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Common Knowledge in Email Exchanges

Floor Sietsma∗ and Krzysztof R. Apt∗

Abstract

We consider a framework in which a group of agents communicates
by means of emails, with the possibility of replies, forwards and blind
carbon copies (BCC). We study the epistemic consequences of such
email exchanges by introducing an appropriate epistemic language and
semantics. This allows us to determine when a group of agents acquires
common knowledge of the formula expressing that an email was sent.

We also show that in our framework from the epistemic point of
view the BCC feature of emails cannot be simulated using messages
without BCC recipients. Finally, we clarify the notion of a causal
relationship between emails using the concept of properly terminating
email exchanges.

1 Introduction

1.1 Motivation

Email is by now a prevalent form of communication. Its advantages speak
for themselves. However, we rarely pause to reflect on its undesired conse-
quences. Just to mention a few.

One occasionally reads about scandals caused by email leaks, see, e.g.,
[3]. On a smaller scale, users of the blind carbon copy feature (BCC) are
sometimes confronted with an undesired situation in which a BCC recipient
of an email reveals his status to others by using the reply-all feature. Fur-
ther, many email systems allow one to edit a forwarded email, in particular
allowing one to modify the content or the identity of the sender and of the
recipients list.

Recently, a main Dutch daily, NRC Handelsblad, reported, see [10], that
Wouter Bos, the Deputy Prime minister in the previous Dutch government,
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revealed the extensive network of his contacts by sending out his new email
address to about four hundred of influential recipients whose email addresses
were erronously put in the CC list instead of the BCC list. The list was
leaked to the newspaper.

Epistemic consequences of email exchanges are occasionally raised by
researchers in various contexts. For instance, the author of [2] mentions
‘some issues of email ethics’ by discussing a case of an email discussion in
which some researchers were not included (and hence could not build upon
the reported results).

Then consider the following recent quotation from a blog in which the
writers call for a boycott of a journal XYZ: “We are doing our best to
make the misconduct of the Editors-in-Chief a matter of common knowledge
within the [...] community in the hope that everyone will consider whatever
actions may be appropriate for them to adopt in any future associations
with XYZ”.

So when studying email exchanges a natural question arises: what are
their knowledge-theoretic consequences? To put it more informally: after an
email exchange took place, who knows what? Motivated by the above blog
entry we can also ask: can sending emails to more and more new recipients
ever create common knowledge? (Our Main Theorem shows that the answer
is “No.”)

To be more specific consider the following example to which we shall
return later.

Example 1. Assume the following email exchange involving four people,
Alice, Bob, Clare and Daniel:

• Alice and Daniel got an email from Clare,

• Alice forwarded it to Bob,

• Bob forwarded Alice’s email to Clare and Daniel with a BCC to Alice,

• Alice forwarded the last email to Clare and Daniel with a BCC to Bob.

The question is:
Do all four people involved in this exchange have common knowledge of

Bob’s email? �

To answer such questions we study email exchanges focusing on relevant
features that we encounter in most email systems.

More specifically, we study the following form of email communication:
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• each email has a sender, a non-empty set of regular recipients and
a (possibly empty) set of blind carbon copy (BCC) recipients. Each
recipient receives a copy of the message and is only aware of the regular
recipients and not of the BCC recipients (except himself),

• in the case of a reply to or a forward of a message, the unaltered
original message is included,

• in a reply or a forward, one can append new information to the original
message one replies to or forwards.

As a result, the email exchanges, as studied here, are essentially different
from other forms of communication, in particular from multicasting, i.e.,
sending a message to a group of recipients. Also, the resulting model of
email communication differs from the ones that were studied in other papers
in which only limited aspects of emails have been considered. These papers
are discussed below.

1.2 Contributions and plan of the paper

To study the relevant features of email communication we introduce in the
next section a carefully chosen language describing emails. We make a dis-
tinction between a message, which is sent to a public recipient list, and
an email, which consists of a message and a set of BCC recipients. This
distinction is relevant because a forward email contains an earlier message,
without the list of BCC recipients. We also introduce the notion of a legal
state that captures the fact that there is a causal ordering on the emails.
For example, an email needs to precede any forward of it.

To reason about the knowledge of the agents after an email exchange
has taken place we introduce in Section 3 an appropriate epistemic lan-
guage. Its semantics takes into account the uncertainty of the recipients
of an email about its set of BCC recipients and the ignorance about the
existence of emails that one neither sent nor received. This semantics allows
us to evaluate epistemic formulas in legal states, in particular the formulas
that characterize the full knowledge-theoretic effect of an email.

In Section 4 we present the main result of the paper, that clarifies when
a group of agents can acquire common knowledge of the formula expressing
the fact that an email has been sent. This characterization in particular
sheds light on the epistemic consequences of BCC. The proof is given in
Section 5.
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Then in Section 6 we show that in our framework BCC cannot be sim-
ulated using messages without BCC recipients. Finally, in Section 7 we
provide a characterization of legal states in terms of properly terminating
email exchanges. This allows us clarify the notion of a causal relationship
between emails.

1.3 Related work

The study of the epistemic effects of communication in distributed systems
originated in the eighties and led to the seminal book [7]. The relevant liter-
ature, including [6], deals only with the customary form of communication,
notably asynchronous send.

One of the main issues studied in these frameworks has been the analysis
of the conditions that are necessary for acquiring common knowledge. In
particular, [8] showed that common knowledge cannot be attained in the
systems in which the communication is not guaranteed. More recently this
problem was investigated in [4] for synchronous systems with known bounds
on message transmission in which processes share a global clock. The au-
thors proved that in such systems a so-called pivotal event is needed in order
to obtain common knowledge. This in particular generalizes the previous
result of [8] concerning acquisition of common knowledge in distributed sys-
tems with synchronous communication.

The epistemic effects of other forms of communication were studied in
numerous papers. In particular, in [12] the communicative acts are assumed
to consist of an agent j ‘reading’ an arbitrary propositional formula from
another agent i. The idea of an epistemic contents of an email is implic-
itly present in [13], where a formal model is proposed that formalizes how
communication changes the knowledge of a recipient of the message.

