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Abstract

The felicity, or acceptability, of IS generics, i.e. generic sentences with indefinite
singulars, is considerably more restricted compared to BP generics, generics with
bare plurals. The goal of this paper is to account for the limited felicity of IS generics
compared to BP generics, on the one hand, while preserving the close similarity
between the two types of generics, on the other. We do so by proposing a causal
analysis of IS generics, and show that this corresponds closely with a probabilistic
analysis of BP generics.

1 INTRODUCTION

Generics are sentences that express basic generalities without the use of an explicit
quantifier. Generic sentences come in various sorts: they can be expressed using a bare plural
(BP), a singular indefinite (IS), and a definite description. In this paper we will be concerned
with the meaning of generics in general, and in particular with the relation between the
meaning of BP generics like (1-a) and IS generics like (1-b).

(1) a. Tigers have stripes.
b. A tiger has stripes.

Although (1-a) and (1-b) seem to express the same content, Lawler (1973), Burton-Roberts
(1976, 1977), Krifka (1987, 2012), Cohen (1999, 2001), Greenberg (2003, 2007), Leslie
(2009), and others have argued that there still exists a crucial distinction between the two
types of generics that should be accounted for. In this paper we will argue that BP and IS
generics are very similar in that they both mainly express inductive generalizations. With
Lawler, Greenberg and Leslie et al. we will argue that whereas BP generics could already
be true due to a merely statistical correlation between the denotations of subject and verb
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270 Robert van Rooij and Katrin Schulz

phrase, IS generics demand a ‘principled connection’. The main innovation of this paper is
to argue that this ‘principled connection’ is mostly a causal one and to propose a particular
implementation of this view.

This paper is structured as follows: in the following section we will brief ly motivate a
recently proposed descriptive probabilistic analysis of BP generic sentences. In section 3 we
will look at what is particular to IS generics, and at previous proposals of how to account for
this. In section 4 we will provide a background in causal models, and show how generics
—and in particular IS ones —can be given a causal analysis. In section 5 we will discuss
some generalizations of this causal analysis. Section 6 concludes the paper.

2 A PROBABILISTIC-BASED ANALYSIS OF GENERICS

Bare Plural (or BP) generic sentences like ‘Birds f ly’ and ‘Tigers are striped’ (which
we take to have the form ‘xs are y’) are sentences that, by their very nature, express
useful generalizations. The main question addressed in the literature is about the type
of generalization. First, generic sentences are clearly not universally quantified sentences:
although not all birds f ly (penguins don’t), (2) is a good generic sentence that most people
consider true, or acceptable.1

(2) Birds f ly.

Indeed, this is one of the most typical features of generic sentences: they express generaliza-
tions that allow for exceptions. But it also need not be the case that almost all, or most xs
have to have feature y in order for the generic ‘xs are y’ to be true or acceptable:

(3) a. Birds lay eggs.
b. Goats produce milk.

Although people normally accept (3-a) and (3-b), it is not the case that the majority of birds
or goats have the relevant feature; only the adult female birds and goats do! Moreover, even
if most xs are (or are taken to be) y, the corresponding generic sentence still doesn’t have
to be true or acceptable, as exemplified by sentences such as the following (from Carlson,
1977):

(4) a. ∗ Books are paperbacks.
b. ∗ People are over three years old.
c. ∗ Bees are sexually sterile.

According to a natural alternative quantificational proposal, a generic is true/acceptable
exactly if all, or most, normal, or relevant xs are y, or perhaps if all x, if they were normal x,
would also have property y (cf. Asher & Morreau (1995)). There are at least two problems
with such an analysis. First, the above problem(s) for the majority account would have to
be tackled.2 Second, and more importantly, without an independent analysis of what it is

1 In this paper we will leave it open whether generics have truth-conditions, or merely have acceptabil-
ity conditions.

2 See Nickel (2009) for an (unsuccessful, we believe) attempt. Nickel concentrates attention to another
problem of such an analysis: the fact that (i) is a good generic:

(i) Elephants live in Africa and Asia.
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A Causal Semantics of IS Generics 271

to be a normal or relevant x, such an analysis hardly makes any empirical prediction (cf.
Krifka et al. (1995)).

Following Cohen (1999, 2004), we believe that there is a lot more to say for a simple
and intuitive (high) majority-account than is standardly acknowledged. First, there exists
a natural way to account for (3-a) and (3-b) in these terms after all. As argued for by
Cohen (1999), to interpret a generic, we should take into account the alternatives of the
predicate term. For (3-a), for instance, we should take into account Alt(lay eggs), which
naturally is {lay eggs, give live birth}. Cohen (1999, 2004) accounts for generics making use
of an ‘objective’ probability function. (2), for instance, is taken to be true if and only if the
conditional probability P(Fly|Birds) is higher than 1

2 . But for the analysis of (3-a), however,
the probability function should now not range over all objects, but only over objects that
satisfy at least one of the properties in Alt(lay eggs). Because

⋃
Alt(lay eggs) ≈ Females, a

majority analysis could, or would, predict that (3-a) is true, or acceptable, just in case the
majority of female birds lay eggs.3 A similar move could be made with (3-b).

Second, to account for the intuition that (4-a)–(4-c) are bad generics, we can make use
of Cohen’s homogeneity condition. Rather than just demanding that P(y|x), the conditional
probability of y given x, is high, Cohen (1999, 2004) demands that the conditional
probability of y given a set of xs should be high for each cell of a salient partition {x1, ..., xn}
of x. Thus, each of P(y|xi) · · · P(y|xn) should be high. Concentrating on (4-c), for instance,
a salient partition of bees into queens (female), workers (female) and drones (male) will
correctly predict that (4-c) is bad, because neither queens nor drones tend to be sterile.
Cohen provides a similar explanation for the other examples as well. That seems very
promising.

Still, Leslie (2008) has persuasively argued that the condition of homogeneity not only
explains away bad generics, but good ones as well. Why, for instance, is ‘Bees reproduce’
true on Cohen’s salient partition of bees? The same holds, even, for the standard example 2
‘Birds f ly’. Why shouldn’t this generic not predicted to be simply false, or unacceptable, by
a bi-partitioning of birds into Penguins, on the one hand, and all the other types of birds,
on the other? Clearly, for the homogeneity condition to work, there have to be constraints
on what good partitions are.

We do think that a homogeneity condition is at work for the analysis of generics. Cohen
(2004) provides a partial motivation for his condition in terms of methods of categorization.
By taking generics to express inductive generalizations, there is also another motivation.
The reason is that for inductive generalizations to be reliable, the generalizations have to be
stable.

No one supposes that a good induction can be arrived at by merely counting cases. The business

of strengthening the argument chief ly consists of determining when the alleged association is

stable, when the accompanying conditions are varied. (Keynes (1952), p. 393)

This is a problem for a standard normality account, because no elephant lives in both continents. Nickel
proposes that generics like ‘xs are y’ are true if there is a subkind x ′ of x for which the generic ‘x ′s
are y’ is true on its normality reading. With Hoeltje (2017), however, we think this proposal is too weak.
A much more natural analysis for (i), we believe, would be to claim that the sentence should be given
a cumulative reading, recently proposed by James Kirkpatrick in still unpublished work.

3 Although such an analysis seems natural, it is not made by Cohen (1999).

D
ow

nloaded from
 https://academ

ic.oup.com
/jos/article/37/2/269/5721111 by U

niversiteit van Am
sterdam

 user on 31 M
arch 2021



272 Robert van Rooij and Katrin Schulz

Something like the homogeneity condition is used exactly to account for this intu-
ition. Skyrms (1980) proposes to account for stability in terms of invariance under
conditionalization. Take S to be a set of contextually given sentences logically indepen-
dent of y, thus consistent with y and ¬y. Then P(y) is (relatively) invariant to S iff
∀s ∈ S : P(y|s) ≈ P(y). This notion of invariance can be generalized to conditional
probabilities, P(y|x), as well, but then we have to limit ourselves to members of S that
are consistent with x ∧ y and x ∧ ¬y. Skyrms refers to stable, or invariant, probabilities as
propensities.

Demanding high propensity, i.e., high stable probability, instead of just high probability,
we can immediately explain why the partition {Penguins, other birds} is not a good partition
to base the generalization ‘Birds f ly’ on. It simply doesn’t satisfy the conditions for being
an appropriate set with respect to which the conditional probability P(Fly|Bird) has to be
stable, because one cell of the partition is inconsistent with ‘Fly’. On the other hand, Skyrms’
condition of approximate invariance still explains why the generics (4-a)–(4-c) are bad, just
like Cohen’s (1999; 2004) original condition of homogeneity did.

