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Summary

Atoms and molecules are the constituents of the material world. The binding of atoms into
diatomic and polyatomic molecules is the basis of all chemistry, and renders possible the
emergence of stars and galaxies, atmospheres and oceans, DNA and proteins.

The last decades have witnessed the rapid development of experimental methods for the
study of atoms and molecules at the microscopic level. Manipulating individual particles
and individual quantum states has become possible, a physicist’s dream once thought to be
delusional. The development of laser light sources in the second half of the 20st century,
followed by their application to the cooling and trapping of particles, has permitted the cre-
ation of highly quantum-degenerate gases of atoms in the form of Bose-Einstein condensates
and Fermi seas, and the extensive study of their properties. Molecules, on the other hand,
have proven more stubborn. Harder to cool down, harder to control at high densities, they
come with a body of complexity that makes them both extremely appealing and very diffi-
cult objects of study. To this date, only a handful of experimental groups in the world have
obtained gases of diatomic molecules, the simplest form of all molecules, in the quantum-
degenerate regime.

This thesis reports on the experimental investigation of the RbSr molecule, which is a
strongly polar, open-shell molecule. Such molecules are the subject of intense and ongo-
ing experimental interest around the world, but have never been brought to the quantum-
degenerate regime thus far. Hopefully, the methods and results presented in this thesis will
lead to a change of this situation in the future.

Two major results led to peer-reviewed publications in the context of this PhD thesis. The
first is the experimental observation of magnetic Feshbach resonances between alkali and
closed-shell atoms, never achieved before. This result opens the door to the magnetic asso-
ciation of atom pairs into molecules of a new kind, among them RbSr, that have never been
produced in the laboratory due to a lack of known magnetic resonances. The second major
result is the understanding of the potential energy curve of ground-state RbSr, an achieve-
ment of high importance for our future research. Based on this potential energy curve, we
could predict the collisional properties of Rb-Sr mixtures of any isotopic combination, the
binding energies of all molecular states in the electronic ground state and the position of
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yet-unobserved Feshbach resonances. In addition, an extensive part of my PhD was dedi-
cated to the exploration of electronically-excited potential energy curves of RbSr. The results
of this work are subject to an ongoing theoretical analysis, which will be published in the
future. The last years of my PhD have been dedicated to the implementation of experimen-
tal methods for the production and loading of cold Rb-Sr gases in an optical lattice, and to
the implementation and characterization of a magnetic field stabilization system for RbSr
magnetoassociation. This work is subject to ongoing development and improvement in the
laboratory and I will discuss it succinctly in the outlook of this thesis.

This manuscript serves two purposes. First, it will give the general and specialized
reader a state-of-the-art account of the properties, applications and methods of formation
of ultracold RbSr molecules. Second, it will present the theoretical and experimental con-
cepts that underlie my PhD work in the RbSr laboratory. I have tried to synthetize in a clear
and exhaustive manner the knowledge I have accumulated throughout the years, so that
those who will come after me can rely upon it. The rotational and vibrational structure of
RbSr is discussed in depth, along with the spectroscopy methods that I have used to explore
it. The physics of Feshbach resonances in ultracold atom experiments is covered extensively,
with particular attention given to bi-alkali resonances and resonances between alkali and
closed-shell atoms, such as those I have observed in RbSr. From this knowledge I hope that
new results and new ideas will emerge, for science is a long and unpredictable road.
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Samenvatting

Atomen en moleculen zijn de bestanddelen van de materiële wereld. De verbinding van
atomen in twee-atomige en meeratomige moleculen is de basis van alle chemie, en maakt het
ontstaan mogelijk van sterren en sterrenstelsels, atmosferen en oceanen, DNA en proteïnen.

De laatste decennia zijn we getuige geweest van een snelle ontwikkeling van experi-
mentele methodes om atomen en moleculen op microscopisch niveau te bestuderen. Het is
mogelijk geworden om individuele deeltjes en kwantumtoestanden te manipuleren – voor
natuurkundigen een droom die ooit een waanvoorstelling leek. De ontwikkeling van laser-
lichtbronnen in de tweede helft van de twintigste eeuw, gevolgd door hun toepassing bij
het koelen en insluiten van deeltjes, heeft het mogelijk gemaakt kwantum-ontaarde gassen
uit atomen te verkrijgen in de vorm van Bose-Einsteincondensaten en Fermi-zeeën, en hun
eigenschappen uitgebreid te bestuderen. Moleculen hebben daarentegen bewezen koppiger
te zijn. Aangezien ze moeilijker zijn af te koelen en bij hoge dichtheden lastiger te beheersen,
gaan ze gepaard met een complexiteit die ze tegelijkertijd extreem aantrekkelijk en erg lastig
maakt om te bestuderen. Tot op de dag van vandaag hebben slechts een handjevol experi-
mentele groepen in de wereld gassen verkregen uit twee-atomige moleculen, het eenvoudig-
ste type moleculen in het kwantum-ontaarde regime.

Dit proefschrift doet verslag van het experimenteel onderzoek aan het RbSr-molecuul,
een sterk polair open-shell molecuul. Zulke moleculen zijn over de hele wereld het onder-
werp van intense en voortdurende experimentele interesse, maar zijn tot dusver nooit naar
het kwantum-ontaarde regime gebracht. Hopelijk brengen de methoden en resultaten die in
dit manuscript worden gepresenteerd in de toekomst verandering in deze situatie.

Twee belangrijke resultaten leidden in de context van dit proefschrift tot peer-reviewed
publicaties. Het eerste was de experimentele waarneming van magnetische Feshbach-reso-
nanties tussen alkali-atomen en aardalkali-atomen, wat nooit eerder was gelukt. Dit resul-
taat opent de deur voor de magnetische associatie van paren van atomen tot moleculen van
een nieuw type, waaronder RbSr, die nooit in het laboratorium zijn geproduceerd vanwege
een gebrek aan bekende magnetische resonanties. Het tweede belangrijke resultaat is het be-
grijpen van de potentiaalcurve van RbSr in de grondtoestand, een prestatie van groot belang
voor ons toekomstige onderzoek. Op basis van deze potentiaalcurve konden we de botsing-
seigenschappen voorspellen van Rb-Sr-mengsels van elke isotopische combinatie, evenals
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de bindingsenergieën van alle moleculaire toestanden in de elektronische grondtoestand en
de positie van nog niet waargenomen Feshbach-reso-nanties. Daarnaast was een groot deel
van mijn promotieonderzoek gewijd aan de verkenning van elektronisch geëxciteerde po-
tentiaalcurves van RbSr. De resultaten hiervan zijn het onderwerp van een nog lopende
theoretische analyse die in de toekomst zal worden gepubliceerd. De laatste jaren van mijn
promotieonderzoek heb ik gewijd aan de implementatie van experimentele methoden voor
de productie en het laden van koude Rb-Sr-gassen in een optisch rooster, en aan de imple-
mentatie en karakterisatie van een stabilisatiesysteem voor magnetische velden voor RbSr-
magneto-associatie. Dit werk wordt nog verder ontwikkeld en verbeterd in het laboratorium
en zal in het kort door mij worden besproken in de discussie van dit proefschrift.

Deze tekst dient twee doeleinden. Ten eerste geeft het de algemene en gespecialiseerde
lezer een state-of-the-art verslag van de eigenschappen, toepassingen en methoden van
de vorming van ultrakoude RbSr-moleculen. Ten tweede presenteert het de theoretische
en experimentele concepten die ten grondslag liggen aan mijn promotieonderzoek in het
RbSr-laboratorium. Ik heb geprobeerd de kennis die ik door de jaren heen heb vergaard
op een heldere en grondige manier te synthetiseren, zodat zij die na mij komen erop kun-
nen vertrouwen. De rotationele en vibrationele structuur van RbSr wordt uitgebreid be-
sproken, samen met de spectroscopiemethoden die ik heb gebruikt om het te onderzoeken.
De fysica van Feshbach-resonanties in ultrakoude-atoomexperimenten wordt uitgebreid be-
handeld, met bijzondere aandacht voor bi-alkali-resonanties en resonanties tussen alkali-
en aardalkali-atomen, zoals die ik heb waargenomen in RbSr. Ik hoop dat er op basis van
deze kennis nieuwe resultaten en nieuwe ideeën zullen ontstaan, want de wetenschap is een
lange en onvoorspelbare weg.

Translated from the English version by Felix van de Vorst (felixvandevorst@gmail.com).

mailto:felixvandevorst@gmail.com
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Chapter 1

Ultracold molecules and RbSr: an
introduction

1.1 Of ultracold atoms and molecules

Ultracold atoms and ions are an extremely fast-evolving and fruitful field of research since
more than 40 years now. The expansion of the field has been accompanied by the award-
ing of three Nobel prizes in physics in 1997, 2001 and 2012. The former was awarded for
the development of methods to cool and trap atoms with laser light, the second for the
achievement of Bose–Einstein condensation in dilute gases of alkali atoms, and for early
fundamental studies of the properties of the condensates, and the latest for the development
of experimental methods that enable measuring and manipulation of individual quantum
systems. These experimental techniques are based on laser cooling methods and have led to
the creation of ensemble of atoms and ions in the µK and nK regimes, orders of magnitude
colder than the lowest gas temperatures obtained with the best cryogenic He-based buffer
gas cooling methods (limited by the boiling temperature of He to a few K at best). In this
extreme temperature regime in which ultracold atom or ion experiments operate, the phase
space density (PSD) of the gas is very high and effects of quantum degeneracy are unveiled.

The PSD is given by PSD = n × λth
3, where n is the density n of the gas (typically

expressed in particles.cm-3) and λth = h/
√

2πmkBT is the thermal de Broglie wavelength of
the atomic matter wave for an ensemble of atoms of mass m at the temperature T, with h and
kB the Planck and Boltzmann constants respectively. The typical densities and temperatures
obtained in our experiments are indicated below.
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Temperature (T): 10−6 to 10−9 K (liquid He: 4 K)

Density (n): 1011 to 1015 cm−3 (ambiant air: ∼ 1019 cm−3)

PSD: 0.01 to � 1

(1.1)

The thermal wavelength is very large in ultracold experiments and leads to the abovemen-
tioned unusually large PSDs. Atomic densities, on the other hand, are typically very small
compared to "normal life" gases. These low densities are a natural consequence of the design
of laser cooling experiments, and are required to maintain the existence of a cold gas of neu-
tral atoms. Indeed, at very low densities the collisions between atoms are largely dominated
by two-body elastic collisions1, whereas at higher densities the gas would rapidly suffer
from three-body recombinations that produce molecules and heat the gas considerably. This
extreme regime, where the thermal wavelength λth is comparable or greater than the inter-
particle spacing can really be considered the hallmark of ultracold atom experiments.

Ultracold molecules are to ultracold atoms what the grey wolf is to the Labrador. The
laser techniques that permit to cool very hot ensembles of atoms down to ultracold temper-
atures can not be applied straightforwardly to molecules, owing to the absence of cycling
transitions in such systems. Neutral atoms display several such electronic transitions, which
are almost fully closed with respect to the cycle of absorption – spontaneous emission of
photons during Doppler cooling: after electronic excitation through absorption of a reso-
nant laser photon, the atom decays from the excited state towards its initial state due to a
spontaneous emission event. This allows the scattering of 104 – 105 or more cooling photons
from the same laser source and brings us straight into the ultracold regime. For instance,
the fully-cycling 1S0 – 3P1 electronic transition of Sr at λ = 689 nm allows us to cool gases
directly from ∼mK temperatures (obtained in our initial Sr magneto-optical trap (MOT))
down to about 0.5 µK — which is sufficiently cold to achieve quantum degeneracy in dense
clouds [1]2. Such cycling transitions are simply absent in molecules, due to their complex

1An elastic collision is defined as a collision during which the momentum of the two partners is
changed/redistributed, while the total kinetic energy of the pair is conserved. This is the type of collisions one
observes on a snooker table. Inelastic collisions, on the other hand, lead to changes of the internal degrees of
freedom of the collisional partner. Inelastic processes include two-body spin-changing collisions (very strong in
non-polarized Cs for instance, but very weak in 87Rb as we discuss briefly in Section 5.2 of Chapter 5), and three-
body recombination losses that occur when two atoms form a molecule, with the molecular binding energy being
transferred to the molecule and to a third collisional partner in the form of kinetic energy.

2The Doppler temperature, which is the lowest temperature that one can obtain using Doppler cooling with
a certain electronic transition is given by kB × TD = h̄γ/2, where γ is the linewidth of the transition, with
γ/2π = 7.50 kHz for the 1S0 – 3P1 transition of Sr at λ = 689 nm. The Doppler temperature of this transition is thus
TD = 180 nK, and is extremely low due to the semi-forbidden character of the transition that implies a very small
linewidth. The final temperature of this cooling stage is actually limited by the recoil temperature Tr = h̄2k2/kBm,
which is Tr = 481 nK for 84Sr and corresponds to the kinetic energy h̄2k2/2m transferred to the atom of mass m upon
absorption of a photon of wavelength k = 2π/λ. As a comparison, the 1S0 – 1P1 transition of Sr at λ = 461 nm
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internal structure. In addition to electronic and hyperfine degrees of freedom, also present
in atoms, they display vibrational and rotational degrees of freedom which complicate laser
cooling tremendously3. Upon excitation towards an electronically excited molecular state,
a molecule typically decays to several different states with rotational and vibrational quan-
tum numbers differing from that of the initial state (most often the non-excited initial state
would be the molecular state of lowest rotational and vibrational quantum numbers, aka the
rovibrational ground state4, and the excited molecule would decay to vibrationally and/or
rotationally excited states). These states are not addressed by the laser cooling beam, be-
cause their energy differs from that of the initial molecular state by typically much more
than the linewidth of the cooling transition: the molecule is thus lost from the optical cycle.
The scattering of 104 – 105 resonant photons without significant losses may be considered
a huge success (comparable to the amount of scattered photons needed to slow an atom or
small molecule from room temperature velocities, i.e. several 100 m/s, to standstill), and
typical cycles currently implemented involve 102 – 103 photons. An excellent up-to-date
discussion on the prospects and difficulties of laser cooling of molecules can be found in
Ref. [2]. These difficulties have not stopped people from developing methods for the laser
cooling of molecules though. These methods are referred to as "direct laser cooling" in the
literature and typically require a cryogenic buffer gas cooling stage to cool the initial molec-
ular gas down to a few K before laser cooling, a wise choice of molecular species to limit the
decay to non-desired molecular states, and several additional lasers (for a total of around 7
to 15 lasers typically) to repump the molecules that fell into an off-resonant state back into
the optical cooling cycle. Another successful method is the production of a molecular beam
with a skimmer, followed by expansion cooling in vacuum It produces a mK-cold beam of
molecules in its own frame of motion, with a very large velocity in the laboratory frame that
is then reduced using either Stark [3] or Zeeman deceleration [4]. While these direct cooling
methods are very fast-evolving and break records every year, they are to this date limited by

that we use for Zeeman slowing and for the initial Sr MOT has γ/2π = 30.5 MHz, corresponding to a Doppler
temperature of TD = 732 µK. Note that this transition is not fully cycling. After a few 104 scattering events, the
atom excited to the 1P1 state decays to another electronically excited state (a 1D2 state) instead of coming back to
the ground state. In such cases a repumping laser is required to bring back the atoms in the cooling cycle.

3The internal structure of diatomic molecules, and in particular that of RbSr in its electronic ground state, is
discussed extensively in Chapter 2. In this chapter, electronic degrees of freedom are denoted by the quantum
numbers n (n stands for all quantum numbers necessary to the description of the electronic state, and is not to
be confused with the atomic density n discussed in this introduction chapter) and the vibrational and rotational
degrees of freedom of ground-state RbSr are denoted as ν and N respectively.

4The term "rovibrational" is a contraction of "rotational" and "vibrational", and the rovibrational ground state
for RbSr consists of the molecular state with no rotation (N = 0) and of lowest vibrational excitation. The term
"rovibronic", contraction of "rotational", "vibrational" and "electronic" is also used in the literature and indicates
additionally the electronic state of motion. In this section the electronic manifold considered is the RbSr 2Σ+ elec-
tronic ground state term, therefore the "rovibrational ground state" implicitly indicates the rovibronic ground state
of RbSr.
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the small densities of molecules achieved, typically in the range 107 – 108 cm−3, with tem-
peratures in the range of 1 − 1000 µK for state-of-the-art direct cooling experiments. The
best phase space densities obtained to this date using direct molecule cooling methods are
of order 10−8 – 10−7 [5] [6], still orders of magnitude away from the quantum-degenerate
regime PSD ∼ 1 of ultracold atom experiments.

Another road has been taken on the route towards ultracold molecular samples: the
assembly of molecules from ultracold atom samples. This approach led to the creation of a
few quantum-degenerate samples of molecules. Among them, a Bose-Einstein Condensate
(BEC) of weakly-bound Li2 molecules [7], and a Fermi sea of polar KRb molecules in the
rovibrational ground state (aka ground-state molecules) [8]. This approach also led to the
production of several ultracold samples of polar molecules [9–16]. However, to this date
no ultracold sample of strongly polar, open-shell molecules has been obtained. This thesis
reports on an experimental effort oriented towards this new frontier.
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1.2 Why RbSr?

1.2.1 A molecule strongly polar...

The large sensitivity of polar molecules, such as RbSr, to external DC and AC electric fields
make them very appealing in view of several applications, as explained in Section 1.3. A
polar molecule exhibits a permanent dipole moment in its own molecular frame (depicted in
Figure 2.1 for a diatomic molecule), owing to the imbalance of electronegativity between the
atoms constituting the molecule. Heteronuclear diatomic molecules such as RbSr provide
the most simple polar molecular system: the closed-shell Sr atom is more electronegative
than the alkali atom Rb, and "pulls" the valence electron of Rb towards its own nucleus,
creating a gradient of charge along the internuclear axis. While a complete multipole expan-
sion is in general necessary to account for the full complexity of this charge distribution, the
first-order dipole moment term is largely sufficient to describe the sensitivity of the molecule to
external electric fields. This permanent dipole moment is strongest in the vibrational ground
state (i.e. the molecular state of largest binding energy) of the molecule, as seen from Fig-
ures 1.1 and 1.5 and can be measured either through beam deflection experiments [17] or
through more precise quantum optics, single-quantum state resolved experiments [9]. The
non-SI Debye unit, defined as 1 D = 3.33564× 10−30 C.m−1, is the unit of choice for molec-
ular electric dipole moments, and a molecule with a dipole moment d > 1 D is typically
considered strongly polar because it is suitable for dipole-dipole interaction engineering in
an optical lattice (see Subsections 1.3.1 and 1.3.2)5. The RbSr molecule plays in that league
with a dipole moment in the rovibrational ground-state of d = 1.54 D6.

The electric dipole moment quantifies the strength of the interaction of the molecule with
external DC and AC electric fields, as well as the strength of its electric dipole-dipole in-
teractions with adjacent molecules. In absence of external fields, however, the molecule
doesn’t exhibit any dipole moment in the laboratory frame because the rotational eigenstates
|N, mN〉 that describe the angular distribution of the nuclei in field-free space are parity
eigenstates7. In layman’s terms, the Sr can be found with equal probability "up" or "down"
compared to Rb with respect to any axis, which results in no net dipole moment in the labo-
ratory frame. It is therefore necessary to apply external electric fields to mix parity eigenstates
and produce an experimentally observable dipole moment. The first approach to polarizing
the molecules is to use a DC electric field ~EDC. The interaction of this field with the dipole
moment~d of the molecule (also denoted as DC Stark effect) is

5Throughout this chapter dipole moments are denoted as~d and d indicates the corresponding magnitude |~d|.
6This value is approximated by the value of the RbSr dipole moment at the equilibrium position of the PEC,

where most of the internuclear probability |χν,N=0(R)|2 of the rovibrational ground state wavefunction is located.
7See Equation 2.39 for an explicit expression of the RbSr rotational eigenstates |N, mN〉 in the electronic ground

state 2Σ+. Their parity is given by (−1)N .
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FIGURE 1.1: (a) Potential energy curves (PECs) and (b) permanent dipole mo-
ments (PDMs) for the X 2Σ+ ground state of the alkali-Sr diatomic molecules.
Vertical lines guide the eye to locate the value of the PDM at the equilibrium
distance. The Bohr radius is a0 = 0.529177210 Å. From Ref. [18].

HDC = −~d ·~EDC , (1.2)

and the electric field ~EDC can in practice be produced by a set of fixed-voltage electrodes,
creating a voltage gradient across the molecular cloud and forcing the molecules to align to
the field direction. The smaller the distance between the + and - electrodes the better (less
voltage is required to achieve large fields, which allows to create fields with less noise or
higher fields), and accordingly for fields of amplitude EDC > 1 kV.cm-1 it is typically best to
implement in-vacuum electrodes for ultracold experiments. Compared to electrodes placed
around the vacuum chamber, in-vacuum electrodes also reduce drastically the accumulation
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of charges on the glass cell containing the atoms, which is limiting the reliability of the E-
field magnitude from one experimental run to the other. The DC field admixes a given state
|N, mN〉 with other rotational states of rotational numbers N ± 1 [19]. The resulting dressed
eigenstate, denoted as |Ñ, m̃N〉 = |N, mN〉 + ∑ i ci |N′, mN′〉 is not a parity eigenstate any-
more and exhibits a dipole moment in the laboratory frame: at large fields this dipole mo-
ment saturates to a value close to the dipole moment of the molecule itself for the rotational
ground state |0̃, 0̃〉. Additionally the Stark effect HDC induces a shift of the energy of |Ñ, m̃N〉
that gets larger for larger fields EDC, as shown in Figure 1.3 for RbSr, and can be employed to
deflect the molecules [17] or to slow them down as in a Stark decelerator [3]. An important
parameter for this DC field approach is the characteristic field at which the dipole moment
in the laboratory frame saturates, and at which it can be said that the molecule is almost fully
polarized: it is given by E = B/d, where B is the rotational constant of the vibrational state
of interest, and in the vibrational ground state of RbSr in which B = h× 539.6 MHz [20]8 it
is E = 0.7 kV.cm-1.

The second approach to polarizing molecules consists in using AC electric fields. The
interaction between the dipole moment of the molecule and the field of pulsation ω (also
denoted as AC Stark effect) is

HAC = −~d ·~EAC(t) = −~d ·~EAC e−iωt + c.c. , (1.3)

and also couples rotational states of different parity. Optical frequencies derived from laser
beams in the range ω/2π = 10− 10000 THz can couple molecular states belonging to elec-
tronic states of different parities (see Chapter 2, Figure 4.1 for the ground and excited elec-
tronic states of RbSr), but are not suitable to coherent schemes owing to the typically short
lifetime of the excited state. THz radiation in the ω/2π = 0.1− 10 THz range is promis-
ing in terms of manipulation of the dipole moment of molecules, as was recently demon-
strated by one of our collaborators in the context of RbSr [21], but suffers from a technolog-
ical gap that limits the (currently) achievable intensities to low values of order W.cm-2. Mi-
crowave and radiofrequency (RF) radiation, in the ranges ω/2π = 1− 100 GHz and ω/2π =

10 kHz – 100 GHz respectively, are on the contrary available for cheap prices at very large
intensities: they reveal the full splendor of molecules by coupling rotational states |N, mN〉
within the same electronic manifold, a situation inexistent in atomic or ionic systems. These
rotational states have lifetimes larger than any experimentally relevant timescale and make
such schemes very competitive for coherent physics including quantum gates, simulations

8This value has not been updated after our work on the ground state PEC of RbSr, but the characteristic field
value should be almost unchanged.
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of spin systems and precision measurements involving the engineering of correlated quan-
tum ensembles. The simplest of such RF dipolar schemes is a π/2 pulse creating an equal
superposition of the |N, mN〉 = |0, 0〉 state and of one of the three |N, mN〉 = |1, 0〉, |1,−1〉 or
|1,+1〉 states of a given vibrational manifold [22], which produces a transition dipole moment
of about d/

√
3 in the laboratory frame (where d is the dipole moment of the molecule in its

own frame, in a given vibrational state). This scheme has been implemented using the |0, 0〉
and |1,−1〉 of the vibrational ground state of KRb [23]. However, the palette of complex
dipolar patterns that can be engineered by the superposition of several microwave and RF
fields of different intensities, polarization, frequencies is essentially infinite, and is particu-
larly rich in RbSr as we show in the next sections.

1.2.2 ... and open-shell ...

On top of exhibiting an electric dipole in its own frame, the RbSr molecule exhibits an un-
paired valence electron, which distinguishes it from the other ultracold polar molecules that
have been produced so far. The Rb atom is an alkali, open-shell atom with one unpaired
valence electron in its 5s shell and accordingly has a total spin S = 1/2. The Sr atom, on
the other hand, is an alkaline-earth, closed-shell atom with two 5s valence electrons. Its total
spin wavefunction is thus antisymmetric, owing to Pauli’s exclusion principle, and it has
S = 0. The resulting diatomic RbSr molecule is open-shell, with S = 1/2 and a ground
state 2Σ+ doublet electronic term (the superscript 2 indicates the multiplicity of the total
spin 2S + 1, see Chapter 2). The unpaired RbSr electron confers RbSr with a strong magnetic
sensitivity, which is largely absent in closed-shell molecules. A complete state-of-the-art
discussion of the magnetic hyperfine structure of RbSr is given in Ref. [24].

To this date, the only polar molecules that have been assembled from ultracold atoms
are bi-alkali molecules. The electronic ground state of such molecules is a singlet 1Σ+ of
total spin S = 0, with no unpaired electron. They are thus closed-shell molecules, which
exhibit a very small magnetic sensitivity. Note that NaLi molecules have been produced in
the rovibrational ground state of the triplet 3Σ+ term, where the total spin is S = 1 and
the two valence electrons are unpaired [15]. However, the equilibrium distance of the triplet
potential energy curve (PEC) of a bi-alkali pair is much larger than that of the singlet PEC, as
shown in Chapter 2, Figure 5.5. Accordingly, the ground-state triplet molecule looses much
of its polar character compared to its ground-state singlet version9: it is only d = 0.2 D for
triplet NaLi.

9The term ground-state molecule usually refers to the rovibrational ground state (i.e. the ground state of rota-
tional and vibrational motion) in the literature. It doesn’t necessarily denotes the rovibronic ground state, which is
the rovibrational ground state of the singlet PEC in bi-alkali systems.
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The reason for the success of bi-alkali experiments is the availability in such systems of
large magnetic Feshbach resonances that allow very fast and efficient magnetoassociation of
a pair of atoms into a weakly-bound molecule. Such large resonances don’t exist in dimers of
an alkali and a closed-shell atom such as RbSr, but narrow resonances have been predicted
in the past [25, 26] — a complete presentation of Feshbach resonances in RbSr and bi-alkali
systems is given in Chapter 5. This PhD thesis reports on the first experimental observation
of Feshbach resonances between alkali and closed-shell atoms, which has opened the door
to future magnetoassociation in these systems and has been followed by the detection of
resonances in LiYb [27].

1.2.3 ... with several stable isotopic combinations

The number of available atomic isotopes of the species of interest is a very important crite-
rion to assess before the construction of an ultracold atom experiment, and it is even more
important in the case of molecule assembly projects such as our RbSr experiment. The rea-
sons are two-fold. First, the quantum statistical properties are very different for bosonic and
fermionic species (they follow respectively Bose-Einstein and Fermi-Dirac statistics, which
has a huge impact on collisional and exchange properties). Second, the collisional properties
of a new system are unknown prior to experimental investigation. In particular, in the ultra-
cold regime the s-wave scattering length as largely governs the collisional properties of pairs
of distinguishable particles. It is defined by the PEC of the atom pair10 and by its mass, and
it changes from isotopologue to isotopologue (in our case the isotopologues are 87Rb88Sr,
87Rb87Sr, 85Rb87Sr, ...) due to the change in atom pair mass with changing number of neu-
trons. Theoreticians can compute the PEC of an atom pair only up to a finite accuracy, and
it is never sufficient to infer the s-wave scattering length of the dimer prior to experimental
investigation. Therefore, having several stable isotopes of each species at disposal multiplies
the probability of finding an isotopologue with suitable collisional properties. There are two
naturally-occurring stable (i.e. non-radioactive) isotopes of Rb11: 85Rb and 87Rb. There are
four of Sr: 88Sr, 87Sr, 86Sr and 84Sr. Both Rb isotopes are bosonic, and all stable Sr isotopes are
bosonic at the exception of fermionic 87Sr. This leaves us with 8 isotopologue combinations,
of which 6 correspond to bosonic diatomic RbSr molecules (87Rb88Sr, 87Rb86Sr, 87Rb84Sr,
85Rb88Sr, 85Rb86Sr and 85Rb84Sr) and 2 to fermionic molecules (87Rb87Sr and 85Rb87Sr). That
is quite a large playground. Furthermore, it is possible to produce quantum-degenerate

10The PEC of the atom pair is an electromagnetic property that is independent of mass. All RbSr isotopologues
are thus defined by the same ground-state PEC.

