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From the point of view of statistical mechanics, a full character-
ization of a molecular system requires an accurate determina-
tion of its possible states, their populations, and the respective
interconversion rates. Toward this goal, well-established meth-
ods increase the accuracy of molecular dynamics simulations by
incorporating experimental information about states using struc-
tural restraints and about populations using thermodynamics
restraints. However, it is still unclear how to include experimen-
tal knowledge about interconversion rates. Here, we introduce a
method of imposing known rate constants as constraints in molec-
ular dynamics simulations, which is based on a combination of
the maximum-entropy and maximum-caliber principles. Starting
from an existing ensemble of trajectories, obtained from either
molecular dynamics or enhanced trajectory sampling, this method
provides a minimally perturbed path distribution consistent with
the kinetic constraints, as well as modified free energy and com-
mittor landscapes. We illustrate the application of the method to a
series of model systems, including all-atom molecular simulations
of protein folding. Our results show that by combining experi-
mental rate constants and molecular dynamics simulations, this
approach enables the determination of transition states, reaction
mechanisms, and free energies. We anticipate that this method
will extend the applicability of molecular simulations to kinetic
studies in structural biology and that it will assist the devel-
opment of force fields to reproduce kinetic and thermodynamic
observables. Furthermore, this approach is generally applicable
to a wide range of systems in biology, physics, chemistry, and
material science.

biomolecular simulation | kinetics | MaxCal | transition path sampling

The first step in the study of a molecular system typically con-
sists of the determination of its conformation, as, for exam-

ple, most commonly done by using X-ray crystallography (X-ray),
cryo-electron microscopy (cryo-EM), or nuclear magnetic res-
onance spectroscopy (NMR), for obtaining the structures of
proteins and of nucleic acids (1). By revealing a wide range
of structure–function relationships, this approach has enabled
major advances in molecular biology (1). From a procedural
point of view, experimental measurements, such as electron den-
sities in X-ray and cryo-EM or interproton distances in NMR,
combined with well-established theoretical chemistry rules, facil-
itate the building of molecular structures using computational
methods (2).

As at the molecular level under physiological conditions, ther-
mal fluctuations are relevant, it is becoming increasingly com-
mon to perform a second step, which involves the determination
of the structures of the thermally excited states of a molecular
system, together with their populations (3).∗ This goal is typi-
cally achieved by incorporating experimental measurements as
structural restraints in molecular dynamics (MD) simulations to
sample the free energy landscape (4). The maximum entropy
principle (MaxEnt) provides a rigorous framework to imple-
ment this strategy. To carry out this step, a range of methods
are now available (5, 6), resulting in the determination of a
“thermodynamic ensemble” of structures (7).

One may not, however, stop at this level if kinetic properties
are to be characterized. As a third step in the determination of a
molecular system, one would like to obtain a “kinetic ensemble,”
comprising the structures of the different states of a molecular
system, their populations, and their interconversion rates (7, 8).
Approaches for determining experimentally kinetic ensembles
are, however, not yet readily available, as there is no well-
established method of incorporating experimental information
about kinetic rates in molecular modeling procedures. Our aim
here is to make a first step in this direction.

To achieve this goal, we start from a MaxEnt approach, where
one maximizes a configurational entropy subject to constraints
given by experimental data in order to predict a new configu-
rational probability distribution. MaxEnt can also model uncer-
tainties in the data, effectively turning constraints into restraints
(5, 6). Addressing the problem in various ways as a Bayesian
or a maximum-likelihood problem (6, 9–13) leads to numer-
ous applications, for example, in cases where force fields are
less accurate, such as for intrinsically disordered proteins and
RNA (9, 14–17). Apart from ensemble refinement, application of
MaxEnt yields perturbative correction terms to the poten-
tial energy along order parameters or CVs relating to the
experimental data (4, 9, 18).

To enforce experimental information about rate constants, the
MaxEnt method can be combined with the maximum caliber
principle (MaxCal) (19). This approach seems, again, quite nat-
ural, as MaxCal is a general variational framework of nonequi-
librium and equilibrium statistical mechanics with a wide scope,
from flux–fluctuation relationships to pathway distributions and
slow mode identification (19–21). In MaxCal, one maximizes a
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path entropy over all possible pathways, subject to dynamical
constraints such as average fluxes, in order to predict relative
path weights (22). Rigorous and general MaxCal implemen-
tations have found, so far, fewer applications compared to
MaxEnt approaches due to the difficulty both in sampling path
distributions of complex systems and in acquiring experimen-
tal data about rate constants. For example, MaxCal enabled
reweighting of the equilibrium distribution of macrostates given
experimental rate constants for Markov state models or time-
discrete pathways (23, 24). A recent implementation of the
MaxCal for time-resolved data imposed time-dependent con-
straints along a few degrees of freedom of the system, or
collective variables (CVs), to agree with time-resolved experi-
mental data (25). MaxCal methods have also been extended to
nonequilibrium dynamics (22, 26). An important aspect, how-
ever, is that such methods rely on spatially discrete models,
on limited time-resolved data, or on biased dynamics, while,
in practice, one usually only has access to experimental rate
or diffusion constants. As starkly captured by Jaynes (27),
“reconstructing MaxCal path ensembles containing the micro-
scopic space and time dynamics is difficult.” While theoretically
rigorous, the MaxCal formalism has not been implemented
to date for reweighting time- and space-continuous unbiased
trajectories.

