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Social information use is widespread in the animal kingdom, helping
individuals rapidly acquire useful knowledge and adjust to novel circum-
stances. In humans, the highly interconnected world provides ample
opportunities to benefit from social information but also requires navigating
complex social environments with people holding disparate or conflicting
views. It is, however, still largely unclear how people integrate information
from multiple social sources that (dis)agree with them, and among each
other. We address this issue in three steps. First, we present a judgement
task in which participants could adjust their judgements after observing the
judgements of three peers. We experimentally varied the distribution of this
social information, systematically manipulating its variance (extent of agree-
ment among peers) and its skewness (peer judgements clustering either near
or far from the participant’s judgement). As expected, higher variance among
peers reduced their impact on behaviour. Importantly, observing a single peer
confirming a participant’s own judgement markedly decreased the influence
of other—more distant—peers. Second, we develop a framework for model-
ling the cognitive processes underlying the integration of disparate social
information, combining Bayesian updating with simple heuristics. Our
model accurately accounts for observed adjustment strategies and reveals
that people particularly heed social information that confirms personal judge-
ments. Moreover, the model exposes strong inter-individual differences in
strategy use. Third, using simulations, we explore the possible implications
of the observed strategies for belief updating. These simulations show how
confirmation-based weighting can hamper the influence of disparate social
information, exacerbate filter bubble effects and deepen group polarization.
Overall, our results clarify what aspects of the social environment are, and
are not, conducive to changing people’s minds.
1. Introduction
Social information guides decision making across a broad range of animal taxa
[1–3]. By interacting with others and observing their behaviour, individuals can
often glean useful cues helping them to learn the location of resources, acquire
new skills, and adjust to novel circumstances [4–7]. The sources of social infor-
mation available to individuals are largely determined by the structure of
their social network [8,9]. How individuals gather and integrate information
from their social environment shapes a number of key ecological and (cultural)
evolutionary processes, including the transmission of knowledge through these
social networks, the dynamics of social behaviour, and the emergence and persist-
ence of local traditions [10–16]. In humans, social information use facilitates
the accumulation of cultural knowledge across generations, which is widely
deemed central to the ecological success of our species [17–19]. In recent decades,
technological advances (most notably the Internet) have exponentially increased
the number of potential sources of social information. While this affords instant
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access to a wealth of useful knowledge, it is more likely than
ever to encounter social sources holding disparate or conflict-
ing views. In this paper, we examine the strategies that
individuals use when they are confronted with such disparate
social information coming from multiple sources.

In humans, social information use often involves chan-
ging one’s mind after observing the behaviour of other
individuals [20–23]. This process is commonly investigated
using estimation tasks in which people are allowed to
revise their initial estimates after observing the estimate of a
peer (e.g. [24–28]). Studies using this approach give a detailed
and quantified account of the effects of social cues on behav-
iour, primarily focusing on how individuals incorporate a
single piece of social information [20–22,24,28,29]. Studies
considering multiple peers have mainly described the effect
of the central tendency (e.g. the mean of the pieces of social
information provided [25,30–32]; but see [33]). In most real-
world environments, however, people are confronted with
multiple sources of social information at the same time, in
various degrees of extremeness. Currently, it is unclear how
people integrate such disparate social information. Here, we
will address this issue in three steps.

First, we experimentally investigate how basic character-
istics of the distribution of social information shape social
information use. Specifically, we systematically manipulate
the variance (reflecting the agreement among peers) and skew-
ness (reflecting the clustering of peers close to or far away from
the focal participant) of the distribution, while holding its
mean constant. We show that the impact of social information
strongly depends on its distribution. Disagreement among
peers decreases its overall influence. Furthermore, the direction
of the skew substantially alters the impact of social infor-
mation: participants adjust their first estimate more when
the majority of peers moderately agree with them and
one peer strongly disagrees, compared to a situation in
which a single peer strongly agrees with them, but
the majority of peers strongly disagrees. This highlights the
impact of confirmation-based weighting.