Still, Leslie (2008) objects: how can a generic like ‘Bees reproduce’ still be true on such an
analysis? Skyrms’ condition doesn’t rule out that the relevant conditional probability should
be high for all members of the partition {male bees, female bees}, and most, though not all,
female bees (which constitute the vast majority of bees) are sterile (or at least sexually
inactive). We agree, but we also believe that there is another reason why this generic is
true, or good, nevertheless. It is well-known that plurals and mass nouns have, besides
a ‘distributive’, also a ‘collective’, or ‘semi collective’, interpretation. On such a (semi-
) collective interpretation of sentence ‘(the) xs y’, it doesn’t have to be the case that all
(minimal) parts of x have to have feature y for the sentence to be true, it is only required
that the whole group — or better, larger subsets of this group — does so. Notice that bees,
like ants, are very small insects, and that most of us, or that we most of the time, do not
individuate such insects. In fact, we take it, when we think about reproduction of bees
and ants, we think of these small insects most of the time as collections, e.g. as swarms,
nests, hives, or armies. Moreover, although in English, ‘bee’ and ‘ant’ are count nouns, their
counterparts in languages such as Russian, Welsh, and Dagaare are actually mass-nouns (cf.
Grimm (2009)). This suggests that it is at least natural to view bees and ants primarily as
collections. As observed already by Krifka et al. (1995), Cohen (1999) and others, some
generic sentences (seem to) have a collective interpretation. But this solves our puzzle: ‘Bees
reproduce’ is true, or acceptable, because it receives a (semi) collective interpretation, and as
hives, bees generally do reproduce. (Notice that also on this semi-collective interpretation,
the sentence is still interpreted as a generic.)

Still, a (stable) majority analysis of generics seems certainly problematic when account-
ing for the following examples.

(5) a. Ticks carry Lyme disease.
b. Sharks attack bathers.
c. Pit bulls are dangerous.

Intuitively, the above sentences are appropriate, although only 10% of ticks carry Lyme
disease, only very few sharks ever attack bathers, and pit bulls normally don’t do any
harm. There are several strategies to deal with such sentences. According to one of them,
what counts is not whether, for (5-a) for instance, the majority of ticks actually carry Lyme
disease, but whether they can carry Lyme disease. But, obviously, this strategy overgenerates
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A Causal Semantics of IS Generics 273

enormously: why is an example like ‘Chairs are painted white’ not true, just because chairs
can be painted white? According to another strategy (the ‘error strategy’), one might say
that these sentences are actually false. But why, then, do so many people take them to be
true? A major worry here is to determining what the data are: if (5-a)–(5-c) are generally
taken to be true, what is it that makes the claim ‘correct’ that these sentences are in fact
false? It cannot be that this is so because it is predicted by the theory, because the theory
itself is based on intuitions of the language users.

Cohen (1999) proposed that generics like (5-a)–(5-c) should be interpreted in a relative
way: (5-a) is true iff compared to other types of animals relatively many ticks cary the Lyme
disease. Similarly for (5-b) and (5-c). In probabilistic terms this means that P(C|T) > P(C)

— or better P(C|T ∩ ⋃
Alt(C)) > P(C|is ⋃

Alt(C)) — should hold with ‘T’ denoting the
Ticks and ‘C’ standing for ‘carry Lyme disease’.

Although appealing, there are several reasons to be dissatisfied with Cohen’s proposal.
One of the reasons why a (stable) majority account of generics is so natural, is that it
motivates the inference of instantiation: if the propensity of xs having feature y is high, it
is natural to assume, or act as if, an arbitrary x also has feature y. However, this type of
inference hardly makes any sense when just relatively many xs have feature y. This, we take
to be the conceptual problem of Cohen’s relative reading. There is a, perhaps even more
serious, empirical problem as well: as noted by Leslie (2008), how to prevent that also a
generic like ‘Dogs have three legs’ is predicted to be true as well, given that dogs are pets,
which, in contrast to other animals, do not die, or are not killed, if they loose a leg? The
conclusion seems obvious: the conditions for being true on its relative reading just seem to
be too weak.

Leslie (2008) proposed that (5-a)–(5-c) are (taken to be?) true because the predicates
involved in these sentences are horrific, or striking. Although we don’t agree with her anal-
ysis (which would make generics highly ambiguous), we think that an appeal to how ‘strik-
ing’ the predicate is to account for the truth, or acceptability, of these examples is correct.

One way to make use of this intuition is to say that (5-a) is a good generic, not because
most ticks carry Lyme disease, but because learning that a significant portion of ticks carry
Lyme disease is useful, or important. Learning this information is enough to take action:
the expected value of taking action is higher than doing nothing, because the Lyme disease
is dangerous. The same holds for (5-b) and (5-c). We could define the expected value of a
generic of the form ‘xs are y’ as EV(y|x) = P(y|x) × V(x ∧ y), or perhaps P(y|x) × V(y),
where V(y) measures the value, impact, or strikingness of feature y.4 Then we could say
that the generic is true, or acceptable, just in case EV(y|x) is high.

But what does it mean for EV(y|x) to be high, given that EV(y|x) has no clear minimum
or maximum? Perhaps EV(y|x) should be high compared to some natural alternatives of y,
i.e., compared to EV(

⋃
Alt(y)|x), or of alternatives of x, i.e., compared to EV(y| ⋃ Alt(x)).

The first seems unnatural: using it would mean that any generic with ‘horrific’ features
would almost automatically be true or acceptable. But that, again, is a clear false prediction.
That leaves us to compare EV(y|x) with EV(y| ⋃ Alt(x)), which we will abbreviate from
now on by EV(y|¬x).

4 We assume that features with ‘negative’ connotation have more impact than those with positive ones.
Still, also for features with negative connotation, V (y) > 0, and for such y typically V (y) > 1.
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274 Robert van Rooij and Katrin Schulz

If for evaluating the truth, or acceptability, of ‘xs are y’ we should compare EV(y|x)

with EV(y|¬x), this naturally means that it should be the case that EV(y|x) is significantly
higher than EV(y|¬x), i.e., EV(y|x) >> EV(y|¬x). Now suppose that V(y) = 1. In that
case, the condition EV(y|x) >> EV(y|¬x) comes down to P(y|x) >> P(y|¬x), from which
it follows that P(y|x) > P(y|¬x). It is easy to show that P(y|x) > P(y|¬x) iff P(y|x) > P(y)

which is not only a standard notion of statistical relevance (e.g. Adams (1998)), but also the
condition Cohen (1999) required for a generic sentence to be true on its relative reading.5

In case the value of y, V(y), is high, i.e., in case y is a ‘horrific’ or ‘striking’ feature, it could
already be the case that EV(y|x) >> EV(y|¬x) if P(y|x) is somewhat higher than P(y|¬x),
because the difference is going to be multiplied by V(y).6 For a more ‘neutral’ feature,
however, where V(y) = 1, P(y|x) itself has to be significantly higher than P(y|¬x) for the
generic to be true, or acceptable.

In van Rooij & Schulz (2019a) it is proposed that not just some, but all (BP)
generic sentences should be analyzed by demanding that EV(y|x) >> EV(y|¬x).7 ,8 This
immediately explains why in contrast to (6-a), the generic (6-b) is acceptable, although only
male lions have manes, and thus P(male|lion) > P(have mane|lion).

(6) a. ∗ Lions are male.
b.

√
Lions have manes.

The claim that all generics should be based on the strengthened relative reading of Cohen
(1999) is based not just on empirical grounds, but also on a conceptual one: Generic
sentences are not only the simplest type of sentences that express generalities, they are
also among the first type of sentences we learn to understand and use in childhood (see
e.g. Gelman, 2003). This suggests that the meaning of generic sentences should be based
on simple principles of inductive learning (cf. Leslie (2008)). According to a standard
psychological analysis of inductive learning (in adults, children and animals), we learn
to associate objects or events of type x with objects or events of type y iff �Py

x =df
P(y|x) − P(y|¬x) > 0 (cf. Shanks (1995)), or better, when this difference is stable under
various conditions (cf. Cheng & Holyoak (1995)). Obviously, �Py

x (known in psychology
as the measure of contingency) is positive just in case P(y|x) > P(y|¬x) iff P(y|x) > P(y),
which means that �Py

x > 0 is positive just in case Cohen (1999) would judge the generic of
the form ‘Objects of type x are of type y’ true on its relative reading.

5 At least, if we ignore the alternatives.
6 Suppose it is only the value of the feature, V (y), that counts. Then the difference is going to

be multiplied by V (y), because EV (y |x) − EV (y |¬x) = P(y |x) × V (y) − P(y |¬x) × V (y) =
[P(y |x) − P(y |¬x)] × V (y).

7 In the same paper it is suggested how also generics with an ‘existential’ reading (like in ‘Indians [do]F
eat beef’ as denial to an earlier statement that Indians don’t eat beaf) can be accounted for on this
analysis.

8 For a closely related recent proposal, see Tessler & Goodman (2019). One important difference
between the proposals is that for us utility, or value, is important, while for them it is not. They also
don’t make use of causality, which will be crucial in the main part of this paper. See van Rooij & Schulz
(2019a) for a somewhat more detailed discussion of the differences.
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A Causal Semantics of IS Generics 275

It is noteworthy that the measure �Py
x can account for the intuition that generics are true,

or acceptable, because they express stereotypical properties of groups. Social psychologists
(e.g. Schneider, 2004) have proposed two measures of stereo-typicality: P(y|x)

P(y|¬x)
and P(y|x)

P(y)
,

and it is clear that both these measures are large just in case the difference between P(y|x)

and P(y|¬x) is high. Other psychologists (Tenenbaum & Griffiths (2001); Tenori et al.
(2007)) have proposed these, or very similar, measures for modeling the representativeness,
or typicality of y for x. Thus, by using �Py

x we would in fact say that a generic of the form
‘xs are y’ is true or acceptable just in case y is a (stereo)-typical, or representative feature
of xs.