Here, we present a method of determining kinetic ensem-
bles using the MaxCal strategy, by reweighting path ensemble
distributions a posteriori, according to both kinetic and thermo-
dynamic experimental data. The methodology yields experimen-
tally corrected free energy landscapes and provides structural
ensembles that exhibit accurate configurations, including in the
barrier regions between states. In addition, it allows statistical
mechanistic interpretation in the form of experimentally cor-
rected committor profiles or landscapes, where the committor
is the probability for configurations to reach the product state
(28), and can be considered the perfect reaction coordinate
(RC) for the process at hand (29). The committor landscape
is, thus, effectively a statistical representation of the mecha-
nism and gives information on its transition states or dynamical
bottlenecks.

Given experimental forward and backward rate constant con-
straints, we combine MaxEnt with MaxCal to find a biasing
function that simultaneously acts on equilibrium properties and
on rate constants. This bias function gives correcting weights
to the pathways of the equilibrium path ensemble distribution,
without altering the dynamical trajectories themselves. The equi-
librium path ensemble distribution is generated from computing
reweighted path ensembles (RPEs) (30) based on either long
MD trajectories or on enhanced sampling of trajectories, e.g.,
using Transition Interface Sampling (TIS) simulations (31), or
in one step using the Virtual Interface Exchange Transition
Path Sampling (VIE-TPS) method (32) for pathways sampled
by Transition Path Sampling (TPS) (28, 33). Such TPS-based
methods focus on reactive or partially reactive pathways, thereby
bypassing the computationally expensive sampling of the sta-
ble states. In the remainder of the text, RPE will refer to the
reconstructed equilibrium (reweighted) path ensemble distri-
bution from simulation, while “kinetic ensemble” will refer to
the equilibrium path ensemble distribution after imposing the
experimental kinetic constraints.

While our method applies constraints to the distributions,
imposing strict equality with experimental data, MaxEnt and
MaxCal allow us to model uncertainties in the experimental and
simulation data by turning constraints into restraints that impose
equality within errors in the data (12).

In this work, we focus on biological problems without losing
the generality of our statements. Thus, our approach can be
applied to all MD simulations where trajectory reweighting to
match target kinetics is possible and helpful.

Theory
MaxEnt in Configuration Space. In this section, we briefly recapitu-
late how MaxEnt can be used to combine molecular simulations
with experimental data (5, 6). In its original formulation, MaxEnt
states that the probability distribution of the states of a system
maximally compatible with a set of observed data are the one
maximizing the associated Shannon entropy. This principle has
been extended to a maximum relative entropy principle, which
has the advantage of being invariant with respect to changes of
coordinates and coarse-graining and has been shown to play an
important role in multiscale problems (17). The entropy is com-
puted here relative to a given prior distribution P0(x ) and, for
a system described by a set of continuous variables x—e.g., the
positions and velocities of all atoms in a molecular system—is
defined as

S [P‖P0] =−
∫

dxP(x ) ln
P(x )

P0(x )
. [1]

This entropy can be maximized as

PME (x ) = arg max
P(x)

S [P‖P0], [2]

subject to:

{∫
dxP(x )si(x ) = 〈si(x )〉= sexp

i∫
dxP(x ) = 1

,

where the experimental observations sexp
i (i ∈{1, 2 . . .M }) con-

strain the ensemble average of M observables si(x ), computed
over the distribution P(x ), to be equal to sexp

i , and an additional
constraint ensures that the distribution P(x ) is normalized.
P0 (x) is called the “prior” probability distribution, encoding
the knowledge available before the experimental measurement.
PME (x ) instead represents the best estimate for the proba-
bility distribution after the experimental constraints have been
enforced and is thus called the “posterior” probability distri-
bution. The subscript ME denotes the fact that this is the
distribution that maximizes the entropy.

Since the relative entropy S [P‖P0] is the negative of the
Kullback–Leibler (KL) divergence DKL[P‖P0], the procedure
described above can be interpreted as a search for the posterior
distribution that is as close as possible to the prior knowledge
and agrees with the given experimental observations. In terms
of information theory, the KL divergence measures how much
information is lost when prior knowledge P0 (x) is replaced with
P(x ). Always nonnegative, the KL divergence is a measure of the
difference between the distributions and vanishes only if the two
distributions are identical.

A powerful approach to solve the maximization problem in
Eq. 1 is based on the method of Lagrange multipliers, namely,
searching for the stationary point of the following Lagrange
function:

L=S [P‖P0]−
M∑
i=1

µi

(∫
dxsi(x )P(x )− sexp

i

)
− ν

(∫
dxP(x )− 1

)
, [3]

where µi and ν are suitable Lagrange multipliers taking care
of the experimental observations and the probability normaliza-
tion, respectively. The functional derivative of L with respect
to P(x ) is

δL
δP(x )

=− ln
P(x )

P0(x )
− 1−

M∑
i=1

µisi(x )− ν. [4]
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By setting δL
δP(x)

= 0 and neglecting the normalization factor, the
posterior reads

PME (x )∝ e−
∑M

i=1 µi si (x)P0(x ). [5]

Solving Eq. 4 turns out to be equivalent to minimizing the
function

Γ(µ) = ln

[∫
dxe−

∑M
i=1 µi si (x)P0(x )

]
+µ · sexp, [6]

with respect to µi , leading to the equation(s) 〈si〉=
∫
dxsi(x )

