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a b s t r a c t

The effectiveness of an orthogonal to backward mean transformation is investigated in the context
of a non-stationary panel data model. It is shown that the corresponding estimator is as efficient as
Transformed Maximum Likelihood when the autoregressive parameter is equal to unity. Furthermore, a
recently introduced bias-corrected version is almost as efficient as the Pooled Least Squares estimator.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Dynamic panel data models play a prominent role among
mpirical tools used by applied researchers. As is well-known
rom Nickell (1981), the conventional Fixed Effects (FE) estimator
uffers from a sizeable finite sample bias for small values of T . The
bias is in general more noticeable in case of persistent data, which
is bad news for most applications involving macroeconomic pan-
els. It motivated some authors to devise alternative estimation
techniques capable of overcoming the shortcomings of the FE
estimator.

In particular, we investigate the Least Squares (LS) estimators
of Choi et al. (2010) and Everaert (2013). Both papers, among
other things, establish that the corresponding estimators are
nearly (asymptotically) unbiased under stationarity, while they
are asymptotically unbiased in case of a unit root. However,
neither of the two studies investigate the asymptotic variance in
a non-stationary unit-root setup. In this paper we do exactly that.

After introducing the model in Section 2, the main results
are presented in Section 3. We show that in a model with the
autoregressive parameter equal to unity the estimator of Ever-
aert (2013) is as efficient as the Transformed Maximum Likeli-
hood (TML) estimator studied by Kruiniger (2008). Similar con-
ditions render the estimator of Choi et al. (2010) to have even a
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the first author.
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smaller asymptotic variance. Consequently, the backward-means
based estimators outperform the conventional (bias-corrected) FE
estimator when data are persistent.

2. The model

Consider the panel AR(1) model

yi,t = ηi + φyi,t−1 + εi,t , with E[εi,t |yi,0, ηi] = 0 (1)

and data observed over i = 1, . . . ,N cross-sectional units in
t = 1, . . . , T time periods. We assume that idiosyncratic errors
εi,t are independent over i, while the initial conditions yi,0 are
assumed to be observed. The FE estimator is not consistent for
any T fixed in this model, where the corresponding inconsistency
is usually labelled as the ‘‘Nickell bias’’.

An alternative estimator is proposed by Everaert (2013) to
mitigate the finite sample bias. In order to introduce the method,
it is useful to consider the LS estimator of φ from the following
augmented regression (e.g. in Mundlak 1978)

yi,t = φyi,t−1 + δȳi,− + ε̇i,t (2)

with the new composite error term given by ε̇i,t = εi,t + ηi −

δȳi,− and where ȳi,− = T−1∑T
t=1 yi,t−1. The inclusion of ȳi,−

in the regression model (while at the same time ignoring the
presence of ηi), ensures that the LS estimator, which is numerical
equivalent to the FE estimator, is consistent as T → ∞.

The use of the full sample mean ȳi,− is not without drawbacks,
as it is correlated with all {εi,t}

T−1
t=1 . In particular, the sequence of

combined error terms {ε̇i,t , ε̇i,t−1, . . .} is not a Martingale Differ-
ence even for η = 0. Following Everaert (2013), this drawback
i
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s easily fixed if in estimation ȳi,− is replaced by the backward
recursive) mean (of yi,t−1)

¯
b
i,t−1 =

1
t

t−1∑
k=0

yi,k. (3)

Unlike the full sample mean, the backward mean by construc-
tion is not correlated with the current and the future values of
εi,t .1 Everaert (2013) used this observation as a motivation to
estimate φ from the following augmented regression model

yi,t = φyi,t−1 + δȳbi,t−1 + ε̇i,t (4)

with ε̇i,t appropriately redefined. As with the standard FE esti-
mator, the LS estimator of this type is not consistent for any
fixed T but is consistent for T large if the data is stationary (see
Everaert 2013 and Juodis 2021). While the proposed estimator is
not consistent for T fixed, it has a small bias in case of an AR(1)
model as found by Everaert (2013).

From this point onward, we refer to the LS estimator of φ

from (4) as the Orthogonal to Backward Mean (OBM) estimator
φOBM . As argued by Juodis (2021), the related Recursive Mean
Adjustment (RMA) estimator φ̂RMA of Choi et al. (2010) in this
setup can be seen as the restricted version of the OBM estimator
of Everaert (2013) by fixing δ = 1 − φ.