Second, we introduce a formal model to explain the strat-
egies underlying these adjustments. This model is informed
byprevious research on individuals’ strategies for incorporating
a single piece of social information. This research has identified
three distinct strategies: (i) keeping one’s initial belief,
(ii) adopting the behaviour of others, or (iii) ‘compromising’
between personal and social information [21–23,26,27,34–40].
We develop a modelling framework that extends these insights
to situations with multiple social sources, accommodating both
simple heuristics (keeping and adopting), and more complex
strategies (compromising). Our model successfully recovers
the main patterns in the observed data: it accurately predicts
how the distribution of social information impacts the relative
frequencies of adjustment strategies, and accounts for the
strong between-individual heterogeneity in strategy use. Our
modelling results reveal that social information receives more
weight when it is in line with people’s initial beliefs (reflecting
confirmation effects), and when it is in close agreement with
other social information (reflecting peer consensus).

Finally, we use our model to predict how the observed
adjustment strategies may shape belief dynamics in exemplary
social environments that vary in the like-mindedness of peers
(e.g. due to the social network structure). These simulations
reveal how and when people’s prioritising of confirmatory
social information can exacerbate filter bubble effects.
Moreover, they illustrate how individual differences in confir-
mation-based weighting can render beliefs to become more
moderate (fostering group consensus) or more extreme (fuel-
ling group polarization).
2. Experimental design
To examine how people integrate disparate information from
multiple social sources, we used an adapted version of the
BEAST (Berlin Estimate AdjuStment Task): a validated percep-
tual judgement task known to reliably measure individuals’
social information use (figure 1) [29]. In the task, participants
are shown several images of animal groups and have to esti-
mate the number of animals (figure 1a,b). They then observe
the estimates of three previous participants, and make a
second estimate (figure 1c). The relative degree of adjustment
quantifies an individual’s social information use (figure 1d ).

We study participants’ social information use across four
conditions that systematically differ in variance and skewness,
while controlling for the mean deviation from a participant’s
first estimate (figure 1e): (i) low variance, not skewed (LN);
(ii) high variance, not skewed (HN); (iii) high variance, with a
cluster of two peers relatively far from the participant’s first esti-
mate (HF); and (iv) high variance, with a cluster of two peers
relatively close to a participant’s first estimate (HC). These con-
ditions encompass a broad range of distributions individuals
may encounter when sampling their social environment.
Across all conditions, the three pieces of social information
always point in the same—and correct—direction (i.e. avoiding
situations in which the social information brackets the personal
estimate). Importantly, holding constant themean relative devi-
ation from a participant’s first estimate across conditions
implies that a participant weighting all peer estimates equally
should make similar adjustments across all conditions.

Prior to the main experiment, we pre-recorded individual
estimates for each of the images by 100 individuals recruited
from Amazon Mechanical Turk (MTurk), rewarding them for
accuracy (electronic supplementary material, §3a). We used
these estimates as social information in the main experiment.
In a given round of the main experiment, the three pieces of
pre-recorded social information were selected based on the
participant’s first estimate and the experimental condition
of that round. That is, we selected those pieces of social infor-
mation that most closely matched the experimental condition.
This procedure allowed us to achieve experimental control
without using deception (for full details and screenshots,
see electronic supplementary material, §§3a and 4).