P(x ) = sexp
i , and thus giving for each observable the Lagrange

multiplier µi .
We also note that MaxEnt can model uncertainties in the

data—i.e., the experimental errors (9, 12). This is done by adding
the expected error due to the perturbed distribution 〈ei〉 to
the constraint average—i.e., 〈si〉= sexp

i + 〈ei〉. For a Gaussian-
distributed error with a standard deviation σi , the average error
is 〈ei〉=−µiσ

2
i , with σi the level of confidence in the data—e.g.,

experimental measurements. Adding this to Eq. 6 yields

Γ(µ) = ln

[∫
dxPME (x )

]
+µ · sexp +

1

2

M∑
i=1

µ2
i σ

2
i . [7]

Minimizing this function leads to a solution of the Lagrange
multipliers µi that account for the error. If σ= 0, the situation
is identical to Eq. 6, while if σ is large, the Lagrange multi-
plier will be close to zero, almost not perturbing the original
distribution. In this way, the constraint on the distribution is
turned into a restraint, depending on the level of confidence in
the data. In most of our presentation, we will discuss imposing
constraints, although one should keep in mind that it is always
possible to extend the results to imposing restraints, using the
above procedure.

MaxCal in Path Space. The MaxEnt principle can be extended to
trajectory space (22). Consider a prior path probability distri-
bution P0[x] of trajectories x, each consisting of L+ 1 frames,
x = {x0, x1, . . . xL}, where subsequent frames are separated by
a time interval ∆t , such that the total duration of a path is
T =L∆t . The path probability is

P0[x] = ρ(x0)

L−1∏
i=0

p(xi→ xi+1), [8]

where ρ(x0) denotes the initial condition, usually the Boltzmann
distribution ρ(x ) = exp(−βH (x )) with H (x ) the Hamiltonian of
the system, and p(xi→ xi+1) is a short-time Markovian prob-
ability that represents dynamical evolution according to the
equations of motion, as given, e.g., by an MD simulation, and
contains reliable dynamic information, of course up to the extent
of the resolution and faithfulness of the force field.

The (relative) path entropy, or caliber, for any path distribu-
tion P[x] is

S [P‖P0] =−
∫
DxP[x] ln

P[x]

P0[x]
, [9]

where Dx indicates an integral over all trajectories or paths x.
MaxCal states that the optimal distribution PMC [x] is given by

PMC [x]= arg max
P[x]

S [P‖P0], [10]

subject to:

{∫
DxP[x]si [x] = 〈si [x]〉= sexp

i∫
DxP[x] = 1.

That is, PMC [x] maximizes the path entropy or caliber,
while obeying the constraints given by external constraint sexp

i .
The observable ensemble average 〈si [x]〉 can relate to any
measurement either giving rise to static/thermodynamic or
dynamic/kinetic information. Note that s[x] is now a path func-
tion, which includes (auto)correlation functions. We refer the
interested reader to SI Appendix for further elaboration.

Following a procedure similar to MaxEnt yields the Lagrange
function

L=−
∫
DxP[x] ln

P[x]

P0[x]
− ν

(∫
DxP[x]− 1

)
−
∑
i

µi

(∫
DxP[x]si [x]− sexp

i

)
, [11]

with a derivative

δL
δP[x]

=− ln
P[x]

P0[x]
− 1−

∑
i

µisi [x]− ν, [12]

giving rise to the posterior

PMC [x]∝ e−
∑

i µi si [x]P0[x]. [13]

Thus, given a prior ensemble of paths P0[x], one can reweight
each path, while leaving the actual trajectories intact. As such,
the reweighting can be interpreted to only affect the distribution
of initial conditions in Eq. 8. We will come back to this later.

Independence of Partial Path Distributions. Up to now, we did
not specify what the path ensemble distribution refers to. In
what follows, we focus on systems that show two-state kinetics
between two stable states, A and B. We assume that there is
a separation between the molecular timescale and the reaction
time (34), to guarantee that well-defined rate constants exist for
the interconversions between A and B. The total distribution
P[x] =PA[x] +PB [x] is the sum of the (unnormalized) partial
path distributions PA[x]≡P[x]hA(x0) and PB [x]≡P[x]hB (x0),
consisting, respectively, of all paths that start in A and paths that
start in B. Here, hA,B (x ) are the indicator functions, which are
unity when the configuration x is in state A(B), and zero other-
wise. Note that we restrict all paths to start and end in one of the
stable states.

In what follows, we will focus on applying kinetic constraints
on each partial path ensemble separately, as they can be treated
independently from each other, as demonstrated in SI Appendix:

PMC
A [x]∝ e−µAsA[x]P0

A[x], [14]

PMC
B [x]∝ e−µB sB [x]P0

B [x], [15]

where sA,B [x] are now functions of the dynamical paths measur-
ing the observable that is constrained for the partial ensembles
A and B, respectively.

Constraining Rate Constants Using MaxCal. We now turn to con-
straining kinetic observables, including, in particular, rate con-
stants. Suppose that we have unbiased simulations that we want
to correct in order to match an experimental rate constant, sexp

A ≡
k exp
AB . First, we need to look at how the rate constant is defined in

the path space as the time derivative of the correlation function
C (t) = 〈hA(x0)hB (xL)〉/〈hA(x0)〉

kAB =
dC (t)

dt
=
〈hA(x0)ḣB (xL)〉
〈hA(x0)〉 , [16]
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where the indicator functions hA,B (x ) are unity when the frame
is in state A and B, respectively. This expression thus com-
putes the flux through entering the state B, provided that the
trajectories started in A.

