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Abstract
In the spreading of infectious diseases, an important number to determine is how
many other people will be infected on average by anyone who has become infected
themselves. This is known as the reproduction number. This paper describes a non-
parametric inversemethod for extracting the full transfer functionof infection, ofwhich
the reproduction number is the integral. The method is demonstrated by applying it to
the timeline of hospitalisation admissions for covid-19 in the Netherlands up to May
20 2020, which is publicly available from the site of the Dutch National Institute of
Public Health and the Environment (rivm.nl).

Keywords Transmission · Infectious diseases · Reproduction number · Estimation
techniques · Covid-19
Mathematics Subject Classification 45 · 92

1 Introduction

The reproduction rate is a fundamental concept in epidemiology. One quantifier of
this is the basic reproduction number R0, which is the average number of secondary
cases generated by a typical infectious individual over the entire course of the infec-
tious period in a fully susceptible population. The other is the generation time: the
time interval between the infection time of the infector and her/his infectees. These
definitions are reproduced from Liu et al. (2018) which itself also refers to the book of
Anderson andMay (1991) and papers of Roberts andHeesterbeek (2007) andWallinga
and Lipsitch (2007).

In the paper of Nishiura (2010), which bases itself on the paper of Diekmann et al.
(1990), the following basic equation is presented. Let j(t) be the number of new
infections (i.e., incidence) at calendar time t . Supposing that each infected individual
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on average generates secondary cases at a rate A(τ ) at time τ since infection (where
τ is referred to as the “infection-age” or time delay hereafter), j(t) is written as:

j(t) =
∞∫

0

A(τ ) j(t − τ)dτ (1)

where the integral expresses a convolution of A(τ ) and j(t). It is important to mention
that Eq. (1) is in fact a more restricted form than what is presented in Diekmann et al.
(1990). The more general linearized real time form for a heterogeneous population,
with a total number per group in the population S, and a transmission function Ag , is:

jg(t, ξ) = S(t, ξ)

∫ ∞∫

0

Ag(t, τ, ξ, η) jg(t − τ, η)dτdη (2)

where the variable ξ , and its counterpart under the integral sign η, are used to express
explicitly that the population is heterogeneous, i.e. is subdivided in groups. To which
group an individual in the population belongs is briefly referred to as their state. There
can be heterogeneity inmanydifferentways, andwherever this implies discrete groups,
the integral over η becomes a summation over the discrete values it can take. In the
present context it is necessary to distinguish at least three groups:

– Those in the population that are still susceptible, and not infectious
– Those in the population that are infectious
– Thosewho no longer are. These have either gained immunity after they have recov-
ered from infection, or they are (progressively) withdrawn from the population,
for instance because effective measures are in place to completely isolate them
from the rest.

The function S and also Ag must be functions of t as well, which is not explicitly
mentioned in Diekmann et al. (1990). One reason for this is that as time progresses,
even in the absence of any isolation measures, the third group will increase in size
through recovery and immunity and hence the other two groups must decrease. In Eq.
(2) the normalization is chosen such that S(0, ξ)/Npop is the density function of that
portion of the population, of size Npop, that is susceptible at times prior to the disease
being introduced. In Eq. (2) the j(t, ξ) is the rate at which susceptibles with state ξ

are infected at time t . If now the relationship between j and jg , is written as:

j(t) ≡
∫

jg(t, ξ)dξ (3)

and in addition it is assumed that Ag satisfies:

∫
S(t, ξ)Ag(t, τ, ξ, η)dξ = A(t, τ ) (4)
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then integrating Eq. (2) over ξ , and interchanging integrations produces the form Eq.
(5), except that now A still has an explicit time dependence. Since R0 represents the
total number of secondary cases that a primary case generates during the entire course
of infection, starting from a fully susceptible population, it is the integral of Ag at
t = 0:

R0 =
∫∫ ∞∫

0

Ag(0, τ, ξ, η)dτ dξdη (5)

In a finite population, the fraction of the population that has been infected is a reservoir
which can re-infect others over some period of time, governed in part by the virology,
i.e. infectiousness, and in part by whether they isolate themselves or are isolated
because their symptoms are sufficiently clear to indicate the need for such measures.
An effective reproduction number, taking all this into account, therefore cannot be a
constant but must instead still be a function of time:

R(t) =
∫∫ ∞∫

0

S(t, ξ)Ag(t, τ, ξ, η)dτ dξdη

=
∞∫

0

A(t, τ )dτ (6)

Eq. (4) might appear quite restrictive, since the dependence on η on the left hand
side must disappear. However, if the options for η are “susceptible”, “infectious” or
“removed”, then Ag can be non-zero only for the second of these categories, so that
the dependence on η drops out of the equation.

The explicit dependence of A on t aswell as τ ismore problematic. In early stages of
an epidemic, without effective isolation measures, and with the “susceptible” group of
the population only changing negligibly because the “removed” group is still extremely
small, it could be argued that time-independence for S and Ag is a good approximation.
In what follows an additional approximation is used, which is equivalent to allowing
separation of time scaleswhere the time evolution of A is slow compared to its variation
with τ . Oneway to express the notion that the derivative of Awith respect to t is always
small compared to the derivative of A with τ is to write a formal expansion in terms
of a small parameter ε:

A(t, τ ) = A0(τ ) + εA1(εt, τ ) + O(ε2)

| ∂A1
∂εt |

| ∂A1
∂τ

| ∼ O(1) (7)

Dropping all terms apart from the very first and omitting the subscript 0 for notational
convenience then yields Eq. (1).