3. Main results

The use of backward means as the de-trending tool has a long
tradition in panel unit root testing, see e.g. Westerlund (2015,
2016). In many cases the use of backward means (or ‘‘recursive
de-trending’’) leads to superior power properties. Motivated by
this observation, we study the OBM and RMA estimator in a unit
root setting in this section, i.e. the model in (1) with φ0 = 1.
Although we formally present results for φ0 = 1, we suspect that
our results can be useful in understanding the general behaviour
of the OBM/RMA estimator in models with persistent regressors.

To be specific, attention is restricted to the standard model
with a common dynamic restriction imposed, i.e. ηi = (1 − φ)µi.
Then

yi,t = yi,t−1 + εi,t (5)

for φ0 = 1. It is assumed that εi,t and yi,0 satisfy the following set
of assumptions.

Assumption 3.1 (Sampling).

(i) εi,t is independently and identically distributed (iid) across
both i and t with E[εi,t ] = 0, E

[
ε2
i,t

]
= σ 2

ε and E
[
ε4
i,t

]
< ∞.

(ii) yi,0 =
√
C(T )ÿi,0 where C(T ) = o(T ), and E[ÿi,0] = 0 and

E[ÿ4i,0] < ∞. ÿi,0 are iid across i, independent of εi,t .

Note that the second moment of the initial observation is
restricted to be of lower order than O(T ), e.g. accommodating
the yi,0 = OP (1) setup of Hahn and Kuersteiner (2002). The
next theorem summarizes the asymptotic properties of the OBM
estimator in the unit root model.

Theorem 1. Let Assumption 3.1 be satisfied. Then as N, T
j

−→ ∞:

T
√
N (̂φOBM − 1)

d
−→ N(0, 8). (6)

1 This observation can be used to motivate the use of yi,t−1 − ȳbi,t−1 as an
nstrument for y .
i,t−1 e

2

Note that we do not impose any restrictions on the relative
xpansions rates of N, T . More specifically, one can easily show
hat φ̂OBM is actually fixed T consistent. Firstly, this theorem in-
icates that the OBM estimator is asymptotically unbiased in the
on-stationary setup. Our next result shows that this conclusion
s also applicable for the RMA estimator.

orollary 1. Let Assumption 3.1(i) be satisfied. Then as N, T
j

−→

:
√
N (̂φRMA − 1)

d
−→ N(0, 6). (7)

If also T/C(T ) = o(1):

T
√
N (̂φOBM − 1)

d
−→ N(0, 6). (8)

Contrary to the stationary case (see e.g. Juodis 2021), the first
result of this corollary shows that the RMA estimator is more
efficient as long as the initial condition is bounded. However, the
second part suggests that the asymptotic equivalence (in terms
of the limiting random variable) can be restored if and only if the
initial condition is divergent.

In order to put our results into a perspective of the available
asymptotic results in the literature, it is evaluated in terms of the
FE estimator. Under the assumption of normally distributed error
terms, Hahn and Kuersteiner (2002) showed that asymptotic
variance of the FE estimator is equal to 10.2 in the unit root case.
Thus the OBM and RMA are not only more efficient than the FE
estimator asymptotically, but also, unlike the FE estimator, they
are asymptotically unbiased.

To the best of our knowledge there is only one other estimator
in the literature with the same asymptotic variance as in Theo-
rem 1. In particular, under similar assumptions Kruiniger (2008)
showed that

T
√
N (̂φTML − 1)

d
−→ N(0, 8), (9)

where φ̂TML is the TML estimator of Hsiao et al. (2002) and Kru-
iniger (2008).2 As a result, the OBM estimator is asymptotically
at least as efficient as the TML estimator.

Finally, in Juodis (2021) a bias-corrected OBM estimator is
proposed. The motivation for bias-correction originates from the
potentially non-negligible bias in case of stationarity. For this
estimator, the following result is established.

Proposition 1. Let Assumption 3.1 be satisfied. Then as N, T
j

−→

:
√
N (̃φOBM − 1)

d
−→ N

(
0,

8
3

)
, (10)

here φ̃OBM = φ̂OBM − b̂N,T .

