but
they also lend them their credibility: without the high accuracy rates, nobody
would believe that computer vision models were better than humans at seeing.

The accuracy of models is calculated as follows. First, the entire dataset
is divided into three parts: train, validation and test (often 80%, 10% and 10%
of the images, respectively). Without going too much into the details of model
training, the training set is used to fit the model, the validation set to validate
the fitted weights during training to determine how best to proceed with train-
ing, and the test set contains images that the algorithm has never processed.
The images in this last set are used to test the general performance of the fitted
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Error Rates of the winning entries on the ImageNet Large Scale Visual
Recognition Challenge from 2010 to 2017

282

16,34

11,7

Human error rate (5,1%)

NEC-UIUC XRCE AlexNet/Supervision ZFNet GoogLeNet T-S SEN

2010 2011 2012 2013 2014 2016 2017

Figure 2. Error rates of the winning entries on the ImageNet Large Scale Visual
Recognition Challenge from 2010 to 2017 (based on Russakovsky et al., 2015, and
http://image-net.org/challenges).

model. Publicly available datasets release the images and corresponding anno-
tations of the first two parts but keep the test part secret in order to provide
for an unbiased evaluation. Otherwise, people could optimize their model’s
accuracy on the test set.

In 2017, after error rates dropped as low as 2%, the ILSVR challenge
closed shop, considering the problem of image classification to be solved.
However, the low error rates might seem less impressive if we consider that the
overall accuracy of a model is calculated by taking the mean of the accuracy
rates of all the categories of the dataset. There are substantial differences in
error rate per category. For example, in 2014, the winning algorithm achieved
94.6% overall accuracy for the image classification task, but there was a 41
percentage point difference in accuracy between ‘the most and least accurate’
categories. Some categories, mostly animals like ‘red fox] achieved 100% accu-
racy. In contrast, the hardest categories, including ‘water bottle, scored as low
as 59%. The difference in accuracy was even greater for the more advanced
object detection task. The average accuracy in 2014 for object detection algo-
rithms was only 44.7%, with differences ranging between 93% (‘butterfly’) and
8% (‘backpack’) (Russakovsky et al., 2015).

The claim that computer vision models outperform humans is widely
shared by computer scientists and journalists alike. However, the truthfulness
of this statement entirely depends on the task that researchers asked humans
and models to perform. Most papers cite the 5.1% human error given by the
ImageNet paper (Russakovsky et al., 2015), which measured human perfor-
mance by having a mere two human subjects compete with several computer
vision models in the image classification task, assigning one of ImageNet’s
1,000 specific classes to 1,500 images.
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Just as the crowd workers who labelled the datasets, the humans in
these kinds of studies are compared to machines instead of the other way
around. The emphasis on the performance of computer vision models, espe-
cially when compared to human performance, reveals how their inverted
agency is produced. Imagine the following experiment: 25 humans and 25
binoculars are given the task of reading letters on a piece of paper over several
increasing distances of 5, 10 and 25 metres. A scientific paper concludes that
humans and binoculars achieve 100% accuracy for 5 metres but that the accu-
racy of humans plummets afterward. The Guardian describes the experiment
with the headline: ‘binoculars are now better at seeing things in the distance
than humans. What is the fundamental difference between the projection of
visuality of the binocular and the computer vision model? Similar to the bin-
ocular, the performance of the computer vision model can only be compared
to that of a human, after another human - the scientist in this case — observes
both the human observer and the models. By comparing the performance of
models and humans, thus detaching the observer from the optical instrument,
the discourse surrounding computer vision models obscures the role of both
in the production of visuality.

CONCLUSION

Following the five essential steps in dataset creation, this article conceptual-
ized computer vision models as optical instruments. Most importantly, while
developers present these steps as sequential and go through great lengths to
rationalize their choices, a close analysis of the papers reveals that the steps
are highly interconnected and that the choices of developers often lack a clear
methodological or theoretical rationale. Datasets like ImageNet and Open
Images populated thousands of categories with images, but most models rely
on only a couple of hundred categories for advanced tasks, such as object
detection. While some dataset developers present a wide range of intricate
procedures to justify their category selection, their own subjective judgment
and all sorts of practical considerations determine the final selection.

The close connection between category selection and data collection
reveals that the categories reflect a specific subset and ‘moment’ (in time) of
the internet. Even though Flickr seems to have lost its broad appeal among
internet users, it is still the essential source for computer vision datasets and,
as a result, continues to shape how humans see the world through computer
vision models. In contrast to widespread concerns over cultural, racial and
gender bias, this inherent temporal bias of datasets has received almost no
attention.

