
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Flipped Top-Down is Systematic Bottom-Up

Zaytsev, V.

Publication date
2016
Document Version
Final published version
Published in
EduSymp 2015 : MODELS Educators Symposium 2015

Link to publication

Citation for published version (APA):
Zaytsev, V. (2016). Flipped Top-Down is Systematic Bottom-Up. In A. Sturm, & T. Clark
(Eds.), EduSymp 2015 : MODELS Educators Symposium 2015: Proceedings of the MODELS
Educators Symposium 2015, co-located with the ACM/IEEE 18th International Conference on
Model Driven Engineering Languages and Systems (MODELS 2015) : Ottawa, Canada,
September 29, 2015 (pp. 17-28). (CEUR Workshop Proceedings; Vol. 1555). CEUR-WS.
http://grammarware.net/text/2015/flipped.pdf

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/flipped-topdown-is-systematic-bottomup(1e5c0a40-e375-4f4b-bd7c-f1b2dd2878ce).html
http://grammarware.net/text/2015/flipped.pdf


Flipped Top-Down is Systematic Bottom-Up

Vadim Zaytsev, vadim@grammarware.net

Instituut voor Informatica, FNWI, Universiteit van Amsterdam, The Netherlands

Abstract. The paper presents an experience report in course design for
a versatile group of computer science students where their needs were
surfaced and met by the combination of strict top-down exposure to
course material and the flipped classroom model of lecturing.

1 Motivation

Computer science departments in general have little to no trouble attracting
students to their undergraduate (Bachelor-level) programmes. However, some
suffer from a syndrome when a fraction of somehow misinformed students start
their CS education only to gradually increase their disappointment up to the
level of switching to a more suitable programme. When such leaks happen at
later stages, they can be considered harmful to both students who lose their time
figuring out the right match, and to the departments that invest teachers and
other resources into students that never complete their education there. One of
the ways of preventing such leaks involves moving hardcore computer science
courses into the first year to deliver the right message and allow students an
earlier chance of making up their minds.

At the University of Amsterdam, such a strategy in curriculum design leads to
first year Bachelor students following courses on linear algebra, automata theory,
discrete mathematics, as well as introductory software courses that teach them
programming in-the-small and turn all too easily into introductions to various
paradigms, programming languages and operating systems. Those students that
know programming on a more advanced level, are left to their own devices and
may develop their skills in their free time; many do.

By the time students reach second year, it becomes necessary to introduce
them to the discipline of software engineering. This is accomplished by a course
named Project Software Engineering. However, several problems block the easy
way there, with the largest challenges being the following ones.

– Not a single aspect of MDE had a chance to manifest itself prior to this
course. Part of the students were junior programmers experienced with low
level tasks that never required any modelling to succeed; the others were non-
programmers which were taught programming-in-the-small with throwaway
code that was solving one S-type problem (e.g., “balance a tree”) in a very
limited time to be left behind and forgotten right after submission.



Mon Tue Wed Thu Fri
Lecture 1: Intro Demo 1: Pitch Lecture 3: SWEBOK
Lecture 2: Agile
Lecture 4: Patterns Demo 2: MVP — — — audits — — —
Lecture 5: FP Demo 3: Working — — — audits — — —
Lecture 6: Testing
Demo 4: Dry run Demo 5: Final

Table 1. Summary of the course schedule

– The starting level of students varies greatly from those that know basic con-
structs and may, if the need arises, construct a simple website by copy-and-
paste programming, to those that have coded Arduino kits or even worked
part-time at software development companies as interns and junior software
developers.

– Collaboration skills have received too little attention in the preceding courses,
and almost none of it was dedicated to collaboration in technical environ-
ments, such as ones commonly found in software engineering projects when
a number of people (greater than two) is working on the same codebase for
longer periods of time.

The shape of the course was predetermined by the curriculum timeline and
could not be changed: one month full time, no distractions, no conflicting activ-
ities. The rest of the properties were described in terms vague enough to make
it fit any desired shape [18].

2 Course Design

The main principles in designing this course were the goals of full utilisation of
the available knowledge (in the form of personal experience, industrial contacts,
resources on the internet) and of maximum leverage of students’ enthusiasm.
The course was aimed to provide something they (felt to have) never received
before: learning hands-on skills at own speed and immediately applying them in
a real-life(-like) project.

2.1 Summary

Heterogeneous entry level is often mentioned to be a problem solved by the
flipped classroom paradigm [12, 14], where typical classroom activities such as
lecturing are done at home by consuming prepared videos and contact time is
spent on discussions and typical homework activities such as applications of leant
skills. Since one of the biggest threats to it were unmotivated students [1,4] and
ours were shining with enthusiasm, it was decided to give it a shot. The first
lecture was given traditionally — to be precise, it was a block of two lectures:



one with the introduction to software engineering (as the domain as well as the
course) and one explaining the agile methodology that the students needed to
follow from the first day. By this the basics were covered and they could start
working independently. For lectures 3–5 the material was provided a few days in
advance with the obligation of sending at least one question to the lecturer. The
actual lecture hours were then used to handle most of the collected questions.
Besides the topics, there were distinctions in the methodology: for the third
lecture, the questions were collected passively; for the fourth one, each student
got a brief answer individually before or shortly after the lecture; for the fifth
one, its topic was also left as a choice for the students. The last lecture was given
by an external software engineering practitioner invited from the industry.

Additional to these 12 hours, around 10 hours were spent on weekly presenta-
tions about the progress in developing the actual project; each demo session had
a clear purpose announced beforehand, each was graded. On weeks 2 and 3 each
team needed to go through a round of audit (for a total of two per team) when
they were visited by a “third party expert” that would ask difficult questions
about their development process and also assess the progress.

