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ABSTRACT

This article analyzes a growing group of �xed T dynamic panel data estimators
with a multifactor error structure. We use a uni�ed notational approach to
describe these estimators and discuss their properties in terms of deviations
from an underlying set of basic assumptions. Furthermore, we consider the
extendability of these estimators to practical situations that may frequently
arise, such as their ability to accommodate unbalanced panels and common
observed factors. Using a large-scale simulation exercise, we consider sce-
narios that remain largely unexplored in the literature, albeit being of great
empirical relevance. In particular, we examine (i) the e�ect of the presence of
weakly exogenous covariates, (ii) the e�ect of changing the magnitude of the
correlation between the factor loadings of the dependent variable and those
of the covariates, (iii) the impact of the number of moment conditions on bias
and size for GMM estimators, and �nally (iv) the e�ect of sample size. We apply
each of these estimators to a crime application using a panel data set of local
government authorities in New SouthWales, Australia; we �nd that the results
bear substantially di�erent policy implications relative to those potentially
derived from standard dynamic panel GMM estimators. Thus, our study may
serve as a useful guide to practitioners who wish to allow for multiplicative
sources of unobserved heterogeneity in their model.
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1. Introduction

There is a large literature on estimating dynamic panel data models with a two-way error components
structure and T �xed. Such models have been used in a wide range of economic and �nancial
applications; e.g., Euler equations for household consumption, adjustment cost models for �rms’ factor
demand, and empirical models of economic growth. In all these cases, the autoregressive parameter has
structural signi�cance and measures state dependence, which is due to the e�ect of habit formation,
technological/regulatory constraints, or imperfect information and uncertainty that o�en underlie
economic behavior and decision making in general.

Recently there has been a surge of interest in developing dynamic panel data estimators that allow for
richer error structures—mainly factor residuals. In this case, standard dynamic panel data estimators
fail to provide consistent estimates of the parameters; see, e.g., Sara�dis and Robertson (2009), and
Sara�dis and Wansbeek (2012) for a recent overview. The multifactor approach is appealing because it
allows for multiple sources of multiplicative unobserved heterogeneity, as opposed to the two-way error
components structure that represents additive heterogeneity. For example, in an empirical growthmodel
the factor component may re�ect country-speci�c di�erences in the rate at which countries absorb
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time-varying technological advances that are potentially available to all of them. In a partial adjustment
model of factor input prices, the factor component may capture common shocks that hit all producers,
albeit with di�erent intensities. In this study, we provide a review of inference methods for dynamic
panel data models with a multifactor error structure.

The majority of estimators developed in this literature is based on the Generalized Method of
Moments (GMM) approach. This is presumably because inmicroeconometric panels endogeneity of the
regressors is o�en an issue of major importance. In particular, Ahn et al. (2013) extend Ahn et al. (2001)
to the case of multiple factors, and propose a GMM estimator that relies on quasi-long-di�erencing
to eliminate the common factor component. Nauges and Thomas (2003) utilize the quasi-di�erencing
approach of Holtz-Eakin et al. (1988), which is computationally tractable for the single factor case, and
propose similar moment conditions to Ahn et al. (2001)mutatis mutandis. Sara�dis et al. (2009) propose
using the popular linear �rst-di�erenced and SystemGMM estimators with instruments based solely on
strictly exogenous regressors. Robertson and Sara�dis (2015) develop a GMM approach that introduces
new parameters representing the unobserved covariances between the factor component of the error
and the instruments. Furthermore, they show that given the model’s structure there exist restrictions in
the nuisance parameters that lead to a more e�cient GMM estimator compared to quasi-di�erencing
approaches. Hayakawa (2012) shows that the moment conditions proposed by Ahn et al. (2013) can be
linearized at the expense of introducing extra parameters. Finally, Bai (2013b) and Hayakawa (2012)
suggest estimators that approximate the factor loadings using a Chamberlain (1982) type projection
approach, with a Quasi Maximum Likelihood estimator suggested in the former article and a GMM
estimator in the latter one.

The objective of our study is to serve as a useful guide for practitionerswhowish to applymethods that
allow for multiplicative sources of unobserved heterogeneity in their model. All methods are analyzed
using a uni�ed notational approach, to the extent that this is possible of course, and their properties are
discussed under deviations from a baseline set of assumptions commonly employed. We pay particular
attention to calculating the number of identi�able parameters correctly, which is a requirement for
asymptotically valid inferences and consistentmodel selection procedures. This issue is o�en overlooked
in the literature. Furthermore, we consider the extendability of these estimators to practical situations
that may frequently arise, such as their ability to accommodate unbalanced panels, and to estimate
models with common observed factors.

Next, we investigate the �nite sample performance of the estimators under a number of di�erent
designs. In particular, we examine (i) the e�ect of the presence of weakly exogenous covariates, (ii) the
e�ect of changing themagnitude of the correlation between the factor loadings of the dependent variable
and those of the covariates, (iii) the impact of the number of moment conditions on bias and size for
GMM estimators, (iv) the impact of di�erent levels of persistence in the data, and �nally (v) the e�ect of
sample size. These are important considerations with high empirical relevance. Notwithstanding, to the
best of our knowledge they remain largely unexplored. For example, the simulation study in Robertson
and Sara�dis (2015) does not consider the e�ect of using a di�erent number of instruments on the
�nite sample properties of their estimator. In Ahn et al. (2013) the design focuses on strictly exogenous
regressors (i.e., no dynamics), while in Bai (2013b) the results reported do not include inference. The
practical issue of how to choose initial values for the nonlinear algorithms is considered in the Appendix.
The results of our simulation study indicate that there are non-negligible di�erences in the �nite sample
performance of the estimators, depending on the parametrization considered. Naturally, no estimator
dominates the remaining ones universally, although it is fair to say that some estimators are more robust
than others.

We apply the aforementioned methodologies to estimate the income elasticity of crime using a panel
data set of 153 local government areas in New South Wales (NSW), each one being observed over a
period that spans 2006–2012. We note that this is one of the �rst articles to apply these estimators to
a real data set for models with a lagged dependent variable. We �nd that the results bear substantially
di�erent policy implications relative to those potentially derived based on standard dynamic panelGMM
estimators, which are widely used and are available in most econometric so�ware packages nowadays.
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In particular, the estimated short-run income elasticity of crime obtained from the �rst-di�erenced
GMM estimator proposed by Arellano and Bond (1991) is roughly twice as large in absolute terms
than most GMM estimators that account for a multifactor error structure. In addition, the estimated
dynamics of the crime rate process are substantially di�erent across these estimators, with about three
periods required on average for 90% of the long run e�ect to be realized based on �rst-di�erencedGMM,
and approximately seven periods for other GMM estimators.

The outline of the rest of the article is as follows. The next section introduces the dynamic panel data
model with amultifactor error structure and discusses some underlying assumptions that are commonly
employed in the literature. Section 3 presents a large range of dynamic panel estimators developed for
such model when T is small, and discusses several technical points regarding their properties. Section 4
provides some general remarks on the estimators. Section 5 investigates the �nite sample performance
of the estimators, and Section 6 applies them to crime dataset from the state of NSW in Australia. A �nal
section concludes. The Appendix analyzes in detail the implementation of all these methods.

In what follows, we brie�y introduce our notation. The usual vec(·) operator denotes the column
stacking operator, while vech(·) is the corresponding operator that stacks only the elements on and below
the main diagonal. The eliminationmatrix Ba is de�ned such that for any [a×a]matrix (not necessarily
symmetric) vech(·) = Bavec(·). The lag-operator matrix LT is de�ned such that for any [T × 1] vector
x = (x1, . . . , xT)′, LTx = (0, x1, . . . , xT−1)

′. Shorthand notation xi,s:k, s ≤ k is used to denote the vectors
of the form xi,s:k = (xi,s, . . . , xi,k)

′. The jth column of the [x× x] identity matrix is denoted by ej. Finally,
1(·) is the usual indicator function. For further details regarding the notation used in this article, see
Abadir and Magnus (2002).

2. Theoretical setup

We consider the following dynamic panel data model with a multifactor error structure

yi,t = αyi,t−1 +
K∑

k=1

βkx
(k)
i,t + λ′

if t + εi,t ; i = 1, . . . ,N, t = 1, . . . ,T, (2.1)

where the dimension of the unobserved components λi and f t is [L×1].1 Stacking the observations over
time for each individual i yields

yi = αyi,−1 +
K∑

k=1

βkx
(k)
i + Fλi + εi,

where yi = (yi,1, . . . , yi,T)′ and similarly for (yi,−1, x
(k)
i ), while F = (f 1, . . . , f T)′ is of dimension [T×L].

In what follows, we list some assumptions that are commonly employed in the literature, followed by
some preliminary discussion. In Section 3, we provide further discussion with regards to which of these
assumptions can be strengthened/relaxed for each estimator analyzed.

Assumption 1. x
(k)
i,t has �nite moments up to fourth order for all k.

Assumption 2. εi,t ∼ i.i.d.
(
0, σ 2

ε

)
and has �nite moments up to fourth order.

Assumption 3. λi ∼ i.i.d. (0,�λ) with �nite moments up to fourth order, where �λ is positive de�nite.
F is non-stochastic and bounded such that ‖F‖ < b < ∞.

1The factor structure is often employed in order to provide a tractable way to model “strong” cross-sectional dependence.
When somemeaningful conceptof “economicdistance”is available, the spatial approach is a viable alternative formodelling
“weak” cross-sectional dependence. There are strong connections between the two approaches, although it is beyond
the scope of this article to analyze these further. The interested reader may refer to Chudik et al. (2011) and Sara�dis
and Wansbeek (2012), among others. A recent contribution in the literature of dynamic panel data models with spatial
dependence is provided by Sara�dis (2015).
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Assumption 4. E
(
εi,t|y′

i,0:t−1,λ
′
i, x

(k)′

i,1:τ

)
= 0 for all t and k, where τ is a positive integer that is bounded

by T.

Assumption 1 is a standard regularity condition. Assumptions 2 and 3 are employed mainly for
simplicity and can be relaxed to some extent, details of which will be documented later.2

Assumption 4 can be crucial for identi�cation, depending on the estimation approach, because it
characterizes the exogeneity properties of the covariates. In particular, we will refer to covariates that
satisfy τ = T as strictly exogenous with respect to the idiosyncratic error component, whereas covariates
that satisfy only τ = t areweakly exogenous.When τ < t, the covariates are endogenous. The exogeneity
properties of the covariates play a major role in the analysis of likelihood-based estimators because
the presence of weakly exogenous or endogenous regressors may lead to inconsistent estimates of the
structural parameters, α and βk.

Furthermore, Assumption 4 implies that the idiosyncratic errors are conditionally serially uncor-
related. This can be relaxed in a relatively straightforward way, particularly for GMM estimators; for
example, an Moving Average (MA) process of order q can be accommodated by truncating the set of

instruments with respect to y based on E
(
εi,t|y′

i,0:s,λ
′
i, x

(k)′

i,1:τ

)
= 0, where s < t − q. Furthermore, an

Autoregressive (AR) structure can be accommodated either by using moment conditions with respect

to (lagged values of) x
(k)
i,τ only, or based on a Cochrane–Orcutt type procedure.

Assumption 4 also implies that the idiosyncratic error is conditionally uncorrelated with the factor
loadings. This is required for identi�cation based on internal instruments in levels. Finally, notice that the
set of our assumptions implies that yi,t has �nite fourth-ordermoments, but it does not imply conditional
homoskedasticity for the two error components.

Under Assumptions 1–4, the following set of population moment conditions is valid by construction

E[vech(εiy′
i,−1)] = 0T(T+1)/2. (2.2)

In addition, the following sets of moment conditions are valid, depending on whether τ = T or τ = t
holds true, respectively:

E[vec(εix(k)′
i )] = 0T2 , (2.3)

E[vech(εix(k)′
i )] = 0T(T+1)/2. (2.4)

For all GMM estimators one can easily modify the above moment conditions to allow for endogenous

x’s. For example, for (say) τ = t − 1 in Assumption 4 one may rede�ne x
(k)
i ≡ (xi,0, . . . , xi,T−1)

′ and
proceed in exactly the same way as in τ = t.

From now on, we will use the triangular structure of the moment conditions induced by the vech(·)
operator to construct the estimating equations for the GMM estimators. To achieve this, we adopt the
following matrix notation for the stacked model:

Y = αY−1 +
K∑

k=1

βkXk + �F′ + E; i = 1, . . . ,N,

where (Y ,Y−1,Xk,E) are [N × T] matrices with typical rows (y′
i, y

′
i,−1, x

(k)′
i , ε′

i), respectively. Similarly,
a typical row element of � is given by λ′

i.

3. Estimators

Remark 3.1. For notational symmetry, while describing GMM estimators, we assume that x
(k)
i,0 observa-

tions are not included in the set of available instruments. Otherwise, additional T or T − 1 (depending

2The zero-mean assumption for εi,t is actually implied by Assumption 4.
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on the estimator analyzed) moment conditions are available. The same strategy is used in the Monte
Carlo section of this article.

3.1. Quasi-di�erenced (QD) GMM

Replacing the expectations in (2.2) and (2.3) with sample averages yields

vech

(
1

N
(Y − αY−1 −

K∑

k=1

βkXk − �F′)′Y−1

)
,

vech

(
1

N
(Y − αY−1 −

K∑

k=1

βkXk − �F′)′Xk

)
.

These moment conditions depend on the unknown matrices F and �. In the simple �xed e�ects model
where F = ıT , the �rst-di�erencing transformation proposed by Anderson andHsiao (1982) is themost
common approach to eliminate the nuisance parameters from the equation of interest. Using a similar
idea in the model with a single unobserved time-varying factor, i.e.,

yi,t = αyi,t−1 +
K∑

k=1

βkx
(k)
i,t + λift + εi,t ,

Holtz-Eakin et al. (1988) suggest eliminating the unobserved factor component using the quasi-
di�erencing (QD) transformation

yi,t − rtyi,t−1 = α(yi,t−1− rtyi,t−2)+
K∑

k=1

βk(x
(k)
i,t − rtx

(k)
i,t−1)+εi,t − rtεi,t−1; i = 1, . . . ,N, t = 2, . . . ,T,

(3.1)
where rt ≡ ft

/
ft−1. By construction, Eq. (3.1) is free from λift because

λift − rtλift−1 = λift − ft

ft−1
λift−1 = 0, ∀t = 2, . . . ,T.

It is easy to see that the QD approach is well de�ned only if all ft �= 0. Collecting all parameters involved
in QD, we can de�ne the corresponding [(T − 1) × T] QD transformation matrix by

D(r) =




−r2 1 0 · · · 0

0 −r3
... 0

...
...

... 1
...

0 0 . . . −rT 1



,

where r = (r2, . . . , rT)′. The �rst-di�erencing (FD) transformation matrix is a special case with
r2 = . . . = rT = 1. Premultiplying the terms inside the vech(·) operator in the sample analogue of
the population moment conditions above by D(r), and noticing that D(r)F = 0, we can rewrite the
estimating equations for the QD GMM estimator as

mα = vech


 1

N
D(r)

(
Y − αY−1 −

K∑

k=1

βkXk

)′

Y−1J(1)
′


 ,

mk = vech


 1

N
D(r)

(
Y − αY−1 −

K∑

k=1

βkXk

)′

XkJ(1)
′


 ∀k.
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Here J(L) = (IT−L,O(T−L)×L) is a selection matrix that appropriately truncates the set of instruments
to ensure that the term inside the vech(·) operator is a square matrix. One can easily see that the total
number of moment conditions and parameters under the weak exogeneity assumption for all x’s is given
by

#moments = (K + 1)(T − 1)T

2
; #parameters = (K + 1) + (T − 1).

The total number of parameters consists of two terms. The �rst term within the brackets corresponds to
K + 1 parameters of interest (or structural/model parameters), while the remaining term corresponds to
T − 1 nuisance parameters, the time-varying factors.

Remark 3.2. If we de�ne r̃t ≡ ft−1/ft , we can also consider a QD matrix of the following type:

D(r̃) =




1 −r̃2 0 · · · 0

0 1
... 0

...
...

... −r̃T−1

...
0 0 . . . 1 −r̃T



.

This transformation approach uses forward di�erences rather than backward di�erences. However,
similarly to the original transformation matrix of Holtz-Eakin et al. (1988), the estimator based on
this transformation requires that all ft �= 0 for t = 2, . . .T. Hence the restrictions imposed by two
di�erencing strategies overlap for t = 2, . . . ,T − 1, but not for t = 1 and t = T. Finally, one could also
consider transformation matrices based on higher order forward or backward di�erences.

The approach of Holtz-Eakin et al. (1988) as it stands is tailored for models with a single unobserved
factor. In principle, it can be extended to multiple factors by removing each factor consecutively based
on aD(l)(r

(l))matrix, with the �nal transformationmatrix being a product of L such matrices. However,
this approach soon becomes computationally very cumbersome as the estimating equations become
multiplicative in r(l).