We have argued above that for a generic of the form ‘Objects of type x are y’ to be true,
or acceptable, the value of P(y|x) should be significantly higher than P(y|¬x) (from now on
in this paper we will ignore the ‘striking’ generics, and concentrate only on probabilities).
But this by itself cannot account for the intuition that what counts as ‘significantly higher’
depends very much on the base rate of y, i.e., P(y) (or, equivalently, P(y|¬x)). In case P(y)

is low, i.e., when y is an uncommon feature, it seems that the difference between P(y|x)

and P(y|¬x) should be larger than when y is a common feature. This can be accounted
for by demanding that for a generic of the form ‘Objects of type x have feature of type
y’ to be true or acceptable, Shep (1958) measure of relative difference, �∗Py

x, has to be
significantly higher than 0, or significantly higher than �∗Pz

x, with z any (contextually)
relevant alternative feature to y, and with

(7) �∗Py
x =df

�Py
x

1−P(y|¬x)
= P(y|x)−P(y|¬x)

1−P(y|¬x)
.

�∗Py
xis the ratio of the amount by which x increases the probability of y, �Py

x, to the room
available for increase, 1 − P(y|¬x).9

Notice that in case P(y|¬x) is high, �Py
x counts for much more than when P(y|¬x) is

low. For example, if P(y|¬x) = 0.9, �∗Py
x = 10 × �Py

x. One can also easily show that in
contrast to �Py

x, for the measure �∗Py
x the value of P(y|x) counts for more than the value

of P(y|¬x), as it intuitively should.10 For instance, it is easy to see that once P(y|¬x) < 1,
�∗Py

x = 1 just in case P(y|x) = 1, i.e., �∗Py
x receives its maximal value just in case P(y|x)

does so.11

9 There exists another notion of ‘relative difference’, proposed by Crupi et al. (2007) to measure the
value of confirmation of an hypothesis, that could be used as well: P(y |x)−P(y)

1−P(y)
. At this point we

don’t have good arguments why we should prefer �∗Py
x over this measure.

10 It is perhaps useful to note that �∗Py
x is equivalent with P(y |x)−P(y)

P(¬y∧¬x)
.

11 The demand that EV (y |x) >> EV (y |¬x), or that �∗Py
x >> 0 might still seem too weak. In van

Rooij & Schulz (2019a) it is argued that the analysis is strengthened pragmatically, such that it feels
like P(y |x) is high. The strengthening has three sources: (i) in psychology it is known that ‘striking’
events are better remembered, and taken to have a higher probability than they actually have. Thus,
if EV (y |x) is high due to high V (y) this gives rise to the ‘feeling’ that P(y |x) is high; (ii) it is relatively
well established (cf. Tversky & Kahneman’s ‘conjunction problem’) that people confuse inductive
support (measured in terms of something like �Py

x or �∗Py
x ) for conditional probability, meaning that

if the former is significantly above 0, this is taken to mean that conditional probability of y given x is
high; and (iii) notions of inductive support are typically taken to implicate a causal relation, which in
turn is giving rise to an essentialist’ meaning, suggesting that P(y |x) is high. One might think of the
present paper as arguing that for IS generics, the latter ‘psychological’ idea is taken to be part of
semantics.
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276 Robert van Rooij and Katrin Schulz

3 INDEFINITE SINGULAR (IS) GENERICS

Generic sentences can be expressed not only using bare plurals, like ‘Dogs have four legs’,
but also with indefinite singular noun phrases, as in ‘A dog has four legs’. Given that ‘Dogs
have four legs’ and ‘A dog has four legs’ are both appropriate, and seem to allow in similar
ways for exceptions, they seem to express the same content. Still, the linguist John M.
Lawler observed in Lawler (1973) that sometimes the two types of generics come apart:
although (8-a) can be appropriate, or acceptable, (8-b) (read generically) cannot.

(8) a.
√

Rooms are square.
b. ∗ A room is square.

Similarly, Oosterhof (2008), p. 66) observes that (9-a) is ok, but that (9-b) is not.

(9) a.
√

Musical comedies (plays) are popular.
b. ∗ A musical comedy (play) is (a) popular (play).

Greenberg (2003, 2007) observes that the felicity of IS generics is considerably more
restricted than that of BP generics in other ways as well. She notes that IS, but not
BP generics are infelicitous, or unacceptable, with subjects denoting extremely unnatural
properties:12

(10) a.
√

Norwegian students with names ending with ‘s’ wear thick green socks.
b. ∗ A Norwegian student with a name ending with ‘s’ wears thick green socks. (odd

as generic, fine as existential)

(11) a.
√

Well-known forty-five-year-old teachers do not cook on Monday afternoons.
b. ∗ A well-known forty-five-year-old teacher does not cook on Monday afternoons.

(odd as generic, fine as existential)

She also notes that, IS, but not BP, generics are infelicitous with episodic predicates:

(12) a. ∗ An earthquake is/
√

Earthquakes are especially strong today.
b. ∗ An Italian restaurant is/

√
Italian restaurants are closed tonight.

To account for such facts, Burton-Roberts (1976, 1977) and Krifka (2012) argue that
whereas BP generics just express empirical generalizations, IS generics express analytic
(Burton-Roberts) or definitional (Krifka) truths, sentences that are true on the basis of
linguistic rules or conventions.13 Although Cohen (2001) agrees that IS generics can express
linguistic conventions, he points out that IS generics are not limited to that: they can also
express moral and legal rules, and rules concerning games as well.

(13) a. A gentleman opens doors for ladies.
b. A good king is generous.
c. A grapefruit costs 1 euro.
d. A bishop moves diagonally (in chess).

12 One reviewer didn’t see a strong contrast in the first example, though.
13 Burton-Roberts (1976) proposed that sentences like (i-a) have the same meaning as sentences

like (i-b).

(i) a. A kangaroo is a marsupial.
b. To be a kangaroo is to be a marsupial.
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Cohen (1999, 2001) argues that in contrast to BP generics, IS generics can only express
rules or regulations, which includes more than just linguistic rules.

Although we agree that there is an important difference between IS and BP generics,
we believe that the proposals of Burton-Roberts, Krifka and Cohen of how to account for
this are problematic. Consider first a generic like (14), which Krifka (2012) still treats as
definitional.

(14) A donkey has 62 chromosomes.

Intuitively, donkeys are not by definition animals that have 62 chromosomes: men didn’t
first have the notion of ‘having x-many chromosomes’ and then defined what it is to be a
donkey in terms of it. No, we always knew what a donkey is, but discovered that it has 62
chromosomes. Kripke (1980) and Putnam (1975) would say that (14) expresses a truth that
is necessary but a posteriori. Thus, in distinction with analytic truths, the sentence does not
express an a priori truth. Still, Krifka and Burton Roberts (might) argue, there is a sense
in which (14) can be called ‘definitional’ after all. In terms of Leibniz’s 1684 terminology,
(14) does not express the nominal definition of donkeys, but it still gives the real definition
of donkeys: (14) states what (part of) the real essence of donkeys is. We agree, but we also
think that to treat both types of definitions simply in the same way (as suggested by Burton-
Roberts and Krifka) would only obscure the insight of traditional philosophy that there is
an important difference between the two types of definitions, an insight that was forcefully
renewed by the arguments due to Kripke and Putnam: in contrast to the nominal definition
‘A bachelor is an unmarried man’, the real definition ‘Water is H2O’, though also necessary,
does not express an a priori truth.14

According to Kripke and Putnam, a sentence like (14) expresses an a posteriori truth, and
thus an empirical generalization, a view that seems at odds with the view that IS generics
can only express rules or regulations. Indeed, as admitted by Krifka (2012), the following
IS generics seem to express descriptive generalizations as well:

(15) a. A trout can be caught by many different methods.
b. A hedgehog makes a good pet.
c. A poodle should be clipped by a professional groomer.
d. A madrigal sounds best with all the voice-parts doubled.
e. A refrigerator costs about 1000 euros.

Burton-Roberts (1976, 1977), Krifka (2012) and Cohen (1999, 2001) (but see also Krifka
(1987)) assign to IS and BP generics two completely different semantic structures. Such
theories will have problems capturing the fact that also IS generics can express descriptive,
and counterfactual supporting, generalisations. Moreover, such theories will have trouble
explaining why IS generics can allow for exceptions (e.g., ‘A dog has four legs’).

Our proposal of how to account for IS generics will be more in line with the views
of Lawler (1973) and Greenberg (2003, 2007) and with the experimental data found by
Leslie (2009). Lawler (1973) argues that the more restricted felicity, or acceptability, of
IS generics shows that a generic expressed with the indefinite singular requires a stronger

14 Krifka (2012) follows Stalnaker (1978) and others showing that the framework of two-dimensional
modal logic can be used to account for the necessity of definitional sentences. That might be true,
but a posteriori necessity is still something quite different from a priori necessity.
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relation between the noun phrase and the property that is attributed to it, than when the
generic is expressed with a bare plural. He argues that this stronger relation should involve
‘essences’. Greenberg (2003) agrees to a large extent with Lawler and argues that in contrast
to a BP generic, the truth of an IS generic requires a ‘principled connection’ between the kind
of object denoted by the noun phrase and the property attributed to it.15 Notice that both
views are compatible with the idea that IS generics can express empirical generalizations.