Because 2 < 8/3 ≪ 8, the asymptotic variance of the bias-
corrected OBM estimator is substantially smaller than that of its
original counterpart.3 This efficiency gain results from non-zero
asymptotic covariance between yi,t and ȳbi,t−1. It is yet another
manifestation of non-standard asymptotic behaviour of the panel
data estimators with a root close to unity.

2 Here we consider the restricted version of the TML estimator that in
stimation assumes that ∆yi,t is a covariance stationary process for all t . The
nrestricted version of that estimator, as studied e.g. in Kruiniger (2013), Bun
t al. (2017), and Juodis (2018a,b) in general does not have a normal asymptotic
imit.
3 Here the lower bound of 2 corresponds to the variance of the Pooled OLS
stimator.



A. Juodis and R.W. Poldermans Economics Letters 201 (2021) 109780

4

d
a
s
t
m
a
u

A

P
r
β
t

T

w
e
a

A

E

T

E

C

N

w
L
f

f
m
c
I

E

A

. Concluding remarks

In this note we studied the asymptotic properties of the panel
ata estimators of Choi et al. (2010) and Everaert (2013). In
model with the autoregressive parameter equal to unity we

howed that both estimators have a substantially smaller asymp-
otic variance than the FE estimator. These results are comple-
entary to those provided in Choi et al. (2010), Everaert (2013),
nd Juodis (2021) who study asymptotic and finite sample results
nder stationarity.

ppendix. Proofs

roof of Theorem 1. For now assume that yi,0 = 0, ∀i. Later we
elax this assumption. Denote by β = (φ, ρ)′, with ρ = δ − 1 and
0 = (1, 0)′. The scaled and centered version of the estimator
akes a usual form
√
N
(̂
βOBM − β0

)
= A−1

NT dNT , (A.1)

here ANT and dNT are of order 2 × 2 and 2 × 1 respectively. Each
lement of the corresponding matrix/vector can be expressed as
weighted cross-sectional average, e.g.

(1.1)
NT =

1
N

N∑
i=1

A(1.1)
iT , d(1)

NT =
1

√
N

N∑
i=1

d(1)
iT .

To streamline the derivations, observe that

1
T k+1

T∑
t=1

tk =

∫ 1

0
xkdx + O(T−1) =

1
k + 1

+ O(T−1). (A.2)

At first consider

[A(1.1)
iT ] =

1
T 2

T∑
t=1

E[y2i,t−1] = σ 2
ε

1
T 2

T∑
t=1

(t − 1)

= σ 2
ε

∫ 1

0
xdx + O(T−1) =

σ 2
ε

2
+ O(T−1).

Regarding the off-diagonal element

E[A(1.2)
iT ] =

1
T 2

T∑
t=1

E[yi,t−1ȳbi,t−1] =
1
T 2

T∑
t=1

1
t

t∑
s=1

E[yi,t−1yi,s−1]

= σ 2
ε

1
T 2

T∑
t=1

t

(
1
t2

t∑
s=1

(s − 1)

)

= σ 2
ε

∫ 1

0
x
(∫ 1

0
ydy

)
dx + O(T−1)

=
σ 2

ε

2

∫ 1

0
xdx + O(T−1) =

σ 2
ε

4
+ O(T−1).

he remaining diagonal A(2.2)
iT term requires a bit more care, i.e.

[A(2.2)
iT ] =

1
T 2

T∑
t=1

E[(ȳbi,t−1)
2
] =

1
T 2

T∑
t=1

1
t2

t∑
s=1

t∑
k=1

E[yi,k−1yi,s−1]

= σ 2
ε

1
T 2

T∑
t=1

1
t2

t∑
s=1

s∑
k=1

(k − 1)

+ σ 2
ε

1
T 2

T∑
t=1

1
t2

t∑
s=1

t∑
k=s+1

(s − 1)

= σ 2
ε

∫ 1

x
[∫ 1 (∫ y

zdz
)
dy +

∫ 1 (∫ 1

ydz
)
dy
]
dx
0 0 0 0 y

3

+ O(T−1)