On the other hand, if the model involves some observed factors, the corresponding D(·)(·) matrix is
known, leading to a simple estimator that involves equations containing structural parameters and r only.
For example, Nauges and Thomas (2003) augment the model of Holtz-Eakin et al. (1988) by allowing
for time-invariant individual e�ects

yi,t = ηi + αyi,t−1 +
K∑

k=1

βkx
(k)
i,t + λift + εi,t ; t = 1, . . . ,T,

where ηi is eliminated a priori using the FD transformation matrix D(ıT−1), which yields

�yi,t = α�yi,t−1 +
K∑

k=1

βk�x
(k)
i,t + λi�ft + �εi,t ; t = 2, . . . ,T,

followed by the QD transformation, albeit operated based on a [(T − 2) × (T − 1)] matrix D(r). The
resulting number of parameters and moment conditions can be modi�ed accordingly.

Remark 3.3. The FD transformation is by no means the only way to eliminate the �xed e�ects from
the model. Another commonly discussed transformation is Forward Orthogonal Deviations (FOD). If
one uses FOD instead of FD, the identi�cation of structural parameters would require that all ḟt �= 0.3

3Here, ḟt ≡ ct(ft − (ft+1 + · · · + fT )/(T − t)) with c
2
t

= (T − t)/(T − t + 1).
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Depending on the properties of f ’s, it might be desirable to use FOD even in the absence of ηi since rt is
de�ned for ft �= 0 only.

Remark 3.4. Assumption 2 can be easily relaxed. For example, unconditional time-series and cross-
sectional heteroskedasticity of the idiosyncratic error component, εi,t , is allowed in the two-step
version of the estimator. Serial correlation can be accommodated by choosing the set of instruments
appropriately, as in the discussion provided in Section 2. This is a particularly attractive feature, which is
common to all GMMestimators discussed in this article. Unconditional heteroskedasticity in λi can also
be allowed, although this is a less interesting extension for practical purposes since there are no repeated
observations over each λi.

Finally, endogeneity of the regressors can be accommodated by selecting appropriate lags of the
variables of the model as instruments. The exogeneity property of the covariates can be tested using an
overidentifying restrictions test statistic. The same holds for all GMMestimators discussed in this article,
which is of course a desirable property from the empirical point of view since the issue of endogeneity
in panels with T �xed, e.g., microeconometric panels, may frequently arise.

3.2. Quasi-long-di�erenced (QLD) GMM

As we have mentioned before, the QD approach in Holtz-Eakin et al. (1988) is di�cult to generalize
to more than one unobserved factor (or more than one unobserved factor plus observed factors).
Rather than eliminating factors using such transformation, Ahn et al. (2013) propose using a quasi-
long-di�erencing (QLD) transformation. The factors can be removed from the model using the QLD
transformation matrix D(F∗)

D(F∗) = (IT−L, F
∗) = J(L) + F∗J̃(L),

where F∗ is a [T − L × L] parameter matrix and J̃(L) = (OL×(T−L), IL), an [L × T] selection matrix.
Rather than using the lagged observation yi,t−1 to remove factors from themodel at time t (one-by-one),
the QLD approach uses long-di�erences based on the last observations yi,T−L+1:T to remove all L factors
at once.

To see this, partition F = (F′
A,−F′

B)
′ where FA and FB are of dimensions [(T − L) × L] and [L× L],

respectively. Then assuming that FB is invertible, one can rede�ne (or normalize) the factors and factor
loadings as

Fλi =
(

F∗

−IL

)
λ∗
i ; F∗ ≡ FAF

−1
B ; λ∗

i ≡ FBλi.

Using fairly straightforward matrix algebra, it then follows

D(F∗)Fλi = (IT−L, F
∗)

(
F∗

−IL

)
λ∗
i = 0T−L.

One can express all available moment conditions for this estimator as

mα = vech


D(F∗)

1

N

(
Y − αY−1 −

K∑

k=1

βkXk

)′

Y−1J(L)
′


 ,

mk = vech


D(F∗)

1

N

(
Y − αY−1 −

K∑

k=1

βkXk

)′

XkJ(L)
′


 ∀k.

Counting the number of moment conditions and resulting parameters, we have

#moments = (K + 1)(T − L)(T − L + 1)

2
; #parameters = K + 1 + (T − L)L.



900 A. JUODIS AND V. SARAFIDIS

However, wewill further argue that the number of identi�able parameters is smaller thanK+1+(T−L)L.
To explain the reason for this, let K = 1, and rewrite the transformed equation for yi,1 as

yi,1+
L∑

l=1

f
∗(l)
1 yi,T−l = α

(
yi,0 +

L∑

l=1

f
∗(l)
1 yi,T−l−1

)
+β

(
xi,1 +

L∑

l=1

f
∗(l)
1 xi,T−l

)
+

(
εi,1 +

L∑

l=1

f
∗(l)
1 εi,T−l

)
.

(3.2)
This equation has 2 + L unknown parameters in total, while the number of moment conditions is 2
(constructed based on yi,0 and xi,1). Thus, L “nuisance parameters” are identi�ed only up to a linear
combination, unless L ≤ 2 (or L ≤ K + 1 for the general model), which implies that the total number
of identi�able parameters is

#parameters = K + 1 + (T − L)L − 1(L≥K+1)
(L − K − 1)(L − K)

2
.

Notice that for L = 1 the number of moment conditions and the number of identi�able parameters is
exactly the same as in theQD transformation. Thus, one expects that the correspondingGMMestimators
are asymptotically equivalent.4

Remark 3.4 regarding Assumptions 2–4, as discussed in Section 3.1, applies identically here as
well. Ahn et al. (2013) show that under conditional homoskedasticity in εi,t the estimation procedure
simpli�es considerably because it can be performed through iterations. Furthermore, for the case where
the regressors are strictly exogenous, the resulting estimator is invariant to the chosen normalization
scheme; see their Appendix A.

Remark 3.5. Note that for any T − L dimensional invertible matrix A, one can consider a rotated
QLD transformation matrix AD(F∗) (for which it obviously holds that AD(F∗)F = OT−L). The same
observation is also applicable to the estimation techniques in Section 3.1.

Remark 3.6. One can view the quasi long-di�erencing transformation matrix as the limiting case (in
terms of the longest di�erence) of the forward di�erencing transformation matrix in Remark 3.2.

3.3. Factor IV

3.3.1. Unrestricted factor IV estimator (FIVU)

Rather than eliminating the incidental parameters λi, Robertson and Sara�dis (2015) propose a GMM
estimator that reduces these parameters onto a �nite set of estimable coe�cients. Their approach makes
use of centered moment conditions of the form

mα = vech


 1

N

(
Y − αY−1 −

K∑

k=1

βkXk

)′

Y−1 − FG′


 ,

mk = vech


 1

N

(
Y − αY−1 −

K∑

k=1

βkXk

)′

Xk − FG′
k


 ∀k,

4Although Eq. (3.2) does not appear to be in “di�erences” at �rst glance, identi�cation of the factors is up to a column wise
sign change. Thus, one could equivalently de�ne

Fλi =
(

−F∗
IL

) (
−λ∗

i

)
; D(F∗) = (IT−L ,−F∗),

and obtain an expression in di�erences.
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where (G,Gk) are de�ned as

G = E[yi,−1λ
′
i]; Gk = E[x(k)

i λ′
i],

with typical row elements g ′
t and g

(k)′
t , respectively. The (G,Gk) matrices represent the unobserved

covariances between the instruments and the factor loadings in the error term. This approach adopts
essentially a (correlated) random e�ects treatment of the factor loadings, which is natural because the
asymptotics apply forN large and T �xed, and there are no repeated observations over each λi. This is in
the spirit of Chamberlain’s projection approach. Di�erent sensitivities to the factors (i.e., di�erences in
the factor loadings) can be generated by di�erent values of the variance of the cross-sectional distribution
of λi. Notice that as in Holtz-Eakin et al. (1988) and Ahn et al. (2013), factors corresponding to loadings
that are uncorrelated with the regressors can be accommodated through the variance-covariance matrix

of the idiosyncratic error component, εi,t , i.e., E
(
εiε

′
i

)
, since the latter can be le� unrestricted.

For this estimator, the total number of moment conditions is given by

#moments = (K+1)T(T+1)
2 .

As the model stands right now, Gk (all K + 1) and F are not separately identi�able because

FG′ = FUU−1G′

for any invertible [L × L] matrix U . This rotational indeterminacy can be eliminated in the standard
factor literature by imposing L2 restrictions on an [L × L] submatrix of F (e.g., it could be restricted to
the identitymatrix).5 These restrictions correspond to the L2 term in the equation below.However, in the
present case, L > 1 additional normalizations are required due to the fact that the moment conditions
are of triangular vech(·) type. In particular, the number of identi�able parameters is

#parameters = (K + 1)(1 + TL) + TL − L2 − (K + 1)
L(L − 1)

2
− 1(L≥K+1)

(L − K − 1)(L − K)

2
.

The (K + 1)L(L − 1)
/
2 term corresponds to the unobserved “last” g, while the last term involving the

indicator function corresponds to the unobserved “�rst” f and is identical to the right-hand side term
in the corresponding expression for the number of identi�able parameters in the approach by Ahn et al.
(2013).

Notwithstanding, as shown in Robertson and Sara�dis (2015) if one is only interested in the structural
parameters, α and βk, it is not essential to impose any identifying normalizations on G and F; the
resulting unrestricted estimator for structural parameters is consistent and asymptotically normal, while
the variance-covariance matrix can be consistently estimated using the corresponding subblock of the
generalized inverse of the unrestricted variance-covariance matrix.6 Avoiding imposing normalization
restrictions can be particularly attractive. For instance, in the case where all right-hand side variables are
strictly exogenous, this means that all is required for identi�cation of the structural parameters is that
some [L × L] submatrix of F is invertible, but not necessarily the submatrix on the south east corner of
F, as it is the case with, e.g., QLD GMM.

Remark 3.7. Compared with the QLD estimator of Ahn et al. (2013) this estimator utilizes L(K +
1)(T − (L − 1)/2) extra moment conditions, at the expense of estimating exactly the same number of
additional parameters. Hence these estimators are asymptotically equivalent. Although in unrestricted
factor IV estimator (FIVU) estimation one does not have to impose any restrictions on F, for asymptotic
identi�cation in the weak exogeneity case the true value of FB (as de�ned for QLD estimator) should

5Robertson and Sara�dis (2015) discuss which submatrix of F has to be be invertible in order for the estimator with weakly
exogenous regressors to be consistent.

6For further details, see Theorem 3 in the corresponding article.
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still satisfy the full rank condition. Notwithstanding, according to the simulation results that follow, it is
worth noting that FIVU without normalizations appears to be more robust than QLD to this issue.

Finally, the FIVU estimator remains consistent even if the independent and identically distributed
(i.i.d.) assumption onλi is replaced by independent and heteroskedastically distributed (i.h.d.). However,
in that situation, a consistent estimation of the variance-covariance matrix is not possible. Ahn (2015)
also discusses this issue. Note that all other estimators that do not di�erence away λi are also subject to
this issue.

3.3.2. Restricted factor IV estimator (FIVR)

The autoregressive nature of the model suggests that individual rows of the G matrix have also an
autoregressive structure, i.e.,

gt = αgt−1 +
k∑

k=1

βkg
(k)
t + �λf t .

For identi�cation, one may impose L(L + 1)/2 restrictions so that without loss of generality �λ = IL.
Thus, one can express F in terms of other parameters as follows:

F =
(
L′
T − αIT

)
G + eTg

′
T −

k∑

k=1

βkGk.

Here LT is the usual lag matrix, while the additional parameter gT is introduced to take into account the
fact that in the original set of moment conditions gT = E[λiyi,T] does not appear as a parameter.

Robertson and Sara�dis (2015) show that restricted factor IV estimator (FIVR) is asymptotically
more e�cient than FIVU and consequently more e�cient than procedures involving some form of
di�erencing. Furthermore, the restrictions imposed on a subset of the nuisance parameters appear to
provide substantial e�ciency gains in �nite samples. Notably, the autoregressive structure of the model
implies a reduced form for F, and as such the vector of structural parameters is identi�ed even if the true
value of FB (as de�ned for the QLD estimator) is rank de�cient.

Counting the total number of moment conditions and parameters, we have

#moments = (K + 1)T(T + 1)

2
; #parameters = (K + 1)(1 + TL) + L − (K + 1)

L(L − 1)

2
.

Remark 3.8. Note that in the model without any regressors (or if regressors are strictly exogenous), the
(K+1)L(L−1)/2 term reduces to L(L−1)/2. Together with L(L+1)/2 restrictions imposed on�λ, one
then has in total L2 restrictions (which is a standard number of restrictions usually imposed for factor
models).

Remark 3.9. In principle, we have T additional moment conditions (by the zero mean assumption of
εi,t for each time period t), given by

mι = vec


 1

N

(
Y − αY−1 −

K∑

k=1

βkXk

)′

ıN − Fgι


 .

Here gι represents the mean of λi. The same is exactly true for Ahn et al. (2013), although there exist
(T − L) moment conditions in that case.

3.4. Linearized QLDGMM

Hayakawa (2012) proposes a linearized GMM version of the QLD model in Ahn et al. (2013) under
strict exogeneity, at the expense of introducing extra parameters. Themoment conditions can be written
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as follows:

mα = vech


 1

N

(
Y(J + F∗J̃(L))′ − Y−1(αJ + F∗

α J̃(L))
′ −

K∑

k=1

Xk

(
βkJ + F∗

βk
J̃(L)

)′
)′

Y−1J
′


 ,

mk = vec


 1

N

(
Y(J + F∗J̃(L))′ − Y−1(αJ + F∗

α J̃(L))
′ −

K∑

k=1

Xk

(
βkJ + F∗

βk
J̃(L)

)′
)′

Xk


 ∀k.

The parameters F∗
α , F

∗
βk

do not appear in the estimator of Ahn et al. (2013). That estimator can be
obtained directly by noting that

F∗
α = αF∗; F∗

βk
= βkF

∗.

The linearized estimator is linear in parameters, and thereby, it is computationally easy to implement.
On the other hand, this simplicity is not without price, as this estimator is not as e�cient as the estimator

in Ahn et al. (2013). In total, under strict exogeneity of all x
(k)
i,t , we have

#moments = (T − L)(T − L + 1)

2
+ KT(T − L),

#parameters = K + 1 + (T − L)L︸ ︷︷ ︸
ALS

+ (T − L)L(K + 1)︸ ︷︷ ︸
Linearization

−L(L − 1)

2
.

Notice that the last term in the equation for the total number of parameters is not present in the original
study of Hayakawa (2012). To explain the necessity of this term, consider the (T − L)th equation (for
ease of exposition, we set L = 2) without exogenous regressors

yi,T−2 − f
(1)
T−2yi,T − f

(2)
T−2yi,T−1 = αyi,T−3 + f (1)αT−2

yi,T−1 + f (2)αT−2
yi,T−2 + εT−2,t − f

(1)
T−2εi,T − f

(2)
T−2εi,T−1.

Clearly, only f
(2)
T−2 + f

(1)
αT−2 can be identi�ed but not the individual terms separately. As a result L(L −

1)/2 normalizations need to be imposed. Furthermore, as it can be easily seen, this term is unaltered if
additional regressors are present in the model so long as they do not contain other lags of yi,t or lags of
exogenous regressors.

Remark 3.10. Although not discussed in Hayakawa (2012), the same linearization strategy for the QD
estimator of Holtz-Eakin et al. (1988) is also feasible.

In what follows, we consider more speci�cally the case where the covariates are weakly exogenous.
To facilitate exposition, assume there exists a single weakly exogenous covariate. Observe that we can
rewrite the �rst equation of the transformed model as

yi,1 +
L∑

l=1

f
(l)
1 yi,T−l = αyi,0 + βxi,1 +

L∑

l=1

f (l)α1
yi,T−l−1 +

L∑

l=1

f
(l)
β1
xi,T−l + · · · . (3.3)

This equation contains 2 + 3L unknown parameters, with only two available moment conditions
(assuming xi,0 is not observed, otherwise 3). Hence the full set of parameters in this equation cannot
be identi�ed without further normalizations. It then follows that the minimum value of T required in
order to identify the structural parameters of interest is such that (for simplicity assume L = 1)

2(T − 1) = 2 + 3 �⇒ min {T} = 1 + �2.5� = 4,

where �x� is the smallest integer not less than x (“ceiling” function). Formore generalmodelswithK > 1,
the condition min {T} = 4 continues to hold as

(K + 1)(T − 1) ≥ (K + 2) + (K + 1) �⇒ min {T} = 1 +
⌈
2K + 3

K + 1

⌉
= 4.
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Notice that for the nonlinear estimator min {T} = 3 in the single-factor case. As a result, for L = 1
under weak exogeneity, the number of identi�able parameters and moment conditions is given by

#moments = (K + 1)
(T − L)(T − L + 1)

2
− (K + 1),

#parameters = K + 1 + (T − L)L︸ ︷︷ ︸
ALS

+ (T − L)L(K + 1)︸ ︷︷ ︸
Linearization

−L(L − 1)

2
− (K + 2),

where−(K+1) and−(K+2) adjustments are made to take into account the fact that for t = 1 there are
(K+2) nuisance parameters to be estimatedwith (K+1) availablemoment conditions. Both expressions
can be similarly modi�ed for L > 1.