On the basis of experimental evidence, Prasada & Dillingham (2005) make a distinction
between two types of ways properties can be ‘true of’ kinds. Either due to a ‘principled
connection’ (as in ‘Cheetahs run fast’, or ‘Dogs have four legs’) or due to a more accidental
relation (as in ‘Dogs wear collars’). We agree with Carlson (2009) when he claims that
Lawler and Greenberg, on the one hand, and Prasada & Dillingham, on the other, were
really ‘talking much about the same thing’. This doesn’t mean, of course, that when a generic
is phrased with the bare plural that such a ‘principled connection’ does not exist. Indeed,
the experimental study of Leslie (2009) indicates that sentences that express ‘principled’
generic assertions are nearly equally well expressed with bare plurals as with indefinite
singulars (Dogs have / A dog has four legs and Ducks lay / A duck lays eggs), whereas
generic assertions that just express a statistical generalization (Barns are red vs. A barn is
red) are better expressed with bare plurals.

These phenomena suggest that in contrast to BP generics, IS generics are necessarily
about kinds. But, of course, it is not very clear what, exactly, kinds are. Moreover, given
an example like (15-e), kinds are not necessarily natural kinds. But the suggestion is on the
right track: kinds are intensional rather than just extensional objects: they can, somehow,
be identified, independently of how the world actually is. This, in turn, indicates that IS
generics cannot be analyzed in terms of, just, actually observed, or observable, frequencies.
For the truth, or acceptability, of IS generics, there must exist a ‘principled connection’.

What does it mean for there to be a ‘principled connection’? Although we don’t agree
with Krifka’s (2012) ‘definitional’ analysis of IS generics, we do believe that he points to a
natural idea in the following quote:

Descriptive generalizations are typically expressed by bare plurals because they typically rely

on observing many instances; definitional statements are typically expressed with indefinite

singulars because it can be determined with single individuals whether or not they fit to the

defining properties. (Krifka (2012), p. 389 )

This quote captures not only the natural intuition that the use of a bare plural indicates
that a BP generic expresses a generalization the truth, or acceptability, of which can only
be established by observing many instances. It also proposes that the use of the indefinite
in an IS generic signals that the expressed generalization (about a kind) can be established
already on the basis of the observation of a single individual (of the kind). We think that
both ideas are natural, even if it is acknowledged that IS generics can also express empirical
generalizations. At first, such a proposal concerning (certain) inductive generalizations will,
no doubt, sound almost like a contradiction in terms. Still, it makes a lot of sense. Take any
particular kind of metal or liquid. Once we observed that one piece of a particular metal

15 We agree, but we also agree with Krifka (2012) that she implements this intuition in a rather
roundabout way. It should be noted that Greenberg (2007) argues that both IS and BP generics
express what she calls ‘in virtue of’ generalizations. The difference between the two kinds of
generics only indicates whether this ‘in virtue of’ property is specified, or left vague.
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melts under normal circumstances at a particular temperature, we inductively conclude that
this will be the case for all pieces of this particular metal (cf. Sankey (1997)). The same
holds for boiling temperatures of liquids.16 In a corpus study on Dutch and Belgian texts,
Oosterhof (2008) shows that (definite singulars and) indefinite singulars are used more
frequently with animal names than with nationality names, indicating that in these texts IS
generics are less frequent with social kinds than with natural kinds. This is consistent with
the hypothesis under consideration, given that the members of natural kinds are normally
more alike, or homogenous, than members of social kinds. In fact, Hume’s (in)famous
problem of induction is taken to be less of a problem by scientists than it is for (many)
philosophers, because in contrast to philosophers, scientists uncritically take objects (of the
same natural kind) to be so similar to one another that induction is taken to be reliable
(see, e.g., Sankey (1997)). In this respect — or so we think — natural language shows that
common sense agrees more with the (perhaps naive) scientific metaphysical outlook, than
with the Humean more sceptical philosophical one.

Unfortunately, the above hypothesis concening IS generics can’t be quite right. First,
although all female ducks have somewhat boring grey/brown feathers, the IS generic (16)
still seems, to us, appropriate.

(16) A duck has beautiful feathers.

Perhaps less controversially and more importantly, the following IS generic is also ok,
although it obviously allows for exceptions.17

(17) A hungry dog is dangerous.

Thus, it is not the case that IS generics about kinds can only express properties all the
members of this kind have. This seems to contradict the above hypothesis that empirical
generalizations about kinds can be expressed by IS generics only if the generalizations can
be made already on the basis of the observation of a single member of the kind.

We propose that what is signaled with the use of the indefinite in an IS generic is not on
the basis of what a generalization can be established, but rather whether or not knowledge
about observed frequencies can be used reliably for individual cases. It is well-known that
on a standard frequency-based analysis of probabilities, the observed probabilities cannot
say anything of any real value concerning individual cases. If the relevant frequency of
outcome ‘heads’ for tosses of a coin is x, we can’t conclude from this that the chance of
this outcome for each individual toss will be x as well, simply because relative frequencies
do not exist for single tosses of a coin. It was exactly to make sense of probabilities of
individual cases that Popper (1979) proposed his propensity interpretation of probabilities.
In contrast to Skyrms (1980) notion of propensity, on Popper’s interpretation, stable long-

16 Of course, the generalization that we can infer from a single instance to a whole group for metals and
liquids concerning melting and boiling temperatures cannot be determined from single instances. Not
all inductive generalizations work this way.

17 We don’t take this generic to be ok due to the striking predicate ‘dangerous’. In fact, the IS variant
of a striking generic like ‘Sharks attack bathers’, i.e., ‘A shark attacks bathers’ is typically taken to
sound awful. In an earlier version of this paper, we used ‘A dog is dangerous, when it is hungry’.
A reviewer complained, claiming that it is well known that odd IS generics are often perfectly fine
when modified by a when-clause. That might be so, but we don’t see the difference between the
when-sentence and (17).
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run frequencies are a manifestation of something deeper: invariant single-case probabilities.
Thus, propensities are not the relative-frequencies themselves, but rather the causes of the
observed relative frequencies.18 In this paper we will make use of Pearl’s (2000) causal
framework. We propose that the relevant ‘principled connections’ that we were looking for
are (mostly) causal connections. Making use of Pearl’s (2000) causal framework allows us
to build a bridge between observed frequencies and population data, on the one hand, and
(counterfactual) predictions concerning individual cases, on the other. Thus, our proposal
is that IS generics that express empirical generalizations do so by pointing to a principled
causal relation.

On this proposal it is also straightforward to account for the more liberal felicity, or
acceptability, conditions of BP generics compared to IS generics: although BP generics
express empirical generalizations that can already be determined by observing many
instances and for which the frequency measure �∗P mostly seems appropriate,19 this does
not exclude the idea that the relative frequencies that make the use of BP generics acceptable
should be explained by a causal analysis.

In fact, we will point out that making use of Pearl’s causal models, a causal reading of
generics correlates under many natural circumstances perfectly with the frequency measure
�∗P that we have argued is appropriate for BP generics before.

4 CAUSAL READINGS OF GENERICS

4.1 Causal models and the probability of causation
We will use causal models (Pearl (2000)) (see also Spirtes et al. (2000)) to represent
causal and counterfactual relationships. Causal models are closely related to Bayesian
networks (Pearl, 1988). Such networks are able to represent probability functions in an
efficient way, by making use of independencies. A Bayesian network consists of nodes
that represent variables, and directed edges that are interpreted as representing direct
dependencies between the variables. Special about causal models is that the edges are
taken to represent ‘causal mechanisms’, i.e., stable and autonomous causal relationships,
represented by equations. A causal model, M, is a triple, 〈U, V, F〉, where U and V are
disjoint sets of exogenous and endogenous variables, respectively, and F is a set of mappings.
While the values of the exogenous variables U are determined by factors outside the model,

18 According to Popper, propensities are defined in terms of laws. With Skyrms (1980), we think it is
more natural to go the other way around: propensities are probabilities/relative frequencies that
are stable under conditioning with relevant background factors, and laws should be defined in
terms of propensities. Still, we cannot quite follow Skyrms in all respects. Skyrms (1980) seeks to
define causation in terms of (stable) probabilities. With Pearl (2000) we believe that any definition
of causality in terms of probability will, in the end, be circular. With Pearl, we take causality to be
primitive, and define causes of relative frequences in terms of it.

19 Not always though. First, even if actually (by chance) all ten children of Mr. X are girls, the generic
‘Children of Mr. X are girls’ still seems false or inappropriate. The sentence only seems appropriate
if being a child of Mr. X somehow explains why one is a girl. Second, some people object that for
‘taxonomic generics’ like ‘Men are mortal’, P(y |¬x) = 0, meaning that �∗P cannot be used for
determining the appropriateness of such generics. Although we believe that there are ways around
this problem, it is certainly the case that proposing a causal analysis for such generics is the most
natural way to proceed.
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the values of the endogenous variables V are determined by the values of variables in the
model, i.e., by U ∪ V. What U represents depends on the application of the causal model.
An assignment to U, i.e, U = u, represents how things are that are not determined by
the causal mechanisms in the causal model. Intuitively, U can normally best be thought
of as a vector of variables, and U = u, i.e., U = u, as a vector of assignments to these
variables. One can think of U = u as the non-caused properties of a world/situation, or the
non-caused properties of an individual, depending on whether the causal model represents
causal relations between propositions, or between properties. An assignment of U uniquely
determines the values of all the endogenous variables. Thus, if X is an endogenous variable,
X(u) gives the value of X if U = u. The value of X(u) can, for instance, be the actual
temperature, or the truth-value of p, if X stands for the issue whether p. But it can also
stand for the length of an object, given the non-caused properties of such an object as set by
U = u. The set of mappings F, finally, represent the mechanisms, or causal dependencies.
Each fi ∈ F is a mapping which gives the value of Vi given the values of all other variables
in U ∪ V. More particularly, each function fi can be written as an equation

(18) vi = fi(pai, ui),

where pai denotes the values of the endogenous variables that are the parents of Vi, and
where the ui are the set of exogenous variables on which fi depends.

