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Abstract
Decades of hardware, methodological, and algorithmic development have pro-
pelled molecular dynamics (MD) simulations to the forefront of materials-
modeling techniques, bridging the gap between electronic-structure theory and
continuum methods. The physics-based approach makes MD appropriate to
study emergent phenomena, but simultaneously incurs significant computa-
tional investment. This topical review explores the use of MD outside the scope
of individual systems, but rather considering many compounds. Such an in
silico screening approach makes MD amenable to establishing coveted
structure-property relationships. We specifically focus on biomolecules and
soft materials, characterized by the significant role of entropic contributions
and heterogeneous systems and scales. An account of the state of the art for
the implementation of an MD-based screening paradigm is described, includ-
ing automated force-field parametrization, system preparation, and efficient
sampling across both conformation and composition. Emphasis is placed on
machine-learning methods to enable MD-based screening. The resulting frame-
work enables the generation of compound-property databases and the use of
advanced statistical modeling to gather insight. The review further summarizes
a number of relevant applications.
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1. Introduction

Ceder and Persson’s Scientific American article The Stuff of Dreams refers to the ‘golden age of
materials design’, a new era where computational methods—a mix of hardware and software
implementation of physical laws and equations—assist scientists in designing new functional
materials [1]. Designing better materials means selecting a chemical composition that yields
superior materials properties. Traditional avenues have followed an Edisonian, trial-and-error
approach, by experimentally screening as many compounds as possible—an approach that is
typically both time-consuming and costly, due in no small part to synthesis, processing, and
characterization. Computation offers a parallel route to search for compounds with desired
characteristics, where the numerical solution of fundamental equations (e.g., the Schrödinger
equation) can make predictions before going to the laboratory. The effort has gained
momentum thanks to the development of computational hardware, software, and database
tools, demonstrating exceptional potential to accelerate materials discovery in various fields
[2–7].

There are good reasons to expand compound screening beyond the experimental realm.
While high-throughput screening can probe impressive numbers of candidates, the require-
ments to synthesize, process, and/or characterize large libraries of compounds typically
restricts the approach to particular systems and properties [8–13]. The computational route
certainly also holds its share of system and property limitations, but are alleviated by the variety
in resolutions, methods, and algorithms. Limitations may also arise from the set of compounds
accessible: synthesized drugs form a minuscule subset of the chemical space of small organic
molecules [14]. While not all compounds are expected to be necessary to satisfyingly interpo-
late the space, the level of subsampling unfortunately leads to a lack of uniformity: a database
bias [15, 16]. Screening on the computer, on the other hand, needs no synthesis—though its
virtual analog, model parametrization, often remains a challenge. More flexibility in choosing
compounds enables avenues to exhaustively enumerate small subsets [17], find efficient ways
to build up combinatorics [18], and select compounds using more sophisticated strategies, for
instance active learning [19].

To remain robust across chemical space, computational methods must rely on fundamental,
broadly applicable physical laws and equations. These physics-based methods—including the
Schrödinger and Kohn–Sham equations at the electronic-structure level and Newton’s clas-
sical equations of motion at the classical level—can make predictions that are grounded in
the corresponding physics. Even classical simulations typically give rise to significant com-
putational costs, which had until recently limited their penetration into the field of compound
screening. Turning to density functional theory (DFT), the recent development yet rapid adop-
tion of high-throughput schemes for various materials applications testifies to the escalating
role of computation in materials screening and discovery [3, 20–22].

While some fields have already benefitted strongly from computational screening, oth-
ers lag behind—such is the case for soft condensed matter. Marked by weak characteristic
interaction energies on par with thermal energy, kBT , soft-matter systems embody a large
class of materials, including not only polymers, liquid crystals, surfactants, colloids, but also
biomolecules. When coupled to thermal fluctuations, soft matter display fascinating phenom-
ena, such as spontaneous self assembly and mesoscopic architectures, simply navigating a rich
free-energy landscape [23]. Fluctuations de facto require a careful consideration of entropic
effects, and adequate computational methods to sample the accessible conformational space.
Furthermore, soft-matter systems also typically display poor scale separation, challenging
multiscale-modeling approaches [24].
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The challenges of modeling biomolecules and soft matter have largely kept the field in a
‘craftsmanship era’. Scientific studies focus on one or a handful of compounds, due to difficul-
ties in parametrizing, preparing, sampling, and analyzing the system. These aspects all stand
orthogonal to a screening strategy—automation reigns over the high-throughput paradigm. It
is thus no surprise that machine learning and other data-driven techniques are rapidly penetrat-
ing the field of soft materials [25–27]. The rapid rise of high-throughputmolecular simulations
is the topic of this review.

1.1. Scope

Compound screening is a vast, quickly evolving area that connects to physics and chemistry,
materials science, and even branches out to a plethora of applications, from organic photo-
voltaics to electrocatalysis to drug discovery to biomaterials [11, 28–31]. Despite its focus
on biomolecular systems and soft matter, this compound-screening review will exclude stud-
ies originating from experimental data—arguably its largest subset. A large body of work has
been devoted to the utilization of experimental compound databases, notably from quantitative
structure–activity relationship (QSAR) methods in drug discovery [32–34]. Instead this review
will focus not only on computational (in silico) screening, but those generated from physics-
based methods. Physics-based methods consist of a hierarchy of multiscale-modeling methods,
from quantum chemistry, to empirical force-field-based MD, to particle-based coarse-grained
(CG) simulations, to continuum modeling [24, 35, 36]. They prevail in some key aspects
essential to biomolecular materials and soft matter, specifically the modeling of emergent
phenomena and entropy. Further, this hierarchy offers a conceptual bridge to the funnel-like
nature of compound screening: quickly screen with fast methods and refine with more accurate
models.

Current computational limitations strongly limit a purely quantum-chemical approach to
a limited range of problems: primarily isolated molecules or relatively small and homoge-
neous environments [37]. Classical MD simulations prevail for biomolecules and soft matter,
because of their ability to efficiently sample the vast conformational space. For a history and
overview of MD simulations, we refer the reader to excellent books and reviews [38–42].
Though MD-based screening studies are dominated by an atomistic resolution, CG models
take an increasingly large role, thanks to their more favorable computational load and ongoing
improvements in linking the lower resolution to the underlying chemistry. This review will
mostly revolve around spatial CG: particle-based models made of interaction sites (also called
superparticles or beads), which correspond to groups of atoms. On the other hand, we will
not touch upon methods that coarse-grain in time, due to (so far) limited impact on compound
screening [43–47].

1.2. Inverse problems in soft matter

A material, entirely determined by its chemical composition—but also often its process-
ing—will yield specific properties. Making measurements, either by experimental techniques
or analytical/numerical calculations, boils down to establishing a mapping between the mate-
rial composition and its properties. This is commonly denoted the forward problem, and is
illustrated in figure 1(a) [48]. Materials design, on the other hand, aims at establishing the
backward—or inverse—mapping: identifying the adequate structure given properties of inter-
est. While the forward route is straightforward, there is no experiment or equations of motion to
directly probe the backward problem. It instead typically requires solving an inverse problem:
from a (small) number of forward measurements, infer the function that links chemistry to
materials property. The notorious difficulty to solve inverse problems also applies in materials
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Figure 1. (a) Structure-property relationships are based on forward measurements and
subsequent backward inference; (b) analogous to length- and time-scales in materi-
als modeling, the number of compounds—the data-scale—is an essential variable of
compound-screening problems; (c) measurements can only be performed manually for
the lowest values of Ncompounds, but otherwise require automation. (d) Different scales
of Ncompounds are amenable to different types of statistical modeling. Part of the figure is
adapted from [48], under a creative commons attribution (CC BY) license.

discovery, and leads to strenuous requirements on the number of measurements compared to
the size of the interpolation space [49].

Though commonly referred to as structure-property relationships, this terminology hides
that the structure itself is entirely determined by the material’s chemical constituents. The
review by Sherman et al clearly differentiates four different stages in the design of soft mate-
rials: (i) chemical synthesis or preparation leads to (ii) building blocks with effective, CG
interactions, which drive their assembly into (iii) structures or morphologies, and imprint (iv)
properties on the macroscopic scale [50]. This chemistry-building-block–structure-property
framework does justice to the complexity, heterogeneity, and large scale separation that
characterizes soft matter.

The chemistry to building-block step, (i → ii), is essential to reduce the overwhelming
vastness of chemical space [14, 51] into a low-dimensional set of effective components with
CG interactions. This requires a thorough understanding of the dominant driving forces:
supramolecular interactions such as van der Waals, electrostatics, or hydrogen bonds [52].
Modeling has greatly taken advantage of building blocks by means of top-down coarse-
graining, which parametrize simple models based on key phenomenological interactions, while
staying close to the chemistry [53, 54]. The building-block to structure step, (ii → iii), has
likely received the most attention. Relevant work largely consists of improving our understand-
ing or finding practical routes at linking CG interactions to self assembly. Notable examples
include the directed self assembly of diblock copolymer thin films using self-consistent field
theory [55]; the ‘materials design engine’, using statistical mechanics as an automatic opti-
mizer, with applications including the folding of a polymer and the directed self assembly of
block copolymers [56]; design principles for colloidal self assembly with short-range interac-
tions, establishing tight restrictions on the relative strength of the favorable and unfavorable
interactions, as well as the number of components and energies [57]; a ‘digital alchemy’ frame-
work to control self assembly by optimizing building blocks for a given target bulk structure
[58]. The structure to property step, (iii → iv), has largely involved finite-element methods to
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optimize material microstructures for specific design specifications, such as acoustic, elastic,
and photovoltaic properties [59].