In contrast to other optical instruments, scholars and journalists often
present computer vision models as intelligent agents. This article demon-
strated how dataset developers kickstart this phenomenon at an early stage
by actively severing computer vision datasets from humans and their labour.
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Instead of acknowledging the fact that there is always a certain distribution
of agency between observers and optical instruments in the production of
visuality, the dataset papers present humans and computers as entities that
can independently see the world without being necessarily dependent on each
other.

The active disjunction of humans and computers in dataset papers is
even more striking if we consider the fact that human sight is of fundamental
importance in the development of these datasets. Crowd workers spend thou-
sands of hours annotating the millions of images in datasets. In addition to
these annotations, the millions of tags added by Flickr users to their uploaded
photographs have also fundamentally shaped computer vision datasets. This
article demonstrated that computer vision datasets are not lenses that see
images through other images but optical instruments that humans use to see
images through the purposefully obscured and highly disciplined labour of
thousands of crowd workers.

Can efforts to remove bias from datasets and make algorithms fair(er)
be successful? Scholars have mostly looked for the origin of harmful algorith-
mic decisions in the labelling of images. This article, alternatively, demon-
strates that the origin of bias can actually be found in the interplay between
all five steps in the production of datasets. As a result, researchers in machine
learning fairness and adjacent fields should approach datasets in an holistic
manner. Most importantly, our research suggests that, if we want computer
vision models to make more equitable decisions, the people that develop them
should devise more realistic and less ambiguous tasks. These tasks should be
set with the clear understanding that computer vision systems do not see the
world on their own but that humans see (specific parts) of the world through
them.

Finally, researchers in machine learning fairness should clearly
acknowledge the political dimension of their field. Wark (2019) noted that
discussions over the increasing influence of algorithms are ‘frequently side-
tracked into the demand for a fairer algorithm, as there could still be a neutral
third party above our differences, from which to pray for not much more than
an equal right to be exploited by asymmetries of information. This article has
steered clear from the political consequences of attributing agency to com-
puter vision models. However, if we truly want these models to make fair and
equitable decisions, it seems inescapable that we stop separating them from
humans and start recognizing the power of those that develop, deploy and use
them.

ACKNOWLEDGEMENTS

Thomas Smits would like to thank the Centre for Spatial and Textual Analysis
(CESTA) at Stanford University for providing the stimulating environment
where the idea for this article was born.

Smits and Wevers

345



346

FUNDING

The author(s) disclosed receipt of the following financial support for the
research, authorship, and/or publication of this article: Research for this arti-
cle was financially supported by the European Research Council (ERC) under
grant agreement 788572: Remembering Activism: The Cultural Memory of
Protest in Europe.

ORCID ID
Thomas Smits (2 https://orcid.org/0000-0001-8579-824X

REFERENCES

Akata Z et al. (2020) A research agenda for hybrid intelligence: Augmenting
human intellect with collaborative, adaptive, responsible, and
explainable artificial intelligence. Computer 53(8): 18-28.

Barocas S, Hardt M and Narayanan A (2019) Fairness and Machine Learning.
Limitations and Opportunities. Available at: https://fairmlbook.org/
(accessed 2 December 2020).

Benjamin R (2019) Race after Technology. Cambridge: Polity Press.

Bridle J (2018) New Dark Age: Technology, and the End of the Future. London:
Verso.

Buolamwini ] and Gebru T (2018) Gender shades: Intersectional accuracy
disparities in commercial gender classification. In: Conference on
Fairness, Accountability and Transparency, 21 January, 77-91. PMLR.
Available at: http://proceedings.mlr.press/v81/buolamwinil8a.html
(accessed 3 September 2020).

Business Insider Nederland (2020) Google Al will no longer use gender labels
like ‘woman’ or ‘man’ on images of people to avoid bias. Available at:
https://www.businessinsider.com/google-cloud-vision-api-wont-tag-
images-by-gender-2020-2 (accessed 21 February 2020).

Crary J (1992) Techniques of the Observer: On Vision and Modernity in the
Nineteenth Century. Cambridge, MA: MIT Press.

Crawford K and Paglen T (2019) Excavating Al The politics of training sets
for machine learning. Available at: https://www.excavating.ai (accessed
17 February 2020).

Crawford K et al. (2019) AI Now 2019 Report. New York: AI Now Institute.
Available at: https://ainowinstitute.org/AI_Now_2019_Report.pdf
(accessed 2 November 2020).

Deng J et al. (2009) Imagenet: A large-scale hierarchical image database. In:
2009 IEEE Conference on Computer Vision and Pattern Recognition,
248-255.