11Strictly speaking, 87Rb is radioactive and decays to 87Sr, However its half-life 4.92× 1010 years. We should be
able to perform a few experiments within this time span
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gases of both Rb and Sr (Bose-Einstein condensates for bosons, Fermi seas for the fermion
87Sr), and we do so on a daily basis in the RbSr laboratory.

Forming a given isotopologue of RbSr requires favorable intra-species and inter-species
s-wave scattering lengths. These scattering lengths determine to a large extent the scattering
properties of the mixture. A positive scattering length is highly preferable to avoid collapse
of the clouds at high densities, and a medium scattering length around as ∼ 30 – 300 a0

is suitable to ensure fast thermalization of the gas through elastic collisions12. We use this
thermalization process heavily in the RbSr experiment, because we can produce very pure
BECs and Fermi seas of Sr efficiently. During the formation of the quantum gas, Sr is cooled
down using evaporative cooling and the Rb atoms are sympathetically cooled through elas-
tic collisions with the cold Sr atoms. To make this cross-thermalization process efficient and
reach quantum degeneracy with both species in the same trap, it is thus preferable to have
a Rb-Sr inter-species scattering length of about as ∼ 30 – 300 a0. One of the major results
of the present PhD thesis is a much improved understanding of the ground-state PEC of
RbSr, which is discussed extensively in Chapter 2 and led to the publication presented in
Chapter 3. This improved understanding allowed us to derive the s-wave scattering length
of each isotopologue of RbSr. We indicate in Table 1.1 the values of these scattering lengths.
The intra-species scattering lengths of Rb and Sr are also essential to the formation of RbSr
molecules, because they define in which mixture it is easy to obtain large samples of quan-
tum degenerate atoms. The scattering length of the bosonic 84Sr isotope (as = 124 a0) is pos-
itive and lies in the range as ∼ 30 – 300 a0. It is thus possible to perform efficient evaporative
cooling with 84Sr and to produce BECs of up to 107 84Sr atoms in our experiment. Similarly,
the scattering length of the fermionic 87Sr isotope isotope (as = 97 a0 for the collision of
two 87Sr atoms in different mI states) allows the formation of Fermi seas at T/TF = 0.10(1)
with 3×104 atoms in each one of the mI = −9/2,−7/2, ...,+9/2 nuclear spin states of 87Sr13.

12If the scattering length is too small, the elastic two-body collisional cross-section and thermalization is very
slow. If it is too large, three-body losses create heating and loss of atoms during the thermalization process.

13TF is the Fermi temperature and T/TF � 1 indicates a deeply quantum-degenerate gas.

TABLE 1.1: Rb-Sr inter-species s -wave scattering lengths in units of the Bohr
radius a0 (a0 = 0.529177210 Å). The determination of these scattering lengths
is a key achievement of this thesis — see also our publication presented in
Chapter 3.

84Sr 86Sr 87Sr 88Sr
85Rb 689(20) 90.6(2) 44.3(3) −35.8(1.0)
87Rb 92.7(2) −43.0(1.1) 1421(98) 170.3(6)
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However 88Sr has a negative scattering length (as ∼ −1 a0) and 86Sr has a very large scat-
tering length (as ∼ 830 a0), which prevents the production of Sr BECs with a large number
of atoms in these systems (though it is still possible to produce them) [28, 29]. As for Rb,
the intra-species scattering length of 87Rb is close to 100 a0 in both F = 1 and F = 2 hy-
perfine manifolds, and the scattering length of 85Rb in its ground-state hyperfine manifold
F = 2 can be tuned using a Rb-Rb magnetic Feshbach resonance [30]. Therefore both Rb
isotopes are suitable for quantum gas preparation. Dismissing the isotopic combinations in-
volving 88Sr or 86Sr for which only small Sr BECs can be achieved, we see from Table 1.1 that
two Rb-Sr mixtures fulfill the inter-species scattering length condition as ∼ 30− 300 a0 that
ensures efficient cross-thermalization: the 87Rb-84Sr and 85Rb-87Sr mixtures. The former cor-
responds to a bosonic molecule and the second to a fermionic molecule: very different types
of physics can be addressed with these two molecules, owing to their different statistics, and
we are currently investigating the formation of bosonic 87Rb84Sr.
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1.3 Envisioned applications of RbSr molecules

In this section we describe succinctly the applications of ultracold RbSr molecules, based on
several publications to which the reader is reported for full implementation details. These
applications take advantage of the large electric dipole moment of RbSr and of its open-shell
character.

1.3.1 Quantum simulation: engineering spin models with dipole-dipole
and spin-rotation interactions

One of the major challenges of theoretical physics in the 21st century is to fully understand
strongly correlated systems of interacting particles. In particular, condensed matter mate-
rials of fundamental and technological interest such as high-temperature superconductors
involve the interaction of many electrons evolving in a ionic crystalline structure. The expo-
nential growth of the size of the Hilbert space (growing for instance as 2N for a system of N
electronic spins or qubits) with the number of electrons prevents numerical methods based
on classical computers to address the full extent of their properties. Such a full understand-
ing would be extremely helpful to guide the design of new materials.

One way forward is quantum simulation, also referred to as analog quantum computation.
Quantum simulators consist of synthetic quantum systems produced in the laboratory, such
as ultracold atoms or molecules trapped in an optical lattice or ions captured in Paul or
Penning traps. The Hamiltonian describing the motion and the interaction of these parti-
cles is engineered in such a way that it can be mapped onto the Hamiltonian describing a
phenomenon of interest, for instance the Hamiltonian describing the motion of electrons in
the ionic crystal of a promising material. A quantum simulator is a well-controlled system,
that allows one to explore it differently and hopefully in much more detail than its solid-state
analogue. The full extent of the properties of the material of interest is not simulated, as it is a
formidable task and is actually not required to shed light on new interesting phenomena. In-
stead, it is the model used to capture the properties of the material which is simulated. Such
models include the Hubbard model, the t-J model used in the context of high-temperature
superconductivity in doped antiferromagnets, and many lattice spin systems that theoreti-
cians study heavily, such as the Ising and Heisenberg models. These models also find inter-
esting applications beyond condensed matter physics, for instance in high-energy physics,
and there is thus considerable interest in addressing them with quantum simulators.



1.3. Envisioned applications of RbSr molecules 13

Ultracold polar molecules are a very promising platform for quantum simulation, in par-
ticular in the context of the simulation of spin lattices models. It is indeed possible to simu-
late the behaviour of electrons in a solid by arranging arrays or molecules in an optical lat-
tice14, i.e. a periodic potential created by laser beams. The strongly anisotropic dipole-dipole
interaction ĤDDI between polar molecules mimics the interactions between the electrons in
the crystal and is given by

ĤDDI =
1

4πε0

~di ·~dj − 3
(
~rij ·~di

) (
~rij ·~dj

)
∣∣~ri −~rj

∣∣3
 , (1.4)

where ~di and ~dj are the laboratory-frame dipole moments of each molecule at the lattice
sites i and j respectively, ~ri and ~rj are the position vectors for each lattice site and ~rij =

~ri −~rj/
∣∣~ri −~rj

∣∣ is the unit vector joining the molecules [31]. The dipole moment of each
molecule in the laboratory frame is induced by applying either DC or AC polarizing elec-
tric fields as described in the previous section. Note that typical spacings between optical
lattice sites are of the order of 500 nm (while in a real crystal they are on the order of 1 Å or
10−10 m), so that for dipole moments of 1 D in the laboratory frame the DDI between two
adjacent molecules is of order ∼ h× kHz. This approach opens the experimental possibil-
ity of creating and exploring lattice spin systems that capture the properties of interesting
materials and that are the subject of intense theoretical efforts, such as the abovementioned
Ising models and Heisenberg models. It was shown that polar, open-shell molecules such as
RbSr are of particular interest for quantum simulation applications, because the coupling of
their rotational momentum N with the electronic spin S of the unpaired valence electron can
be used to engineer very rich and versatile lattice spin Hamiltonians. A toolbox with which
many such Hamiltonians can be engineered has been theoretically established in Ref. [32].
Two example spin lattices are illustrated in Figure 1.2 and are described by the Hamiltonians
H(I)

spin and H(II)
spin presented below.

H(I)
spin =

`−1

∑
i=1

`−1

∑
j=1

J
(

σz
i,jσ

z
i,j+1 + cos ζσx

i,jσ
x
i+1,j

)
H(II)

spin = J⊥ ∑
x−links

σx
j σx

k + J⊥ ∑
y−links

σ
y
j σ

y
k + Jz ∑

z−links
σz

j σz
k

(1.5)

Here σi and σj are the Pauli matrices referring to spin i and j respectively, and the coefficients
J⊥ and Jz determine the coupling strengths. We have given these Hamiltonians as reference

14Optical lattices are discussed extensively in Chapter 5 in the context of magnetoassociation of atom pairs into
molecules.
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FIGURE 1.2: Example anisotropic spin models that can be simulated with po-
lar molecules trapped in optical lattices. (a) Square lattice in 2D with nearest
neighbor orientation dependent Ising interactions along x̂ and ẑ. Effective in-
teractions between the spins ~S1 and ~S2 of the molecules in their rovibrational
ground states are generated with a microwave field~EAC(t) (see Equation 1.3)
inducing dipole-dipole interactions between the molecules with dipole mo-
ments ~D1 and ~D2, respectively. (b) Two staggered triangular lattices with
nearest neighbors oriented along orthogonal triads. The interactions depend
on the orientation of the links with respect to the electric field (dashed lines
are included for perspective). From Ref. [32].

and report the reader to the paper for further details.
Scalability is a decisive advantage of quantum simulation platforms based on ultracold

molecules. It is indeed possible to fill an optical lattice with up to 105-106 molecules, whereas
state-of-the-art competing platforms such as Rydberg atoms and ions are currently restricted
to a few hundred particles in the very best cases. One of the major challenges encountered
in ongoing experiments is to reach a filling close to unity (i.e. exactly one molecule per site
with no holes in between). This is to this date one of the limiting factors for the observation
of some highly-interesting dipolar physics with molecules in lattices. We designed our ex-
periment in such a way that it should be capable of supporting about 105 RbSr molecules in
a 1064 nm optical lattice.

1.3.2 Quantum computation: molecules as qudits

Another promising application of polar molecules is digital quantum computation. In this
approach, the internal levels of a particle are used as bits, similar to the classical bits of a
transistor in a classical computer taking the values 0 or 1, but with the extra possibility of
having superposition states |φ〉 = α |0〉 + β |1〉. This approach is in principle more gen-
eral than quantum simulation, and holds the promise of solving several sets of physics and
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mathematics problems that classical computing cannot address. Polar molecules are a natu-
ral and competitive platform for quantum computation. Indeed, their rich and anharmonic
rotational structure |N, mN〉 can be used to encode qubits and can be manipulated with mi-
crowave and RF fields. The molecule can be used as a qudit (many-level system) instead of a
qubit (two-level system, typically two electronic or motional states in atom or ion quantum
computers). The dipole-dipole interaction between each molecule, Equation 1.4, is used to
implement quantum logical gates between the qudits, and the experimentalist tracks the co-
herent evolution of the molecular ensemble, eventually reading out the state of the qudits -
in full analogy with the readout of the output of a classical logic gate. In this context, one of
the most important challenges is that of the coherence time of the quantum states: it must
vastly exceed the gate timescale set by the dipole-dipole interaction. For polar molecules
in optical lattices, the dipole-dipole interaction energy is typically in the ∼ h×kHz range
(see previous subsection) and thus coherence times of order ms or more are required. We
refer the reader to Ref. [33] for an excellent discussion of quantum computation with polar
molecules.

1.3.3 Precision measurements: towards new physics?

One of the fields of research where cold atoms had the largest impact in the last 30 years
is that of precision measurements. As of 2019 it is possible to measure the second (unit of
time of the International System of Units) with an uncertainty of about 10−18 [34], which
corresponds to a precision better than one second over the age of the entire universe and
finds many applications, from GPS technology to fundamental physics. Cold atoms also
provide the best gravitometers, which can reach unprecedented precision in the mapping
of the geological landscape of the earth and are foreseen to be used for gravitational wave
detection in frequency bands where Michelson-type interferometers such as LIGO, Virgo
and LISA are not sensitive [35, 36].

Molecules have a richer internal structure than atoms, owing to their vibrational and
rotational degrees of freedom, and can provide extremely accurate information about the
interactions between their constituents. They promise for instance excellent sensitivity to
the electron-to-proton mass ratio or to yet unknown long-range forces beyond standard
electromagnetism [37]. One of the most advanced precision measurements currently be-
ing performed in experiments with polar molecules is that of the electron electric dipole
moment or eEDM. According to the Standard Model of particle physics, the electron is a
point charge particle and consequently its electric dipole moment de is (almost) null. The
Standard Model predicts an upper bound of de < 10−39 e.cm, with e the elementary unit of
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charge and 1 e.cm = 4.80321× 1010 D. However, many extensions to the Standard Model pre-
dict larger values for the eEDM. thus any non-zero measurement above 10−39 e.cm would
be indicative of new physics, that could shed light on the existence of dark matter and/or
on the matter-antimatter asymmetry problem. It is in principle possible to measure a hy-
pothetical eEDM by measuring the Stark shift HeEDM = −~de ·~EDC of a of free electron, but
the magnitude of this shift is limited by the electric field magnitude itself. Polar, open-shell
molecules can be instead used for eEDM detection, and present a considerable advantage
in this respect: the effective internal field of the polar molecule, interacting with the eEDM
of its unpaired electron can be up to a million times larger than any static laboratory field.
The current best experimental upper value of the eEDM is de < 1.1× 10−29 e.cm and has
been obtained by the ACME collaboration with the molecule ThO, of which the 3∆1 elec-
tronic state of molecule provides an effective internal field of Eeff ' 84 GV.cm-1 at an applied
electric field of moderate magnitude E = 0.14 kV.cm-1. This result is presented in Ref. [38].

The eEDM measurements discussed above currently rely on molecular beams, and are
therefore limited by the interaction time of the molecules with the external field. To over-
come this limitation, the next generation eEDM experiments are foreseen to consist of large
samples of ultracold molecules trapped in an optical lattice, where much longer interac-
tion times and better statistical sensitivity could provide a ×1000 increase in the accuracy
of the eEDM measurement. The ThO molecule cannot be easily cooled and trapped, but D.
DeMille (Yale University, USA) and Timo Fleig (Paul Sabatier University, France) recently
proposed to use the molecule RaAg [39]. This molecule is similar to RbSr, since it consists
of one alkaline-earth atom (Ra) and one strongly electronegative alkali-like atom (Ag) and
has the same electronic ground state term, 2Σ. The effective internal field of RaAg is very
large, Eeff = 65 GV.cm-1 for an applied field E = 0.26 kV.cm-1 at which the molecule is fully
polarized. It is therefore a competitive molecule for further improvements of the sensitiv-
ity to eEDM detection. The experimental tools that we develop in the RbSr experiment,
in particular magnetoassociation and optical association in an optical lattice will hopefully
prove useful in view of the assembly of such molecules, and provide a framework for the
exploration of other exotic molecules of similar fundamental interest.

1.3.4 Quantum chemistry: chemistry in the zero-energy, single partial
wave regime

The production of molecules in the ultracold regime opens the door to the observation of
chemistry at the single quantum state level, where the evolution from reactants to products
can in principle be detected in a time- and quantum-state resolved manner. This type of
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chemistry, where the contribution of single partial waves15 and internal degrees of freedom
can be tracked (as opposed to room temperature chemistry, which averages over numerous
partial waves and hyperfine states) is referred to as cold chemistry [40]. This type of re-
search is actively pursued by our collaborators in Nijmegen [41], using Zeeman-decelerated
crossed molecular beams. In the KRb experiment at JILA, the reactants, intermediates, and
products of the reaction 40K87Rb + 40K87Rb→ K2Rb∗2 → K2 + Rb2 in the s-wave and p-wave
collisional regimes were directly observed [42]. Similar work can be undertaken with the en-
ergetically favorable reaction RbSr + RbSr→ Rb2 + Sr2, and more generally one may want to
explore collision rates, intermediates and products of the collision of RbSr molecules with Sr
or Rb atoms, or Sr2 or Rb2 molecules as a function of temperature, rotational momenta, spin
polarization, ... The possibilities are infinite and open a vast and beautiful field of research
in a truly unique regime.

1.3.5 Suppressing inelastic and reactive collisions: towards evaporative
cooling of cold molecules

One of the biggest ongoing challenges in the field of cold molecules is that of evaporative
cooling, which is routinely used in ultracold atom experiments to cool down neutral atoms
to nK temperatures and reach quantum degeneracy. The idea is to decrease the depth of
the potential that confines the atoms (which means diminishing the laser intensity in the
case of an optical dipole trap — or increasing the intensity of an anti-trapping laser beam
— , or the magnetic field gradient in the case of a magnetic trap), so that the atoms with
the largest energy escape from the trap. After a few elastic collisions16, typically three or
four, the total energy is redistributed among the atoms and the gas reaches equilibrium at a
lower temperature than it started with. That’s the "cup of coffee" cooling effect. However
with ultracold molecules, the large number of additional degrees of freedom (rotational,
vibrational) leads to a typically much larger three-body recombination cross-section than
that of atoms: two molecules form a complex and the binding energy of the complex is
transferred to a third molecule in the form of kinetic energy. Additionally, some molecules
are reactive. That is the case of RbSr for which the chemical reaction RbSr + RbSr→ Rb2 + Sr2

is energetically favorable, as discussed in Subsection 1.3.4, and leads to two-body losses.
Both inelastic and reactive losses, together denoted as quenching processes, are detrimental
and as rule of thumb a ratio βel/βqu > 100 between elastic and quenching collisions rates
has to be obtained to permit evaporation.

15The s, p, d, ... partial waves indicate the N = 0, 1, 2, ... rotational degrees of freedom of the pair of colliding
particles. See Chapter 2 for a complete introduction to these concepts, in the context of RbSr.

16See Section 1.1 for a definition of two- and three-body losses.
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Molecules typically display very unfavorable ratios between elastic and quenching col-
lisions, but it has been predicted that it is possible to suppress quenching collisions in polar
species by polarizing the molecules with DC electric fields and by preparing the molecular
sample not in the rovibrational ground state, of rotational contribution |N, mN〉 = |0, 0〉,
but in a rotationally excited state such as the first excited state |1, 0〉 (The projection mN

is taken along the quantization axis defined by the direction of the DC electric field) [20].
Two molecules separated by a large distance R exert onto each other forces that are second-
order in the dipole-dipole interaction17, resulting in a van der Waals interaction of the form
−C6/R6. The C6 coefficient characterizing these forces18 is always attractive for the rovibra-
tional ground state |0̃, 0̃〉+ |0̃, 0̃〉 of the molecule pair19, but it can be negative for the rota-
tionally excited |1̃, 0̃〉 + |1̃, 0̃〉 pair state. This condition is achieved when the Stark-shifted
energy of the |1̃, 0̃〉 + |1̃, 0̃〉 pair state is set just above the energy of the closest pair of op-
posite parity |0̃, 2̃〉 + |0̃, 0̃〉. The molecules then exhibit repulsive van der Waals interactions,
preventing them from reaching chemical range (i.e. short intermolecular distances R) where
they might react or bind together. This situation is pictured in Figure 1.3, and the rate co-
efficients of the detrimental inelastic and reactive losses are shown on Figure 1.4 as a func-
tion of the applied electric field. The field at which the |1̃, 0̃〉 + |1̃, 0̃〉 pair state crosses the
|0̃, 2̃〉+ |0̃, 0̃〉 state, and at which these quenching collisions get suppressed in RbSr + RbSr
collisions, is E = 2.27 kV.cm-1. This field is easily achievable with standard electrodes, and it
should therefore be possible to shield ultracold RbSr molecules against quenching collisions
and to observe thermalization and evaporation dynamics. This will hopefully lead to an
elastically colliding gas of strongly polar RbSr molecules, deep in the quantum regime20. At
the time of this writing, such two-body elastic dynamics have been observed in KRb, with
a setup involving an optical lattice to suppress further collisional losses [43]. Furthermore,
large modulation of the chemical reaction rate could be observed in the same system, using
electric fields [44]. These new results pave a very hopeful road for RbSr and for the future of
ultracold gases of polar molecules.

17In the sense of second-order perturbation theory. The dipole-dipole interaction is given in Equation 1.4.
18Not to be confused with the C6 van der Waals coefficient of the atom pair constituting the molecules.
19We remind the reader that the notation |Ñ, m̃N〉 indicates the non-polarized state |N, mN〉 admixed with states

of different parities (−1)N in presence of the polarizing DC electric field.
20As opposed to a lattice gas where collisions are suppressed because molecules don’t tunnel between lattice

sites — the production of such a gas is our primary goal.
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FIGURE 1.3: Left panel: Energy spectrum of a single RbSr molecule in a DC
electric field. The dressed states are noted |Ñ, m̃N〉. Right panel: Energy
of the combined RbSr + RbSr molecular states.The initial colliding state is
indicated with an arrow as well as the “crossing” state, at the crossing field
E = 2.27 kV.cm-1 indicated inside the blue box. Above the crossing point,
quenching rates get suppressed and may allow evaporation. From Ref. [20].

FIGURE 1.4: Elastic (red), inelastic (green), reactive (black), and quenching
(blue) rate coefficients as a function of the electric field for a fixed collision
energy of Ec = 500 nK, for bosonic 87Rb84Sr + 87Rb84Sr collisions initially in
the state indicated in Figure. 1.3. From Ref. [20].
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1.4 Methods for the assembly of diatomic molecules at high

PSD

The goal of our experiment is to produce RbSr molecules, at high PSD, in the rotational,
vibrational and electronic ground state of RbSr where the dipole moment of the molecule
is the largest — see Subsection 1.2.1. Starting from a pair of atoms at almost zero relative
motional energy, we need to create a molecular bond associated with a binding energy close
to De = 1152+9

−16 cm-1= h× 34.6 THz, or about 14 kJ.mol-1, with De the depth of the ground-
state PEC of RbSr. This process is depicted in Figure 1.5 and in the following subsections we
discuss the different experimental options one can use to assemble such molecules.
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FIGURE 1.5: Methods for the formation of RbSr molecules in the electronic
and (ro)vibrational ground state. The depicted PEC (see Chapter 2 for an in-
troduction to this concept) is the 2Σ+ ground-state PEC, and the horizontal
black lines indicate the energy of each vibrational state. The rotational struc-
ture is not depicted, and the vibrational progression is not to scale for ease
of reading. Note that one method permits to create molecules in only one
step, but it produces a vibrationally-hot sample of molecules — see Subsec-
tion 1.4.3.
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1.4.1 Magnetoassociation: the current standard in bi-alkali experiments

Magnetoassociation is the process through which one exploits a magnetic Feshbach reso-
nance between two atoms to adiabatically transfer the atom pair into a molecular bound
state. The typical binding energies that one can achieve with such a method range from
h× kHz to a few tens of h×GHz. These binding energies are limited by the static magnetic
fields achievable in the laboratory (in principle a few Tesla (T) using superconducting coils,
but only up to a few 0.1 T using room temperature copper coils as common in ultracold atom
experiments) and by the rather small natural magnetic moment of atom pairs, with typical
values on the order of 1 MHz/G and reaching about 10 MHz/G for the most magnetic atoms
(1 G = 10−4 T. The Gauss (G) is the non-SI unit of choice for magnetic field magnitudes in
cold atom experiments). In this approach it is therefore necessary to implement a second-
step in the assembly process, to transfer the weakly-bound molecular state (sometimes re-
ferred to as Feshbach state in the literature) to the vibrational ground state of much larger
binding energy. This second step is performed using STIRAP (see next subsection).

Magnetoassociation is the consecrated method for the assembly of bi-alkali molecules
(Li2, Cs2, KRb, RbCs, NaRb, NaK, ...) owing to the availability of large Feshbach resonances
in such systems. In alkali+closed-shell atom systems such as RbSr, CsYb, LiYb, ... Feshbach
resonances exist, but are very narrow and it is much more challenging to use them for mag-
netoassociation. An important asset of this method is that it doesn’t require the coupling of
the system to electronically excited states, which prevents any decoherence issue associated
with the finite lifetime of such states. Magnetoassociation and Feshbach resonances are dis-
cussed extensively in Chapter 5 in the context of bi-alkali and RbSr, and we refer the reader
to it for further details. That is the method we are currently investigating for the formation
of 87Rb84Sr.

1.4.2 STIRAP: a coherent association scheme based on two laser fields

STIRAP stands for stimulated Raman adiabatic passage and consists in producing a coherent
superposition between the initial state (molecule or atom pair) and the target state (molecule)
using two laser fields in a similar way as for a two-photon spectroscopy experiment — see
Figure 2.3. The first laser couples the initial state |i〉 to an electronically excited molecular
state |e〉, and the second laser couples this excited state to the target state |f〉. The coherent
superposition state is of the form |dark〉 = cos θ |i〉 − sin θ |f〉 and is called "dark" because
|e〉, which has a finite lifetime, doesn’t contribute to the superposition. The mixing angle
θ depends on the relative intensities between laser 1 and laser 2 and can be dynamically
adjusted to transfer adiabatically all the probability density from |i〉 to |f〉. In a STIRAP
scheme the difference in energy between |i〉 and |f〉 is given by the difference in frequency
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h × (νlaser 2 − νlaser 1) between the two lasers and can be arbitrarily large21, provided that
a sufficiently stable phase relationship between the two lasers can be assured, in order to
preserve the coherence of the dark state over the course of the STIRAP transfer. We refer the
reader to Ref. [45] for a complete introduction to STIRAP, and to Ref. [46] for a recent review
of its experimental applications.

STIRAP is the method of choice for transferring weakly-bound molecules (produced us-
ing magnetoassociation, see Subsection 1.4.1) to the rovibrational ground state in bi-alkali
experiments. Additionally, it was shown in our group that STIRAP can be used to efficiently
associate atom pairs of Sr, held on the sites of an optical lattice, into Sr2 molecules [47, 48].
In this case |i〉 is the ground state of relative and center-of-mass motion of an atom pair in a
lattice well (see Chapter 5 for a discussion of optical lattices) and |f〉 is the ν = −2 vibrational
state of binding energy Eb = h× 644.7372(2)MHz22. This method could also be used to pro-
duce weakly-bound RbSr molecules. However, the adiabaticity criterion for fast and near-
unit efficient STIRAP requires α � π2 [48], where α = γ̃× Tpulse = (Ω2

FB/γe)× Tpulse with
γe the natural linewidth of |e〉, ΩFB the Rabi frequency characterizing the coupling of |i〉 and
|e〉 induced by the "free-bound" laser 1 (in general γ̃ = Ω2

m/γe and Ωm = min(ΩFB, ΩBB) is
the maximally achievable Rabi Frequency of the limiting arm of the STIRAP — the "bound-
bound" ΩBB Rabi frequency is much larger than ΩFB at similar laser intensities in the STIRAP
schemes we envisioned) and Tpulse the STIRAP laser’s pulse time, which sets the timescale of
the molecule formation sequence. In Sr2 the molecular excited state was chosen to be weakly
bound by Eb = h× 228.38(1)MHz with respect to the excited 1S0 +

3P1 dissociation asymp-
tote of Sr2 (which corresponds to an optical excitation at λ = 689 nm from the 1S0 +

1 S0

ground state asymptote). The 3P1 excited state of Sr has a natural linewidth γ = 2π× 7.5 kHz
and the molecular state itself exhibits a natural linewidth of γe = 2π × 44(13) kHz, which
is of the same order of magnitude. Thanks to this very narrow linewidth it is possible to
form Sr2 molecules in less than 400 µs. However the situation is much less favorable in
Rb-Sr. We had the unpleasant surprise to observe that RbSr molecular states bound close
to the Rb (2S1/2) + Sr (3P1) dissociation asymptote (which corresponds to one ground-state
Rb atom and one Sr atom optically excited at λ = 689 nm) exhibit linewidths typically two

21Note that when STIRAP couples an ultracold atom pair close to the zero-collisional energy threshold (initial
state) to a molecular state supported by a PEC associated with the same threshold (final state), the difference in
energy between the two states is almost exactly the binding energy of the molecular state — up to the collisional
energy of the pair, as is clear from Figure 2.3.