At equilibrium an additional consideration may prove useful in approaching inverse prob-
lems: the free-energy landscape. Central to any soft-matter system, the free-energy landscape
shapes the self-assembly route, navigating down between conformational basins toward a
(local) minimum. The free-energy landscape also conditions all observables, by its statisti-
cal weights over the conformational space. In the context of solving the inverse problem, the
free-energy landscape thus stands as a powerful, physically meaningful intermediary between
chemistry and building-block constituents on the one hand and structure/morphology and
macroscopic properties on the other.

How does changing the chemistry affect the free-energy landscape? Various studies are
tackling this question. Meng et al reported the free-energy landscape of clusters of attrac-
tive hard spheres, including a detailed characterization of the rotational entropy [60]. Scaling
up, the field of protein folding has led to great insight into how the shape of the free-energy
landscape impacts a protein’s properties—the famous funnel-like shape is characteristic of
many efficient folders [61–63]. These developments further enabled the design of new pro-
teins, whose sequence and structure differ significantly from naturally occurring proteins [64].
Unfortunately not all free-energy landscapes display straightforward shapes; self assembly
often results from a competition between conformational basins. Jankowski and Glotzer care-
fully studied the assembly pathway of patchy particles to grasp the diversity of possible final
structures [65].

Coarse-graining likely has a strong role to play in the context of screening. As described
below in section 3.8, a high-throughput study of drug–membrane thermodynamics linked CG
features of small molecules with their potential of mean force of insertion in a lipid membrane
[66]. The results suggest that exploring the diversity of top-down CG building blocks (step ii)
fittingly simplified the structure–property relationship, making it easier to identify. CG mod-
els evidently coarsen the underlying free-energy landscape, and what could be criticized as a
loss in accuracy or resolution can also be seen as a decisive advantage to tackle the inverse
problem.

The system-size limitations associated with MD simulations naturally hinder the prospects
of scaling up to genuine macroscopic properties. The systems remain instead micro- to meso-
scopic and focus on basic structural, thermodynamic, and sometimes dynamical aspects. Their
particle-based nature also naturally lend themselves to starting from the (i) chemistry or (ii)
building-block steps.

1.3. Data-scales

One landmark property of most—if not all—materials is the large dynamic range of rele-
vant length- and time-scales. Microscopic interactions lead to mesoscale architectures and
morphologies, but also conformational transitions and aging behavior. It is not uncommon
to observe phenomena spanning 10 or more orders of magnitude for either scale: from sub-
nanometer to meter, and from femtosecond to seconds or more. Interestingly, these scales
are relevant not only to understand the intrinsic properties of the system, but also to probe
it: both experimental techniques and computational methods typically specialize in probing
a (possibly small) subset of these scales [24, 35, 67]. For instance, quantum-chemical meth-
ods reign at small length- and time-scales, but fall short much beyond the nanometer- and
picosecond-marks.

In this review we apply a similar conceptual framework to the number of screened com-
pounds, Ncompounds. This data-scale, unlike its other two counterparts, is not an intrinsic
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Figure 2. Protocol for high-throughput molecular simulations. Requirements include
automated force-field parametrization schemes, system preparation, and efficient sam-
pling (top; blue). It enables the generation of compound databases and statistical analysis
to gather insight (bottom; pink).

variable—it is merely a practical consideration to help guide both the forward-measurement
and backward-inference processes. We refer the reader to figure 1 for an illustration: estab-
lishing structure-property relationships (panel a) hinges upon the number of compounds
screened (panel b). As will be described in section 3, MD studies typically work in the range
1 � Ncompounds � 106, though steady progress will likely rapidly push the upper bound. Work-
ing in higher regimes of the data scale will on the one hand strongly impact requirements on
the forward-measurement protocol (figure 1(c)), but on the other hand permit more sophis-
ticated statistical-analysis techniques (figure 1(d)). The data scale thereby forms an essential
pillar to guide a compound-screening study, both to generate a database and garner insight
from it.

2. Computational high-throughput paradigm

Before moving onto applications (section 3), we first describe the forward-measurement
requirements and backward-analysis possibilities that a computational high-throughput
paradigm both impose and enable, sketched in figure 2. The forward-measurement steps neces-
sary to build the compound database—the blue boxes in figure 2—embody the computational
analog of a laboratory’s high-throughput screening experiment. The framework demands a
strict and homogeneous protocol across compounds for two reasons: (i) it yields a consistent
database amenable to extracting structure-property relationships; and (ii) it is practically con-
venient for automation purposes. The present section describes the various aspects of running
MD simulations under these constraints.
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When possible, the examples will be borrowed from the biomolecular and soft-matter
fields. In other cases however, examples from other fields—in particular chemistry and hard
condensed matter—may prove insightful of where developments may be headed.

2.1. Force-field parametrization

The scope and level of refinement of a number of biomolecular force fields attest to the
remarkable developments in the molecular-simulation field: some of them are decades in the
making, amounting to thousands of finely tuned parameters, and have endured relentless evalu-
ations [68–73]. Unlike more empirical methods (e.g., statistical scoring in drug discovery), the
physics-based nature of force fields grounds the model in the physics considered. It relies on
specific potentials that encode relevant interactions [74–76]. Unfortunately force fields are
difficult beasts to tame: their complexity can easily make any (re)parametrization for new
compounds laborious, because they do not always offer systematic strategies.

Automated force-field parametrization is an old idea that is difficult to practically imple-
ment. Why is that? Quantum mechanics ought to provide us with a sure-fire way to derive
classical potentials. Unfortunately the physics encoded in force fields is rather limited: for
instance, most force fields are not explicitly polarizable. The limited physics of the model
clouds the relationship to quantum mechanics and instead warrants a parametrization based
on experimental properties. Major biomolecular force fields, such as CHARMM and OPLS,
typically use a combination of reference information to parametrize across the chemical com-
pound space (CCS; more on that in section 2.3.2) of drug-like small molecules: like others
the CHARMM general force field (CGenFF) uses quantum mechanics to optimize charges
and bonded interactions, while Lennard–Jones parameters rely on experimentally determined
liquid density and heat of vaporization [77]. The need for experimental quantities can be
problematic, and is alleviated by identifying chemical groups or fragments found in previ-
ously analyzed molecules. The gradual incorporation of model compounds allows CGenFF to
broadly interpolate across a large subset of CCS, while retaining high fidelity of structural and
thermodynamic properties. A similar strategy has been applied by OPLS [78, 79], GROMOS
[80], and AMBER [81].

Arguably the incorporation of experimental data in a computational-screening pipeline is
unfortunate: experimental data are limited to a minuscule subset of CCS, and it might well
defeat the purpose of a virtual compound-discovery study. Despite their broad coverage of
CCS, the above-mentioned biomolecular force fields largely avoid this issue by sharing and
reusing information between molecules. The piece of information that is typically shared is
the atom type. Beyond the chemical element itself, it represents the atom in a molecule given
a local environment, for instance an sp2 carbon in an alkene. The more chemically specific,
the better—in other words the larger incorporation of neighboring atoms will more precisely
characterize the local environment, and offer all the more resolution. The above-mentioned
automated force-field strategies primarily aim at selecting the right atom types, and extract
the corresponding parameters from a database. While these atom types have historically been
handcrafted by chemical intuition, ongoing efforts aim at generalizing its concept using more
robust annotators. For instance, the Open Force Field Initiative is applying so-called direct
chemical perception by the use of SMIRKS patterns—linear notations encoding atoms and
bonds [82].

The tendency to encode increasingly many atom types begs the question: is there a con-
tinuum limit? In effect this is precisely what is probed by machine learning (ML) models that
span (subsets of) CCS. While we defer a broader discussion on the topic to section 2.5, we note
that kernel-based methods, such as Gaussian process regression (GPR), assume and enforce
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smoothness of the input space by the kernel function [83]. It leads to a continuum description
of a so-called atom-in-molecule representation, a concept strongly utilized in hard condensed
matter [75]. ML models learn a smooth interpolation between many-body atom-in-molecule
representations and a target property of interest. ML has rapidly demonstrated impressive capa-
bilities to interpolate increasingly large subsets of the CCS to complex electronic properties.
Examples include atomization energies [84], dipole polarizability tensor [85], and multipole
electrostatic coefficients [86].

How do we incorporate ML models into force fields? One straightforward approach is to
work simultaneously with both: physics-based force fields encode the functional forms and
asymptotes that we know, while ML models predict composition- and conformation-specific
environments. This approach can lead to excellent accuracy and transferability, reproducing
highly accurate coupled-cluster calculations across several molecular datasets, and without
the need for any reparametrization [87]. Li et al have used ML models to predict quantum-
mechanical properties, used as input for a polarizable force field, and match liquid-state
observables [88]. In both cases the high-resolution of the physics-based models—they are
both explicitly polarizable—enable a purely ab initio parametrization.

The more ML-centric alternative is to let go of functional forms entirely. Several applica-
tions show that this can lead to excellent many-body ML potentials for a variety of molecules
and materials [89–91]. Moving beyond single systems and toward subsets of CCS is still a
subject of ongoing research: most of these approaches have so far focused on a careful interpo-
lation of the conformational space, and the compounded interpolation of composition requires
significant adaptations (section 2.3.2). We point out the ML neural network potential ANI as
a notable example in this direction [92]. We also note the challenge of accurately modeling
long-range interactions, for instance by appropriate physically inspired kernels [93].