To link the flux-correlation function to the path ensembles and
the MaxCal approach, we adopt the formalism of TIS (31, 35,
36), which, in turn, is based on the framework of TPS (28, 37, 38).
Introducing a CV λ(x ) that can parameterize a hypersurface, or
interface, in the configuration space, TIS defines a set of n + 1
nonintersecting such interfaces, denoted by the parameters λ0<
λ1< . . .<λn . In this way, the rate constant can be written as (31)

kAB =φ0PA(λB |λ0), [17]

where the first factor is the effective positive flux through the first
interface λ0 =λA, and the second factor is the crossing prob-
ability of interface λB =λn for all trajectories shot from the
first interface that came directly from state A in their backward
integration. When evaluating the rate constant using the TIS
framework, the first factor is accessible through a regular MD
simulation, and the second factor through performing sampling
of the interface path ensembles using the TIS algorithm (31)
or as an approximation by the VIE-TPS algorithm (32). Both
approaches yield an RPE, which is a way to reweight the interface
ensembles into effectively the unbiased equilibrium path ensem-
ble (30). PA(λB |λ0) can, in principle, also be evaluated by using
a very long MD simulation, although this is not very efficient for
rare events. The crossing probability connected to each interface
ensemble is expressed as a function of λ

PA(λ|λ0) =

∫
DxPA[x]θ(λmax[x]−λ), [18]

where PA[x] = hA(x0)P[x] is the now-normalized (unbiased or
reweighted) path ensemble distribution for paths starting in A,
θ(x ) is the Heaviside step function, and λmax[x] returns the max-
imum value of λ along the path. Here, we assumed that λ is
monotonically increasing with i .

Imposing the constraint kAB = k exp
AB now leads to the Lagrange

function

L=−
∫
DxPA[x] ln

PA[x]

P0
A[x]
− ν

(∫
DxPA[x]− 1

)
−µA

(∫
DxPA[x]θ(λmax[x]−λB )− k exp

AB

)
, [19]

where we have left out the flux φ0 from the rate constant contri-
bution for notational reasons. Following the same reasoning as
before, we can optimize the Lagrange function giving rise to the
posterior

PMC
A [x]∝ eµAθ(λmax[x]−λB )P0

A[x], [20]

and from the analog of Eq. 6

k0
ABe

µA = k exp
AB , [21]

we obtain the value of the Lagrange multiplier µA =
ln(k exp

AB/k
0
AB ). Note that this equation can easily be extended to

the analog of Eq. 7

k0
ABe

µA = k exp
AB +µAσ

2
kAB

, [22]

where σkAB signifies the level of confidence in the rate constant
data. Just as for MaxEnt, one can turn the constraint condition
into a restraint condition.

The reweighting procedure can be interpreted as a bias on
only the reactive AB paths that make it to the final interface

λB , such that the total flux of paths is obeying the kinetic rate
constraint. However, this means that this reweighting will intro-
duce a discontinuity in the path distribution, as a path that is
nearly reaching B, but is recrossing back to A, is not reactive,
and thus is not reweighted. Even though these recrossing paths
themselves might be rare, such a discontinuity is undesirable. For
an illustration, see SI Appendix, Fig S2.

We can make progress by realizing that Eq. 17 can be writ-
ten as kAB =φ0PA(λB |λi)PA(λi |λ0) and that the rate constraint
should apply to all values of λi . Choosing interfaces arbitrary
close (i.e., large n) and enforcing the kinetics at all interfaces
simultaneously eliminates the undesired discontinuities. In SI
Appendix, we show that this yields the general solution

PMC
A [x]∝ e fA(λmax[x])P0

A[x], [23]

with

fA(λmax[x])≡−
n∑

i=1

µiθ(λmax[x]−λi)PA(λn |λi), [24]

where the PA(λn |λi) is the MaxCal-corrected crossing proba-
bility. The interpretation is that the weight of each path in the
posterior path ensemble is solely determined by λmax[x], which,
in turn, means that each path with the same λmax[x] is weighed in
the same way (SI Appendix). Indeed, for a specific λj

fA(λj ) =−
j∑

i=0

µiPA(λn |λi). [25]

A similar function fB (λmin[x]) follows for the path ensemble from
B, based on the minimum value of λ along the path.

The projection of the (normalized) partial path ensem-
ble P0

A[x] yields the crossing probability P0
A(λ|λ0) and the

configurational density ρ0A(λ), respectively,

P0
A(λ|λ0) =

∫
DxP0

A[x]θ(λmax[x]−λ), [26]

ρ0A(λ)∝
∫
DxP0

A[x]

L[x]∑
k=0

δ(λ(xk )−λ), [27]

where the sum is over all frames of the trajectory x. Using the
MaxCal path reweighting for the configurational density yields

ρMC
A (λ)∝

∫
DxP0

A[x]e fA(λmax[x])
L[x]∑
k=0

δ(λ(xk )−λ). [28]

For the crossing probability, the reweighting is a bit more subtle.
In SI Appendix, we show that

PMC
A (λ|λ0) =

∫ λ

λn

R0
A(λ|λ0)e fA(λ)dλ, [29]

where R0
A(λ|λ0) is the “reaching” histogram of paths that just

reach λ

R0
A(λ|λ0) =

∫
DxP0

A[x]δ(λmax[x]−λ). [30]

The configurational density and crossing probability for the
partial path ensembles from B are done likewise.