In the centre of the course is the project itself: the students had complete
freedom in choosing a topic, but needed to pitch the idea at the first demonstra-
tion session and regularly report on their progress. The teams were assembled
by students themselves, with size limits imposed by the lecturer (6–8 people per
team). All this totalled 41 hours contact time, the rest of 6 ECTS being prepa-
ration time for the lecturer and self study for the students, mutually supported
by Slack communication.

There was no explicit examination at the end of the course: all intermediate
stages were graded and the final grade emerged from the accumulation.

2.2 Lectures

Lecture 1: Introduction to software engineering was made intentionally
personal : the concepts of imperative, structured, functional programming were
explained with concrete examples from the personal history of the lecturer. Com-
putational methods received examples from railway engineering [36], low level
programming exemplified with methods of hacking and disassembling, main-
frames — with COBOL migration projects, metaprogramming — with Ras-
cal [13], databases and AI aspects demonstrated by successful Master student
projects that the lecturer supervised. Yet, the lecture remained an overview. As
a result, students remembered only those parts of it that interested them and
asked many precisely targeted questions later.

Lecture 2: Agile software engineering [22] was introduced next at the
first day so that the students would know where and how to begin working on
their projects. This was done in a reasonably straightforward fashion.

Lecture 3: SE knowledge areas [23–28]

Software engineering was presented as a domain: its domain model was the
Software Engineering Book of Knowledge [5]. Its chapters 1–5 and 10 were taken



and turned into 5–9 minute overview videos each. For the sake of correct count-
ing these clips were not made publicly available until the course ended: videos
received 100, 58, 47, 45, 40 and 46 views. Out of 51 students, 34 participated
and asked 53 questions total through Slack and email — more than enough to
fill in two hours of the lecture. Half of the time during the lecture was dedicated
to the Master-level programme in software engineering1, which is also designed
in alignment with SWEBOK and at the same time allows to give very concrete
examples of topics and contents.

Lecture 4: Paradigms, patterns, antipatterns [29–31]
The traditional way of introducing students to programming paradigms is

exposure to a typical programming language that exemplifies it, such as Pro-
log for declarative programming / constraint solving. Instead of that, we went
for a megamodel [19, 20] that introduced all known paradigms by explaining
relations between them and decisions involved in designing different languages
and choosing among them. A renarration [32] of this model was a 13 minute
screencast.

For the patterns video, no such material was available, so the video was
improvised based on the contents of the books on design patterns [8], implemen-
tation patterns [3], architectural patterns [3], with some attention devoted to
millipatterns, micropatterns and nanopatterns as well [33]. The third part con-
cerned negative patterns like code smells and bug patterns. The videos received
66, 64 and 50 views and yielded 76 questions from 47 students. This time each
question was answered individually and the lecture itself was dedicated to the
chosen few that occurred most often. Subjectively this was much better received
by students who connected easier to direct answers sent through Slack and email
than to handling them during the lecture.

Lecture 5: Practical functional programming [7]
The topics of the remaining two lectures were not fixed in advance. Instead,

students could vote on what they wanted to see and could propose their own
topics. Participation in voting was much lower than expected (14 voters, 27%
participation), and as a result two topics emerged. The topic of practical func-
tional programming had its roots in one of the discussions at an earlier lecture
about our experiences in FP: the students had been exposed to Haskell and
Erlang in a course meant to introduce non-traditional paradigms and were gen-
uinely puzzled when told that FP languages are being used in practice and that
FP constructs are present in almost every language (apparently writing decent
Java 8 code was not a part of their Java programming course). The lecture itself
consisted of a discussion on the chosen subset of 50 questions sent in by 31 peo-
ple, as well as of code examples in various languages. Some time was dedicated
to introducing various languages by explaining their use cases in the industry:
Scala at LinkedIn, Clojure at Amazon, Groovy at Netflix, Erlang at WhatsApp,
Arc for Hacker News, F# in Halo, etc.

Two people have explicitly voted to have no topic for the lecture and use
the available time for their project — both have been informed that they are

1 http://www.software-engineering-amsterdam.nl

http://www.software-engineering-amsterdam.nl


0,0

2,5

5,0

7,5

10,0

0,0 2,5 5,0 7,5 10,0

Project Process Theory

Fig. 1. Plotting the grades of three core course components against the final grade:
project (blue), process (green), theory (yellow).

0,0

2,5

5,0

7,5

10,0

0,0 2,5 5,0 7,5 10,0

Fig. 2. Plotting the final grade (Oy) against the grades for the questions (Ox).

free to do so without consequences for the final grade; one of them still actively
participated, sent good questions and attended the lecture.

Lecture 6: Automated software testing

The last slot was filled by a guest lecturer from a company specialised in
model-based testing: he received 60 questions, structured his lecture with some
regard to them, explained how his company works and gave a short live demo
with Ruby, Rspec and Cucumber; all these parts were greatly appreciated and
received warmly by the students — a typical reaction to industrial guest lectur-
ers.

2.3 Demos

There was one preliminary meeting before the start of the course where students
attended a specially organised pitch session at one of the local startup incubators.
They had six weeks between the session and the official start of the course to
think about their project and form teams of Scrum-compatible size. Seven teams



of size 5–8 were made, one student asked for an exemption and was granted it
after an interview.

Demo 1 was on the second day of the course, a day after the first lectures.
The teams were supposed to pitch their ideas in front of the audience which
consisted of all the other students and several invited lecturers. Since they have
seen real startupers pitch before, this went without much trouble. One team
“mispitched”: after having presented their idea, they proceeded to run experi-
ments and those shown that the prototype was infeasible; they promptly switched
to another idea.