In [5] a dynamic epistemic logic modelling effects of communication and
change is introduced and extensively studied. Further, in [17] an epistemic
logic was proposed to reason about information flow w.r.t. underlying com-
munication channels. [11] surveys these and related approaches and dis-
cusses the used epistemic, dynamic epistemic and doxastic logics.

Most related to the work here reported are the following two references.
[1] studied knowledge and common knowledge in a set up in which the agents
send and forward propositional formulas in a social network. However, the
forward did not include the original message and the BCC feature was ab-
sent. More recently, in [15] explicit messages are introduced in a dynamic
epistemic logic to analyze a similar setting, though BCC was simulated as
discussed in Section 6. In both papers it is assumed that the number of
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messages is finite. In contrast, in the setting of this paper the forward in-
cludes the original message, which results directly in an infinite number of
messages and emails.

Finally, the concept of a causal relation between messages in distributed
systems is due to [9]. Lamport’s analysis of causality was extended in the al-
ready cited paper [4] to synchronous systems with known bounds on message
transmission.

2 Preliminaries

2.1 Messages

In this section we define the notion of a message. We assume non-empty
and finite sets of agents Ag = {1, . . ., n} and of notes L. Each agent has a
set of notes he holds initially.

We make a number of assumptions. Firstly, we assume that the agents do
not know which notes belong to the other agents. Furthermore, we assume
that the agents only exchange emails about the notes. In particular, they
cannot communicate epistemic formulas. We also assume that an agent can
send a message to other agents containing a note only if he holds it initially
or has learnt it through an email he received earlier.

We inductively define messages as follows, where in each case we as-
sume that G 6= ∅:

• m := s(i, l, G); the message containing note l, sent by agent i to the
group G,

• m := f(i, l.m′, G); the forwarding by agent i of the message m′ with
added note l, sent to the group G.

So the agents can send a message with a note or forward a message with
a new note appended, where the latter covers the possibility of a reply or a
reply-all. To allow for the possibility of sending a forward without appending
a new note, we can assume there exists a note true that is held by all agents
and identify true.m with m.

If m is a message, then we denote by S(m) and R(m), respectively, the
singleton set consisting of the agent sending m and the group of agents
receiving m. So for the above messages m we have S(m) = {i} and R(m) =
G. We do allow that S(m) ⊆ R(m), i.e., that one sends a message to oneself.

Special forms of the forward messages can be used to model reply mes-
sages. Given f(i, l.m,G), using G = S(m) we obtain the customary reply
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message and using G = S(m)∪R(m) we obtain the customary reply-all mes-
sage. (In the customary email systems there is syntactic difference between
a forward and a reply to these two groups of agents, but the effect of both
messages is exactly the same, so we ignore this difference.) In the examples
we write s(i, l, j) instead of s(i, l, {j}), etc.

2.2 Emails

An interesting feature of most email systems is that of the blind carbon copy
(BCC). We study here the epistemic effects of sending an email with BCC
recipients and will now include this feature in our presentation.

In the previous subsection we defined messages that have a sender and a
group of recipients. Now we define the notion of an email which allows the
additional possibility of sending a BCC of a message. The BCC recipients
are not listed in the list of recipients, therefore we have not included them
in the definition of a message. Formally, by an email we mean a construct
of the form mB, where m is a message and B ⊆ Ag is a possibly empty set of
BCC recipients. Given a message m we call each email mB a full version

of m.
Since the set of BCC recipients is ‘secret’, it does not appear in a forward.

That is, the forward of an email mB with added note l is the message
f(i, l.m,G) or an email f(i, l.m,G)C , in which B is not mentioned. This
is consistent with the way BCC is handled in the email systems. However,
this forward may be sent not only by a sender or a regular recipient of mB ,
but also by a BCC recipient. Clearly, the fact that an agent was a BCC
recipient of an email is revealed at the moment he forwards the message.

A natural question arises: what if someone is both a regular recipient
and a BCC recipient of an email? In this case, no one (not even this BCC
recipient himself) would ever notice that this recipient was also a BCC
recipient since everyone can explain his knowledge of the message by the fact
that he was a regular recipient. Only the sender of the message would know
that this agent was also a BCC recipient. This fact does not change anything
and hence we assume that for any email mB we have (S(m)∪R(m))∩B = ∅.

Re: Example 1.
Using the just introduced language we can formalize the story from Ex-

ample 1 as follows, where we abbreviate Alice to a, etc.:

• Alice and Daniel got an email from Clare:

e := m∅, where m := s(c, l, {a, d}),
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• Alice forwarded it to Bob:

e′ := m′
∅, where m′ := f(a,m, b),

• Bob forwarded Alice’s email to Clare and Daniel with a BCC to Alice:

e′′ := m′′
{a}, where m′′ := f(b,m′, {c, d}),

• Alice forwarded the last email to Clare and Daniel with a BCC to Bob.

f(a,m′′, {c, d}){b} .

2.3 Legal states

Our goal is to analyze knowledge of agents after some email exchange took
place. To this end we need to define a possible collection of sent emails.

First of all, we shall assume that every message is used only once. In
other words, for each message m there is at most one full version of m,
i.e., an email of the form mB. The rationale behind this decision is that
a sender of mB and mB′ might equally well send a single email mB∪B′ .
This assumption can be summarized as a statement that the agents do not
have ‘second thoughts’ about the recipients of their emails. It also simplifies
subsequent considerations.

In this work we have decided not to impose a total ordering on the emails
in our model, for example by giving each email a time stamp. This makes
the model a lot simpler. Also, many interesting questions can be answered
without imposing such a total ordering. For example, we can investigate the
existence of common knowledge in a group of agents after an email exchange
perfectly well without knowing the exact order of the emails that were sent.

However, we have to impose some ordering on the sets of emails. For
example, we need to make sure that the agents only send information they
actually know. Moreover, a forward can only be sent after the original email
was sent. We will introduce the minimal partial ordering that takes care of
such issues.