22Note that in that case the initial state is a discrete unit-normalized state, analogous to a molecular state — see
Chapter 5 for a full discussion on discrete trap states. It is detrimental to STIRAP to work instead with a thermal
distribution of atom pair states, because the addition of Rabi frequencies of each state of the distribution leads to
decoherence of the dark state. Accordingly, it is also possible to produce molecules from a BEC of atoms using
STIRAP [49], since a BEC is a coherent ensemble of atoms occupying the same quantum state of motion.
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or three orders of magnitude larger23: γe/2π ∼MHz as shown in Chapter 2, Tables B.1 and
B.2. We didn’t measure the Rabi frequencies of the corresponding photoassociation lines, but
compared their rescaled stimulated transition rates Γ/γe ∝ ΩFB

2/γe with those of Sr2. We
found that they are comparable or much weaker in the case of 87Rb-84Sr [51]. Therefore we
concluded that STIRAP molecule association should prove much more challenging in RbSr
than in Sr2. Indeed, while it is possible to increase α by increasing Tpulse arbitrarily, one then
faces decoherence effects linked for instance to laser phase noise or lattice intensity noise that
are irrelevant on µs timescales but could destroy the dark state coherence on ms timescales.
The 87Rb-87Sr combination exhibits values of Γ/γe comparable to Sr2, however the 87Rb-87Sr
s-wave scattering length is very large (see Table 1.1), which might make it extremely hard
or even impossible to populate an optical lattice with a large number of 87Rb and 87Sr atom
pairs. The 87Rb-84Sr combination is much more promising because in that case we can pro-
duce quantum degenerate gases and load them in an optical lattice. However Γ/γe is then
orders of magnitude smaller than in Sr2.

STIRAP was our plan A for the formation of weakly-bound RbSr molecules. Two gener-
ations of PhD students have attempted to form 87Rb84Sr molecules in an optical lattice using
this method [51, 52], which proved unsuccessful. This failure could be explained by either
of the following three hypothesis:

1. Decoherence of the dark state, induced by a large γe and thus a too small α = γ̃× Tpulse

compared to uncontrolled sources of decoherence.

2. Double Mott insulator improperly prepared: most lattice sites are not filled with Rb-Sr
atom pairs.

3. Lattice light (λ = 1064 nm) optically exciting RbSr molecules to electronically excited
RbSr* states.

Confronted with the failure of the previous STIRAP attempts and the unfavorably small
α values that we estimated for 87Rb-84Sr, we chose to abandon STIRAP using an excited
state close to the 1S0 +

3P1 asymptote for the time being. The hypothesis 1 and 3 have been
favored in the past to explain the failure of STIRAP in the RbSr team, and none of them
has been ruled out completely at the time of this writing. In particular, hypothesis 3 would
also impair our current magnetoassociation attempts if it proved true. It is the opinion of
the author of this thesis that hypothesis 2 is a likely hypothesis, and we have been working

23We didn’t expect such broad linewidths, owing to the narrow linewidth of the Sr 1S0 – 3P1 atomic tran-
sition. These large widths might be caused by the mixing of the excited potentials correlating to 3P1 with the
ones correlating to the Rb asymptotes — the D1 and D2 lines of Rb have respectively γe/2π = 5.746(8)MHz and
γe/2π = 6.065(9)MHz [50] —, or to predissociation of the atom pair into the 3P0 continuum of scattering states
above the Rb (2S1/2) + Sr (3P0) aymptote.
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in the last two years on the improvement and characterization of the double Mott insulator
production, but definitive evidence for the absolute quality of the sample is still lacking —
producing molecules would of course provide such evidence. STIRAP should be attempted
again using the same molecular scheme as before, if it is proven experimentally that either
hypothesis 2 or 3 is correct and might have impaired molecule production in the past.

Meanwhile it has been proposed that STIRAP could prove successful using an interme-
diate electronically excited state correlating to the Rb (2P1/2) + Sr (1S0) and/or Rb (2P3/2) +

Sr (1S0) dissociation asymptotes instead of the Rb (2S1/2) + Sr (3P1) asymptote [53]. They
correspond to an optical excitation at λ = 780 nm and λ = 795 nm from the Rb (2S1/2) +

Sr (1S0) ground state asymptote respectively (D2 and D1 lines of atomic Rb), and we recently
built a laser system for RbSr photoassociation spectroscopy close to the D1 asymptote. It
might be wise in the future to attempt STIRAP using some of the detected excited molecular
states, especially if magnetoassociation proves unsuccessful.

1.4.3 Photoassociation followed by spontaneous emission: an incoherent
association scheme

Another method for the association of molecules in the electronic ground state is the pho-
toassociation of electronically excited RbSr* molecules (as done with a photoassociation laser
beam as in a photoassociation spectroscopy experiment — see Section 4.2), followed by a
spontaneous emission event. Upon emission of the photon, the excited molecule relaxes
to one or several RbSr vibrational level(s) in the electronic ground state. While in general
such processes populate several vibrational states with weighted relaxation probabilities, it
is possible to choose the excited molecular state wisely so that it relaxes with almost unit
probability to a given vibrational level. This method is used to produce Sr2 molecules in
the experiments led by Tanya Zelevinsky at Columbia University [54], and was theoretically
investigated by Devolder et al. in a 2018 publication [53]. Rather than a thousand words, we
quote the conclusions of Devolder et al.:

"We have modeled the photoassociation of (87Rb,84Sr) atom pairs close to two atomic tran-
sitions: the allowed 5s 2S1/2 → 5p 2P1/2, 3/2 Rb transition, and the 5s2 1S0 → 5s5p 3P0,1,2

intercombination transition in strontium. As expected the photoassociation spectra show
opposite behaviours. In the former case, the photoassociation rates are very high close to
the asymptote. In the latter case, the photoassociation rates are very low close to the asymp-
totes. The distributions of ground-state vibrational levels after spontaneous emission are
also different. Mainly one vibrational level is populated in the former case, but this level
is highly excited. In the latter case, the lowest rovibrational level of the ground state could



1.4. Methods for the assembly of diatomic molecules at high PSD 25

be populated, but many other vibrational levels as well. Therefore a further step of inter-
nal cooling is necessary to achieve a significant creation of ultracold RbSr molecules in their
lowest rovibrational level."

Our newly-built laser system for photoassociation spectroscopy close to the (2P1/2)+Sr (1S0)

dissociation asymptote (λ = 795 nm) might therefore allow us to produce vibrationally-cold
weakly-bound RbSr molecules using this method. One will need to care about the final ro-
tational and hyperfine distributions though: the excited molecules will probably relax to
several mF states unless a wise choice of polarization (both for the laser light and the initial
atomic sample mF distribution) is made.

1.4.4 A newly-proposed method: association using a Laser-Assisted Self-
Induced Feshbach Resonance (LASIFR)

A new method for the formation of polar molecules has been proposed recently by Devolder
et al. [21]. It is a Feshbach resonance scheme, that couples an atom pair state and a target
molecular state within the same electronic manifold — in our case the 2Σ+ electronic ground
state of RbSr. This method is conceptually fully analogous to magnetoassociation using mag-
netic Feshbach resonances, except that the resonance condition between the two states is
achieved via the dressing with a resonant photon instead of an externally applied DC mag-
netic field. While magnetic Feshbach resonances in RbSr arise from the dependence of the
hyperfine coupling constants ∆ζRb(R) and ∆ζSr(R) on the internuclear distance R between
Rb and Sr — see Chapter 5 —, LASIFR resonances arise from the R-dependence of the per-
manent dipole moment d(R) of the polar molecule24, which results in an R-dependent inter-
action of the molecular dipole moment with the AC electric field HAC(R) = −~d(R) ·~EAC(t)
that couples free atom pair states with essentially no dipole moment to vibrational molecu-
lar states with a dipole moment in the molecular frame. In the context of RbSr the dressing
photon of the AC field is actually a THz photon, and the largest Feshbach energy width in
87Rb84Sr is obtained for a vibrational state of binding energy Eb ' hc × 6.2 cm−1, i.e. at a
frequency of 0.2 THz. Easily available commercial sources at such frequencies suffer from
a technological gap that limits their output power to about 10 – 100 mW, and the smallest
diffraction spot one can obtain from a 0.2 THz source is of order λ ∼mm. The correspond-
ing intensities are thus of order 1-10 W.cm−2, which according to Devolder et al. corre-
sponds to resonance widths of about Γ12 ' h× 2π × 10−3 – 10−4 kHz25. These widths are

24Note that the dipole moment d discussed in Subsection 1.2.1 is the vibrationally-average dipole moment d =

〈χvib
ν,N=0|d(R)|χvib

ν,N=0〉 in the rovibrational ground state of radial wavefunction χvib
ν,N=0(R).

25See Chapter 5, Equation 5.7 for a definition of the Breit-Wigner energy width Γ12 of a Feshbach resonance.
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extremely small and probably not useful for Feshbach association. For comparison the mag-
netic Feshbach resonance we are currently trying to exploit in 87Rb84Sr displays a width of
h× 0.58 kHz and is already very challenging26. However, the rapid evolution of multi-Watt
quantum cascade lasers at THz frequencies might provide tunable, spectrally pure and high-
output power sources in the near future. Furthermore the optimal frequency for Feshbach
association depends on the molecule considered, and some molecules might display inter-
esting transitions at more achievable frequencies. Maybe the future of polar molecules will
be THz?

26Note that the Breit-Wigner energy width of a magnetic Feshbach resonance cannot be tuned with the magnetic
field. The width of an optical Feshbach resonance or a LASIFR resonance, on the other hand, depends linearly on
the electric field intensity.
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Chapter 2

The ground-state potential energy
curve of RbSr: theory and
experiments

In this chapter I will introduce the reader to the concept of potential energy curves (PECs) of
two neutral atoms colliding at ultracold temperatures, and describe the experimental meth-
ods that our group developed and used to probe the ground-state PEC of RbSr. Excellent
introductions to the physics of ultracold atom pairs and molecules can be found in the PhD
thesis produced in the group of Olivier Dulieu at Laboratoire Aimé Cotton [55, 56], as well
as in reference molecular spectroscopy textbooks [57–59].

The result of our work, combined with the work of our colleagues in Warszawa, led to
the publication presented in Chapter 3.

2.1 Two neutral atoms colliding at ultracold temperatures:

theoretical description

2.1.1 The molecular Hamiltonian for a diatomic system

The molecular Hamiltonian describing a system of two neutral atoms interacting with one
another in field-free space is

Ĥ = − h̄2

2m

N

∑
i=1

~∇2
i −

h̄2

2

B

∑
α=A

1
Mα

~∇2
α + V

(
{~ρi}, ~RA, ~RB

)
, (2.1)

where N is the total number of electrons, MA, MB and eZA, eZB are respectively the mass
and the total charge of the two nuclei, and m is the mass of the electron [55, 56]. The inertial
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frame of reference is the laboratory frame, in which ~RA, ~RB are the position of each one
of the nuclei with respect to the origin, and {~ρi} represents the position of each electron
i. The internuclear distance is R and the corresponding vector ~R = ~RA − ~RB indicates the
orientation of the molecular axis in the laboratory frame. The nabla operators ~∇ and the
corresponding Laplace operators ~∇ · ~∇ = ~∇2 act on the three spatial degrees of freedom of
the particle indicated in subscript, i.e. ~∇i and ~∇α for electrons and nuclei respectively1.

The term V
(
{~ρi}, ~RA, ~RB

)
encompasses all interaction terms between the particles. Lim-

iting ourselves to the Coulomb interactions it reads

V
(
{~ρi}, ~RA, ~RB

)
=

e2

4πε0

(
ZAZB

R
−

N

∑
i=1

ZA
ρA,i
−

N

∑
i=1

ZB
ρB,i

+ ∑
i>j

N

∑
j=1

1
ρi,j

)
, (2.2)

where R =
∥∥∥~RA − ~RB

∥∥∥ is the internuclear distance, ρA,i and ρB,i the distance of the electron

i to the nucleus A and B respectively, and ρi,j the distance between the electrons i and j2.

2.1.2 The center of mass motion

The motion of the center of mass of the molecule or atom pair can be separated from its rel-
ative motion, by choosing the origin (O) of the frame of reference to be at the center of mass
of the two nuclei3. The position of each electron then reads ~ρi = ~ρ

(Olab)
i − ~RC, where ~ρ (Olab)

i
are the electronic positions referred to an arbitrary origin (Olab) fixed in the laboratory frame
and ~RC = MA

MA+MB
~RA + MB

MA+MB
~RB is the position of the center of mass of the nuclei. The

1Setting ~ρi = ~eX Xi +~eYYi +~ezZi , where~eX ,~eY and~eZ are the position unit vectors in the laboratory frame, the
electronic nabla operator denoting momentum is ~∇i = ~eX

∂
∂Xi

+~eY
∂

∂Yi
+~eZ

∂
∂Zi

and the Laplace operator denoting

kinetic energy is ~∇2 = ∂2

∂X2
i
+ ∂2

∂Y2
i
+ ∂2

∂Z2
i

. Similar expressions are readily obtained for the nuclear operators, the

cross terms ~∇i · ~∇j and the operators acting on the nuclear center of mass ~RC and on the internuclear distance ~R —
see Equations 2.5, 2.7 and 2.6 where these terms appear. These Cartesian-coordinate expressions are presented here
for clarity, but spherical coordinates are typically more useful, as should be clear from the rest of this chapter.

2We dismiss here any interaction term involving electronic and nuclear spins. The RbSr molecule is an open-
shell molecule with electronic spin s = 1/2 in its electronic ground state, and both Sr and Rb have a nuclear spin
iRb and iSr (with the exception of bosonic Sr for which iSr = 0). The spin-dependent terms include the hyperfine
structure | f , m f 〉 (written alternatively |F, mF〉, with s and i written alternatively S and I), induced by the coupling
of the electronic and nuclear spins; it is discussed extensively in Chapter 5, along with its relation to the motional
degrees of freedom of Equation 2.1 in the context of RbSr Feshbach resonances in the electronic ground state. These
terms also include the motional couplings to the electronic spin s, which are very important for electronically excited
states of RbSr where spin-orbit coupling is strong, but lead to extremely small corrections in the RbSr electronic
ground state; we discuss both cases in Section 4.1.

3The origin of the frame of reference can be chosen alternatively to be the center of mass of the molecule, the
center of mass of the two nuclei or the position of one nucleus [57]. These choices lead to sets of equations different
from Equations 2.3, 2.4, 2.5, 2.7 and 2.6. In particular, they imply different expressions for the cross kinetic terms
that lead to non-adiabatic corrections of the molecular spectrum (here, the mass polarization term). The convention
adopted in Ref. [55] is to set the origin at the geometrical center of the two nuclei. We follow here the convention
used in Refs. [57] and [56], where it is set at the center of mass of the two nuclei. These two choices are almost
equivalent in RbSr, because Rb and Sr have approximately the same mass.
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total mass of the diatomic system is M = MA + MB + N ×m and the reduced nuclear mass
is µ = MA MB

MA+MB
. In this coordinate system, the molecular Hamiltonian given in Equation 2.1

can be written

Ĥ = T̂e + T̂mass pol. + T̂C + T̂N + V({~ρi}, ~R) (2.3)

T̂e = −
h̄2

2m

N

∑
i=1

~∇2
i (2.4)

T̂mass pol. = −
h̄2

2(MA + MB)

N

∑
i,j=1

~∇i · ~∇j (2.5)

T̂N = − h̄2

2µ
~∇2

R (2.6)

T̂C = − h̄2

2M
~∇2

C . (2.7)

The terms T̂e, T̂N and T̂C are the kinetic energy operators associated respectively with the
motion of the electrons, the motion of the two nuclei with respect to one another, and the
center of mass motion. The term T̂mass pol. is a correction term, referred to as the mass po-
larization term, that expresses kinetic correlations between the motion of the electrons and
of the nuclei. The motion of the center of mass of the two nuclei is obtained through di-
agonalization of T̂C, which is a single-particle problem. In free-space, the corresponding
eigenfunctions are plane waves denoted by the quantum number K, which labels the corre-
sponding momentum ~P = h̄~K of the molecule or atom pair. In an optical lattice, the correct
quantum numbers are instead the band index nband and the quasi-momentum q.

The center of mass motion is extremely well controlled in ultracold atom experiments.
The laser cooling and evaporation techniques that we use allow us to bring a gas of hot
Rb and Sr atoms at around TRb = 200 ◦C and TSr = 530 ◦C to the quantum regime of µK
temperatures or colder. Once this regime is reached, the Rb and Sr atoms are extremely
slow and can be trapped onto the sites of an optical lattice — see Chapter 5, Subsection 5.1.2
—, in which the center-of-mass motion of Rb-Sr pairs is essentially frozen. In the rest of
this chapter, we will dismiss the center of mass motion and focus on the internal degrees of
freedom of the diatomic system.

2.1.3 The molecular frame

The molecule or atom pair can rotate in the reference frame of the laboratory. To track this
rotational motion, it is natural to introduce spherical coordinates (R, θ, φ), where the zenith
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is the Z axis of the XYZ space-fixed coordinate system of the laboratory4. Furthermore,
the motion of the electrons is advantageously described in the frame of the molecule itself,
referring the positions of the electrons to those of the nuclei: the spatial distribution of the
electrons in such a frame is independent of (θ, φ), because the Coulomb interaction between
the electrons and the nuclei is independent of the orientation of the molecular axis in space.

The molecule-fixed frame xyz, which is non-inertial due to the rotation of the nuclei, is
constructed by rotating the laboratory-fixed frame XYZ using the rotations associated with
the three Euler angles (α, β, γ) = (φ, θ, χ), as shown in Figure 2.1. For a diatomic molecule,
the third Euler angle χ is an arbitrary constant5. The z axis of the molecular frame is taken
to be the internuclear axis for the diatomic molecule, and the origin is kept at the position of
the center of mass of the two nuclei.

The electronic motion in the molecular frame

In the molecular frame, z is aligned with the internuclear axis and the vectorial position of
each electron i is denoted as {~ri} = {xi, yi, zi}. The total orbital angular momentum of the
electrons in the molecule-fixed system of coordinates xyz takes the same form as it does in
the space-fixed system of coordinates XYZ6. It reads ~L = −ih̄ ∑~ri × ~∇i, summing over all
electrons i and its components are

Lx = −ih̄
N

∑
i=1

(
yi

∂

∂zi
− zi

∂

∂yi

)

Ly = −ih̄
N

∑
i=1

(
zi

∂

∂xi
− xi

∂

∂zi

)

Lz = −ih̄
N

∑
i=1

(
xi

∂

∂yi
− yi

∂

∂xi

)
.

(2.8)

4In absence of external fields breaking the isotropy of space, the choice of Z is arbitrary. In the context of ultra-
cold atom experiments, typically externally applied electric or magnetic fields will define preferential directions in
the laboratory frame. For instance, the direction of polarization of a laser field in a photoassociation experiment.

5For molecules involving more than two atoms, one has to use all three (φ, θ, χ) Euler angles to transform
the laboratory-fixed coordinate system into the molecule-fixed system. Since there is no nucleus lying off-axis in
a diatomic molecule, χ is in this case undefinable and the corresponding Euler rotation is therefore redundant.
The spherical angles (θ, φ) are therefore sufficient to define the orientation of the axis. We do not dismiss χ, in
order for the reader to be able to relate easily the derived equations to the ones in the reference books [57, 59],
and because the corresponding formalism is simpler and more general than the one obtained using only spherical
angular coordinates (θ, φ).

6We remind the reader that the origin (O) of the XYZ system of coordinates is set at the position of the center
of mass of the two nuclei. Therefore, it is not strictly speaking space-fixed. However, it does not rotate along with
the molecular axis. This is the meaning we attach to the term space-fixed in this chapter.
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FIGURE 2.1: Left picture: passage from the laboratory-fixed frame XYZ to
the non-inertial frame xyz of the rotating molecule. The molecular frame xyz
is obtained through three successive Euler rotations: 1) Rotation about the
initial Z axis through an angle φ (0 ≤ φ ≤ 2π). 2) Subsequent rotation about
the resultant Y′ axis through an angle θ (0 ≤ θ ≤ π). 3) Rotation about the
resultant Z′′ axis through an angle χ (0 ≤ χ ≤ 2π). Adapted from Ref. [57].
Right picture: Molecular frame and molecule-fixed system of coordinates.
The internuclear axis connecting the nuclei A and B defines the z axis of the
xyz molecular frame, of which the rotation in the laboratory frame XYZ is
parametrized by the Euler angles (φ, θ, χ).
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Accordingly, the gradient operator ~∇i and the electronic kinetic energy operator T̂e also take
the same form in xyz as they do in XYZ. Fortunately, we experimentalists need not worry
about the treatment of these 3N electronic degrees of freedom. They reduce to simple vecto-
rial and algebraic relations, among which the projection Lz along the internuclear axis and
its eigenvalues Λ play a crucial role for the diatomic molecule — see Subsection 2.1.5.

The nuclear motion in the molecular frame

The changes of distance between the nuclei in the molecular frame are referred to as vibra-
tional motion. This motion is parametrized by the internuclear distance R along the molec-
ular axis, which is the same in the space-fixed and molecule-fixed systems of coordinates.

The rotational motion of the nuclei, on the other hand, has a very different expression in
these two systems of coordinates. It is advantageously represented by a rotational angular
momentum vector operator in the molecular frame7. However, the angular momentum (i.e.,
the rotational motion) of the molecular axis is null in this frame because the frame and the
axis rotate together. One way around this is to note that in the frame xyz of the molecule, the
space-fixed frame XYZ appears to rotate due to the rotation of the nuclei. The corresponding
angular momentum ~l of a point which is stationary in XYZ, measured in xyz has a well-
known expression [59] and is related to the rotational angular momentum operator ~̀ of
the molecular axis in xyz through ~̀ = −~l, because the angular velocity of the space-fixed
frame measured with respect to the molecular axis is the inverse of the angular velocity
of the molecular axis measured with respect to the space-fixed frame8. The molecule-fixed
components of the rotational angular momentum~̀ are thus

`x = −lx = ih̄
[

cot θ cos χ
∂

∂χ

)
s
+ sin χ

∂

∂θ

)
s
− cosec θ cos χ

∂

∂φ

)
s

]
`y = −ly = ih̄

[
− cot θ sin χ

∂

∂χ

)
s
+ cos χ

∂

∂θ

)
s
+ cosec θ sin χ

∂

∂φ

)
s

]
`z = −lz = ih̄

∂

∂χ

)
s

,

(2.9)

and the fact that χ is an arbitrary constant imposes the condition

7The powerful techniques of angular momentum algebra can be used in such a representation. It makes the
search for eigenvectors and eigenvalues easy, and allows one to evaluate the relations between the nuclear rotation
and other vectors in the molecular frame, such as the electronic orbital angular momentum~L or in some situations
the total electronic spin ~S.

8We adopt here the notation of Refs. [56, 59]. The rotational angular momentum ~̀ of the nuclei is instead
denoted as ~O in Ref. [55] and as ~N in Ref. [57].
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`z = 0 . (2.10)

Note that ~̀ rotates the nuclei only, not the electrons, leaving the electronic positions {~ρi} in
space-fixed coordinates unchanged. This is indicated by the subscript s for space-fixed —
we go back to this point in Subsection 2.1.4. The magnitude ~̀ 2 = (~ex`x +~ey`y +~ez`z)2 of ~̀

reads

~̀ 2 = −h̄2
{

cosec θ
∂

∂θ

(
sin θ

∂

∂θ

)
+ cosec θ2

[
∂2

∂φ2 +
∂2

∂χ2 − 2 cos θ
∂2

∂φ∂χ

]}
s

. (2.11)

The eigenfunctions |` m` k〉 of~̀ 2 are normalized Wigner D-matrices9

|` m` k〉 ≡ (−1)m`−k√`+ 1/2 D`
m`, k(φ, θ, χ) , (2.12)

with the phase convention

D`
m`, k(φ, θ, χ) = eim`ΦD`

m`, k(0, θ, 0) eikχ . (2.13)

The three quantum numbers `, m` and k are respectively the magnitude of the nuclear ro-
tation, the projection of the nuclear rotational angular momentum along the Z axis of the
space-fixed frame10 and its projection along the z axis of the molecule-fixed frame. The cor-
responding eigenvalue equations are

9The normalization factor
√
`+ 1/2 ensure the normalization condition 〈` m` k|` m` k〉 = 1, integrating over

all angular space. Another common phase convention is D`
m` , k(φ, θ, χ) = e−im`ΦD`

m` , k(0, θ, 0) e−ikχ. In that case,

the complex conjugate D`∗
m` , k(φ, θ, χ) of the function D`

m` , k(φ, θ, χ) has to be used instead of D`
m` , k(φ, θ, χ) for the

eigenfunctions of~̀ 2. Setting k = 0, one retrieves the well-known spherical harmonics |` m` k = 0〉 ≡ |` m`〉, which
are the rotational motion eigenvectors of a free particle in 3D. The quantum numbers `, m` are positive integers,
with m` = −`,−`+ 1, ...,+`.

10The molecule-fixed components (`x , `y, `z) of ~̀ and its space-fixed components (`X , `Y , `Z) are related by a
simple unitary rotation involving the Euler angles. For our purpose of interpreting the shape of the eigenfunctions
of~̀ 2, only the expression `Z = −ih̄ ∂

∂φ is required.
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~̀2 |` m` k〉 = `(`+ 1) |` m` k〉

`Z |` m` k〉 = −ih̄
∂

∂φ

)
s
|` m` k〉 = m` |` m` k〉

`z |` m` k〉 = −ih̄
∂

∂χ

)
s
|` m` k〉 = k |` m` k〉 with k = 0 .

(2.14)

The condition k = 0 is imposed by Equation 2.10, and indicates that the rotational momen-
tum of the molecular axis is by definition zero about the axis itself. We stress again that the
rotational motion of the molecule is null in the molecular frame xyz. The components of ~̀ ,
Equation 2.9, are thus not strictly speaking measured along the axis xyz of the molecule-fixed
frame. They are instead measured along the axis of a space-fixed frame, which is instanta-
neously coincident with the molecular frame. They encompass the information about the
rotational motion of the nuclei in a useful vectorial form in the molecular frame xyz.

2.1.4 The separation of the diatomic Hamiltonian in the molecular frame

In this section we show how to decouple the rotation of the molecular frame from the inner
motion of the electrons. The general reader might want to skip this section and head directly
to the final result, Equation 2.26, and to the next sections of this chapter, where the results
of the diagonalization of the diatomic Hamiltonian are presented and put into the context of
our experimental work.

In the molecular frame, the expression of the Coulomb interaction between the electrons
and the nuclei is

V
(
{~ri}, ~R

)
= V ({~ri}, R)

=
e2

4πε0

(
ZAZB

R
−

N

∑
i=1

ZA
rA,i
−

N

∑
i=1

ZB
rB,i

+ ∑
i>j

N

∑
j=1

1
ri,j

)
.

(2.15)

This expression is independent of the molecular axis orientation, which is the main simplifi-
cation compared to Equation 2.1 and justifies using this frame. The distances rA,i and rB,i are
indeed independent of the angles (θ, φ), which is not the case of the space-fixed distances ρA,i

and ρB,i involved in Equation 2.2. The total electronic Hamiltonian in the molecular frame
reads11

11Note that the Coulomb interaction between the nuclei is included into the electronic Hamiltonian. This con-
vention is used in order to interpret the eigenvalues of the electronic system as the potential energy curves (PECs)
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Ĥe = T̂e + V ({~ri}, R) . (2.16)

The nuclear kinetic energy operator T̂N , in contrast to T̂e, has different expressions in the
molecular frame and in space-fixed coordinates. The reason is that the motion of the nuclei
imposes a motion of the frame itself, which leads to its coupling with the electronic motion.
The operator T̂N can be expressed in the space-fixed frame of the laboratory using the three
Euler angles that define the molecular frame orientation, which leads to

T̂N = − h̄2

2µ
~∇2

R = − h̄2

2µR2
∂

∂R

(
R2 ∂

∂R

)
+

~̀ 2

2µR2 , (2.17)

where~̀ is the nuclear rotational angular momentum, expressed in the molecular frame xyz,
and~̀ 2 = (~ex`x +~ey`y +~ez`z)2 is its magnitude — see Equations 2.9 and 2.11 respectively. The
angular term in Equation 2.17 changes only the nuclear orientation, leaving the space-fixed
electronic coordinates {~ρi} unchanged (this is indicated by the subscript s in Equation 2.11).