= σ 2
ε

∫ 1

0
x
[∫ 1

0

1
2
y2dy +

∫ 1

0
(y − y2)dy

]
dx + O(T−1)

= σ 2
ε

∫ 1

0
x
[∫ 1

0

(
y −

1
2
y2
)
dy
]
dx + O(T−1)

=
σ 2

ε

6

∫ 1

0
x [3 − 1] dx + O(T−1) =

σ 2
ε

6
+ O(T−1).

ombining all results

plim
,T→∞

ANT =
σ 2

ε

12

(
6 3
3 2

)
,

here the conclusion holds using Kolmogorov’s Strong Law of
arge Numbers for iid data. Similarly, if one considers trans-
ormed variables, i.e. ỹi,t−1 = yi,t−1 − ȳbi,t−1 rather than yi,t−1, this
matrix is of the form

plim
N,T→∞

ANT =
σ 2

ε

12

(
2 1
1 2

)
. (A.3)

Next, consider dNT , where d iT = T−1∑T
t=1 ξi,t . As both ȳbi,t−1

and yi,t−1 are independent of εi,t , vector ξi,t = (yi,t−1, ȳbi,t−1)
′εi,t

orms a martingale difference sequence (in the time-series di-
ension for each i), such that E[dNT ] = 02. The variance–
ovariance matrix of d iT follows from the expressions for E[AiT ].
n particular,

[(d(1)
iT )2] =

1
T 2

T∑
t=1

T∑
k=1

E[εi,tεi,kyi,t−1yi,k−1]

=
1
T 2

T∑
t=1

E[εi,tεi,tyi,t−1yi,t−1]

+
1
T 2

T∑
t=1

T∑
k>t

E[εi,tεi,kyi,t−1yi,k−1]

= σ 4
ε

(∫ 1

0
xdx
)

+ O(T−1) =
σ 4

ε

2
+ O(T−1),

and

E[(d(2)
iT )2] =

1
T 2

T∑
t=1

T∑
k=1

E[εi,tεi,kȳbi,t−1ȳ
b
i,k−1]

=
1
T 2

T∑
t=1

E[ε2
i,t ȳ

b
i,t−1ȳ

b
i,t−1]

+
1
T 2

T∑
t=1

T∑
k>t

E[εi,tεi,kȳbi,t−1ȳ
b
i,k−1]

=
σ 4

ε

6
+ O(T−1).

nalogously, E[d(1)
iT d(2)

iT ] =
σ4
ε

4 + O(T−1). This is enough to show
sequential convergence where N → ∞ first, followed by T → ∞.
The uniform integrability condition sufficient for joint conver-
gence can be verified analogously to Phillips and Moon (1999).

Combination of the above results yields

T
√
N
(̂
βOBM − β0

) d
−→ N

(
02,Σβ

)
, (A.4)

as N, T
j

−→ ∞, where

Σβ = σ 2
ε

(
plim ANT

)−1

=

(
8 −12

)
. (A.5)
N,T→∞
−12 24
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ence the marginal distribution of the autoregressive parameter
orresponds with
√
N
(̂
φOBM − 1

) d
−→ N (0, 8) . (A.6)

Next, we allow for a non-zero initial condition. Observe how
i,t−1 and ȳbi,t−1 can be expressed as

i,t−1 = yi,0 +

t−2∑
j=0

εi,t−1−j

ȳbi,t−1 = yi,0 +
1
t

t−1∑
k=2

k−2∑
j=0

εi,k−1−j.

In turn, the elements of AiT are

E[A(1.1)
iT ] =

σ 2
ε

2
+

1
T
E[y2i,0] + O(T−1),

E[A(1.2)
iT ] =

σ 2
ε

4
+

1
T
E[y2i,0] + O(T−1),

E[A(2.2)
iT ] =

σ 2
ε

6
+

1
T
E[y2i,0] + O(T−1).

Under our assumptions E[y2i,0] = o(T ), such that all terms involv-
ing y2i,0 are asymptotically negligible. □

Proof of Corollary 1. From (A.3) in the proof of Theorem 1 we
know that

plim
N,T→∞

ANT =
σ 2

ε

12

(
2 1
1 2

)
.