What the parents of Vi are can be directly seen in the directed acyclic graph (DAG) asso-
ciated with the causal model M. Such a directed graph represents the casual dependencies
between the members of V graphically. In such a graph, the members of V are represented
by nodes, and if in M there exists a mapping f from pai (the members of V that are the
parents of i) to Vi, this will correspond to directed edges from the nodes corresponding to
the members of pai to Vi.

To illustrate, consider the following Firing Squad example. In this example we have the
following (binary) random variables: A, B, C, D and U that are represented as nodes. A
and B are rif lemen (that shoot, a, b or not, ¬a, ¬b), C is the squad’s captain (that orders
c, or not ¬c) who waits for the court’s order U (yes, or no). D, finally is the variable
standing for death (or not) of the condemned prisoner. We assume that all variables are
endogenous, except for U, which is exogenous. The laws can be stated as follows: {C :=
U, A := C, B := C, D := A ∨ B}. Notice that we assume for simplicity that there are no
separate exogenous variables related to A, B, C and D, representing the assumption that A
and B are perfectly accurate and alert marksmen, and that they are, just as C, law-abiding.
Moreover, we assume that D won’t die from fear, a heart attack, or anything else but a shot.
This situation, together with the causal relations, can be displayed by the following DAG.
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Notice that the value of the exogenous variable U determines the value of all other
variables immediately: if U = 1, all endogenous variables will receive value 1 as well, and
similarly when U = 0. But in many cases we are interested in what would be the case if
something went different from how it actually went. Given that the prisoner is dead and
that rif leman A shot him, we would like to know, for instance, whether the prisoner would
still be dead had rif leman A not shot him. To answer such a counterfactual question, Pearl
makes use of interventions.

For the representation of local actions, or hypothetical changes (i.e., interventions), Pearl
(2000) makes use of submodels. A submodel Mx of M is the causal model 〈U, V, Fx〉, where
x is a particular value of endogenous variable(s) X, and where Fx is just like F, except that
all functions fx that correspond to members of X are replaced by constant function X = x.
Intuitively, Mx represents the minimal change from M required to make X = x true for
any u ∈ U. If X and Y are variables in V, the counterfactual ‘The value that Y would have
obtained, had X been x’ is interpreted as denoting Yx(u). Intuitively, this will just be fy(x, u),
in case X is the only parent of Y in the graphical model. In our Firing Squad example, the
intervention of A can be represented by (i) breaking the causal link between the captain’s
order and the decision of A whether to shoot, and (ii) setting the value of A to 0.

The counterfactual can now be handled as follows: First we reason backwards by making
use of abduction: given that the prisoner is dead and that rif leman A actually shot him,
we can conclude that the captain ordered a shooting, which means, in turn, that the court
ordered this as well. Then, we make use of intervention (break the law A := C, and replace
this with A = 0). Finally, we make use of prediction: what follows in the new imagined
situation? Obviously, rif leman B is still ordered to shoot, so the prisoner would still be
dead.

In this paper we will make use of a probabilistic causal model. This is a pair 〈M, P(u)〉,
where M is a causal model, and P(u) is a probability function defined over the domain
U.20 Because each endogenous variable is a function of U, P(u) completely defines the
probability distribution over the endogenous variables as well. If Y is a variable in V, we
will abbreviate P(Y = y) from now on by P(y). The latter is determined as follows:

(19) P(y) := ∑
u

P(u) ×
{

1, if Y(u) = y
0, otherwise.

20 In case there is more than one exogenous variable, P(u) gives a probability to a vector of values to
the variables in U.
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Similarly, if X is also a variable in V, we will abbreviate P(Yx = y) by P(yx). The latter,
which is also denoted by P(y|do(x)), is determined as follows:21

(20) P(yx) := ∑
u

P(u) ×
{

1, if Yx(u) = y
0, otherwise.

Notice that if P(yx) > 1
2 , this won’t be due to the fact that in most situations where x were

true, y would hold, but rather due to the fact that in most situations, y would hold after an
intervention with x. Alternatively, if we think of x and y as properties, Yx(u) = y represents
the ‘fact’ that after a (minimal) change of objects that satisfy properties U = u such that
it, or they, will become x (or will have property x), it will have property y. P(yx), then,
measures, intuitively, the relative amount of objects that would be y after ‘becoming’ x due
to a (hypothetical) intervention.

One of the most appealing features of calculating P(yx) as proposed by Pearl is that in
this way we can also determine the probability Y = y would have after an intervention
that would make x true, if x is, in fact, not true. Thus, on Pearl’s analysis one can easily
determine P(yx | ¬x) as follows:22

(21) P(yx | ¬x) := P(yx,¬x)
P(¬x)

= ∑
u

P(u | ¬x) ×
{

1, if Yx(u) = y
0, otherwise.

It is interesting to realize that to determine the counterfactual probability P(yx | ¬x) we
will make use of (i) abduction, (ii) intervention, and (iii) prediction, just like in the above
Firing Squad example. Abduction is used to determine from the assumed ¬x what is the
probability of u. Intervention is used to set the value of X to x, from which we calculate, by
prediction, the probability of Y = y.
Pearl (2000, chapter 9) defines the ‘probability of causal sufficiency’ of x to generate y, PSy

x,
as P(yx | ¬x, ¬y). We used bold font here, because it is in terms of this measure that we will
propose to account for many of the above observations.

(22) PSy
x = P(yx | ¬x, ¬y) = ∑

u
P(u | ¬x ∧ ¬y) ×

{
1, if Yx(u) = y
0, otherwise.

Observe that in the Firing Squad example, PSd
a = P(da | ¬a, ¬d) will be 1. Indeed, a

shooting of A suffices to cause the death of the prisoner.

4.2 Relating the causal measures to the frequency-based ones
We have suggested above that in contrast to BP generics, for their truth, or acceptability,
IS generics require the existence of a ‘principled connection’, which we take to be a causal
connection. But causal relations are famously hard to prove. Interestingly enough, however,
under certain circumstances causal relations give rise to observable frequencies. This allows
us to test whether a principled, or causal, connection exists, by looking at these frequencies.

Indeed, Pearl (2000, chapter 9) shows that the counterfactual probability measure
PSy

x = P(yx | ¬x, ¬y) comes down to a non-counterfactual probability measure under

21 For those who are not familiar with causal models, it might help to think of P(yx ) as the probability of
y after imaging P by x, as proposed by Lewis (1976), if X and Y correspond to variables associated
with propositions.

22 For convenience, we abbreviate P(x ∧ y) by P(x, y).
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some conditions. This is interesting for us, because it will allow us to relate the causal, and
counterfactual, analysis of generics that we will discuss in the following subsection, with
the (stable) frequency based analysis of BP generics discussed in section 2.

First, Pearl (2000, chapter 9, p. 294) shows that if a ‘monotonicity’ condition is assumed
(the assumption that from a change from ¬x to x, y cannot change into ¬y, or formally,
∀u ∈ U : Yx(u) ≥ Y¬x(u)), PSy

x reduces to the following:

(23) PSy
x = P(yx | ¬x, ¬y) = P(yx)−P(y)

P(¬y,¬x)
.

It is easy to show that P(yx)−P(y)
P(¬y,¬x)

is equal to P(yx)−P(y|¬x)
1−P(y|¬x)

, and thus that

(24) PSy
x = P(yx | ¬x, ¬y) = P(yx)−P(y|¬x)

1−P(y|¬x)
.

In section 2 we have argued that BP generics of the form ‘xs are y’ can be analyzed in terms
of observed frequencies making use of the measure �∗Py

x. A crucial fact of this paper is that
this latter measure is extremely closely related with PSy

x. To get some more insight into how
PSy

x = P(yx)−P(y)
P(¬x,¬y)

is related to �∗Py
x, one can show the following:23

(25) PSy
x = P(yx | ¬x, ¬y) = �∗Py

x + P(yx)−P(y|x)
P(¬y,¬x)

.

This means that PSy
x is just �∗Py

x, corrected for by the second term to account for the
case that P(yx) �= P(y | x). Note that P(yx) �= P(y | x), for instance, when x and y have a
common cause.24

If one assumes in addition that the way Y would respond to x or ¬x is independent of the
actual value of x (what Pearl calls the ‘exogeneity condition’, which graphically means that
there is no unblocked backdoor path from X to Y, which intuitively means that X and Y
don’t have a common cause), the causal influence of X on Y is reduced to conditional
probability: P(yx) = P(yx | x) = P(y | x). It is obvious that in that case PSy

x comes
down to the notion in terms of which we previously proposed to analyze generic sentences,
i.e., �∗Py

x:

(26) PSy
x = P(yx | ¬x, ¬y) = P(y|x)−P(y|¬x)

1−P(y|¬x)
= �∗Py

x.