The internuclear distance R and the corresponding partial derivatives ∂
∂R and ∂2

∂R2 are not
affected by the passage to electronic molecule-fixed coordinates. The rotational operator ~̀ ,
on the other hand, must be written differently in these two coordinate systems. Indeed, the
effect of the operator~̀ is to rotate the nuclei only. This operation leaves the laboratory space-
fixed electronic coordinates {~ρi} unchanged, but modifies the electronic coordinates {~ri} in
the molecule-fixed system due to the change of the positions of the electrons with respect to
the nuclei. The partial operators that change the orientation of the nuclei, while preserving
the position of the electrons {~ri} in the molecular frame, are

∂

∂θ

)
m
=

∂

∂θ

)
s
+ i sin χLx + i cos χLy

∂

∂φ

)
m
=

∂

∂φ

)
s
− i sin θ cos χLx + i sin θ sin χLy + i cos θLz

∂

∂χ

)
m
=

∂

∂χ

)
s
+ iLz ,

(2.18)

where the subscripts s and m indicate that either the space-fixed electronic coordinates {~ρi}
or the molecule-fixed coordinates {~ri} are left unchanged by the rotation of the nuclei. The
electronic molecule-fixed components Lx, Ly and Lz of the total electronic orbital angular
momentum that appear in Equation 2.18 account for the rotation that is necessary to impose

along which the nuclei are moving — see Equation 2.40. The convention is different in Ref. [57], where the nuclear
repulsion is treated separately.
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on the electrons in the molecular frame to "follow" the rotation of the nuclei. The molecule-
fixed components of the nuclear rotation angular momentum vector, Equation 2.9, are thus

`x = −ih̄
[

cot θ cos χ
∂

∂χ

)
m
+ sin χ

∂

∂θ

)
m
− cosec θ cos χ

∂

∂φ

)
m

]
− Lx

`y = −ih̄
[
− cot θ sin χ

∂

∂χ

)
m
+ cos χ

∂

∂θ

)
m
+ cosec θ sin χ

∂

∂φ

)
m

]
− Ly

`z = −ih̄
∂

∂χ

)
m
− Lz ,

(2.19)

It is therefore natural to introduce ~N = ~̀ +~L, the total angular momentum exclusive of spin.
The components of ~N are

Nx = −ih̄
[

cot θ cos χ
∂

∂χ

)
m
+ sin χ

∂

∂θ

)
m
− cosec θ cos χ

∂

∂φ

)
m

]
Ny = −ih̄

[
− cot θ sin χ

∂

∂χ

)
m
+ cos χ

∂

∂θ

)
m
+ cosec θ sin χ

∂

∂φ

)
m

]
Nz = −ih̄

∂

∂χ

)
m

,

(2.20)

and Equation 2.10 imposes the condition

Nz = Lz . (2.21)

~N has the same structure in the molecular frame as the nuclear rotation operator — see Equa-
tion 2.9. However, ~N rotates the whole molecule, not only the nuclei. The electrons follow
the rotation of the molecular axis instantaneously and thus their molecule-fixed coordinates
{~ri} remain unchanged under the action of ~N. The magnitude of ~N2 is

~N2 = −h̄2
{

cosec θ
∂

∂θ

(
sin θ

∂

∂θ

)
+ cosec θ2

[
∂2

∂φ2 +
∂2

∂χ2 − 2 cos θ
∂2

∂φ∂χ

]}
m

, (2.22)

and its eigenfunctions have the same form as given in Equation 2.12, i.e.

|N mN k〉 ≡ (−1)mN−k√N + 1/2 DN
mN , k(φ, θ, χ) . (2.23)

The three quantum numbers N, mN and k are respectively the magnitude of the total angular
momentum exclusive of spin, the projection NZ of this total angular momentum along the
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Z axis of the space-fixed frame and its projection Nz along the z axis of the molecule-fixed
frame. The corresponding eigenvalue equations are

~N2 |N mN k〉 = N(N + 1) |N mN k〉 with N ≥ |k|

NZ |N mN k〉 = −ih̄
∂

∂φ

)
m
|N mN k〉 = mN |N mN k〉 with mN = −N,−N + 1, ...,+N

Nz |N mN k〉 = −ih̄
∂

∂χ

)
m
|N mN k〉 = k |N mN k〉 with k = Λ ,

(2.24)

where the condition k = Λ, with Λ the projection of the total electronic angular momentum
~L along the internuclear axis, is imposed by Equation 2.21. Therefore, a well-defined value
of Lz is associated with each eigenstate of ~N2, with the restriction N ≥ |Λ| where N and Λ
are positive integers. In the molecule-fixed frame xyz, the nuclear kinetic energy operator
T̂N reads

T̂N = − h̄2

2µR2
∂

∂R
R2 ∂

∂R︸ ︷︷ ︸
Ĥvibration

+
~N2

2µR2︸ ︷︷ ︸
Ĥrotation

+
~L2 − 2~N ·~L

2µR2︸ ︷︷ ︸
ĤCoriolis

,
(2.25)

using ~N = ~̀ +~L and Equations 2.8, 2.17 and 2.2012. Therefore the complete molecular
Hamiltonian13, expressed in the molecule-fixed coordinate system {R, φ, θ, χ, {~ri}}, is

Ĥ = Ĥvibration + Ĥrotation + ĤCoriolis + T̂mass pol. + Ĥe . (2.26)

The Coriolis terms appear due to the passage from the laboratory frame of reference to the
non-inertial, rotating molecular frame. They induce correlations between nuclear and elec-
tronic motion and we have dismissed them in our work — see Subsection 2.1.6.

2.1.5 The electronic Hamiltonian and the potential energy curve(s)

The physical intuition that underlies most quantum chemistry calculations is that nuclear
and electronic motions have well separated energy scales (optical for the electronic motion,
RF to microwave for the nuclear motion). The reason is that nuclei are much heavier than

12Note that the momentum vector operators ~N and ~L commute (the operator ~N acts on the angular degrees of
freedom (φ, θ, φ) while~L acts on the electronic degrees of freedom {~ri}), therefore −~N ·~L−~L · ~N = −2~N ·~L.

13We remind the reader that we have dismissed the center-of-mass motion from the molecular Hamiltonian,
Equation 2.3, to focus on the relative motion of the diatomic system.
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FIGURE 2.2: The RbSr PECs, taking into account kinetic and electrostatic
terms and dismissing spin-dependent interactions, which are extremely weak
in the electronic ground state. These PECs are calculated using the MRCI
method for all states correlating to the experimentally relevant asymptotes.
Plotted using the tabulated values of Ref. [60].

electrons, and thus typically much slower. Therefore, the electronic distribution around the
nuclei adapts mostly adiabatically to changes of internuclear distances, which implies that
the electronic motion is uncorrelated with the vibrational and rotational motion of the nu-
clei14. Accordingly, the appropriate electronic eigenbasis is obtained by diagonalizing the
electronic Hamiltonian Ĥe, Equation 2.16, which contains static R-dependent Coulomb in-
teractions but no nuclear kinetic term15. The corresponding eigenvalue equations are

Ĥeψel
n (~r, R) = Un(R)ψel

n (~r, R) with {|n〉}n = {|2S+1|Λ|±〉}S,Λ , (2.27)

where we use the notation~r ≡ {~ri} for the electronic positions. The index n denotes sym-
bolically the electronic eigenstate, and the set {|n〉}n constitutes a complete basis of the elec-
tronic Hilbert space. The corresponding eigenfunctions and eigenvalues are ψel

n and Un(R),
and the curves of the eigenvalues Un(R) against the internuclear distance R constitute the
potential energy curves (PECs) of the corresponding electronic states.

14Any deviation to this behaviour will lead to non-adiabatic corrections to the Born-Oppenheimer approxima-
tion — see Subsection 2.1.6, Equation 2.33.

15From the technical point of view, this amounts to setting a fixed distance R between the nuclei, calculating
the eigenvalues of Ĥe, and move on to the next value of R. For this reason, the electronic Hamiltonian given in
Equation 2.16 is also referred to as the clamped nucleus Hamiltonian in the literature.
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A given PEC correlates asymptotically, i.e. at R → +∞, with the energy of a pair of free
atoms with zero relative kinetic energy (translational as well as rotational)16. The labels n
are the molecular term symbols that indicate the symmetries of the molecular Hamiltonian17.
There is only one PEC that correlates asymptotically with a pair of free Rb and Sr atoms in
their respective electronic ground state 2S1/2 and 1S0. This is the ground-state PEC of RbSr,
associated with the molecular term 2Σ+, and we refer to it as V2Σ+(R) = Vg(R).

Obtaining the single-electron orbital basis that is most appropriate to solve the electronic
problem and diagonalizing the electronic many-body Hamiltonian Ĥe are non-trivial theo-
retical problems, affairs of quantum chemistry experts. In order to match the h×MHz res-
olution that we can achieve on the measurement of molecular binding energies in ultracold
atom experiments, these calculated curves must be refined by fitting to experimental data.

2.1.6 Molecular states and binding energies: the nuclear motion along the
ground-state PEC

Once the electronic eigenfunctions are known, an arbitrary wavefunction of the total system
(electrons+nuclei) can be written down. Following the Born-Oppenheimer separation, it is ex-
panded as a series of terms, each of which is the product of a nuclear wavefunction and an
electronic wavefunction. It reads

Ψtot(~r, ~R) = ∑
m

am φel
m(~r, R)ψnuc

m (R, φ, θ) , (2.28)

and the wavefunctions can be written in Dirac notation |Ψtot〉 ≡ Ψtot(~r, ~R), |m〉 ≡ φel
m(~r, R)

and |R, φ, θ〉m ≡ ψnuc
m (R, φ, θ), leading to

|Ψtot〉 = ∑
m

am |m〉 |R, φ, θ〉m . (2.29)

16Neutral atoms are designated by their LS atomic term symbol 2S+1LJ , where S is the electronic spin, L the
orbital electronic angular momentum and J the total electronic angular momentum associated with~J = ~L + ~S (with
s, p, d... = 0, 1, 2... for L and J). All three are good quantum numbers for L = 0, due to the absence of spin-orbit
coupling. LS terms with equal J and L 6= 0 can be coupled through spin-orbit coupling, in which case only J is a
good quantum number (neglecting hyperfine structure). For instance, the small coupling of the optically excited
term 3P1 of Sr to a 1P1 term gives 3P1 a finite lifetime, while in absence of spin-orbit coupling the selection rule
∆S = 0 would forbid the spontaneous emission of the photon required for the transition 3P1 →1S0.

17Molecules are designated by their molecular term symbol 2S+1|Λ|±, where S is the electronic spin, Λ is the
expectation value of the projection Lz of the orbital electronic angular momentum onto the internuclear axis (with
Σ, Π, ∆... = 0, 1, 2, ...), and ± indicates the sign change of the electronic wavefunction upon reflection through an
arbitrary plane containing the molecular axis. In presence of spin-orbit coupling, the terms 2S+1|Λ|± get mixed
with each other and |Λ| is thus not a good quantum number: it is replaced by Ω, the projection of ~J = ~L + ~S onto
the internuclear axis. Note that, unlike for neutral atoms, L (or J in presence of spin-orbit coupling) is not a good
quantum number for a diatomic molecule because the molecular Hamiltonian is not spherically symmetric; instead,
the projection Λ (or Ω) is indicative of the cylindrical symmetry around the internuclear axis.
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The nuclear wavefunctions ψnuc
m involve only the nuclear coordinates (φ, θ) defining the

molecule orientation, and the electronic wavefunctions φel
m involve the electronic coordinates

and depend parametrically on the internuclear distance R. The probability amplitudes am

characterize the contributions of each term in the expansion of the total wavefunction. The
time-independent Schrödinger equation is obtained using Equations 2.26 and 2.25, and reads

(
T̂N + T̂mass pol. + Ĥe − E

)
∑
m

am |m〉 |R, φ, θ〉m = 0 . (2.30)

The eigenvalue E is the internal energy of the diatomic system, i.e. its binding energy in the
case of a molecular state. Multiplying by 〈n| on the left, one obtains18

∑
m

am

[ (
〈n| T̂N |m〉+ 〈n| T̂mass pol. |m〉

)
+ Un(R)− E

]
|R, φ, θ〉m = 0 . (2.31)

The Born-Oppenheimer or adiabatic approximation consists in neglecting the off-diagonal ma-
trix elements that couple different electronic states n and m within the electronic eigenbasis
{|n〉}n. It amounts to restricting the total wavefunction to only one term of the expansion
given in Equation 2.29, i.e.

[
〈n| T̂N |n〉+ 〈n| T̂mass pol. |n〉+ Un(R)− E

]
|R, φ, θ〉n ' 0 (2.32)

|Ψtot〉 ' |n〉 |R, φ, θ〉n . (2.33)

The diagonal matrix elements are referred to as adiabatic contributions to the energy of the
system, as opposed to the non-adiabatic off-diagonal contributions that are discarded in the
adiabatic approximation. The rotational Hamiltonian Ĥrotation is fully diagonal in {|n〉}n, be-
cause the total rotational operator ~N2 doesn’t act on the electronic degrees of freedom~r and
on the internuclear distance R. The electronic wavefunctions φel

n (~r, R) are thus unaffected by
the rotation of the whole molecule and [Ĥe, ~N2] = 0. On the other hand, the terms Ĥvibration,

18The Dirac notation 〈m| T̂N |n〉 indicates integration over electronic coordinates, i.e. 〈m| T̂N |n〉 =∫
φel∗

m (~r, R)T̂Nφel
n (~r, R)d~r.
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ĤCoriolis and T̂mass pol. display both diagonal and off-diagonal matrix elements19. Follow-
ing the notation of Ref. [57], the contribution of Ĥrotation and the adiabatic contribution of
Ĥvibration are

〈n| Ĥrotation |n〉 |R, φ, θ〉n = 〈n|
~N2

2µR2 |n〉 |R, φ, θ〉 =
~N2

2µR2 |R, φ, θ〉n (2.34)

〈n| Ĥvibration |n〉 |R, φ, θ〉n =

[
− h̄2

2µR2
∂

∂R
R2 ∂

∂R
+ Qn,n

]
|R, φ, θ〉n (2.35)

Qn,n = − h̄2

2µ
〈n| ∂2

∂R2 |n〉 . (2.36)

The adiabatic correction Qn,n is typically small compared to the other diagonal contribu-
tions, and we have dismissed it in our work on the ground-state PEC of RbSr. The same
goes for 〈n| ĤCoriolis |n〉 and 〈n| T̂mass pol. |n〉. It is important to understand that however
small, these matrix elements — as well as the non-adiabatic contributions — lead to correc-
tions of the molecular binding energies. However within our experimental precision, we
could not resolve them in the RbSr electronic ground state20. Under these approximations,
Equations 2.32 reads[

h̄2

2µR2
∂

∂R
R2 ∂

∂R
+

~N2

2µR2 + Un(R)− E

]
|R, φ, θ〉n = 0 . (2.37)

19It is interesting to look at the structure of the Coriolis couplings ~L2 − 2~N.~L for the RbSr 2Σ+ term, in the
electronic eigenbasis {|n〉}n = {|2S+1|Λ|〉}S,Λ. We consider a molecular state |SΛ〉 |N mN Λ〉 with the electronic
wavefunction |2S+1|Λ|〉 = |SΛ〉 and the rotational wavefunction |N mN Λ〉, as written in Equation 2.41. The
term ~L2 = L2

z + (1/2) [L+L− + L−L+], where L± = Lx ± iLy, acts on the electronic part with Lz |SΛ〉 = Λ |SΛ〉
and L± |SΛ〉 ∝ |S Λ± 1〉. Therefore the L2

z term is null for 2Σ+(Λ=0), and the L+L− + L−L+ term is fully di-
agonal in {2S+1|Λ|}S,Λ: (L+L− + L−L+) |SΛ〉 ∝ |SΛ〉. This term is in general non-zero and is referred to as
Pn,n in Ref. [57]. The term ~N.~L = Nz Lz + (1/2) [N+L− + N−L+], where N± = Nx ± iNy, acts on the rotational
part with Nz |N, mN , Λ〉 = Λ |N, mN , Λ〉 and N± |N, mN , Λ〉 =

√
N(N + 1)−Λ(Λ∓ 1) |N, mN , Λ∓ 1〉, as seen

from Equations 2.23 and 2.22. Therefore the Nz Lz term is null for 2Σ+(Λ = 0), but the N±L∓ terms produce
N±L∓ |SΛ〉 |N mN Λ〉 ∝ |S Λ∓ 1〉 |N mN Λ∓ 1〉 which for 2Σ+ is non-zero for N > 0 and branches to states with
|Λ| = 1. Thus, the Coriolis coupling ~N.~L admixes 2Σ+ states with N > 0 with the electronically excited 2Π states.
These non-adiabatic corrections to the binding energies of the rotating molecular states are very small for the ground
state 2Σ+, because the corresponding matrix elements are much smaller than the large energy difference between
the 2Σ+ and 2Π electronic states — see Figure 2.2.

20In particular, the adiabatic corrections that lead to a common offset in the binding energies of weakly-bound
molecular states are "swallowed" in the fitted C6 and C8 coefficients that we discuss in Subsection 2.1.7. An impor-
tant exception arises when two PECs cross. In that case the non-adiabatic matrix elements can be of the same order
of magnitude as the difference in electronic energies Un(R)−Um(R). This leads to an avoided crossing between the
two PECs, and to important corrections to the binding energies of molecular states that display a large interradial
probability density |χvib

v (R)|2 (defined as the probability density of finding the two nuclei at the distance R from
one another) close to the crossing point. The electronic ground state of RbSr consists of only one PEC, therefore
such crossings don’t occur and the abovementioned corrections can be treated perturbatively.
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Since the radial partial operators do not act on the angular degrees of freedom (θ, φ), the
left-hand term commutes with ~N2 and thus the eigenbasis of ~N2 is also an eigenbasis for
this term. One can thus separates the nuclear wavefunction |R, φ, θ〉n ≡ ψnuc

n (R, φ, θ) into a
product of a radial and an angular wavefunction, according to21,22

ψnuc
n (R, φ, θ) =

χvib
ν,N(R)

R
× Υrot

N (θ, φ) . (2.38)

The eigenfunctions |N, mN , Λ〉 ≡ Υrot
N (θ, φ) of the total angular momentum exclusive of

spin, Equation 2.22, have eigenvalues of the form h̄2N(N + 1), where N is a positive integer.
The electronic ground state of RbSr is a Σ term, as discussed in Subsection 2.1.5, therefore
Λ = 0 and we denote the corresponding rotational eigenstates as |N, mN , Λ = 0〉 = |N, mN〉
throughout this thesis. They are the well-known spherical harmonics

Yrot
N (θ, φ) = (−1)mN

√
2N + 1

4π

(N −mN)!
(N + mN)!

PmN
N cos(θ)eimN φ for Λ = 0 , (2.39)

where PmN
N is an associated Legendre function. For a given value of the rotational quantum

number N, Equation 2.37 reduces to the radial equation of motion[
− h̄2

2µ

d2

dR2 +
h̄2N(N + 1)

2µR2 + Un(R)− E

]
χvib

ν,N(R) = 0 . (2.40)

The complete wavefunction for the stationary state of the diatomic system is therefore

Ψtot(~r, ~R) = φel
n (~r, R)Υrot

N (θ, φ)
χvib

ν,N(R)
R

, (2.41)

where electronic, rotational and vibrational motions are explicitly separated. The very essence
of the adiabatic approximation appears clearly in Equation 2.40: the energy of the electronic
cloud Un(R) acts as an effective external potential through which the nuclei are moving,
hence the name potential energy curve. Furthermore, the rotation of the molecule (nuclei

21This is in complete analogy with the problem of the hydrogen atom, where the radial and rotational motions of
the electron around the proton are separated as a product of wavefunctions |nlm〉 ≡ Ψnlm(r, θ, φ) = Rnl(r)Υ

ml
l (θ, φ).

The quantum numbers n, l and ml are in that case the principal, orbital and magnetic quantum numbers respec-
tively.

22With the identification |N, mN , Λ〉 ≡ Υrot
N (θ, φ) we dismiss the third Euler angle χ by setting χ = 0. We

remind the reader that for a diatomic molecule this angle is arbitrary and so is the unphysical phase factor expikχ

in Equation 2.23. The solutions to the diatomic problem, Equation 2.29, are equivalent to those obtained without
the artificial use of χ provided the rotational Hilbert space is restricted to the kets |N mN k〉 for which k = Λ. This
guarantees that the actions of Nz and Lz on a state |Λ S〉 |N mN k〉 have the same effect, owing to Equation 2.21,
even though one acts in the electronic Hilbert space and the other in the rotational Hilbert space. For a discussion
on this matter, see "Hougen’s isomorphic Hamiltonian" in Ref. [57].
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and electrons) acts as a centrifugal barrier that keeps the two nuclei farther apart, as shown
in Figure 2.5. The shape of the wavefunctions χvib

ν,N therefore depends on N. We explicitly
indicate with the notation Ug(R) = Vg(R), where g denotes the RbSr electronic ground state,
that the electronic energy acts as an effective potential. The radial equation of motion is thus[

− h̄2

2µ

d2

dR2 +
h̄2N(N + 1)

2µR2 + Vg(R)− E

]
χvib

ν,N(R) = 0 , (2.42)

and the molecular Hamiltonian, Equation 2.26, reduces to

Ĥ =
1

2µ

[
−h̄2 d2

dR2 +
N̂2

R2

]
+ V̂g(R) . (2.43)

The eigenstates of positive energy E correspond to atom pair scattering states23, for which
the vibrational part χvib

ν,N(R) is replaced by a scattering wavefunction χscat
k,N (R) denoted by the

quantum number k that quantifies the relative kinetic energy E = h̄2k2

2µ of the pair along the
internuclear axis. The (non)-rotating pairs with rotational quantum number N = 0, 1, 2, 3, ...
are referred to as s-, p-, d-, f -wave, ... scattering states respectively24. Examples of the asso-
ciated scattering wavefunctions χscat

k,N (R) at E = kB × 1.0 µK and N = 0 are plotted in Chap-
ter 3, Figure 3.5. On the other hand, the eigenstates of negative energy refer to molecular
bound states, associated with the vibrational quantum number ν and the rotational quantum
number N25,26. Hence, once the PEC in the electronic ground state is known, one can pre-
dict the binding energies Eb = −E of the molecular bound states by solving Equation 2.42.
Conversely, we experimentalists can do a spectroscopic search for molecular bound states,
assign the appropriate quantum numbers to them and derive the ground-state PEC from a
fitting procedure based on Equation 2.42. The part of the RbSr ground-state PEC that we
addressed with our ultracold atom experiments is its dispersive "long-range" attractive part,
which is discussed in Subsection 2.1.7.

23An exception to this arises when a molecular state is bound in the centrifugal barrier of the potential, i.e. a
molecular state exists with positive energy for N > 0. This phenomenon is referred to as a shape resonance.

24In the case of scattering states, the quantum number ` or l is often used in place of N in the literature.
25Scattering and molecular states are subject to different normalizations in absence of external confinement. This

is discussed extensively in Section 5.1.
26Molecules associated with the rotational quantum number N = 0, 1, 2, 3... are sometimes referred to as s-wave,

p-wave, d-wave, f -wave... molecules in the literature. For a given vibrational quantum number ν, the binding
energies of the associated rotational states follow the progression Eb(ν, N) = Eb(ν, 0)− N(N + 1) 〈1/R2〉vib. The
integral Bν = 〈1/R2〉vib =

∫ ∞
0 |χvib

ν,N=0(R)|2R−2dR, where χvib
ν,N=0 is the vibrational wavefunction obtained for N = 0

in Equation 2.42, can be identified as the rotational constant of the corresponding vibrational state.
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2.1.7 The long-range part of the ground-state PEC: our experimental play-
ground

The electrostatic potential between two neutral atoms A and B, Equation 2.2, can be written
in the compact form

Vel = ∑
k∈A

∑
l∈B

qkql
4πε0‖~rkl‖

, (2.44)

where k, qk and l, ql label all the individual particles and their charges contained in the
atom A and B respectively, and~rkl is the distance between two such charges [40, 55]. When
the two atoms are far away from each other, one can treat the electrostatic interactions as
a perturbation of the two single-atom electronic Hamiltonians. In this long-range scenario
‖~rkl‖ is the sum of the internuclear distance R and a corrective term, negligible compared to
R. Hence, it is possible to use a Taylor expansion of the electrostatic potential around R−1.
Introducing the tensor operators Qm

j , given by

Qm
j (A) =

√
4π

2j + 1 ∑
k∈A

qkrj
AkΥm

j
(
θ~rAk

, φ~rAk

)
Qm

j (B) =

√
4π

2j + 1 ∑
l∈B

qlr
j
BlΥ

m
j
(
θ~rBl

, φ~rBl

)
,

(2.45)

where rAk and rBl are the distances between the electron k and l to their nucleus A and B
respectively,~rAk and~rBl are the associated vectors, (θ~rAk

, φ~rAk
) and (θ~rBl

, φ~rBl
) are the respec-

tive polar angles of~rAk and~rBl and Ym
j are spherical harmonics. The electrostatic potential

can be written using a multipole expansion, which leads to

Vel =
∞

∑
lA ,lB=0

VlA lB(A, B)
RlA+lB+1 , (2.46)

where VlA lB(A, B) is defined as

VlA lB(A, B) =
1

4πε0

min(lA ,lB)

∑
m=−min(lA ,lB)

(−1)lB (lA + lB)!√
(lA + m)! (lA −m)! (lB + m)! (lB −m)!

Qm
lA
(A)Q−m

lB
(B) .

(2.47)
The quantization axis for each m is chosen along the internuclear axis. One recognizes in
the terms of this expansion interactions of the type charge-charge, charge-dipole, dipole-
dipole and charge quadrupole, ..., scaling with R−1, R−2, R−3, ... respectively. The first-order



2.1. Two neutral atoms colliding at ultracold temperatures: theoretical description 45

term of the perturbation ∆E(1) cancels out for neutral atoms in an S state (L = 0), since
such atoms do not display any nuclear or electronic moments. The leading term of the
perturbative treatment is thus the second-order correction term ∆E(2), which is proportional
to R−(lA+lB+1)2

with lA, lB ≥ 1 in absence of charge. Hence the second-order correction to
the electronic energy can be written

∆E(2) = −C6

R6 −
C8

R8 −
C10

R10 − ... , (2.48)

where the leading C6 term is the van der Waals interaction, and the Cn coefficients are re-
ferred to as dispersion coefficients. The C6 coefficient defines the characteristic radius of the
PEC, which is Re = (µC6/h̄2)1/4 ∼ 70 Å for RbSr27,28. The molecular Hamiltonian in the
electronic ground state, Equation 2.43, takes the asymptotic form

Ĥ −−−→
R→∞

1
2µ

[
−h̄2 d2

dR2 +
N̂2

R2

]
− C6

R6 −
C8

R8 −
C10

R10 − ... . (2.49)

The long-range expansion series, Equation 2.48, does not converge. However, it is usu-
ally sufficient to consider only the first terms of the series. This is clear from our fit of the
long-range part of the RbSr ground-state PEC presented in Chapter 3, for which restricting
ourselves to a Lennard-Jones potential model including only C6 and C8 coefficients was suf-
ficient to fit our data within experimental error bars. This perturbative approximation is
justified for large internuclear distances, where the electronic clouds of the two atoms do
not overlap significantly. A typical distance at which the clouds start to overlap is given by
the LeRoy radius RL = 2(rA + rB) = 2(

√
〈nl| r2 |nl〉A +

√
〈n′l′| r2 |n′l′〉B) [61]29, where rA

and rB are the atomic radii of the atoms A and B in their respective electronic orbitals |nl〉
and |n′l′〉. For a pair of ground-state Rb and Sr atoms, RL = 2(rRb + rSr) = 2(2.65 Å+2.19
Å) = 9.68 Å [62], therefore the approximation R� RL is justified for binding energies much
lower than C6/RL

6 = h × 650 GHz, where h is Planck’s constant30. All binding energies

27The symbol Å represents the ångström unit of length. 1 Å = 10−10 m.
28Note that for pairs of identical atoms interacting through an excited PEC (i.e. a PEC for which the dissociation

limit corresponds to one atom in the electronic ground state and one atom in an electronically excited state, or two
excited atoms in different electronic states), the long-range expansion includes a−C3/R3 term. This term has much
shorter range than the van der Waals−C6/R6 term and therefore defines the range of the potential. Such a situation
arises for instance in Sr2 close to the Sr (1S0) + Sr (3P1) dissociation asymptote.

29The symbols n and l stand for the principal and orbital quantum numbers respectively.
30This estimation is made using 1 cm−1 = h × 30 GHz and the value of the fitted C6 coefficient for RbSr

in its electronic ground state (1.784(15) × 107 Å6 cm−1 — see Chapter 3). Note that for a given molecular
state of binding energy -E and of vibrational wavefunction χvib

ν,N(R), the actual average internuclear distance is
〈R〉 =

∫ ∞
0 |χvib

ν,N(R)|2RdR. Here it is estimated using the classical outer-turning point of the ground-state PEC at
the energy E, which is defined as the largest internuclear distance at which Vg(R) = E. That is the distance around
which most of the interradial probability density |χvib

ν,N(R)|2 lies for weakly-bound molecular states.
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we measured in the electronic ground state of RbSr lie below h × 10 GHz, therefore this
dispersive approach is valid for our dataset.
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2.2 Two-colour and magnetic Feshbach spectroscopy: prob-

ing the ground-state PEC of RbSr

Our experimental exploration of the dispersive, long-range part of the ground-state PEC of
RbSr using two-colour and magnetic Feshbach spectroscopy is described thoroughly in the
two publications presented in Chapter 3 and Chapter 6. In the following subsections, the in-
terested reader will find additional information about the assignment of quantum numbers
to the detected molecular states.