Ninety-five participants (all from theUSA; 57%male;mean
± s.d. age: 35.8 ± 10.7 years) were recruited fromMTurk for the
main experiment, and completed 30 rounds of the judgement
task. These 30 rounds included five rounds of each condition
and 10 ‘filler’ rounds. The social information in the filler
rounds consisted of three randomly drawn estimates of the
pre-recorded participants (for a given image). This procedure
ensured that across all rounds, social information was some-
times higher and sometimes lower than a participant’s first
estimate, and sometimes bracketed the participant’s own
estimate. Reducing the regularity of the presented social infor-
mation was expected to increase its trustworthiness. The 30
rounds were shown in a random order (and this order was
the same for all participants). Throughout the task, participants
did not receive feedback about their accuracy, impeding
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Figure 1. Experimental paradigm and the impact of disparate social information. (a) Participants start with observing a group of animals for six seconds. (b) Next,
they enter their first estimate of the total number of animals using a slider. (c) Then, they observe the estimates of three pre-recorded peers (red squares), as well as
their own first estimate (light blue oval), and enter their second estimate (dark blue oval). (d ) Social information use in a round (s) is calculated as the adjustment
from the first estimate (E1) to the second estimate (E2), divided by the distance between the first estimate and the mean of the social information ð�XÞ. Rearranging
the terms highlights that E2 is an average of E1 and �X , weighted by s: E2 ¼ ð1� sÞ � E1 þ s � �X . (e) We varied the distribution of social information (squares)
relative to a participant’s first estimate (oval). Across four conditions, we manipulated the variance and skewness of the social information, while fixing the distance
between the mean of the social information and the participant’s first estimate (for details see Experimental design). Peer estimates displayed either low variance
(LN) or high variance but no skewness (HN), or high variance with a skewed distribution, with a cluster of two peers far from (HF), or close to (HC) E1. ( f ) Mean
estimate shifts in each condition. Coloured dots show participants’ mean adjustments across the five rounds of each condition; �s = 1 indicates a mean estimate shift
to �X . Boxplots show the interquartile range (IQR), the median (black line) and the 1.5 IQR (whiskers). Red vertical lines show for each condition the predicted
medians of the best-fitting model (see ‘Cognitive model’). For strategies underlying mean estimate shifts across rounds, see figure 2. (Online version in colour.)
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opportunities to learn about their own performance or the qual-
ity of the social information. Participants were rewarded for
ccuracy: at the end of the experiment, one (first or second) esti-
mate from the 30 rounds was selected and used for payment
(see electronic supplementary material, §3a for details).

As a control, participants completed an additional block
of five rounds (order counterbalanced) in which they did
not observe the stimulus, but only the estimates of four
peers. The distribution of these peer estimates emulated the
distributions of the four experimental conditions (i.e. one of
each condition), plus one filler round. This enabled us to com-
pare how participants integrate four pieces of information of
which none is their own, versus four pieces of information of
which one is their own [41,42].
3. Results
(a) Experimental results
Participants’ use of social information strongly depended on
its distribution (figure 1f ). Participants adjusted their esti-
mates most when social information had low variance and
no skewness (LN condition; figure 1f, yellow), shifting, on
average, 42% towards the mean social information. In the
high variance and no skew condition (HN condition; figure 1f,
purple), average adjustments were credibly lower (mean
adjustment: 29%; see electronic supplementary material,
table S1 for statistics). Although adjustments in both con-
ditions with skewed distributions were credibly lower than
in the LN condition, the direction of the skew affected the rela-
tive adjustment: participants adjusted credibly more when
two peers clustered relatively close to (HC condition; mean:
37%; figure 1f, red) rather than far from the participant is
own estimate (HF condition; mean: 28%; figure 1f, green).
Overall, these results demonstrate that variance and skewness
in peer behaviour markedly affect social information use.

These results also show that average adjustments tended
to be much smaller than what would be expected when par-
ticipants weigh each of the three peer estimates as much as
their own personal estimate (in which case they would
adjust to the arithmetic mean of the four estimates, shifting
75% towards the mean social information in each condition).
Moreover, participants substantially varied in their average
adjustments, and these average adjustments strongly corre-
lated across conditions (all pairwise Pearson correlations
r≥ 0.76; electronic supplementary material, figure S1),
indicating consistent inter-individual differences in social
information use (see also below).