First, we define by structural induction the factual information FI(m)
contained in a message m as follows:

FI(s(i, l, G)) := {l},

F I(f(i, l.m,G)) := FI(m) ∪ {l}.

Informally, the factual information is the set of notes which occur somewhere
in the message, including those occurring in forwarded messages.
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We will use the concept of a state to model the effect of an email ex-
change. A state s = (E,  L) is a tuple consisting of a finite set E of emails
that were sent and a sequence  L = (L1, . . . , Ln) of sets of notes for all agents.
The idea of these sets is that each agent i initially holds the notes in Li.
We use Es and  Ls to denote the corresponding elements of a state s, and
L1, . . ., Ln to denote the elements of  L.

We say that a state s = (E,  L) is legal w.r.t. a strict partial ordering (in
short, an spo) ≺ on E if it satisfies the following conditions:

L.1: for each email f(i, l.m,G)B ∈ E an email mC ∈ E exists such that
mC ≺ f(i, l.m,G)B and i ∈ S(m) ∪R(m) ∪ C,

L.2: for each email s(i, l, G)B ∈ E, where l 6∈ Li, an email mC ∈ E exists
such that mC ≺ s(i, l, G)B , i ∈ R(m) ∪C and l ∈ FI(m),

L.3: for each email f(i, l.m′, G)B ∈ E, where l 6∈ Li, an email mC ∈ E exists
such that mC ≺ f(i, l.m′, G)B , i ∈ R(m′) ∪ C and l ∈ FI(m′).

Condition L.1 states that the agents can only forward messages they
previously received. Conditions L.2 and L.3 state that if an agent sends a
note that he did not initially hold, then he must have learnt it by means of
an earlier email.

We say that a state s is legal iff it is legal w.r.t. some spo. Given a
legal state s, by its causality ordering we mean the smallest (so the least
constraining) spo w.r.t. which s is legal.

So a state is legal if every forward was preceded by its original message,
and for every note sent in an email there is an explanation how the sender
of the email learnt this note.

3 Epistemic language and its semantics

We want to reason about the knowledge of the agents after an email exchange
has taken place. For this purpose we use a language L of communication
and knowledge defined as follows:

ϕ ::= m | i ◭ m | ¬ϕ | ϕ ∧ ϕ | CGϕ

Here m denotes a message. The formula m expresses the fact that m has
been sent in the past, with some unknown group of BCC recipients. The
formula i ◭ m expresses the fact that agent i was involved in a full version of
the message m, i.e., he was either the sender, a recipient or a BCC recipient.
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The formula CGϕ denotes common knowledge of the formula ϕ in the group
G.

We use the usual abbreviations ∨, → and ↔ and use Kiϕ as an abbre-
viation of C{i}ϕ. The fact that an email with a certain set of BCC recipients
was sent can be expressed in our language by the following abbreviation:

mB ::= m ∧
∧

i∈S(m)∪R(m)∪B

i ◭ m ∧
∧

i 6∈S(m)∪R(m)∪B

¬i ◭ m

Note that this formula expresses the fact that the message m was sent with
exactly the groupB as BCC recipients, which captures precisely the intended
meaning of mB .

We now provide a semantics for this language interpreted on legal states,
inspired by the epistemic logic and the history-based approaches of [12] and
[13]. For every agent i we define an indistinguishability relation ∼i, where
we intend s ∼i s

′ to mean that agent i cannot distinguish between the states
s and s′. We first define this relation on the level of emails as follows (recall
that we assume that senders and regular recipients are not BCC recipients):

mB ∼i m
′
B′

iff one of the following contingencies holds:

(i) i ∈ S(m), m = m′ and B = B′,

(ii) i ∈ R(m) \ S(m) and m = m′,

(iii) i ∈ B ∩B′, and m = m′,

(iv) i 6∈ S(m) ∪R(m) ∪B and i 6∈ S(m′) ∪R(m′) ∪B′.

Condition (i) states that the sender of an email confuses it only with
the email itself. In turn, condition (ii) states that each regular recipient
of an email who is not a sender confuses it with any email with the same
message but possibly sent to a different BCC group. Next, condition (iii)
states that each BCC recipient of an email confuses it with any email with
the same message but sent to a possibly different BCC group of which he is
also a member. Finally, condition (iv) states that each agent confuses any
two emails in which he is not involved.

Example 2. Consider the emails e := s(i, l, j)∅ and e′ := s(i, l, j){k}. We
have then e 6∼i e

′, e ∼j e
′ and e 6∼k e

′. Intuitively, agent j cannot distinguish
between these two emails because he cannot see whether k is a BCC recip-
ient. In contrast, agents i and k can distinguish between these two emails.
�
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Next, we extend the indistinguishability relation to legal states by defin-
ing

(E,  L) ∼i (E′,  L′)

iff all of the the following hold:

• Li = L′
i,

• for any mB ∈ E such that i ∈ S(m) ∪ R(m) ∪ B there is mB′ ∈ E′

such that mB ∼i mB′ ,

• for any mB′ ∈ E′ such that i ∈ S(m) ∪ R(m) ∪ B there is mB ∈ E

such that mB ∼i mB′ .

So two states cannot be distinguished by an agent if they agree on his
notes and their email sets look the same to him. Since we assume that the
agents do not know anything about the other notes, we do not refer to the
sets of notes of the other agents. Note that ∼i is an equivalence relation.

Example 3. Consider the legal states s1 and s2 which are identical apart
from their sets of emails:

Es1 := {s(i, l, j)∅, f(j, s(i, l, j), o)∅},
Es2 := {s(i, l, j){k}, f(j, s(i, l, j), o)∅ , f(k, s(i, l, j), o)∅}.

We assume here that l ∈ Li. The corresponding causality orderings
clarify that in the first state agent i sends a message with proposition p to
agent j and then j forwards this message to agent o. Further, in the second
state agent i sends the same message but with a BCC to agent k, and then
both agent j and agent k forward the message to agent o.