Visual Communication 21(2)


https://orcid.org/0000-0001-8579-824X
https://fairmlbook.org/
http://proceedings.mlr.press/v81/buolamwini18a.html
https://www.businessinsider.com/google-cloud-vision-api-wont-tag-images-by-gender-2020-2
https://www.businessinsider.com/google-cloud-vision-api-wont-tag-images-by-gender-2020-2
https://www.excavating.ai
https://ainowinstitute.org/AI_Now_2019_Report.pdf

DeVries T et al. (2019) Does object recognition work for everyone?
arXiv:1906.02659. Available at: http://arxiv.org/abs/1906.02659
(accessed 21 February 2020).

Dodge S and Karam L (2017) A study and comparison of human and
deep learning recognition performance under visual distortions.
arXiv:1705.02498. Available at: http://arxiv.org/abs/1705.02498
(accessed 18 February 2020).

Dulhanty C and Wong A (2019) Auditing ImageNet: Towards a model-
driven framework for annotating demographic attributes of large-
scale image datasets. arXiv:1905.01347. Available at: http://arxiv.org/
abs/1905.01347 (accessed 18 February 2020).

Eubanks V (2019) Automating Inequality: How High-Tech Tools Profile, Police,
and Punish the Poor. New York: St Martin’s Press.

Everingham M et al. (2010) The Pascal Visual Object Classes (VOC)
Challenge. International Journal of Computer Vision 88(2): 303-338.
DOI: 10.1007/s11263-009-0275-4.

Fei-Fei L (2010) Crowdsourcing, benchmarking and other cool things. In:
CMU VASC Seminar, Pittsburgh, PA, March.

Fei-Fei L, Fergus R and Perona P (2004) Learning generative visual models
from few training examples: An incremental bayesian approach tested
on 101 object categories. In: 2004 Conference on Computer Vision and
Pattern Recognition Workshop, 178-178.

Gebru T et al. (2020) Datasheets for datasets. arXiv:1803.09010 [cs]. Available
at: http://arxiv.org/abs/1803.09010 (accessed 3 September 2020).
Gitelman L and Pingree G (eds) (2003) New Media, 1740-1915. Cambridge,

MA: MIT Press.

Griffin G, Holub A and Perona P (2007) Caltech-256 Object Category
Dataset. Available at: https://resolver.caltech.edu/CaltechAUTHORS:
CNS-TR-2007-001 (accessed 16 December 2019).

Hern A (2015) Computers are now better than humans at recognising images.
The Guardian, 13 May. Available at: https://www.theguardian.com/
global/2015/may/13/baidu-minwa-supercomputer-better-than-
humans-recognising-images (accessed 20 February 2020).

Hinton G, Vinyals O and Dean ] (2015) Distilling the knowledge in a
neural network. arXiv:1503.02531. Available at: http://arxiv.org/
abs/1503.02531 (accessed 17 February 2020).

Holstein K et al. (2019) Improving fairness in machine learning systems:
What do industry practitioners need? In: Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems, 1-16.

Jo ES and Gebru T (2020) Lessons from archives: Strategies for collecting
sociocultural data in machine learning. In: Proceedings of the 2020
Conference on Fairness, Accountability, and Transparency, New
York, NY, 27 January, 306-316. FAT "20. Association for Computing
Machinery.

Smits and Wevers

347


http://arxiv.org/abs/1906.02659
http://arxiv.org/abs/1705.02498
http://arxiv.org/abs/1905.01347
http://arxiv.org/abs/1905.01347
http://arxiv.org/abs/1803.09010
https://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001
https://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001
https://www.theguardian.com/global/2015/may/13/baidu-minwa-supercomputer-better-than-humans-recognising-images
https://www.theguardian.com/global/2015/may/13/baidu-minwa-supercomputer-better-than-humans-recognising-images
https://www.theguardian.com/global/2015/may/13/baidu-minwa-supercomputer-better-than-humans-recognising-images
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531

348

Krishna R et al. (2016) Visual genome: Connecting language and vision using
crowdsourced dense image annotations. arXiv:1602.07332. Available
at: http://arxiv.org/abs/1602.07332 (accessed 24 February 2020).

Krizhevsky A, Sutskever I and Hinton GE (2012) ImageNet classification with
deep convolutional neural networks. In: Pereira F et al. (eds) Advances
in Neural Information Processing Systems 25. Curran Associates, Inc.,
1097-1105. Available at: http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf (accessed
14 February 2020).

Kuznetsova A et al. (2018) The Open Images Dataset V4: Unified image
classification, object detection, and visual relationship detection at
scale. arXiv:1811.00982. Available at: http://arxiv.org/abs/1811.00982
(accessed 26 November 2019).