3.5. Projection GMM

Following Bai (2013b),7 Hayakawa (2012) suggests approximating λi using a Mundlak (1978)–
Chamberlain (1982) type projection of the form

λi = �zi + νi,

where zi = (1, x
(1)′
i , . . . , x

(K)′
i , yi,0)

′. Notice that by de�nition of the projection, E[νiz′
i] = OL×(TK+2).

As a result, the stacked model for individual i can be written as

yi = αyi,−1 +
K∑

k=1

βkx
(k)
i + F�zi + Fνi + εi. (3.4)

While Bai (2013b) proposes maximum likelihood estimation of the above model, Hayakawa (2012)
advocates a GMM estimator; in our standard notation, the total set of moment conditions used by
Hayakawa (2012) is given by

mα = 1

N

(
Y − αY−1 −

K∑

k=1

βkXk − Z�′F′
)′

Y−1e1,

mι = 1

N

(
Y − αY−1 −

K∑

k=1

βkXk − Z�′F′
)′

ıN ,

mk = vech


 1

N

(
Y − αY−1 −

K∑

k=1

βkXk − Z�′F′
)′

Xk


 , ∀k.

Assuming weak exogeneity of the covariates, one has

#moments = 2T + KT(T + 1)

2
,

#parameters = (K + 1) + (T − L)L︸ ︷︷ ︸
ALS

+ L(TK + 2)︸ ︷︷ ︸
Projection

.

Similarly to the FIVU estimator of Robertson and Sara�dis (2015), the number of identi�able parameters
is smaller than the nominal one and depends on the projected variables zi.

3.5.1. Equivalence with FIVU

Following Bond andWindmeijer (2002), we consider amore general projection speci�cation of the form

λi = �zi + νi,

7Note that the �rst version of this article dates back to 2009.
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where zi = (x
(1)′
i , . . . , x

(K)′
i , y′

i,−1)
′. The true value of � has the usual expression for the projection

estimator

�0 ≡ E
[
λiz

′
i

]
E

[
ziz

′
i

]−1
.

The �rst term in the notation of Robertson and Sara�dis (2015) is simply

E
[
λiz

′
i

]
=

(
G′
1, . . . ,G

′
K ,G

′) . (3.5)

This estimator coincides asymptotically with the FIVU estimator of Robertson and Sara�dis (2015), as
well as with the QLDGMM estimator of Ahn et al. (2013) and QD estimator of Holtz-Eakin et al. (1988)
(for L = 1) if all T(T + 1)(K + 1)/2 moment conditions are used. A proof for the equivalence between
FIVU, QLD, and QD GMM estimators is given in Robertson and Sara�dis (2015).

3.6. Linear GMM

In their discussion of the test for cross-sectional dependence, Sara�dis et al. (2009) observe that if one
can assume

xi,t = �(xi,t−1, . . . , xi,0) + �xif t + π(εi,t−1, . . . , εi,0) + εxi,t (3.6)

where �(·) and π(·) are measurable functions, and the stochastic components are such that

E[εxi,sεi,l] = 0K ,∀s, l,
E[vec(�xi)λ

′
i] = OKL×L,

then the following moment conditions are valid even in the presence of unobserved factors in both
equations for yi,t and xi,t :

E[(yi,t − αyi,t−1 − β ′xi,t)�xi,s] = 0,∀s ≤ t,

E[(�yi,t − α�yi,t−1 − β ′�xi,t)xi,s] = 0,∀s ≤ t − 1.

The total number of valid (nonredundant) moment conditions is given by

#moments = K

(
(T − 1)T

2
+ (T − 1)

)
,

if one does not include xi,0 and �xi,1 among the instruments. Under mean stationarity, additional
moment conditions become available in the equations in levels, giving rise to a system GMM estimator.

Identi�cation of the structural parameters crucially depends on the condition that no lagged values
of yi,t are present in (3.6) as well as on the assumption that the factor loadings of the y and x processes are
uncorrelated. However, it is important to stress that all exogenous regressors are allowed to be weakly
exogenous due to the possible nonzero π(·) function, or even endogenous provided that εi,t is serially
uncorrelated.

3.7. Conditional quasi maximum likelihood (QML) estimator

To control for the correlation between the strictly exogenous regressors and the initial condition with
factor loadings λi, Bai (2013b), similarly to the GMMestimator proposed inHayakawa (2012), considers
a linear projection of the following form:

λi = �zi + νi, E[νiν′
i] = �v.

However, instead of relying on covariances as in the GMM framework, the quasi maximum likelihood
(ML) approach makes use of the second moment estimator

S(θ) = 1

N

(
Y − αY−1 −

K∑

k=1

βkXk − Z�′F′
)′ (

Y − αY−1 −
K∑

k=1

βkXk − Z�′F′
)
,
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where θ = (α,β ′, vecF′, vec�′)′. Evaluated at the true values of the parameters, the expected value of
S(θ0) is

E[S(θ0)] = � = ITσ 2 + F�νF
′.

To solve the rotational indeterminacy problem, one can normalize �ν = IL and rede�ne F ≡ F�
1/2
ν

and � ≡ ��
−1/2
ν , similarly to the FIVR estimator of Robertson and Sara�dis (2015). To evaluate the

distance between S(θ) and �, Bai (2013b)8 suggests maximizing the following QML objective function
to obtain consistent estimates of the underlying parameters

�(θ) = −1

2

(
log |�| + tr

(
�−1S

))
.

Under standard regularity conditions for M-estimators, the estimator obtained as the maximizer of the
objective function �(θ) is consistent and asymptotically normal for �xed T, with asymptotic variance-
covariance matrix of “sandwich” form irrespective of the distributional assumptions imposed on the
combined error term εi,t + ν′

if t . If one can replace the projection assumption by the assumption
of conditional expectations, the resulting estimator can be seen as a QML estimator conditional on
exogenous regressors Xk and the initial observation yi,0.

The theoretical and �nite sample properties of this estimator without factors are discussed in Alvarez
and Arellano (2003), Kruiniger (2013), and Bun et al. (2016) among others, while Westerlund and
Norkutė (2014) discuss the properties of this estimator for possibly nonstationary data with large T.

The above version of the estimator requires time series homoskedasticity in εi,t for consistency. If this
condition holds true and all covariates are strictly exogenous, the estimator provides e�ciency gains
over the GMM estimators analyzed before since the latter do not make use of moment conditions that
exploit homoskedasticity (see, e.g., Ahn et al., 2001). The estimator can be modi�ed in a straightforward
manner under time series heterosedasticity to estimate all σ 2

t . On the other hand, cross-sectional
heteroskedasticity cannot be allowed without additional restrictions.

Furthermore, the estimator generally requires τ = T in Assumption 4, i.e., strict exogeneity of the
regressors. An exception to this is discussed in the following remark.

Remark 3.11. If it is plausible to assume that all covariates have the dynamic speci�cation

x
(k)
i,t = βxx

(k)
i,t−1 + αxyi,t−1 + f ′

tλ
x(k)
i + εxi,t , (3.7)

so that x
(k)
i,t is possibly weakly exogenous, then according to Bai (2013b) it is su�cient to project

on (1, x
(1)
i,0 , . . . , x

(K)
i,0 , yi,0) only, resulting in a more e�cient estimator. A necessary condition for this

approach to be valid is that the factor loadings (λ
x(k)
i ,λi) are independent, once conditioned on the

initial observations (1, x
(1)
i,0 , . . . , x

(K)
i,0 , yi,0).

4. Some general remarks on the estimators

4.1. (Non)invariance to λi

In the situations where the model contains �xed e�ects only, i.e., λ′
if t = λi, some of the classical panel

data estimators can be invariant to individual e�ects. For example, under mean stationarity of the initial
condition the GMM estimators of Anderson and Hsiao (1982) (with instruments in �rst di�erences),
Hayakawa (2009), or the Transformed ML estimators as in Hsiao et al. (2002), Kruiniger (2013), and
Juodis (2016a) are invariant to the distribution of the �xed e�ects λi. In general, irrespective of the

8Strictly speaking in the aforementioned article the author solely describes the approach in terms of the likelihood function,
while in Bai (2013a) the author describes a QML objective function as just one possibility.
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properties of yi,0, none of the estimators present in this article are invariant to λ′
if t for �xed T. For GMM

estimators, invariance would require knowledge of the whole history {f t}Tt=−∞ in order to construct
instruments that are invariant to λi. This conclusion is true both for estimators that involve some sort of
di�erencing (QD, QLD) and projection (FIVU, Projection GMM).

4.2. Unbalanced samples

As it is mentioned in, e.g., Juodis (2016b), the quasi-long-di�erencing transformation of Ahn et al.
(2013) requires that for all individuals at least L common time indices observations are available to the
researcher. In the model with weakly exogenous regressors this requirement is even more speci�c as the
last L observations should be observed for all individuals. Otherwise, the D(F∗) transformation matrix
might become group-speci�c, if one can group observations based on availability.

To see this in more detail, consider Eq. (3.2). As it stands, the quasi-long-di�erencing transformation
that removes the incidental parameters from the error is feasible for individual i only if the last L periods
are available. Otherwise, these individuals may either be dropped out altogether, or be grouped such that
it becomes possible to normalize on di�erent T − L periods. Either way, the estimator may su�er from a
substantial loss in e�ciency, as a result of removing observations, or splitting the sample. On the other
hand, if it is plausible to assume that the model contains only strictly exogenous regressors, then it is
su�cient that there exist L common time indices t(1), . . . , t(L) where observations for all individuals are
available.

The extension of FIVU and FIVR to unbalanced samples follows trivially by simply introducing
indicators, depending on whether a particular moment condition is available for individual i or not
(as for the standard �xed e�ects estimator).

The QD GMM estimator of Nauges and Thomas (2003) can be trivially modi�ed as well, as in the
standardArellano andBond (1991) procedure. However, similarly to that procedure, this transformation
might result in dropping quite a lot of observations.

The projection estimator of Hayakawa (2012) requires further modi�cation in order to take into
account that projection variables zi are not fully observed for each individual. We conjecture that the
modi�cation could be performed in a similar way as in themodel without a factor structure, as discussed
by Abrevaya (2013). For ML-based estimators, such extendability appears to be a more challenging task.

Remark 4.1. The above discussion relies on the fact that there exists a large enough number of consecu-
tive time periods for each individual in the sample. For example, FIVU requires at least two consecutive
periods and quasi-di�erencing type procedures require at least three. Under these circumstances, we
note that estimators in their existing form may not be fully e�cient. For example, if one observes only
yi,T and yi,T−2 for a substantial group of individuals, assuming exogenous covariates are available at all
time periods, then one could use backward substitution and consider moment conditions within the
FIVU framework, which are quadratic in the autoregressive parameter and result in e�ciency gains. For
projection-type methodologies, however, such substantial unbalancedness may a�ect the consistency of
the estimators as one cannot substitute unobserved quantities for zeros in the projection term. This issue
is discussed in detail by Abrevaya (2013).

4.3. Observed factors

In some situations one might wish to estimate models with both observed and unobserved factors at
the same time. Taking the structure of observed factors into account may improve the e�ciency of
the estimators, although one can still consistently estimate the model by treating the observed factors
as unobserved. One such possibility has been already discussed in Nauges and Thomas (2003) for
models with an individual-speci�c, time-invariant e�ect. In this section we will brie�y summarize
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implementability issues for all estimators when observed factors are present in themodel alongside their
unobserved counterparts.9

For the GMM estimators that involve some form of di�erencing, e.g. Holtz-Eakin et al. (1988) and
Ahn et al. (2013), one can deal with observed factors using a similar procedure as in Nauges and Thomas
(2003), that is, by removing the observed factors �rst (one-by-one) and then proceeding to remove
the unobserved factors from the model. The �rst step can be most easily implemented using a quasi-
di�erencing matrix D(r) with known weights.

For the GMM estimators of Robertson and Sara�dis (2015) (FIVU) and Hayakawa (2012), since the
unobserved factors are not removed from the model, the treatment of the observed factors is somewhat
easier. One merely needs to split the FG′ terms into two parts, observed and unobserved factors, and
then proceed as in the case of unobserved factors. In this case the number of identi�able parameters will
be smaller than in the case where one treats the observed factors as unobserved. As a result, one gains
in e�ciency, at the expense, however, of robustness.

For FIVR one needs to take care when solving for F in terms of the remaining parameters, because in
the model with observed factors one estimates the variance-covariance matrix of the factor loadings
for the observed factors, while for those which are unobserved their variance-covariance matrix is
normalized.

The extension of the likelihood estimator of Bai (2013b) to observed factors can be implemented in
a similar way to the projection GMM estimator. As in FIVR, one would have to estimate the variance-
covariance matrix of the factor loadings for the observed factors, while the covariances of unobserved
factors can be w.l.o.g. normalized as before.

5. Finite sample performance

This section investigates the �nite sample performance of the estimators analyzed above using simulated
data. Our focus lies on examining the e�ect of the presence of weakly exogenous covariates, the e�ect
of changing the magnitude of the correlation between the factor loadings of the dependent variable and
those of the covariates, as well as the impact of changing the number of moment conditions on bias and
size for GMM estimators. We also investigate the e�ect of changing the level of persistence in the data,
as well as the sample size in terms of both N and T.

5.1. Monte Carlo design

We consider model (2.1) with K = 1, i.e.,

yi,t = αyi,t−1 + βxi,t + ui,t ; ui,t =
L∑

�=1

λ�,if�,t + ε
y
i,t .

The process for xi,t and for ft is given, respectively, by

xi,t = δyi,t−1 + αxxi,t−1 +
L∑

�=1

γ�,if�,t + εxi,t ,

f�,t = αf f�,t−1 +
√
1 − α2

f ε
f
�,t ; ε

f
�,t ∼ N (0, 1), ∀�.

The factor loadings are generated by λ�,i ∼ N (0, 1) and

γ�,i = ρλ�,i +
√
1 − ρ2υ

f
�,i; υ

f
�,i ∼ N (0, 1)∀�,

9Under the assumption that appropriate regularity conditions hold, which prohibit asymptotic collinearity between the
observed and unobserved factors.
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where ρ denotes the correlation between the factor loadings of the y and x processes. Furthermore, the
idiosyncratic errors are generated as10

ε
y
i,t ∼ N (0, 1) ; εxi,t ∼ N

(
0, σ 2

x

)
.

The starting period for the model is t = −S, and the initial observations are generated as

yi,−S =
L∑

�=1

λ�,if�,−S + ε
y
i,−S; xi,−S =

L∑

�=1

γ�,if�,−S + εxi,−S; f−S ∼ N (0, 1).

The signal-to-noise ratio (SNR) of the model is de�ned as follows:

SNR ≡ 1

T

T∑

t=1

var
(
yi,t|λ�,i, γ�,i,

{
f�,s

}t
s=−S

)

varε
y
i,t

− 1.

σ 2
x is set such that the SNR is equal 5 in all designs.11 This particular value of SNR is chosen so that it

is possible to control this measure across all designs. Lower values of SNR (e.g., 3 as in Bun and Kiviet,
2006) would require σ 2

x < 0 ceteris paribus in order to satisfy the desired equality for all designs.
We set β = 1 − α such that the long run parameter is equal to 1, αx = 0.6, αf = 0.5, and L = 1.12

We consider N = {200; 800} and T = {4; 8}. Furthermore, α = {0.4; 0.8}, ρ = {0; 0.6}, and δ = {0; 0.3}.
Theminimumnumber of replications performed equals 2,000 for each design, and the factors are drawn
in each replication. The choice of the initial values of the parameters for the nonlinear algorithms is
discussed in 7. When at least one of the estimators fails to converge in a particular replication, that
replication is discarded.13

Note that for the QML estimator we use standard errors based on a “sandwich” variance-covariance
matrix, as opposed to the simple inverse of the Hessian variance matrix. First-order conditions as well
as Hessian matrices for likelihood estimators are obtained using analytical derivatives to speed up the
computations.14

Although feasible, in this article we do not implement the linearized GMM estimator of Hayakawa
(2012) adapted to weakly exogenous regressors. This is mainly due to the fact that this estimator merely
provides an easy way to obtain starting values for the remaining estimators, which involve nonlinear
optimization algorithms.

Motivated from our theoretical discussion regarding the estimators considered in this article, some
implications can be discussed a priori, based on our Monte Carlo design.
1. When δ �= 0, likelihood based estimators are inconsistent because xi,t is not strictly exogenous, with

the exception of the modi�ed estimator of Bai (2013b) conditional on (yi,0, xi,0).
2. For ρ �= 0, the likelihood estimator conditional on (yi,0, xi,0) is inconsistent because the conditional

independence assumption is violated.

10We have also explored the e�ect of non-normal errors based on the chi-squared distribution (centered and normalized).
The results were almost identical and therefore, to save space, we refrain from reporting them.