From the above definition it follows that s1 6∼i s2, s1 ∼j s2, s1 6∼k s2
and s1 6∼o s2. For example, the first claim holds because, as noticed above,
s(i, l, j)∅ 6∼i s(i, l, j){k}. Intuitively, in state s1 agent i is aware that he sent a
BCC to nobody, while in state s2 he is aware that he sent a BCC to agent k.
In turn, in both states s1 and s2 agent j is aware that he received the message
s(i, l, j) and that he forwarded the email f(j, s(i, l, j), o)∅ . Intuitively, in
state s2 agent j does not notice the BCC of the message s(i, l, j) and is not
aware of the email f(k, s(i, l, j), o)∅. �

In order to express common knowledge, we define for a group of agents
G the relation ∼G as the reflexive, transitive closure of

⋃

i∈G ∼i. Then we
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define the truth of a formula from our language in a state inductively as
follows, where s = (E,  L):

s |= m iff ∃B : mB ∈ E
s |= i ◭ m iff ∃B : mB ∈ E and i ∈ S(m) ∪R(m) ∪B
s |= ¬ϕ iff s 6|= ϕ

s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ

s |= CGϕ iff s′ |= ϕ for any legal state s′ such that s ∼G s′

We say that ϕ is valid (and often just write ‘ϕ’ instead of ‘ϕ is valid’)
if for all legal states s, s |= ϕ.

Even though this definition does not specify the form of communication,
one can deduce from it that the communication is synchronous, that is,
that each email is simultaneously received by all the recipients. Namely,
the condition of the form mB ∈ E present in the second clause implies
that for every email mB the following equivalence is valid for all i, j ∈
S(m) ∪R(m) ∪B:

i ◭ m↔ j ◭ m.

This means that in every legal state (E,  L) either all recipients of the email
mB received it (when mB ∈ E) or none (when mB 6∈ E).

However, it should be noted that the agents do not have a common ‘clock’
using which they could deduce how many messages have been sent. Also,
there is no common ‘blackboard’ using which they could deduce how many
messages have been sent by other agents between two consecutive messages
they have received.

The following lemma clarifies when specific formulas are valid. In the
sequel we shall use these observations implicitly.

Lemma 1.

(i) m→ m′ is valid iff m = m′ or m′ is part of the message m.

(ii) m→ i ◭ m′ is valid iff i ∈ S(m′)∪R(m′) or for some note l and group
G, f(i, l.m′, G) is part of the message m.

The second item states that m → i ◭ m′ is valid either if i is a sender
or a receiver of m′ (in that case actually i ◭ m′ is valid) or i forwarded the
message m′. The latter is also possible if i was a BCC receiver of m′. The
claimed equivalence holds thanks to condition L.1.

Example 4. To illustrate the definition of truth let us return to Example 3.
In state s2 agent j does not know that agent k received the message s(i, l, j)
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since he cannot distinguish s2 from the state s1 in which agent k did not
receive this message. So s2 |= ¬Kjk ◭ s(i, l, j) holds.

On the other hand, in every legal state s3 such that s2 ∼o s3 both an
email f(k, s(i, l, j), o)C and a ‘justifying’ email s(i, l, j)B have to exist such
that s(i, p, j)B ≺ f(k, s(i, l, j), o)C and k ∈ B. Consequently s3 |= k ◭

s(i, l, j), so s2 |= Kok ◭ s(i, l, j) holds, so by sending the forward agent k
revealed himself to o as a BCC recipient.

We leave to the reader checking that both s2 |= C{k,o}k ◭ s(i, l, j) and
s2 |= ¬C{j,o}k ◭ s(i, l, j) holds. In words, agents k and o have common
knowledge that agent k was involved in a full version of the message s(i, l, j),
while the agents j and o don’t. �

4 Common knowledge

We now clarify when a group of agents acquires common knowledge of the
formula expressing that an email was sent. This shows how we can use our
framework to investigate epistemic consequences of email exchanges.

Given a set of emails E and a group of agents A, let

EA := {mB ∈ E | A⊆ S(m) ∪R(m) or ∃j ∈ B : (A⊆ S(m) ∪ {j})}.

When e ∈ EA we shall say that the email e is shared by the group A.
Note that when |A| ≥ 3, then e ∈ EA iff A⊆ S(m) ∪R(m). When |A| = 2,
then e ∈ EA also when ∃j ∈ B : A = S(m) ∪ {j}, and when |A| = 1, then
e ∈ EA also when A = S(m) or ∃j ∈ B : A = {j}.

The following theorem summarizes our results.

Main Theorem Consider a legal state s = (E,  L) and a group of agents A.

(i) s |= CAm iff there is m′
B′ ∈ EA such that m′ → m is valid.

(ii) Suppose that |A| ≥ 3. Then s |= CAmB iff the following hold:

C1 Ag = S(m) ∪R(m) ∪B,

C2 for each i ∈ B there is m′
B′ ∈ EA such that m′ → i ◭ m is valid,

C3 there is m′
B′ ∈ EA such that m′ → m is valid.

In words, s |= CAmB iff

• the email mB involves all agents,
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• for every agent i that is on the BCC list of mB there is an email shared
by the group A that proves that i forwarded message m,

• there is an email shared by the group A that proves the existence of
the message m.

The first of the above three items is striking and shows that common knowl-
edge of an email is rare.

As an aside let us mention that there is a corresponding result for the
case when |A| < 3, as well. However, it involves a tedious case analysis
concerning the possible relations between A,S(m), R(m) and B, so we do
not present it here.

Re: Example 1.
We can use the above result to answer the question posed in Example 1.

Let s be the state whose emails consist of the considered four emails, so

e := m∅, where m := s(c, l, {a, d}),
e′ := m′

∅, where m′ := f(a,m, b),
e′′ := m′′

{a}, where m′′ := f(b,m′, {c, d}),

f(a,m′′, {c, d}){b}.