Demo 2 was much more challenging: exactly one week later they had to
present their Minimum Viable Product (MVP, the concept was explained at
Lecture 2). The main challenge for them was to focus on something directly
presentable right away instead of waterfalling their way from backend configura-
tions and protocols eventually toward the user. This requirement was meant as
a disruptive influence and as a way to kickstart thinking about possible software
process models.

Demo 3 was meant to show clear and tangible progress and out of all demos
looked the closest to a real Scrum weekly review.

Demo 4 was scheduled on the first day of the last week and was positioned
as a dry run of the final demo. This was appreciated considerably, and the
adjustments most teams made between the last two demo sessions, were very
apparent.

Demo 5 was the last day of the course, where all complete teams presented
the results of their month work.

The following projects were completed within the course:

– Audioflame, http://audiofla.me, an online audio editor frontend that
logs in to the user’s cloud storage, loads files from there and allows to adjust
them in the browser and finally save the project or export it back to the
cloud.

– Payclouds, http://payclouds.net, https://youtu.be/5VBcwrKkQLY, a
webapp for distributing expenses within a group of friends.

– Doko, https://github.com/JoerivVuuren/Doko#doko, a gamified mobile
platform for recording small scale debts within a group of friends.

– Qluzr, https://qluzr.nl, a gamified web app for distributing household
duties and earning points and badges for their timely completion.

– Vlakbijles, https://github.com/Vlakbijles, an app for searching tutors
based on their expertise, location and reviews.

– Ariana, http://ariana.pictures, a deliberately simplified webapp for
user-friendly editing pictures in the browser.

– Smart Address Book, a heuristic-based contact data synchronisation plat-
form among Google Contacts, LinkedIn and Podio.

2.4 Audits

Audits have held their place in software development for many years [6]. We have
used them as an opportunity to expose the design, architecture, technological

http://audiofla.me
http://payclouds.net
https://youtu.be/5VBcwrKkQLY
https://github.com/JoerivVuuren/Doko#doko
https://qluzr.nl
https://github.com/Vlakbijles
http://ariana.pictures


decisions and implementation details to third party experts. Audit sessions varied
in content: some were based on ISO/IEC 25010:2011, some involved code review,
etc. The main role of an auditor in all these cases was to provide fresh informed
perspective to the students and to ask difficult questions exposing weak sides
of their projects: what is the state of your documentation? how did you test
that your components work together? why did you use this framework? Six
audit sessions were done by the present author, the remaining eight delegated
to colleagues and Master students of software engineering.

2.5 Assessment

All the questions were graded individually: no question at all meant 0 points, a
simplistic question that could have been answered by spending ten minutes on
Wikipedia was 6 points, a reasonable question 8 and a perfect one 10, with ±1
deviations for particular details and circumstances. Laconic summaries of the
questions can be found on Table 2.

The final grade was the average of three grades for the core course com-
ponents: the project (assessed as the quality of the final product, adjusted by
auditors’ feedback), the process (the average of the assessments of weekly demon-
strations) and the theory (presence and participation at lectures, measured by
the quality of answers provided per lecture). Figure 1 and Figure 2 relate the
final grade with its components and with an average grade for questions.

After the course has ended and all the components have been graded, as
usual, there were some students dissatisfied with their grades. They were given
a chance to compensate for each of the components for which they got zero
points, by elaborating on one of the problems briefly mentioned in the flipped
lecture videos, by writing running code demonstrating the issue.

2.6 Evaluation

As typical for any course at the University of Amsterdam, it ended with an
evaluation form filled in by students (40 submitted their forms). In general, the
results were positive, with most items scoring around 7.0 out of 10 or 3.5 out
of 5. On Figure 3 we present a part of the results in somewhat more detail and
offer the following observations:

– The in-classroom lectures were not deemed very useful, even though their
level was appreciated. In our case the classroom hours were indeed not crucial
for consuming the material, but if they are to be dropped in the adjusted
version of the course for the next year, there should be other ways found to
enforce material consumption.

– The questions that the students had to ask after watching the flipped lec-
tures, were assessed much more positively, but many people found them
rather dull. Indeed, that was one of the worries we had during course design.
Alternative ideas that seemed more exciting (such as tweet-summaries of
the lectures), ended up not being implemented because they were too hard



to explain. Perhaps next time instead of (or together with) asking ques-
tions, students should answer them by recording their own videos? Active
participation has been generally known to increase involvement, and there
is evidence for student-generated content, specifically video content, to be
particularly effective [11, 15, 17] and positively perceived by the students
themselves [16].

– Weekly demos were not seen as incredibly useful. We dare attribute it to the
general computer engineer mentality of preferring uninterrupted work in a
cave to explanations and open discussions.

– Two aspects were noticeably different from the evaluation of the last year:
the course felt a bit more practical (in the sense of learning skills that feel
like they will be used later in practice) and somehow it felt more academ-
ically challenging and research-intensive. Last year the students were also
left to their own devices for the project development part, but only received
two lectures on rather randomly chosen topics (maintenance [35]) and en-
trepreneurship [34]). Apparently systematic top down exploration of software
engineering domain starting with its areas into the paradigms, languages,
patterns and processes, left the students feeling more sciencey.

The grade given to the instructors by the students was in reverse correlation
with the instructors’ teaching capacity: the ones scored the highest (upwards
of 8.0 out of 10) were Master students supervised by the present author who
were asked to serve as auditors; teachers scored lower, down to 6.0 for the most
experienced one in educational matters.

Another interesting piece of feedback was collected from the “special re-
marks” section as well as direct conversation: students perceived the “post on
Saturday morning — expect questions by Sunday night” model as much more
relaxed and less invasive than “post on Wednesday — expect questions by Fri-
day”; the expectations were opposite. We thought that giving assignments during
weekends could be stress-inducing, but it was seen as preferred, possibly because
watching educational videos was more compatible with a typical weekend sched-
ule of Netflix and chill than with a typical workday.