11To ensure this, we also set S = 5.
12Similar results have been obtained for L = 2. To avoid repeating similar conclusions, we refrain from reporting these results.
We note that the number of factors can be estimated for all GMM estimators based on the model information criteria
developed by Ahn et al. (2013). The performance of these procedures appears to be more than satisfactory; the interested
reader may refer to the aforementioned article, as well as to the Monte Carlo study in Robertson et al. (2014). The size of L
is treated as known in this article because there is currently no equivalent methodology proposed for testing the number
of factors within the likelihood framework.

13For the numerical maximization, we used the BFGS method as implemented in the OxMetrics statistical software. Conver-
gence is achieved when the di�erence in the value of the given objective function between two consecutive iterations is

less than 10−4. Other values of this criterion were considered in the preliminary study with similar qualitative conclusions,
although the number of times particular estimators fail to converge varies. For further details on OxMetrics, see Doornik
(2009). All algorithms are available upon request.

14In the preliminary study, results based on analytical and numerical derivatives were compared. Since the results were
quantitatively and qualitatively almost identical (for designs where estimators were consistent), we prefer the use of
analytical derivatives solely for practical reasons.



910 A. JUODIS AND V. SARAFIDIS

3. Forρ = 0 and δ = 0, the projectionGMMestimatormight su�er fromweak instruments, particularly
when α = 0.8, because yi,0 remains the only relevant instrument and this might be weakly correlated
with the regressors when the di�erence apart in time between yi,0 and yi,t increases, i.e., as t → T.

5.2. MC results

The results are reported in the Appendix in terms of median bias and root median square error (RMSE),
which is de�ned as

RMedSE =
√
med

[
(̂αr − α)2

]
,

where α̂r denotes the value of α obtained in the rth replication using a particular estimator (and similarly
for β). As an additional measure of dispersion, we report the radius of the interval centered on the
median containing 80% of the observations, divided by 1.28. This statistic, which we shall refer to as
“quasi-standard deviation” (denoted qStd) provides an estimate of the population standard deviation if
the distribution were normal, with the advantage that it is more robust to the occurrence of outliers
compared to the usual expression for the standard deviation. The reason we report this statistic is
that, on the one hand, the root mean square error is extremely sensitive to outliers, and on the other
hand, it is fair to say that the root median square error does not depend on outliers pretty much at
all. Therefore, the former could be unduly misleading given that in principle, for any given data set,
one could estimate the model using a large set of di�erent initial values in an attempt to avoid local
minima, or lack of convergence in some cases (which we deal with in our experiments by discarding
those particular replications). In a large-scale simulation experiment as ours, however, the set of initial
values naturally needs to be restricted in some sensible/feasible way. The quasi-standard deviation lies
in-between because while it provides a measure of dispersion that is less sensitive to outliers compared
to the root mean square error, it is still more informative about the variability of the estimators relative
to the root median square error. Finally, we report size, where nominal size is set at 5%.15 For the GMM
estimators, we also report size of the overidentifying restrictions (J) test statistic.16

Initially, we discuss results for the OLS estimator and the GMM estimator proposed by Sara�dis et al.
(2009)17 as well as the linearized GMM estimator of Hayakawa (2012) (see Table B.1); these estimators
have been used to obtain initial values for the parameters for the nonlinear estimators, among other
(random) choices. In many circumstances, the OLS estimator exhibits large median bias, while the size
of the estimator is most o�en not far from unity. On the other hand, the linear GMMestimator proposed
by Sara�dis et al. (2009) does fairly well both in terms of bias and RMedSE when δ = 0 and ρ = 0,
i.e., when the covariate is strictly exogenous with respect to the total error term, ui,t . The size of the
estimator appears to be somewhat upwardly distorted, especially for T large, but one expects that this
would substantially improve if one made use of the �nite-sample correction proposed by Windmeijer
(2005). On the other hand, the estimator is not consistent for the remaining parameterizations of our
design, and this is well re�ected in its �nite sample performance. Notably, the J statistic appears to have
high power to detect violations of the null, even if N is small. In the online appendix of this article, we
present results for GMM estimators when only a subset of moment conditions is used for estimation.

With regards to the linearized GMM estimator of Hayakawa (2012), both median bias and RMedSE
are reasonably small, even for N = 200, so long as δ = 0, i.e., under strict exogeneity of x with respect

15In actual fact, the results on size also partially re£ect extreme tail performance of the estimators. Following the suggestion
by a referee, an online appendix of the article (see http://arturas.economist.lt/JS_online.pdf) reports results in terms of root
mean square error (RMSE) and standard deviation. We will comment on these results at the end of this section.

16To calculate the J statistic, we use the uncentered weighting matrix evaluated based on the �rst step estimators. Alterna-
tively, one can use a centered weighting matrix. However, simulation (and theoretical) evidence in the dynamic panel data
context in Bun and Poldermans (2015) and Hayakawa (2016) suggest that such procedure can have worse size properties
(oversized) with similar size-adjusted power. In our preliminary study using the FIVU estimator, a similar behavior was
observed for the factor model, which con�rms the aforementioned �ndings.

17See Table 1 in the supplementary material (http://arturas.economist.lt/JS_online.pdf).

http://arturas.economist.lt/JS_online.pdf
http://arturas.economist.lt/JS_online.pdf
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to the idiosyncratic error. However, the estimator appears to be quite sensitive to high values of α, both
in terms of bias and qStd, an outcome that may be partially related to the fact that the value of β is
small in this case, which implies that a many-weak instruments’ type problemmight arise. Naturally, the
performance of the estimator deteriorates for δ = 0.3 as the moment conditions are invalidated in this
case. While the size of the J statistic appears to be distorted upwards when the estimator is consistent,
it has in general quite large power to detect violations of strict exogeneity, and for high values of α this
holds true even with a relatively small size of N.

Table B.2 report results for the quasi-long-di�erencedGMMestimator proposed by Ahn et al. (2013).
The estimator appears to have small median bias under all designs. This is expected given that the
estimator is consistent. The qStd results indicate that the estimator has large dispersion in some designs,
especially when T is small.We have explored further the underlying reason for this result.We found that
this is o�en the case when the value of the factor at the last time period, i.e., fT , is relatively close to zero.
Thus, the estimator appears to be potentially sensitive to this issue, because the normalization scheme
sets fT = 1.18 The two-step version improves on these results. On the other hand, inferences based on
one-step estimates seem to be relatively more reliable. This outcome may be attributed to the standard
argument provided for linear GMM estimators, which is that two-step estimators rely on an estimate of
the variance-covariance matrix of the moment conditions, which, in samples where N is small, can lead
to conservative standard errors. Truncating the moment conditions for T = 8 seems to have a negligible
e�ect on the size properties of the one-step estimator but does improve size for the two-step estimator
quite substantially (see Table 2 in the online appendix). This result seems to apply for all overidenti�ed
GMM estimators actually. The J statistic exhibits small size distortions upwards.

Simulation results with regards to the QD GMM estimator by Holtz-Eakin et al. (1988) are reported
in Table B.3. As we can see, qualitative similar conclusions apply as above, except that the dispersion of
the estimator in terms of RMedSE and qStd is substantially larger than that of QLD GMM. As explained
in Subsection 3.1, this may be attributed to the fact that the QD transformation involves rt = ft/ft−1,
which requires that ft , t = 1, . . .T − 1, lie su�ciently far from zero; otherwise, the estimator may face
convergence problems.

Tables B.4 and B.5 report results for FIVU and FIVR based on full sets of moment conditions,
proposed by Robertson and Sara�dis (2015). Similarly to Ahn et al. (2013), both estimators have very
small median bias in all circumstances. Furthermore, they perform well in terms of qStd. Especially
the two-step versions have small dispersion regardless of the design. Naturally, the dispersion decreases
further with high values of T because the degree of overidenti�cation of the model increases. As
expected, Root Median Squared Error (RMedSE) appears to go down roughly at the rate of

√
N. FIVR

dominates FIVU, which is not surprising given that the former imposes overidentifying restrictions
arising from the structure of the model and thus it estimates a smaller number of parameters. The size of
one-step FIVU and FIVR estimators is close to its nominal value in all circumstances. On the other hand,
the two-step versions appear to be size distortedwhenT is large, especiallywhenN = 200. The distortion
decreases when only a subset of themoment conditions is used; see Tables 4 and 5 in the online appendix.
Thus, one may conclude that using the full set of moment conditions and relying on inferences based on
�rst-step estimates is a sensible strategy. From the empirical point of view, this is appealing because it
simpli�es matters regarding how many instruments to be used; an important question that o�en arises
in two-way error component models estimated using linear GMM estimators. Finally, the size of the J
statistic is o�en slightly distorted when N is small, but improves rapidly as N increases.

The projection GMM estimator proposed by Hayakawa (2012) (Table B.6) has small bias and
performs well in general in terms of qStd unless α is close to unity, in which case outliers seem to
occur relatively more frequently. One could suspect that this design is the worst case scenario for the
estimator because only yi,0 is included in the set of instruments, while lagged values of xi,t are only weakly

18It turns out that this problem has already been known in the literature; see, e.g., Kruiniger (2008, p. 16). Notice that
normalizing the factor value at a di�erent time period would result in losing moment conditions, as explained in the main
text; for example, normalizing fT−1 = 1 (fT−2 = 1) results in dropping T (2T − 1) moment conditions.



912 A. JUODIS AND V. SARAFIDIS

correlatedwith yi,t−1. Inferences based on the �rst-step estimator are reasonably accurate, certainlymore
so compared to the two-step version, although the latter improves for the truncated set of moment
conditions (Table 6 in the online appendix). The J statistic seems to be size-distorted downwards but
it slowly improves for larger values of N.

Remark 5.1. Monte Carlo evidence in Juodis and Sara�dis (2015) suggest that the standard error
correction as in Windmeijer (2005) can substantially improve the empirical size of the two-step FIVU
estimator.We suspect that the same is also applicable to the estimators of Ahn et al. (2013) andHayakawa
(2012). However, extensive analysis of this issue is beyond the scope of this article.

Finally, Table B.7 reports results for the conditional maximum likelihood estimator proposed by Bai
(2013b). The le� panel corresponds to the estimator that treats xi,t as strictly exogenous with respect
to the idiosyncratic error, while the panel on the right-hand side corresponds to the estimator that is
consistent under weak exogeneity of a �rst-order form, which is satis�ed in our design when ρ = 0.
Interestingly, the former appears to exhibit negligible median bias in all cases, even when both δ and
ρ take nonzero values. The dispersion of the estimator is small as well, unless T = 4 and δ = 0.3.
Likewise, for δ = 0.3 the size of the estimator is distorted upwards, and it gets worse with higher values
ofN, which is natural given that the estimator is not consistent in this case. However, for cases where this
estimator is consistent (δ = 0 and ρ = 0), it may serve as a benchmark because it has negligible bias and
excellent size. This can be expected given the asymptotic optimality of this estimator under conditional
homoskedasticity of εi,t . This conclusion is pretty much invariant to di�erent values of N,T or ρ. The
second estimator, in designs with ρ = 0.6 (where it is not consistent) tends to have substantial bias for
both α and β . On the other hand, when it is supposed to be consistent (δ = 0.3, ρ = 0.0) it is more size
distorted than the �rst estimator that is inconsistent. This is a somewhat puzzling �nding.

Figure 1 provides a snapshot illustration of our discussion regarding the size properties of the
estimators for the autoregressive coe�cient when N = 200,T = 4, while Figure 2 illustrates root mean

Figure 1. Empirical rejection frequencies; N = 200, T = 4.
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Figure 2. RMSE of estimators; N = 200, T = 4.

squared error performance of the estimators for the case where N = 200,T = 4.19 The size of the
estimators improves asN increases and, for the two-step GMM estimators, it deteriorates as T increases.

In order to provide a broader picture of the performance of the estimators, the online appendix
of our article presents alternative results in terms of mean bias and RMSE. The conclusions are
qualitatively similar to what we have already alluded, in that the ranking of the estimators in terms of
their performance is clearly preserved. For most estimators mean bias and median bias are of similar
magnitude, which implies that di�erences between root mean and RMSEs are mainly attributed to the
dispersion of the estimators and, ultimately, outliers. As discussed previously, the frequency of such
outliers can possibly be reduced to some extent by enlarging the set of initial values su�ciently. However,
in a large-scale and sophisticated simulation experiment, as it is ours, the set of initial values naturally
needed to be restricted in some sensible and feasible way.

6. Empirical illustration: Income elasticity of crime

There is a well-established literature on the e�ect of crime rate on economic activity. Essentially, crime
may act on the entire economy like a tax, which increases uncertainty, reduces economic competitiveness
and discourages foreign direct investment (see, e.g., Anderson, 1999). At the same time, there is relatively
little empirical evidence emanating from econometric analysis, which provides some quanti�cation for
the opposite cause-and-e�ect relationship − that is, the impact of income on crime rate.

Income may a�ect crime rate through several channels. For instance, during prolonged periods of
economic hardship a higher proportion of the population may become unemployed, possibly leading to
more property crime and robberies, as criminals steal coveted items they cannot a�ord.

In addition, the consequences of being arrested and found guilty of a criminal o�ence include not
just the punishment meted out by the criminal justice system, but also the indirect sanctions imposed
by society; a convicted individual may no longer enjoy the same opportunities in the labor market, and
so the opportunity cost of lost income increases with higher existing income levels. With this line of

19Wedonot include results for theQDand LinearizedQLDestimators in order tomaintain a small enough scale on the vertical
axis, such that the di�erence in the performance of the remaining estimators is clearly visible.
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reasoning, the e�ect of income on certain types of crime, such as property crime, is expected to be
negative.20

A negative average e�ect of income on property crime is also in accordance with economic theory. In
particular, according to the seminal articles by Becker (1968) and Ehrlich (1975), individuals engage
in criminal activity because the subjective expected bene�t exceeds the expected cost of doing so.
Criminals, therefore, do not di�er from the rest of society in their basic motivation but in their appraisal
of bene�ts and costs. The idea of a rational criminal suggests that since the opportunity cost with respect
to crime increases with higher levels of income, the latter may exert a negative in�uence on crime.

In this section, we examine the e�ect of income on crime using a panel data set of 153 Local
Government Areas (LGA) in NSW, each observed over a period of 7 years. The Australian Standard
Geographic Classi�cation de�nes the LGA as the lowest level of aggregation, following the census
Collection District (CD) and Statistical Local Area. Thus, the LGA represents a low level of aggregation
compared to standard practice in the literature, where regressions using city-, state-, and country-level
data are common.21 The time interval of the sample spans 2006–2012, and includes a period where the
Australian economy did slow down quite signi�cantly as a result of the global �nancial crisis, although
it did not fall into recession.22

We consider the following model

yi,t = αyi,t−1 + βxi,t + ui,t ; ui,t = λ′
if t + εi,t ; i = 1, . . . , 153, t = 1, . . . , 6, (6.1)

where yi,t denotes (the log of) property crime rate, de�ned as property crime incidents divided by
population, in LAG i at time t and xi,t denotes (the log of) average disposable income in real prices.
The error term is composite and contains an unknown number of factors, plus a purely idiosyncratic
component. The factorsmay represent common shocks that hit all LGAs, albeit with di�erent intensities.
Failing to take into account of such error structure may lead to inconsistent estimates of the long-run
coe�cient, andmisleading inferences, since factors are correlated with the lagged dependent variable by
construction, and most likely with income; see, e.g., Sara�dis and Robertson (2009).

We have �tted models with L = 1, 2, 3 factors. The number of factors has been estimated using the
criterion

BIC� = J� − f (N,T) × g(c, df (�)), (6.2)

where J� denotes the value of the GMM objective function obtained by �tting � factors into the model,
while f (N,T) = log(N)/T0.3 and g(c, df (�)) = 0.75×df (�), while df (�) denotes the number of degrees
of freedom associated with � factors.23 For all GMMestimators, the value of L thatminimizes BIC equals
unity, and therefore we set L̂ = 1. To save space, in what follows we report results for this value only.

The results are reported in Table 1. “FD GMM” refers to the �rst-di�erenced GMM estimator of
Arellano and Bond (1991), and “System GMM” is the system GMM estimator put forward by Blundell
and Bond (1998); both are used as a benchmark, since they are available in popular econometric
so�ware packages, and therefore, they are widely used by empirical practitioners.24 “Linear GMM” and
“Linearized GMM” refer to the estimators discussed in Sections 3.6 and 3.4, respectively. The remaining
estimators are self-explanatory, with “1” or “2” referring to the one- and two-step versions of the GMM
estimators, while “s” denotes whether a subset of the total number moment conditions is used. In this

20The e�ect of income on other types of crime may not be as clear-cut. For example, better economic times might also
translate into a higher demand for drugs.

21Each CD contains on average about 225 households (2001 Census). There are about 37,000 CDs throughout Australia. The
boundaries of an SLA are designed to be typically coterminous with Local Government Areas unless the LGA does not �t
entirely into a Statistical Subdivision, or is not of a comparative nature to other LGAs. There are 193 SLAs in NSW.

22See, for example, McDonald and Morling (2011).
23See BIC1 in Ahn et al. (2013, p. 8). The performance of the criterion in the context of a dynamic panel is investigated in
Robertson and Sara�dis (2015).