Latour B (1987) Science in Action: How to Follow Scientists and Engineers
through Society. Cambridge, MA: Harvard University Press.

Lin T-Y et al. (2014) Microsoft COCO: Common objects in context.
arXiv:1405.0312. Available at: http://arxiv.org/abs/1405.0312 (accessed
9 December 2019).

Mitchell W] (1992) The Reconfigured Eye: Visual Truth in the Post-Photographic
Era. Cambridge, MA: MIT Press.

O'Neil C (2017) Weapons of Math Destruction: How Big Data Increases
Inequality and Threatens Democracy. London: Penguin Books.

Paglen T (2016) Invisible images (your pictures are looking at you). In: The
New Inquiry. Available at: https://thenewinquiry.com/invisible-images-
your-pictures-are-looking-at-you/ (accessed 18 February 2020).

Parikka J (2012) What Is Media Archaeology? Cambridge: Polity Press.

Reese H and Heath N (2016) Inside Amazon’s clickworker platform: How
half a million people are being paid pennies to train Al Available at:
https://www.techrepublic.com/article/inside-amazons-clickworker-
platform-how-half-a-million-people-are-training-ai-for-pennies-per-
task/ (accessed 18 February 2020).

Russakovsky O et al. (2015) ImageNet Large Scale Visual Recognition
Challenge. arXiv:1409.0575. Available at: http://arxiv.org/abs/1409.
0575 (accessed 26 November 2019).

Russell BC et al. (2008) LabelMe: A database and web-based tool for image
annotation. International Journal of Computer Vision 77(1): 157-173.

Shankar S et al. (2017) No classification without representation: Assessing
geodiversity issues in open data sets for the developing world.
arXiv:1711.08536. Available at: http://arxiv.org/abs/1711.08536 (accessed
21 February 2020).

Stuart E (2019) Flickr: Organizing and tagging images online. Knowledge
Organization 46(3): 223-235.

Visual Communication 21(2)


http://arxiv.org/abs/1602.07332
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1811.00982
http://arxiv.org/abs/1405.0312
https://thenewinquiry.com/invisible-images-your-pictures-are-looking-at-you/
https://thenewinquiry.com/invisible-images-your-pictures-are-looking-at-you/
https://www.techrepublic.com/article/inside-amazons-clickworker-platform-how-half-a-million-people-are-training-ai-for-pennies-per-task/
https://www.techrepublic.com/article/inside-amazons-clickworker-platform-how-half-a-million-people-are-training-ai-for-pennies-per-task/
https://www.techrepublic.com/article/inside-amazons-clickworker-platform-how-half-a-million-people-are-training-ai-for-pennies-per-task/
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1711.08536

Sun Cetal. (2017) Revisiting unreasonable effectiveness of data in deep learning
era. arXiv:1707.02968. Available at: http://arxiv.org/abs/1707.02968
(accessed 18 February 2020).

Verma S and Rubin ] (2018) Fairness definitions explained. In: 2018 IEEE/
ACM International Workshop on Software Fairness (FairWare), May,
1-7.

Wark M (2019) Capital Is Dead: Is This Something Worse? London: Verso.

Yang K et al. (2020) Towards fairer datasets: Filtering and balancing the
distribution of the people subtree in the ImageNet hierarchy. In:
Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency, Barcelona, 27 January, 547-558. Association for
Computing Machinery.

Zou J and Schiebinger L (2018) AI can be sexist and racist - it’s time to make
it fair. Nature 559(7714): 324-326.

BIOGRAPHICAL NOTES

THOMAS SMITS is a postdoctoral researcher in the ERC-funded REACT
project (Remembering Activism: The Cultural Memory of Protest in Europe)
at Utrecht University. His earlier work focused on 19th- and early 20th-cen-
tury visual (news) culture and the application of computer vision techniques
to large collections of digital historical images.

Addpress: Utrecht University, Trans 10, Utrecht 3512JK, The Netherlands.
[email: t.p.smits@uu.nl]

MELVIN WEVERS is an Assistant Professor of Urban History and Digital
Methods at the University of Amsterdam. His research interests include the
study of cultural-historical phenomena using computational means with a
specific interest in the formation and evolution of ideas and concepts in public
discourse.

Address: University of Amsterdam, Amsterdam, Noord-Holland, The
Netherlands. [email: melvin.wevers@uva.nl]

Smits and Wevers

349


http://arxiv.org/abs/1707.02968
mailto:t.p.smits@uu.nl
mailto:melvin.wevers@uva.nl