3 Conclusion

Instead of attempting explicit elicitation of the needs of individual students in the
hope to cater to them, we have designed this course in a strictly top-down fashion:
the introduction was followed by an high level model of the domain (the highest
official model we have of the entire software engineering [5]) and proceeded by
handling other increasingly more detailed yet still irrevocably abstract models
and megamodels of programming paradigms and good and bad practices. Yet,
by combining such a design with the flipped classroom paradigm (where usual
classroom activities like lecturing are completed individually at home and the
traditional homework is treated during contact hours), we have achieved a good
fit with the needs of a versatile group of students. We claim that this would not



dissatisfied ok satisfied

course assessment 2,6% 5,3% 92,1%

course usefulness 8,1% 24,3% 67,6%

course clarity 13,3% 40,0% 46,7%

academic challenge 12,5% 17,5% 70,0%

sufficient feedback 15,4% 29,5% 55,1%

active learning 0,0% 12,9% 87,1%

workload 11,1% 0,0% 88,9%

course quality level 0,0% 5,3% 94,7%

knowledge and insight 18,6% 39,8% 41,6%

practical application 15,0% 31,0% 54,0%

communication 12,5% 40,0% 47,5%

collaboration 0,0% 15,4% 84,6%

other intellectual skills 5,0% 27,5% 67,5%

lecture usefulness 35,9% 38,5% 25,6%

lecture quality 5,1% 20,5% 74,4%

question usefulness 19,4% 27,8% 52,8%

question clarity 22,9% 37,1% 40,0%

question validation 29,7% 32,4% 37,8%

question level 18,9% 67,6% 13,5%

demo usefulness 17,1% 45,8% 37,1%

demo quality 3,1% 3,1% 93,8%

audit usefulness 5,7% 40,0% 54,3%

audit quality 0,0% 3,2% 96,8%

project usefulness 16,2% 20,3% 63,5%

project level 2,7% 12,0% 85,3%

presentation usefulness 16,2% 46,0% 37,8%

presentation level 2,7% 5,4% 91,9%

100,0%

challenge 2013 44,0% 56,0% 0,0%

practical 2013 25,9% 25,9% 48,1%

11,1% 11,1% 77,8%

33,3% 33,3% 33,3%

33,3% 33,3% 33,3%

course assessment

92%

5%3%

dissatisfied
ok
satisfied

course usefulness

68%

24%

8%

course clarity

47%

40%

13%

academic challenge

70%

18%

13%

sufficient feedback

55%
30%

15%

active learning

87%

13%

workload

89%

11%

quality level

95%

5%

knowledge & insight

42%

40%

19%

practical appl.

54%
31%

15%

communication

48%

40%

13%

collaboration

85%

15%

lecture usefulness

26%

39%

36%

lecture quality

74%

21%

5%

question usefulness

53%

28%

19%

question quality

14%

68%

19%

demo usefulness

37%

46%

17%

demo quality

94%

3%3%

audit usefulness

54% 40%

6%

audit quality

97%

3%

project usefulness

64%
20%

16%

project quality

85%

12%

3%
other int.skills

68%

28%

5%

academic ch. 2014

56%
44%

pract. appl. 2014

48%

26%

26%

Fig. 3. Summaries of university-provided student evaluations of the course: main ac-
cumulated measurements in the top left corner; the lower selected block is useful-
ness/learnability and quality/level of course components; the right part refers to the
skills learnt/improved during the course (so “communication” means learning to com-
municate your ideas to others, not communicating with instructors); the top middle
block selects two aspects that differed most from the previous year. Green means “sat-
isfied” or “deeply satisfied”, red means two opposite options, yellow is the middle.

have been possible to achieve so easily otherwise, because students’ initial lack
of real life knowledge would not allow them to make good choices of the learning
direction, and a straightforward let’s-first-cover-the-basics approach would bore
a considerable fraction of the students even if there was enough time for that.

The course was perceived by students as activating but there are a lot of
options to optimise that aspect: peer assessment [17, 21], deeper integration of
Master and Bachelor student activities [2], doing systematic pedagogical code
reviews [10], using competition-inspiring benchmarks [9], etc. We have not de-
cided yet which of the options to include in the next year’s design and collecting
such ideas is one of the main reasons to present this experience at the educators
symposium.

Acknowledgement

Hans L. Dekkers was a coordinator of the Project Software Engineering course
for many years and conducted many experiments of his own — they are not



reported here, but the form the course had in 2014 has left implicit impact on
the current design. Robert Belleman and Robert van Wijk also shared their ideas
on (re)design of this course, some of which were implemented. Robert van Wijk,
Magiel Bruntink, Alan M. Berg, Carlos Cirello, Hans Dekkers, Leonard Punt
and Timon Langlotz have graciously agreed to serve as external auditors for this
course. Machiel van der Bijl from a model-based testing company Axini gave a
guest lecture. Jeroen van Duffelen from startup accelerator ACE Venture Lab
facilitated and sponsored the first pitch/brainstorm session. Aimy Eyzenbach
conducted the evaluation by codesigning the survey form with the present author
and processing the collected results.

51 UvA students of teams Audioflame, Clownvissen, Kite, Pannenkoek, Suft-
wear, Swaggerboys and Team Two have ultimately shaped this course and made
it educating and fun.

References

1. K. Ash. Educators View “Flipped” Model With a More Critical Eye. Education
Week, 32(2), Aug. 2012.

2. G. Bavota, A. De Lucia, F. Fasano, R. Oliveto, and C. Zottoli. Teaching Software
Engineering and Software Project Management: an Integrated and Practical Ap-
proach. In M. Glinz, G. C. Murphy, and M. Pezz, editors, ICSE, pages 1155–1164.
IEEE, 2012.