24Common timee�ectshavebeen included forbothestimators, since this is currently commonpractice inestimatingdynamic
panel data models. As discussed by Sara�dis and Robertson (2009), the inclusion of common time e�ects is one way to
reduce the e�ect of factor residuals on estimation.
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Table 1. Estimation results, L̂ = 1.

α̂ st.error z-stat. β̂ st.error z-stat. LR J df

FD GMM 0.553 0.173 30.19 −0.139 0.218 −0.640 −0.310 22.3∗ 14
System GMM 0.722 0.118 6.12 −0.094 0.113 −0.830 −0.336 24.3 18
Linear GMM 0.621 0.043 14.5 −0.101 0.012 −8.64 −0.265 38.2∗ 18
Linearized GMM 0.034 0.019 1.79 0.043 0.018 2.34 0.045 18.1 28

QLD GMM 1 s 0.867 0.172 5.03 −0.032 0.033 −0.948 −0.265 − −
QLD GMM 2 s 0.712 0.075 9.41 −0.054 0.022 −2.53 −0.189 21.2 21
QLD GMM 1 0.866 0.173 4.99 −0.032 0.034 −0.934 −0.238 − −
QLD GMM 2 0.834 0.046 18.1 −0.039 0.012 −3.30 −0.236 27.4 23

FIVU 1 s 0.764 0.113 6.74 −0.052 0.029 −1.76 −0.219 − −
FIVU 2 s 0.895 0.030 30.3 −0.030 0.008 −3.79 −0.284 16.5 17
FIVU 1 0.856 0.153 5.57 −0.032 0.032 −1.01 −0.219 − −
FIVU 2 0.736 0.062 11.9 −0.057 0.017 −3.36 −0.218 23.0 23

FIVR 1 s 0.802 0.128 6.27 −0.042 0.031 −1.35 −0.212 − −
FIVR 2 s 0.890 0.026 34.6 −0.031 0.007 −4.36 −0.278 20.0 21
FIVR 1 0.848 0.148 5.73 −0.035 0.032 −1.10 −0.229 − −
FIVR 2 0.730 0.058 12.4 −0.061 0.016 −3.90 −0.222 25.5 27

Proj. GMM 1 s 0.812 0.098 8.30 −0.046 0.024 −1.92 −0.242 − −
Proj. GMM 2 s 0.741 0.053 14.1 −0.061 0.015 −4.22 −0.238 14.9 15
Proj. GMM 1 0.813 0.098 8.27 −0.045 0.024 −1.91 −0.242 − −
Proj. GMM 2 0.741 0.055 13.8 −0.061 0.015 −4.08 −0.236 15.8 18

ML strict. exog. 0.587 0.151 3.88 −0.084 0.033 −2.53 −0.203 − −
ML weak. exog. 0.592 0.064 9.20 −0.085 0.016 −5.38 −0.207 − −

case, the estimators make use of the four most recent instruments available with respect to the lagged
dependent variable. Finally, “Proj. GMM” refers to the projection GMM estimator discussed in Section
3.5.25

“LR” denotes the long-run estimated average e�ect of incomeon crime, “J” denotes the test statistic for
overidentifying restrictions, and �nally “df ” denotes the number of degrees of freedom in themodel, i.e.,
the number of moment conditions minus the number of identi�able parameters. Both “J” and “df ” are
applicable only for GMM estimators, and the overidentifying restrictions test statistic is asymptotically
valid for two-step GMM estimators only, and hence we just report these results. “∗” denotes statistical
signi�cance at the 5% level.

Starting values for the nonlinear estimators have been obtained in a way similar to the Monte Carlo
study, described in 7, except that the set of random initializations is much larger, due to the fact that
using a large set of starting values for a single data set is not as time-consuming as it would have
been in the MC section. In particular, for estimators that require starting values only for the structural
(α,β) parameters, such as QLD GMM, we have used additionally 200 U [−1; 1] random variables. For
the FIVU and Projection GMM estimators 200 random values of (α,β) formed the basis to extract
principal components, which were subsequently used as starting values for the iterations. For other
estimators (FIVR, QML) that also require specifying starting values for the nuisance parameters (e.g.,
F,G,� matrices), we used 200 sets of U [−5; 5] random variables. The uniform interval of random
draws has been expanded compared to the simulations because the computational burden is far smaller,
and we wish to eliminate local minima/maxima of the criterion function to the extent that is possible.
Furthermore, unlike structural parameters (α,β), nuisance parameters do not have an intuitive interval
of plausible population values, thus it is important not to consider a very tight interval used for starting
values of these parameters.

As we can see, inmost cases bothα andβ are statistically signi�cant at the 5% level of signi�cance. For
most estimators, the long-run estimated coe�cient ranges between−0.2 and−0.28. Notable exceptions
are FD GMM and System GMM, which appear to overestimate the average e�ect of income on crime in
absolute terms. The J statistic for FDGMM is statistically signi�cant at the 5% level, which indicates that

25We do not report results with respect to QD GMM, given its similarities with QLD GMM.
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the model is misspeci�ed. This is expected because this estimator is not consistent under a multifactor
error structure. Ironically, this appears not to be the case for System GMM, which however should yield
asymptotically the same conclusion, as it makes use of the same moment conditions as FD GMM plus
instruments with respect to equations in levels. We are tempted to conjecture that this may be attributed
to lack of power of this type of J test in �nite samples.

We note that even if the di�erences between the values of the LR coe�cient obtained from FD
GMM/System GMM and the remaining estimators might not appear to be very substantial, the policy
implications derived from these results are signi�cantly di�erent. For instance, the estimate of β is about
−0.139 for FD GMM, −0.061 for Proj. GMM 2, and −0.061 for FIVR 2. This means that the estimated
short-run income elasticity of crime (i.e., the average sensitivity of crime to changes in incomewithin the
same time period) ismore than double forDIFGMM.Moreover, these estimates are statistically di�erent
at the 5% level. In addition, the estimated autoregressive coe�cient is about 0.552 for FD GMM, 0.741
for Proj. GMM 2, and 0.730 for FIVR 2. Thus, given these results, it takes approximately 3 time periods
on average for 90% of the long run e�ect to be realized under FD GMM and 7 time periods for Proj.
GMM 2 and FIVR 2. Therefore, it is clear that the results bear distinctive policy implications, since the
estimated short-run e�ect of income, as well as the dynamics of the crime rate process, are substantially
di�erent across the estimators.

The value of the J statistic for the linear GMM estimator of Sara�dis et al. (2009) is statistically
signi�cant, which indicates that the factor component is correlated with income. In terms of the
parametrization design in the MC section, this means that δ �= 0 and/or ρ �= 0. As shown in the
Monte Carlo section of this paper, this type of J test has very good power to detect such violations from
the null hypotheses in �nite samples. The estimated coe�cients appear to be biased in the direction of
FD GMM/System GMM.

The linearized GMMestimator yields a value of the autoregressive coe�cient that is close to zero, and
a positive value for the slope coe�cient, which is counterintuitive. This may be due to the fact that the
estimator relies on the assumption that the regressor is strictly exogenous. Since a substantial body of the
literature argues that crime does have an e�ect on economic activity, and thereby on average disposable
income, this assumption is likely to be violated. That is, the parameter δ introduced in the MC section
is unlikely to equal zero.26

Proj. GMM and FIVR appear to provide similar results. This is consistent with the hypothesis that
neither δ = 0, nor ρ = 0, i.e., strict exogeneity of income is violated and the factor loadings are likely
to be correlated. Moreover, QLD GMM and FIVU yield fairly similar results to Proj. GMM and FIVR as
well. Inmost cases, the estimated coe�cients are not statistically di�erent. For example, the upper bound
of the 95% con�dence interval for α obtained using FIVU 2 is approximately 0.860, which exceeds the
value of α obtained using QLD GMM 2.

The maximum likelihood estimator that imposes strict exogeneity of income appears to be biased
towards the direction of FD GMM. This would con�rm that the variable income is only weakly
exogenous, i.e., δ �= 0 in terms of the parametrization employed in the MC section. Interestingly,
similar results were obtained for the version of the maximum likelihood estimator that imposes weak
exogeneity of income. It might be useful to note here that this estimator was prone to substantial
numerical instabilities for L = 2. Given the very good performance of ML in the Monte Carlo section,
we conjecture that these results might be driven from a possible violation of the assumption that the
factor loadings of the y and x processes are independent, conditional on the initial observations, i.e., a
violation of the restriction ρ = 0. Future research might shed more light onto this issue.

In summary, it appears that for this particular model and data set, GMM-based estimators may be
better suited for estimation and inference.

26All other GMM estimators employed in this application treat income as weakly exogenous. Based on the results of the J
statistic obtained from these estimators, which show that it is not signi�cant in all cases, one can infer that weak exogeneity
of income, versus endogeneity, is supported by the data.
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7. Conclusion

In this article we have analyzed a group of �xed T dynamic panel data estimators with amultifactor error
structure. All currently available estimators have been presented using a uni�ed notational approach.
Both their theoretical properties aswell as possible limitations are discussed.Wehave considered amodel
with a lagged dependent variable and additional regressors, possibly weakly exogenous or endogenous.
We found that the number of identi�able parameters for the GMM estimators can be smaller than what
can be found in the literature. This result is of major importance for practitioners when performing
model selection based on overidentifying test statistics. Theoretical discussions in this article were
complemented by a �nite sample study based on Monte Carlo simulation.

We designed our Monte Carlo exercise to shed some light on the relative merits of the various
estimation approaches. It was found that the likelihood estimator of Bai (2013b), when consistent, can
serve as a benchmark in that it has negligible bias and good size control, irrespective of the sample size.
Under such circumstances, the FIVR estimator proposed by Robertson and Sara�dis (2015) performs
closely as well. However, FIVR is more robust to violations from strict exogeneity, as well as from the
no conditional correlation condition between the factor loadings. The latter applies to other GMM
estimators as well, at least provided that the cross-sectional dimension is large enough.

This article assumes that the time-series dimension is �xed. Bai (2013b) shows that the presence of
factors does not result in an incidental parameters problem for the conditional maximum likelihood
estimator as far as the structural parameters are concerned. A natural question to ask is whether GMM
estimators in models where the number of parameters and number of moment conditions grows with T
su�er from an incidental parameters problem. We leave this issue for future research.

Appendices

Appendix A. Implementation

Appendix A.1. Starting values for non-linear estimators

This appendix discusses the choice of starting values used for the nonlinear optimization algorithms.
Ahn et al. (2013). This estimator can be implemented through an iterative procedure. Iterations start

given some set of initial values for the structural parameters, α,β . For this purpose, we use both the one-
and two-step linearized GMM estimator as proposed by Hayakawa (2012), as well as the OLS estimator.
The two-step estimator is implemented in exactly the sameway except that the set of initial values for the

structural parameters includes the one-step estimator. Once �nal estimates of α̂, β̂ , and F̂ are obtained,
these are used as initial values in the nonlinear optimization algorithm, which optimizes all parameters
at once. This is implemented in order to make sure that we indeed �nd the global minimum of the
objective function.

QD. Starting values for the QD estimator have been obtained in the same way as with the estimator
by Ahn et al. (2013)

FIVU. Similarly to the previous estimator, FIVU can also be implemented in steps. Iterations start
given a set of starting values for the factors F. This set is obtained using the linearized GMM estimator,
estimates of the principal components extracted from OLS residuals, and one set of uniform random
variables on [−1; 1]. Unlike for Ahn et al. (2013), joint nonlinear optimization is not used as a �nal step
in order to save computational time.

FIVR. For this estimator, the main source of starting values is obtained from FIVU with the starting
value of gT implied in terms of other parameters. Other starting values include those based on the OLS
estimator and the one- and two-step linearized GMM estimator. In this case, starting values for the
nuisance parameters G are simply drawn from uniform [−1; 1].

Projection GMM. This estimator is implemented in exactly the same way as Ahn et al. (2013), i.e.,
�rstly an iterative procedure is used, followed by a nonlinear one. Starting values for the factors are
obtained using the principal components extracted from OLS residuals, the estimate of f obtained from
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the linearizedGMMestimator, and two sets of uniform randomvariables on [−1; 1]. In order to uniquely
identify all parameters up to rotation,we impose fT = 1 in estimation.We suspect that, similarly to FIVU,
one can estimate the model without normalizations and perform a degrees of freedom correction at the
end. We leave this question open for future research.

QML. Starting values for the structural parameters are obtained using the linearized GMMestimator,
OLS, and two sets of uniform random variables on [−1; 1]. The remaining parameters (including
log(σ 2)) are drawn as uniform random variables on [0; 1]. In the preliminary study we also tried [−1; 1];
however, the results were identical. Alternatively, one could also use the principal component estimates
of F obtained from OLS residuals, as suggested by Bai (2013b).

SubsetGMMEstimators. ForT = 8when both the subset and full-set GMMestimators are available,
we estimate the subset estimators �rst using the algorithms as described above and then use the subset
estimator as starting values for the estimators that make use of the full set of moment conditions.

Appendix A.2. Speci cs: Ahn et al. (2013)

To describe the procedure assume for simplicity that there are no x′s, such that the only availablemoment
conditions are

ml = 1

N
vech

(
J (Y − αY−1)

′ Y−1J
′ + F∗J̃(L) (Y − αY−1)

′ Y−1J
′
)
.

The objective function for this estimator is simply given by

f (α, vec(F∗)) = m′
lWNml.

For any given value of α, the moment conditions are linear vec(F∗). That is,

ml = vech(Z) + B(T−L)(Q
′ ⊗ IT−L)vec(F

∗) = y − Xβ .

Here Z and Q are given by

Z = 1

N
J (Y − αY−1)

′ Y−1J
′,

Q = 1

N
J̃(L) (Y − αY−1)

′ Y−1J
′,

y = vech(Z),

X = B(T−L)(Q
′ ⊗ IT−L),

β = −vec(F∗).

Hence the usual formula for the OLS estimator implies that

−vec(F∗) = β =
(
X′WNX

)−1
X′WNy.

If, on the other hand, F∗ is known, then α is obtained in exactly the same way with β = α, while

y = 1

N
vech(D(�∗)Y ′Y−1J

′),

X = 1

N
vech(D(�∗)Y ′

−1Y−1J
′).

Appendix A.3. Speci cs: Restricted estimator of Robertson and Sara dis (2015)

The moment conditions are given by

ml = vech


 1

N

(
Y − αY−1 −

K∑

k=1

βkXk

)′

Y−1 − FG′


 ,

mk = vech


 1

N

(
Y − αY−1 −

K∑

k=1

βkXk

)′

Xk − FG′
k


 ∀k.
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F obeys the following restriction:

F =
(
L′
T − αIT

)
G + eTg

′
T −

k∑

k=1

βkGk.

The di�erential of vecF is simply given by

dvecF = −vec(G)dα +
(
IL ⊗

(
L′
T − αIT

))
dvecG

−
K∑

k=1

vec(Gk)dβk − (IL ⊗ IT)

K∑

k=1

βkdvecGk

+ (IL ⊗ eT) dgT .

By the chain rule for di�erentials, we have

dml = − 1

N
vech

(
Y ′

−1Y−1

)
dα −

K∑

k=1

1

N
vech

(
X′
kY−1

)
dβk

− BT

(
KT,T(F ⊗ IT)d(vecG) + (G ⊗ IT)d(vecF)

)
.

Here the commutation matrix Ka,b is de�ned such that for any [a× b] matrix A, vec(A′) = Ka,bvec(A).
The result for dmk follows analogously.

Appendix A.4. Speci cs: Bai (2013b)

Some speci�c results for this estimator can be written as follows:

� = �τ + FF′,

�τ = σ 2IT ,

vi = yi − W iγ − F�zi.

The corresponding di�erentials are

d� = ITdσ
2 + F(dF)′ + (dF)F′,

d2� = 2(dFdF′),

dvi = −W i(dγ ) − d(F)�zi − Fd(�)zi,

d2vi = −2(d(F)d(�)zi).

Denoting as V(θ) the following [N × T] matrix (with the ith row being simply v′
i)

V(θ) = 1

N

(
Y − αY−1 −

K∑

k=1

βkXk − Z�′F′
)
,

then the score vector, using matrix notation rather than sums, is simply given by

∇(θ) =




tr
(
�−1V(θ)′Y−1

)

tr
(
�−1V(θ)′X1

)
...

tr
(
�−1V(θ)′XK

)

−0.5tr
(
�−1 − �−1S�−1

)

−vec
((

�−1 − �−1S�−1
)
F
)
+ vec

(
�−1V(θ)′Z�′)

vec
(
F′�−1V(θ)′Z

)




.
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Appendix A.5. Speci cs: Hessians of likelihood based-estimators

Observe that the general structure of the likelihood function is given by

− 2

N
�(θ) = log |�(θ)| + tr

(
�(θ)−1S(θ)

)
.