23 Let us write P(y) out as P(y | x) × P(x) + P(y | ¬x) × (1 − P(x)), or equivalently, P(y) = P(y |
x) × (1 − P(¬x)) + P(y | ¬x) × P(¬x). Now we can fill this latter formula into the above:

(i) P(yx | ¬x, ¬y) = P(yx )−P(y)
P(¬y,¬x)

= P(yx )−[P(y |x)×(1−P(¬x))+P(y |¬x)×P(¬x)]
P(¬y,¬x)

= P(yx )−P(y |x)+P(y |x)×P(¬x)−P(y |¬x)×P(¬x)]
P(¬y,¬x)

= P(y |x)×P(¬x)−P(y |¬x)×P(¬x)
P(¬y,¬x)

+ P(yx )−P(y |x)
P(¬y,¬x)

= P(y |x)×P(¬x)−P(y |¬x)×P(¬x)
P(¬y |¬x)×P(¬x)

+ P(yx )−P(y |x)
P(¬y,¬x)

= P(y |x)−P(y |¬x)
1−P(y |¬x)

+ P(yx )−P(y |x)
P(¬y,¬x)

= �∗Py
x + P(yx )−P(y |x)

P(¬y,¬x)
.

24 Notice that in case P(yx ) �= P(y | x), (i) �∗Py
x might be high, although P(yx | ¬x, ¬y) is low,

if P(yx ) < P(y |x) e.g. if x and y have a common cause, and (ii) �∗Py
x might be low, although

P(yx | ¬x, ¬y) is high, if P(yx ) > P(y |x). This has interesting consequences for a causal analysis
of generics, but we won’t go into that here.
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It should be noted that Cheng (1997) derives �∗Py
x as being the ‘causal power’ of x to induce

y on similar, though still somewhat different, causal assumptions. Cheng (1997) assumes
that the potential causes of y are independent of each other (the Noisy-OR assumption),
and that P(yx) is independent of P(x), meaning that P(yx ∧ x) = P(yx) × P(x).25

Finally, let us look at what happens if we assume not only that P(yx) is independent of
P(x), but also that y could only be caused by x. That is, P(y|¬x) = 0. Now it immediately
follows that not only P(yx), but also PSy

x reduces to the conditional probability of y given
x: P(y|x). This is important, because according to Cohen (1999), it is under his ‘absolute
reading’ enough for the generic to be true if P(y|x) is high, irrespective of the value of
P(y|¬x). So we see that Cohen’s absolute reading of a generic comes out as a special case of
our general analysis of (IS) generics, because under some conditions PSy

x reduces to P(y|x).
This we take to be a pleasing feature of our analysis.

Let us illustrate our causal analysis with a non-generic example discussed in Pearl et al.
(2016, p. 11-123), an example which highlights the use of the monotonicity assumption
and the fact that our causal analysis is about single case probabilities. Consider the case
of Mrs Smith, a woman with leukemia who had lumpectomy but not irradiation. Her
tumor recurred after a year. She wonders whether she should regret her decision not to
have gone through irradiation. Whether or not she should feel regret depends on the
chance that her tumor would not have recurred, if she had gone through irradiation, which
is clearly a case of single case probability. The chance that her tumor would not have
recurred with irradiation, given that it did recur without irradiation is naturally measured
by PSy

x = P(yx|¬x, ¬y), where ‘x’ stands for ‘going through irradiation’, and ‘¬y’ for
‘tumor recurred’. Of course, this measure is not, in general, estimable from observational
or experimental data. As mentioned above, however, it is estimable in case we assume
exogeneity and monotonicity. Exogeneity just means, as always, that P(yx) = P(y | x).
Interestingly, for this case it is very clear what monotonicity means: irradiation cannot cause
the recurrence of a tumor that was about to remit. With those two assumptions, whether
Mrs Smith should regret her decision, which depends on whether the chance that her tumor
would have recurred had she gone through irradiation, can be estimated by the value of the
population data measured by �∗Py

x.

4.3 IS and BP generics and causality
In this section we will use causal models to give an analysis of IS generics. In our use of
causal models we will think of x and y as properties of individuals, and take F to represent
causal relations between properties.

Our (preliminary, see section 5) proposal now is obvious: IS generics of the form ‘An x is
y’ are true, or felicitous,26 iff PSy

x is high. But this is only the case if any x by itself can, with
high probability, be a cause of y. Or better, any individual with the property ‘being an x’ has
a high chance of also having the property ‘being a y’ in virtue of having the former property.
In this way, the intuition that there should be a ‘principled connection’ between x and y is
accounted for. Moreover, on this proposal we implement the idea that IS generics are about

25 Recall that yx denotes a proposition: the set of circumstances u for which it holds that Yx (u) = y.
26 As mentioned before, we don’t want to decide whether generics have truth conditions, or only

acceptability conditions. In any case, we believe with Greenberg (2007) that the acceptability, or
truth, of an IS generic is heavily dependent on the beliefs, stereotypes, norms, etc. of the speaker.
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individual cases, because we don’t first look at the frequencies, but rather at the causal
structure that produces the frequencies. Many, if not most, BP generics are interpreted in
the very same way. However, or so we would claim, a BP generic can already be true, or
acceptable, if �∗Py

x is high.27,28

Thus, for IS generics of the form ‘An x is (a) y’, it is a principled connection between
x and y that counts. A principled connection that need not exist for the corresponding BP
generic to be true, or acceptable. In this way, we can immediately explain the contrast
between, for instance, the acceptable (9-a) versus the unacceptable (9-b), respectively
(repeated here as (27-a) and (27-b)):29

(27) a.
√

Musical comedies (plays) are popular.
b. ∗ A musical comedy (play) is (a) popular (play).

The fact that according to our analysis of IS generics, there should be a causal, or principled,
connection between properties also explains why these generics are not good when they
involve unnatural properties: causal connections between properties typically exist only
when these properties are ‘homogenous’, and the unacceptable IS generics with unnatural
properties discussed by Greenberg (2003, 2007) are not of that kind. Our causal account
also explains why IS generics are not subject to scope ambiguities, which they would be on
a quantificational analysis. Finally, our analysis can also explain why IS, but not BP generics
are infelicitous, or unacceptable, with episodic predicates: causal relations are (taken to be)
time independent, which is not the case for the IS generics (28-a) and (28-b):

(28) a. ∗ An earthquake is especially strong today.
b. ∗ An Italian restaurant is closed tonight.

Although we take it that for BP generics it can be just high �∗Py
x that counts, we also think

that in many cases this high value can be explained by our causal analysis: �∗Py
x is high

because PSy
x is high.30 Of course, for PSy

x to come down to �∗Py
x we have to make a few

assumptions: either Pearl’s (2000) exogeneity and monotonicity assumptions, or Cheng’s
(1997) noisy-OR (or noisy-AND) assumption. We take it that all of these are natural in our
case.

27 We don’t want to take a stand at this point on whether this means that BP generics are ambiguous
between a causal and a non-causal reading, or whether their meaning is more underspecified.

28 We have argued in section 2 that for ‘striking’ BP generics like ‘Sharks attack bathers’, value, or
utility, should play a role as well. Because the corresponding IS generics are typically taken to be
awful, we think that in contrast to BP generics, for IS generics a low, but positive, value of �∗Py

x
cannot be compensated by a high measure of V (y).

29 To be honest, how exactly to explain why (27-b) is bad, but (15-e) ‘A refrigerator costs about 1000
euros’ is ok eludes us so far.

30 Indeed, as mentioned by Haslanger (2013) many people are tempted to an essentialist reading of
generics in general, and thus also of BP generics. For these people there will, on our analysis, be
hardly any difference between the acceptability of an IS and a BP generic. Although we take this.
on the one hand, to show that a causal analysis is natural, it also indicates, on the other hand, that
it won’t be easy to test whether IS and BP generics really give rise to different truth, or acceptability
conditions. We feel, however, that people do make a distinction between the unacceptability of IS
generics like (27-b), (28-a) and (28-b), on the one hand, versus the (potential) acceptability of their BP
counterparts.