3. K. Beck. Implementation Patterns. Addison-Wesley, Nov. 2007.
4. J. Bergmann and A. Sams. Before You Flip, Consider This. Phi Delta Kappan,

94(2), Oct. 2012.
5. Guide to the Software Engineering Body of Knowledge, Version 3.0, 2014. http:

//www.swebok.org.
6. S. G. Crawford and M. H. Fallah. Software Development Process Audits — A

General Procedure. In M. M. Lehman, H. Hnke, and B. W. Boehm, editors, ICSE,
pages 137–141. IEEE Computer Society, 1985.

7. N. Ford. Introduction to Functional Thinking. http://player.oreilly.

com/videos/0636920030416?toc_id=152336, https://secure.trifork.com/dl/

goto-ams/2015/Slides/Neal_Ford_Functional_Thinking.pdf.
8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable OO Software. Addison-Wesley, 1995.
9. T. Hassner and I. Bayaz. Teaching Computer Vision: Bringing Research Bench-

marks to the Classroom. ACM ToCE, 14(4):22:1–22:17, 2015.
10. C. D. Hundhausen, A. Agrawal, and P. Agarwal. Talking About Code: Integrating

Pedagogical Code Reviews into Early Computing Courses. ACM ToCE, 13(3):14:1–
14:28, 2013.

11. P. Karppinen. Meaningful Learning with Digital and Online Videos: Theoretical
Perspectives. AACE Journal, 13(3):233–250, 2005.

12. A. King. From Sage on the Stage to Guide on the Side. College Teaching, 41(1):30–
35, 1993.

13. P. Klint, T. van der Storm, and J. J. Vinju. RASCAL: A Domain Specific Language
for Source Code Analysis and Manipulation. In Proceedings of the Ninth Interna-
tional Working Conference on Source Code Analysis and Manipulation (SCAM),
pages 168–177. IEEE Computer Society, 2009.

http://www.swebok.org
http://www.swebok.org
http://player.oreilly.com/videos/0636920030416?toc_id=152336
http://player.oreilly.com/videos/0636920030416?toc_id=152336
https://secure.trifork.com/dl/goto-ams/2015/Slides/Neal_Ford_Functional_Thinking.pdf
https://secure.trifork.com/dl/goto-ams/2015/Slides/Neal_Ford_Functional_Thinking.pdf


14. M. J. Lage, G. J. Platt, and M. Treglia. Inverting the Classroom: A Gateway to
Creating an Inclusive Learning Environment. The Journal of Economic Education,
31(1):pp. 30–43, 2000.

15. M. J. W. Lee, A. Chan, and C. McLoughlin. Students as Producers: Second Year
Students’ Experiences as Podcasters of Content for First Year Undergraduates. In
ITHET, 2006.

16. A. Luxton-Reilly, P. Denny, B. Plimmer, and R. Sheehan. Activities, Affordances
and Attitude: How Student-generated Questions Assist Learning. In ITiCSE, pages
4–9. ACM, 2012.

17. J. Tritz, N. Michelotti, G. Shultz, T. McKay, and B. Mohapatra. Peer Evaluation
of Student Generated Content. In LAK, pages 277–278. ACM, 2014.

18. Universiteit van Amsterdam. Project Software Engineering. http://studiegids.
uva.nl/xmlpages/page/2015-2016/zoek-vak/vak/19112, 2015.

19. P. Van Roy. The principal programming paradigms. https://www.info.ucl.ac.

be/~pvr/paradigms.html.
20. P. Van Roy, J. Armstrong, M. Flatt, and B. Magnusson. The Role of Language

Paradigms in Teaching Programming. In S. Grissom, D. Knox, D. T. Joyce, and
W. Dann, editors, SIGCSE, pages 269–270. ACM, 2003.

21. A. Vozniuk, A. Holzer, and D. Gillet. Peer Assessment Based on Ratings in a
Social Media Course. In LAK, pages 133–137. ACM, 2014.

22. V. Zaytsev. L2: Agile. http://grammarware.net/slides/2015/pse-agile.pdf.
23. V. Zaytsev. L3: Construction. https://youtu.be/40_9Py8L7y8, http://

grammarware.net/slides/2015/pse-swebok-construction.pdf.
24. V. Zaytsev. L3: Design. https://youtu.be/R7kZZbmx1CE, http://grammarware.

net/slides/2015/pse-swebok-design.pdf.
25. V. Zaytsev. L3: Maintenance. https://youtu.be/WOvfJH4uizs, http://

grammarware.net/slides/2015/pse-swebok-maintenance.pdf.
26. V. Zaytsev. L3: Quality. https://youtu.be/A6MWv19HlU0, http://grammarware.

net/slides/2015/pse-swebok-quality.pdf.
27. V. Zaytsev. L3: Requirements. http://youtu.be/9kkmr_aVdx0, http://

grammarware.net/slides/2015/pse-swebok-requirements.pdf.
28. V. Zaytsev. L3: Testing. https://youtu.be/q3kydDeIj6g, http://grammarware.

net/slides/2015/pse-swebok-testing.pdf.
29. V. Zaytsev. L4: Antipatterns. https://youtu.be/6lO8qQp4w14, http://

grammarware.net/slides/2015/pse-antipatterns.pdf.
30. V. Zaytsev. L4: Paradigms. https://youtu.be/lqmMqtgWpms, http://

grammarware.net/slides/2015/pse-paradigms.pdf.
31. V. Zaytsev. L4: Patterns. https://youtu.be/lBCEVFbB6Yo, http://grammarware.

net/slides/2015/pse-patterns.pdf.
32. V. Zaytsev. Renarrating Linguistic Architecture: A Case Study. In

MPM@MoDELS 2012, pages 61–66. ACM, Nov. 2012.
33. V. Zaytsev. Micropatterns in Grammars. In SLE, volume 8225 of LNCS, pages