The MaxCal Bias Function fA(λ) Follows from MaxEnt for the Den-
sity. MaxCal does not give an explicit solution for the function
fA(λ), as it only concerns the final rate value, which is satisfied
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as long as fA(λn) is set to the proper value. Indeed, a solution to
the constraint equation will be correct for all functions fA under
the condition that fA(λB ) gives the correct kinetic constraint.
This can also be deduced from Eq. 25, where the solution to
the Lagrange multipliers µj allow virtually all reasonably shaped
functions fA(λ).

Therefore, it seems that we have not made progress, since
fA(λ) is unknown. Here is where the configurational density
ρ0(x ) comes in. Applying the regular MaxEnt approach by
setting P0(x ) = ρ0(x ) and s1(x ) = g(λ(x )) (M = 1) in Eq. 5
yields

ρME (x )∝ e−µg(x)ρ0(x ), [31]

where g(λ(x )) is an a priori unknown function that imposes the
constraint (taking the role of the s in Eq. 2). When projecting
onto the CV λ, this expression reduces to

ρME (λ)∝ e−µg(λ)ρ0(λ), [32]

where the constraint imposed is∫
dλg(λ)ρ(λ)∫
dλρ(λ)

= g exp. [33]

Now, what is g exp if we constrain the rate constants kAB and kBA?
The obvious candidate is the ratio kAB/kBA≡Keq , which is equal
to the equilibrium constant Keq =πB/πA. In fact, it turns out
better to consider the equilibrium fraction K =πB/(πA +πB ) =
Keq/(1 +Keq). Here, we use πA,B to denote the total equilibrium
population in A and B, to avoid confusion with ρA,B (λ). Thus,
the question is which function g(λ) would obey∫

dλg(λ)ρ(λ)∫
dλρ(λ)

=K . [34]

In SI Appendix, we show that a natural solution for g(λ) is the
(projected) committor pB (λ), as the points that commit to B
are both determining the committor (39) and the equilibrium
fraction K . We remind the reader that the committor pB (x )
is the probability for a MD trajectory initialized from configu-
ration x with randomized velocities to reach state B before A
(28, 29). In the field of protein folding, this is also sometimes
referred to as p-fold (40), while in the chemical literature, this is
known as Onsager’s splitting probability (41). Just as free ener-
gies, committors can be projected on CVs, leading to the concept
of committor distributions, profiles, or landscapes pB (λ) (39, 42).

The reweighted MaxEnt densities, given in Eq. 32, then
become

ρA(λ) = ρ0A(λ)eµApB (λ) [35]

ρB (λ) = ρ0B (λ)e−µBpB (λ)eµA , [36]

where the latter equation has a negative exponent and a shift,
and we considered two different Lagrange multipliers, one for
each direction AB and BA. To solve for pB , we note that pB (λ) =
ρB (λ)/(ρA(λ) + ρB (λ)) and substituting the ME densities gives

pB (λ) =
ρ0B (λ)

ρ0A(λ)e−µAe(µA+µB )pB (λ) + ρ0B (λ)
. [37]

This self-consistent equation can be solved numerically, given
ρ0B (λ), ρ0B (λ), and the values of µA and µB . These last quanti-
ties follow from the MaxCal constraint that the rate constants
need to be correct. That is,

eµA =
k exp
AB

k0
AB

eµB =
k exp
BA

k0
BA

, [38]

so that the ratio of these equations is

eµA−µB =K exp
eq /K

0
eq . [39]

Note that these last two equations can be extended to account
for the experimental error (Eq. 22). While we use MaxEnt here
for clarifying purposes, we note that, in principle, we can also add
static constraints in the MaxCal formalism.

We illustrate this approach for a toy example density. By tak-
ing simple exponential forms for the density (Fig. 1A), we plot
the initial committor in Fig. 1B. We can then apply the self-
consistent solution to the committor using µA = 1 and µB = 1.5
(Fig. 1B) and reweight the densities (Fig. 1C).

To obtain fA(λ) from g(λ), we use the fact that the
MaxCal-corrected RPE configurational density and the MaxEnt-
corrected configurational density should be identical, i.e.,

ρMC
A (λ) = e−µg(λ)ρ0A(λ), [40]

or ∫
DxP0

A[x]e fA(λmax[x])
L∑

k=0

δ(λ(xk )−λ)=

=e−µg(λ)

∫
DxP0

A[x]

L∑
k=0

δ(λ(xk )−λ). [41]

In practice, this Volterra equation of the first kind should be
solved numerically (SI Appendix). A similar equation needs to
be solved for the partial ensemble of paths starting in B, in order
to obtain fB .

Optimal Path Distributions by Varying the CV. The final perturbed
distributions will be dependent on the choice of the CV λ. In
principle, it is possible to vary the CV and maximize the entropy

A B C

Fig. 1. A simple example of the approach of reweighting densities described in this work. (A) Initial densities ρ0
A(λ) (blue) and ρ0

B(λ) (orange). (B) Initial
committor p0

B(λ) (blue). Solution of the self-consistent equation Eq. 37 (orange). (C) Reweighted densities (blue) compared to initial densities (orange).
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Fig. 2. Illustration of the method of reweighting paths described in this work. (Left) A free energy barrier F(λ) is shown in black. The blue path has a high
weight, while the red path has a low one, as it has to travel further up the barrier. The maximum λ-values are indicated by dotted vertical lines. (Right) After
the reweighting, the red path is relatively more abundant in the ensemble, as indicated by the thicker curve. The resulting free energy barrier is lowered in
line with the kinetic constraints.

and caliber as function of the CV. The most optimal CV is then
the one that leads to the least perturbed path distribution.