In the remainder of this paper it is therefore implicitly assumed that the evolution
with time t of A(t, τ ) is slow, compared to the behaviour of A(t, τ ) with τ .
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For what follows it is convenient to express Eq. (1) in terms of the cumulative
number of infections:

C(t) =
t∫

0

j(t ′)dt ′ (8)

It is straightforward to demonstrate by partial integration that Eq. (1) can be rewritten
in terms of this cumulative number:

j(t) = − [A(τ )C(t − τ)] +
∞∫

0

A′(τ )C(t − τ)dτ (9)

where A′(τ ) is the first derivative of A(τ ) with respect to τ .It can be assumed that
in the limit for τ → ∞ the function A(τ ) vanishes and C(t) is bounded, so that the
term in square brackets on the righthand side of (9) vanishes. The integral in Eq. (9)
expresses what is known as a convolution of the functions A′ and C :

j(t) =
∞∫

0

A′(τ )C(t − τ)dτ

=
∞∫

−∞
A′(t − τ̃ )C (̃τ )dτ̃ (10)

where the second form, with τ̃ ≡ t − τ is a more standard form. Adjusting the
integration limit from 0 to −∞ implies that it is assumed that for τ < 0 the functions
A′ and A are identical to 0.

The problem of reconstructing A′(τ ), and by extension A(τ ), from a Fredholm-type
equation such as (9), is an inverse problem for which many techniques exist. What is
slightly more unusual is that in this case not only is the left-hand side j(t) measured
data, but so isC(t). This type of problem is not unique to epidemiology. In astrophysics
there is a mathematically very similar observational problem when reconstructing the
distribution of gas clouds around the black holes at the centre of active galaxies (AGN)
cf. Blandford and McKee (1982). Fluctuations in the continuum brightness of light
sources very close to the black hole play the same role that C(t) does in the current
setting, whereas the absorption and re-emission of light by certain spectral lines have
the role of j(t). The equivalent of A′(t) is called the transfer function in this field
known as reverberation mapping of AGN. In reverberation mapping as well as here,
the transfer function itself may also vary in time cf. Wanders (1995), albeit slowly
compared to light travel times. In the case of AGN there are some additional problems
such as the fact that it is impossible to obtain a perfectly regularly sampled time series.
A method to deal with these problems, referred to as SOLA, is presented in Pijpers
and Wanders (1994).
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2 Simplemethod

In the case at hand, where daily sampling is available, it is possible to make certain
shortcuts in the method as compared to the implementation of the SOLA method
Pijpers and Wanders (1994). Starting point is the integral Eq. (5) relating j(t) and
C(t). These are both available as time series, sampled daily. In the case of the spread
of covid-19 in the Netherlands the time series are still relatively short.

For what follows it is useful to recollect that time series analysis quite often makes
use of Fourier transforms. A Fourier transform (FT) F(ω) of a time series is related
to the original time series f (t) by:

F(ω) = 1√
2π

∫ ∞

−∞
f (t)eiωtdt (11)

inwhichω is the frequency. The operation on f (t) is invertible, the inverse relationship
is:

f (t) = 1√
2π

∫ ∞

−∞
F(ω)e−iωtdω (12)

In general, for an arbitrary real-valued function f , its FT is complex-valued. The
operation is unique so that every integrable function and its FT can be referred to as
an FT-pair. For discretely sampled time series, there are equivalent discrete versions
(DFT) of these operations, with the same properties. There are a number of properties
of Fourier transforms that are very useful in practice. Two of such proven theorems
are of particular interest at the present. The first is that the FT of the derivative of a
function is related to the FT of the function itself by:

FT ( f ′) = −iωFT (ω) (13)

The second is that the FT of convolution integrals such as (10) can be performed very
simply in the Fourier domain. The FT of a convolution of two functions is the product
of the FT’s of those two functions. A common shorthand notation for a convolution
operation is a ∗, so that:

FT ( f ∗ g) = FT ( f )FT (g) (14)

When applying this theorem (14) to Eq. (10), The Result Is:

FT ( j) = FT (A′)FT (C) (15)

Making use of (13) then produces:

FT ( j) = −iω

[
FT (A) − K

ω2

]
FT (C) (16)

The term with the constant K is necessary to introduce here. In setting up Eq. (1),
or equivalently Eq. (10), only the endogenous spreading of infection is captured. The
complementary exogenous process is where new infections come in to the system
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without have been caused by being infected by another individual within the popula-
tion: for instance, from another spatial domain (another country) or by transfer from
another species, e.g. animal-to-human infections. In Eq. (1) this would be represented
by a Dirac delta-function term at τ = 0 : i.e. K δ(τ ) where K represents an average
rate of inflow. In Eq. (1) with the cumulative numbers under the integral, this means
that a term K τ must be subtracted from A, for which the Fourier transform is K/ω2.
This K is unknown but in practice is set by requiring the solution for A = 0 for τ < 0.
Naively one might therefore expect to be able to carry out either the mathematical
operation:

A′ = FT−1
(
FT ( j)

FT (C)
− K

)
(17)

or the mathematical operation:

A = FT−1
(

i FT ( j)

ωFT (C)
+ K

ω2

)
(18)

This is problematic because for most time series, the Fourier transform can become
0 at some or even very many frequencies. If this happens to FT (C) it is clear that
this leads to a division by 0 in Eqs. (17) and (18). In any case there is a problem with
(18) at ω = 0. This is one way to express the known fact that inverse problems are
“ill-posed”. Another way to express this is that results of inversions are particularly
sensitive to measurement errors in the data. The solution to this is to regularize the
problem. There are a number of ways to achieve this regularization. Generally, the
effect of regularization is that the result of the inversion is to produce a “smoothed”
version of the function sought, i.e. A′ or A in this case. In other words, the data allows
only a finite resolution in time for the reconstructed function.

For regularly sampled data there is a particularly straightforward way in which
regularization can be achieved. To demonstrate this, consider again Eq. (15). Both
left- and right-hand side of this equation can be multiplied by the complex conjugate
of the FT of C:

FT ( j)FT †(C) = FT (A′)|FT (C)|2 (19)

where use is made of the fact that the product of a complex number or function with its
complex conjugate is the, real-valued, square of the modulus. A regularized solution
can now be obtained by taking:

A′ = FT−1

(
FT ( j)FT †(C) − K |FT (C)|2
|FT (C)|2 + μFT 2

C (ω = 0)

)
(20)

in which FTC (ω = 0) is the value of the FT of C at ω = 0, and 0 < μ < 1 is a weight
parameter which acts as a “dial”to increase or decrease the extent of the regularization
applied. To obtain A instead of A′ one would use:

A = FT−1

(
iωFT ( j)FT †(C) + K |FT (C)|2
ω2|FT (C)|2 + μFT 2

C (ω = 0)

)
(21)
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Both Eqs. (20) and (21) are in effect applying Wiener filters to the data to regularize
the inversion. Once K is determined for the determination of A using the procedure
described in Sect. 4, the value can also be used to correct A′.

3 Synthetic data

A usual procedure to test out methods for analysis of data, in particular where it
concerns inverse methods, is to apply the method to synthetic data. In that case the
true answer is known so that it becomes possible to compare the result of the data
analysis with the truth. This is also a way to assess the influence of data errors. In
principle, any model could be used to produce synthetic data. There are many models
for epidemiological outbreaks, some highly sophisticated, see e.g. Grassly and Fraser
(2008) or Liu et al. (2018) for an overview. For the present purpose it is sufficient
to choose a few different analytical forms for the function A(τ ) that are reasonably
realistic to generate a time series and investigate the performance of the algorithm in
reconstructing A(τ ) from the time series.

Case 1 & 2 (Weibull)

A(τ ) = R0
β

τm

(
τ

τm

)β−1

e
−

(
τ

τm

)β

(22)

For case 1 the parameter choices are (R0, τm, β) = (3, 7, 2) and for case 2
(R0, τm, β) = (3.745, 11, 0.8)). This is sampled daily, i.e. for all integer values
for τ from 1 to T inclusive. Outside of this range A(τ ) is set to 0.
Case 3 (exponential)

A(τ ) = R0
1

τm
e− τ

τm (23)

Here (R0, τm) = (4.73, 15.2). For all three cases T = 40. This is then 0-padded for
τ > T to a total length of the time series of 64. The time series for j(t) is generated
iteratively by repeatedly convolving A and j to obtain the value of j for the next day,
to a length of 40 days, using these two options for A(τ ), with a starting value of 10
on day 1.

The function A and the resulting function j are shown in Fig. 1. The parameters
are chosen deliberately to produce time series j that are very similar, even though

Fig. 1 Left panel: the synthetic function A(τ ) for cases 1 (solid line), 2 (dashed), and 3 (dash-dot). Right
panel: the time series j(t) generated in case 1 (solid line), case 2 (dashed), and case 3 (dash-dot)
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Fig. 2 The result of the inversion of the data j(t) shown in Fig.1, for three different values of the regular-
ization parameter μ. Left panel is case 1, right panel is case 2

the A that give rise to them are quite different. This demonstrates quite clearly the
difficulty in reconstructing A from j . This lack of unicity is universal in solving inverse
problems: there is a null-space of functions on the domain [0, T ] which can be added
to Awithout changing the integral (1). In general, the reproduction number that would
be deduced by evaluating integral (6) will change when adding a function from the
null-space to A so that even that is not well constrained. A further illustration of this
issue can be found in Appendix1, which also demonstrates that this is a fundamental
and unavoidable problem.

The results of applying the inverse method to the j time series for the cases 1 and 2
are shown in Fig. 2 for various choices of the regularisation parameter μ. The results
for cases 1 and 2 are barely distinguishable, and case 3 is so similar to the cases 1 and
2 shown here that it is omitted.

The exact same problem also occurs for any standard epidemiological modelling,
i.e. a forward approach as opposed to an inverse approach: only if the precise form
of A is already known a-priori from external considerations, will the data constrain
the parameters of such a model. The time series j on its own, without additional
knowledge, is insufficient to strongly constrain either A or the effective or basic repro-
duction numbers, regardless of whether one takes a forward/modelling approach or a
non-parametric inverse approach.