This assignment is a non-trivial task. The initial scattering state is defined by its rota-
tional quantum number N31, while the detected molecular state are defined by their vibra-
tional and rotational quantum numbers ν and N — see Subsection 2.1.6. To these are added
the hyperfine contribution | f , m f 〉 of both states32. The difference in energy between the
f = 1 and f = 2 hyperfine manifolds of 87Rb is h × 6.835 Ghz in absence of a magnetic
field [50], which is bigger than the typical difference in binding energies of near-threshold
RbSr molecular states with same F but different ν and/or N. It is therefore necessary to
determine correctly F for both the initial scattering state and the detected molecular state in
order to assign correctly ν and N to the latter one. The |i, mi〉 nuclear spin contribution of Sr,
on the other hand, is only present in 87Sr (i = 9/2) and is irrelevant in this respect. Indeed,
the gyromagnetic ratio of 87Sr is very small (see Equation 5.46) and, at our magnetic fields
of a few G for two-colour spectroscopy and a few hundred G for Feshbach spectroscopy, it
does not lead to Zeeman splittings comparable to the Zeeman splittings of the m f states of
Rb or to the RbSr rotational and vibrational splittings.

2.2.1 Two-colour spectroscopy

We report in the publication presented in Chapter 3 the detection of many RbSr molecular
states via two-colour spectroscopy, also known as Autler-Townes spectroscopy [63]. Two-
colour spectroscopy is a versatile molecular spectroscopy technique, that we used to mea-
sure the binding energy of RbSr molecule in the electronic ground state. In a two-colour
scheme, an excitation laser, referred to as free-bound laser (LFB), photoassociates atom pairs

31The distribution of k-vectors quantifying the etic energy of the atom pairs along the internuclear axis is set by
the temperature of the Rb-Sr mixture and by the geometry and depth of the optical dipole trap, and is irrelevant to
the assignment of quantum numbers to the detected molecular state.

32It is customary to use uppercase letters to denote the hyperfine quantum numbers F and mF of a molecule,
and lowercase letters for the quantum numbers f and m f of an atom. We do not follow this convention in this
section, because Rb-Sr atom pairs and weakly-bound RbSr molecular states have a very similar hyperfine structure
in the electronic ground state. That is not necessarily the case in the electronic ground state of bi-alkali systems (see
Chapter 5, Section 5.2) or in RbSr electronically-excited states (see Chapter 4, Section 4.4).



48 Chapter 2. The ground-state potential energy curve of RbSr: theory and experiments

into electronically-excited molecules for a time Tpulse, which leads to loss of atoms33. Si-
multaneously, a second laser, referred to as bound-bound laser (LBB), irradiates the atoms.
The frequency νBB of this laser is scanned and, when its frequency matches a resonance
frequency that connects the target electronically-excited molecular state of LFB to a yet-
undetected molecular state, it resonantly couples the two states. If LBB is sufficiently intense,
the two molecular states are strongly mixed. This induces an Autler-Townes-type splitting
of the photoassociation line, which reduces the LFB-induced photoassociation rate [63]. This
decrease in photoassociation rate translates into a decrease of the photoassociation-induced
losses over the course of the LFB laser pulse, which can be observed experimentally and indi-
cates the detection of a molecular state. The binding energy of the detected molecule is then
given by h × (νBB − νFB), where νFB is the (fixed) frequency of LFB and νBB the resonance
frequency at which the decrease of the photoassociation rate is observed.

A quick overview of two-colour spectroscopy in ultracold RbSr

In the two-colour spectroscopy experiments that we performed to probe the ground-state
PEC of RbSr, the lasers LFB and LBB irradiate a µK-cold sample of about 105 Rb atoms and
106 Sr atoms for a time Tpulse. The Rb atoms are prepared in the f = 1 hyperfine man-
ifold, with all m f = 0,±1 states almost equally populated (the quantization axis is taken
along the direction of the homogeneous magnetic field of a few G that we apply during the
laser pulse). The LFB laser is set at a fixed frequency, and resonantly couples an initial Rb-Sr
atom pair state of collisional energy E ∼ kB × 1.0 µK to a target electronically-excited RbSr
molecular state of energy Emol,2 close to the Rb (2S1/2) + Sr (3P1) dissociation asymptote34.
This provokes photoassociation-induced losses in a given m f -state of Rb. All three f = 1,
m f = 0,±1 states of Rb are imaged separately after the laser pulse, using Stern-Gerlach sep-
aration and atomic absorption imaging. The Rb-Sr sample is lost at this point, and another
experimental cycle begins: a new Rb-Sr is prepared and another laser pulse combining LFB

and LBB is performed. The frequency νBB of the laser LBB is changed from one experimental
shot to the other. When it matches a resonance frequency νBB =

(
Emol,2 − Emol,1

)
/h, where

Emol,1 is the energy of a RbSr molecule in the electronic ground state, an Autler-Townes split-
ting is produced [63]. The dressing of the excited molecular state by the electronic-ground-
state molecular state and one LBB photon results in an avoided crossing, which pushes the
excited state out of resonance from LFB. The photoassociation rate is therefore reduced at
the resonant LBB frequency, which translates into an increase of the Rb atom number in the

33See Chapter 4 for more details on this photoassociation process.
34The reader interested in the details of this one-photon photoassociation setup is referred to Chapter 4, and in

particular to Figure 4.2. In this chapter, more details are given on the preparation of the Rb-Sr sample and on the
laser system and experimental conditions that we use in one-colour spectroscopy.
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m f -state subject to photoassociation. This is depicted in Figure 2.335, and the avoided cross-
ing produced by LBB is depicted in Figure 2.4. The binding energy BEmol,1 of the detected
molecular state is obtained by comparing the difference in frequency νBB − νFB of the two
lasers, at the LBB resonant frequency where this increase in atom number is observed. It is
BEmol,1 = h× (νBB − νFB)− E, where E is the collisional energy E of the Rb-Sr atom pair and
amounts to only a few tens of kHz at our µK temperatures (kB× 1.0 µK = h× 20.8365 kHz)36.
The gap h̄Ω of the avoided crossing produced by LBB is proportional to

√
IBB, where IBB is

the bound-bound laser intensity — see Figure 2.4. Therefore, it is best to work with as large
LBB intensities as possible to maximise the decrease of photoassociation rate and thus the
detection visibility.

The Rabi frequency Ω characterizes the coupling of the molecular states by the LBB

light, and provides information about the structure of the molecular states37. This Rabi fre-
quency can be measured as follows. The LBB laser is set to the resonant frequency νBB =(

Emol,2 − Emol,1
)

/h, and the frequency of νFB is scanned around the LFB photoassociation
resonance frequency. The avoided crossing produced by LBB leads to an Autler-Townes
splitting of the LFB photoassociation resonance [63], also referred to as Autler-Townes dou-
blet [64]. Two photoassociation resonances are then observed, instead of one in the absence
of LBB. They occur at two distinct values of νFB, separated in frequency by Ω/2π (hence the
term Autler-Townes splitting), and translate into two photoassociation-induced loss features
that can be observed experimentally38. This Ω/2π splitting is measured at different LBB in-
tensities, which constitutes a characterization of the strength of the bound-bound transition.
Examples of such measurements are presented in Ref. [52], Figure 5.16, in the context of
RbSr, and we do not repeat it here. We performed this characterization for some of the RbSr
molecular states that we detected, which is reported in Chapter 3, Table 3.1 (note that we
report the Rabi frequency per unit square root of intensity, not the actual Rabi frequency at
a given optical intensity).

The reader is referred to Chapter 3 for further details on our two-colour spectroscopy
experimental setup, and on the data acquisition and analysis.

35The Rb absorption pictures shown in Figure 2.3 and Figure 4.2 are taken from a magnetic Feshbach spec-
troscopy scan, not a two-colour scan. The images obtained in the context of two-colour spectroscopy are fully
analogous to the ones presented here, which were chosen for these figures because they show very clearly to the
reader the effects of loss/recovery of Rb atoms on the absorption images.

36The typical binding energies that we measure are of a few GHz or hundred MHz, and this correction is com-
paratively very small — see Chapter 3, Table 3.1 where the binding energies that we measured are reported.

37The coupling matrix element 〈ψ(1)
mol| ĤBB |ψ

(2)
mol〉, which is induced by LBB and connects the two molecular

states, is related to the Rabi frequency Ω through h̄Ω = 2 〈ψ(1)
mol| ĤBB |ψ

(2)
mol〉, as shown in Figure 2.4. Note that the

phase of this matrix element can always be chosen such that Ω > 0 [64].
38The Rabi frequency is an angular frequency (expressed in rad.s−1 or rad.Hz), not an actual frequency (ex-

pressed in Hz), hence the factor 2π to relate to the optical frequencies that we use and measure.
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FIGURE 2.3: Principle of an ultracold Rb-Sr two-colour spectroscopy experi-
ment close to the 1S0 – 3P1 intercombination line of Sr. The lasers LFB and LBB
irradiate the Rb-Sr sample for a time Tpulse. The LFB laser is set at a fixed fre-
quency and produces electronically-excited molecules of energy Emol,2, pro-
voking photoassociation-induced losses in a given m f -state of Rb (m f = 0 in
this figure). The frequency νBB is changed from one experimental shot to the
other, with the goal of finding a resonance frequency at which these losses are
reduced. The insets show absorption images of Stern-Gerlach-separated Rb
atoms, with the direction of gravity indicated with a white arrow (Rb time of
flight = 14 ms). Left panel: laser LBB off-resonant. Strong photoassociation-
induced losses are provoked in m f = 0 due to LFB. Right panel: laser LBB
resonant. An Autler-Townes splitting is produced (see Figure 2.4), which
decreases the photoassociation rate. The number of Rb atoms imaged in
m f = 0 is thus increased compared to the off-resonant case. The binding
energy BEmol,1 of the detected molecular state is obtained by comparing the
frequency of the two lasers, resulting in BEmol,1 = h× (νBB − νFB)− E at the
resonant LBB frequency. The collisional energy E is a very small correction in
ultracold atom experiments.

Assignment of the quantum numbers of the detected RbSr molecular states

In the next paragraphs, we discuss the assignment of the rotational and hyperfine quantum
numbers of the initial Rb-Sr atom pair state and of the detected molecular states.

As for the initial scattering state, the 87Rb sample is prepared in the f = 1 manifold and
the m f -states affected by the photoassociation light are seen on absorption pictures using
Stern-Gerlach separation. Therefore, the hyperfine contribution | f , m f 〉 of the initial state is
perfectly known. The scattering cross-section is dominated by s-wave scattering, i.e. N = 0,
in the ultracold limit. This ultracold limit is defined as kRe � 1, where h̄k is the momentum
of the collision and Re the characteristic radius of the PEC [65]. In the case of Rb-Sr ground-
state pairs we have Re = (µC6/h̄2)1/4 ∼ 70 Å, and for our typical collisional energies E =

h̄2k2/2µ ∼ kB × 1.0 µK we are working in the ultracold limit with kRe ∼ 0.1, as shown
in Figure 2.5. However, the collisional cross-section corresponding to higher partial waves
N > 0 is greatly enhanced in the presence of a bound state in the centrifugal barrier of the
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FIGURE 2.4: Avoided crossing produced by LBB. At the frequency νBB at
which the LBB laser is resonant, an avoided crossing occurs. The excited
molecular state is then "dressed" with the electronic-ground-state molecular
state and one LBB photon, and as a consequence the photoassociation laser
LFB (red dashed line) is not resonant anymore. The photoassociation-induced
losses are thus canceled when the frequency νBB matches the resonance fre-
quency. As a result, more Rb atoms are detected after Stern-Gerlach separa-
tion when LBB is resonant than when it is non-resonant.

corresponding potential39. Such a state is present in the 87Rb-88Sr mixture, enhancing the
p-wave scattering cross-section, which explains our ability to detect a N = 3 molecular state
via two-colour spectroscopy — see next paragraphs.

The hyperfine contribution | f , m f 〉 of the detected molecular state is not "visible" on ab-
sorption pictures, as it is for the initial scattering state, but it can be extracted by measuring
the binding energy h× (νBB− νFB) as a function of the applied magnetic field B — see Chap-
ter 3. At magnetic fields of a few G, the Zeeman energy associated with a single Rb atom in a
given m f state of the f = 1 manifold is Em f (B) = g f m f µB B, where µB = h× 1.3996 MHz/G
is the Bohr magneton and g f ' −1/2 is the f = 1 low-field g-factor of 87Rb — see Ref. [50]
and Chapter 5, Figure 5.8. The g f -factors g f ' +1/2 of the f = 2 manifold is inverted
compared to f = 1. Accordingly, the low-field differential Zeeman shifts are respectively
h×−0.7 MHz/G and h×+0.7 MHz/G between adjacent m f -states in the f = 1 and f = 2
manifolds40. Thus, an ambiguity may arise: a molecular state detected by recovering losses
in the | f , m f 〉 = |1, 0〉 entrance channel and for which the measured binding energy is
"moving" as h × +0.7 MHz/G can be either |1,+1〉 or |2,−1〉, leading to a potential error

39This is referred to as a shape resonance — see Subsection 2.1.6.
40By differential Zeeman shift between adjacent m f -states we mean the difference in Zeeman energy between a

state of quantum number m f + 1 and a state of quantum number m f , within the same f manifold.
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of h × 6.835 GHz (see Figure 5.7) in the estimation of the real binding energy41,42. To lift
this ambiguity, one has to detect the molecular state in both f = 1 and f = 2 manifolds, as
we did for the rovibrational |ν, N〉 = |66, 0〉 bound states in the 87Rb-87Sr mixture and the
|ν, N〉 = |66, 2〉 and |ν, N〉 = |65, 3〉 bound states in the 87Rb-88Sr mixture — see Table 3.2,
Chapter 3.

The rotational quantum number N defines the parity (−1)N of the initial scattering state
and of the detected molecular state43. One-photon electric dipole transitions only connect
states with opposite parity, thus for the two-photon detection scheme the initial scattering
state and the detected molecular state must have the same parity44. Therefore, we ex-
pect the change in rotational quantum number compared to the initial state to be either
∆N = 0, 2, 4, ... Note that this selection rule does not require any knowledge about the elec-
tronically excited molecular state that LFB couples to the initial state. Since at our ultracold
temperatures we expect the initial state to be N = 0, as explained above, in the early days of
the ground-state spectroscopy we assumed that we couldn’t detected molecular states with
N = 3. This assumption proved wrong in the 87Rb-88Sr mixture, where the p-wave scatter-
ing cross-section N = 1 is enhanced, allowing to reach an N = 3 bound state with ∆N = 2.
This error led to the impossibility to fit a C6 coefficient that would match the binding ener-
gies observed in all the isotopic mixtures that we investigated45, and it took more than one
year of investigation of the 87Rb-87Sr mixture via two-colour and Feshbach spectroscopy, and
a new fit procedure, to understand and solve this discrepancy. Our message to molecular
spectroscopists is thus the following. Do not overestimate your ability to attribute quantum
numbers to molecular states, and do not take for granted selection rules as unexpected or
even unknown phenomena — see Section 5.5 — might make you able to detect unexpected
bound states.

41Note that the binding energy itself (defined for a molecular state of given f , m f with respect to the atomic
threshold of same f , m f ) doesn’t change with the value of the magnetic field, only the two-colour detuning that we
use to measure binding energies experimentally.

42The difference in zero-field hyperfine energy between an f = 1 atom pair state and an f = 2 molecular
state is not exactly h× 6.835 GHz, due to the molecular correction to the Rb hyperfine constant — see Chapter 5,
Equation 5.53. However, this correction is much smaller than h× 6.835 GHz, as is obvious from Figure 5.9, and the
attribution of the f quantum number is thus unambiguous if both f = 1 and f = 2 molecular states are detected.
The measured corrections to the atomic hyperfine energy are denoted as δEhf in our paper presented in Chapter 3.

43The parity ± of the Hund’s case (b) basis functions are (−1)N+s (where +1 and −1 indicate the parity + or
− respectively) where s = 0 for Σ+ electronic terms [57]. See Section 4.1 for a discussion on the coupling cases of
ground and electronically excited RbSr.

44At least for electric dipole transitions. Electric quadrupole/octupole, magnetic dipole/quadrupole, ... transi-
tions are orders of magnitude weaker and are unlikely to lead to detectable losses at our relatively low photoasso-
ciation laser intensities.

45More precisely: the incorrect C6 estimated by fitting the 4 binding energies measured at the time in the 87Rb-
88Sr and 87Rb-84Sr mixtures implied the presence of a bound state in the 87Rb-87Sr mixture, at a binding energy
which we couldn’t observe.
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FIGURE 2.5: Potential energy experienced by a colliding 87Rb-84Sr atom pair
with rotational quantum number N. The larger the C6 coefficient of the PEC
Vg(R), the lower the height of the centrifugal N > 0 barriers. At our ultracold
temperatures the collisional energy E ∼ kB × 1.0 µK is much smaller than the
height of the first centrifugal barrier N = 1, thus the collisional cross-section
is largely dominated by N = 0 (i.e. s-wave) scattering states. An exception
arises in the 87Rb-88Sr mixture, for which a state bound in the N = 1 thermal
barrier enhances the p-wave cross-section.

2.2.2 Magnetic Feshbach spectroscopy

We report in the publication presented in Chapter 6 the first observation of magnetic Fesh-
bach resonances between alkali and closed-shell atoms (Rb and Sr respectively in our exper-
iment). Magnetic Feshbach spectroscopy proved to be an invaluable tool in our quest of the
understanding of the ground-state PEC of RbSr. Upon application of an external magnetic
field B, a diatomic molecular state is brought into resonance with an atom pair scattering
state: the huge increase in collisional cross-section at the crossing point between the two
states leads to three-body losses that are observable experimentally. These processes are de-
scribed thoroughly in Chapter 5, and the results of the Feshbach spectroscopy are discussed
extensively in our publications presented in Chapter 3 and Chapter 6.
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Assignment of the quantum numbers of the detected RbSr molecular states

The hyperfine contribution | f , m f 〉 of the initial scattering state is perfectly know, as in two-
colour spectroscopy. The state-specific detection is obtained through Stern-Gerlach separa-
tion of the Rb atomic cloud and standard absorption imaging. The hyperfine contribution of
the detected molecular state is again "invisible" on absorption pictures, and in that case has
to be inferred from the Zeeman crossing diagrams shown in Chapter 6. The more resonances
are measured, the less ambiguous the attribution of the molecular hyperfine quantum num-
bers is.

Three mechanisms that lead to Feshbach resonances in RbSr are presented in Sections 5.3,
5.4 and 5.5 respectively, and are subject to different selection rules regarding parity. Mecha-
nism I and II couple molecular states of the same parity N, which implies that in the s-wave
regime only N = 0 molecular states are detected through loss spectroscopy. Mechanism
III, on the other hand, couples N = 0 scattering states to N = 2 molecular states only and
thus only such molecular states are detected. Again, the p-wave cross-section of 87Rb-88Sr is
enhanced. Accordingly, we should be able to detect N = 1 molecular states through mech-
anism I and II in this mixture, and N = 1, 2 and 3 states through the (weak) mechanism III
owing to its selection rule |N − 2| ≤ N′ ≤ |N + 2|. We didn’t try to detect such states to this
date, but will do so in the near future.

We stress again that at the start of the magnetic Feshbach spectroscopy, we didn’t expect
to be able to detect N = 2 molecular states, because we thought that only Mechanism I and
II could lead to RbSr resonances. The narrow anisotropic resonances induced by Mechanism
III were an experimental discovery. Therefore, at the risk of repeating ourselves: be very
open-minded about the quantum numbers characterizing the molecular states you detect,
because their attribution might prove non-trivial.
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Chapter 3

Publication: The RbSr 2Σ+ ground
state investigated via spectroscopy
of hot and ultracold molecules

Phys. Chem. Chem. Phys. 20, 26221 (2018)

Alessio Ciamei*a, Jacek Szczepkowski*b, Alex Bayerle*a,Vincent Barbéa, Lukas Reichsöllnera,
Slava M. Tzanovac, Chun-Chia Chena, Benjamin Pasquioua, Anna Grocholab, Pawel Kowal-
czykd, Wlodzimierz Jastrzebskib and Florian Schrecka

Abstract

We report on spectroscopic studies of hot and ultracold RbSr molecules, and combine the
results in an analysis that allows us to fit a potential energy curve (PEC) for the X(1)2Σ+

ground state bridging the short-to-long-range domains. The ultracold RbSr molecules are
created in a µK sample of Rb and Sr atoms and probed by two-colour photoassociation spec-
troscopy. The data yield the long-range dispersion coefficients C6 and C8, along with the total
number of supported bound levels. The hot RbSr molecules are created in a 1000 K gas mix-
ture of Rb and Sr in a heat-pipe oven and probed by thermoluminescence and laser-induced
fluorescence spectroscopy. We compare the hot molecule data with spectra we simulated
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using previously published PECs determined by three different ab-initio theoretical meth-
ods. We identify several band heads corresponding to radiative decay from the B(2)2Σ+

state to the deepest bound levels of X(1)2Σ+. We determine a mass-scaled high-precision
model for X(1)2Σ+ by fitting all data using a single fit procedure. The corresponding PEC
is consistent with all data, thus spanning short-to-long internuclear distances and bridging
an energy gap of about 75% of the potential well depth, still uncharted by any experiment.
We benchmark previous ab-initio PECs against our results, and give the PEC fit parame-
ters for both X(1)2Σ+ and B(2)2Σ+ states. As first outcomes of our analysis, we calculate
the s-wave scattering properties for all stable isotopic combinations and corroborate the lo-
cations of Fano-Feshbach resonances between alkali Rb and closed-shell Sr atoms recently
observed [66]. These results and more generally our strategy should greatly contribute to
the generation of ultracold alkali – alkaline-earth dimers, whose applications range from
quantum simulation to state-controlled quantum chemistry.

3.1 Introduction

Production of ultracold molecules composed of one alkali and one alkaline-earth(-like) atom
is being pursued with increasing effort over the last years, boosted by the achievement of
quantum degeneracy for gases of alkaline-earth atoms and atoms with similar electronic
structure [67–69] These heteronuclear open-shell molecules possess a 2Σ electronic ground
state. In the rovibronic ground state, they exhibit a non-zero electronic spin angular momen-
tum and a strong permanent electric dipole moment. These properties make them suitable
for quantum simulations of magnetism and topological quantum phases mediated by the
induced electric dipole-dipole interaction [32, 70–73]. Molecules with 2Σ ground state could
also be used as sensitive magnetic field sensors [74], quantum computing platforms [75],
and probes of parity-violations and variation of the proton-to-electron mass ratio [76–78]. If
one can produce a quantum degenerate gas of molecules, where all degrees of freedom are
under control, one can study quantum chemical reactions and their dynamics at the most
fundamental level, with full control over the reactants, in dependence of electromagnetic
fields, and detecting reaction products [72, 73, 79–82].

In order to create molecules at ultracold temperatures and to understand quantum chem-
istry processes, an accurate molecular model is needed. Recently ab-initio calculations for al-
kali – alkaline-earth(-like) molecules have provided potential energy curves (PECs), perma-
nent electric dipole moments and transition dipole moments, and a few attempts at bench-
marking theories with experiments have been recorded [83–89]. The precision of ab-initio
calculations is typically not enough to reliably predict the properties that need to be known
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to form ultracold molecules, such as molecular binding energies. Theory must therefore be
complemented by spectroscopy experiments.

Different spectral ranges can be explored with the help of various types of spectroscopy,
three of which being relevant for the present work. Photoassociation (PA) spectroscopy of ul-
tracold atoms provides data with precision and accuracy reaching down to the kHz level [63,
90, 91]. PA spectroscopy favours the production of weakly-bound molecules, since their
wavefunction has the best overlap with the large wavefunction describing colliding atoms.
Knowledge of these weakly-bound levels is sufficient to determine the long-range behaviour
of the PECs [92, 93]. Thermoluminescence and laser induced fluorescence (LIF) spectroscopy
in high-temperature ovens provide spectra with many optical lines at a fraction of cm−1

precision [83, 86, 94]. Thermoluminescence and LIF spectra are usually dominated by the
radiative decay towards the most bound levels of the ground-state potential and therefore
allow to determine the behaviour of the PECs in a range of internuclear distances centred
around the potential equilibrium distance.

In this paper we present two independent experimental investigations of alkali – alkaline-
earth RbSr molecules, two-colour PA spectroscopy of ultracold Rb - Sr mixtures, and thermo-
luminescence/LIF spectroscopy of hot molecules, both carried out for the first time on this
system. By combining the results from both experiments in a joint analysis and exploit-
ing three previously reported state-of-the-art ab-initio calculations [95, 96], we can provide a
PEC for RbSr ground-state molecules representing accurately all our experimental data and
smoothly bridging the gap between the two spectral ranges investigated. We also determine
the molecular constants of the X(1)2Σ+ and B(2)2Σ+ states, and dispersion coefficients of
the X(1)2Σ+ state. We use these fitted PECs to benchmark the ab-initio calculations, which
come from three independent theoretical methods. Thanks to this analysis, we can infer the
molecular spectra with sufficient accuracy to guide future experiments (e.g. STIRAP path to-
wards rovibronic ground state [97–99]), as well as atomic properties such as scattering cross
sections and magnetic Fano-Feshbach resonances.

This manuscript is structured as follows. In Section 3.2, we summarize the experimen-
tal and theoretical information currently available on molecular RbSr and we introduce the
molecular potentials that we investigate. In Section 3.3, we present two-colour PA spec-
troscopy of three RbSr isotopologues performed on µK atomic mixtures. We use the PA
spectroscopy results to fit a model from which we extract the long-range dispersion coeffi-
cients C6 and C8 along with the zero-energy semi-classical action. Based on this spectroscopy
type alone, we calculate the s-wave scattering properties of all isotopic combinations of Rb
and Sr, and explain the location of magnetic Fano-Feshbach resonances observed in previous
work by some of the authors [66]. The Fano-Feshbach resonances are then included in the
fit to provide a single comprehensive model. We corroborate this analysis by comparison
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with independent cross-thermalization experiments. In Section 3.4, we present the thermo-
luminescence spectroscopy and LIF spectroscopy in a 1000 K heat-pipe oven. We detail the
production of the molecular gas sample and its interrogation. We compare the recorded
spectrum with three simulated spectra recreated starting from three ab-initio theory calcu-
lations. From this comparison we identify 24 band heads in the data and give the fitted
Dunham coefficients, which describe the lowest vibrational energy levels of the ground and
first excited 2Σ+ states. In Section 3.5, we use the results from both types of spectroscopy
to refine the three ab-initio ground-state potentials via a direct potential fit of an analytic
function. We discuss the final results and how they compare with theory. In Section 3.6, we
conclude and give an outlook.

3.2 RbSr state of the art

We first introduce the molecular structure of RbSr and the results of previous studies. RbSr
has recently been the subject of theoretical works [18, 95, 96, 98, 100], two of which [95, 96]
cover the spectral region that we are investigating and provide state-of-the-art PECs based
on ab-initio calculations. In Ref. [95], Żuchowski, Guérout, and Dulieu compare two differ-
ent methods. The first is a full-configuration-interaction (FCI) treatment of RbSr, represented
as a molecule with 3 valence electrons subject to an effective core potential (ECP) comple-
mented with a core polarization potential (CPP), which is referred to as FCI-ECP+CPP. The
second is a spin-restricted coupled-cluster (RCC) method, applied to a 19 electron prob-
lem subject to a fully-relativistic small-core ECP with single, double and triple excitations,
referred to as RCCSD(T). In Ref. [96], Pototschnig et al. provide PECs obtained via multicon-
figurational self-consistent field calculations, involving ECP and CPP, followed by second
order multireference configuration interaction, which we label MRCI in the following. For
all three methods, PECs of the non-rotating molecule are calculated without or with inclu-
sion of the fine-structure Hamiltonian, resulting in Hund case (a,b)5 or (c) representation,
respectively.

Experimental investigation of RbSr has been restricted so far to Helium-nanodroplet-
assisted spectroscopy [101, 102]. In these experiments a supersonic jet of He droplets is se-
quentially injected into pickup cells containing Rb or Sr, which can get caught on the droplet
surface and reactively collide forming a RbSr molecule. In contact with superfluid He, RbSr
further relaxes to its vibronic ground state, which greatly simplifies spectroscopic studies.
Extensive spectroscopy data were collected via resonance-enhanced two-photon ionization,
elucidating the electronic structure of RbSr in the spectral region 11600− 23000 cm−1, where
the precision was limited by line-broadening due to the coupling of RbSr to the He droplet.

5Hund cases (a) and (b) are equivalent for non-rotating molecules.
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Remarkably, RbSr desorbed from the droplet upon laser excitation, allowing to record fluo-
rescence of free RbSr molecules and to extract the harmonic constant of the ground state. The
experimental value was consistent with theoretical predictions, however the measurement
precision was not sufficient to discriminate between the three aforementioned high-precision
theoretical PECs.