Figure 2 zooms in on the strategies underlying behaviour-
al adjustments across rounds, differentiating between three
distinct strategies: (1) keeping the first estimate, (2) adopting
the estimate of one of the three peers or (3) compromising
between the first estimate and the peer estimates. The relative
frequency of these strategies differed markedly between the
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four conditions (figure 2a–d; see electronic supplementary
material, table S2 for statistics). When participants observed
a single peer that closely agreed with them (HN and HF con-
ditions; figure 2b,c), participants were more likely to either
keep their first estimate, or to adopt the estimate of this
near peer. When none of the peers was in close agreement
with them (LN and HC conditions; figure 2a,d), participants
were more likely to compromise, adjusting their estimate
towards—but rarely beyond—the nearest peer. These results
demonstrate that variance and skewness in peer behaviour
have strong effects on the strategies people use to integrate
social information. Figure 2e shows the frequency of strat-
egies per participant across all conditions, illustrating that
participants ranged from almost exclusively compromising,
to exclusively keeping, with compromising being the most
frequent strategy.

In all four control conditions—in which participants did
not observe the stimulus, but four peer estimates, emulating
the four distributions of the experimental conditions—
responses were close to the arithmetic mean of the four peer
estimates (electronic supplementary material, figures S2 and
S3). Participants did, however, assignmoreweight to estimates
closer to each other (electronic supplementary material, figure
S4). This indicates that the observed deviations from the arith-
meticmean in the experimental conditions (figures 1f and 2a–d)
are not due to an inability to integrate multiple pieces of
information. Rather, the stark differences between the exper-
imental and control conditions show that people down-
weight social information that is more distant from their own
first estimate, an effect known as ‘egocentric discounting’
[22,23,25,27,28,33,36–38,43].
(b) Cognitive model
To investigate potential cognitive mechanisms underlying
individuals’ integration of disparate social information, we
developed a set of models unifying simple heuristics (i.e. keep-
ing and adopting) and more complex strategies (i.e.
compromising; figure 3a). Based on our behavioural findings
and previous literature, we assume that an individual selects
an adjustment strategy (keep, adopt or compromise) depend-
ing on the distance between its own first estimate and the
estimate of the nearest peer [33,43]. We further assume that,
when compromising, individuals take a weighted average of
their own first estimate and social information. We model
compromising as a process of Bayesian updating (figure 3a).
In this process, the weight of each of the peer estimates can
depend on its distance to an individual’s own first estimate
(confirmation-based weighting [23,25,27,28]), and its distance
to other peer estimates (proximity-based weighting; electronic
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supplementary material figure S4 [33,43]). These assumptions
are reflected in four model features, capturing the selection
of (i) the keep heuristic, or (ii) the adopt heuristic, and, when
compromising, the weighting of social information based
on (iii) confirmation or (iv) proximity. In electronic supple-
mentary material, §3b, we provide full details of the model
implementation and analysis.

We fit a series of models to simultaneously estimate the
parameter values defining participants’ selection of adjustment
strategies (keeping, adopting or compromising), and confir-
mation- and proximity-based weighting. To account for
individual differences in strategy use (figure 2e), we implement
hierarchical models. We evaluate the importance of the four
model features: the ‘keep’ and ‘adopt’ heuristics, aswell as ‘con-
firmation-’ and ‘proximity-based weighting’, by calculating the
leave-one-out cross-validation information criterion (looic [44])
of the 16 models comprising all possible combinations of
these features (electronic supplementary material, table S3).
A parameter recovery analysis confirmed that our model fitting
procedure yielded robust and interpretable parameter values
(electronic supplementary material figure S5 and §3b).

Figure 3b compares the fits of models including versus
excluding each feature. It reveals that all features—except the
adopt heuristic—reliably improve the model fit. Accordingly,
the best-fitting model includes the keep heuristic, and compro-
mising with confirmation- and proximity-based weighting
(electronic supplementary material, table S3). Figure 3c–e
shows the effects of these three features in this best-fitting
model (see electronic supplementary material, table S4 for
the parameter estimates). Figure 3c shows that participants
were more likely to apply a heuristic of ‘keeping’ when the
nearest peer was in close agreement with them. Figure 3d–e
illustrates the process of compromising, showing how confir-
mation and proximity impact the weight that is assigned to
social information.