D
ow

nloaded from
 https://academ

ic.oup.com
/jos/article/37/2/269/5721111 by U

niversiteit van Am
sterdam

 user on 31 M
arch 2021



A Causal Semantics of IS Generics 287

Exogeneity, or no confounding, formally means that P(yx) = P(y|x), which holds if high
P(y|x) is not due to a common cause. The monotonicity assumption says that x cannot
prevent y to occur. Of course, we cannot assume this in general, but we can do so for any
reasonable generic of the form ‘xs are y’ or ‘An x is a y’. The noisy-OR assumption, finally,
means that the potential causes for y, including x, are, or are taken to be, independent
of each other. Notice that in case x is (taken to be) the only cause of y (perhaps due to
essentialist’ reasons), the latter assumption is met trivially. Recall that in that case PSy

x

comes down to P(y|x).
Intuitively, what is going on in IS generics, or so we propose, is that for the interpretation

of a (causal) generic of the form ‘xs are y’, or ‘An x is y’, we consider an individual or
object that neither has property x nor y, and look, or imagine, how it would behave after
we turned it, via an intervention, into an individual or object that has property x. (Or
better, perhaps, that although it doesn’t have property x, we perceive of it as having this
property.) The claim is that whether the generic is true, or acceptable, depends on the causal
structure. Perhaps more interestingly, the claim is that disagreement about the acceptability
of the generic depends on disagreement about the underlying causal structure, rather than
on disagreement of the statistics.31

We feel that making use of PSy
x = P(yx | ¬x, ¬y) instead of, for instance, P(yx | ¬x)

or P(yx), is important to explain away some seemingly obvious counterexamples to a
probabilistic analysis of generics. Apparently, it is the case that about 80% of all chicken are
female, due to the fact that, for economic reasons, most farmers gas male chicks immediately
after birth. Still, a generic like ‘A chicken is female’ is completely unacceptable. But by
calculating PSfemale

chicken one first looks only at objects that are neither chicken nor female.
Then one estimates the chance with which the male object that is turned into, or imagined
to be, a chicken is thereby turned into, or imagined to be, a female as well. But that seems
absurd. A similar explanation might be given for why ‘A person is more than 3 year old’
is bad, although most people are over 3 years old. Again, to determine PS>3 years

people you take
some non-human animal that is not over 3 years old. But then, why should this animal be
over 3 years old after an intervention?

In section 2 we have followed Cohen (1999) by restricting the ‘domain’ of the probability
function to

⋃
Alt(y) for the interpretation of a BP generic of the form ‘xs are y’. We have

shown that by doing so we can account for several examples that Leslie (2008) presented
as fatal counterexamples to Cohen’s probabilistic approach. To strengthen the relation
between the ‘statistical’ analyses of section 2 with the present causal analysis, we should be
able to let the alternative set Alt(y) play a role now as well. Fortunately, it is easy to see how
that works: instead of using PSy

x = P(yx|¬x, ¬y), we should use P(yx|¬x, ¬y,
∨

Alt(y)). For
a generic like ‘A duck lays eggs’ this means that PSy

x doesn’t measure the ‘causal power’ of
ducks in general to lay eggs, but rather the causal power of female ducks to lay eggs, which
is quite high, indeed.

31 Although this is perhaps best illustrated with BP generics like ‘Muslims are terrorists’, or ‘Mexicans
are rapists’.
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5 ‘BACKTRACKING’ AND ‘ANALYTIC’ IS GENERICS

Although we believe that the above analysis of IS generics is very natural, the way we
have used causality until now is clearly too limited: there exist IS generics of the form ‘An
x is y’ that are true and appropriate, even though x is not a physical cause of y. In this
section we will discuss two such cases, and propose generalisations of our causal analysis
to accommodate them as well.

Backtracking IS generics. Suppose we have a causal structure of the form X → Y. It may
well be that in such cases �∗Px

y = P(x|y)−P(x|¬y)
1−P(x|¬y)

has a high value, predicting that BP generics
of the form ‘Objects of type y are (generally) of type x’ can be true, or acceptable, in such
circumstances. On the causal analysis we have presented in the previous section, however,
for the same sentence to be true or acceptable, it has to be the case that P(xy|¬x, ¬y)

is high. That, however, is impossible. In this type of causal structure intervention of Y
doesn’t inf luence the probability of x, and because now ¬x is taken to hold, this means that
P(xy|¬x, ¬y) = 0. Thus, an important empirical consequence of the analysis given above is
that IS generics are predicted to be asymmetric.

Perhaps unfortunately, this seems to give rise to obviously false predictions. Suppose that
all and only all hummingbirds have pink necks. Then it seems that both of the following
are true or acceptable:

(29) a. A hummingbird has a pink neck. and
b. A bird with a pink neck is a hummingbird.

Also the following two generics both seem true or acceptable:32

(30) a. A tiger is striped. and
b. A cat-like animal that is striped is (normally) a tiger.

There is no denial of these facts, but it does seem to us that the latter sentences are true, or
acceptable, for a different reason than the former ones. Intuitively, an analysis of generics
(29-a) and (30-a) in terms of the analysis proposed in the previous section is, plausibly,
correct, or so we think. The reason why the corresponding sentences (29-b) and (30-b) are
also good is, we think, different. One difference is that (29-b) seems definitional, rather
than empirical. But given examples like (30-b), that cannot be the general account of the
difference.

We believe that we can provide a causal analysis not only of generics like (29-a) and
(30-a), but also of generics like (29-b) and (30-b). But the causal analysis has to be more
general. Although most generics of the form ‘An x is y’ are good because being an x causes
feature y, others are good because being a y causes feature x. Or putting it in other words,
while most IS generics have a causal forward reading, some generics appear to have an
evidential, diagnostic, or causal backward reading. Importantly, having a causal backward
reading is still in line with the general intuition that (descriptive) IS generics demand a
‘principled connection’, an intuition that we propose to cash out as the existence of a causal
relation between x and y.

32 To be sure, we think that the generic (30-b) without the ‘normally’ is still acceptable. One reviewer
disagrees, and mentions that ‘it is well known that many sentences that are bad as IS generics
are good when an overt quantificational adverb is introduced’. If this reviewer’s view is correct, the
generalised causal analysis proposed in this section as ‘backtracking’ IS generics can be ignored.
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To give a more detailed account of the causal backward reading of generics, we can
define the probability that, given y, y is due to x.33 Denoting this measure by P(x � y| y),
it can be stated as follows:

(31) P(x � y| y) := P(x)×PSy
x

P(y)
.34

We propose that in causal structures of the form X → Y, IS generics of the form ‘A y
is an x’ should be interpreted as true, or acceptable, just in case there is a relatively high
probability that y is due to x, i.e., that P(x � y| y) is high. Notice that in these causal
structures P(x � y| y) can be positive and high, even though P(xy|¬x, ¬y) = 0 = PSx

y .
In the previous section we have shown that assuming exogeneity and monotonicity,

PSy
x = �∗Py

x. Remarkably enough, one can show that under these same conditions it also
holds that �∗Py

x = P(y � x| x), and thus that under exogeneity and monotonicity, PSy
x =

�∗Py
x = P(y � x| x).35 Thus, under both the causal forward and the causal backward

‘reading’, the truth, or acceptability, of an IS generic can be estimated by, or comes down
to, the same frequency measure: �∗Py

x!
This shows that a generic of the form ‘An x is (a) y’ can be appropriate if �∗Py

x is high
under both causal structures X → Y and Y → X. But in causal structure X → Y, �∗Py

x is
high because PSy

x = P(yx|¬x, ¬y) is high, while in causal structure Y → X, �∗Py
x is high

because P(y � x|x) is high. In both cases, the truth, or acceptability, of the generic depends
on there being a (strong) causal connection between x and y, measurable under natural
circumstances by �∗Py

x, and given the causal structure it is always obvious how the causal
connection should be cashed out: as high PSy

x or as high P(y � x|x).

33 As a reviewer remarks, Pearl (2000) rules out backtracking counterfactuals by fiat, though there is
considerable empirical evidence that they are real. Interestingly enough, Dehghami et al. (2010) give
strong arguments that backtracking counterfactuals are most acceptable when a lawlike relation is
involved, even if it’s a contingent one. In our analysis in the previous section we have followed Pearl
using only ‘forward’ tracking counterfactuals. There are several ways to account for backtracking
counterfactuals making use of causal models. In this paper we discuss a particular one that matches
well with our analysis of BP generics.

34 This measure is taken from Cheng et al. (2007). Notice the similarity with Bayes’ rule: P(x| y) =
P(x)×P(y |x)

P(y)
.

35 To show that �∗Py
x = P(y � x| x), note that by standard probabilistic reasoning it follows that

�∗Py
x = P(y |x)−P(y |¬x)

1−P(y |¬x)
= P(y |x)−P(y)

P(¬y∧¬x)
. By a similar reasoning it follows also that �∗Px

y =
P(x|y)−P(x)
P(¬y∧¬x)

. Crucially, one can also show that P(y |x) − P(y) = P(y)
P(x)

× [P(x|y) − P(x)] (see

below). From this and the previous results, it immediately follows that �∗Py
x = P(y)

P(x)
× �∗Px

y .

Because �∗Px
y = PSx

y (under exogeneity and monotonicity) it follows that �∗Py
x = P(y)

P(x)
× PSx

y =
P(y)×PSx

y
P(x)

= P(y � x|x). Thus PSy
x = �∗Py

x = P(y � x|x). This leaves us to show that

P(y |x) − P(y) = P(y)
P(x)

× [P(x|y) − P(x)]:

P(y |x) − P(y) = P(x|y)×P(y)
P(x)

− P(x)×P(y)
P(x)

= 1
P(x)

× [P(x|y) × P(y)] − 1
P(x)

× [P(x) × P(y)],

= 1
P(x)

× [P(x|y) × P(y) − P(x) × P(y)]

= 1
P(x)

× P(y) × [P(x|y) − P(x)].
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We have seen in section 4 above that in special cases high PSy
x comes down to high

P(y| x), i.e., the measure in terms of which Cohen (1999) accounts for the truth, or
acceptability, of generics under their ‘absolute’ reading. Interestingly enough, in similar
cases also P(y � x| x) reduces to P(y|x).36

Is the causal analysis so far general enough? Suppose y and x have a common cause.
Would in those cases a generic of the form ‘An x is y’ be true, or acceptable? To give an
example of a reviewer, suppose that someone (mistakenly) believes that smoking doesn’t
cause lung cancer, but that smoking and getting lung cancer are due to a common (genetic)
cause (call it ‘c’). Would somebody like that accept the generic ‘A smoker gets lung cancer’?
We don’t know. However, we don’t think this is impossible on our analysis, because there
is now still a causal story to be told. Moreover, it seems clear how to measure the truth, or
acceptability, of the generic ‘An x is a y’: by P(c � x|x) × PSy

c . Interestingly enough, one
can calculate that if there are no other causal factors and if one makes again some natural
assumptions, this measure comes down to P(y|x).