To assess the influence of the length of the measured time series on the resulting
inverted results, also a version of the case 1 is analysed where only the first 14 days
of the time series is used rather than 40 days. The effect on the margins of uncertainty
in particular is large: for the same values of the regularization parameter μ these
errors increase by a factor of more than 10. At that level of uncertainty the resulting
determination of R would still be acceptable, but the determination of the resolved
transfer function A is no longer usable.

This conclusion does not automatically render modelling or inverse method
approaches useless, however. The results from the inverse method presented here
provide a “minimal solution” that is consistent with the data. TheWiener filtering that
is applied (cf. Eqs. 20 and 21) will result in a solution for A that has the minimal
structure or variation with τ that the data allows. Solutions for A which are valid but
vary more as a function of τ than the minimal solution, may also have a different
reproduction number, but will produce, by definition, the same time series for j . This
is a distinct effect from uncertainties in the solution that are due to (administrative)
data errors when recording that time series. The appendix outlines how the additional
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realisability constraint, that A(τ ) ≥ 0 for all τ , can be used to construct a range of
allowed solutions and reproduction numbers. With this it becomes possible to disen-
tangle the uncertainty in the reproduction number that arises from the inverse nature
of the problem, from the uncertainty due to the influence of errors in the measured
data.

4 Publicly available covid-19 data

In principle, the best measurement would be if the time series for j and for C were
known for the entire population. However, that would require either very extensive and
repeated testing of the whole population, or at least regularly testing of (minimally)
two independently obtained samples, representative of the population, and applying
capture-recapture techniques to obtain statistical estimates for j and forC as a function
of time. This approach is certainly very expensive as well as very labour-intensive and
also not without risk. There might be risk to the medical staff who administer the tests
for becoming infected, and also a risk that they then themselves potentially become a
further source of infection for the populations that they test.

An alternative is therefore to apply this technique to a well-defined subset of the
population. Ideally this would be an a-select sample, but at least a subset of the popu-
lation that does not vary much in time in terms of its composition. A good candidate
is the number of hospital admissions. The subset of the population that is infected
and becomes sufficiently ill to need hospital care is probably the subset for which the
registration is most timely and complete. This subset maywell not be a-select but there
is probably little change over time of the characteristics of the subset of the population
which is most adversely affected.

To demonstrate this technique the publicly available hospitalisation data is used
that is made available on the Dutch National Institute for Health and the Environment
(RIVM) website. The update of April 2 is used, for which it is known that the most
recent days in that dataset might not yet be complete. This is clearly the case for that
date of April 2 itself. In order to make the most of the limited dataset, all of the other
days are used, so any inaccuracies or incompleteness of the data will be reflected in
the reconstructed A′ and A.

The FT is carried out using an FFT, which is a fast implementation of a DFT. This
requires a length of the time series equal to 2m where m can be any integer value. In
this case m = 6 and the measured time series is left padded with values of 0. The
resulting time series A(τ ) from the inverse DFT produces, in a wrap-around manner,
the values for A(τ ) for τ = −31,−30, . . . , 0, 1, . . . , 32. The result is plotted in Fig. 3
in the sense that if A′ 
= 0 at a positive τ , this implies that j is delayed with respect
to C as would be expected. This is the black part of the curve. The dotted part of the
curve is acausal and should therefore be = 0. In practice however, there is the need
to regularize in order to obtain a result that is not dominated by noise. The smoothing
implied by the regularization means that some of the signal at τ > 0 “leaks” into the
domain for τ < 0. The result shown uses μ = 0.025. The steep decline and negative
value of A′ at 10d implies that A itself very likely declines sharply after 10 d. Note that
all of the equations and therefore also all results are defined in terms of τ̃ . In order to
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Fig. 3 Determination of A′ using Eq. (20) and the daily hospitalisation numbers j(ti ) and cumulative
numbers C(ti ) : (a. left panel) with K = 0 , (b. right panel) adjusting K ≈ 0, 00993 to obtain A ≈ 0 for
τ < 0. The DFT yields results in wrap around order. The plotting is done in such a way that if A′ 
= 0 at
a positive τ , this implies that j is delayed with respect to C as would be expected. The dotted part of the
curve should therefore be identical to 0, in the absence of regularization

Fig. 4 Determination of A using equation (21) with K = 0 and the daily hospitalisation numbers j(ti ) and
cumulative numbers C(ti ) : (a. left panel) with K = 0 , (b. right panel) adjusting K ≈ 0, 00993 to obtain
A ≈ 0 for τ < 0.. The DFT yields results in wrap around order. The plotting is done in such a way that if
A 
= 0 at a positive τ , this implies that j is delayed with respect to C as would be expected

obtain A′ and A in terms of the original τ the signs must be reversed, or equivalently
the complex conjugate taken before carrying out the inverse FT in resp. Eqs. (20)
and (21). Determining A from Eq. (21) is straightforward numerically. If the unknown
integration constant K is set to 0, the issue is that the value of the FT is set explicitly to 0
at ω = 0. In combination with the wrapping around and the regularization smoothing,
the result of this is that at negative τ a broad negative “wing” is produced. One can
also interpret this as being the integral of the (unphysical) dotted part of Fig. 4. An
unfortunate side effect of this same smoothing is that then also for time delays of 1
and 2 days the value of A(τ ) < 0. This is also unphysical. For this reason, the value
of K must be determined by minimising E:

E =
∫ 0

−∞
A2(τ )dτ (24)

This is straightforward to carry out numerically, for instance using Brent’s method
for which only function evaluations for successive estimates of K are necessary. In
practice fewer than ten iterations provide sufficient precision. The result is shown in
the right hand panels of Figs. 3 and 4 for A′ and A respectively.
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It would appear that A peaks at around 10 days, after which there is a decay to
around 20d, i.e. there is some remaining likelihood of secondary infection for about
3 to 4 weeks. A simple quadrature of A from day 0 up to day 32 (inclusive) yields a
value of 0.41 which would be the best estimate of R(t) on that date. Note that this
estimate uses all of the data available and is therefore in this sense an average of R(t)
from the start of the outbreak up to April 2, corresponding to the integrating the lowest
order term in the expansion shown in Eq. (7).

5 Error propagation

It is known that inverse methods can be sensitive to data errors. For this reason,
regularisation is always applied, implemented in themethod discussed here through the
parameterμ. It is nevertheless important to actually quantify the margin of uncertainty
on the results. If themethod is linear, i.e. a linear combination of themeasurement data,
this is straightforward to carry out. In the present case, the propagation ofmeasurement
errors is not quite so simple, since measurement errors in j and in C are correlated.
A further complication is that the character of the measurement errors is difficult to
establish from the data themselves.

Therefore, while the reproduction number R(t) can be determined non-parametri-
cally, in these circumstances it is inevitable that for the margin of uncertainty some
parametrisation is needed at present. Two plausible parametrisations for the measure-
ment error are presented here. The daily number of hospitalisations is treated as a
Poisson process. For every day the expectation value, i.e. the value of the rate param-
eter λ, of that process is taken to be a moving average of the actually measured value
on that day, together with the two previous and two subsequent days. For the days at
the ends of the time series the value of λ is kept constant.

– In the first variant, error model a, the measurement error is modelled by drawing
random numbers satisfying such a Poisson process and perturbing the actually
measured daily rates j using the difference between the random number drawn
and the expectation value for that day. This is done 1000 times for every day
in the series. The cumulative time series C is recalculated for every of the 1000
realisations for j so that the two are consistent. The entire inversion is repeated
1000 times to obtained propagated error margins.

– In the second variant, error model b, the same procedure is followed as described
above. However, the parameter λ is modified by assuming there are two contribut-
ing factors, so that: λ = λmov.av.

[
Amis + (1 − Amis)e(ti−tN )/�

]
The term Amis is

a constant: it is assumed that this part of the measurement error is “misidentifica-
tion”due to imperfect sensitivity and specificity of the tests for covid-19. For the
simulations a value of 0.01 (i.e. 1% for the sum of false positives and negatives
from tests) is assumed. The second term in this description expresses that there
is a source of measurement error due to administrative delays in registration of
admissions so that the data of the most recent few days are much more uncertain
than the rest. A � = 1.3 is used, which implies the assumption that 90% of all
administrative corrections are processed within 3 days.
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Fig. 5 Left hand panels show A(τ ) with uncertainty margins under error model a, right hand panels show
error model b. In all panels the grey lines provide the margins of ±2, 58σ around A(τ ). Top row: all data
up to April 2, 2020. Middle row: all data up to April 18 2020. Bottom row: all data up to May 4 2020. Note
that the scale of the abscissa changes between the rows of panels

The results of the error simulations are shown in Fig. 5, which shows the central
result as a black line and the ±2.58σ margins around this as grey lines. A broader
zero padding is used for the data up to April 2 than in the previous figure to allow
comparison with the data for April 18 in the middle row. The bottom row of panels
shows the results when all data up to May 4 is included in the inversion. Clearly under
error model b (the right column of panels), the uncertainty in the result is visible only
for small values of τ whereas under model a (left column of panels), the margin is
larger and can be seen for all τ .

The determinations of K and of R(t) and the error estimates on these resulting from
the two different assumptions regarding the measurement error are shown in Table 1.
Comparing the top row and the middle row in Fig. 5, it can be seen that between April
3 and April 18 the peak near τ = 10 has moved along by the same number of days as
the difference in the end-date of data collection: social distancing and other measures
appear to be reflected in the suppression of A visible for small values of τ .

The effective reproduction rate R(t) is consistently dropping over the month of
April. The (average) exogeneous fraction of infections K is also decreasing. Given the
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Table 1 The values of K and of R(t) with 1σ error estimates under models a and b for the measurement
errors, when including data only up to the three dates shown in the first column

Date K σ(K ) (a) σ(K ) (b) R(t) σ (R) (a) σ(R) (b)

02/04/2020 0.00993 0.0001 7 ×10−5 0.405 0.006 0.003

18/04/2020 0.00231 2 ×10−5 6 ×10−6 0.145 0.001 0.0004

04/05/2020 8.01 ×10−4 4 ×10−6 7 ×10−7 0.0609 0.0003 6 ×10−5

restrictions on foreign travel it is quite likely that most exogenous infections occurred
only before the end of March. In principle this would mean that rather than a constant
K it might be better to allowmultiple terms in an expansion of a time-dependent K (τ )

to the extent that these can be determined from the data. The bottom row of panels
shows a wave structure at negative τ which might be due to neglecting the next order
term in such an expansion. Further, it is of interest to note that in the panels in the
bottom row, pronounced downward spikes are seen in particular at τ = 30d, 37d, and
44d. This is suggestive perhaps of a weekly modulation of hospital admissions being
reflected in A(τ ).