Going down in resolution, developing CG models takes the simulator down either one of
two main tracks: top-down or bottom-up [53]. The top-down approach, which builds from
phenomenological considerations, may turn out easier to automate in the case that there is a
straightforward link between the reference information and the interaction potential. A vari-
ety of powerful models have been developed in the past, and we turn the interested reader
to relevant reviews [53, 54]. Consider the popular CG Martini force field for biomolecu-
lar systems [94]. The automated CG Martini parametrization scheme can read in any small
organic molecule, optimize a mapping using a set of heuristics, and predict a chemical frag-
ment water/octanol partitioning coefficient from a neural network for each bead type [95].
Bead types of CG models can be further redefined to best accommodate for the diversity of
compounds in the CCS [96]. On the other hand, the bottom-up route starts from microscopic
information of a higher-resolution simulation. Systematic parametrization schemes exist, such
as iterative Boltzmann inversion or force matching, accompanied by convenient software plat-
forms [97, 98]. Aside from the CG potentials, bottom-up strategies can strongly benefit from a
more systematic optimization of the mapping itself [99, 100]. Combinations of structure-based
CG and ML have recently sparked interest and are quickly enabling new avenues, see below
section 2.5.3.

2.2. System preparation

System preparation for an MD study has two main tenets: (i) the initial configurations and
(ii) the procedure to run the simulation and compute observables (e.g., structural parameter
or free energy). Controlling the latter is typically relatively easy, as it often boils down to
applying the same simulation pipeline. Building initial configurations in an automated and con-
sistent way, on the other hand, can require more sophisticated approaches: a screening study
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that focuses on protein–ligand binding must first dock every single compound in the protein
pocket. Beyond the proper geometric alignment of the ligand, the condensed phase of a liq-
uid calls for packing of the molecules involved, and thus a delicate placement to avoid steric
clashes. This has led to a variety of tools to initialize condensed-phase, soft-matter systems:
Martínez et al designed PACKMOL to create simple liquids, mixtures, and more complex
architectures, such as micelles and lipid bilayers [101]; Polymer Modeler is a polymer chain
builder [102]; CHARMM-GUI is a sophisticated web server to facilitate the initial configura-
tion of biomolecular systems, such as solvated proteins, and phospholipid membranes [103];
the INSANE script sets up complex phospholipid-membranemixtures for the CG Martini force
field [104]; MemProtMD elegantly prepares CG configurations of membrane proteins by self-
assembling the phospholipid membrane around the experimentally resolved protein structure
(section 3.6) [105]; both the Python-based MoSDeF and Hoobas frameworks offer extensi-
ble molecular-building capabilities (e.g., patchy DNA-grafted colloids in Hoobas), and the
use of Python allows for deeper integration of system initialization and simulation/analysis
[106, 107].

2.3. Sampling

Sampling lies at the heart of molecular simulations: both MD (with appropriate thermostat)
and Monte Carlo simulations implement efficient importance-sampling algorithms to navigate
a representative subset of the conformational space [39]. But sampling takes on a whole new
dimension in the context of this review: not only does a simulation aim at sampling confor-
mational space, compound screening is also a sampling problem—this one in compositional
space. Here we limit our overview to recent methods that aim at sampling either space. The use
of similar techniques to tackle both spaces is no coincidence, it highlights their resemblance
and the associated sampling challenges.

2.3.1. Conformational sampling. The conformational space represents the structural distri-
bution function of the system. A collection of N particles will give rise to a continuous
3N-dimensional space of microstates. The statistical ensemble used to probe the system
biases the weighting of the states, e.g., the Boltzmann distribution in the canonical ensem-
ble. This bias means that not all microstates contribute equally, and instead an efficient
conformational-sampling strategy should focus only on the more important ones.

More conformational sampling is almost always desired: simulating larger and more com-
plex systems potentially opens up new insight unattainable before, but also helps testing for
convergence issues [108, 109]. Limited computational resources limit how long the simula-
tions can be, and instead offset many efforts in sampling more efficiently. Several excellent
reviews cover the vast and rich area of enhanced-sampling techniques [110–113].

ML, and in particular deep learning, has opened up a number of new avenues in terms of
facilitating conformational sampling [25]. For instance, autoencoders display an architecture
that is prone to enhanced sampling: its symmetric bow-tie network, while simply aiming at
reconstructing the input sample, forces an information bottleneck in the so-called latent space.
Describing a system through this reduced dimensional latent space bridges naturally to the use
of collective variables in enhanced sampling. A famous variant to autoencoders, the variational
autoencoder, uses a variational approach to learn the latent representation, resulting in both a
generative model and a smooth latent space that enables interpolation [114]. Various studies
have leveraged the architecture of a (variational) autoencoder to learn a low-dimensional latent
representation of the input conformational space [115, 116] or extract the long-time kinetics
[117]. The added accuracy one can gain by using ML often comes at the cost of interpretability:
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how do we express the latent-space dimensions—the collective variables—in terms of simple,
physically meaningful coordinates? Ribeiro et al proposed to iteratively refine a set of proxy
reaction coordinates that best emulates the latent-space distribution [118].

Other approaches do away with collective variables, and instead use unsupervised learn-
ing as a way to chart a low-dimensional free-energy surface. Chiavazzo et al have devised a
method that iteratively proceeds between MD and nonlinear manifold learning techniques to
expand the system away from regions already explored [119]. Expanding conformational space
using dimensionality reduction was also proposed by Kukharenko et al [120]. They used the
multidimensional-scaling scheme sketch-map [121] to project the points and initiate swarms of
simulations from sparsely (but existing) sampled regions. The generation of molecular config-
urations that have not been previously sampled was subsequently proposed by means of a loss
function that combined an autoencoder reconstruction loss and the sketch-map cost function
[122]. The combination of the two approaches effectively appears to achieve features in line
with the variational autoencoder: the data-driven learning of a smooth latent-space distribution,
coupled to a generative model.

Beyond techniques aiming at enhancing the conformational space sampled, others have
tried to blend in qualitative external knowledge—a prior of sorts—to drive the MD. Perez et al
employed Bayesian inference to guide protein-folding MD from coarse physical knowledge,
such as ‘form a hydrophobic core’ [123]. Folding times were reduced by several orders of
magnitude, illustrating that the body of insight about protein folding can be leveraged to speed
up protein simulations. This example illustrates well the dichotomy between what is systematic
(e.g., algorithms) and what is not (e.g., our intuition), and the Bayesian scheme provides a
formalism to bridge the two approaches. Strategies to blend numerical methods or algorithms
with heuristic prior knowledge is bound to be useful in other areas.

2.3.2. Compositional sampling. The chemical compound space (CCS)—the space of all pos-
sible molecules or compounds—differs from the conformational space in at least two major
ways: first, its discreteness. Conformational space permits continuous transformations between
any pair of microstates. On the other hand, different molecules cannot be arbitrarily close,
because of basic chemical rules (e.g., valency). In other words, very few spatial arrangements
of atoms will lead to chemically stable compounds. Although there are computational treat-
ments to continuously transform molecules (vide infra), the common setting is to dedicate
different simulations for different molecules.

The second defining feature of CCS is its size: the dimensionality of the space is not a simple
function of the number of particles. Natural proteins can be built by combinations of 20 amino
acids, meaning that there are 20n unique sequences of chain length n. For very short peptides
of length n = 10—barely long enough to stabilize any secondary structure—this already leads
us to a space of 1013 compounds. The increased variety of chemical groups in synthetic poly-
mers will evidently yield a much larger CCS. Now consider small-drug like molecules that
obey Lipinski’s ‘rule of five’—restricting the molecular weight, hydrophobicity, and num-
ber of hydrogen bonds—which capture the physicochemical properties of most orally active
drugs [124], its space is estimated at 1060 chemically stable molecules [14]. There are not
enough carbon atoms in the universe to synthesize all of them! What can we do, then? Just
like microstates, not all molecules are made equal—most will yield uninteresting properties.
Focusing on the ones with desired properties is precisely the answer to solving the inverse
problem (section 1.2).

While overwhelmingly large, important steps in better grasping the size and scope of
the CCS of drugs have been made. Reymond and co-workers have sidestepped the minus-
cule, inconsistent collection of synthesized drug-like molecules by instead constructing them
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Figure 3. Transferable coarse-grained models can reduce the size of chemical com-
pound space: fewer coarse-grained (CG) compounds are required to probe a subset of
chemical space. They make use of a finite set of bead types to introduce a degeneracy in
the CG representations of chemical compounds [95].

algorithmically [18, 51]. Graph-based methods combined with valency rules offer a system-
atic way to enumerate large subsets of CCS—most of which have never been synthesized. The
so-called ‘generated database’ (GDB) enumerates a dense coverage of molecules containing
a set of elements up to a threshold in number of heavy atoms: the GDB-17 contains 1011

molecules up to 17 heavy atoms of C, N, O, S, and halogens [125]. Beyond their identity,
computing properties of these dense subsets has subsequently been subject to much activity,
because they enable the training of ML models (section 2.5). The GDB has been used for the
calculation of electronic properties, typically from density-functional theory (DFT), of increas-
ingly many compounds: Rupp et al calculated the atomization energy of 7 · 103 molecules [84];
Ramakrishnan et al computed various electronic properties for 1 · 105 molecules [126]; and
Hoja et al more recently reported a database of 4 · 106 molecules [127].

When tackling the exploration of CCS, coarse-graining can offer significant advantages.
Top-down, phenomenological CG models focus the modeling on the essential ingredients or
driving forces at play [53]. This minimalistic approach can lead to generic—if not univer-
sal—behavior that broadly applies to many systems. One famous example is the Kremer–Grest
polymer model [128, 129]. Zhang et al demonstrated that a melt of this phenomenolog-
ical model can broadly be backmapped to many different types of homopolymers [130].
Everaers et al recently matched the generic large-scale behavior of Kremer–Grest simulations
to chemistry-specific experiments via the Kuhn length [131].