Alice’s set of notes in s consists of l while the sets of notes of Bob, Clare
and Daniel are empty. Note that s is legal. We have then

s 6|= C{a,b,c,d}f(b,m′, {c, d}){a} .

The reason is that condition C2 does not hold since no email shared by
{a, b, c, d} exists that proves that Alice received m′′. In contrast,

s |= C{a,c,d}f(b,m′, {c, d}){a}

does hold, since the email f(a,m′′, {c, d}){b} is shared by {a, c, d}. Further,
if Alice used the forward f(a,m′′, {b, c, d})∅, then condition C2 would hold
and we could conclude for this modified state s′ that

s′ |= C{a,b,c,d}f(b,m′, {c, d}){a} .

5 Proof of the Main Theorem

We establish first a number of auxiliary lemmas. We shall use a new strict
partial ordering on emails. We define

mB < m′
B′ iff m 6= m′ and m′ → m.
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Note that m′ → m precisely if m′ is a forward, or a forward of a forward,
etc, of m. Then for two emails mB and mB′ from a legal state s with
the causality ordering ≺, mB < mB′ implies mB ≺ mB′ on the account of
condition L.1. However, the converse does not need to hold since mB ≺ mB′

can hold on the account of L.2 or L.3. Further, note that the <-maximal
elements of E are precisely the emails in E that are not forwarded.

Given a set of emails E and E′ ⊆ E we then define the downward

closure of E′ by

E′
≤ := E′ ∪ {e ∈ E | ∃e′ ∈ E′ : e < e′}.

The set of emails E on which the downward closure of E′ depends will always
be clear from the context.

Next, we introduce two operations on states. Assume a state (E,  L) and
an email mB ∈ E.

We define the state

s \mB := (E \ {mB},  L
′),

with

L′
i :=

{

Li ∪ FI(m) if i ∈ R(m) ∪B

Li otherwise

Intuitively, s \mB is the result of removing the email mB from the state
s, followed by augmenting the sets of notes of its recipients in such a way
that they initially already had the notes they would have acquired from mB .
Note that s \mB is a legal state if mB is an <-maximal element of E.

Next, given C ⊆B we define the state

s[mB 7→C ] := (E \ {mB} ∪ {mC},  L
′),

with

L′
i :=

{

Li ∪ FI(m) if i ∈ B \ C

Li otherwise

Intuitively, s[mB 7→C ] is the result of shrinking the set of BCC recipients
of m from B to C, followed by an appropriate augmenting of the sets of
notes of the agents that no longer receive m.

Note that s[mB 7→C ] is a legal state if there is no forward of m by an
agent i ∈ B \C, i.e., no email of the form f(i, l.m,G)D exists in E such that
i ∈ B \ C.

We shall need the following lemma that clarifies the importance of the
set EA of emails.

14



Lemma 2. Consider a legal state s = (E,  L) and a group of agents A. Then
for some  L′ the state s′ := ((EA)≤,  L′) is legal and s ∼A s

′.

Proof. We prove that for all <-maximal emails mB ∈ E such that mB 6∈ EA

(so neither A⊆ S(m) ∪ R(m) nor ∃i ∈ B : (A⊆ S(m) ∪ {i})) we have
s ∼A s \mB. Iterating this process we get the desired conclusion.

Suppose mB is a <-maximal email in E such that mB 6∈ EA. Take
some j ∈ A \ (S(m) ∪ R(m)). Suppose first j 6∈ B. Then s ∼j s \mB so
s ∼A s \mB.

Suppose now j ∈ B. Define

s1 := s[mB 7→{j}].

Then s1 is a legal state and s ∼j s1. Next, define

s2 := s[mB 7→∅].

Now take some k ∈ A\(S(m)∪{j}). Then s1 ∼k s2 ∼j s\mB so s ∼A s\mB .
Note that both s1 and s2 are legal states since mB is <-maximal.

Using the above lemma we now establish two auxiliary results concerning
common knowledge of the formula i ◭ m or of its negation.

Lemma 3.

(i) s |= CAi ◭ m iff ∃m′
B ∈ EA : (m′ → i ◭ m)

or (A⊆ S(m) ∪ {i} and ∃mB ∈ EA : (i ∈ B)).

(ii) s |= CA¬i ◭ m iff s |= ¬ i ◭ m and (A⊆ S(m) ∪ {i} or s |= CA¬m).

To illustrate various alternatives listed in (i) note that each of the fol-
lowing emails in E ensures that s |= C{j}i ◭ m, where in each case m is the
corresponding send message:

s(i, l, G){j}, f(k, q.s(i, l, G),H){j},

s(k, l, i){j}, f(i, q.s(k, l,G),H){j}, s(j, l, G){i}.

The first four of these emails imply s |= C{j}i ◭ m by the first clause of (i),
the last one by the second clause.

Proof. (i) ( ⇒ ) Suppose s |= CAi ◭ m. Take the legal state s′ constructed
in Lemma 2. Then s ∼A s

′, so s′ |= i ◭ m.
Hence for some group B we have mB ∈ (EA)≤ and i ∈ S(m)∪R(m)∪B.

Three cases arise.
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Case 1. i ∈ S(m) ∪R(m).
Then m → i ◭ m. So if mB ∈ EA, then the claim holds. Otherwise

some email m′
B′ ∈ EA exists such that mB < m′

B′ . Consequently m′ → m

and hence m′ → i ◭ m. So the claim holds as well.

Case 2. i 6∈ S(m) ∪R(m) and A⊆ S(m) ∪ {i}.
Then i ∈ B since i ∈ S(m) ∪ R(m) ∪ B. Then by the definition of EA,

mB ∈ EA so the claim holds.

Case 3. i 6∈ S(m) ∪R(m) and ¬(A⊆ S(m) ∪ {i}).
If for some note l and groups G and C we have f(i, l.m,G)C ∈ (EA)≤,

then either f(i, l.m,G)C ∈ EA or for somem′
B′ ∈ EA we have f(i, l.m,G)C <

m′
B′ . In the former case we use the fact that the implication f(i, l.m,G) →

i ◭ m is valid. In the latter case m′ → f(i, l.m,G) and hence m′ → i ◭ m.
So in both cases the claim holds.