With these determinations of A for three different dates in hand, it is also possible
to compare, at least crudely, the rates of change of A with τ and with t using simple
first order finite differences. This is relevant because it allows checking whether the
approximation (7) is at all justified. It appears that the rate of change of A with τ is on
average a factor of roughly 3 to 4 larger than the rate of change with t . While this does
imply that ε < 1 there is not as clear a separation of time scales as would be desirable
to properly justify the approximation. The implication is that some of the change of
A with time may feed into a change of A with τ so that, when A decreases with time
as is the case here, the current determination of A and therefore also R(t) suffer from
a downward bias of at most ∼ 25% of their values.

6 Left-truncating the time series

It is also of interest to determinewhat the effect can be of left-truncating the time series.
If the assumption is allowed that the most recent cases of hospitalisation cannot have
been caused in a direct link by people who have been hospitalised more than for
instance 3 or 4 weeks ago, it might be reasonable to consider only the most recent
3 or 4 weeks, and remove all earlier data from the time series. For this reason, two
variants are inverted. Variant a. is the time series of hospital admissions starting on
April 22 and ending on May 20 (both dates inclusive), and therefore ignoring all
previously recorded admissions. The second variant (b.) shortens this by a further
week to include only the admissions between April 30 and May 20. For both variants
a quite low value of the error weighting parameter μ = 0.002 is used, as well as a

value μC =
√
ndays/

∑ndays
i=1 C(ti ) which can be argued to be a good scaling of the

weighting needed. For variant a. this means μ = 0.042 , for variant b. it becomes
μ = 0.06.
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Table 2 The values of K and of R(t) with 1σ error estimates under models a and b for the measurement
errors, when including data only up to the three dates shown in the first column

Date K μ = 0.002 K μ = μC R μ = 0.002 R μ = μC

22/04–20/05 7.8 × 10−4 ± 2 × 10−5 2.37 × 10−3 ± 6 × 10−5 0.375 ± 0.009 0.055 ± 0.001

30/04–20/05 1.39 × 10−3 ± 6 × 10−5 4.5 × 10−3 ± 4 × 10−4 0.64 ± 0.03 0.079 ± 0.003

One of the effects of the left-truncation must be that relatively more cases are
considered to be from an external source, i.e. those hospitalisations that are near the
beginning of the truncated series. This is indeed seen in Table 2, in that K increases
when more of the actual series is cut off. Also, in the most recent weeks the numbers
of hospitalisations are declining more and more gradually. For a perfectly constant
number of new admissions, the R(t) ≡ 1, so it is not surprising that under these
circumstances, shortening the time series makes R(t) increase to tend to 1. The differ-
ences in the values of K and R(t) for the two different values of error weighting μ are
striking. The role of the error weighting for this particular inverse problem is not only
to reduce the propagated data uncertainties. A larger μ also suppresses large ampli-
tudes in A(τ ) and hence reduces R(t). The smaller values for R(t) are consistent with
the data, and arguably the results for the smaller values of μ are a result of too little
regularisation, or over-fitting in the sense that the data do not sufficiently constrain A
as described in section 33.

7 Conclusions

This note demonstrates a non-parametric method to determine the effective reproduc-
tion number R(t) as the integral of the effective reproduction A(t, τ ), and also to
determine its first derivative with respect to τ : A′(t, τ ). It is applied to the hospital
intake for the current covid-19 epidemic in the Netherlands. The approach is through
solving an inverse problem, for which there are various techniques. The simplest tech-
nique is demonstrated, but this does not automatically produce good error estimates
or confidence intervals for the functions A(t, τ ) and A′(t, τ ). Error estimates can be
achieved by simulation but this requires assuming a model for the data error, with
parameterisation, for the behaviour of the errors.

The current simple implementation of the method, using Fourier Transforms, is
very fast indeed so that updates can easily be run real time.

By approaching the determination of the reproduction number as an inverse prob-
lem, it also becomes clearwhy any approach, including forwardmodelling approaches,
will yield large margins of uncertainty. These margins are not primarily a consequence
of errors or uncertainty in themeasured data, but instead are a consequence of the nature
of the mathematical problem.

In the appendix to this paper it is demonstrated that time series data do not constrain
the form of the transfer function A very well, and by extension also do not provide
strong constraints on R(t) without further assumptions or a-priori knowledge. It is
argued that larger estimates of R(t) may be caused by overfitting / under-regularising
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the models. In essence any finite amount of time series data allows a large (infinite)
null-space of solutions for the transfer function which can be added at will but have a
non-zero contribution to both A and R. Conversely, if the larger values for R(t) reported
elsewhere are correct, considering a combination of virology and behavioural consid-
erations, the time series data add relatively little to the evidence for this. One should not
conclude from this that the non-parametric method cannot be gainfully applied here.
Rather, the inversion produces an objective reference result, and therefore illuminates
which aspects of the modelling of the transfer function A require justifications that
are external to these measured data.