117–136. Springer, Oct. 2013.
34. V. Zaytsev. Software engineering in startups. http://grammarware.net/slides/

2014/startups.pdf, 2014.
35. V. Zaytsev. Software maintenance. http://grammarware.net/slides/2014/

maintenance.pdf, 2014.
36. L. Zaytseva and V. Zaytsev. Methods and Tools for Predicting Working Modes of

Railroad Power-supply Systems. In RCM, pages 63–66. IET, Nov. 2006.

http://studiegids.uva.nl/xmlpages/page/2015-2016/zoek-vak/vak/19112
http://studiegids.uva.nl/xmlpages/page/2015-2016/zoek-vak/vak/19112
https://www.info.ucl.ac.be/~pvr/paradigms.html
https://www.info.ucl.ac.be/~pvr/paradigms.html
http://grammarware.net/slides/2015/pse-agile.pdf
https://youtu.be/40_9Py8L7y8
http://grammarware.net/slides/2015/pse-swebok-construction.pdf
http://grammarware.net/slides/2015/pse-swebok-construction.pdf
https://youtu.be/R7kZZbmx1CE
http://grammarware.net/slides/2015/pse-swebok-design.pdf
http://grammarware.net/slides/2015/pse-swebok-design.pdf
https://youtu.be/WOvfJH4uizs
http://grammarware.net/slides/2015/pse-swebok-maintenance.pdf
http://grammarware.net/slides/2015/pse-swebok-maintenance.pdf
https://youtu.be/A6MWv19HlU0
http://grammarware.net/slides/2015/pse-swebok-quality.pdf
http://grammarware.net/slides/2015/pse-swebok-quality.pdf
http://youtu.be/9kkmr_aVdx0
http://grammarware.net/slides/2015/pse-swebok-requirements.pdf
http://grammarware.net/slides/2015/pse-swebok-requirements.pdf
https://youtu.be/q3kydDeIj6g
http://grammarware.net/slides/2015/pse-swebok-testing.pdf
http://grammarware.net/slides/2015/pse-swebok-testing.pdf
https://youtu.be/6lO8qQp4w14
http://grammarware.net/slides/2015/pse-antipatterns.pdf
http://grammarware.net/slides/2015/pse-antipatterns.pdf
https://youtu.be/lqmMqtgWpms
http://grammarware.net/slides/2015/pse-paradigms.pdf
http://grammarware.net/slides/2015/pse-paradigms.pdf
https://youtu.be/lBCEVFbB6Yo
http://grammarware.net/slides/2015/pse-patterns.pdf
http://grammarware.net/slides/2015/pse-patterns.pdf
http://grammarware.net/slides/2014/startups.pdf
http://grammarware.net/slides/2014/startups.pdf
http://grammarware.net/slides/2014/maintenance.pdf
http://grammarware.net/slides/2014/maintenance.pdf