While the link between top-down CG models and the underlying CCS often remains quali-
tative, there can be approaches to establish it. Many of these top-down models are transferable,
in that they define a limited set of interactions of bead types to encode the variety of chemical
groups. In case of the popular Martini model the bead types roughly span the hydrophobic-
ity scale [94]. This limited chemical resolution means that molecules alike will often map to
the same CG mapping. This critically introduces a degeneracy in CG representation of small
molecules, and effectively a reduction in the size of CCS. Figure 3 illustrates the use of Mar-
tini for small molecules: it can lead to a reduction in chemical space by roughly 3 orders of
magnitude. The mapping from molecules to CG representations is straightforward to estab-
lish using automated parametrization schemes of GDB-type libraries [95, 132]. This reduction
of the size of CCS can be applied to significantly boost the compound screening of thermody-
namic properties—one example will be covered in the context of drug–membrane interactions,
section 3.8.
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Beyond mere enumeration or serendipitous picks, there are more efficient ways to explore
CCS. Virshup et al devised an algorithm to stochastically grow an initial set of compounds
to maximally diversify it, restricted to specific properties (e.g., drug-likeness) [133]. They
reported a library of 104 compounds representative of the GDB-13, yielding a 104 reduc-
tion factor while retaining its diversity. Such an approach is likely to go hand in hand with
the training of ML models, which require a good balance between chemical similarity and a
representative coverage of the interpolation space. At the other end of the spectrum, Hoksza
et al presented the Molpher framework, which provides a (discrete) path in chemical space
between a pair of compounds [134]. It performs a series of simple structural molecular changes,
such as atom addition or removal, from start to target molecule.

Other approaches at sampling CCS emphasize the (bio)chemistry or physics of navigating
across molecules. Taking inspiration from nature has led to the adaptation of Darwinian-type
directed evolution [135]. Computational directed evolution has so far mostly been applied to
protein design, and more specifically to enzymes [136]. Leveraging the aptness of compu-
tational physics to perform importance sampling, a Markov chain Monte Carlo scheme can
efficiently sample across CCS [137]. Closer to reproducing a laboratory experiment, Wang
et al implemented an ab initio nanoreactor, leading to spontaneous chemical reactions and
the formation of molecules through a variety of pathways [138]. Such a computational setting
holds great promise in studying in more detail the origins of life [139].

While most of these approaches tackle CCS in its discrete form, continuous explorations
may well prove extremely strategic. However, connecting compounds in a continuous man-
ner requires some craft. One notable example is the alchemical transformation, a powerful
tool in statistical mechanics to compute free-energy differences [140]. It relies on a cru-
cial property: state functions do not depend on the path taken, and instead permit non-
physical—alchemical—interpolations between two compounds (more on this in sections 3.2
and 3.3). A corresponding framework can be used to compute ab initio energy gradients
and other changes in properties upon local changes in CCS [141, 142]. Aside from the rel-
evant materials properties, the inclusion of derivatives may help in more efficiently mapping
structure-property relationships [143].

Another strategy to circumvent the discreteness of CCS consists of imposing a continu-
ous proxy. Such a proxy will enable continuous-optimization schemes, thereby facilitating
molecular design. Wang et al employed a linear combination of atomic potentials to estab-
lish a continuous property landscape [144]. In a similar vein, von Lilienfeld et al relied on
an energy functional based on the nuclear and electronic chemical potential [145]. With the
advent of deep learning, new solutions have been proposed: Gómez–Bombarelli et al used a
variational autoencoder (covered in section 2.3.1) to not only reduce the CCS, but more impor-
tantly to smoothen it [146]. Built in the variational autoencoder, the representation of the latent
space allows a continuous exploration of the CCS. The architecture was connected to a sur-
rogate model, whose objective was to predict a target property in the reduced latent space,
enabling continuous optimization. This active-learning, Bayesian-optimization approach has
lately been applied in the context of soft-matter systems by Shmilovich et al, as described in
section 3.7 [147].

2.4. Data infrastructure

Assuming all technical requirements permit MD simulations at high throughput, the question
arises: what to do with the data? Handling large collections of MD simulations can easily
require extensive storage solutions. More importantly, it poses the problem of data shar-
ing—not only between group members and collaborators, but across the community at large.
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Recent cultural shifts in science are increasingly encouraging the dissemination of research
data. A collaborative and open-source approach to scientific endeavors can strongly acceler-
ate the pace of research [148]. Databases of experimentally determined materials properties,
for instance for polymers, can prove invaluable to extract structure-property relationships and
assist in designing better materials [149–151].

What to do, then, to publish large collections of MD simulations? An increasing number of
online repositories dedicated to hosting scientific data have come about, Zenodo [152], figshare
[153], or the open science framework [154], to name but a few. These databases are generic in
that they are agnostic to the type of scientific data, unlike, say, the protein data bank (PDB),
which specializes in biomacromolecular structures [155]. The next question is the data for-
mat. One straightforward solution is to simply compress all the input and output files of a
set of MD trajectories and upload them as is—a strategy our group adopted to publish hun-
dreds of umbrella-sampling MD trajectories [156]. This lets anyone freely access the data, but
presents caveats. Notably, (i) it does not facilitate automated strategies to search and collect
information about the data, and (ii) the input/output formats are tied to MD software used
to generate the simulation trajectories. This is more formally denoted by a lack of data label-
ing—or metadata—and data normalization, respectively. The convenient access, retrieval, and
categorization of heterogeneously generated data is key to assemble large databases, amenable
to training ML models (more on that in section 2.5). Such a framework has been formalized
by the FAIR principles: data that is findable, accessible, interoperable, and reusable [157].
The new era of computational materials design mentioned in the Introduction is in no small
part made possible by a robust data infrastructure in materials science [158]. Publishing large
FAIR datasets is becoming increasingly widespread, thanks to solutions like the Materials Data
Facility [159]. The development of a number of data-infrastructure platforms, such as NOMAD
and the Materials Project, strive to label electronic-structure calculations by detailed metadata,
parse many codes and normalize the input and output information, and offer access via a web-
page or a programmatic interface [160, 161]. Several consortia are working their way toward
more robust data infrastructures for molecular simulations, including OpenKIM [162, 163],
MOLSSI [164], and FAIR-DI [165]. Recent examples show that the interconnection of spe-
cialized databases can help automate the metadata annotation process, as will be described in
section 3.6.

2.5. Data analysis

Once the difficult task of generating MD-based compound databases is over, a second one
starts: the data analysis. Here we will rely on the concept of data-scale, already introduced in
section 1.3. Figure 1 illustrates that the number of compounds largely determines the type of
statistical modeling. This constraint stems from the expressivity of a statistical model, which
depends largely on the number of parameters of the architecture and dimensionality of the
representation, which themselves require larger training set sizes. We structure what follows
in terms of the data-scale by means of the variable Ncompounds, from the traditional setting of
craftsmanship, to data mining in the low-data regime, to kernel-based ML methods, to deep
learning.

2.5.1. Craftsmanship. Working in a regime Ncompounds ∼ 1 leaves little room for data-driven
analysis methods. It instead embodies the traditional setting of gathering insight driven by
physical theories, experiments, prior computer simulations, or simply intuition.

2.5.2. Data mining. Moving up to Ncompounds � 10 can offer enough information to system-
atically search for simple structure-property relationships. The low number of samples puts
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a strong limit on the dimensionality of the sample information—the descriptors. Relating
low-dimensional descriptors to materials property has enjoyed great attention for decades,
embodied for instance by so-called quantitative structure–property relationships (QSPR) [34,
166]. QSPR is a well-established, powerful method to functionally relate chemical structure
to property. Applications include largely drug discovery [167, 168], but we also note other
soft-matter systems, such as the self assembly of conjugated oligopeptides (more on that in
section 3.7) [169] and the tribology of functionalized, lubricating monolayer films [107]. QSPR
relies on a set of descriptors, typically combined using a (multivariate) linear fit. More recent
applications have turned to using the kernel trick to convert a non-linear problem into a linear
one, support vector machines can then highlight the most important descriptors, and we fur-
ther note the increasing use of artificial neural networks [167, 168]. Practically however, these
data-mining models tend to be less limited by algorithmic developments than by the data itself:
small values of Ncompounds can easily lead to a large dependence to the training set. This aspect
calls for particular attention to model generalization: how similar do the predicted molecules
need to be from the training set [167].

A more recent take on the functional discovery of structure-property relationships brings us
to learning more complex equations. Compressed-sensing methods extend QSPR to expand
the complexity of the functional relationships tested. They rely on a large combinatorial
consideration of trial candidate equations, and a greedy l1-norm optimization scheme to
minimize the number of non-zero coefficients. Examples include the symbolic regression
of nonlinear dynamical systems [170] and equations from the Feynman lectures on physics
[171]. Ghiringhelli et al used least absolute shrinkage and selection operator (LASSO) to
extract functional relationships between descriptors that can accurately classify between zinc
blende and rocksalt semiconductors [172]. Ouyang et al refined the approach using the sure
independence screening and sparsifying operator (SISSO), which hierarchically searches for
combinations of descriptors [173]. Rather than building a single surrogate model aimed at
explaining the entire dataset, another method called subgroup discovery focuses on coher-
ent homogeneous subsets. Goldsmith et al revisited the zinc-blende/rocksalt semiconductor
problem and identified separate regions with strict constraints [174]. These models are of
particular interest at a time where ML models are increasingly criticized for their lack of
interpretability: identifying the explicit role of the input variable in the structure–property
mapping.

By and large, these approaches aim at capturing the essential variables or descriptors that
dictate the target property. This dimensionality reduction aims at garnering insight into the
problem at hand, ideally by visualizing how the minimal set of descriptors link to the property.
The systematic construction of reduced dimensional representations is a vast field, one that
naturally connects to unsupervised-learning techniques [175].