Otherwise let s′′ = s′[mB 7→B\{i}]. Note that s′′ is a legal state because i
does not forward m in s′. Take some j ∈ A \ (S(m) ∪ {i}). Then s′ ∼j s

′′,
so s ∼A s′′. Moreover, s′′ |= ¬i ◭ m, which yields a contradiction. So this
case cannot arise.

( ⇐ ) The claim follows directly by the definition of semantics. We provide
a proof for one representative case. Suppose that for some email m′

B ∈ EA

both A⊆ S(m′) ∪ R(m′) and m′ → i ◭ m. Take some legal state s′ such
that s ∼A s′. Then for some group B′ we have m′

B′ ∈ Es′ . So s′ |= m′ and
hence s′ |= i ◭ m. Consequently s |= CAi ◭ m.

(ii) Let s = (E,  L).
( ⇒ ) Suppose s |= CA¬i ◭ m. Then s |= ¬i ◭ m. Assume A 6⊆ S(m) ∪ {i}
and s 6|= CA¬m. Then there is some legal state s′ = (E′,  L′) such that
s ∼A s′ and s′ |= m. Then there is some group B such that mB ∈ E′. Let
j ∈ A \ (S(m)∪{i}) and let s′′ = (E′ \{mB}∪{mB∪{i}},  L

′). Then s′ ∼j s
′′

so s ∼A s
′′. But s′′ |= i ◭ m which contradicts our assumption.

( ⇐ ) Suppose that s |= ¬i ◭ m and either A⊆ S(m) ∪ {i} or s |= CA¬m.
We first consider the case that A⊆ S(m) ∪ {i}. Let s′ be any legal state
such that s ∼A s′. Assume s′ |= i ◭ m. Then mB ∈ Es′ for some group
B such that i ∈ B. Since A⊆ S(m) ∪ {i}, any legal state s′′ such that
s′ ∼A s

′′ contains an email mC ∈ Es′′ for some group C such that i ∈ C. So
s′′ |= i ◭ m. In particular, this holds for the state s, which contradicts our
assumption. So s′ |= ¬s(i, n,G) and hence s |= CA¬s(i, n,G).

Now we consider the case that s |= CA¬m. Let s′ be such that s ∼A s′.
Then s′ |= ¬m. Since i ◭ m → m is valid, we get s′ |= ¬i ◭ m. So
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s |= CA¬i ◭ m. �

We are now ready to prove the Main Theorem.
Proof (i) ( ⇒ ) Suppose s |= CAm. Take the legal state s′ constructed
in Lemma 2. Then s ∼A s′, so s′ |= m. So for some group B we have
mB ∈ (EA)≤.

Hence either mB ∈ EA or some email m′
B′ ∈ EA exists such that mB <

m′
B′ . In both cases the claim holds.

( ⇐ ) Suppose that for some email m′
B ∈ EA we have m′ → m. Take some

legal state s′ such that s ∼A s′. Then by the form of EA and the definition
of semantics for some group B′ we have m′

B′ ∈ Es′ . So s′ |= m′ and hence
s′ |= m. Consequently s |= CAm.

(ii) By the definition of mB , the fact that the CA operator distributes over
the conjunction, part (i) of the Main Theorem and Lemma 3 we have

s |= CAmB iff C3-C6,

where

C4
∧

i∈S(m)∪R(m)∪B ((A⊆ S(m)∪{i} and ∃B′ : (mB′ ∈ EA and i ∈ B′)) or

∃m′
B′ ∈ EA : (m′ → i ◭ m)),

C5
∧

i 6∈S(m)∪R(m)∪B (A⊆ S(m) ∪ {i} or s |= CA¬m),

C6 s |=
∧

i 6∈S(m)∪R(m)∪B ¬i ◭ m.

( ⇒ ) Suppose s |= CAmB. Then properties C3-C6 hold. But |A| ≥ 3 and
s |= CAm imply that no conjunct of C5 holds. Hence property C1 holds.

Further, since |A| ≥ 3 the first disjunct of each conjunct in C4 does not
hold. So the second disjunct of each conjunct in C4 holds, which implies
property C2.

( ⇐ ) Suppose properties C1-C3 hold. It suffices to establish properties
C4-C6.

For i ∈ S(m) ∪R(m) we have m→ i ◭ m. So C2 implies property C4.
Further, since C1 holds, properties C5 and C6 hold vacuously. �

6 Analysis of BCC

In our framework we built emails out of messages using the BCC feature. So
it is natural to analyze whether and in what sense the emails can be reduced
to messages without BCC recipients.
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Given a send email s(i, l, G)B , where B = {j1, . . ., jk}, we can simulate
it by the following sequence of messages:

s(i, l, G), f(i, s(i, l, G), j1), . . ., f(i, s(i, l, G), jk).

Analogous simulation can be formed for the forward email f(i, l.m,G)B .
At first sight, it seems that this simulation has exactly the same epistemic
effect as the original email with the BCC recipients. In both states, agents
j1, . . ., jk receive a copy of the message and only each of them separately and
the sender of the message are aware of this. However, there are two subtle
differences.

First of all, there is a syntactic difference between message that agents
j1, . . ., jk receive in the original case and in the simulation. In the original
case they receive exactly the message m, and in the simulation they receive a
forward of it. This also means that if they reply to or forward the message,
there is a syntactic difference in this reply or forward. This difference is
purely syntactic and does not essentially influence the knowledge of the
agents, even though it clearly influences the truth value of the formula j ◭ m

which is true for j ∈ {j1, . . ., jk} in the original case but not in the simulation.
The second difference is more fundamental. If agents j1, . . ., jk are BCC

recipients of m and they do not send a reply to or a forward of m, then each
of them can be sure that no other agent but the sender of m knows he was
a BCC recipient. Indeed, in our framework there is no message the sender
of m could send to another agent, that expresses that agents j1, . . ., jk were
the BCC recipients of m.