Using the rules for di�erentials (see, e.g., Magnus and Neudecker, 2007) the �rst di�erential of the two
components is given by

d log |�| = tr
(
�−1(d�)

)
,

dtr
(
�−1S

)
= −tr

(
�−1(d�)�−1S

)
+ tr

(
�−1(dS)

)
,

where for simplicity the dependence on θ has been dropped. By the chain rule for di�erentials it follows
similarly that the second di�erential for the log-determinant is of the form

d2 log |�| = tr
(
�−1(d2�)

)
− tr

(
�−1(d�)�−1(d�)

)
,

while the trace component is given by

d2tr
(
�−1S

)
= 2tr

(
�−1(d�)�−1(d�)�−1S

)
− 2tr

(
�−1(d�)�−1(dS)

)

− tr
(
�−1(d2�)�−1S

)
+ tr

(
�−1(d2S)

)
.

We can combine both terms such that

− 2

N
d2�(θ) = tr

((
�−1 − �−1S�−1

)
d2�

)
+ tr

(
�−1(d2S)

)

+ tr
((
2�−1S�−1 − �−1

)
(d�)�−1(d�)

)
− 2tr

(
�−1(d�)�−1(dS)

)
.

Note that, evaluated at any consistent estimate of θ̂ , we have

�−1 − �−1S�−1 = P(1),

2�−1S�−1 − �−1 = �−1 + P(1).

Hence from the asymptotic point of view, this is equivalent to considering the following consistent
estimate of the Hessian:

− 2

N
d2�(θ) = tr

(
�−1(d2S)

)
+ tr

(
�−1(d�)�−1(d�)

)
− 2tr

(
�−1(d�)�−1(dS)

)
.

In ourMonte Carlo study, we will make use of these facts and ignore the P(1) terms. Now let us consider
the di�erentials of S in more detail. We have

dS = 1

N

N∑

i=1

(
vid(vi)

′ + d(vi)v
′
i

)
,

d2S = 1

N

N∑

i=1

(
2d(vi)d(vi)

′ + d2(vi)v
′
i + vid

2(vi)
′) .

Note that if evaluated at any consistent estimator of θ̂

1

N

N∑

i=1

(
d2(vi)v

′
i + vid

2(vi)
′) = P(1).

However, in our Monte Carlo study, we retain the corresponding terms in the formula of the estimate
for the Hessian matrix. Furthermore, note that

vecdS = 1

N

N∑

i=1

(vi ⊗ IT + IT ⊗ vi) d(vi).



Appendix B. Monte Carlo results

Table B.1. Linearized estimator of Hayakawa (2012) with strict exogeneity assumption.

GMM 1 step GMM 2 step

Designs α β α β J

N T α ρ δ Bias RMedSE qStd Size Bias RMedSE qStd Size Bias RMedSE qStd Size Bias RMedSE qStd Size Size

200 4 0.4 0.0 0.0 −0.004 0.030 0.097 0.060 −0.005 0.030 0.099 0.057 −0.003 0.025 0.077 0.120 −0.008 0.024 0.076 0.111 0.125
200 4 0.4 0.0 0.3 −0.059 0.065 0.160 0.214 −0.160 0.168 0.247 0.504 −0.032 0.051 0.142 0.306 −0.189 0.190 0.215 0.812 0.239
200 4 0.4 0.6 0.0 −0.012 0.031 0.109 0.079 0.000 0.029 0.103 0.068 −0.007 0.026 0.085 0.147 −0.005 0.025 0.080 0.128 0.133
200 4 0.4 0.6 0.3 −0.085 0.086 0.181 0.291 −0.160 0.174 0.262 0.503 −0.059 0.065 0.150 0.404 −0.195 0.196 0.228 0.831 0.216
200 4 0.8 0.0 0.0 −0.060 0.077 0.216 0.193 −0.010 0.025 0.084 0.085 −0.060 0.074 0.209 0.281 −0.014 0.023 0.077 0.194 0.179
200 4 0.8 0.0 0.3 −0.322 0.322 0.301 0.768 −0.125 0.127 0.134 0.643 −0.348 0.348 0.320 0.930 −0.157 0.157 0.096 0.905 0.098
200 4 0.8 0.6 0.0 −0.075 0.090 0.242 0.236 −0.008 0.025 0.084 0.095 −0.072 0.088 0.243 0.345 −0.017 0.026 0.076 0.207 0.193
200 4 0.8 0.6 0.3 −0.347 0.347 0.305 0.761 −0.126 0.130 0.134 0.627 −0.380 0.380 0.334 0.938 −0.157 0.157 0.089 0.905 0.082

200 8 0.4 0.0 0.0 −0.003 0.022 0.075 0.094 0.000 0.023 0.078 0.092 0.000 0.015 0.048 0.339 −0.003 0.015 0.047 0.333 0.108
200 8 0.4 0.0 0.3 −0.064 0.070 0.168 0.279 −0.015 0.063 0.219 0.157 −0.029 0.039 0.102 0.525 −0.058 0.068 0.142 0.695 0.642
200 8 0.4 0.6 0.0 −0.012 0.024 0.092 0.117 0.010 0.022 0.091 0.113 −0.006 0.017 0.056 0.372 0.004 0.015 0.051 0.331 0.114
200 8 0.4 0.6 0.3 −0.080 0.080 0.200 0.374 −0.007 0.063 0.267 0.186 −0.042 0.044 0.117 0.584 −0.057 0.073 0.164 0.707 0.583
200 8 0.8 0.0 0.0 −0.024 0.029 0.092 0.165 −0.003 0.015 0.051 0.080 −0.020 0.024 0.071 0.433 −0.005 0.011 0.036 0.311 0.118
200 8 0.8 0.0 0.3 −0.201 0.201 0.179 0.820 −0.048 0.074 0.215 0.317 −0.193 0.193 0.149 0.991 −0.086 0.095 0.126 0.852 0.600
200 8 0.8 0.6 0.0 −0.029 0.033 0.106 0.216 0.004 0.015 0.063 0.111 −0.025 0.027 0.079 0.476 −0.002 0.011 0.038 0.319 0.104
200 8 0.8 0.6 0.3 −0.208 0.208 0.185 0.884 −0.048 0.077 0.252 0.340 −0.200 0.200 0.137 0.996 −0.089 0.097 0.137 0.869 0.508

800 4 0.4 0.0 0.0 −0.005 0.028 0.102 0.081 −0.007 0.032 0.117 0.078 −0.002 0.023 0.074 0.143 −0.006 0.023 0.076 0.117 0.149
800 4 0.4 0.0 0.3 −0.066 0.069 0.122 0.478 −0.192 0.194 0.227 0.726 −0.037 0.055 0.128 0.603 −0.215 0.215 0.178 0.979 0.818
800 4 0.4 0.6 0.0 −0.008 0.028 0.108 0.093 −0.003 0.033 0.114 0.087 −0.004 0.023 0.083 0.160 −0.005 0.024 0.084 0.142 0.160
800 4 0.4 0.6 0.3 −0.078 0.078 0.125 0.549 −0.200 0.203 0.194 0.773 −0.054 0.057 0.118 0.605 −0.229 0.229 0.175 0.980 0.732
800 4 0.8 0.0 0.0 −0.082 0.098 0.302 0.255 −0.020 0.035 0.123 0.144 −0.073 0.087 0.292 0.339 −0.021 0.031 0.122 0.266 0.203
800 4 0.8 0.0 0.3 −0.389 0.389 0.307 0.892 −0.148 0.149 0.121 0.806 −0.436 0.436 0.321 0.981 −0.178 0.178 0.067 0.995 0.549
800 4 0.8 0.6 0.0 −0.106 0.118 0.316 0.307 −0.022 0.037 0.120 0.156 −0.099 0.112 0.341 0.422 −0.028 0.036 0.118 0.312 0.233
800 4 0.8 0.6 0.3 −0.409 0.409 0.311 0.887 −0.151 0.152 0.107 0.824 −0.458 0.458 0.308 0.985 −0.182 0.182 0.051 0.991 0.436

800 8 0.4 0.0 0.0 −0.003 0.019 0.079 0.088 −0.002 0.024 0.099 0.112 0.000 0.011 0.035 0.208 −0.004 0.012 0.039 0.199 0.167
800 8 0.4 0.0 0.3 −0.066 0.069 0.117 0.515 −0.019 0.052 0.157 0.290 −0.013 0.025 0.066 0.528 −0.085 0.087 0.089 0.915 1
800 8 0.4 0.6 0.0 −0.007 0.020 0.077 0.106 0.002 0.022 0.092 0.113 −0.003 0.012 0.036 0.209 −0.002 0.012 0.037 0.173 0.163
800 8 0.4 0.6 0.3 −0.072 0.073 0.117 0.585 −0.027 0.053 0.166 0.314 −0.019 0.024 0.057 0.511 −0.094 0.096 0.083 0.952 1
800 8 0.8 0.0 0.0 −0.027 0.029 0.107 0.242 −0.004 0.019 0.071 0.091 −0.023 0.024 0.075 0.415 −0.008 0.012 0.040 0.250 0.193
800 8 0.8 0.0 0.3 −0.185 0.185 0.141 0.884 −0.057 0.067 0.125 0.531 −0.182 0.182 0.140 0.984 −0.103 0.104 0.089 0.974 1
800 8 0.8 0.6 0.0 −0.031 0.033 0.112 0.275 −0.003 0.019 0.071 0.091 −0.025 0.026 0.079 0.459 −0.008 0.013 0.039 0.259 0.192
800 8 0.8 0.6 0.3 −0.192 0.192 0.136 0.926 −0.062 0.073 0.133 0.572 −0.188 0.188 0.124 0.993 −0.109 0.110 0.076 0.977 1

Bias is themedian bias of the estimator; RmedSE is the rootmedian squared error; sStd is the quasi standard deviation; Size is the empirical rejection frequencies of the t-test for the parameter of interest.
All results are based on 2000 Monte Carlo replications.
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Table B.2. GMM estimator of Ahn et al. (2013).

GMM 1 step GMM 2 step

Designs α β α β J

N T α ρ δ Bias RMedSE qStd Size Bias RMedSE qStd Size Bias RMedSE qStd Size Bias RMedSE qStd Size Size

200 4 0.4 0.0 0.0 0.001 0.028 0.087 0.075 −0.002 0.026 0.085 0.056 −0.001 0.022 0.067 0.137 0.000 0.021 0.065 0.102 0.097
200 4 0.4 0.0 0.3 −0.001 0.055 0.200 0.109 −0.005 0.057 0.199 0.111 −0.007 0.038 0.134 0.148 0.000 0.041 0.137 0.158 0.085
200 4 0.4 0.6 0.0 −0.005 0.029 0.097 0.094 0.004 0.025 0.083 0.063 −0.004 0.023 0.074 0.150 0.002 0.020 0.063 0.091 0.094
200 4 0.4 0.6 0.3 −0.020 0.048 0.211 0.134 0.013 0.049 0.217 0.117 −0.013 0.037 0.134 0.141 0.005 0.037 0.127 0.138 0.081
200 4 0.8 0.0 0.0 −0.004 0.029 0.107 0.096 −0.001 0.016 0.056 0.058 −0.005 0.022 0.083 0.146 0.000 0.013 0.045 0.099 0.102
200 4 0.8 0.0 0.3 −0.014 0.043 0.424 0.182 −0.004 0.038 0.292 0.166 −0.013 0.034 0.373 0.197 −0.003 0.029 0.270 0.198 0.122
200 4 0.8 0.6 0.0 −0.007 0.032 0.117 0.110 0.003 0.016 0.053 0.067 −0.007 0.022 0.086 0.142 0.002 0.013 0.044 0.092 0.106
200 4 0.8 0.6 0.3 −0.016 0.039 0.323 0.168 0.006 0.034 0.125 0.098 −0.013 0.032 0.273 0.193 0.001 0.027 0.103 0.151 0.107

200 8 0.4 0.0 0.0 −0.001 0.022 0.077 0.109 0.000 0.022 0.081 0.100 −0.001 0.015 0.049 0.315 0.000 0.014 0.045 0.257 0.106
200 8 0.4 0.0 0.3 0.008 0.054 0.205 0.133 −0.011 0.057 0.219 0.128 0.001 0.029 0.105 0.341 −0.002 0.029 0.102 0.332 0.078
200 8 0.4 0.6 0.0 −0.006 0.024 0.092 0.142 0.004 0.020 0.076 0.100 −0.004 0.017 0.058 0.356 0.002 0.013 0.043 0.239 0.085
200 8 0.4 0.6 0.3 −0.014 0.046 0.235 0.144 0.010 0.047 0.246 0.141 −0.007 0.027 0.116 0.323 0.006 0.027 0.110 0.296 0.091
200 8 0.8 0.0 0.0 −0.005 0.021 0.072 0.104 0.001 0.013 0.044 0.063 −0.002 0.015 0.050 0.288 0.001 0.009 0.028 0.197 0.095
200 8 0.8 0.0 0.3 −0.005 0.035 0.133 0.099 0.003 0.037 0.133 0.096 −0.004 0.022 0.079 0.280 0.002 0.023 0.076 0.263 0.074
200 8 0.8 0.6 0.0 −0.006 0.021 0.080 0.113 0.002 0.012 0.045 0.076 −0.003 0.015 0.054 0.295 0.001 0.008 0.027 0.195 0.093
200 8 0.8 0.6 0.3 −0.010 0.033 0.134 0.118 0.010 0.036 0.146 0.113 −0.005 0.021 0.075 0.264 0.006 0.023 0.076 0.241 0.075

800 4 0.4 0.0 0.0 −0.002 0.025 0.085 0.090 0.002 0.029 0.105 0.092 −0.001 0.018 0.057 0.123 0.001 0.021 0.068 0.120 0.096
800 4 0.4 0.0 0.3 −0.002 0.033 0.124 0.106 −0.001 0.033 0.126 0.119 −0.003 0.021 0.070 0.122 0.000 0.022 0.072 0.124 0.105
800 4 0.4 0.6 0.0 −0.005 0.024 0.086 0.102 0.005 0.025 0.097 0.086 −0.003 0.019 0.060 0.136 0.002 0.019 0.064 0.091 0.096
800 4 0.4 0.6 0.3 −0.008 0.028 0.115 0.111 0.005 0.027 0.121 0.111 −0.005 0.019 0.063 0.110 0.002 0.019 0.066 0.109 0.100
800 4 0.8 0.0 0.0 −0.004 0.020 0.076 0.096 0.000 0.018 0.059 0.078 −0.004 0.017 0.058 0.136 0.000 0.015 0.048 0.093 0.088
800 4 0.8 0.0 0.3 −0.005 0.022 0.094 0.127 −0.002 0.021 0.079 0.124 −0.004 0.017 0.067 0.132 −0.001 0.016 0.059 0.130 0.111
800 4 0.8 0.6 0.0 −0.006 0.019 0.073 0.101 0.001 0.019 0.063 0.064 −0.005 0.016 0.065 0.143 0.000 0.016 0.052 0.085 0.090
800 4 0.8 0.6 0.3 −0.006 0.021 0.089 0.127 0.002 0.021 0.074 0.098 −0.005 0.017 0.070 0.138 0.000 0.017 0.054 0.115 0.106

800 8 0.4 0.0 0.0 0.001 0.022 0.083 0.136 −0.001 0.027 0.111 0.123 −0.001 0.010 0.035 0.220 0.000 0.013 0.041 0.186 0.141
800 8 0.4 0.0 0.3 0.003 0.029 0.115 0.109 −0.004 0.030 0.118 0.119 −0.001 0.012 0.040 0.176 0.001 0.012 0.040 0.173 0.123
800 8 0.4 0.6 0.0 −0.004 0.019 0.079 0.143 0.003 0.021 0.088 0.113 −0.001 0.012 0.038 0.237 0.001 0.012 0.037 0.154 0.139
800 8 0.4 0.6 0.3 −0.005 0.023 0.117 0.133 0.004 0.024 0.120 0.126 −0.002 0.012 0.039 0.170 0.002 0.012 0.038 0.150 0.114
800 8 0.8 0.0 0.0 −0.002 0.013 0.045 0.083 0.000 0.015 0.051 0.076 −0.001 0.008 0.027 0.175 0.000 0.009 0.027 0.125 0.110
800 8 0.8 0.0 0.3 −0.002 0.017 0.063 0.083 0.001 0.017 0.063 0.083 −0.001 0.009 0.029 0.137 0.001 0.010 0.030 0.134 0.097
800 8 0.8 0.6 0.0 −0.003 0.013 0.046 0.087 0.000 0.015 0.052 0.083 −0.001 0.008 0.030 0.183 0.000 0.009 0.027 0.115 0.116
800 8 0.8 0.6 0.3 −0.003 0.015 0.056 0.093 0.002 0.016 0.063 0.088 −0.001 0.008 0.027 0.117 0.001 0.009 0.028 0.108 0.095

See Table B.1.
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Table B.3. QD GMM estimator of Holtz-Eakin et al. (1988).