2.5.3. Kernel-based supervised learning. The regime Ncompounds � 103 is amenable to the
optimization of much more expressive models. These are often called surrogate models: they
aim at learning the (oftentimes complex) relationship between input and output parameters,
so as to yield a computationally efficient prediction. These models strive for accuracy and
generalization: to make a precise prediction over a large interpolation domain. At best, the
accuracy of the estimation can be on par with the reference method [176]. We refer the reader
to several excellent reviews on the use of (kernel-based) ML for molecular systems [4, 6, 25,
90, 177]. Compared to QSPR methods, ML methods are free of fixed functional forms, and
instead offer flexible interpolation between training points in a high-dimensional feature space
[83, 178]. ML models exploit similarity in several ways: they first impose a metric, allowing us
to measure distances in CCS, a critical ingredient to both explore and sample from that space
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(section 2.3). Similarity is explicitly assumed by enforcing smoothness between input space
and target property—an aspect that helps interpolate between training points.

Naturally, ML is not free of pitfalls. The application of ML to materials modeling—and
more specifically to molecular systems—requires domain knowledge. To be competitive, an
ML model should outperform an ambitious baseline: our own understanding of physics and
chemistry! An appealing strategy is to construct physics or chemistry inside ML models—an
aspect we outline below.

The increased expressivity of ML relies on the use of higher-dimensional input information,
representations, rather than mere descriptors. Representations offer a more detailed—many-
body—description of the system, such as a molecule or an atom in its local environment [84,
179–181]. A higher-dimensional representation also means more difficulties in probing how
broadly the ML model can be deployed: at which point does it start extrapolating? How will
we know? While there are many facets to these questions, one crucial piece of information
we can take advantage of is the underlying physics. Given that my system obeys a conserva-
tion law or symmetry, can we constrain an ML model to satisfy this constraint a priori? The
need to account for physical symmetries was recognized early on [182]. The Noether theorem
states that symmetries in a physical system lead to conservation laws and invariants. Empir-
ically learning these invariants often requires significant amount of training data—encoding
them in the representation or the ML architecture can lead to significant learning improve-
ment [183]. As a result, translation, rotation, or (when applicable) permutation invariance
often form the basic requirements for ML representations. Symmetries can be added to the
kernel itself , notable examples include the learning of vectors by covariant kernels [184] or
energy-conserving force fields via the Hessian [91, 185, 186]. Additional constraints can be
added as well, for instance a decomposition ansatz when the target property lumps several
terms, useful to decompose reference forces [89], atomic dipole moments [187], or free ener-
gies [188]. Kernels turn out to be extremely convenient to encode physical constraints because
they work within the realm of linear algebra. Extending these properties to neural networks
and deep learning is more challenging, though the improved expressivity has motivated active
developments (vide infra).

The lessons learned to build ML models in chemistry and materials science largely transfer
to soft matter and biomolecules, where similar constraints on the representation prevail [189].
Screening studies that make use of kernel-based ML have become prominent, for instance
in protein–ligand binding, but many typically use experimental data [179]. Using MD, the
relevant data-scale regimes typically require a CG approach. For instance in drug-membrane
thermodynamics, CG simulations of ∼ 103 systems led to predictions for 1.3 · 106 molecules,
thanks to the CG model’s reduction of CCS [137]. The predictions satisfied thermodynamic
relations observed on smaller data sets, strongly suggesting robust generalization. While this
study was based on a top-down CG model, systematic approaches like the variational force-
matching method bode elegantly well with the loss function of an ML model. This has resulted
in several studies, and in particular efforts at addressing the challenging question of mapping
many atomistic configurations to a single CG geometry [186, 190–192].

Several challenges still lie ahead for a more robust description of condensed liquid-state
systems. For instance, a (macro)molecule is never isolated, but embedded in its environment,
such that a representation may benefit by incorporating the neighboring solvent’s degrees of
freedom [193]. The nature of the systems naturally calls for the development of ML-based
force fields that incorporate long-range interactions [194], as well as more particle types. We
also point out the critical role of the configurational aspect: a single geometry is not represen-
tative, but rather should incorporate information about the underlying Boltzmann distribution
[188]. More than anything else, high-quality ML models require extensive training data. Soft
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matter needs large, homogeneous databases analogous to what has been developed from DFT
calculations for electronic properties, e.g., the QM9 database [126].

2.5.4. Deep learning. The extraordinary results achieved with deep learning in so many sci-
entific and technological fields have to do with the added expressivity of these models. Using
a neural-network architecture that connects several layers of nodes, input and output can be
mapped to generalize surprisingly well [195]. Compared to the above-mentioned regimes, the
added expressivity of deep learning comes at a price: they rely on an overwhelming number
of parameters, and a non-convex problem to solve. Practically this entails many more training
data points necessary to parametrize a model, typically in the range Ncompounds � 106.

The benefits of deep learning are far reaching: notably for drug discovery—though so far
with data generated from experiments [196, 197], we also outlined some of the distinct concep-
tual advantages a deep-learning approach offers for sampling both across conformations and
compositions (section 2.3.1). In terms of representing molecules, the inclusion of symmetries
is also an essential aspect, requiring extensive methodological work [198, 199]. They open the
door to so-called physics-informed neural networks, which aim at a synergistic combination
of the two approaches to reduce the training data, effectively regularizing in small data-scale
regimes [200]. Deep learning offers exciting opportunities: for instance graph convolutional
neural networks (CNNs) offer a physically intuitive representation for molecules, where nodes
and edges represent atoms and bonds. Graph CNNs offer appealing features: differentiable,
more easily interpretable, and better performing than commonly used molecular fingerprints
[201].

Harnessing the full potential of deep-learning models puts stringent requirement on the
number of compounds, which severely restricts what can be achieved in terms of screen-
ing studies. Few MD studies have reached data-scale regimes amenable to deep learning, but
impressive first steps show much promise, such as the prediction of transfer free energies in
lipid membranes [202]. It offers a glance at the use of MD-based studies to train deep-learning
models across the CCS of biomolecular and soft materials.

3. Screening applications

The following describes a number of MD-based screening applications for various soft-matter
and biomolecular systems. We order the applications roughly in the number of compounds
screened, from low to high, and grouped by topics when deemed fitting. Beyond the range
of screening sizes, some of these applications result from intense and long-standing scientific
activities. For those, the present review cannot do justice to the breadth of these research topics,
but will hopefully stimulate the reader in diving into complementary readings.

3.1. Exploring conformational space with swarms of trajectories

Far from a screening at high throughput, this first application focuses on the study of individual
(macro)molecules. While slightly deviating from the greater objective to screen across com-
pounds, the conceptual approach and implementation undertaken here is relevant for our topic,
as it provides innovative solutions to exploring conformational space.

The problem at heart involves the determination of kinetic properties for systems exhibiting
relevant processes at long time scales—long compared to what would be considered reason-
ably achievable by a single trajectory on a supercomputer. Supercomputers tackle ambitious
simulations by means of CPU or GPU parallelization. Unfortunately, not everything is easy to
parallelize: While one can easily segment a simulation box to treat smaller cells concurrently,
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MD numerically integrates the equations of motion in a serial fashion—it is difficult to paral-
lelize time. Folding@Home tackled the problem by introducing two complementary aspects:
a conceptual approach to circumvent the long-time-scale sampling problem, and a platform to
implement it [203].

The dynamics of complex systems is typically dominated by free-energy barriers: thermal
fluctuations will lead a system to dwell in a conformational basin (i.e., a local minimum),
before being spontaneously pushed over a barrier. Assuming single-exponential kinetics with
(unknown) rate k, the probability for the system to cross the barrier at time t is given by
P1(t) = k exp(−kt). Rather than wait for a single trajectory to cross over once, let many copies
attempt it over a short time. In the case of M simulations, the probability for the first simu-
lation to cross at the same time t is now PM(t) = Mk exp(−Mkt), exhibiting an effective rate
that is M times faster. The pioneering work of Pande and co-workers demonstrated the value
of the approach: running multiple instances of a short simulation boosts the chances of seeing
early crossing events, and sufficiently many occurrences allow them to estimate the rate k, as
illustrated on the folding of small peptides and polymers [204].

The second breakthrough of the Folding@Home consortium was to establish a distributed-
computing platform, powered by idle CPU power contributed by anonymous users over
the internet [203]. Running many short, uncoupled simulations meant that they did not
need to run on the same supercomputer. All simulation instances need no communication,
since they independently sample the same conformational space. Practically this was sim-
ply realized by M copies of the same initial configuration (typically with different seeds and
velocities), since the stochasticity of the dynamical process will quickly lead to diverging
trajectories.

One of the early examples of the Folding@Home project aimed at the folding kinetics of
two mutants of the designed, 23-residue-long mini-protein BBA5 [205]. With a mean folding
time on the order of 10 μs, it is considered a fast-folding protein, yet very much a challenging
time-scale for an all-atom MD simulation—especially at the time the research was conducted.
Following the above-mentioned reasoning for single-exponential kinetics, they estimated that
for such a folding timescale, roughly 10 out of 10 000 individual trajectories should fold
after 10 ns. Using an implicit-solvent united-atom model, they showed that an impressively
large number of short simulations yielded excellent agreement with laser temperature-jump
experiments.

Folding@Home has made significant contributions in elucidating the protein-folding
problem in silico [63, 206]. Early applications were then superseded with Markov state mod-
els, a more robust memoryless master-equation treatment of the kinetics, pioneered by Noé,
Pande, Chodera, Bowman, and others [47, 207–210].