When compromising, participants tended to weigh
personal information more than social information (electronic
supplementary material, table S4), and participants assigned
more weight to peers who more strongly agreed with them
(figure 3d). This result is indicative of confirmation-based
weighting (i.e. favouring information that affirms one’s
beliefs). In addition, participants assigned more weight to
peerswho showedmore agreementwith otherpeers (figure 3e).
This ‘proximity’ effect was, however, weaker than the ‘confir-
mation’ effect (as indicated by the shallower slope in
figure 3e than in figure 3d). For each of these features, the
model detects substantial individual differences (indicated
by the thin lines in figure 3c–e), thus capturing the high
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inter-individual differences in mean adjustment and strategy
use (figure 2f; electronic supplementary material, figure S1).
Finally, we note that the absence of an effect of adopting the
nearest peer estimate (figure 3b) may be because adopting
can be mimicked by adjustment through compromising.

Importantly, the best-fitting model closely predicts the
mean adjustment across conditions (figure 1f; red vertical
lines) as well as the distributions of adjustments in rounds
across conditions (figure 2a–d; red diamonds). This shows
that the model can account for the main patterns observed
in our experimental conditions. Our model also accurately
predicts out-of-sample participants’ mean adjustment and
keep probability in the filler rounds (where peer estimates
were randomly selected from the pre-recorded pool and fre-
quently bracketed the participant’s first estimate; electronic
supplementary material, figure S6). Furthermore, the model
can recover a commonly observed phenomenon in estimation
tasks, namely that mean adjustments are highest when social
information is at intermediate distance from first estimates
(electronic supplementary material, figure S7 [25,27]). Taken
together, these results suggest that our model can generalize
to cases that are qualitatively different from our experimental
conditions (on which the model was fitted).
(c) Simulations
The identified strategies of social information use allow us
to predict how they may shape belief shifts in settings
where individuals encounter peers with various levels of
like-mindedness. These settings can reflect individuals’
access to information from their social network being local
or global [45], their personal preferences for homophily
[46], or, in case of human online interactions, being controlled
by algorithms prioritizing similar (or dissimilar) social
sources over others, biasing the available social information
[47]. In the following, we use simulations to explore how
the social environment and social information use may
foster consensus, or, alternatively, lead to polarization. We
simulate agents who, as in the experiment, observe other esti-
mates and adjust their first estimate. Agents observe 10 pieces
of social information, across five qualitative different exemp-
lary settings. We start with three settings in which an agent’s
first estimate is confirmed by either a (i) large majority,
(ii) half of the peers, or (iii) only a small minority. We further
simulate settings in which the focal agent is leaning towards
one of two strongly disagreeing groups, and compare adjust-
ment of agents with (iv) strong or (v) weak confirmation-
based weighting. In each setting, we simulate 1000 agents
whose adjustment strategies (i.e. their parameter setting)
were sampled from the group-level distributions parameter-
ized by the mean posterior estimates of the best-fitting model
(see electronic supplementary material, §3c for details).

Figure 4 shows the predicted adjustments for the five
scenarios. (i) When agents predominantly observe social infor-
mation that agreeswith their prior beliefs (asmight happen in a
‘filter bubble’ [48,49]), they predominantly keep their first esti-
mate or, at most, make very small adjustments (figure 4a).
(ii) Even when only half of the peers agree with them—and
the other half strongly disagrees (reflecting a typical attempt
to ‘de-bias’ individuals [47])—agents only shift little, remain-
ing far away from the global mean estimate (figure 4b). This
suggests that even regular exposure to opposing information
(e.g. from outside one’s filter bubble) is unlikely to lead to sub-
stantial adjustments. (iii) Even when only a small minority
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agrees with them, agents are still prone to keep their first esti-
mate, although adjustments towards the majority become
more substantial (figure 4c). Overall, these simulation results
illustrate how confirmation-based weighting can curb belief
updating: confirmatory social information reinforces people’s
prior beliefs and prompts them to retain these beliefs, even if
they reflect minority views.