The electronic states relevant to the present work are those dissociating into the two low-
est atomic asymptotes Rb(5s 2S) + Sr(5s2 1S) and Rb(5p 2P) + Sr(5s2 1S), see Figure 3.1.
Our thermoluminescence spectra are dominated by transitions between levels belonging to
the X(1)2Σ+ and B(2)2Σ+ states. Two-colour PA spectroscopy explores the X(1)2Σ+ ground-
state potential, by using intermediate molecular levels supported by potentials dissociating
into the Rb(5s 2S) + Sr(5s5p 3P) asymptote, see Figure 3.1. From our combined measure-
ments we therefore derive quantitative information about the X(1)2Σ+ and B(2)2Σ+ states.
Since for both states the projection Λ of the electronic angular momentum on the internuclear
axis is zero, spin-orbit coupling vanishes and Hund case (b) is the appropriate representa-
tion for the rotating molecule [57]. The corresponding basis vectors are |Λ, N, S, J〉, where
N is the momentum given by the coupling between the corresponding angular momentum
vector of Λ and the nuclear orbital momentum, S is the electron spin and J is the total elec-
tronic angular momentum. Moreover, both the atomic and molecular levels are described
by the total angular momentum of the Rb atom [66], labelled F for the molecule and f Rb for
the atom.
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FIGURE 3.1: The potential energy curves calculated using the MRCI
method [60] for all states correlating to the Rb(5s 2S) + Sr(5s2 1S),
Rb(5p 2P) + Sr(5s2 1S) and Rb(5s 2S) + Sr(5s5p 3P) asymptotes. The solid
black lines denote 2Σ+ states, the dashed red lines 2Π states, the dotted blue
line a 4Π state and the dash-dotted green line a 4Σ+ state.
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3.3 PA spectroscopy of weakly-bound levels

In this section, we study the bound levels supported by the X(1)2Σ+ RbSr ground-state po-
tential close to the dissociation threshold using µK atomic clouds. We first describe the two-
colour photoassociation spectroscopy we use to observe and characterize weakly-bound
RbSr molecular levels. We then present the characteristics of the atomic mixture samples
studied here. We give the spectroscopy results and discuss their uncertainties. We detail
our data analysis and discuss the physical quantities that can readily be extracted from this
type of data, such as the zero-energy semi-classical action and the van der Waals dispersion
coefficients, which determine the spectrum of weakly-bound levels and the atomic scatter-
ing properties. We use our findings to confirm the identification and position of recently
observed Fano-Feshbach resonances [66], and include these data into our analysis. Finally,
we corroborate the overall analysis by comparing the s-wave scattering lengths inferred by
our model with the results of cross-thermalization measurements.

3.3.1 Overview of two-colour photoassociation spectroscopy

We carry out two-colour PA spectroscopy to observe weakly-bound X(1)2Σ+ levels and mea-
sure their energies referenced to the energy of the atomic scattering state Rb(2S1/2, f Rb =

1)+Sr(1S0). Two-colour PA spectroscopy exploits the presence of an optically-excited molec-
ular level e, which is coupled to an atom-pair state a by the free-bound laser LFB with fre-
quency fFB. When this laser is resonant with the a to e transition, pairs of colliding atoms
a are transferred to e, from where they spontaneously decay to low-lying molecular levels,
resulting in atom loss.6 If an additional bound-bound laser LBB with frequency fBB is tuned
on resonance with a molecular transition between e and a weakly-bound molecular level m
of the X(1)2Σ+ ground state, a significant light shift pushes e out of resonance with LFB. The
loss induced by LFB is then suppressed, resulting in an atom number peak when varying the
frequency of LBB, see the example in Figure 3.2. The energy E of the molecular level m refer-
enced to the energy of the atom pair a is directly given at this peak by E = h× ( fBB − fFB),
where h is the Planck constant. In the limit of low temperature and small external fields, the
molecular binding energy Eb is equal to E for levels with F = 1, and Eb = E + Ehf for levels
with F = 2, where Ehf is the Rb hyperfine splitting.

In order to detect weakly-bound levels up to the least bound ones, we exploit similarly
weakly-bound levels supported by the electronically excited potentials correlating to the
Rb(5s 2S1/2) + Sr(5s5p 3P1) asymptote [51, 95], see Figure 3.1. These levels provide suffi-
cient Franck-Condon factors between e and m, while the narrow linewidth of the nearby Sr

6We confirm that such loss originates from the formation of RbSr molecules and not Rb2 or Sr2 molecules, by
verifying that the loss only occurs if both elements are present.
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FIGURE 3.2: Typical two-colour photoassociation spectroscopy signal. The
plot shows the number of Rb atoms in the f Rb = 1, mRb

f = 1 level normalized

to the atom number in the other two f Rb = 1, mRb
f levels, as function of the

frequency difference between LBB and LFB, recorded during a scan of the LBB
frequency, while LFB is on resonance with an a to e transition. This signal
corresponds to the {ν = 66, N = 0, F = 1} level of the 87Rb-88Sr ground-
state potential, see Table 3.2.

intercombination transition results only in small losses and heating by off-resonant scatter-
ing of photons on Sr atoms.

3.3.2 Sample conditions and spectroscopy setup

We prepare the desired ultracold mixtures of Rb - Sr isotopes as in our previous works [52,
66, 103]. We keep the mixture in a crossed-beam dipole trap formed by one 1064-nm hori-
zontal elliptical beam with a vertical waist of 19(1) µm and a horizontal waist of 313(16) µm,
and one 1064-nm (or 1070-nm) vertical beam with a waist of 78(2) µm (or 90(5) µm). When
studying 87Sr, we add a 532-nm horizontal beam with vertical (horizontal) waist of 19(1) µm
(219(4) µm) to increase the trap depth, in order to capture more Sr atoms. We prepare 87Rb in
its hyperfine ground level (2S1/2, f Rb = 1) with almost equal population of the Zeeman sub-
levels mRb

f = 0,±1. During PA spectroscopy, we measure each mRb
f population separately

via time-of-flight expansion in a Stern-Gerlach magnetic field gradient. Bosonic Sr isotopes
84Sr and 88Sr have zero nuclear magnetic moment leading to a structureless 1S0 ground state.
Fermionic 87Sr has a non-zero nuclear magnetic moment of iSr = 9/2 and is prepared in the
stretched level mSr

i = 9/2 or mSr
i = −9/2 via optical pumping.

The atomic samples used to study 87Rb84Sr and 87Rb88Sr molecules have a tempera-
ture of 1.0(1) µK, average densities of 0.3 − 4 × 1012 cm−3 for Sr and 2 − 7 × 1012 cm−3

for Rb (summing over all mRb
f levels), and the trap frequencies are

{
ωx, ωy, ωz

}
= 2π ×
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{66(6), 57(6), 560(50)} Hz for Sr and 2π × {110(10), 95(9), 950(80)} Hz for Rb,78 where
the z-axis is vertical. The samples used to study the fermionic 87Rb87Sr molecules have
a temperature of 1.5(1) µK, average densities in the range 2 − 6 × 1011 cm−3 for Sr and
0.8 − 3 × 1012 cm−3 for Rb, and trapping frequencies in the range

{
ωx, ωy, ωz

}
= 2π ×

{70− 80, 55− 70, 590− 640} Hz for Sr and 2π × {110− 130, 95− 125, 820− 930} Hz for
Rb.

The PA beam, containing both LFB and LBB, propagates horizontally at a ∼ 30◦ angle
from the axis of the horizontal dipole trap and has a waist of either 60(1) µm or 110(10) µm,
depending on the transition strength and the available laser power. LFB and LBB are derived
from the same master oscillator, either via injection-lock or beat-lock, which ensures good
coherence between them (typically below 100 Hz for injection-locked and∼ 30 kHz for beat-
locked lasers). We apply a homogeneous magnetic field in the range of 0 to 20 G. We vary
the polarization and frequency of LFB,BB as required to optimally detect a specific molecular
level. We adjust the pulse time and power of LFB in order to induce 70 to 90 % loss of Sr
atoms. The LBB intensity is chosen such as to obtain a good signal-to-noise ratio for the
two-colour PA signal, while not being limited by off-resonant scattering of photons on Sr
atoms.

3.3.3 Experimental results

We have observed a total of 10 molecular levels via two-colour PA spectroscopy, of which
we report the energies E in Table 3.1. We also report the one-colour PA lines used, the type
of transition induced, the angular momentum projections involved and the bound-bound
Rabi frequency, if characterized. Levels with negative values of E are necessarily levels with
F = 2. The typical error of Eb is significantly larger than the uncertainty of h× ( fBB − fFB),
and is the result of several sources of uncertainty.

The first significant error contribution comes from the differential Zeeman shift between
the atom-pair level a and the molecular level m. In order to minimize this contribution, we
exploit the fact that, in the case of equal spin quantum numbers F = f Rb and mF = mRb

f , this
shift is vanishingly small for weak binding energy of the molecular level m, see the example
of Figure 3.3. We thus drive two-colour transitions between the atom pair in f Rb = 1 and
molecular levels with F = 1 and mF = mRb

f . For the example of Figure 3.3 with mF = mRb
f ,

we derive a small differential magnetic moment of−2.0(2.0) kHz/G. Such shift extrapolated
to all measured points results in a maximum systematic shift in the range 0.2− 20.0 kHz. For

7The error bars on the trap frequencies are dominated by the uncertainty on the waists previously stated.
8The sample used to detect the 87Rb88Sr level at a binding energy of h × 459 MHz has a temperature of

1.5(1) µK, average densities 6.4(2.2)× 1012 cm−3 for Sr and 8.4(3.0)× 1011 cm−3 for Rb, and trapping frequencies{
ωx , ωy, ωz

}
= 2π × {57(7), 8(1), 930(100)} Hz for Sr and 2π × {97(10), 14(2), 1600(200)} Hz for Rb.
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TABLE 3.1: Results of two-colour PA spectroscopy. The energy E is given
by the two-colour frequency detuning E/h = νLBB − νLFB at B = 0 G. ∆ is
the detuning of LFB from the Sr 1S0 −3 P1 transition for bosonic molecules
and from the Sr (1S0, f Sr = 9/2)− (3P1, f Sr = 11/2) transition for 87Rb87Sr
molecules. The column labelled “Transition” shows the type of transition
addressed by both LFB and LBB. The labels mat

f and mmol
F are the projections

of the total angular momentum on the quantization axis, neglecting nuclear
rotation and the nuclear spin of 87Sr, for the atomic and molecular levels,
respectively. For some excited levels mmol,e

F is not known. Such levels are all
high-field seeking. The last column gives the bound-bound Rabi frequencies,
if measured, between molecular levels m and e in the electronic ground and
excited states

Isotopologue E/h (MHz) ∆ (MHz) Transition mat
f , mmol,e

F , mmol,m
F Ω/2π (kHz/

√
mW/cm2)

87Rb84Sr 29.01(3) 173.5(2), 427.8(2) π 0, 0, 0 -, 16(1)
744.53(3) 173.5(2), 427.8(2) π 0, 0, 0 6.7(3), 285(10)

87Rb87Sr 199.97(17) 686.79(23) σ− −1,-,−1 6.0(5)
287.27(18) 686.79(23) σ− −1, -, −1 22.2(2.0)
1950.24(11) 686.79(23) σ− −1, -, −1 -

87Rb88Sr −6476.80(4) 41.39(60) σ± 0, -, 0 0.31(6)
−4677.78(15) 260.54(5) σ± 0, 0, 0 -
356.99(3) 41.39(60) π 0, -, 0 3.39(25)
458.90(22) 53.5(4) π 1, -, 1 3.1(1.3)
2153.83(15) 260.54(5) π 0, 0, 0 0.59(13)
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FIGURE 3.3: Molecular level energy E = h × ( fBB − fFB) as function of the
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squares) and (1,−1)− (1,−1) (red disks) are shown together with linear fits.
The error bars of the measurements are smaller than the symbol sizes.

molecular levels with F = 2, we drive magnetically insensitive two-colour transitions with
mF = mRb

f = 0. This results in a systematic shift of at the most 10 Hz for the measured
points.

The second error contribution is the light shift on the two-colour transition arising from
the spectroscopy lasers themselves. We have characterized it for some of the points and
estimated it for the others as explained in our previous work [48]. This amounts to shifts up
to 100 kHz for the typical laser powers used here.

The third error contribution is the light shift on the two-colour transition arising from the
dipole trap. Similarly to the previous error contribution, it is characterized for some of the
points, and estimated for the others. Given the trap used here, only the differential polar-
izability between atoms and molecules affecting the centre-of-mass Hamiltonian is relevant.
For Sr2 we have shown that the relative variation of the polarizability is smaller than 1 % [48].
Here we use the conservative value of 5 % to estimate the errors if not characterized.

The last error contribution comes from thermal shifts and is typically negligible, since a
temperature around 1 µK corresponds to an energy of about h× 20 kHz.
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3.3.4 Data analysis

Line attribution and estimation of physical quantities.

The first step in a quantitative analysis of the weakly-bound spectrum probed by two-colour
photoassociation is a line attribution, by which we mean the assignment of quantum num-
bers to both atomic and molecular levels used in the measurements of E. In particular, the
angular momenta F and N of molecular levels are not known, and their proper assignment
is crucial to the success of any model-fitting attempt. The angular momenta of atomic levels
are partially known: we measure the Rb atomic spin angular momentum f Rb = 1 and its
projection m f , and for 87Sr we measure the nuclear momentum projection mSr

i . However,
despite the low temperature of the sample, the atom-pair orbital momentum is not known,
but will be zero for the majority of cases. The possible molecular angular momenta can be
restricted by considering the atomic angular momenta and the changes of angular momen-
tum allowed by two-colour PA. All possible assignments of quantum numbers must then be
tested by the fit in order to find the best one.

Attributing quantum numbers to molecular levels is not trivial, especially in cases of
sparse spectral data like the present one. In the spectral region considered here, i.e. for
Eb << De with De the molecular potential depth, only universal, model-independent prop-
erties are invoked in order to attribute quantum numbers. These properties are:

1. the asymptotic behaviour of the interaction potential Vg as Vg(r) → −C6/r6 at large
internuclear distance r � RL, where RL is the LeRoy radius;

2. the presence of a strong repulsive wall at the inner classical turning point, i.e.

|
dVg

dr
(R1)| � |

dVg

dr
(R2)|, where R1 and R2 are the inner and outer classical turning

points for vibrational motion;

3. mass-scalability under the Born-Oppenheimer approximation, due to the presence of
a single electronic state.

Property 1 implies that the semi-classical phase accumulation of the zero-energy scattering
wavefunction Φ0

WKB = ΦWKB(Eb = 0) is well defined. Moreover, because of both property
2 and the condition Eb << De, ΦWKB is to a large extent model-independent [104]. Property
3 implies that a single-channel Hamiltonian, containing Vg(r), explains all spectral data for
different isotopologues via simple mass-scaling. Based on these considerations, a single
well-defined value Φ0

WKB referenced to an isotopologue of choice is sufficient to describe
our system. In this work we choose the isotopologue with highest abundance 85Rb88Sr as
our reference. As a consequence of these properties, we expect that two physical quantities
Φ0

WKB and C6 can be extracted from our data by fitting our complete dataset and assigning
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the quantum numbers consistently. We employ a simple semi-classical approach to find the
correct attribution of quantum numbers F and N [105].

We use this fitting strategy on the two-colour photoassociation spectroscopy data pre-
sented in Table 3.2 (labelled as “PA” in the “Method” column). Only a single attribution
of quantum numbers delivers a satisfactory fit, which we report in Table 3.2 in columns F
and N. This simple fitting strategy is thus sufficient to provide an unambiguous attribution
for these two quantum numbers, while the attribution of ν still presents some uncertainty.
As expected, the vast majority of observed molecular levels are either N = 0 or N = 2.
Even so, let us note the presence of two N = 3 levels for 87Rb88Sr, which might seem incon-
sistent with our ultracold sample temperature. However, due to the presence of a virtual
near-threshold level in this isotopologue, the amplitude of the p-wave scattering wavefunc-
tion at the one-colour PA Condon point is less than a factor of 3 smaller than that of typical
s-wave scattering states. The fit also provides a first estimation for Φ0

WKB and C6. We ex-
tract the zero-energy semi-classical action Φ0

WKB = 67.42(1), which gives 67 bound levels
for 87Rb84Sr and 87Rb87Sr, and 68 bound levels for 87Rb88Sr, and we extract the dispersion
coefficient C6 = 1.78(2)× 107 Å6 cm−1. Both quantities are determined with better accuracy
and precision in the following sections.

Extraction of physical quantities.

Based on the unambiguous quantum number attribution of F and N explained in the previ-
ous section, we check the consistency of our data with the universal long-range dispersion
and extract the relevant physical quantities from a fit of a second model. We assess consis-
tency with our data using the reduced chi-square as figure of merit:

χ̃2 =
1

DOF
×∑

i

(
Eexp

b,i − Eth
b,i

∆Eexp
b,i

)2

, (3.1)

where DOF is the number of degrees of freedom in the fit,9 i runs over the experimentally
observed levels, Eexp

b,i is the ith measured binding energy (BE), Eth
b,i is the ith predicted BE and

∆Eexp
b,i is the experimental error of Eexp

b,i . We consider χ̃2 to be good if close to unity, i.e. χ̃2 ' 1.
Since probability levels can only be associated to confidence intervals if the experimental
error distribution is known, we only state confidence intervals based on a given absolute
variation of χ̃2, without quantitative knowledge of the associated probability level.

We fit a single-channel Hamiltonian model to our experimental data [105] in order to re-
trieve the relevant physical information, i.e. the zero-energy semi-classical action and disper-
sion coefficients. This means we require consistency between BEs measured via two-colour

9The DOF are defined as the number of experimental data points minus the number of fit parameters.
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TABLE 3.2: List of observed molecular levels, with the experimentally de-
termined binding energies Eb and corresponding errors approximated by the
theoretically estimated shift from the variation of the hyperfine splitting δEhf.
The values Eth

b represent the binding energies given by the best fit in Sec-
tion 3.3.4. The quantum numbers {ν, N, F} identifying each level are also
shown. The vibrational quantum number ν is counted starting from the low-
est level, which has ν = 0. The “Method” column specifies whether the levels
are determined by two-colour photoassociation (PA) or Fano-Feshbach (FFR)
spectroscopy, or both

Isotopologue Eb/h (MHz) δEhf/h (MHz) Eth
b /h (MHz) ν N F Method

87Rb84Sr 29.01(3) 0.094 28.93 66 0 1 PA
744.53(3) 0.82 745.27 65 0 1 PA

87Rb87Sr 199.97(17) 0.34 199.90 66 2 1 PA,FFR
287.27(18)a 0.44 287.30 66 0 1 PA,FFR
288.2(4)a 0.44 287.30 66 0 2 FFR
1950.24(11) 1.56 1953.00 65 0 1 PA
5991.8(1.4) 3.30 5991.64 64 2 2 FFR
6233.8(1.0) 3.39 6232.14 64 0 2 FFR

87Rb88Sr 356.99(3)a,b 0.50 357.21 66 2 1 PA
357.87(4)a,b 0.50 357.21 66 2 2 PA
458.90(22) 0.59 459.12 66 0 1 PA
2153.83(15)a,b 1.67 2158.40 65 3 1 PA
2156.91(15)a,b 1.67 2158.40 65 3 2 PA
7401.01(66) 3.80 7397.47 64 0 2 FFR

a For the fit, we use the mean value of each pair.
b We use the measured energies of these pairs to estimate δEhf.
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PA spectroscopy and the bound spectrum supported by the Hamiltonian

H̃ = T̃ + Ṽint + Ṽrot = −
h̄2

2µ

d2

dr2 + Vg(r) +
h̄2

2µ

N(N + 1)
r2 , (3.2)

where T̃ is the kinetic energy operator, µ is the reduced mass, Ṽrot is the rotational energy
operator and Ṽint is the interaction operator corresponding for the ground state to Vg, which
obeys the properties enumerated in Sec. 3.3.4. For simplicity, we here use the generalized
Lennard-Jones model for Vg:

VLJ(r) =
C6

r6 ×
((σ

r

)6
− 1
)
−

NvdW

∑
n≥2

C2(2+n)

r2(2+n)
, (3.3)

which contains the leading order dispersion coefficients C6, C8, ..., C2(2+NvdW ). The maximum
order NvdW used in the long-range asymptotic expansion is chosen as the lowest number that
is able to provide a good fit of our data by the weakly-bound spectrum supported by VLJ .
The parameter σ is used to tune the short-range phase accumulation.

Due to the presence of a single electronic ground state in RbSr, the simple single-channel
model (3.2) with the potential of Equation 3.3 is sufficient to provide a unique attribution of
the quantum numbers F, N and ν for our experimental data. However, it is in general not
sufficient to fit high-resolution spectra to experimental accuracy. This is mostly due to the
fact that the two 2Σ+ PECs of F = 1 and F = 2 character are not exactly parallel [25]. At
large internuclear separation r the splitting Ehf(r) between these PECs is the Rb atom hy-
perfine splitting, whereas it is reduced by about 10 % at the bottom of the PECs. This effect
is due to the reduction of the electronic density at the Rb nucleus because of the bonding
with Sr. Although extremely small, it is responsible for the strongest Fano-Feshbach reso-
nances recently observed in RbSr [66]. In the present work, our precision and accuracy are
enough to reveal hints for this effect, appearing as significant differences in the BEs of levels
with the same ν and N quantum numbers but different F, see the pairs of BEs of 87Rb88Sr
{ν = 66, N = 2} and {ν = 65, N = 3} in Table 3.2. However, our data are not sufficient to
extract this shift reliably and include it in our model.10 We therefore keep a single-channel
model and take this effect into account as a systematic error contribution to ∆Eb,i. This con-
tribution is estimated using the aforementioned differences in BEs and knowing that the
change in hyperfine splitting scales as δEhf ∝ E2/3

b close to the dissociation threshold [26].
These estimated shifts δEhf,i, which dominate the errors ∆Eb,i, are of the same order of mag-
nitude as the shift predictions from ab-initio results [25], and are listed in Table 3.2. When

10The two observed shifts mentioned involve rotationally excited molecular levels with unknown spin-rotation
coupling, hence they do not directly yield the shift under discussion. The simplest experiment able to characterize
this shift requires the measurement of pairs of rotationless levels at different BEs.
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BEs of both hyperfine states are measured, the mean binding energy is used in the fit, see
Table 3.2. The quality of this estimation is assessed a posteriori via the χ̃2 of the best fit,
labelled χ̃2

min.
We fit the model Hamiltonian (3.2) to our PA spectroscopy data, using the parame-

ters {σ, C6, ..., C2(2+NvdW )} as independent fit parameters and we retrieve the zero-energy
semi-classical action Φ0

WKB = Φ0
WKB(σ, C6, ..., , C2(2+NvdW )). For NvdW = 1, 2, and 3 we

obtain for the best fits χ̃2
min = 41, 0.24 and 0.32 respectively. This shows that the inclu-

sion of C6 and C8 terms is necessary and sufficient to model our data. We obtain the best
fit parameters σ = 5.012941656601387 Å, C6 = 1.784438900566861 × 107 Å6 cm−1, C8 =

6.18126306008073 × 108 Å8 cm−1 with DOF = 5. The fit returns the physical quantities
C6 = 1.784(15)× 107 Å6 cm−1, C8 = 6.2(1.1)× 108 Å8 cm−1, and a corresponding Φ0

WKB =

67.4379(12).11 The errors stated in brackets correspond to, somewhat arbitrarily, the joint
confidence region with ∆χ̃2 = χ̃2 − χ̃2

min = 1. In Figure 3.4 we show the configurations
sampled by the fitting procedure that provide the evaluation of the confidence regions. The
dispersion coefficients are consistent with theoretical predictions [25, 106–108].

Atomic scattering properties at a given collisional energy and in the absence of external
magnetic fields can be directly derived from the fitted PEC [105]. Scattering wavefunctions
are obtained by integration of the nuclear Schrödinger equation for the appropriate angular
momentum N, i.e. H̃(N)ψN(r) = EcollψN(r), where H̃(N) is the fitted Hamiltonian (3.2)
with explicit N-dependence and Ecoll = h̄2k2/2µ is the collisional energy with wavevector
k. Of particular interest for the cold atoms community are the scattering properties in the
limit Ecoll → 0, which are dominated by s-wave scattering, i.e. N = 0. In this limit the scat-
tering phase shift δφ → −kas and the cross-section σs → 4πa2

s are determined by a single
parameter, the s-wave scattering length as, which we report in Table 3.3 for all stable iso-
topologues of RbSr.12. In Figure 3.5 we show the s-wave scattering wavefunctions ψ0(r) for
a collision energy Ecoll = kB × 1.0 µK, with kB the Boltzmann constant, where the effect of
the scattering length on both the asymptotic phase shift and the short-range scattering am-
plitude is evident. The s-wave scattering lengths derived from the fitted model for 87Rb84Sr
and 87Rb88Sr are in good agreement with those extracted from the cross-thermalization mea-
surements presented in Subsection. 3.3.5, which corroborates the overall analysis carried out
to this point.

11The number of vibrational levels is determined without uncertainty. All isotopologues have 67 vibrational
levels, except for the two with the highest mass 87Rb88Sr and 87Rb87Sr, which have 68.

12The s-wave scattering length as is calculated by fitting ψ0 at large r with the known asymptotic behaviour
ψ0(r)→ αr + β, where α and β are fit parameters. as is then given by as = −β/α [109].
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FIGURE 3.4: Confidence intervals. The plot shows χ̃2 for configurations sam-
pled close to the best fit configuration in the fit-parameter space, with its
projections on the 2D coordinate planes. The total confidence regions corre-
sponding to ∆χ̃2 < 1, used for error estimates, are indicated as green balls in
the centre.

Validation and inclusion of Fano-Feshbach spectroscopy.

The model described in the previous section is also sufficient to infer within a few Gauss
the resonant magnetic field of the magnetically-tunable Fano-Feshbach resonances (FFRs)
present in RbSr. Let us note that we can only derive FFR locations from the fitted PEC with
experimental accuracy thanks to the extreme simplicity of the 2Σ+ ground state of RbSr [105,
110]. The existence and observability of this novel type of FFRs was theoretically predicted
a few years ago [25] and recently experimentally observed by some of the authors [66].

The best fit VLJ in the previous section (see Equation 3.3) predicts the location of FFRs
for fermionic 87Rb87Sr within 10 G and has been used to infer with the same accuracy the

TABLE 3.3: Inter-species s-wave scattering lengths in units of the Bohr radius

84Sr 86Sr 87Sr 88Sr
85Rb 689(20) 90.6(2) 44.3(3) −35.8(1.0)
87Rb 92.7(2) −43.0(1.1) 1421(98) 170.3(6)
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tions at large distance where the phase shift encodes the short-range physics.
We note that two pairs of isotopes have incidentally almost the same reduced
mass, hence almost overlapping wavefunctions.
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location of one 87Rb88Sr FFR arising from the level {ν = 64, N = 0, F = 2}, subsequently
observed in an ultracold Rb-Sr mixture [66]. The BEs and corresponding quantum num-
bers of the bound levels inducing the observed FFRs derived with our model are reported
in Table 3.2, and marked with “FFR” in the “Method” column. As a complementary check,
we apply the fitting procedure to the data set including both PA and FFRs, which results
in the same unique solution. As in the case of two-colour PA spectroscopy data alone, in-
clusion of C6 and C8 is necessary and sufficient to model the complete data set. The best
fit parameters are σ = 5.02477864619132 Å, C6 = 1.776513404206001× 107 Å6 cm−1, C8 =

6.262096495696839× 108 Å8 cm−1, with DOF = 8 and χ̃2
min = 1.29. The fit returns the phys-

ical quantities C6 = 1.777(18) × 107 Å6$, cm−1 C8 = 6.3(1.3) × 108 Å8 cm−1, and a corre-
sponding Φ0

WKB = 67.4370(13). There is a significant increase in our figure of merit com-
pared to Sec. 3.3.4, which we attribute primarily to the inclusion of deeper F = 2 levels
with rather large δEhf, and secondarily to the change in DOF. The inferred s-wave scattering
lengths are consistent with those presented in Table 3.5.

The ability to predict FFRs with high accuracy is extremely valuable for mixtures with
one open-shell and one closed-shell atom, due to the low density of resonances in these
systems, in particular in the case of zero nuclear magnetic moment for the closed-shell
atom, as in bosonic RbSr isotopologues [25, 26, 111]. As an example of the outcomes of
our model, Figure 3.6 shows the energy of the atomic scattering levels and molecular levels
of 87Rb84Sr in dependence of magnetic field, and the locations of the predicted FFRs. Due
to favourable scattering properties, this isotopic combination is a very good candidate for
magneto-association [52].

3.3.5 An independent check of quantum number assignment:
inter-species thermalization

An improper quantum number attribution strongly affects the accuracy of the inferred scat-
tering lengths. We therefore experimentally characterize the thermalization of Rb atoms with
a Sr cloud to measure the Rb - Sr inter-species s-wave scattering lengths, and thus confirm
our quantum number attribution. The values of scattering lengths obtained by thermaliza-
tion experiments suffer from low precision, however they constitute a useful cross-check, as
they rely on simple collisional physics and are independent from our PA and Fano-Feshbach
spectroscopy experiments. We present thermalization experiments done with 87Rb-84Sr and
87Rb-88Sr. Trapped ultracold mixtures of 87Rb-87Sr show significantly stronger 3-body losses,
which limit the reliability of the data analysis for this particular mixture.
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Experimental setup and sample conditions.