Moving away from protein folding, a more recent application of distributed-computing plat-
forms focused on protein–ligand binding. Using their distributed-computing platform GPU-
GRID, De Fabritiis and co-workers demonstrated the value of the approach for PMF cal-
culations for standard binding free energies [211]. Buch et al reported an impressive study
of the enzyme-inhibitor complex trypsin–benzamidine: they performed 495 unbiased MD
simulations of the unbound ligand for 100 ns each [212, 213]. They sampled a variety of
binding events, but also several pathways, allowing them to robustly estimate both the bind-
ing free energy, as well as the on and off binding rates. Extensions to the modeling of pro-
tein–protein association kinetics form to date one of the most impressive developments in this
area [214].

Distributed-computing platforms have had a conceptual impact as to how the community
increasingly approaches MD simulations: from handcrafted, individual instances to swarms
of trajectories. The associated need for automation paves the way for different kinds of
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high-throughput MD simulations. Spawning MD trajectories has since been extended to
exploring uncharted regions of the free-energy landscape using machine learning [119].

3.2. Protein–ligand binding

The ever-growing penetration of computational chemistry in drug discovery has experienced its
shares of challenges [215]. Like any complex engineering problem, the design of a drug entails
many considerations and complementary problems to solve. From membrane penetration, to
toxicity, to pharmacokinetic and pharmacodynamic considerations, we focus here solely on the
determination of protein–ligand binding.

Basic structure-based drug-design methods typically assume rigid drug-target structures:
starting from a crystal structure or homology modeling, a ligand is docked near the receptor’s
active site; the molecular configuration is then used to estimate binding, often using empirical
scoring functions as a proxy. While this type of virtual screening accommodates a large number
of compounds, it models the complex as mostly rigid. The lack of flexibility is an issue, given
the recognized role of the conformational ensemble in biomolecular activity [216]. The field
moved from a static lock-and-key binding paradigm to more dynamic pictures, such as induced
fit or conformational selection. This emphasizes the need for physics-based methods that model
not only structural flexibility, but more broadly the relevant emergent phenomena following
binding [217].

Beyond flexibility, an accurate account of the binding free energy is desired. Free energies
are ensemble properties, making the scoring of any individual configuration a conceptually
peculiar exercise. Several methods have been developed and tested over the years—the drug-
design field having explored many methodologies to strike the right balance between accu-
racy and throughput: from end-point methods to rigorous calculations derived from statistical
mechanics.

One prominent example of an end-point method combines MD simulations on the bound
and unbound configurations, using an implicit solvent and a Poisson–Boltzmann surface area
solvation term (MM-PBSA). Brown and Muchmore applied MM-PBSA to a set of 308 ligands
bound to one of three protein receptors [218]. The breadth and scope of the study is laudable:
moving toward a high-throughputMD scheme to extract free energies of binding. The moderate
correlation coefficients (Pearson coefficient R2 = 0.5–0.7) are unfortunately a testament to the
difficulties end-point methods display in reliably directing drug discovery [219, 220].

Alchemical transformations provide a rigorous framework to compute binding free energies
[140]. Though many methodologies exist [221, 222], we mention one equilibrium techniques
that aims at calculating the free energy upon transforming from state A to B: free-energy
perturbation, introduced by Zwanzig [223], relies on exponential averaging

ΔGA→B = GB − GA = −kBT ln

〈
exp

(
−HB(r) −HA(r)

kBT

)〉
A

, (1)

where r denotes the system’s particle coordinates, HA is the Hamiltonian of state A, and 〈·〉A

is an ensemble average at state point A.
Three decades ago, the pioneering study of Wong and McCammon presented an alchem-

ical transformation between benzamidine bound to the enzyme trypsin [224]. A fascinat-
ing review by Jorgensen describes some of the successes of MD coupled with alchemical
transformations to advance the drug-discovery pipeline [219]. While the generation of new
scaffolds (i.e., entirely different structures) is naturally sought, so-called hit-to-lead optimiza-
tion—refinement of the binding of a promising starting compound—is where alchemical trans-
formations really shine. There are two reasons for this: (i) the computational expense of each
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alchemical transformation limits the screening to relatively few compounds, thereby limiting
the chances of finding new scaffolds; and (ii) the interpolative nature of an alchemical trans-
formation (i.e., overlap in the conformational spaces, see 1) leads to better convergence for
similar molecules.

Alchemical transformations took a more systematic turn with the study of Wang et al [225].
They reported relative free-energy calculations at an all-atom level with explicit solvent for an
impressive 200 ligands. This feat was aided by the deployment of MD simulations on graph-
ics processing units (GPU), as well as a streamlined procedure to prepare and run alchemical
transformations. Critically, they optimized a ‘perturbation graph’, which measures the maxi-
mum common substructure between any pair of compounds [226]. The algorithm minimizes
the number of alchemical transformations, while accommodating for both multiple pathways to
estimate statistical error and the presence of closed cycles (which ought to yield no free-energy
difference). With a total of 330 perturbations, they reported a root-mean-squared error against
experiments of only 1.1 kcal mol−1. More recent work has reported alchemical transforma-
tions for up to several thousands of ligands [227]. Force-field improvements, from OPLS2.1
to OPLS3 and OPLS3e have yielded systematic improvements in binding free energies
[78, 79].

Three decades of MD-based computational drug design have shown impressive develop-
ments: not only in the sheer number of compounds (from 1 to thousands reported in a single
study), but more importantly in the convergence of the calculations via significantly longer
simulation trajectories, and an overall improvement of the force fields. The significant con-
tributions of industrial actors is a testament to both the pressing needs of the pharmaceutical
industry and the opportunities offered by physics-based MD methods.

3.3. Solvation of small molecules

The free energy of solvation of small molecules is in many ways an antechamber to protein-
ligand binding: it consists of the free-energy difference of transferring a small molecule from
the gas into a condensed-phase environment. Rather than a protein pocket, solvation is per-
formed in a bulk liquid. The homogeneity of the medium makes the calculations easier to
converge, typically allowing for broader studies that may accommodate significantly more
compounds.

The study of Jorgensen and Ravimohan pioneered alchemical transformations by convert-
ing methanol into ethane [228]. They applied free-energy perturbation (covered in section 3.2)
to compute the relative free-energy difference in hydration—solvation in water—of the two
compounds. An alchemical transformation between these two similar molecules helps the
calculation: it only requires decoupling the hydroxyl group and coupling a methyl in its
stead.

Modeling solvation has had significant impact as a proxy for more complex phenom-
ena—a prime example being protein folding (some of which was covered in section 3.1). The
protein-folding problem was always strongly pushed by computer simulations [63]. Huang
et al reported an insightful study on hydrophobic solvation, they calculated the free energy
of solvation for hard-sphere solutes of various sizes [229]. These solutes, though not directly
linked to any particular chemistry, aimed at a better phenomenological understanding of pos-
sibly large hydrophobic regions exposed to water, such as in protein folding. Of particu-
lar interest was the systematic change in the solute size and comparison of the asymptotics
against theory. In the same vein, the early 2000s witnessed intense activities in accurate cal-
culations of hydration and transfer free energies of (neutral) amino-acid side-chain analogs
[230–233].
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Mobley et al reported hydration free energies for a set of 44 small, neutral molecules
[234]. A larger set of 239 small neutral organic molecules was later tested against various
force-field parameters and charge models [235–237]. In parallel, Mobley et al released the
FreeSolv database, a set of 504 neutral small organic molecules, with comparison against
experiments [238]. Such studies have led to the more routine incorporation of hydration
free energies in validating force fields [78, 79]. Scaling up, Bennett et al recently reported
an impressive 15 · 103 water–cyclohexane transfer free-energy calculations from all-atom
MD [202].

Experimental free-energy datasets such as FreeSolv are useful because they cover much of
the diversity of small drug-like molecules, although the small number of compounds necessar-
ily limits how representative they are. ML models of in silico hydration free energies trained on
different datasets—both experimental and combinatorially generated—did not appropriately
generalize across each other, highlighting biases in the chemical space covered [188]. Still, the
increased size and breadth of the spanned chemical space allow researchers to identify system-
atic problems with force-field parameters for classes of compounds. The same holds true at the
CG level: the automated Martini parametrization scheme for small molecules facilitates the
calculation of partitioning free energies for several hundred molecules [95]. It helped identify
systematic issues with certain chemical groups, such as rings or halogens, which new versions
of the force field aim at correcting [239].

With a growing number of computational techniques to compute free energies, how can one
compare their predictive accuracy in a fair way? Nicholls et al set up an informal blind-test
study, comparing different methodologies for 17 small molecules [240]. This was later for-
malized through the SAMPL challenge [241, 242]. The blind tests consisted of teams applying
their method to compounds for which solvation free energies are known but unpublished or
relatively inaccessible. It avoids the risks of tuning model parameters that would skew results
to seem artificially more favorable. SAMPL2 introduced an explanatory section to gain insight
in (disclosed) unexpected experimental results [243]. Later challenges have since occurred and
keep helping benchmark and refine computational methods [244].

3.4. Ionic liquids

Ionic liquids (ILs) are salts. They exhibit a melting point or glass-transition temperature below
100◦, while so-called ‘room-temperature’ ILs remain liquid below 0◦. ILs typically exhibit
good thermal stability, low vapor pressures, and are able to dissolve many compounds. This
makes ILs interesting solvents in sustainable chemistry, with technological applications such
as solvent for biomolecules or catalysis [245]. Critically, ILs are also conductive, which makes
them candidates for use in electrochemical applications. In parallel, the combinatorics of asso-
ciation of cation–anion pairs leads to an extraordinary number of possible ILs. The combi-
nation of the breadth of chemical structures available and the variety of properties of interest
has motivated a number of quantitative structure-property relationship modeling, albeit so far
mostly exclusively from experimental data [34].