The error propagated from random administrative and measurement errors is rel-
atively modest compared to these unicity problems. However, experiments using
synthetic data demonstrate that time series as short as two weeks are so short that
then the random error becomes unacceptably large; increasing in the synthetic exam-
ple by a factor of 10 when the time series is shortened from 6 weeks to 2 weeks. This
means that in the very earliest stages of an epidemic the time series are probably too
short to produce confidence intervals for the transmission function A that are small
enough for the result to be meaningful. If control measures, intended to suppress A,
change often over the typical time scales of transmission, the quality of the determi-
nation of A(t, τ ) and by extension R(t) is adversely affected, due to the mixing of the
dependence of A on t and τ .
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Appendix: null-spaces in idealised cases, and non-uniqueness of A

As an illustration of the influence of the null-space in the solutions of Eq. (1) it is
useful to consider a few special cases for j . The first step is to consider a given j(t)
and hypothesize that two different A(τ ) could have given rise to that same j :

j(t) =
∞∫

0

A1(τ ) j(t − τ)dτ

j(t) =
∞∫

0

A2(τ ) j(t − τ)dτ (25)

123

http://creativecommons.org/licenses/by/4.0/


   37 Page 16 of 21 F. P. Pijpers

Subtracting these two produces:

0 =
∞∫

0

[A2(τ ) − A1(τ )] j(t − τ)dτ

≡
∞∫

0

B(τ ) j(t − τ)dτ (26)

It is straightforward to demonstrate that there are non-trivial solutions for B(τ ) for
any given j , i.e. solutions other than B(τ ) = 0.

Exponentially increasing j As a first example, consider a purely exponentially
increasing j , so that solutions are sought for:

0 =
∞∫

0

B(τ ) j0e
α(t−τ)dτ

= j0
α
eαt

∞∫

0

B
( x

α

)
e−xdx (27)

with x ≡ ατ . The factor outside the integral sign is not = 0 and can therefore be
ignored. There is a set of orthogonal polynomials, known as Laguerre functions, with
notation Ln(x) defined for all n = 0, 1, 2, . . . for which the orthogonality condition
holds that: ∞∫

0

Ln(x)Lm(x)e−xdx = δnm (28)

in which δnm is the Kronecker delta (i.e. = 1 if n = m, and = 0 otherwise). Explicit
expressions for Ln(x) are:

Ln(x) =
n∑

k=0

(−1)k
(

n
n − k

)
1

k! x
k (29)

For n = 0 Eq. (29) produces L0(x) = 1. Using this in combination with the orthogo-
nality condition (28) implies that:

∞∫

0

Ln(x)e
−xdx = δn0 (30)

which means that the integral in (30) is = 0 for all n ≥ 1. This means that a function
B defined as

B(τ ) =
∞∑
n=1

bnLn(ατ) (31)
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will always satisfy equation (27), where every of the constant coefficients bn , i.e. an
infinite number of free parameters, can be chosen completely at will. This implies
that once any solution A(τ ) is found so that (25) is satisfied, an infinite number of
alternative solutions can be constructed by adding any function of the form (31).

Polynomially increasing j As a second example, consider instead a polynomially
increasing function j(t) = j0tα , with α > 0 over a domain from t = 0 to t = T , so
that solutions are sought for:

0 =
t∫

0

B(τ ) j0(t − τ)αdτ

= j0

(
t

2

)α+1 1∫

−1

B

(
(x + 1)

t

2

)
(1 − x)αdx (32)

with x ≡ 2τ
t − 1. The factor outside the integral sign again is not =0 and can therefore

be ignored. There is a set of orthogonal polynomials, known as Jacobi functions, with
notation P(α,0)

n (x) defined for all n = 0, 1, 2, . . . for which the orthogonality condition
holds that:

1∫

−1

P(α,0)
n (x)P(α,0)

m (x)(1 − x)αdx = 2α+1

2n + α + 1
δnm (33)

Explicit expressions for P(α,0)
n (x) are:

P(α,0)
n (x) = 1

2n

n∑
k=0

(−1)k
(
n + α

k

) (
n

n − k

)
(x − 1)n−k(x + 1)k (34)

For n = 0 equation (34) produces P(α,0)
0 (x) = 1. Using this in combination with the

orthogonality condition (33) implies that:

1∫

−1

P(α,0)
n (x)(1 − x)αdx = 2α+1

2n + α + 1
δn0 (35)

This means that a function B defined as:

B(τ ) =
∞∑
n=1

bn P
(α,0)
n

(
2τ

t
− 1

)
(36)

will always satisfy Eq. (32)), where once again every of the constant coefficients bn , i.e.
an infinite number of free parameters, can be chosen completely at will. This implies
that once any solution A(τ ) is found so that (25) is satisfied, an infinite number of
alternative solutions can be constructed by adding any function of the form (36).
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A jincreasing and decreasing, following a bell curve A third example is for a j
satisfying:

j(t) = jme
−( t−tm

�

)2
(37)