GMM 1 step GMM 2 step

Designs α β α β J

N T α ρ δ Bias RMedSE qStd Size Bias RMedSE qStd Size Bias RMedSE qStd Size Bias RMedSE qStd Size Size

200 4 0.4 0.0 0.0 0.003 0.028 0.088 0.090 0.002 0.028 0.094 0.077 0.000 0.025 0.080 0.177 0.001 0.026 0.081 0.170 0.110
200 4 0.4 0.0 0.3 −0.011 0.057 0.218 0.141 0.011 0.057 0.226 0.145 −0.008 0.047 0.166 0.198 0.008 0.050 0.171 0.195 0.108
200 4 0.4 0.6 0.0 −0.002 0.032 0.138 0.149 0.008 0.029 0.472 0.158 −0.002 0.028 0.108 0.227 0.006 0.026 0.209 0.212 0.084
200 4 0.4 0.6 0.3 −0.029 0.057 0.519 0.249 0.032 0.060 0.628 0.239 −0.021 0.051 0.466 0.298 0.024 0.053 0.559 0.277 0.149
200 4 0.8 0.0 0.0 −0.001 0.030 0.102 0.101 0.004 0.018 0.060 0.076 0.000 0.024 0.084 0.183 0.001 0.016 0.051 0.156 0.125
200 4 0.8 0.0 0.3 −0.020 0.048 0.432 0.215 −0.001 0.041 0.228 0.176 −0.011 0.037 0.202 0.243 −0.001 0.034 0.122 0.214 0.147
200 4 0.8 0.6 0.0 −0.004 0.033 0.122 0.146 0.006 0.019 0.070 0.112 −0.002 0.027 0.102 0.212 0.005 0.016 0.059 0.182 0.123
200 4 0.8 0.6 0.3 −0.031 0.053 0.625 0.280 0.017 0.042 0.747 0.212 −0.019 0.044 0.587 0.329 0.015 0.040 0.674 0.275 0.142

200 8 0.4 0.0 0.0 −0.002 0.026 0.080 0.157 0.002 0.025 0.080 0.136 −0.002 0.018 0.056 0.385 0.001 0.017 0.053 0.315 0.307
200 8 0.4 0.0 0.3 −0.010 0.057 0.273 0.210 0.010 0.056 0.288 0.204 −0.009 0.036 0.148 0.449 0.008 0.036 0.151 0.420 0.237
200 8 0.4 0.6 0.0 −0.007 0.029 0.182 0.262 0.006 0.023 0.519 0.192 −0.005 0.021 0.117 0.462 0.004 0.017 0.370 0.343 0.169
200 8 0.4 0.6 0.3 −0.035 0.057 0.485 0.315 0.032 0.054 0.559 0.277 −0.022 0.040 0.376 0.489 0.020 0.035 0.427 0.428 0.240
200 8 0.8 0.0 0.0 −0.002 0.023 0.073 0.162 0.001 0.015 0.045 0.105 −0.001 0.018 0.056 0.411 0.001 0.010 0.032 0.269 0.286
200 8 0.8 0.0 0.3 −0.016 0.040 0.204 0.234 0.003 0.042 0.153 0.194 −0.012 0.029 0.150 0.432 0.001 0.030 0.102 0.376 0.210
200 8 0.8 0.6 0.0 −0.005 0.026 0.085 0.225 0.002 0.014 0.046 0.114 −0.003 0.019 0.065 0.443 0.003 0.010 0.031 0.259 0.215
200 8 0.8 0.6 0.3 −0.031 0.049 0.649 0.335 0.026 0.047 0.795 0.279 −0.023 0.034 0.551 0.473 0.017 0.032 0.650 0.393 0.270

800 4 0.4 0.0 0.0 0.000 0.013 0.041 0.077 0.000 0.013 0.040 0.068 −0.001 0.011 0.034 0.135 0.000 0.011 0.034 0.126 0.100
800 4 0.4 0.0 0.3 −0.003 0.026 0.086 0.101 0.003 0.027 0.089 0.102 −0.002 0.020 0.067 0.139 0.002 0.020 0.067 0.133 0.102
800 4 0.4 0.6 0.0 −0.003 0.015 0.055 0.124 0.002 0.014 0.049 0.119 −0.001 0.013 0.044 0.159 0.001 0.011 0.040 0.135 0.110
800 4 0.4 0.6 0.3 −0.010 0.026 0.391 0.175 0.008 0.025 0.474 0.173 −0.006 0.021 0.285 0.205 0.005 0.021 0.369 0.195 0.161
800 4 0.8 0.0 0.0 −0.001 0.015 0.046 0.086 0.001 0.009 0.027 0.068 −0.001 0.011 0.036 0.138 0.000 0.007 0.021 0.121 0.112
800 4 0.8 0.0 0.3 −0.008 0.022 0.123 0.172 0.002 0.019 0.066 0.135 −0.003 0.017 0.065 0.166 0.000 0.014 0.047 0.153 0.138
800 4 0.8 0.6 0.0 −0.001 0.015 0.053 0.100 0.001 0.009 0.028 0.076 −0.001 0.011 0.039 0.138 0.001 0.007 0.021 0.123 0.108
800 4 0.8 0.6 0.3 −0.011 0.024 0.402 0.227 0.005 0.019 0.163 0.176 −0.006 0.018 0.324 0.234 0.003 0.015 0.157 0.205 0.170

800 8 0.4 0.0 0.0 0.000 0.012 0.037 0.121 0.000 0.012 0.035 0.099 0.000 0.007 0.022 0.241 0.000 0.007 0.020 0.197 0.303
800 8 0.4 0.0 0.3 −0.003 0.025 0.091 0.148 0.003 0.026 0.092 0.144 −0.002 0.013 0.044 0.266 0.001 0.013 0.043 0.235 0.234
800 8 0.4 0.6 0.0 −0.002 0.013 0.060 0.200 0.002 0.011 0.049 0.157 −0.001 0.008 0.030 0.304 0.001 0.007 0.024 0.206 0.234
800 8 0.4 0.6 0.3 −0.009 0.024 0.331 0.230 0.008 0.024 0.328 0.210 −0.004 0.013 0.080 0.288 0.003 0.012 0.072 0.237 0.230
800 8 0.8 0.0 0.0 0.000 0.011 0.035 0.116 0.000 0.008 0.022 0.087 0.000 0.007 0.022 0.262 0.000 0.004 0.013 0.178 0.261
800 8 0.8 0.0 0.3 −0.005 0.018 0.071 0.179 0.001 0.019 0.067 0.149 −0.003 0.011 0.042 0.264 0.000 0.011 0.035 0.205 0.205
800 8 0.8 0.6 0.0 −0.001 0.012 0.040 0.165 0.000 0.007 0.022 0.089 −0.001 0.007 0.025 0.290 0.000 0.004 0.013 0.153 0.217
800 8 0.8 0.6 0.3 −0.008 0.020 0.616 0.240 0.007 0.020 0.768 0.189 −0.004 0.012 0.479 0.301 0.003 0.012 0.552 0.232 0.245

See Table B.1.
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Table B.4. FIVU estimator of Robertson and Sara�dis (2015).

GMM 1 step GMM 2 step

Designs α β α β J

N T α ρ δ Bias RMedSE qStd Size Bias RMedSE qStd Size Bias RMedSE qStd Size Bias RMedSE qStd Size Size

200 4 0.4 0.0 0.0 0.001 0.023 0.068 0.064 −0.002 0.022 0.065 0.048 0.000 0.021 0.061 0.073 −0.001 0.021 0.060 0.061 0.031
200 4 0.4 0.0 0.3 0.008 0.045 0.132 0.072 −0.004 0.043 0.136 0.068 −0.003 0.036 0.111 0.085 0.001 0.038 0.113 0.085 0.031
200 4 0.4 0.6 0.0 0.000 0.023 0.069 0.063 0.001 0.020 0.060 0.041 0.000 0.022 0.064 0.079 0.000 0.019 0.057 0.064 0.029
200 4 0.4 0.6 0.3 −0.008 0.036 0.107 0.064 0.006 0.036 0.116 0.064 −0.006 0.033 0.100 0.068 0.003 0.034 0.102 0.079 0.031
200 4 0.8 0.0 0.0 0.000 0.024 0.075 0.063 0.000 0.014 0.042 0.053 −0.001 0.020 0.061 0.070 0.001 0.012 0.040 0.069 0.035
200 4 0.8 0.0 0.3 −0.003 0.030 0.099 0.060 0.003 0.026 0.088 0.065 −0.003 0.028 0.089 0.076 0.002 0.024 0.079 0.080 0.038
200 4 0.8 0.6 0.0 −0.002 0.025 0.079 0.063 0.001 0.013 0.041 0.043 −0.002 0.020 0.066 0.071 0.002 0.012 0.038 0.066 0.033
200 4 0.8 0.6 0.3 −0.006 0.029 0.093 0.068 0.004 0.026 0.082 0.069 −0.004 0.028 0.089 0.084 0.002 0.025 0.079 0.085 0.035

200 8 0.4 0.0 0.0 0.002 0.014 0.042 0.072 −0.002 0.013 0.041 0.071 0.001 0.012 0.036 0.182 0.000 0.011 0.034 0.160 0.032
200 8 0.4 0.0 0.3 0.012 0.034 0.097 0.080 −0.014 0.034 0.099 0.085 0.004 0.021 0.063 0.173 −0.004 0.022 0.065 0.180 0.035
200 8 0.4 0.6 0.0 0.000 0.014 0.042 0.065 0.000 0.012 0.035 0.061 0.000 0.013 0.037 0.179 0.000 0.011 0.033 0.135 0.032
200 8 0.4 0.6 0.3 −0.004 0.025 0.080 0.056 0.003 0.026 0.079 0.054 −0.002 0.020 0.060 0.174 0.002 0.020 0.061 0.158 0.034
200 8 0.8 0.0 0.0 −0.001 0.013 0.038 0.053 0.000 0.008 0.025 0.050 0.000 0.011 0.034 0.168 0.000 0.007 0.023 0.143 0.037
200 8 0.8 0.0 0.3 −0.001 0.022 0.066 0.051 0.001 0.023 0.068 0.048 −0.001 0.018 0.054 0.163 0.001 0.018 0.057 0.155 0.036
200 8 0.8 0.6 0.0 −0.001 0.014 0.039 0.051 0.000 0.008 0.023 0.055 0.000 0.012 0.035 0.164 0.001 0.007 0.022 0.140 0.037
200 8 0.8 0.6 0.3 −0.004 0.020 0.060 0.048 0.005 0.023 0.066 0.048 −0.003 0.018 0.053 0.156 0.002 0.019 0.057 0.153 0.030

800 4 0.4 0.0 0.0 0.000 0.020 0.061 0.060 0.000 0.022 0.073 0.066 0.000 0.017 0.051 0.069 −0.001 0.020 0.060 0.069 0.052
800 4 0.4 0.0 0.3 0.002 0.024 0.078 0.072 −0.001 0.024 0.081 0.068 −0.001 0.020 0.059 0.059 0.000 0.020 0.061 0.063 0.055
800 4 0.4 0.6 0.0 −0.002 0.019 0.055 0.068 0.002 0.019 0.058 0.056 −0.001 0.017 0.053 0.074 0.002 0.018 0.057 0.066 0.050
800 4 0.4 0.6 0.3 −0.004 0.021 0.063 0.064 0.002 0.020 0.067 0.059 −0.002 0.018 0.054 0.060 0.001 0.018 0.055 0.065 0.046
800 4 0.8 0.0 0.0 −0.002 0.016 0.053 0.058 0.000 0.015 0.047 0.050 −0.001 0.016 0.048 0.067 0.000 0.013 0.042 0.056 0.050
800 4 0.8 0.0 0.3 −0.002 0.017 0.055 0.056 0.001 0.017 0.053 0.053 −0.002 0.015 0.048 0.058 0.001 0.015 0.047 0.052 0.051
800 4 0.8 0.6 0.0 −0.004 0.015 0.051 0.071 0.000 0.016 0.049 0.058 −0.003 0.014 0.047 0.077 0.001 0.015 0.046 0.059 0.048
800 4 0.8 0.6 0.3 −0.004 0.016 0.052 0.069 0.002 0.016 0.050 0.059 −0.002 0.015 0.047 0.066 0.000 0.015 0.046 0.058 0.049

800 8 0.4 0.0 0.0 0.002 0.013 0.038 0.056 −0.003 0.017 0.050 0.066 0.000 0.008 0.025 0.079 0.000 0.010 0.031 0.081 0.050
800 8 0.4 0.0 0.3 0.005 0.018 0.055 0.063 −0.007 0.019 0.055 0.064 0.000 0.010 0.030 0.080 0.000 0.010 0.031 0.083 0.047
800 8 0.4 0.6 0.0 −0.001 0.011 0.031 0.054 0.000 0.012 0.035 0.055 −0.001 0.009 0.026 0.078 0.001 0.010 0.030 0.080 0.055
800 8 0.4 0.6 0.3 −0.001 0.013 0.039 0.054 0.000 0.013 0.038 0.052 −0.001 0.010 0.029 0.078 0.001 0.010 0.030 0.077 0.051
800 8 0.8 0.0 0.0 −0.001 0.008 0.026 0.049 0.000 0.010 0.030 0.059 0.000 0.007 0.021 0.077 0.000 0.008 0.024 0.080 0.050
800 8 0.8 0.0 0.3 0.000 0.011 0.034 0.050 0.001 0.011 0.034 0.056 0.000 0.008 0.024 0.065 0.000 0.008 0.025 0.079 0.052
800 8 0.8 0.6 0.0 −0.001 0.008 0.025 0.050 −0.001 0.009 0.028 0.057 −0.001 0.007 0.021 0.084 0.000 0.008 0.024 0.079 0.051
800 8 0.8 0.6 0.3 −0.001 0.009 0.029 0.056 0.000 0.010 0.031 0.053 0.000 0.007 0.024 0.076 0.000 0.008 0.025 0.073 0.059

See Table B.1.
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Table B.5. FIVR estimator of Robertson and Sara�dis (2015).

GMM 1 step GMM 2 step

Designs α β α β J

N T α ρ δ Bias RMedSE qStd Size Bias RMedSE qStd Size Bias RMedSE qStd Size Bias RMedSE qStd Size Size

200 4 0.4 0.0 0.0 0.001 0.019 0.058 0.068 −0.002 0.020 0.060 0.058 0.000 0.016 0.047 0.081 −0.001 0.018 0.052 0.081 0.035
200 4 0.4 0.0 0.3 0.008 0.037 0.113 0.081 −0.006 0.038 0.122 0.071 −0.002 0.027 0.083 0.081 −0.001 0.030 0.090 0.080 0.033
200 4 0.4 0.6 0.0 0.000 0.019 0.057 0.061 0.000 0.019 0.055 0.046 0.000 0.016 0.048 0.081 0.000 0.017 0.051 0.073 0.031
200 4 0.4 0.6 0.3 −0.002 0.031 0.095 0.062 0.003 0.034 0.106 0.065 −0.001 0.026 0.079 0.068 0.000 0.029 0.088 0.077 0.032
200 4 0.8 0.0 0.0 0.001 0.017 0.055 0.066 0.000 0.012 0.038 0.063 0.000 0.014 0.044 0.072 0.000 0.011 0.035 0.085 0.035
200 4 0.8 0.0 0.3 0.000 0.023 0.073 0.061 0.002 0.024 0.076 0.057 0.000 0.021 0.061 0.067 0.000 0.022 0.067 0.082 0.039
200 4 0.8 0.6 0.0 −0.001 0.018 0.054 0.059 0.000 0.012 0.037 0.060 0.000 0.014 0.044 0.068 0.000 0.011 0.035 0.086 0.038
200 4 0.8 0.6 0.3 −0.001 0.023 0.071 0.062 0.002 0.024 0.076 0.066 0.000 0.021 0.062 0.071 0.000 0.022 0.072 0.084 0.041

200 8 0.4 0.0 0.0 0.001 0.012 0.037 0.069 −0.002 0.013 0.039 0.068 0.001 0.011 0.031 0.181 −0.001 0.011 0.033 0.172 0.043
200 8 0.4 0.0 0.3 0.015 0.034 0.095 0.086 −0.017 0.036 0.099 0.087 0.005 0.020 0.057 0.214 −0.006 0.021 0.061 0.215 0.043
200 8 0.4 0.6 0.0 0.000 0.012 0.036 0.067 −0.001 0.011 0.033 0.062 0.001 0.011 0.032 0.189 0.000 0.011 0.032 0.163 0.040
200 8 0.4 0.6 0.3 −0.002 0.025 0.077 0.054 0.001 0.027 0.080 0.051 −0.001 0.018 0.055 0.197 0.001 0.020 0.060 0.186 0.038
200 8 0.8 0.0 0.0 0.000 0.011 0.032 0.054 0.000 0.008 0.023 0.051 0.001 0.009 0.028 0.179 0.000 0.007 0.022 0.155 0.037
200 8 0.8 0.0 0.3 0.000 0.019 0.057 0.047 0.000 0.022 0.066 0.045 0.001 0.015 0.046 0.183 0.000 0.018 0.054 0.174 0.037
200 8 0.8 0.6 0.0 0.000 0.011 0.031 0.054 0.000 0.007 0.022 0.051 0.001 0.009 0.028 0.181 0.000 0.007 0.022 0.159 0.036
200 8 0.8 0.6 0.3 −0.003 0.018 0.055 0.051 0.004 0.022 0.066 0.046 −0.001 0.016 0.047 0.176 0.002 0.018 0.056 0.177 0.038