To further examine the possible implications of individual
differences in confirmation-based weighting, we simulated
adjustments for agents showing weak and strong confir-
mation effects (i.e. individuals with steep and shallow
slopes in figure 3d ). Agents were initially located in between
two clusters of peers, but slightly closer to one of the clusters.
In this setting, agents with strong confirmation-based weight-
ing tend to adjust towards the local cluster—moving away
from the global mean (figure 4d ). Weak confirmation-based
weighting tends to lead to adjustments towards the global
mean estimate (figure 4e). These results suggest that strong
confirmation-based weighting can drive people to more
extreme views, and may increase polarization over time.
0202413
4. Discussion
This paper makes three novel contributions. First, we exper-
imentally show that the impact of multiple sources of social
information strongly depends on its distribution. Increased
variance in social information reduces participants’ adjust-
ments, and skewness decreases adjustments if a single peer
confirms their first estimate. Second, our cognitive model
provides a unified account for how people integrate disparate
social information, showing that people rely on a combina-
tion of simple heuristics of keeping their initial beliefs and
compromising towards social information. The model
captures how the weight of social information is determined
by both its degree of confirmation of people’s initial beliefs,
and its proximity to other pieces of social information.
Third, the model made accurate out-of-sample predictions of
adjustments in qualitatively different judgement situations,
and our simulations illustrate how prioritising confirmatory
social information may lead individuals to take up more
extreme beliefs.

Overall, people assigned more weight to their personal
initial beliefs than to social information (figures 1f and 2a–d;
electronic supplementary material, figure S3, figure S4 and
table S4). It may seem somewhat puzzling why they would
do so in a task in which social information consists of judge-
ments of people incentivised to accurately solve the same
problem. Indeed, there is no reason to assume that one’s
first estimate would be more accurate than those of others.
One rationale for prioritising personal estimates is the lack
of access to others’ reasons for holding their beliefs, which
may lead participants to discount social information,
especially when it is very distinct from one’s personal beliefs
[28,50] (but see [41]).

Our cognitivemodel provides a detailed account of people’s
social information use, contributing to understanding its under-
lying computational and cognitivemechanisms [51]. Themodel
presents a unified framework laying out how people integrate
personal and social information, by combining a heuristic
strategy (keeping) with compromising (weighted averaging).
We further obtain a detailed picture of the process of compro-
mising by formalizing how people weigh several pieces of
social information, the combined effects of which would be
hard to understand without a model. Interestingly, while
social information that is consistent with own personal beliefs
is weighted more when people compromise (confirmation-
based weighting; figure 3d), it also increases the chance that
people simply keep their initial beliefs (figure 3c). The com-
bined result of these effects is that social information tends to
have the strongest impact on overall adjustments when it is at
intermediate distance (electronic supplementary material,
figure S7). Our results reveal that people alsoweigh social infor-
mation based on its consistency with other social information
(‘proximity-based weighting’; figure 3e; electronic supplemen-
tary material, figure S4). One rationale for prioritising social
information consistent with other social information is rela-
tively straightforward: when people are motivated and able
tomake valid judgements, agreement among peers reliably sig-
nals accuracy [52,53]. The concerted action of the three
mechanisms (heuristics of keeping, and compromising based
on confirmation and peer proximity) explain our experimental
observations that the impact of social information strongly
depends on the variance and skewness of its distribution.