In this case solutions are sought for:

0 =
∞∫

0

B(τ ) j(t − τ)dτ

= jm�

(
t

2

)α+1 ∞∫

−∞
B (t − tm − x�) e−x2dx (38)

with x ≡ (t − tm − τ)/�.Note that the lower limit of the integration is adjusted,
which is allowed as long as � is small enough, compared to |t − tm |. There is a set
of orthogonal polynomials, known as Hermite functions, with notation Hn(x) defined
for all n = 0, 1, 2, . . . for which the orthogonality condition holds that:

∞∫

−∞
Hn(x)Hm(x)e−x2dx = 2nn!√πδnm (39)

Explicit expressions for Hn are:

Hn(x) = n!
n/2∑
k=0

(−1)k
1

k!(n − 2k)! (2x)
n−2k (40)

For n = 0 Eq. (40) produces H0(x) = 1. Using this in combination with the orthogo-
nality condition (39) implies that:

∞∫

−∞
Hn(x)e

−x2dx = 2nn!√πδn0 (41)

This means that a function B defined as:

B(τ ) =
∞∑
n=1

bnHn

(
t − tm − τ

�

)
(42)

will always satisfy Eq. (38), where once again every of the constant coefficients bn ,
i.e. an infinite number of free parameters, can be chosen completely at will.
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A j increasing and decreasing asymmetrically, following long-tailed polynomial
behaviour A final example is for a j satisfying:

j(t) = 2 jm
(t/tm)

β
2 −1

1 + (t/tm)β
(43)

which, while not a formal fit to the data for the Netherlands, has a reasonably similar
shape, for (tm, jm, β) = (33, 540, 8.8). In this case, solutions are sought for:

0 =
∞∫

0

B(τ ) j(t − τ)dτ

= 2 jmtm

t/tm∫

0

B (t − xtm)
x

β
2 −1

1 + xβ
dx (44)

where adjusting the upper limit of the integration is allowed, assuming that j = 0 for
t < 0. Here x ≡ (t − τ)/tm . In this case it is convenient to use a further change of
variable. Define:

φ ≡ 1

r
arctan

(
x

β
2

)
− 1 (45)

in which:

r ≡ 1

2
arctan

((
t

tm

) β
2
)

(46)

Using these definitions, Eq. (44) can be rewritten as:

0 = 2 jmtm

1∫

−1

B
(
t − tm (tan (r(φ + 1)))

2
β

)
dφ (47)

There is a set of orthogonal polynomials, known as Legendre functions, with notation
Pn(x) defined for all n = 0, 1, 2, . . . for which the orthogonality condition holds that:

∞∫

−∞
Pn(φ)Pm(φ)dφ = 2

2n + 1
δnm (48)

Explicit expressions for Pn are:

Pn(x) = 1

2n

n/2∑
k=0

(−1)k
(
n
k

) (
2n − 2k

n

)
φn−2k (49)
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For n = 0 Eq. (49) produces P0(φ) = 1. Using this in combination with the orthogo-
nality condition (48) implies that:

∞∫

−∞
Pn(φ)dφ = 2

2n + 1
δn0 (50)

This implies that a function B defined as:

B(τ ) =
∞∑
n=1

bn Pn

⎛
⎜⎜⎜⎜⎝2

arctan

((
t−τ
tm

) β
2

)

arctan

((
t
tm

) β
2

) − 1

⎞
⎟⎟⎟⎟⎠ (51)

will always satisfy Eq. (44), where once again every of the constant coefficients bn ,
i.e. an infinite number of free parameters, can be chosen completely at will.

These four examples illustrate a more general principle that for any positive semi-
definite weight function w a set of polynomials Fn over a (possibly infinite) interval
(a, b) can be defined, satisfying an orthogonality condition:

b∫

a

Fn(x)Fm(x)w(x)dx = δnm (52)

In the present application the measured function j , which is positive semi-definite,
plays the role of the weight function w. For a general j such functions are not likely
to be named and known orthogonal functions, but nevertheless series expansions of
such polynomials can always be constructed recursively. The implication is that for
any measured j , as soon as one valid solution A is constructed, a whole family of
solutions Ã can be found that are all consistent with the data and that are therefore not
constrained by the data:

Ã(τ ) ≡ A(τ ) + B(τ ) ≡ A(τ ) +
∞∑
n=1

bnFn(τ ) (53)

There is another constraint on A, however, which is that A(τ ) ≥ 0 for all τ . Not every
possible set of coefficients {bn} will produce an alternative solution A(τ ) that satisfies
that constraint, but there is always sufficient freedom to construct solutions that do.

This result also has the implication that the basic reproduction number R0 or effec-
tive reproduction number R(t) are only poorly constrained by just the measured j(t).
While the construction of the orthogonal functions implies that:

b∫

a

[A(τ ) + B(τ )] j(t − τ)dτ = j(t − τ) (54)
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the reproduction number for those alternative solutions can be different however, i.e.:

b∫

a

[A(τ ) + B(τ )] dτ 
=
b∫

a

A(τ )dτ (55)

Additional information beyond a measured time series j is therefore needed to enable
constraining the reproduction number.
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