The starting point of the thermalization measurement is an ultracold mixture composed
of 87Rb and either 84Sr or 88Sr, prepared as for spectroscopy experiments, with the ad-
dition of evaporative cooling by lowering the dipole trap potential in 6 s, followed by a
1 s re-compression of the potential, which is used to tune the atomic density and temper-
ature. After this preparation sequence, the sample has a temperature between 200 and
400 nK and contains 1 − 1.7 × 105 atoms of 84,88Sr and 50 − 70 × 103 atoms of 87Rb. The
typical shot-to-shot temperature fluctuation is 15 nK, while shot-to-shot atom number fluc-
tuations are 15× 103 and 5× 103 for Sr and Rb, respectively. The trapping frequencies in
our crossed-beam dipole trap are {ωx, ωy, ωz} = 2π × {35− 65, 20− 55, 500(25)}Hz for
Sr and {ωx, ωy, ωz} = 2π × {60− 105, 35− 90, 840(40)}Hz for Rb, respectively. The fre-
quency ranges in the horizontal x and y axes correspond to various trap re-compressions.
The relative uncertainty on these frequencies is less than 5 %. The difference of trap frequen-
cies between Sr isotopes is less than the uncertainty, hence negligible. The atomic densities
used here are nSr = 0.3− 3× 1012 cm−3, nRb = 0.7− 4.4× 1012 cm−3 for the 87Rb-84Sr mix-
ture and nSr = 1.7− 4.4× 1012 cm−3, nRb = 1.5− 5.4× 1012 cm−3 for the 87Rb-88Sr mixture.
The Rb sample, as in PA spectroscopy, is prepared in f Rb = 1 and is not spin-polarized.
Given the existence of a single electronic ground state, as can be considered independent of
f Rb and mRb

f .
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FIGURE 3.7: Inter-species thermalization. Evolution of Sr (black squares) and
Rb (red circles) temperature as a function of the hold time during thermaliza-
tion in (a) 87Rb -84 Sr mixture at an effective flux of Φ = 7.0× 1012 s−1 cm−2

and (b) 87Rb -88 Sr mixture at a flux of Φ = 1.9× 1013 s−1 cm−2. The lines are
exponential fits to the data.

Measurement strategy.

In order to observe inter-species collisions, we selectively excite the cloud of one species
and observe the ensuing inter-species thermalization. Since the dipole trap is roughly three
times deeper for Rb than for Sr, we excite the Rb cloud by scattering photons on Rb D2

line for a few µs. After this excitation, the mixture is kept in the trap for a variable hold
time t before a 17 ms time-of-flight expansion followed by absorption imaging. From the
absorption images, we extract temperatures and atom numbers of both species. The main
limitations to the precision of our measurement are shot-to-shot fluctuations in atom number
and temperature.

Experimental results.

We measure the evolution of temperature and atom number for each species as functions of
time. In Figure 3.7 we show an example for each isotopic combination. The temperature of
Sr smoothly evolves from the initial temperature Ti

E = TSr(t = 0) to the final equilibrium
temperature T f

E = TSr(t → ∞). By contrast, the temperature of Rb shows a sharp decrease
on a timescale of a few tens of ms from a temperature of a few µK down to 0.5− 0.7 µK,
after which the new equilibrium temperature T f

E = TRb(t → ∞) = TSr(t → ∞) is reached
smoothly.
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Extraction of collision cross sections.

We measure the thermalization time of both 87Rb -84 Sr and 87Rb -88 Sr mixtures. In the case
of close-to-equilibrium dynamics, the evolution of temperatures TRb,Sr(t) is described by
exponential functions with the same well-defined time constant τ. We analyse the thermal-
ization rate τ−1 using a well-known model [112, 113], which we detail in Sec 3.9.1. This
model gives the relation:

τ−1 ≈ 1
2.4

σRb - Sr ×Φ, (3.4)

where σRb - Sr = 4π a2
Rb - Sr is the collision cross section dependent on the inter-species s-wave

scattering length aRb - Sr. The value 2.4 in the denominator represents the average number
of collisions required for thermalization, when thermalization is fast compared to the trap
frequencies. Φ is an effective flux that encompasses the kinematic contribution, see Sec 3.9.1.
We fit our data for various effective fluxes and extract values for τ, shown in Figure 3.8.

The effective flux Φ is determined through the knowledge of the trap potential, atom
numbers and initial temperatures. All quantities are either measured or known from cali-
bration, with the exception of the initial temperature Ti

Rb of the Rb sample right after exci-
tation. Let us note that the excitation we apply experimentally is the injection of energy in
the form of both heating and displacement of the cloud. However, by assuming the regime
of close-to-equilibrium dynamics, we approximate the excitation to be solely an increase
in temperature. The excitation energy of Rb can be derived with good precision from the
atom numbers and the temperature evolution of Sr, since the system is isolated after the ex-
citation. The trapping potential can be approximated at these low temperatures by a three
dimensional harmonic oscillator potential giving E = 3 kBT energy per particle. The fi-
nal energy in the system E f must be equal to the initial one Ei, and under our assump-
tions these are E f = 3 kBT f

E(NSr + NRb) and Ei = 3 kB(NSrTi
E + NRbTi

Rb). We thus derive
Ti

Rb = T f
E + NSr

NRb
(T f

E − Ti
E).

Fitting the data of Figure 3.8 with Equation 3.4, we obtain the inter-species scattering
lengths |a87Rb -84 Sr| = 103+15

−10 a0 and |a87Rb -88 Sr| = 215+50
−40 a0, where a0 is the Bohr radius, and

where the errors are estimated from the residual sum of squares 5-fold increase. Let us note
that the variation of the average number of collisions required for thermalization, within the
meaningful range 2.4− 3.0 [113], leads to a variation of the scattering lengths smaller than
the stated error.

While for 87Rb -84 Sr the fit is satisfying, the fit of 87Rb -88 Sr is worse because of the two
points at highest Φ, which we include in the fit. For these two points the thermalization time
is comparable with the initial fast time scale of the Rb temperature evolution (see Figure 3.7),
suggesting a strong deviation from the close-to-equilibrium case, as expected from the bigger
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inter-species scattering length. Nonetheless even in the latter case, a meaningful scattering
length can be extracted with a correspondingly (larger) error. Finally, the 87Rb -87 Sr mixture
shows losses that we interpret as 3-body losses, which for similar densities are not observed
in the other mixtures investigated. From this observation, we derive that |a87Rb -87 Sr| �
|a87Rb -88 Sr| ' 200 a0.

The fitted (central) values of the inter-species scattering lengths are close to the ones in-
ferred from spectroscopy, which is an independent confirmation of our quantum number
attribution. However they are 10 %− 20 % higher. This is expected since the initial densi-
ties of Rb are underestimated by our model, which assumes thermalization. A Monte-Carlo
trajectory simulation would most likely improve the accuracy of the scattering lengths ex-
tracted from these thermalization measurements.
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3.4 Thermoluminescence and LIF spectroscopy of

deeply-bound levels

In the second experiment, we study the deeply-bound levels supported by the B(2)2Σ+ and
X(1)2Σ+ potentials via fluorescence spectroscopy of a 1000 K gas mixture of Rb and Sr. In
this section, we first describe the experimental setup we use to record the fluorescence from
RbSr molecules in a heat-pipe oven. We then explain how we simulate theoretical spec-
tra using three published sets of potential energy curves produced by independent ab-initio
methods [95, 96]. By comparing these spectra with our experimental data, we identify a few
band heads, from which we extract Dunham coefficients describing the deepest parts of the
B(2)2Σ+ and X(1)2Σ+ states. With the obtained two sets of Dunham coefficients, we repeat
the comparison procedure until we identify 24 band heads and produce final sets of Dun-
ham coefficients. Finally, we estimate the uncertainty of the Dunham coefficients resulting
from our analysis by a Monte-Carlo method.

3.4.1 Experimental setup

The measurements at high temperatures were performed in two steps. In the first step, we
record thermoluminescence spectra using the method and experimental setup described in
Ref. [83]. We therefore provide here only information specific to this paper. We produce
RbSr molecules in a dedicated dual-temperature heat-pipe oven. We place 10 g of metallic
strontium in the central part of the oven, which is heated to TSr = 1000 K, and 8 g of metallic
rubidium in the outer part, heated to TRb = 800 K. Both metals have natural isotopic com-
position. To ensure the stability of the heat-pipe operation, we use a buffer gas of helium
at a pressure of 30 Torr. At the applied temperatures the B(2)2Σ+ electronic state of RbSr is
thermally populated, and we record the fluorescence towards the X(1)2Σ+ electronic ground
state using a Bruker Vertex V80 Fourier Transform Spectrometer with a spectral resolution
of 0.16 cm−1 limited by its aperture size.

In the second step, we obtain spectra via laser induced fluorescence (LIF). We employ
a home-made 100 mW external-cavity diode laser whose wavelength is actively stabilized
using a HighFinesse WS7 wavemeter. By tuning the laser frequency to the centre of selected
band heads, we excite RbSr molecules to the B(2)2Σ+ state and record fluorescence to the
ground state with the same spectrometer as before. To increase the contrast between the
LIF and thermoluminescence signals observed simultaneously, we reduce the temperature
of the central part of the heat-pipe to TSr = 900 K.
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3.4.2 Simulations of the recorded spectra

In order to interpret the experimental spectra, we first simulate fluorescence spectra using
PECs and transition dipole moments computed theoretically, and compare theory and ex-
periment. The simulations start from three sets of PECs, obtained independently with FCI-
ECP+CPP [95], RCCSD(T) [95], and MRCI [96] methods. We calculate the energies of rovi-
brational levels of the B(2)2Σ+ and X(1)2Σ+ states by solving the radial Schrödinger equa-
tion with each of the three sets of PECs. All bound levels in the X(1)2Σ+ and B(2)2Σ+ states
are included in the simulations. The contribution of the A(1)2Π state in this spectral region
was found to be negligible. In our calculation we omit the fine structure splitting of molecu-
lar levels resulting from spin-rotational coupling. Indeed, the energy difference between fine
structure components with low rotational quantum numbers N′ contributing to a band head
formation is expected to be smaller than the spectral resolution of the measurement [94]. We
assume spectral lines to have a Gaussian profile with FWHM = 0.16 cm−1, which results
from the Fourier Transform Spectrometer working parameters. Intensities of all spectral
lines are calculated assuming thermal equilibrium in the central part of the heat-pipe. The
simulation procedure has been described in detail by Szczepkowski et al. Szczepkowski et
al., including equations necessary to perform the calculations.

The final step of the calculations is to average the simulated spectra of the most abundant
isotopologues of RbSr, weighted by their natural abundances (59.6 % for 85Rb88Sr, 22.9 % for
87Rb88Sr, 7.1 % for 85Rb86Sr, 5.1 % for 85Rb87Sr, 2.7 % for 87Rb86Sr and 1.9 % for 87Rb87Sr). As
a result, we obtain three sets of “theoretical spectra” to be compared with the experimental
data, shown in Figure 3.9. The analysis of the spectra reveals that the positions of the ob-
served band heads are defined by the 85Rb88Sr isotope alone, and other isotopes influence
mainly the band-head widths (broadened up to 0.08 cm−1). Thus we only take into account
the 85Rb88Sr isotope in the Dunham coefficients generation procedure described in the next
subsection. The influence of other isotopes is included again during the error estimation
process.

3.4.3 Results

In order to identify the observed band heads, we compare the thermoluminescence spectra
of RbSr with the simulated spectra based on the three theoretical methods [95, 96]. Unfor-
tunately, these simulations provide spectra of considerably different shapes for each theory
(see Figure 3.9) and only few experimental band heads can be identified unambiguously as
they appear in all three simulations.

To address this issue we record additional LIF spectra by tuning the excitation laser fre-
quency to the centres of already identified band heads. These new experimental data, shown
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FIGURE 3.9: Simulated thermoluminescence spectra based on the three sets
of theoretical PECs for the X(1)2Σ+ and B(2)2Σ+ states, calculated with (a)
RCCSD [95], (b) FCI-ECP+CPP [95], and (c) MRCI [96], compared with the ex-
perimental data (d). The positions of identified band heads are marked with
dashed lines and labelled with their vibrational quantum numbers ν′ − ν′′

(where primed and double primed symbols refer to B(2)2Σ+ and X(1)2Σ+,
respectively). The wavenumber scales of theoretical spectra are adjusted in
such a way that 0− 0 band heads are at the same position in all panels. The
well-resolved band heads used in the final fit of Dunham coefficients are
marked in red.
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in Figure 3.10, confirm the validity of the assignment in the case of six band heads. Using
the energy of experimental band heads and their assignment confirmed both by thermolu-
minescence and LIF spectroscopy, we fit preliminary Dunham coefficients for both X(1)2Σ+

and B(2)2Σ+ electronic states. The values of the ground state rotational constants (labelled
Y01 ≡ Be) were taken from theory for each set and fixed during the fit. We thus obtain three
sets of fitted coefficients, each corresponding to one theoretical method. This procedure is
described in detail in Ref. [83].

These fitted Dunham coefficients allow for a new prediction of the vibrational level en-
ergies in the X(1)2Σ+ and B(2)2Σ+ states, followed by an assignment of additional band
heads in the thermoluminescence spectrum. With the improved assignment a correction of
Dunham coefficients becomes possible, and we repeat the whole procedure until the final
identification of 24 band heads, whose energies are given in Table 3.4 as a Deslandres table.
To prevent mistakes in the assignment, only the 18 strongest band heads, whose energies are
written in bold in the table and whose positions are marked in red in Figure 3.9, were taken
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into account in the final fit of Dunham coefficients. As the outcome of this hot gas mixture
spectroscopy, the fitted coefficients describe the energies of the six lowest vibrational lev-
els ν′′ = 0− 5 in the ground state and the nine lowest vibrational levels ν′ = 0− 8 of the
B(2)2Σ+ state. The final values of the Dunham coefficients, given in Table 3.5, will be used
in the next steps of our analysis described in the following section.

TABLE 3.4: Deslandres table constructed for the observed band heads in the
experimental thermoluminescence spectrum of RbSr. The wavenumbers of
band heads are given in cm−1. The energies of the 18 strongest band heads
used in the final fit are written in bold.

ν′′ = 0 1 2 3 4 5 6
ν′ = 0 8856.81 39.55 8817.26 38.71 8778.55

58.63 58.61 58.66
1 8915.44 39.57 8875.87 38.66 8837.21 38.05 8799.16

58.52
2 8934.39 8820.25 36.6 8783.65

58.18 58.2
3 8992.57 38.89 8953.68 8841.85 35.84 8806.01

58.06 57.92
4 9050.63 39.03 9011.60 37.97 8973.63

57.6 57.53
5 9069.2 38.04 9031.16

57.34 57.35
6 9126.54 38.03 9088.51

57.17
7 9145.68 37.33 9108.35

56.82
8 9165.17

The uncertainties of the Dunham coefficients result mainly from the determination of the
positions and widths of the band heads, as many lines corresponding to transitions between
different rovibrational levels of the B(2)2Σ+ and X(1)2Σ+ states overlap in the spectra, and
thus only the top parts of the band heads are observed in our experiment. We use a Monte-
Carlo method to find the error associated with this problem. We randomly vary the positions
of individual band heads within a range of 0.46 cm−1. The choice for this range results from
the band-head half-widths, assumed arbitrarily to be 0.3 cm−1, combined with the maxi-
mum value of the isotopic shifts. We also vary the widths of individual band heads within
0.16 cm−1, a value that influences the number of rovibrational lines taken into consideration
in each case. We determine a set of Dunham coefficients for each random combination of
positions and widths. We repeat the procedure until the average values of all coefficients
becomes equal to the fitted values reported in Table 3.5. The final errors are defined for each
Dunham coefficient as three times their standard deviation.
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TABLE 3.5: The Dunham coefficients for the B(2)2Σ+ and X(1)2Σ+ states
of the 85Rb88Sr molecule based on the LIF and thermoluminescence spectra.
The three sets of coefficients for each state correspond to different values of
the ground state equilibrium distance re taken from theoretical calculations.
All values are in cm−1.

MRCI [96] FCI-ECP+CPP [95] RCCSD(T) [95]

X(1)2Σ+

Y10 40.39(72) 40.32(76) 40.31(76)
Y20 −0.39(11) −0.38(12) −0.38(12)

Y01 × 102 1.874a 1.84842a 1.79052a

Y11 × 104 −0.8(6) −1.1(1.1) −0.9(1.2)

B(2)2Σ+

Te 8847.92(80) 8847.66(80) 8847.66(80)
Y10 58.96(38) 58.95(39) 58.95(39)
Y20 −0.13(4) −0.13(5) −0.13(5)

Y01 × 102 1.932(4)b 1.952(5)b 1.893(5)b

Y11 × 105 −8.3(6.4) −3.4(6.7) −3.4(6.8)
a Values taken from theory and fixed during the fit.

b Values strongly correlated with Y01 of the X(1)2Σ+ state.
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3.5 Ab initio-based PEC fit

We now combine the results from both types of spectroscopy, at µK and 1000 K tempera-
tures, and perform a joint fit procedure in order to obtain a model representing the complete
spectrum of the X(1)2Σ+ ground state of RbSr. In this section, we first describe the specifics
of the problem we will address. We then submit and motivate our choice of representation
for the potential energy curves. We next detail all steps of our fitting procedure. Finally, we
present the results of our joint analysis and compare them with the predictions of the three
ab-initio theoretical methods we selected.

3.5.1 Statement of the problem

The goal of our data analysis is to provide a representation of the complete bound spec-
trum of the electronic ground state. This apparently contradicts the fact that, based on the
independent analyses of the weakly- and deeply-bound levels, only 15 % of the vibrational
levels, corresponding to less than 25 % of the well depth, were observed. Moreover, two-
colour photoassociation spectroscopy has very high accuracy and precision but only a few
weakly-bound levels have been probed, while thermoluminescence spectroscopy explored
a significantly bigger energy range but lacks rotational resolution and its precision is limited
to 0.16 cm−1. To the knowledge of the authors, such a problem has not been addressed be-
fore and requires a novel method of analysis able to exploit all information present in the
two data sets at our disposal.

An examination of the methods used in the previous sections shows how to overcome
this problem. The weakly-bound spectrum was analysed, without the need for ab-initio
PECs, via a direct potential fit of an analytic PEC, with the sole requirement of a correct
long-range behaviour, see Subsection 3.3.4. The deeply-bound spectrum was analysed by a
fit of Dunham expansion coefficients to band heads whose rovibrational composition was
determined by the simulated spectrum based on ab-initio PECs, see Subsections 3.4.2 and
3.4.3. Since the fitted Lennard-Jones PEC and the Dunham expansion have no predictive
power beyond the corresponding regions of definition, the results of those analyses are valid
separately but cannot be extrapolated to the region with missing data. However, a model
originating from ab-initio calculations, with an appropriate PEC for the X(1)2Σ+ state and a
correlated B(2)2Σ+ state is expected to be a good representation of the complete data set, ca-
pable of predictive power for the X(1)2Σ+ state, and easily refined in the future by inclusion
of new data.
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3.5.2 Representation of the X(1)2Σ+ and B(2)2Σ+ state PECs

We now choose a suitable representation of the RbSr X(1)2Σ+ and B(2)2Σ+ states. A some-
what similar problem, albeit considerably more intricate, arose in the case of the excited
13Σ+

g state in the homonuclear Li2 molecule accessed via the 13Σ+
g → a3Σ+

u system, see
Ref. [114]. In this case, Dattani and Le Roy were able to bridge a 5000 cm−1 gap in spec-
troscopy data, i.e. 70 % of the well depth, by performing direct potential fit of Morse/Long-
Range (MLR) functions to a rovibrationally resolved high-precision spectrum.13 The MLR
function appears to be particularly suited to represent the RbSr ground state. Indeed, since
the RbSr X(1)2Σ+ state is a single isolated electronic state and RbSr is a heavy molecule,
the MLR PEC can easily represent the long-range tail, Born-Oppenheimer breakdown ef-
fects are expected to be small [116]14, and damping functions are readily incorporated [119].
The B(2)2Σ+ state, relevant for thermoluminescence spectroscopy, is experimentally probed
only close to its bottom, far from other electronic states, so it can be explicitly included in
the analysis. However, compared to the case of Ref. [114], the precision of our thermolumi-
nescence data is significantly lower and lacks rotational resolution. As a consequence, for
reasons different from the case of Ref. [114], the fit is non-trivial and a specific method must
be devised.

The version of the MLR function used in this work is the same as in Ref. [114]:

VMLR(r) = De

[
1− u(r)

u(re)
e−β(yp(r),yq(r))·yp(r)

]2

, (3.5)

u(r) =
Nu

∑
i=1

dmi (r) ·
Cmi

rmi
, (3.6)

yx(r) =
rx − rx

e
rx + rx

e
, (3.7)

β
(
yp, yq

)
= ln

(
2De

u(re)

)
· yp(r) +

(
1− yp(r)

)
·

Nβ

∑
i=0

βi
(
yq(r)

)i , (3.8)

where De is the well depth, re is the equilibrium distance, u(r) is the function describing
the long-range behaviour, yx(r) is an x-order effective radial variable and β

(
yp, yq

)
is the

exponent coefficient of the radial variable yp
15. The functions dmi (r), explicitly included in

Equation 3.6, are Douketis-type [120] damping functions Ds
m(r) with s = −1 and adapted to

13Successively, the binding energies extrapolated in the gap region were experimentally confirmed within
1.5 cm−1 [115].

14Adiabatic corrections are similar to those in Rb2 [117, 118].
15Compared to Ref. [114] the notation is simplified because we set rre f = re, i.e. all effective radial variables are

referenced to re.



86
Chapter 3. Publication: The RbSr 2Σ+ ground state investigated via spectroscopy of hot

and ultracold molecules

RbSr by scaling of the radial variable via atomic ionization potentials [121] as explained in
Ref. [114]. The Cmi coefficients in Equation 3.6 are the Nu lowest order dispersion coefficients.

In order to represent the theoretical PECs by MLR functions we choose a family of these
functions and values of their parameters based on the available theoretical calculations. The
family of the MLR functions is defined by the choice of Nu in Equation 3.6, Nβ in Equa-
tion 3.8) and p, q. We use perturbation-theory results for C6, C8 and C10 available in the
literature [106] and set Nu = 3. This choice implies p > mlast − m1 = 4 and correspond-
ingly 1 < q < p [114], with a contribution to the asymptotic long-range tail of order
r−m1−p = r−6−p. We resolve this indefiniteness, together with the one of Nβ, by fitting the
MLR function to the three point-wise representations of ab-initio PECs in the region r ≥ 3.0 Å,
using the unweighted χ̃2 as figure of merit, with errors set to 1.0 cm−1. In all fitted cases we
obtain χ̃2

min ' 1.0 with “well-behaved” PECs, i.e. with a single inflection point, already
for Nβ = 5, and the best fits are obtained for low values of p, q. Hence, we eventually set
Nu = 3, Nβ = 5, p = 5 and q = 2, which we hold constant during later fits. Since our data
on deeply-bound levels are not rotationally resolved and since weakly-bound levels, within
our experimental precision, do not carry information on the equilibrium distance re, we set re

equal to the equilibrium distances from the theoretical calculations and hold it fixed during
fits. The remaining parameters De and βi are fitted to the three point-wise representations of
ab-initio PECs. This provides us with the three desired MLR functions representing the PECs
from the three theoretical calculations, which we later use as starting conditions for fitting
our experimental data. Since harmonic and first anharmonic contributions are sufficient to
represent the data, see Subsection 3.4.3, only the parameters that strongly affect the lowest
derivatives at r = re need to be fitted to the thermoluminescence data. These are the coef-
ficients βi with lowest i. In summary, in the following fitting procedure of all experimental
data, we will treat β0≤i≤2, C6, C8 and De as the only fitting parameters, retaining in this way
the theoretical shape of each PEC in the region where no data are available.

A well defined representation of the B(2)2Σ+ state is needed to simulate the thermolu-
minescence spectrum. We adopt a point-wise representation determined both by our ex-
periment and by theoretical calculations in the region of missing data. This is realized by
initializing the PEC with the ab-initio predictions and adapting it to fitted Dunham coeffi-
cients via the Inverted Perturbation Approach [122], see Subsection 3.5.3. The bottom part
of the potential, determined by the experiment, and the upper part, determined by theory,
are matched smoothly to provide a well depth referenced to that of the ground state. Within
this representation the fitting parameters are the Dunham coefficients, which provide the
link between the representations of the X(1)2Σ+ and B(2)2Σ+ states.
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3.5.3 Fit Method

We fit our model of the X(1)2Σ+ and B(2)2Σ+ states to experimental data both from two-
colour photoassociation and thermoluminescence/LIF spectroscopy. In particular, the fitted
experimental quantities for two-colour PA are binding energies, while in the case of thermo-
luminescence/LIF they are band-head wavenumbers and, with lesser precision, the overall
intensity profile. We recall that the fit parameters are those defining VMLR for the X(1)2Σ+

state and the Dunham coefficients of the X(1)2Σ+ − B(2)2Σ+ system. While the weakly-
bound spectrum and the band-head positions do not determine precisely the equilibrium
distances, the intensity profile carries this information together with the overall potential
shapes and can be used to adjust the equilibrium distance of the B(2)2Σ+ state with respect
to that of the X(1)2Σ+ state. The initial values for the fit parameters in VMLR are defined in
Subsection 3.5.2 for each ab-initio model, while the initial values for the Dunham coefficients
are those of Table 3.5. The figure of merit used in the fit is χ̃2, see Equation 3.1. In the fol-
lowing, we outline a single iteration step of our fit, which is applied to each ab-initio model,
while a future work will provide a detailed explanation [105].

We first generate the rovibrational levels of X(1)2Σ+, using the fitted Dunham coeffi-
cients, for the range v′′ = 0− 6 for N′′ = 0, and fit them together with the experimental
weakly-bound energy levels, via a direct potential fit of our model MLR PEC [105]. We
derive the B(2)2Σ+ state depth from the MLR De parameter and the Dunham coefficients.
We then construct the B(2)2Σ+ PEC via the Inverted Pertubation Approach, using both the
B(2)2Σ+ energy levels, generated with Dunham coefficients in the range v′ = 0 − 8 for
N′ = 0− 44, and the B(2)2Σ+ potential well depth. We simulate the thermoluminescence
spectra using the resulting PECs, in order to check the agreement of the simulated band-head
positions and intensity profiles with the experimental ones. Here the convergence of the fit
algorithm is checked and, if met, the calculation is stopped. Otherwise, we optimize the
equilibrium point of the B(2)2Σ+ state to maximize the agreement between the simulated
intensity profile and the experimental one. During this optimization, for each change of the
equilibrium point, the B(2)2Σ+ state is optimized against the X(1)2Σ+ state, which consists
in fitting the Dunham coefficients of the B(2)2Σ+ state keeping those of the X(1)2Σ+ state
fixed. With this new guess for the equilibrium distance of the B(2)2Σ+ state, we refit all
Dunham coefficients of both states, see Subsection 3.4.3, and repeat the iteration step.

3.5.4 Results and discussion

The fit outlined above is performed separately starting with FCI-ECP+CPP, RCCSD(T) and
MRCI ab-initio point-wise representations. In all cases we obtain good agreement between
our best-fit model and the binding energies and band-head positions. However, while in
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FIGURE 3.11: PECs of the X(1)2Σ+ state of RbSr. Top panel: theoretical PECs
corresponding to the three different ab-initio calculations considered in this
work. Bottom panel: PECs fitted to experimental data with initial fit param-
eters determined by each ab-initio method, see Subsection 3.5.3.

the case of MRCI and FCI-ECP+CPP potential energy curves, the B(2)2Σ+ state depth in-
ferred after the first iteration is within 190 cm−1 of the ab-initio predictions, in the case of
RCCSDS(T) the well depth is about 440 cm−1 away from the theoretical value. As a conse-
quence, we observe that all ab-initio PECs give a sufficiently good representation of the RbSr
ground state allowing for experimental fits, but only FCI-ECP+CPP and MRCI predictions
are able to approximate the excited state well enough to permit its refinement by tuning its
equilibrium distance. Best-fit parameters for the X(1)2Σ+ state MLR functions and refined
point-wise representations of the B(2)2Σ+ state are reported in the Appendix 3.9.2. The de-
rived Dunham coefficients for both X(1)2Σ+ and B(2)2Σ+ states are consistent with those
in Table 3.5. A comparison between the initial MLR functions, fitted to ab-initio data, and
the final MLR functions, based on ab-initio PECs and fitted to experimental data, is shown in
Figure 3.11.