Analytic IS generics. We have argued in section 3 against a ‘definitional’, or ‘rules and
regulation’ account of IS generics: these accounts were not general enough to capture all
possible cases. But a similar problem faces our account. Where the rules and regulation
analysis could not account for IS generics that express empirical generalizations, we seem
to be unable to account for IS generics that express, eh,.... rules and regulations.

(32) a. A disjunction is entailed by its disjuncts.
b. A maroon shirt is a red shirt.
c. A bachelor is an unmarried man.
d. A bishop moves diagonally (in chess).
e. A gentleman opens doors for ladies.
f. A person born in 1980 reaches the age of 40 in the year 2020.

Proposing a causal analysis for such examples seems far-fetched. And perhaps it is not
needed. Notice that for all the above generics of the form ‘An x is (a) y’ it holds that
�∗Py

x = 1, because P(y|x) = 1 and P(y|¬x) �= 1. Thus, we could possibly account for
what is special about these above IS generics by claiming that it has to be the case that
�∗Py

x = 1,37 i.e., that �∗Py
x must have its maximal value.

Perhaps. Still, we think that a causal-like analysis of the above examples is quite natural.
Just as an ordinary generic like ‘Rubber stretches’ seems to be true in virtue of what it is to
be rubber, (32-a), (32-b), (32-c), (32-d) (32-e) and (32-f) seem to be true or acceptable in
virtue of what it means to be a disjunction, red, a bachelor, a bishop (in chess), a gentleman,
or being born in 1980, respectively. A number of authors have accounted for ‘in virtue of’-
or ‘because’-statements in terms of metaphysical grounding (e.g. Rosen (2010); Schnieder
(2011); Correia & Schnieder (2012)).

36 To see this, note that P(y � x| x) = P(y)×PSx
y

P(x)
. In the special cases where PSx

y reduces to P(x| y)

it will thus hold that
P(y)×PSx

y
P(x)

reduces to P(y)×P(x|y)
P(x)

. As a result, P(y � x| x) = P(x∧y)
P(x)

= P(y |x)

in these cases.
37 Perhaps, rules and regulations are such that P(yx ) is independent of P(x) and P(y). But we have

seen that in that case PSy
x and P(y � x|x) reduce to P(y |x).
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Some have even suggested that grounding is something like ‘metaphysical causation’
(Schaffer (2016);Wilson (2017)) and that also grounding should be accounted for in terms
of structural equation models, where intervention makes sense.

There exists a related way to ‘liberate’, or generalize, the notion of causation: turning
it into ‘influence’.38 In section 4 we have modeled causation in terms of directed acyclic
graphs (DAGs), where the direction of the arrows has a causal meaning. But causation
can be thought of as only a special kind of inf luence, and a causal net can be thought of
as just one type of inf luence net, which can be displayed by a graphical model as well.
Williamson (2005) proposed to think of logic in terms of influence nets, and argues that
— just like Bayesian nets for the representation and reasoning with probabilities — this
has computational advantages. But once we do that, it seems that not only logical relations
like (32-a), but also meaning relations as expressed by (32-b)–(32-f) can be analyzed in
such an influence net. This idea is supported by work (e.g. De Raedt et al. (2016)) that
shows the close relation between Bayesian networks and Logic Programming, two (still)
popular frameworks for reasoning and knowledge representation. Bayesian networks —
which one might think of as generalizations of causal networks — specify joint probability
distributions over finite sets of random variables and consist of two components: (i) a
qualitative or logical one that encodes the local influences among the random variables
using a directed acyclic graph, and (ii) a quantitative one that encodes the probability
densities over these local influences. A logical program consists of (Horn) clauses like
A ← B1, · · · Bn, with a fact represented by A ← �. A typical clause has a form like
‘A ∧ B ← A, B’ or ‘Mother − of (x, y) ← Parent − of (x, y) ∧ Female(x)’,39 two rules that
represent conceptual truths. The idea behind the connection between the two frameworks is
that the logical component of Bayesian networks essentially corresponds to a logic program,
where the random variables in the Bayesian network correspond to logical atoms. As it turns
out, logic programming can be augmented with probabilities, which even strengthens the
connection. Furthermore, the direct influence relation of Bayesian networks corresponds to
the, so-called, ‘immediate consequence operator’, which is used to construct a (minimal)
model of the program. Interestingly, the clauses of a logical program need not express
conceptual relations: they typically can be given a causal interpretation as well. Intervention,
too, can be made sense of for logical programs, for instance to account for counterfactuals
(cf. Schulz (2014)).

To illustrate the idea, let us just look at (32-a) and (32-b). These correspond to A∨B ← A
(and A ∨ B ← B) and R(x) ← M(x), respectively, which are stated, or derived, by the
logical program that represents all conceptual truths. To determine whether, for instance,
(32-b) is true, or acceptable, we have to check (on the forward ‘reading’) whether PSR(x)

M(x)
=

P(R(x)M(x) | ¬R(x), ¬M(x)) is high. Thus, we take an object (shirt) that is not maroon
(and thus not red), and imagine, or make, it being maroon. Then we determine what the
probability would be that it also would be red. But given the above logical program this
is obvious: the probability will be 1. A similar reasoning shows that also (32-a) comes out
true/acceptable, because obviously PA∨B

A = P((A ∨ B)A | ¬A, ¬B) = 1.
Whatever the exact details of metaphysical grounding and logic programming, we take

this all as a strong indication that there exist natural general frameworks in which causal

38 In fact, Lewis (2000) does so as well, but in a quite different manner.
39 The variables are implicitly universally quantified.
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and conceptual, or grounding, rules can be captured, and thought of in very similar, causal-
like, ways. If so, examples like (32-b)–(32-f) ceases to be a problem for a causal(-like)
analysis. But whether any of these suggestions stretches the notion of causation beyond
recognition, we must leave to the reader.

6 CONCLUSION AND OUTLOOK

The goal of this paper was to account for the limited felicity, or acceptabilty, of IS generics
compared to BP generics, on the one hand, while preserving the close similarity between
the two types of generics, on the other. The second seems important, because claiming there
to be a sharp distinction between the two types of generics seems unnatural. We proposed
to capture the first goal by arguing that IS generics of the form ‘An x is (a) y’ are special,
because they demand a causal(-like) relation between x and y. We have shown that by
accounting for this hypothesis making use of causal models, the second goal can be satisfied
as well.

We generalised our analysis to account for ‘backtracking’ generics, which we feel is
very natural. And we had to stretch the initial idea behind the causal analysis somewhat
to account for analytic’ IS generics as well. Although we have argued in favor of the
stretch, we can understand if this gives rise to some uncomfortable feeling. Moreover, it
seems that our stretch of the notion of ‘causation’ is not yet wide enough: we have not yet
discussed IS generics that express social or artificial kinds. As for social kinds, there seem
to be IS generics involving social concepts that many people find acceptable, such as the
following.40

(33) An American salutes the flag.

We think that (33) should receive a similar treatment as a generic like (32-e): it states what
(according to the speaker) a ‘real’ American does, or should do. More problematic are IS
generics involving artificial kinds expressing functional concepts:

(34) a. A religious ritual increases cohesion in society.
b. An OrangeCrusher 2000 crushes oranges.

Intuitively, the latter IS generic can be true even if no OrangeCrusher 2000 has ever been
used, i.e. if no such machine has ever crushed oranges. The idea is, obviously, that this
generic is nevertheless true, or acceptable, because it is made for that purpose. Although
there is obviously a causal relation involved between what an OrgangeCrusher 2000 is, on
the one hand, and what it does, on the other, a standard causal analysis won’t work here.
So there is still work to be done.

On the positive side, we think that our analysis of generics can be applied as well to
some other phenomena. Causal models have long been used to account for counterfactuals,
but an increasing number of authors have recently proposed to use them for the analysis of
indicative conditionals as well: intervention is important for the analysis of many indicative
conditionals. In contrast to most of these recent proposals, however, a causal treatment like

40 The example is provided to us by a reviewer. Obviously, there are many more IS generics involving
social kinds that express racist beliefs that are acceptable for some members of our society.
Disagreement on the truth, or the acceptability of such IS generics typically focusses on the
underlying causal structure, or so we think.
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ours would moreover account for the idea that there should be a connexion, i.e., a relevance
relation, between antecedent and consequent (cf. van Rooij & Schulz (2019c)).41 A second
natural application of our framework involves disposition ascriptions. Such ascriptions have
standardly been given an analysis in terms of counterfactual conditionals. Faced by some
problems of such a treatment, Fara (2005) proposed an analysis in terms of generics. In van
Rooij & Schulz (2019b) we argue that this proposal could be worked out more satisfactorily
by basing it on our analysis of (IS) generics.
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