As the RMA estimator has only one regressor, namely ỹi,t−1 =

i,t−1−ȳbi,t−1, it is straightforward to conclude that the variance of
this estimator is simply given by the inverse of the first diagonal
element of plimN,T→∞ ANT , i.e. σ 2

ε (plimN,T→∞ ANT ,11)−1
= 6.

The second part follows from Theorem 1. For non-zero value
of yi,0 we have (ı2 = (1, 1)′)

plim
N,T→∞

ANT =
σ 2

ε

12

(
6 3
3 2

)
+ ı2ı′2 lim

T→∞

E[y2i,0]
T

. (A.7)

n this case the estimator is not invariant to the initial condition.
owever, for β̃ the previous matrix is of the form

plim
N,T→∞

ANT =
σ 2

ε

12

(
2 1
1 2

)
+

(
0 0
0 1

)
lim
T→∞

E[y2i,0]
T

. (A.8)

ence the convergence rate of δ is determined by E[y2i,0]. E.g. for
E[y2i,0] = O(C(T )) ≥ O(T )

T
√
N
(̂
φOBM − 1

)
d

−→ N

⎛⎜⎝0, 6

⎛⎝1 −
1
4

(
1 + lim

T→∞

E[y2i,0]
Tσ 2

ε

)−1
⎞⎠−1

⎞⎟⎠ . □ (A.9)

roof of Proposition 1. Here, we use matrix notation for an
asier comparison with a more general model. Let

NT = −

(
1
NT

x′MxBx
)−1 1

NT
x̃′PxB

(
y − xφ̂OBM

)
,

here vectors y and x are defined to be of order NT × 1. Anal-
gously, one can stack observations in x̄bi,t to obtain xB. Further-
ore, let PxB = xB(x′

BxB)
−1x′

B and MxB = INT − PxB , respectively.
To prove the claim of this proposition, the bias-corrected

stimator is rewritten as
√
N
(̃
φOBM − 1

)
=

(
1 −

(
1

NT 2 x̃
′MxB x̃

)−1 ( 1
NT 2 x̃

′PxBx
))
4

× T
√
N
(̂
φOBM − 1

)
+

(
1

NT 2 x̃
′MxB x̃

)−1 ( 1

T
√
N
x̃′PxBε

)
(A.10)

sing (A.3) gives

1
NT 2 x̃

′MxB x̃ =
σ 2

ε

8
+ oP (1). (A.11)

n the other hand,
1

NT 2 x̃
′PxBx =

1
NT 2 x̃

′PxB x̃ +
1

NT 2 x̃
′xB.

Plugging in the asymptotic approximations for all unknown quan-
tities gives

1
NT 2 x̃

′PxBx = σ 2
ε

(
1
12

(
2
12

)−1 1
12

+
1
12

)
+ oP (1)

= σ 2
ε

(
1
24

+
1
12

)
+ oP (1) =

σ 2
ε

8
+ oP (1). (A.12)

s a result, the term in front of T
√
N
(̂
φOBM − 1

)
is oP (1), i.e.(

1 −

(
1

NT 2 x̃
′MxB x̃

)−1 ( 1
NT 2 x̃

′PxBx
))

= oP (1). (A.13)

ince T
√
N
(̂
φOBM − 1

)
= OP (1),(

1 −

(
1

NT 2 x̃
′MxB x̃

)−1 ( 1
NT 2 x̃

′PxBx
))

T
√
N
(̂
φOBM − 1

)
= oP (1).

(A.14)

Plugging this expression back into (A.10) gives

T
√
N
(̃
φOBM − 1

)
=

(
1

NT 2 x̃
′MxB x̃

)−1 ( 1

T
√
N
x̃′PxBε

)
+ oP (1).

Only the asymptotic variance of
(

1
T
√
N
x̃′PxBε

)
remains to be

valuated, which can be easily shown to be equal to

plim
,T→∞

σ 2
ε

NT 2 x̃
′PxB x̃ =

σ 4
ε

24
(A.15)

here the σ 2
ε /24 terms stems from the decomposition in (A.12).

ombining all these results we conclude that
√
N
(̃
φOBM − 1

) d
−→ N

(
0,

8
3

)
, (A.16)

here 8/3 = 8 × 24−1
× 8. □
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