Our model’s accurate predictions of behaviour in the filler
rounds underscores its ability to go beyondmere redescription
of the data it was fitted to, and suggests that our model can be
generalized to settings that are qualitatively different from our
experimental conditions (electronic supplementary material,
figure S5 and figure S6). Our simulations go beyond the limited
set of distributions of social information studied in our exper-
iments, generating predictions about how social information
use may be shaped by distributions resembling important
real-world settings. The advent of the Internet has dramatically
changed the structure and dynamics of social interactions; at
times being (algorithmically) biased towards like-minded
sources [47,49,54], but also giving people access to diverse
social sources with potentially conflicting views. Our simu-
lations predict that disparate social information changes
people’s minds only to a limited degree, even when this
social information signals that people hold minority views
(figure 4). More importantly, under certain conditions, observ-
ing balanced social information can even lead individuals with
strong confirmation-based weighting to take more extreme
views (figure 4d). These findings have direct implications for
interventions. For instance, they suggest that efforts to de-
bias online information that present people with balanced
views [47] might not suffice to break filter bubble effects and
dynamics of polarization. Future work could more explicitly
address the role of the social network structure, testing how
the distribution of beliefs across social networks may interact
with network structure in governing the dynamics of belief
updating processes in a population (e.g. [55]). We believe our
cognitive modelling framework can help in achieving a
mechanistic understanding of how social information use
may contribute to the formation of group consensus or the
risk of polarization, and more generally, how the distribution
of individual strategies of social information use in a popu-
lation drives the transmission of information across social
networks and shapes the course of cultural evolution.

The current study provides a robust template for under-
standing social information use in a range of (complex)
social environments that people encounter in their day-to-
day lives. Future empirical work should test the predictions
of our simulations, as well as the extent to which our
findings—obtained with a stylised perceptual judgement
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task with anonymous peers—generalize to other domains of
decision making. Our results demonstrate that confirmation-
based weighting can strongly reduce people’s willingness to
change their minds even in the minimal setting of a task
with an objectively correct solution. It seems plausible that
confirmation-based weighting—and its polarizing conse-
quences—are even stronger in many important real-world
contexts involving emotive, moral or political issues. In
these (often controversial) contexts, the integration of dispa-
rate social information may be further hampered due to
‘motivated reasoning’ [56] or when observed individuals
belong to an out-group [57,58]. Conversely, disparate social
information might impact behaviour more strongly when it
stems from peers who are familiar [59], similar [11,60], pres-
tigious [61,62], or known to have expertise in the task at hand
[7,63,64]. Moreover, the effects of each of these factors are
likely to substantially differ between individuals (cf. figures 2e
and 3c–e) and between societies [65–68]. Our experimental
design and modelling framework are flexible enough to
include adaptations to accommodate each of these elements,
helping understand the features of social sources that may
influence weighting. For example, if social sources vary in
their expertise, individuals might assign more weight to
social information provided by an expert rather than by a
non-expert. By explicitly accounting for the amount of variance
people assign to social information from experts versus non-
experts, an extended version of our model could distinguish
how the impact of social information depends on the source’s
expertise, beyond its degree of alignment with people’s initial
beliefs. Furthermore, our hierarchical modelling approach
allows accounting for individual differences in social infor-
mation use, a regularly observed but poorly understood
phenomenon in humans and other animals [65,69–73]. Linking
individuals’ strategies and their underlying cognitive mechan-
isms to genetic, developmental and cultural processes
may help unearth the causes of between-individual and
between-society differences in social information use.

To conclude, our findings contribute to a growing litera-
ture on how people integrate social information to update
their beliefs. We go beyond previous experimental work on
the effects of social information (which focused on single
social cues or the mean of multiple cues) by showing that
the variance and skewness of its distribution strongly modu-
lates its impact on behaviour. Our cognitive model provides a
detailed picture of the cognitive mechanisms that underlie
the integration of disparate social information, highlighting
the role of heuristics of keeping one’s initial beliefs, and the
importance of confirmation- and proximity-based weighting.
Finally, our simulations consider various exemplary social
environments to illustrate how confirmation-based weighting
can markedly exacerbate filter bubble dynamics and polariz-
ation. We anticipate that these findings will provide a useful
point of departure for future work aiming to understand the
nature of human social information use and its implications
for group dynamics, and to inform interventions to effec-
tively de-bias individuals and help them forming accurate
beliefs about the world.
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