In the case of the simulation however, these recipients do not receive a
BCC but a forward. Since these forwards may have additional BCC recip-
ients of which agents j1, . . ., jk are unaware, they cannot be sure that the
other agents do not know that they received a forward of the message. Fur-
thermore, the sender of m could also forward the forward he sent to j1, . . ., jk
without informing them about it, thus also revealing their knowledge of m.

A concrete example that shows this difference is the following.

Example 5. Let
Es = {s(1, l, 2){3}}.

Then s |= K3¬K2K3s(1, l, 2), that is, agent 3 is sure that agent 2 does
not know about his knowledge of the message s(1, l, 2). A simulation of
this email without a BCC recipient would result in the state t with (we
abbreviate here each email m∅ to m)

Et = {s(1, l, 2), f(1, s(1, l, 2), 3)}.
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Now consider a state t′ with:

Et′ = {s(1, l, 2), f(1, s(1, l, 2), 3), f(1, f(1, s(1, l, 2), 3), 2)}.

Clearly t ∼3 t
′ and t′ |= K2K3s(1, l, 2). This shows that t 6|= K3¬K2K3s(1, l, 2).

�

This argument can be made more general as follows. Below, in the
context of a state we identify each message m with the email m∅. Then we
have the following result.

Theorem 6. Take a legal state s = (E,  L), an email mB ∈ E and an agent
j ∈ B such that E does not contain a forward of m by j or to j. Then
for any set of messages M such that (M,  L) is a legal state we have for any
agent k 6∈ S(m) ∪ {j}

s |= Kjm ∧Kj¬KkKjm,

while
(M,  L) 6|= Kjm ∧Kj¬KkKjm.

Proof. Agent j is a BCC recipient of m in s, so by the definition of the
semantics s |= Kjm. We will first show that s |= Kj¬KkKjm. Take some
state t such that s ∼j t. Then by the definition of the semantics there is some
group C such that mC ∈ Et and j ∈ C. Suppose that m is a send email,
say m = s(i, l, G). For the case that m is a forward email the reasoning is
analogous. Let u be the state like t, but with

Eu = Et\{s(i, l, G)C} ∪ {s(i, l, G)C\{j}, s(i, l, j)}.

Note that we implicitly assume that no full version of s(i, l, j) is already
present in Et. If there were such a full version, we could do the same
construction without adding s(i, l, j) to Et.

Since there are no forwards of m by j or to j in E, and s ∼j t, there
are no forwards of m by j or to j in Et. This shows that u is a legal state
and that there are no forwards of m to j in Eu so u 6|= Kjm. Clearly, for
any k 6∈ S(m) ∪ {j} we have t ∼k u. So t 6|= KkKjm, which shows that
s |= Kj¬KkKjm.

Take now any set of messages M such that (M,  L) is legal and suppose
(M,  L) |= Kjm. Then by the Main Theorem there is some message m′

in which agent j was involved that implies that message m was sent. By
the requirements on the legal states we know that there is such a message
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m′ of which agent j was a recipient, and not the sender, since agents can
only send information they initially knew or received through some earlier
message. Since there are no BCC recipients in M , we conclude that agent j
is a regular recipient of m′ that he received from some other agent and that
m′ → m is valid.

Define the set of messages M ′ by

M ′ := M ∪ {f(S(m′),m′, k)}.

Note that (M ′,  L) is a legal state, and (M ′,  L) |= Kkm
′. Since j is a

regular recipient of m′, m′ → Kjm
′ is valid and since m′ → m is also

valid this implies that (M ′,  L) |= KkKjm. Also, since j is not involved in
f(S(m′),m′, k), (M,  L) ∼j (M ′,  L). This shows that (M,  L) 6|= Kj¬KkKjm.
In view of our assumption that (M,  L) |= Kjm we conclude that (M,  L) 6|=
Kjm ∧Kj¬KkKjm.

In this theorem we assume that for the BCC recipient j of the message m
there are no forwards of m to j or by j. The theorem shows that under these
assumptions, s and (M,L) can be distinguished by an epistemic formula
concerning the message m. We will now show that these assumptions are
necessary.

Example 7. Take a legal state s = (E,  L) with

E = {s(1, l, 2){3}, f(2, s(1, l, 2), 3)}

and
M = {s(1, l, 2), f(1, s(1, l, 2), 3), f(2, s(1, l, 2), 3)}.

We can see that (M,  L) is a perfect BCC-free simulation of s: for any formula
ϕ that holds in s, if we replace the occurrences of 3 ◭ s(1, l, 2) in ϕ by
f(1, s(1, l, 2), 3) then the result holds in (M,  L). The reason that we can
find such a set M is that in E there is a forward of s(1, l, 2) to agent 3. This
reveals the “secret” that agent 3 knows about s(1, l, 2) and then the fact
that agent 3 was a BCC recipient of s(1, l, 2) is no longer relevant.

Example 8. A similar example shows the importance of the assumption
that there are no forwards by a BCC recipient. Take a legal state s = (E,  L)
with

E = {s(1, l, 2){3}, f(3, s(1, l, 2), 2)}

and
M = {s(1, l, 2), f(1, s(1, l, 2), 3), f(3, f(1, s(1, l, 2), 3), 2)}.
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Again, for any formula ϕ that holds in s, if we replace the occurrences of
3 ◭ s(1, l, 2) in ϕ by f(1, s(1, l, 2), 3) then the result holds in (M,  L). Now
the reason is that agent 3 informed agent 2 that he was a BCC recipient of
s(1, l, 2) in s by sending a forward of this message, so again the fact that
agent 3 knows s(1, l, 2) is not secret anymore.

It is interesting to note that the impossibility of simulating BCC by
means of messages is in fact caused by our choice of uninterpreted notes as
the basic contents of the messages. If our framework allowed one to send
messages containing more complex information, for example a formula of
the form j ◭ m, the sender of m could have informed other agents who were
the BCC recipients. Then in Example 5 we could consider a state s′ with

Es′ = {s(1, n, 2){3}, s(1, 3 ◭ s(1, n, 2), 2)}.