Computer simulations have played a significant role in better understanding ILs. Maginn
pointed out that interests in ILs rose coincidentally with the advent of computer simulations,
which have proven increasingly capable of shedding light on complex fluids [246]. The com-
plex structural, thermodynamic, and dynamical aspects, including behavior at interfaces, vis-
cosity, and dynamical heterogeneity motivated computational studies at various scales, from
quantum-mechanical calculations to classical atomistic to CG modeling [246–249].

Turning to computational screening, Osti et al reported an insightful study aimed at prob-
ing ion interactions and transport in solvated ILs [250]. They fixed the IL cation–anion
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pair (1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)), but screened across four
organic solvents: acetonitrile (CH3CN), methanol (CH3OH), tetrahydrofuran (C4H8O), and
dichloromethane (CH2Cl2). The potential of mean force of separating a cation–anion pair sug-
gested clear correlations between the energetics of the interaction and solvent polarity: a larger
dipole moment is better able to screen ion–ion interactions, thereby decreasing the free energy
of solvation. This clear trend was mirrored in the dynamics: ion diffusivity showed a linear
increase against the solvent dipole moment. The results were corroborated by quasi-elastic
neutron scattering experiments, overall offering clear structure-property relationships.

A larger, follow-up screening yielded surprising results [251]. Thompson et al extended
the set of systems they studied, both in terms of IL–solvent mixtures (18 increments in the
range 0.1–0.95 mass fraction) and solvent chemistry (22 solvents including nitriles, alcohols,
halocarbons, carbonyls, and glymes) for a total of 396 state points. This study both further con-
firmed a previously observed trend—IL mass fraction against IL diffusivity—and uncovered
a new one—solvent diffusivity against IL diffusivity. Critically, they revisited the previously
observed trend by Osti et al between IL diffusivity and solvent dipole moment [250]: the incor-
poration of more compounds indicated no strong correlation across the entire data set. The
authors hinted at the role of complementary solvent order parameters to recover clear trends.
Combined, the two studies by Osti et al and later Thompson et al illustrate a decisive aspect:
the inference of structure-property relationships hinges on a representative set of chemical
compounds.

3.5. Silicate glasses

Glasses—materials that have been cooled significantly but without crystallizing—are known
as structurally similar to but dynamically very different from liquids [252]. Glassy mate-
rials play a key role in many technological areas, motivating the optimization of their
mechanical properties, from hardness to fracture strength to elastic properties [253]. Glasses
embody an overwhelming class of materials, when considering not only the compositional
aspects—potentially including a large number of elements of the periodic table—but also its
strong out-of-equilibrium nature, meaning that the processing of the material can easily lead
to kinetic traps.

Yang et al recently presented a high-throughput MD study of silicate glasses, in an effort to
predict their Young’s modulus [254]. They covered the ternary diagram of calcium aluminosili-
cate (CAS), CaO–Al2O3–SiO2, by use of 231 compositions over the domain in 5% mol regular
increments. The authors ran MD simulations with tailored force fields [255] using a melt-
quench procedure to prepare the configurations. All efforts were made at providing a consistent
system-preparation and simulation protocol throughout the compositional space studied, but
some limiting regimes required specific treatments: (i) Higher initial melting temperature for
samples with high SiO2 concentrations, due to their higher glass-transition temperatures; and
(ii) faster cooling rate for samples with high CaO concentrations, as they otherwise tend to
crystallize. These aspects illustrate the challenges faced by the need for consistent protocols
across large regions of chemical/compositional space.

From the simulation data, they predicted the Young’s modulus across the compositional
space using different statistical models. All their approaches—from polynomial regression to
various flavors of machine learning—led to excellent results, indicative of both a dense sam-
pling of the compositional domain and a smooth mapping to the target property. Interestingly,
they showed that fitting models to available experimental data (∼ 100 points) led to severe
biases: (i) clustering of the available data leaves large domains without any training points;
and (ii) significant uncertainty and systematic errors between experiments can lead to large
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variations. While the latter aspect can be alleviated by means of adequate regularization, the
former recalls the ever-present dangers of extrapolation.

3.6. Membrane proteins

Building up on the modeling of soluble proteins (see section 3.1), membrane proteins form an
important subset due to their biochemical impact: they form roughly 25% of all human proteins
[256] and half of current drug targets [257]. Membrane proteins typically exert significantly
more complexity than their soluble counterparts. Transmembrane proteins in particular—those
that span the membrane bilayer—evolve in a highly complex environment at the interface
between the membrane and the aqueous environment. This complex environment is com-
pounded by the large sizes that membrane proteins typically exhibit, often made of numerous
α helices or a prominent β barrel. As a result, the size and heterogeneity of membrane pro-
teins have made them challenging, not only for structure determination [258, 259], but also for
computer simulations [260–263].

The computational modeling of membrane proteins has benefitted heavily from particle-
based CG models. An all-atom treatment of a protein and its surrounding lipid membrane
remains to date a heroic effort: protein folding happens over much longer time scales in the
membrane, due to the much larger correlation times exerted in the bilayer. Peptide folding
and insertion in a lipid membrane has been reported at an atomistic level, although using an
implicit-membrane description, thereby speeding up the peptide dynamics in the membrane
environment [264]. Alternatively, CG models offer an appealing way to study peptide folding
and insertion in explicit membranes, thereby offering the means to monitor how the peptide
perturbs membrane structure [265, 266].

A CG description of membrane proteins does not only allow to study folding and insertion
for one of them, it can also be used to study a larger number of systems. Sansom et al presented
more than a decade ago an impressive protocol to automate the preparation of transmem-
brane proteins [267]. Starting from experimentally determined protein structures—typically
deposited in the protein data bank (PDB) [155, 268]—these macromolecules typically lack
structural information about the aqueous and membrane environments. Running MD simu-
lations of a membrane protein requires first to solvate it in both a lipid membrane and an
aqueous environment. Atomistic protocols typically start from equilibrated lipid bilayers and
place a hole to incorporate the macromolecule [269]. Instead, the CG protocol of Sansom
et al did not order the lipids in any way, but rather incorporated them as an unstructured
‘soup’. The soup spontaneously rearranged into a bilayer, thanks to self assembly and the
speedy molecular diffusion at the CG level. Other CG based schemes have been developed
to ease and automate the generation of complex lipid bilayers [270] and the assembly of
membrane-protein multimers [271]. We note that the Martini-like CG model does not allow
for secondary or tertiary structure reorganization, and is instead restrained around the crystal
structure [272].

The pioneering database of Sansom et al contained 91 membrane proteins and was made
available together with a web server to easily visualize structural information [267]. Though
no longer available today, the Sansom group later released an expanded database of membrane
proteins: MemProtMD [273]. Based on a more sophisticated pipeline, the CG-based prepara-
tion protocol was amended by a backmapping to atomistic resolution [274]. They also more
systematically imported structures from the PDB. The shear size and incomplete data anno-
tation of the PDB led them to design structural descriptors to detect α-helical and β-barrel
membrane proteins. An ensemble analysis across structures allowed them to gain insight in the
probabilities of occurrence of amino acid side chains with respect to the depth in the bilayer.
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The MemProtMD database and associated web server contains more than 3500 PDB entries
[275]. A systematic connection with other databases brings in additional metadata to group
structures according to their constituent proteins and family. The network of protein databases
helps automatically annotate these structures with valuable information.

Beyond the screening of membrane proteins themselves, cell membranes embed these
biomolecules in complex plasma membranes, made of a wide diversity of compounds. Cor-
radi et al studied the protein–lipid interactions for 10 membrane proteins embedded in a
model plasma membrane made of 60 lipid species [276]. The authors identified clear ‘lipid
fingerprints’: preferential association of certain lipid species to parts of the protein. This study
highlights the combinatorial challenge involved, not only through the shear sampling of each
system, but the extreme compositional diversity at hand.

3.7. Oligopeptide self assembly

The use of oligopeptides, consisting of a small number of residues, to self assemble nanostruc-
tures offers the promise of tunable supramolecular functionalities, yet with ease of preparation,
biocompatibility, and degradability [277, 278]. They are proving viable contenders for appli-
cations in biomedicine and nanotechnology [279, 280]. Various types of nanostructures can
be achieved, including fibers, tubes, and sheets [281, 282]. This diversity stems from the vast
combination of 20 natural amino acids into sequences.

In a series of studies, Frederix et al have set up a systematic MD-based virtual screening
protocol to establish clear structure-property relationships between the amino-acid sequence
of short peptides and self assembly under aqueous conditions. Using the CG Martini force
field, they first probed the ability to reproduce structural features of the well-characterized
diphenylalanine (FF) peptide [17]. The aggregation of 1600 dipeptides for 1.5 μs of simula-
tion time (approximately accounting for the acceleration due to coarse-graining) generated a
tubular nanostructure whose dimensions are in agreement with x-ray diffraction analysis of
crystallized FF nanotubes [283]. This indicated that despite structural limitations of the Mar-
tini force field to model protein secondary structure, it could yield reasonable self-assembling
features. Beyond the final structure, the simulations also helped understand the mechanism of
formation: from an initial random placement to quick ordering into sheet-like aggregates, to
vesicle formation, and finally long hollow tubes.

Scaling up, Frederix et al screened exhaustively the space of all possible 202 = 400 dipep-
tide combinations [17]. Although coarse-graining significantly speeds up the simulations, the
scope of the study led the researchers to rapidly probe early determinants of aggregation. They
followed the self assembly of 300 dipeptides for 400 ns. They scored the peptides’ aggregation
propensity by means of the solvent-accessible surface area, relative to the initial well-mixed
configuration. The score was in good qualitative agreement with experimentally resolved struc-
tures, for the few sequences available. Though in need of atomistic refinement, the study
highlights how CG simulations can sketch the mapping between sequence and self-assembled
nanostructure.