Inserting the optimized MaxCal distributions PMC
A [x] =C−1

A

P0
A[x] exp[fA(λmax[x])] and PMC

B [x] =C−1
B P

0
B [x] exp[fB (λmin[x])],

with CA,CB appropriate normalization constants, into the
expression for the caliber of the distributions and using the
definition of the “reaching histograms” R0

A(λ|λ0),R0
B (λ|λn),

yields

S [PA‖P0
A] =− 1

CA

∫
dλR0

A(λ|λ0)e fA(λ)(fA(λ)− lnCA)

S [PB‖P0
B ] =− 1

CB

∫
dλR0

B (λ|λn)e fB (λ)(fB (λ)− lnCB ),

[42]

where the normalization CA =
∫
dλR0

A(λ|λ0)e fA(λ) is now also
expressed using the reaching histograms. Note that we have
assumed all subdistributions P0

A,PA,PB ,P0
B to be normalized.

However, when computing the total entropy, we need to use the
normalized total path distributions P and P0. It is possible to
express the caliber for the full distributions in terms of S [PA‖P0

A]
and S [PB‖P0

B ] as

S [P‖P0] =αS [PA‖P0
A] + (1−α)S [PB‖P0

B ]

+ +α ln
α

α0
+ (1−α) ln

1−α
1−α0

, [43]

with α=CA/(CA +CB ), and α0 =C 0
A/(C

0
A +C 0

B ). The last two
terms provide a kind of penalty for how much the partial ensem-
bles differ in their respective weight. For a symmetric potential,
identical sampling, and a symmetric bias, α= 1/2 and these
terms vanish.

Generalizing the Approach. When deriving the g(λ) function, we
use λ as a CV. We can generalize the approach and look for the
g(x ) as a function of any configuration x . In analogy with Eq. 35
and Eq. 36, the reweighted MaxEnt densities are given by:

ρA(x ) = ρ0A(x )eµApB (x)

ρB (x ) = ρ0B (x )e−µBpB (x)eµA . [44]

To solve for pB , we use again the definition pB (x ) =
ρB (x )/(ρA(x ) + ρB (x )) and substitute the MaxEnt densities,

pB (x ) =
ρ0B (x )

ρ0A(x )e−µAe(µA+µB )pB (x) + ρ0B (x )
. [45]

Again, this self-consistent equation needs to be solved numer-
ically, given ρ0A(x ), ρ0B (x ), and the values of µA and µB .

The fA(x ) function then follows from identifying the MaxCal-
corrected RPE configurational density with the MaxEnt-
corrected configurational density

ρMC
A (x ) = e−µg(x)ρ0A(x ), [46]

or, setting g(x ) = pB (x ),∫
DxP0

A[x]e fA(pB,max [x])
L∑

k=0

δ(xk − x )=

=e−µpB (x)

∫
DxP0

A[x]

L∑
k=0

δ(xk − x ), [47]

where pB,max [x] is the maximum value of the committor along
the path x. In practice, this equation should again be solved
numerically.

This approach is consistent with the idea that pB (x ) is the most
optimal RC (29, 42).

Interpretation of the Method. The method that we have described
takes as input an unbiased ensemble of paths and reweights each

Fig. 3. Representation of a 2D toy potential (32) used to illustrate the appli-
cation of the reweighting method described in this work. Energies are in
units of kBT . The two states, A and B, are separated by an energy barrier
along the x axis. Oscillations are added to show better resolution of the
projections.
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A B

C D

Fig. 4. Application of the reweighting method to the 2D potential of Fig. 3A committor p0
B(λ) function (red) and solution of the self-consistent Eq. 37

(black) for the explicit simulation. (B) Original weight function e−µg(λ) (black) and back-iterated function efA (λ) (red). (C) Logarithm of the configurational
densities with the original in red, the reweighted with the g function (green), and the RPE-corrected with efA(λ) in black (not visible, behind green). (D)
Logarithm of the crossing probability with the original in red and the RPE-corrected with efA (λ) in black.

trajectory in the ensemble according to how far it progresses
along a predefined CV (Fig. 2). This includes the paths that
cross the barrier and reach the other state, so the rate con-
stants are automatically constrained to the correct value (via the
functions fA,B (λ)). The more involved part of the framework is
to also ensure that the thermodynamic properties are correct,
in particular, the equilibrium constant. This requires a specific
bias function g(λ) based on the committor function, which pro-
duces the least perturbed path ensemble, while still obeying the
constraints. So imposing g(λ) can be viewed as responsible for
constraining equilibrium conditions, whereas fA,B (λ) takes care
of the dynamical corrections. The interpretation of the reweight-
ing procedure is that trajectories are artificially made more (or
less) probable in the path ensembles, analogous of changing the
weight of each conformation in the Boltzmann distribution, using
the MaxEnt approach. Note that the method is enslaved to the
original dynamics: The distribution of initial conditions for the
trajectories is altered via the reweighting procedure, but the tra-
jectories themselves do not change. This is analogous (but not
identical) to how microcanonical trajectories can be reweighted

to give a canonicaly distributed path ensemble (see, e.g., ref. 43).
The altered path ensemble can lead to improved mechanistic
insight by putting more emphasis to certain (transition) states
and routes.