By appropriately extending our semantics we would have then s ∼3 s
′ and

s′ |= K2K3s(1, n, 2), and hence s 6|= K3¬K2K3s(1, n, 2), so the difference
between the above two states s and t would then disappear. We leave an
analysis of this extension of our framework and the role of BCC in this
extended setting as future work.

7 Email exchanges

In this section we provide a characterization of the notion of a legal state
in terms of email exchanges. In this setting emails are sent in a nondeter-
ministic order, each time respecting the restrictions imposed by the legality
conditions L.1 – L.3 of Subsection 2.3.

We define first an operational semantics in the style of [14], though with
some important differences concerning the notions of a program state and
the atomic transitions. Let M be the set of all messages (so not emails). By
a mailbox we mean a function σ : Ag →P(M); σ(i) is then the mailbox of
agent i. If for all i we have σ0(i) = ∅, then we call σ0 the empty mailbox .
A configuration is a construct of the form < s, σ >, where s is a legal
state and σ is a mailbox.

Atomic transitions between configurations are of the form

< s, σ > → < s′, σ′ >,

where

• s := (E ·∪{mB},  L),
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• s′ := (E,  L),

• for j ∈ Ag

σ′(j) :=

{

σ(j) ∪ {m} if j ∈ R(m) ∪ S(m) ∪B

σ(j) otherwise

We say that the above transition processes the email mB. This takes
place subject to the following conditions depending on the form of m, where
 L = (L1, . . . , Ln):

• send m = s(i, l, G).

We stipulate then that l ∈ Li or for some m′ ∈ σ(i) we have l ∈
FI(m′). In the second case of the second alternative we say below
that m depends on m′.

• forward m = f(i, l.m′, G).

We stipulate then that m′ ∈ σ(i), and l ∈ Li or for some m′′ ∈ σ(i)
we have l ∈ FI(m′′).

In the case of the first alternative we say below that m depends on

m′ and in the case of the second alternative that m depends on m′

and m′′.

Given a legal state s an email exchange starting in s is a maximal
sequence of transitions starting in the configuration < s, σ0 >, where σ0 is
the empty mailbox. An email exchange properly terminates if its last
configuration is of the form < s′, τ >, where s′ = (∅,  L).

Note that messages are never deleted from the mailboxes. Further, ob-
serve that in the above atomic transitions we augment the mailboxes of the
recipients of mB (including the BCC recipients) by m and not by mB . So
the recipients of mB only ‘see’ the message m in their mailboxes. Likewise,
we augment the mailbox of the sender by the message m and not by mB .
As a result when in an email exchanges a sender forwards his own email, the
BCC recipients of the original email are not shown in the forwarded email.
This is consistent with the discussion of the emails given in Subsection 2.2.

Observe that from the form of a message m in the mailbox σ(i) we can
infer whether agent i received it by means of a BCC. Namely, this is the
case iff i 6∈ R(m) ∪ S(m). (Recall that by assumption the sets of regular
recipients and BCC recipients of an email are disjoint.)

The following result then clarifies the concept of a legal state.
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Theorem 9. The following statements are equivalent:

(i) s is a legal state,

(ii) an email exchange starting in s properly terminates,

(iii) all email exchanges starting in s properly terminate.

The equivalence between (i) and (ii) states that the property of a legal
state amounts to the possibility of processing all the emails in an orderly
fashion.

Proof. Suppose s = (E,  L).
(i) ⇒ (ii). Suppose s is legal w.r.t. an spo ≺. Extend ≺ to a linear ordering
≺l on E. (Such an extension exists on the account of the result of [16].) By
the definition of the atomic transitions we can process the emails in E in
the order determined by ≺l. The resulting sequence of transitions forms a
properly terminating email exchange starting in s.

(ii) ⇒ (iii). Let ξ be a properly terminating email exchange starting in
s and ξ′ another email exchange starting in s. Let mB be the first email
processed in ξ that is not processed in ξ′. The final mailbox of ξ′ contains the
message(s) on which m depends on, since their full versions were processed
in ξ before mB and hence were also processed in ξ′. So mB can be processed
in the final mailbox of ξ′, i.e., ξ′ is not a maximal sequence. This is a
contradiction.

(iii) ⇒ (ii). Obvious.

(ii) ⇒ (i). Take a properly terminating email exchange ξ starting in s. For
two emails e1, e2 ∈ E let e1 ≺ e2 iff e1 is processed in ξ before e2. By the
definition of the atomic transitions s is legal w.r.t. ≺.

8 Conclusions and future work

Email is by now one of the most common forms of group communication.
This motivates the study here presented. The language we introduced al-
lowed us to discuss various fine points of email communication, notably for-
warding and the use of BCC. The epistemic semantics we proposed aimed at
clarifying the knowledge-theoretic consequences of this form of communica-
tion. Our presentation focused on the issue of common knowledge allowed
us to determine when a group of agents has a common knowledge of an
email.
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This framework also leads to natural questions concerning axiomatiza-
tion of the introduced language and the decidability of its semantics. Cur-
rently we work on

• a sound and complete axiomatization of the epistemic language L of
Section 3; at this stage we have such an axiomatization for the non-
epistemic formulas,

• the problem of decidability of the truth definition given in Section 3;
at this stage we have a decidability result for positive formulas,

• a comparison of the proposed semantics with the one based on se-
quences (’histories’) of emails rather than partially ordered sets of
emails.

In our framework, as explained in Section 3, communication is syn-
chronous. We plan to extend our results to the more general framework
of [4], by assuming for each agent a time bound by which he reads his
emails.

Another extension worthwhile to study is one in which the agents com-
municate richer basic statements than just notes. We already indicated in
Section 6 that sending messages containing a formula i ◭ m increases the
expressiveness of the messages from the epistemic point of view. One could
also consider in our framework sending epistemic formulas, a feature recently
studied in a different setting in [15].
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