A follow-up study aimed at the broader exploration of all tripeptides: 203 = 8000 in
total [284]. They sought compounds that simultaneously favored aggregation propensity and
hydrophilicity. While a priori contradicting requirements, their results testify to the broad
diversity of possible systems, including subtle intermediates capable of displaying surprising
properties. Extending the dipeptide study, their aggregation-propensity score was combined
with the water–octanol partitioning coefficient to measure hydrophobicity. They identified a
significant number of peptides that were not strongly hydrophobic,yet exhibit aggregation. The
screening confirmed and extended design rules for the placement of specific amino acids in a
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particular position [285, 286]. This includes steric effects in the placement of aromatic residues
close to the N-terminus, but also charged amino acids on positions 1 and 3 as an architecture
for intermolecular salt-bridge formation. Critically, their virtual screening procedure led for
the first time to the subsequent synthesis and experimental characterization of tripeptides able
to form hydrogels at neutral pH.

More complex oligopeptides were considered more recently by Thurston and Ferguson: a
synthetic peptide–Π–peptide symmetric triblock architecture of the form NXXX–Π–XXXN,
where X are amino acids and Π is a conjugated aromatic core [169]. To limit the space of
candidates, they initially restricted their study to one of two aromatic cores, naphthalenedi-
imide and perylenediimide, and the five amino acids A, F, G, I, and V were motivated by
prior work. Aiming at optoelectronic functionality, their design objective targeted the stabi-
lization of π–π stacking between neighboring oligopeptides, measuring the distance between
aromatic cores as a proxy for electronic delocalization. They relied on an atomistic resolu-
tion with an implicit-solvent model to more efficiently sample the conformational space. Both
free energies of dimerization and trimerization were calculated using enhanced-sampling MD
on 26 peptides. Intermediate values of the dimerization and trimerization free energies led
to the most favorable properties, as a tradeoff between sufficient interaction strength to drive
assembly, yet little enough to avoid kinetic traps. A quantitative structure-property relation-
ship (QSPR) model was then trained on these select peptides and a large set of 247 molecular
descriptors, based on the PaDEL software package [287]. The authors motivated their choice
over more sophisticated machine learning approaches both for its interpretability, as well as the
dataset’s high-dimensional, low-sample size regime. Further MD validation confirmed the pre-
dictability of the QSPR for largely apolar sequences—similar to the 26 training peptides—and
proposed a new sequence unstudied by experiment. While the QSPR lacked transferability to
strongly polar residues, the results indicate that adding a limited set of MD simulations should
be straightforward and effective.

A wider study, also aiming at optimizing optoelectronic properties, was recently reported by
Shmilovich et al [147]. The synthetic architecture DXXX–OPV3–XXXD used a three-repeat
oligophenylenevinylene π core, for its ability to assemble into optically and electronically
active nanoaggregates [288]. Compared to the study of Thurston and Ferguson, the wider space
of 203 = 8000 peptides was tackled by two complementary strategies: (i) CG simulations using
the Martini force field, and (ii) a deep representational active learning approach. Following the
pioneering work of Gómez–Bombarelli et al [146], they projected the discrete sequence space
into a low-dimensional continuous representation. A variational autoencoder was used to train
a latent-space embedding [114], based on basic topological features of the CG beads of the
Martini model. They trained a Gaussian process regression (GPR) on the latent-space embed-
ding to predict the propensity of self assembly, and used a Bayesian optimization to select
the ‘next best’ candidates to be simulated. Iterating over several generations of this loop, they
were able to converge the GPR model by only simulating 2.3% of the space of sequences. This
computational design platform, which aptly combines molecular simulations for compound
measurement and data-driven methods to efficiently sample the sequence space, holds many
promises for the virtual screening of biomolecular and soft materials.

3.8. Drug-membrane permeabilities

One beloved application of biomolecular simulations is the cell membrane. Though composed
of a large variety of molecules, many are phospholipids. These amphiphiles can spontaneously
self assemble to form large mesoscale structures, such as vesicles. This compartmentaliza-
tion of the cell can still allow for exchange of (macro)molecules—either via active transport
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(biology), or passively by simple diffusion (thermodynamics). This latter aspect can be con-
sidered by the concentration gradient of a solute molecule, such as a drug, across a soft
interface between two aqueous environments. Expressing this as a one-dimensional Smolu-
chowski equation along the normal to the membrane, z, leads to the inhomogeneous solubility-
diffusion model [289, 290]. The resulting quantity is the permeability coefficient, P, a flux
that accounts for the heterogeneity of the environment by integration over z the energetics of
crossing together with the local diffusivity

P−1 =

∫
dz

exp [βG(z)]
D(z)

. (2)

In this equation, β = 1/kBT is the inverse temperature, D(z) is the local diffusivity, and G(z)
is the potential of mean force (PMF)—it is the free energy required to cross the interface as
a function of the order parameter z. Interestingly this quantity is not readily accessible from
current experimental techniques, leaving computer simulations as the gold standard.

The use of enhanced-sampling techniques, such as umbrella sampling, offer the means
to compute the PMF at an atomistic resolution and gather unprecedented insight [167, 291].
Unsurprisingly the calculation of G(z) is tremendously difficult to converge: approximately 105

CPU-hours is required for a small rigid molecule crossing a single-component lipid membrane
using explicit-solvent atomistic models. This unfortunately limits an atomistic throughput to
∼ 10 molecules per study [292–295].

Here again, CG models allow for a significant step up in the number of compounds that
can be screened. Beyond the reduced representation speeding up convergence of each simu-
lation, the mapping to a Martini representation easily leads to large numbers of compounds
(section 2.3). Menichetti et al reported the PMFs of 4.6 · 105 small molecules in a one-
component 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) membrane [296]. This collec-
tion of compounds resulted from the exhaustive screening of all CG small molecules made
of one and two neutral Martini beads, 14 and 105, respectively. The resulting set of PMFs
showed a strict variety, which could be accurately correlated to the water/octanol partition-
ing of the solute—a bulk quantity to relate to structural features at the membrane inter-
face. The mapping between chemistry and CG representations was established by coarse-
graining subsets of the GDB [18], keeping compounds that mapped to one- and two-bead
representations.

A follow-up study extended the screening from PMFs to the permeability coefficient (2)
[66]. The CG simulations did not inform the diffusivity term (problematic due to inconsis-
tent accelerations of the CG dynamics [297]), but were instead taken from atomistic sim-
ulations, indicating weak dependence on the solute’s chemistry [292]. The results showed
excellent agreement with atomistic simulations and correlation with experiments, despite the
minimalistic modeling approach. Permeability coefficients were predicted for 5.1 · 105 small
organic molecules. Projecting the permeability surface onto two physically motivated descrip-
tors (hydrophobicity and acidity, i.e., pKa) highlighted the localization of key chemical groups,
and their influence on the target property. It also challenged earlier phenomenological models
of solute permeation [298].

A further scale up in the number of compounds ‘simply’ comes down to a broader screening
toward larger CG representations: from one- and two-bead constructs to more. The combina-
torics of the Martini bead types, while more favorable than atomically-detailed chemistry, still
grow exponentially: 14, 105, 1470, and 19 306 for one- to four-bead constructs—only consid-
ering linear chains. Instead of an exhaustive account, Hoffmann et al presented an importance-
sampling scheme to navigate the space of compounds [137]. A metropolis-chain Monte Carlo
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scheme was devised by daisy-chaining compounds via alchemical transformations, and using
the relative free energy in the metropolis criterion. This led to a large network of compounds
sampled, and the use of closed thermodynamic cycles allowed for small corrections to the free
energies. The space of compounds that was not sampled was subsequently predicted using a
simple kernel-based ML model. Some of the predictions were explicitly validated, but all fol-
lowed simple linear relationships between transfer free energies that had been identified for
the smaller compounds [296]—the thermodynamics of the system acted as an ML physical
constraint global to the compound dataset. Overall it boosted the prediction of transfer free
energies to 1.3 · 106 small organic molecules.

Extending the high-throughput CG framework, compound screening can be used to better
understand differential stabilization between lipid domains, as a proxy for small molecules
modulating complex multi-component lipid membranes [299]. The difference in PMF minima
between the relevant environments stands as a computationally appealing proxy for large-scale
simulations of membrane reorganization. The results could identify families of compounds
that could induce membrane mixing or demixing. Compound screening and their effect on
membrane thermodynamics may help us better understand the mechanism of action of certain
anesthetics [300].

4. Outlook

The path toward in silico compound screening of biomaterials and soft materials seems clear,
but still contains a number of important hurdles before reaching large data-scale regimes.
Automating the preparation, parametrization, and analysis of MD simulations is necessary to
reach a high throughput, and has largely embodied the scope of this review. The other criti-
cal aspect is our capacity to run enough MD simulations, clearly the main bottleneck. In this
sense, CG modeling has an important role to play: its ability to emulate a complex systems
with fewer degrees of freedom offers a significant scale-up in the context of screening. The
added capability to reduce the size of chemical space seems to be a promising way to ease the
analysis and extraction of structure-property relationships.

Beyond statics, in silico compound screening will likely hold essential to target dynami-
cal properties, such as mean-first passage times, folding and nucleation rates, or even aging
dynamics. To achieve this, force-field methods need to improve the modeling of dynamics—a
statement that holds at all scales, though in particular at the CG level. The perspective to move
toward non-equilibrium systems will require the means to incorporate processing effects in
materials, leading to structure-process-property relationships. Getting there will be challeng-
ing: non-equilibrium systems have no well-defined free-energy surface, and they critically
depend on how the system is prepared [23].

Last, compound screening needs tighter integration with experiments. This is not only in
light of verifying the in silico predictions, but a collaborative procedure between simulations
and experiment that is poised to further accelerate soft-materials discovery.
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