Of course, ideally, one would like to know how to alter the
underlying force field, in order to achieve the same corrections.
This could be the subject of future research.

Results and Discussion
In this section, we illustrate the approach on a toy model as well
as all-atom MD simulations of a folding/unfolding transition. In
SI Appendix, we present further illustrations using toy models
and a peptide unbinding transition.

Two-Dimensional Toy Models. We first investigated a two-
dimensional (2D) potential (Fig. 3), which was recently studied
using the VIE-TPS method (32). For details about the potential
and the method, we refer to ref. 32. Setting the (reciprocal) tem-
perature β= 1/kBT = 3, we performed 107 trial shots, where
paths of flexible length were generated by using Metropolis

A B

Fig. 5. Analysis of the 2D potential of Fig. 3 by increasing the bias. (A) The free energy for a tilt with µA =−3, µB = 3: original (black), reweighted with
g function (green), and RPE-corrected with ef(λ) (red) (behind green). (B) Logarithm of the crossing probability: original in black/green, RPE-corrected with
ef(λ) in red/blue.
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BA

Fig. 6. Analysis of the 2D potential of Fig. 3 by parametrizing efA (λ) with a functional form. (A) Back-iterated function fA(λ) (red) and the fit (black curve).
(B) The corresponding densities are identical.

Monte Carlo dynamics, on average roughly 1,000 frames long.
Applying the VIE-TPS method on this potential gave the two
partial path ensembles P0

A and P0
B . We then applied our MaxCal

approach, reweighting with µA =−1 and µB = 0, which corre-
sponds to the lowering of the rate kAB by a factor e . The results
are shown in Fig. 4. Fig. 4A shows the committor based on
the original data (red curve), as well as the self-consistent solu-
tion to the committor (black curve). Fig. 4B gives the solution
to Eq. 41 using back substitution (SI Appendix). The original
weight e−µg(λ) = e−µpB (λ) is shown in black and the back iter-
ation in red. Note that the red curve oscillates, due to numerical
inaccuracies.

Next, we show the reweighted densities ρA in Fig. 4C. The orig-
inal density is shown in red, and the reweighted with the e−µg(λ)

is shown in green. The RPE-corrected density should be identi-
cal and is shown in black (not visible, as it is, indeed, exactly the
same as the green curve). Finally, we show the logarithm of the
crossing probability in Fig. 4D, with the original curve in red and
the RPE-corrected one in black. Indeed, the final log-rate was
lowered with one, as imposed.

For positive bias µA> 0, this treatment is also possible, but can
result in some negative weights e fA(λ) for λ just below λn . We
ameliorated this by putting the weights to zero for these cases,
which precludes a precise solution. Still, the reweighted densities
are almost correct. In any case, the values of fA(λ) do not affect
the densities strongly at these values.

In Fig. 5, the bias is increased to µA =−3 and µB = 3, and
the crossing probabilities now show a dramatic change. Both for-
ward (AB) and backward (BA) curves are shown in Fig. 5B.
The crossing-probability curves are shifted to match the min-
imum values. Note that the BA curve (blue) is thus shifted
by 6kBT , as required by detailed balance. The free energy
(Fig. 5A) shows a strong shift of the transition state toward
the final state.

The oscillations occurring in Fig. 4B are related to numerical
inaccuracies during the backward-substitution solution for fA(λ).
These oscillations, indeed, decrease with the amount of path
ensemble data that is available. In the limit of infinite amounts of
data, this curve should be smooth. It should therefore be possible
to parametrize fA(λ) with a functional form, e.g., with

A B

C D

Fig. 7. Simulations of folding and unfolding of chignolin. (A) Committor p0
B(λ) function (black) and solution of the self-consistent Eq. 37 (green) for the

explicit simulation using µA = −1.3. (B) Original weight function e−µg(λ) (green) and back-iterated function ef(λ) (red). (C) Logarithm of the crossing-
probability histogram of the original (black) and RPE-corrected with ef(λ) (red). (D) Free energies as a function of the fraction of native contacts Q, original
(black), reweighted with g function (green), and RPE-corrected with ef(λ) (red) (green not visible, behind red).
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fA(λ) = g(λ) +

np∑
i

ai,0 exp(−ai,1(x − ai,2)2),

withnp as the number of Gaussian functions, and optimize the ai,j
coefficients. The result for np = 1 is shown in Fig. 6. This opens
up the possibility to optimize parameterizations of fA(λ) using
advanced regression procedures, and even machine learning.

In SI Appendix, we further explore 2D potentials in order to
study the influence of the choice of CV.

Folding and Unfolding of Chignolin. The kinetics of fast folding β-
hairpins have been studied by temperature-jump spectroscopy
(44), reporting microsecond-timescale folding. Chignolin is a
two-state, β-hairpin, mini-protein that folds in the µs timescale
(45). Despite its simple fold (Protein Data Bank ID code 2RVD),
molecular simulation fails to capture the experimentally deter-
mined melting temperature of 341 K (45–47). Here, we perform
our kinetic analysis on an equilibrium MD trajectory of chig-
nolin at 341 K (45). While at this temperature, experiments
suggest that the folding and unfolding rates should be the same,
simulations report a folding rate of kf = 1.667 µs−1 and an
unfolding rate of ku = 0.455 µs−1, respectively. The correspond-
ing enhanced stability of the folded state is likely to arise from
inaccuracies in the force field used in the MD simulations. In
the absence of an experimental folding rate for chignolin, but in
light of 1) knowledge that the barrier heights should not exceed
4.5kBT (45), and 2) that folding and unfolding rates should be
the same at the melting temperature, we perform our kinetic
analysis by constraining only the folding rate k exp

f = 0.455 µs−1.
This leads to posterior kinetic ensemble of (un)folding pathways
exhibiting new kinetics and thermodynamics, as shown in Fig. 7.
We use the fraction of native contacts Q as the CV for the order
parameter λ. In the remainder of this section, states A and B
refer to the unfolded (Q < 0.05) and folded state (Q > 0.7),
respectively.