S
W

E
B
O
K

Q
3

P
a
r
a
d
ig

m
s
,
p
a
t
t
e
r
n
s
,
a
n
t
ip

a
t
t
e
r
n
s
Q
3

P
r
a
c
t
ic
a
l
F
P

Q
5

A
u
t
o
m

a
t
e
d

t
e
s
t
in

g
Q
6

te
stin

g
o
b

je
c
tiv

e
s

6
p
a
tte

rn
s

v
s

p
a
ra

d
ig

m
s

1
0

b
e
st

F
P

la
n
g
u
a
g
e

8
0

0
is

sin
g
le

to
n

a
n
tip

a
tte

rn
1
0

m
o
n
a
d
s

8
0

p
u
rp

o
se

o
f

u
n
it

te
stin

g
to

o
ls

7
su

b
c
o
n
sc

io
u
s

a
n
tip

a
tte

rn
u
se

9
F

P
sm

e
lls

1
0

a
u
to

m
a
te

d
v
s

m
a
n
u
a
l

te
stin

g
1
0

v
a
lid

a
tio

n
v
s

v
e
rifi

c
a
tio

n
7

a
g
ile

v
s

d
irty

9
F

P
v
s

sid
e
e
ff

e
c
ts

1
0

0
0

c
la

ssify
C

+
+

8
0

0
slic

in
g
,

te
rm

in
o
lo

g
y

7
p
a
tte

rn
s

v
s

c
o
p
y
-p

a
ste

9
tra

n
sitio

n
fro

m
im

p
e
ra

tiv
e

to
F

P
1
0

risk
-b

a
se

d
,

te
ch

n
iq

u
e
s

v
s

to
o
ls

6
0

a
v
o
id

d
e
p

e
n
d
e
n
c
y

8
F

P
p

e
rfo

rm
a
n
c
e
,

d
e
b
u
g
g
in

g
1
0

ra
c
e

c
o
n
d
itio

n
,

te
st

lim
its

[la
te

]
8

e
n
o
u
g
h

te
stin

g
,

d
e
p
lo

y
o
fte

n
8

c
o
p
y
-p

a
ste

v
s

re
u
se

,
c
o
n
fi
g

m
g
m

t
1
0

w
h
e
n

to
F

P
8

q
u
ick

ch
e
ck

fo
r

n
o
n
-F

P
la

n
g
u
a
g
e
s

1
0

re
v
e
rse

v
s

m
a
in

te
n
a
n
c
e
,

d
e
b
u
g
g
in

g
1
0

9
0
/
9
0
,

p
a
tte

rn
s

o
u
tsid

e
O

O
9

w
h
y

e
rla

n
g

a
t

w
h
a
tsa

p
p

8
te

st
to

fi
n
d

re
q
u
ire

m
e
n
t

g
a
p
s

1
0

0
w

h
y

F
P

u
n
p

o
p
u
la

r,
p
a
tte

rn
ch

o
ic

e
9

w
h
e
n

to
F

P
,

h
o
w

to
c
o
m

b
in

e
8

G
U

I
te

stin
g

9
d
e
sig

n
e
r

v
s

c
o
d
e

8
p
a
tte

rn
s

v
s

a
n
tip

a
tte

rn
s

1
0

n
e
e
d

fo
r

F
P

8
h
o
w

m
u
ch

o
f

tim
e

is
te

stin
g

6
se

c
u
rity

,
p

e
rfo

rm
a
n
c
e

v
s

sim
p
lic

ity
1
0

D
ijk

stra
v
s

p
a
tte

rn
s,

b
ig

te
a
m

s
1
0

fu
n
c
tio

n
a
l

v
s

lo
g
ic

p
ro

g
ra

m
m

in
g

8
te

st
c
o
v
e
ra

g
e

c
la

im
s

1
0

sc
ru

m
ro

le
s

v
s

S
E

d
o
m

a
in

s
6

M
V

C
d
o
w

n
sid

e
s,

c
lo

n
e

d
e
te

c
tio

n
1
0

F
P

v
s

S
E

,
F

P
v
s

A
I

7
te

sts
v
s

q
u
a
lity

,
b
la

ck
-b

o
x

m
e
tric

s
9

0
d
e
v

tim
e

v
s

c
p
u

tim
e

1
0

p
ro

v
e
rs

/
so

lv
e
rs

1
0

F
P

a
n
tip

a
tro

n
e
n
,

C
te

st
fra

m
e
w

o
rk

1
0

0
0

0
0

U
X

v
s

lo
n
g

a
c
tio

n
s

9
S
tra

te
g
y

v
s

C
o
m

m
a
n
d

7
re

c
u
rsio

n
in

F
P

v
s

in
im

p
e
ra

tiv
e

1
0

(a
b
se

n
ce

a
p
p
ro

v
ed

)
S
E

m
a
ste

r
8

F
P

fre
q
u
e
n
c
y

is
la

rg
e

p
ro

je
c
ts

9
(a

b
se

n
ce

a
p
p
ro

v
ed

)
p
ro

o
fs

v
s

te
sts

1
0

se
c
u
rity

8
S
tra

te
g
y

v
s

S
ta

te
,

re
fa

c
to

rin
g

8
0

0
re

u
se

p
u
b
lic

c
o
d
e

c
o
m

m
e
rc

ia
lly

9
p
a
tte

rn
s

tu
rn

in
g

in
to

a
n
tip

a
tte

rn
s

1
0

0
0

te
st

c
a
se

s
v
s

p
ro

d
u
c
t

q
u
a
lity

9
p
re

m
a
tu

re
o
p
tim

isa
tio

n
8

0
0

c
o
sts

o
f

p
ro

c
e
ss

a
d
o
p
tio

n
9

c
lo

n
e
s

v
s

fe
a
tu

re
e
n
v
y

7
0

0
0

p
a
tte

rn
s

in
P

S
E

,
9
0
/
9
0

9
ta

sk
s

fo
r

F
P

in
th

e
in

d
u
stry

8
p
ro

d
u
c
t

te
stin

g
9

d
e
sig

n
v
s

a
g
ile

1
0

p
re

m
a
tu

re
o
p
tim

isa
tio

n
8

F
P

fo
r

n
o
rm

a
l

p
e
o
p
le

7
te

stin
g

v
s

g
u
a
ra

n
te

e
s

9
q
u
a
lity

sta
n
d
a
rd

s,
p
a
tte

rn
s

v
s

re
u
se

1
0

n
o
n
-d

e
te

rm
in

ism
,

p
a
ra

d
ig

m
ch

o
ic

e
1
0

w
h
e
n

F
P

,
w

h
a
t

F
P

,
c
o
d
e

sty
le

1
0

fra
m

e
w

o
rk

s,
te

rm
in

o
lo

g
y
,

stra
te

g
y

9
q
u
a
lity

o
f

te
stin

g
9

p
a
tte

rn
s

v
s

a
n
tip

a
tte

rn
s

1
0

F
P

p
e
rfo

rm
a
n
c
e

1
0

p
ro

p
e
rtie

s
to

te
st

fo
r

1
0

te
st

lim
its

a
s

k
e
y

issu
e

8
sta

te
v
s

sta
te

le
ss,

p
a
tte

rn
ch

o
ic

e
9

F
P

p
ro

e
t

c
o
n
tra

8
te

rm
in

o
lo

g
y
,

te
st

lim
its

9
u
n
it

v
s

in
te

g
ra

tio
n

v
s

sy
ste

m
9

p
a
ra

d
ig

m
s

v
s

la
n
g
u
a
g
e
s,

a
n
ti

v
s

a
n
ti

1
0

F
P

sp
e
e
d
,

u
tility

,
e
x
a
m

p
le

s
9

te
st

a
u
to

m
a
tio

n
1
0

a
rch

ite
c
tu

re
:

sw
v
s

h
w

,
u
n
it

te
sts

1
0

m
o
n
k
e
y

p
a
tch

1
0

F
P

p
e
rfo

rm
a
n
c
e

1
0

p
o
s

v
s

n
e
g

te
stin

g
9

b
e
st

d
o
c

in
a
g
ile

1
0

lim
its

o
f

p
a
ra

d
ig

m
s

1
0

F
P

le
a
rn

in
g

c
u
rv

e
9

te
st

c
o
v
e
ra

g
e

m
e
tric

s
8

0
F

P
p

e
rfo

rm
a
n
c
e

1
0

im
m

u
ta

b
ility

&
fre

e
c
o
n
c
u
rre

n
c
y

1
0

se
lf-te

stin
g

te
stin

g
so

ftw
a
re

1
0

0
A

b
stra

c
tF

v
s

F
M

e
th

o
d
,

A
P

I
sm

e
lls

8
F

P
&

c
o
n
c
u
rre

n
c
y

1
0

a
u
to

m
a
tio

n
v
s

c
o
d
in

g
,

b
ig

d
a
ta

1
0

0
a
n
tip

a
tte

rn
:

n
e
g
a
tiv

e
o
r

p
o
sitiv

e
8

(a
b
se

n
ce

a
p
p
ro

v
ed

)
Q

A
in

th
e

p
ro

c
e
ss

9
0

0
0

0
0

m
illi

v
s

m
ic

ro
v
s

n
a
n
o

7
h
a
ssle

o
f

im
m

u
ta

b
le

d
a
ta

8
0

0
0

0
0

m
u
ta

tio
n
,

G
U

I,
te

ch
d
e
b
t,

b
u
g
s

1
0

m
o
n
a
d
s,

n
e
w

p
a
ra

d
ig

m
s,

v
s

p
a
tte

rn
s

1
0

a
rro

w
s,

F
P

&
sc

a
le

,
F

P
v
s

p
ro

o
fs

1
0

G
U

I,
stro

n
g

ty
p
in

g
v
s

te
stin

g
1
0

0
w

h
y

ch
o
o
se

to
u
se

a
n
tip

a
tte

rn
s

6
d
e
v

sp
e
e
d

in
J
a
v
a

v
s

H
a
sk

e
ll

9
0

in
te

rn
a
l

v
s

e
x
t

te
stin

g
,

d
e
v

re
q
s

1
0

U
M

L
d
ia

g
ra

m
,

p
a
tte

rn
m

a
sh

u
p

8
F

P
&

m
e
m

o
ry

m
a
n
a
g
e
m

e
n
t

8
G

U
I

te
stin

g
8

u
se

r
in

te
ra

c
tio

n
m

o
d
a
litie

s
9

le
a
rn

in
g

p
a
tte

rn
s

8
e
a
sie

st
la

n
g
u
a
g
e

to
le

a
rn

F
P

9
0

fo
rm

a
l

a
n
a
ly

sis
o
f

re
q
u
ire

m
e
n
ts

8
c
a
rg

o
c
u
lt

p
ro

g
ra

m
m

in
g

1
0

m
o
v
in

g
p
a
rts

&
O

O
v
s

F
P

8
te

stin
g

v
isu

a
l

o
u
tp

u
t

9
d
e
v
s

v
s

S
W

E
B

O
K

1
0

lo
g
ic

su
b
-p

a
ra

d
ig

m
s,

a
n
tip

a
tte

rn
s

1
0

F
P

ty
p
ic

a
l

ta
sk

s,
o
p
tim

isa
tio

n
1
0

0
w

e
b
a
p
p

te
stin

g
9

c
o
d
e

sm
e
lls

in
la

rg
e

p
ro

je
c
ts

1
0

is
F

P
o
fte

n
u
se

d
?

7
G

U
I

a
u
to

m
a
tio

n
9

0
F

P
a
d
v
a
n
ta

g
e
s

7
F

P
p

e
rfo

rm
a
n
c
e

(re
c
u
rsio

n
)

1
0

te
st

c
o
v
e
ra

g
e
:

w
h
e
n

is
e
n
o
u
g
h

9
h
o
w

m
u
ch

te
stin

g
is

e
n
o
u
g
h

8
w

ro
n
g

p
a
tte

rn
c
o
n
se

q
s,

c
lo

n
e

siz
e

9
e
x
p
re

ssiv
e
n
e
ss

F
P

v
s

im
p

e
ra

tiv
e

1
0

m
a
n
u
a
l

v
s

(m
a
n
u
a
l)

u
n
it

te
stin

g
8

0
p
a
tte

rn
ch

o
ic

e
8

F
P

p
e
rfo

rm
a
n
c
e

(im
m

u
ta

b
ility

)
1
0

0
w

h
e
n

to
re

fa
c
to

r,
h
o
w

to
p

o
stp

o
n
e

1
0

p
a
tte

rn
ch

o
ic

e
8

w
h
e
n

to
F

P
,

la
m

b
d
a

fu
n
c
tio

n
s

9
te

stin
g

v
s

p
ro

d
u
c
t

q
u
a
lity

1
0

c
o
n
c
e
p
tu

a
l

m
o
d
e
llin

g
,

te
sta

b
ility

9
se

q
u
e
n
tia

l
c
o
u
p
lin

g
9

F
P

v
s

im
p

e
ra

tiv
e

(a
b
stra

c
tio

n
)

1
0

re
g
re

ssio
n

te
stin

g
8

v
e
rifi

a
b
ility

v
s

re
a
d
a
b
ility

1
0

w
h
y

P
ro

lo
g

c
lo

se
to

C
8

0
0

fo
rm

a
l

a
n
a
ly

sis,
P

S
E

sp
e
c
ifi

c
s

8
n
a
n
o
p
a
tte

rn
s,

ru
le

o
f

c
re

d
ib

ility
8

F
P

v
s

im
p

e
ra

tiv
e

(p
o
p
u
la

rity
)

7
w

h
e
n

is
e
n
o
u
g
h

7
0

p
a
tte

rn
ch

o
ic

e
8

0
0

re
g
re

ssio
n

&
g
u
a
ra

n
te

e
s

1
0

0
F

P
e
x
p
re

ssiv
e
n
e
ss,

F
P

in
J
a
v
a

9
0

T
a
b
le

2
.

Q
u
estio

n
su

m
m

a
ries

a
n
d

g
ra

d
es

fo
r

a
ll

stu
d
en

ts;
rep

o
rted

p
er

tea
m

.