800 4 0.4 0.0 0.0 −0.001 0.015 0.045 0.059 0.000 0.019 0.061 0.063 −0.001 0.012 0.036 0.066 0.001 0.016 0.049 0.066 0.051
800 4 0.4 0.0 0.3 0.000 0.021 0.064 0.068 −0.001 0.022 0.070 0.066 −0.001 0.015 0.044 0.068 0.000 0.016 0.049 0.060 0.048
800 4 0.4 0.6 0.0 −0.001 0.013 0.041 0.059 0.002 0.017 0.052 0.051 −0.001 0.012 0.037 0.062 0.001 0.015 0.048 0.056 0.051
800 4 0.4 0.6 0.3 −0.002 0.017 0.051 0.062 0.002 0.018 0.058 0.059 −0.001 0.014 0.043 0.059 0.001 0.016 0.050 0.058 0.048
800 4 0.8 0.0 0.0 −0.001 0.011 0.034 0.061 0.000 0.014 0.043 0.056 0.000 0.010 0.030 0.075 0.000 0.012 0.038 0.060 0.045
800 4 0.8 0.0 0.3 0.000 0.014 0.042 0.051 0.000 0.015 0.046 0.052 −0.001 0.011 0.035 0.062 0.000 0.013 0.040 0.059 0.047
800 4 0.8 0.6 0.0 −0.001 0.011 0.033 0.069 0.000 0.015 0.044 0.056 0.000 0.010 0.029 0.075 0.000 0.014 0.042 0.062 0.042
800 4 0.8 0.6 0.3 −0.001 0.013 0.041 0.064 0.002 0.015 0.048 0.056 0.000 0.011 0.035 0.057 0.000 0.014 0.042 0.059 0.044

800 8 0.4 0.0 0.0 0.001 0.011 0.033 0.050 −0.002 0.015 0.047 0.064 0.000 0.007 0.020 0.093 0.000 0.010 0.028 0.082 0.054
800 8 0.4 0.0 0.3 0.005 0.017 0.053 0.070 −0.006 0.018 0.056 0.073 0.000 0.008 0.026 0.082 0.000 0.010 0.028 0.082 0.054
800 8 0.4 0.6 0.0 0.000 0.009 0.026 0.051 −0.001 0.011 0.033 0.054 0.000 0.007 0.021 0.079 0.000 0.009 0.028 0.077 0.053
800 8 0.4 0.6 0.3 −0.001 0.012 0.037 0.052 0.000 0.013 0.038 0.056 0.000 0.009 0.026 0.078 0.000 0.009 0.029 0.079 0.053
800 8 0.8 0.0 0.0 0.000 0.006 0.019 0.053 0.000 0.010 0.028 0.061 0.000 0.005 0.016 0.082 0.000 0.007 0.023 0.080 0.053
800 8 0.8 0.0 0.3 0.000 0.010 0.029 0.055 0.000 0.011 0.032 0.054 0.000 0.007 0.020 0.078 0.000 0.008 0.023 0.081 0.053
800 8 0.8 0.6 0.0 0.000 0.006 0.018 0.051 0.000 0.009 0.028 0.057 0.000 0.005 0.016 0.078 0.000 0.008 0.024 0.080 0.050
800 8 0.8 0.6 0.3 0.000 0.009 0.027 0.055 0.000 0.010 0.031 0.055 0.000 0.007 0.021 0.079 0.000 0.008 0.024 0.079 0.049

See Table B.1.
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Table B.6. Projection GMM estimator of Hayakawa (2012) with weak exogeneity.

GMM 1 step GMM 2 step

Designs α β α β J

N T α ρ δ Bias RMedSE qStd Size Bias RMedSE qStd Size Bias RMedSE qStd Size Bias RMedSE qStd Size Size

200 4 0.4 0.0 0.0 0.000 0.025 0.076 0.058 −0.001 0.023 0.075 0.053 −0.002 0.023 0.072 0.087 0.002 0.023 0.072 0.074 0.020
200 4 0.4 0.0 0.3 0.003 0.056 0.181 0.078 −0.003 0.054 0.172 0.083 −0.011 0.055 0.171 0.113 0.007 0.050 0.166 0.113 0.026
200 4 0.4 0.6 0.0 −0.001 0.026 0.081 0.077 0.003 0.021 0.070 0.062 −0.003 0.026 0.081 0.106 0.005 0.022 0.073 0.097 0.028
200 4 0.4 0.6 0.3 −0.016 0.055 0.191 0.106 0.015 0.052 0.191 0.097 −0.019 0.056 0.206 0.153 0.016 0.050 0.199 0.141 0.021
200 4 0.8 0.0 0.0 −0.001 0.033 0.107 0.073 0.001 0.016 0.050 0.047 −0.001 0.031 0.101 0.092 0.002 0.015 0.046 0.062 0.020
200 4 0.8 0.0 0.3 −0.009 0.050 0.179 0.088 0.002 0.034 0.116 0.079 −0.013 0.052 0.179 0.132 0.004 0.035 0.117 0.111 0.033
200 4 0.8 0.6 0.0 −0.003 0.032 0.104 0.069 0.003 0.015 0.050 0.053 −0.005 0.032 0.108 0.108 0.004 0.015 0.051 0.088 0.021
200 4 0.8 0.6 0.3 −0.013 0.056 0.212 0.106 0.009 0.041 0.142 0.084 −0.018 0.059 0.253 0.167 0.010 0.041 0.150 0.122 0.025

200 8 0.4 0.0 0.0 0.001 0.015 0.046 0.075 −0.001 0.014 0.046 0.075 0.000 0.013 0.039 0.143 0.000 0.012 0.038 0.131 0.018
200 8 0.4 0.0 0.3 0.015 0.045 0.134 0.089 −0.015 0.044 0.135 0.099 0.002 0.031 0.093 0.147 −0.002 0.031 0.092 0.145 0.021
200 8 0.4 0.6 0.0 0.000 0.014 0.044 0.063 0.001 0.012 0.037 0.056 0.000 0.014 0.042 0.144 0.001 0.012 0.035 0.118 0.028
200 8 0.4 0.6 0.3 −0.008 0.038 0.120 0.066 0.008 0.038 0.118 0.051 −0.006 0.031 0.089 0.136 0.006 0.030 0.089 0.128 0.029
200 8 0.8 0.0 0.0 −0.001 0.016 0.050 0.059 0.001 0.009 0.028 0.068 −0.001 0.016 0.046 0.140 0.001 0.008 0.026 0.129 0.021
200 8 0.8 0.0 0.3 −0.001 0.033 0.104 0.052 0.002 0.030 0.094 0.056 −0.004 0.031 0.090 0.128 0.004 0.027 0.081 0.123 0.019
200 8 0.8 0.6 0.0 −0.001 0.015 0.046 0.045 0.000 0.009 0.025 0.058 −0.002 0.015 0.047 0.136 0.001 0.008 0.025 0.118 0.026
200 8 0.8 0.6 0.3 −0.010 0.041 0.125 0.059 0.007 0.038 0.121 0.059 −0.009 0.035 0.106 0.135 0.008 0.033 0.100 0.138 0.026

800 4 0.4 0.0 0.0 −0.001 0.026 0.074 0.065 0.000 0.026 0.082 0.079 −0.001 0.021 0.064 0.072 0.001 0.023 0.069 0.073 0.035
800 4 0.4 0.0 0.3 0.000 0.032 0.105 0.072 −0.001 0.031 0.102 0.075 −0.003 0.028 0.090 0.079 0.003 0.027 0.088 0.074 0.037
800 4 0.4 0.6 0.0 −0.004 0.024 0.079 0.086 0.004 0.022 0.072 0.069 −0.004 0.024 0.077 0.103 0.004 0.022 0.074 0.095 0.038
800 4 0.4 0.6 0.3 −0.006 0.031 0.107 0.081 0.006 0.030 0.108 0.072 −0.005 0.027 0.089 0.078 0.004 0.025 0.089 0.075 0.042
800 4 0.8 0.0 0.0 −0.006 0.037 0.113 0.066 0.001 0.019 0.057 0.054 −0.007 0.036 0.108 0.098 0.002 0.017 0.052 0.059 0.036
800 4 0.8 0.0 0.3 −0.003 0.028 0.094 0.067 0.001 0.021 0.067 0.060 −0.004 0.025 0.088 0.074 0.001 0.020 0.063 0.066 0.044
800 4 0.8 0.6 0.0 −0.007 0.028 0.105 0.081 0.004 0.021 0.069 0.071 −0.008 0.028 0.105 0.096 0.003 0.020 0.067 0.084 0.045
800 4 0.8 0.6 0.3 −0.007 0.031 0.115 0.077 0.005 0.026 0.091 0.064 −0.007 0.030 0.106 0.085 0.005 0.024 0.083 0.072 0.043

800 8 0.4 0.0 0.0 0.003 0.018 0.053 0.105 −0.003 0.022 0.065 0.118 0.000 0.011 0.032 0.082 0.000 0.012 0.036 0.077 0.030
800 8 0.4 0.0 0.3 0.008 0.025 0.073 0.072 −0.007 0.025 0.072 0.074 0.000 0.016 0.048 0.076 0.000 0.016 0.047 0.073 0.027
800 8 0.4 0.6 0.0 −0.001 0.014 0.041 0.060 0.000 0.013 0.040 0.055 −0.001 0.012 0.037 0.084 0.001 0.012 0.035 0.079 0.042
800 8 0.4 0.6 0.3 −0.003 0.022 0.068 0.054 0.003 0.022 0.068 0.056 −0.001 0.017 0.047 0.067 0.001 0.016 0.047 0.073 0.035
800 8 0.8 0.0 0.0 −0.001 0.019 0.056 0.068 0.000 0.013 0.039 0.079 −0.002 0.015 0.046 0.087 0.001 0.010 0.029 0.075 0.031
800 8 0.8 0.0 0.3 0.000 0.018 0.055 0.057 0.000 0.016 0.048 0.057 −0.001 0.014 0.042 0.080 0.001 0.012 0.036 0.079 0.037
800 8 0.8 0.6 0.0 0.000 0.015 0.048 0.046 0.001 0.011 0.033 0.055 −0.001 0.014 0.046 0.083 0.001 0.010 0.030 0.073 0.040
800 8 0.8 0.6 0.3 −0.002 0.020 0.062 0.053 0.001 0.019 0.058 0.055 −0.001 0.015 0.047 0.071 0.000 0.015 0.043 0.069 0.041

See Table B.1.
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Table B.7. Conditional likelihood estimator of Bai (2013b).

Strict Weak

Designs α β α β

N T α ρ δ Bias RMedSE qStd Size Bias RMedSE qStd Size Bias RMedSE qStd Size Bias RMedSE qStd Size

200 4 0.4 0.0 0.0 0.001 0.013 0.040 0.052 −0.001 0.013 0.038 0.050 −0.001 0.013 0.039 0.059 0.002 0.013 0.036 0.066
200 4 0.4 0.0 0.3 0.003 0.027 0.081 0.150 −0.015 0.031 0.103 0.207 −0.001 0.025 0.074 0.127 0.000 0.027 0.078 0.161
200 4 0.4 0.6 0.0 0.000 0.014 0.040 0.053 0.000 0.013 0.038 0.052 −0.011 0.017 0.043 0.129 0.024 0.024 0.039 0.302
200 4 0.4 0.6 0.3 0.000 0.025 0.074 0.109 −0.006 0.029 0.090 0.167 −0.040 0.042 0.081 0.350 0.050 0.051 0.078 0.445
200 4 0.8 0.0 0.0 0.000 0.013 0.040 0.054 0.000 0.009 0.026 0.059 0.000 0.013 0.039 0.052 −0.002 0.009 0.025 0.069
200 4 0.8 0.0 0.3 −0.005 0.026 0.225 0.234 −0.016 0.030 0.134 0.313 0.000 0.019 0.058 0.093 0.000 0.020 0.060 0.142
200 4 0.8 0.6 0.0 0.000 0.013 0.039 0.048 0.000 0.009 0.027 0.059 −0.005 0.014 0.041 0.066 0.011 0.012 0.026 0.166
200 4 0.8 0.6 0.3 −0.003 0.022 0.075 0.162 −0.002 0.026 0.082 0.194 −0.025 0.028 0.060 0.205 0.035 0.035 0.055 0.347

200 8 0.4 0.0 0.0 0.000 0.008 0.024 0.056 0.000 0.008 0.024 0.051 −0.001 0.008 0.024 0.053 0.001 0.008 0.024 0.064
200 8 0.4 0.0 0.3 0.005 0.015 0.045 0.086 −0.005 0.016 0.047 0.096 0.001 0.016 0.049 0.120 −0.003 0.018 0.053 0.144
200 8 0.4 0.6 0.0 0.000 0.009 0.025 0.059 0.000 0.008 0.024 0.057 −0.006 0.010 0.025 0.088 0.012 0.013 0.025 0.190
200 8 0.4 0.6 0.3 0.003 0.015 0.044 0.076 −0.003 0.016 0.047 0.090 −0.023 0.025 0.054 0.290 0.027 0.028 0.057 0.328
200 8 0.8 0.0 0.0 0.000 0.008 0.024 0.053 0.000 0.006 0.017 0.062 0.000 0.008 0.024 0.050 −0.001 0.006 0.018 0.064
200 8 0.8 0.0 0.3 −0.008 0.015 0.044 0.131 0.007 0.018 0.054 0.155 0.000 0.015 0.047 0.148 −0.001 0.019 0.057 0.179
200 8 0.8 0.6 0.0 0.000 0.008 0.024 0.052 0.000 0.006 0.017 0.059 −0.003 0.008 0.024 0.065 0.006 0.007 0.017 0.122
200 8 0.8 0.6 0.3 −0.009 0.015 0.042 0.128 0.011 0.019 0.052 0.150 −0.021 0.022 0.050 0.256 0.027 0.029 0.057 0.332

800 4 0.4 0.0 0.0 0.000 0.010 0.031 0.060 0.001 0.012 0.035 0.051 −0.003 0.011 0.033 0.095 0.004 0.015 0.043 0.172
800 4 0.4 0.0 0.3 0.002 0.022 0.072 0.339 −0.014 0.028 0.116 0.438 0.001 0.020 0.061 0.301 −0.002 0.025 0.078 0.415
800 4 0.4 0.6 0.0 0.000 0.010 0.031 0.057 0.001 0.012 0.035 0.052 −0.025 0.026 0.051 0.449 0.064 0.064 0.076 0.798
800 4 0.4 0.6 0.3 −0.002 0.021 0.063 0.297 −0.003 0.028 0.099 0.409 −0.044 0.044 0.073 0.642 0.056 0.056 0.074 0.741
800 4 0.8 0.0 0.0 −0.001 0.009 0.027 0.057 0.000 0.010 0.030 0.049 0.000 0.009 0.027 0.058 −0.006 0.012 0.038 0.182
800 4 0.8 0.0 0.3 −0.008 0.024 0.250 0.448 −0.019 0.035 0.170 0.578 −0.002 0.016 0.049 0.263 0.001 0.022 0.067 0.411
800 4 0.8 0.6 0.0 0.000 0.009 0.027 0.055 0.000 0.010 0.032 0.052 −0.007 0.011 0.030 0.134 0.040 0.040 0.045 0.722
800 4 0.8 0.6 0.3 −0.008 0.022 0.077 0.388 0.005 0.031 0.110 0.516 −0.034 0.034 0.049 0.616 0.049 0.049 0.055 0.779

800 8 0.4 0.0 0.0 0.000 0.006 0.018 0.058 0.000 0.008 0.023 0.056 −0.001 0.007 0.020 0.081 0.002 0.010 0.029 0.154
800 8 0.4 0.0 0.3 0.005 0.011 0.030 0.211 −0.006 0.012 0.035 0.241 0.002 0.013 0.039 0.314 −0.004 0.016 0.048 0.385
800 8 0.4 0.6 0.0 −0.001 0.006 0.019 0.054 0.000 0.008 0.023 0.050 −0.014 0.015 0.025 0.403 0.035 0.035 0.044 0.708
800 8 0.4 0.6 0.3 0.003 0.010 0.029 0.175 −0.003 0.012 0.035 0.224 −0.026 0.026 0.047 0.586 0.030 0.031 0.054 0.629
800 8 0.8 0.0 0.0 0.000 0.005 0.015 0.050 0.000 0.007 0.019 0.058 0.000 0.005 0.015 0.052 −0.004 0.008 0.024 0.163
800 8 0.8 0.0 0.3 −0.006 0.009 0.024 0.212 0.007 0.012 0.035 0.301 0.000 0.010 0.031 0.270 −0.001 0.014 0.041 0.369
800 8 0.8 0.6 0.0 0.000 0.005 0.015 0.046 0.000 0.007 0.020 0.057 −0.004 0.006 0.016 0.118 0.021 0.021 0.031 0.553
800 8 0.8 0.6 0.3 −0.007 0.010 0.023 0.214 0.010 0.013 0.033 0.323 −0.020 0.020 0.032 0.568 0.026 0.027 0.040 0.655

See Table B.1.
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