The posterior committor distribution becomes steeper and
gets shifted to higher Q values (Fig. 7A). In particular, the
isocommittor surfaces pB = 0.5 shift by 10%, from Q = 0.5 to
Q = 0.55. This is in agreement with an effect of lowering the
temperature to the increase of the nativeness of the transition
state (48), as well as the knowledge of native-like transition
states in protein zippers (44). Fig. 7B illustrates the solution to
the Volterra equation Eq. 41 by back substitution. The origi-
nal weight e−µg(λ) = e−µpB (λ) is shown in green, and the back
iteration gives the MaxCal bias on the path weights e f (λ). Apply-
ing this bias to reweight the path ensemble results in posterior
crossing probabilities (Fig. 7C), where the folding conditional
probability becomes steeper, indicating slower folding kinetics.
At the same time, the final shift in the folding crossing probabili-
ties is exp(−1.3), giving, indeed, rise to the imposed folding rate
of k exp

f = 0.455 µs−1. Finally, Fig. 7D illustrates the effect of the
kinetic constraint on the free energy. The free energy difference
between folded and unfolded states becomes zero, as expected
by the constraint, and amends the current force field’s inaccuracy
in predicting the simulated temperature (341 K) as the melting
temperature. Moreover, the free energy barrier becomes more
asymmetric, shifting toward a more native-like conformations
(TS′), as indicated also in Fig. 7A. The interactions in structure
TS′ can inform mutation experiments in order to regulate the
folding kinetics.

In Fig. 8, we assess how the kinetic correction alters the
free energy and committor landscapes as a function of fraction
of native contacts and solvent-accessible surface. The kinetic
constraint increases the population of the misfolded configura-
tions (0.05 <Q < 0.4) state (Fig. 8B), as well as widens the
distribution of the solvent-accessible area (SAS) of the pro-
tein. Moreover, Fig. 8 C and D show that the kinetic constraint

A B

C D

E

Fig. 8. (A and B) Free energy as a function of the fraction of native contacts,
Q, and the solvent-accessible surface, SAS, of the prior (A) and the posterior
(B). C and D highlight the respective committor landscapes of the prior (C) and
the posterior (D). (E) The structure panel refers to the folded (A), unfolded (B),
prior transition state (TS), and posterior transition state (TS′).

shifts the transition state—i.e., the 0.5 isocommittor surface—
to a higher fraction of native contacts Q ≈ 0.55 and a slightly
lower SAS of 12.2 nm2, indicating a more packed structure. As
illustrated in Fig. 8E, the prior transition-state configuration TS
forms one backbone hydrogen bond and has the residues Y2
and W9, crucial for hydrophobic collapse, facing away from each
other. On the contrary, the posterior transition-state configu-
ration TS′ is more native-like and shown to form more native
backbone hydrogen bonds, while forming contacts at the key
hydrophobic collapse residues Y2 and W9.

Conclusions
Molecular simulations can be used to accurately characterize
protein structural ensembles and their corresponding thermody-
namics (4). Yet, as the functions of proteins often depend on the
transition rates between their different states, there is still a need
for developing accurate methods for characterizing the kinetics
of these molecules.

To address this challenge, in this work we have developed
a framework to determine kinetic ensembles from experimen-
tal information. This framework combines MaxCal and MaxEnt
concepts in order to match experimentally determined kinetic
rate constants with MD simulations. The matching is done by
biasing the paths in the unbiased RPE based on how far they
are progressing along a chosen CV. In this reweighting, both
the rate constant as well as the equilibrium free energy are
constrained. In doing so, we are able to ameliorate dynamical
profiles, such as conditional probabilities, committor functions,
and transition states, as well as the long time kinetics and
the equilibrium thermodynamics. In addition, the method can
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account for uncertainty in the data by imposing restraints rather
than constraints.

To illustrate possible applications of this method, we showed
that matching the rate constants of folding of chignolin to a sim-
ulated structural ensemble yields accurate melting temperature
and a more native-like transition-state ensemble.

We anticipate that this method will extend the applicability of
MD simulations as a kinetic tool in structural biology—e.g., for
accurate mechanistic and reaction coordinate analysis. Further-
more, the approach can be extended to amend imperfections in
current atomistic force fields to reproduce the kinetics and ther-
modynamic observables. Such a possible method would require
computing the derivative of the kinetic rate constant in path
ensembles. We leave this for future research.

We finally note that, in principle, the method is general and
could be applied to a wide range of problems amenable to
molecular simulations.

Materials and Methods
Simulation data were generated by using home-written code or from pre-
vious work (32, 49). Reweighting of path ensembles was done by using
home-written analysis scripts.

Data Availability. All study data are included in the article and SI Appendix.
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