The convergence of the three PECs towards a unique solution, as illustrated in Fig-
ure 3.11, and the good agreement with our experimental data corroborate our fit method.
In particular, we observe that our data are sufficient to constrain strongly the depth of the
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ground state potential well to De = 1152+9
−16 cm−1.16 The fitted PECs are consistent with the

model-independent quantities derived in the previous sections up to residual model depen-
dency. In particular, compared to those of Section 3.3.4, the dispersion coefficient C6 and
the semiclassical phase Φ0

WKB are slightly bigger, which is mostly due to the inclusion of C10

in the MLR model,17 while the C8 is consistent within our relatively low precision. The fit
quality of weakly-bound levels can still be assessed by the χ̃2 and DOF = 8 used in Sec-
tion 3.3.4, since it is insensitive to βi fitting parameters. We obtain 0.89, 0.53 and 0.99 for
MRCI, FCI-ECP+CPP and RCCSD(T), respectively, which are all sufficiently good. We use
the χ̃2, with DOF = 10 and error set to 0.16 cm−1, of the distance between band-head posi-
tions in experimental and simulated thermoluminescence spectra as a second benchmark of
the fitted potential energy curves. We obtain 0.83, 0.5 and 1.78 for MRCI, FCI-ECP+CPP and
RCCSD(T) respectively, which shows agreement within our experimental resolution.

In Table 3.6 the experimental values of spectroscopic constants are compared with the
theoretical ones. Also here the convergence of the described fitting procedure is remark-
able. The final value of the vibrational constant ωe does not depend on the starting ab-initio
PECs used in the fit for both X(1)2Σ+ and B(2)2Σ+ states. However, the agreement be-
tween the experimental and theoretical ωe values obtained is clearly the best for the FCI-
ECP+CPP model. Similarly this model provides the best prediction of the potential well
depths De of the investigated states and of the number of bound levels in the ground state.
The experimental data also allow to determine the difference between equilibrium distances
of the X(1)2Σ+ and B(2)2Σ+ electronic states, ∆re = reB − reX, and the values obtained
are almost identical when starting from theoretical PECs calculated with the FCI-ECP+CPP
(∆re = −0.086Å) and MRCI (∆re = −0.087Å) methods.

Finally, we check in two ways the quality of the final fitted potential for the X(1)2Σ+ state.
Firstly, we simulate the thermoluminescence spectrum by using the potential we obtained
starting from the FCI-ECP+CPP potential, as it gives the best agreement between theoretical
and experimental values of molecular constants. In Figure 3.12 we show a comparison of
this simulation with the experimental results. The agreement for the band-head positions
between the two spectra is almost perfect, and this allows the assignment of even more
band heads. Secondly, we use the fitted X(1)2Σ+ state potential to calculate the positions of
Fano-Feshbach resonances, which are listed in Table 3.7. At the time of the writing of this
paper and thanks to these predictions, the resonances arising at about 1.3 kG for 87Rb84Sr
and 1.0 kG for 87Rb88Sr have indeed been observed experimentally at the expected magnetic
fields, which proves the high quality of the potential we obtained for the RbSr X(1)2Σ+ state.

16Although the depths derived from the FCI-ECP+CPP and RCCSD(T) methods are extremely close, we attribute
to De the mean value of all three cases and the full uncertainty range.

17By fitting once more the weakly-bound spectrum with VLJ including a C10 term fixed to the theoretical value,
we obtain C6 = 1.7962010665716115× 107 Å6 cm−1, C8 = 5.792504377056786× 108 Å8 cm−1 and Φ0

WKB = 67.4386.
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TABLE 3.6: Comparison of spectroscopic constants and dispersion coeffi-
cients for the X(1)2Σ+ and B(2)2Σ+ states of the 85Rb88Sr molecule, between
the present experiment-based work, the ab-initio calculations used here [95,
96], and other relevant works labelled as in their respective publication. Units
of energy and length are cm−1 and Å, respectively, while Φ0

WKB is dimension-
less. The final errors, defined as three times the standard deviation, are given
in parentheses

De ωe Be × 102 re [Å] Te C6 × 10−7 C8 × 10−8 Φ0
WKB

X(1)2Σ+

presenta 1136 40.39(72) 1.874e 4.565e 0 1.81(2) 5.8(1.3) 67.4393
presentb 1158 40.32(76) 1.848e 4.595e 0 1.80(2) 6.1(1.3) 67.4381
presentc 1161 40.31(76) 1.791e 4.669e 0 1.81(2) 5.90(1.3) 67.4396
experimental [101] − 42(5) − − − − − −
MRCI [96] 1298 42.5 1.874 4.565 0 − − 70.7768
FCI-ECP+CPP [95] 1073.3 38.98 1.848 4.595 0 − − 65.8890
RCCSD(T) [95] 1040.5 38.09 1.791 4.669 0 − − 64.7252
ST [60] 1273 42.2 1.853 4.590 0 − − −
CCSD(T) [100] 916 36 1.75 4.72 0 − − −
Relativistic KR-MRCI [98] 1017.58 35.8 1.8 4.66 0 − − −
theory [106] − − − − − 1.783 6.220 −

B(2)2Σ+

presenta 5025 58.92(38) 1.946 4.478 8848.0(8) − − −
presentb 5047 58.94(39) 1.920 4.509 8847.6(8) − − −
presentd 5050 58.95(39) 1.893 − 8847.7(8) − − −
MRCI [96] 5214 59.5 1.921 4.507 8830 − − −
FCI-ECP+CPP [95] 4982.9 58.37 1.975 4.445 8828 − − −
EOM-CC [95] 4609.6 60.20 1.925 4.503 9224 − − −
ST [60] 5078 58.5 1.899 4.533 8711 − − −
Relativistic KR-MRCI [98] 4683.56 58.1 1.98 4.43 9151 − − −
theory [106] − − − − − 8.448 59.80 −
a Based on MRCI [96] ab-initio calculation.
b Based on FCI-ECP+CPP [95] ab-initio calculation.
c Based on RCCSD(T) [95] ab-initio calculation.
d Based on RCCSD(T) [95] and EOM-CC [95] ab-initio calculation; parameters taken from Dunham coefficients listed in Table 3.5.
e Fixed during the fit at the corresponding theoretical value.
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tial employing the ground state re value from the FCI-ECP+CPP [95] calcu-
lations (lower curve, in green). The positions of identified band heads are
marked with dashed lines, on top of which the assigned vibrational quantum
numbers ν′ − ν′′ are given.
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TABLE 3.7: Fano-Feshbach resonances for RbSr isotopologues due to cou-
pling between N = 0 molecular levels and N = 0 atomic scattering levels in
the magnetic field region B < 3.0 kG. Eb is the binding energy of the bound
state, f Rb, mRb

f , F and mF are the quantum numbers defined in the main text
identifying the open and closed channel, respectively. B is the resonant mag-
netic field, ∆µ is the differential magnetic moment, and ∆B is the width of
the resonance calculated as the avoided crossing gap divided by ∆µ. The
avoided crossing gap is calculated for the two-body problem by using first
order perturbation theory and the ab-initio coupling matrix term induced by
the variation of Rb hyperfine constant [25]. The two atoms are confined in a
species-independent potential well with ω = 2π× 60 kHz isotropic trapping
frequency, which is a typical value for sites of a three-dimensional optical
lattice

BE (MHz) f Rb mRb
f F mF B (G) ∆µ (MHz/G) ∆B (mG)

85Rb84Sr
6644.83 2 -2 3 -2 2950.99 -2.64 31.40
6644.83 2 -1 3 -1 2500.46 -2.53 35.06
6644.83 2 0 3 0 2108.76 -2.49 31.82
6644.83 2 1 3 1 1778.42 -2.53 24.94
6644.83 2 2 3 2 1506.91 -2.64 16.03
85Rb86Sr
3421.32 2 -2 3 -2 1637.55 -2.10 5.37
3421.32 2 -1 3 -1 1029.72 -1.54 5.85
3421.32 2 0 3 0 562.87 -1.29 4.03
3421.32 2 1 3 1 307.68 -1.54 1.75
3421.32 2 2 3 2 193.47 -2.10 0.63
9308.75 2 1 3 1 2799.16 -2.67 4.71
9308.75 2 2 3 2 2499.41 -2.72 3.26
85Rb87Sr
78.63 2 -1 2 -2 157.16 -0.53 0
78.63 2 0 2 -1 165.59 -0.48 0
78.63 2 1 2 0 174.48 -0.43 0
78.63 2 2 2 1 183.83 -0.39 0
78.63 3 -3 3 -2 149.40 -0.59 0
78.63 3 -2 3 -1 157.41 -0.53 0
78.63 3 -1 3 0 165.88 -0.47 0
78.63 3 0 3 1 174.82 -0.43 0
78.63 3 1 3 2 184.23 -0.39 0
78.63 3 2 3 3 194.10 -0.35 0
1071.24 2 -2 3 -3 1329.33 0.56 0
1071.24 3 -3 3 -2 995.37 -1.85 0
4227.19 2 -2 3 -2 1995.89 -2.37 -5.26
4227.19 2 -2 3 -1 1741.03 -2.22 0
4227.19 2 -1 3 -2 1740.39 -2.23 0
4227.19 2 -1 3 -1 1470.84 -2.06 5.63
4227.19 2 -1 3 0 1256.20 -1.98 0
4227.19 2 0 3 -1 1255.68 -1.99 0
4227.19 2 0 3 0 1049.46 -1.95 4.51
4227.19 2 0 3 1 889.86 -1.97 0
4227.19 2 1 3 0 889.49 -1.98 0
4227.19 2 1 3 1 748.80 -2.06 2.87
4227.19 2 1 3 2 642.03 -2.19 0
4227.19 2 2 3 1 641.79 -2.19 0
4227.19 2 2 3 2 551.81 -2.37 -1.46
4227.19 2 2 3 3 482.92 -2.57 0
4227.19 3 -3 3 -2 2314.53 -2.65 0
10827.35 2 2 3 3 2916.48 -2.77 0
85Rb88Sr
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5128.78 2 -2 3 -2 2364.10 -2.52 8.32
5128.78 2 -1 3 -1 1879.36 -2.33 9.05
5128.78 2 0 3 0 1474.80 -2.26 7.75
5128.78 2 1 3 1 1157.32 -2.33 5.57
5128.78 2 2 3 2 920.02 -2.52 -3.24
87Rb84Sr
9242.30 1 0 2 0 2218.82 -1.89 3.77
9242.30 1 1 2 1 1312.74 -2.15 1.69
87Rb86Sr
12546.80 1 1 2 1 2726.72 -2.47 4.35
87Rb87Sr
0.01 1 -1 1 0 0.18 0.70 0
0.01 1 0 1 1 0.18 0.70 0
0.01 2 -1 2 -2 0.18 0.70 0
0.01 2 0 2 -1 0.18 0.70 0
0.01 2 1 2 0 0.18 0.70 0
0.01 2 2 2 1 0.18 0.70 0
287.32 1 0 1 -1 397.14 -0.74 0
287.32 1 1 1 0 432.35 -0.62 0
287.32 2 -2 2 -1 366.06 -0.88 0
287.32 2 -1 2 0 398.65 -0.73 0
287.32 2 0 2 1 434.30 -0.62 0
287.32 2 1 2 2 473.02 -0.52 0
1952.06 2 -2 2 -1 1672.34 -1.70 0
6235.49 1 -1 2 -2 294.64 1.96 0
6235.49 1 -1 2 -1 1918.11 -0.88 -59.55
6235.49 1 -1 2 -1 519.45 0.88 16.13
87Rb88Sr
7403.10 1 -1 2 -1 2804.54 -1.68 -8.73
7403.10 1 0 2 0 1014.50 -1.08 -5.70
7403.10 1 1 2 1 366.98 -1.68 -1.14
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3.6 Conclusions and Outlook

We have performed three different types of spectroscopy experiments in order to investi-
gate the ground and second excited electronic states, both of 2Σ+ symmetry, of the alkali –
alkaline-earth RbSr molecule. We have presented a novel procedure to connect data from
two-colour photoassociation measurements, which provide information on energy levels of
the X(1)2Σ+ state near the dissociation threshold, and low-resolution data from thermo-
luminescence/LIF experiments, which allow to describe the bottom of both X(1)2Σ+ and
B(2)2Σ+ PECs. As the thermoluminescence spectra lack rotational resolution, the equilib-
rium distance between the Rb and Sr nuclei cannot be determined from our measurements
and must be taken from theoretical calculations. Therefore we use three different sets of the-
oretical PECs, resulting from state-of-the-art ab-initio calculations, as starting points for the
fit of potential energy curves to the experimental data. We obtain three potentials for the
X(1)2Σ+ state, but despite significant differences between the starting potentials, the three
fitted ones converge to nearly the same shape. In the region of missing experimental data
the shapes of the fitted PECs stay close to the initial theoretical potentials and this region
awaits future spectroscopic investigation to be refined. Although in the case of the B(2)2Σ+

state, the experimental data provide only information about deeply-bound energy levels,
our procedure is able to reject one of the three theories that diverges too much from the
experimental results.

We have demonstrated that our data analysis method is a powerful tool to obtain poten-
tial energy curves of heavy molecules, where achieving rotational resolution is difficult and
investigation of the mid-range spectrum challenging. This method may find a welcome use
in the field of physical chemistry, since it shows, in the simple case of diatomic molecules,
that several independent sources of information, both experimental and theoretical, can be
synthesized successfully. The findings of our analysis may be of interest to physicists from
various fields. Indeed, calculations performed with the fitted RbSr potentials demonstrate
their power to predict the positions of unassigned band heads and the intensity distribution
of the spectrum, but also the positions of Fano-Feshbach resonances, some of which were
later confirmed experimentally [66]. As a next step, we plan to further refine the PECs de-
rived in this work via new LIF experiments with rotational resolution, and to characterize
the effects induced by hyperfine and spin-rotation couplings via additional two-color PA.
We will also use the results of this work to determine an efficient STIRAP path for RbSr
molecules towards the rovibronic ground state [98]. With such molecules available, one can
run quantum simulations [32, 70–72], perform fundamental tests of physics [76–78], and
study chemical reactions with full control over reactants at the quantum level [72, 79–82].
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3.9 Appendix

3.9.1 Theoretical model for inter-species thermalization

A rigorous analysis of the experimental data would require a Monte-Carlo trajectory simu-
lation taking into account the initial atomic distributions, the subsequent excitation of the Rb
cloud and the elastic-scattering cross sections, both inter-species and intra-species. However,
we are here only interested in a confirmation of our ground-state potential model and for that
we do not require precise values for the scattering lengths. Moreover we observe that, al-
though during the thermalization the system is out of equilibrium, it might be close enough
to equilibrium to apply a very simple collision model giving the cross-thermalization rate
from equilibrium statistical physics [112]. This is suggested in our case by the very fast de-
crease in Rb temperature compared to the cross-thermalization time. In order to clarify the
analysis, we review the model here.

The temperature difference is expected to decrease exponentially to zero with an inter-
species thermalization rate given by

τ−1 =
d(∆T)
∆Tdt

=
d(∆T)

∆T
Γ, (3.9)

where ∆T is the temperature difference between species 1 and 2 and dt = 1/Γ is the average
collision time. The rate of inter-species collisions Γ is given by

Γ = σ12 × v̄×
∫

n1(x) n2(x) dx3 =

= σ12 × v̄× N1N2

∫
ρ1(x) ρ2(x) dx3, (3.10)

where σ12 = 4πa2
12 is the inter-species cross section, v̄ is the mean thermal relative ve-

locity and n1,2(x), ρ1,2(x) are the atomic density distributions normalized to N1,2 or 1, re-
spectively. At thermal equilibrium with known trapping potential U1,2, temperatures T1,2,
and atomic masses m1,2, we know all the quantities in the equation above except the inter-
species scattering length. In particular v̄ =

√
(8kB/π)× ((T1/m1) + (T2/m2)) and n1,2(x) ∝

exp−U1,2(x)/kBT1,2 .
From basic kinematics the energy transfer from species 1 to species 2 is given by

∆E1→2 = ξ kB∆T,

ξ =
4m1m2

(m1 + m2)2 , (3.11)

where ξ accounts for the mass imbalance, and in our case ξ ' 1. From this we obtain
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d(∆T) =
ξ

3
N1 + N2

N1N2
∆T. (3.12)

Substituting Equation 3.12 into Equation 3.9, we get the final result

τ−1 =
ξ

3
N1 + N2

N1N2
Γ =

ξ

3
σ12 × (N1 + N2) v̄

∫
ρ1(x) ρ2(x) dx3 =

=
ξ

3
σ12 ×Φ, (3.13)

where the kinematic contribution to the rate is summarized in the effective flux Φ.
The value of 3 in the denominator of Equation 3.13 represents the average number of

collisions for thermalization. Corrections to this number have been evaluated [113], and it is
shown to vary within the range 2.4− 3.4, with 2.4 referring to fast thermalization compared
to trap oscillation time and 3.4 to the opposite case.

3.9.2 Potential energy curves

In this part, we provide additional information about the fitted potentials. In Table 3.8, we
give the best fit parameters for the MLR PEC describing the X(1)2Σ+ state. In Table 3.9
and Table 3.10 we give the point-wise representations of the fitted PECs for the B(2)2Σ+

state, fitted starting from the FCI-ECP+CPP and the MRCI methods, respectively. Finally, in
Figure 3.13 we show a comparison of the potentials for the B(2)2Σ+ state before and after
our fit procedure.

TABLE 3.8: Best fit parameters for the MLR PECs describing the X(1)2Σ+

state in the cases of the three initial ab-initio representations. Units of energy
and length are cm−1 and Å, respectively. The number of digits in the pre-
sented values of parameters is necessary to reproduce band-head positions
and weakly-bound energy levels with the experimental uncertainty

MRCI [96] FCI-ECP+CPP [95] RCCSD(T) [95]

p 5a 5a 5a

q 2a 2a 2a

Nu 3a 3a 3a

Nβ 5a 5a 5a

De 1136.153957156767 1158.334744879383 1161.0696743991873
re 4.5645a 4.59508a 4.66879a

C6 1.808868014576728 1.795668695101867 1.8134615231939677
C8 5.792504377056786 6.148308472469144 5.870256113661574
C10 2.2043858534998264a 2.2043858534998264a 2.2043858534998264a

β0 −1.2521217820591306 −1.2744532761179883 −1.2541965574219214
β1 −2.7403962754860123 −2.6486718159733136 −2.324690124968812
β2 −1.2388430923676004 −0.8587136858852784 −0.06921139967893859
β3 0.8220377227516734a 1.5773120878976061a 0.9325813112428021a

β4 −2.710995726338915a −0.16154919058041997a −4.2183716802600495a

β5 −4.142301068756231a −0.8834374478517256a −5.290318777716273a

a Held fixed during fit to experimental data.
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FIGURE 3.13: PECs of the B(2)2Σ+ state of RbSr. Top panel: theoretical PECs
corresponding to the three different ab-initio calculations considered in this
work. Bottom panel: PECs fitted to experimental data with initial fit pa-
rameters determined by the FCI-ECP+CPP and MRCI methods, see Subsec-
tion 3.5.3.
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TABLE 3.9: The point-wise potential energy curve of the B(2)2Σ+ state ob-
tained after the fit procedure, based on the theoretical curve calculated with
the FCI-ECP+CPP method

r (Å) E (cm−1) r (Å) E (cm−1)
2.68 19257.0300 8.18 12109.8735
2.78 17908.5708 8.29 12157.4315
2.89 16617.8234 8.39 12197.4666
3.00 15379.9026 8.50 12238.2371
3.10 14312.2244 8.60 12272.5381
3.21 13241.3574 8.71 12307.4494
3.31 12375.1023 8.82 12339.6227
3.42 11528.6439 8.92 12366.6696
3.52 10837.7736 9.03 12394.1795
3.63 10150.2670 9.13 12417.2977
3.74 9536.4284 9.24 12440.8047
3.84 9050.4423 9.35 12462.4492
3.95 8604.8603 9.45 12480.6336
4.05 8289.8226 9.56 12499.1204
4.16 8021.3425 9.66 12514.6521
4.27 7838.3481 9.77 12530.4436
4.37 7737.9870 9.87 12543.7127
4.48 7691.2318 9.98 12557.2074
4.58 7699.9253 10.09 12569.6388
4.69 7753.0775 10.19 12580.0904
4.79 7837.0308 10.30 12590.7265
4.90 7961.2580 10.40 12599.6736
5.32 8634.7155 10.51 12608.7842
5.43 8837.5343 10.62 12617.1902
5.54 9044.9495 10.72 12624.3507
5.64 9233.5924 10.83 12631.8586
5.75 9439.0045 10.93 12638.2067
5.85 9621.9672 11.04 12644.7041
5.96 9818.0546 11.14 12650.2014
6.06 9991.0355 11.25 12655.8314
6.17 10174.3255 11.36 12661.0571
6.28 10349.5430 11.46 12665.4829
6.38 10501.3856 11.57 12670.0202
6.49 10659.9119 11.67 12673.8658
6.59 10796.1676 11.78 12677.8112
6.70 10937.3983 11.89 12681.4802
6.81 11069.6823 11.99 12684.5934
6.91 11182.3688 12.10 12687.7911
7.02 11298.2776 12.20 12690.5065
7.12 11396.6341 12.31 12693.2978
7.23 11497.4813 12.41 12695.6701
7.33 11582.8320 12.52 12698.1107
7.44 11670.1576 12.63 12700.3871
7.55 11751.0295 12.73 12702.3241
7.65 11819.3069 12.84 12704.3196
7.76 11889.0220 12.94 12706.0191
7.86 11947.8194 13.05 12707.7714
7.97 12007.8007 13.16 12709.4095
8.08 12063.2037
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TABLE 3.10: The point-wise potential energy curve of the B(2)2Σ+ state ob-
tained after the fit procedure, based on the theoretical curve calculated with
the MRCI method

r (Å) E (cm−1) r (Å) E (cm−1)
2.57 20015.9638 7.97 12039.5764
2.67 18623.1081 8.47 12260.0669
2.77 17378.0065 8.97 12412.7431
2.87 16227.5400 9.47 12513.9446
2.97 15164.7084 9.97 12581.4056
3.07 14191.0980 10.47 12626.6346
3.17 13301.5037 10.97 12657.3393
3.27 12484.9011 11.97 12693.3984
3.37 11729.7060 12.97 12711.7395
3.47 11028.5584 13.97 12721.6836
3.57 10381.0891 14.00 12721.9028
3.67 9791.4292 14.10 12722.6076
3.77 9271.8458 14.20 12723.2748
3.87 8816.5037 14.30 12723.9066
3.97 8486.8951 14.40 12724.5053
4.07 8191.1429 14.50 12725.0727
4.17 7968.0412 14.60 12725.6108
4.27 7821.7664 14.70 12726.1213
4.37 7739.7466 14.80 12726.6058
4.47 7711.9908 14.90 12727.0659
4.57 7729.6107 14.97 12727.3742
4.67 7784.9552 15.00 12727.5029
4.77 7871.4749 15.10 12727.9182
4.87 7983.6310 15.20 12728.3130
4.97 8116.4157 15.30 12728.6885
5.07 8265.5303 15.40 12729.0457
5.17 8430.3232 15.50 12729.3857
5.27 8609.5386 15.60 12729.7094
5.37 8792.9576 15.70 12730.0178
5.47 8981.4689 15.80 12730.3115
5.77 9548.1877 15.90 12730.5915
5.97 9908.3732 16.00 12730.8585
6.47 10690.4487 18.00 12734.2857
6.97 11287.8051 20.00 12735.7680
7.47 11725.8313
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Chapter 4

The potential energy curves of
electronically-excited RbSr:
theory and experiments

In this chapter I will introduce the reader to the electronically-excited PECs of RbSr, and
describe the one-colour spectroscopy methods that our group developed and used to probe
these PECs experimentally. Section 4.1 gives a short theoretical introduction to the PECs
of electronically-excited RbSr. They are discussed succinctly in Chapter 2, Subsection 2.1.5,
but in this chapter spin-orbit coupling is left undiscussed because it is extremely weak in
the ground-state PEC of RbSr. The situation is very different in electronically-excited RbSr,
where spin-orbit coupling is a major coupling term. Section 4.2 gives an overview of the
principles underlying our one-colour spectroscopy work, and in Section 4.3 the laser system
and experimental conditions for this spectroscopy are described. In the work discussed in
this chapter, we produced molecules with an excitation energy close to the excitation energy
of the 1S0 – 3P1 intercombination line of Sr, of which the wavelength is 689 nm and the natural
linewidth is γ/2π = 7.5 kHz. The one-colour spectra that we obtained in the four isotopo-
logue mixtures 87Rb-87Sr, 88Rb-87Sr, 86Rb-87Sr and 84Rb-87Sr are presented in Section 4.4,
along with the methods that we used to analyse these data. The one-colour spectroscopy
data tables are presented in Appendix B. The positions of the resonance positions that we
measured in the fermionic isotopologue mixture 87Rb-87Sr are reported in Table B.1, and
those obtained in the fermionic isotopologue mixtures 88Rb-87Sr, 86Rb-87Sr and 84Rb-87Sr are
reported in Table B.2. The magnetic moments of the electronically-excited RbSr molecules,
when measured, are reported in Table B.3. These data are subject to an ongoing theoretical
analysis.

The knowledge of at least a few electronically-excited molecular states is required to
perform two-colour spectroscopy and probe the ground-state PEC of RbSr, as shown in
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Chapter 2, Figure2.3. Furthermore, this knowledge is required to produce molecules via
STIRAP or photoassociation followed by spontaneous emission, as discussed in Chapter 1,
Section 1.4. Thus, our experimental investigation of the PECs of electronically-excited RbSr
was motivated by two goals. First, measuring the binding energy of molecular states in the
electronic ground state, in order to constrain the fit of the long-range part of the ground-state
PEC — this work led to the publication reported in Chapter 3. Second, developing methods
of producing RbSr molecules in the electronic ground state.

4.1 The PECs of electronically-excited RbSr: theoretical de-

scription

In a diatomic molecule, the very strong Coulomb interaction between the electrons and the
nuclei forces the electrons to follow the motion of the nuclei. The electronic motion is there-
fore said to be strongly coupled to the internuclear axis. Accordingly, we have introduced
the molecule-fixed electronic coordinates {~ri} and the total angular momentum exclusive
of spin, ~N = ~̀ +~L, which rotates the electrons along with the nuclei.

The use of molecule-fixed coordinates for the electronic spin vectors ~S = ∑~si, summing
over i electrons, is on the other hand justified only in presence of spin forces that force the
orientation of the spins to change along with the change of orientation of the nuclei. In the
electronic ground state 2Σ+ of RbSr, the total electronic spin ~S is almost fully decoupled
from the internuclear axis and thus ~S is better expressed in space-fixed coordinates1. In-
deed, the spin-orbit interaction that couples spin and electronic degrees of freedom in the
electronically-excited states of RbSr is almost absent in the ground state: the diagonal contri-
bution of spin-orbit coupling is zero for electronic Σ terms2, and the off-diagonal couplings
of the ground state to the electronically-excited PECs are much smaller than the energetic
separation between them, leading to negligibly small corrections to the binding energies
of the 2Σ+ molecular states. Effects that couple the internuclear axis to ~S in the electronic

1This case is referred to as Hund’s coupling case (b). The quantum numbers that define the molecular eigen-
states (neglecting the hyperfine structure) are then Λ, S, ν, N, mN and parity± for Σ electronic terms. The diatomic
Hamiltonian, Equation 2.1, is thus mostly diagonal in the basis |Λ S ν N mN〉 in the electronic subspace of the 2Σ+

term. The off-diagonal contributions, such as the spin-rotation term discussed in this paragraph or the Coriolis
terms, can be treated using perturbation theory in this basis provided they are small enough. This is in general
the correct way to think about molecular structures: one must find a convenient eigenbasis in which most of the
Hamiltonian is diagonal and where off-diagonal couplings can be treated perturbatively. The Hund’s cases provide
eigenbasis that are appropriate for common cases encountered in experimental spectroscopy.

2The diagonal contribution of the spin-orbit ~L · ~S = LzSz + 1/2 [L+S− + L−S+] in the |2S+1|Λ|〉 = |SΛ〉 elec-
tronic eigenbasis stems from the LzSz operator, and Lz |SΛ〉 = Λ |SΛ〉 = 0 for Λ = 0.
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ground state exist, though. The most important of them is the spin-rotation coupling be-
tween ~N and ~S3,4. It is typically weak for small values of N, and we have neglected it in our
work on the electronic ground state.

For the electronically-excited PECs, the situation is very different. The spin-orbit inter-
action ĤSO = A~L.~S couples ~S very strongly to the electronic orbital motion~L, which is itself
strongly coupled to the internuclear axis. The analysis of the spin-orbit coupling interaction
for electronically-excited RbSr is presented very clearly in Ref. [95], and we do not repeat it
here. The result is that it couples very strongly the excited PECs of Figure 2.2, leading for
instance to large avoided crossings between them. The electronically-excited PECs Un(R),
obtained including ĤSO in the electronic Hamiltonian, are shown in Figure 4.1. The corre-
sponding eigenvalue equations are

(Ĥe + ĤSO)ψ
el
n (~r, R) = Un(R)ψel

n (~r, R) with {|n〉}n = {|2S+1|Ω|±〉}S,Ω , (4.1)

where Ĥe is defined as in Equation 2.16. The internuclear distance dependence A(R) of
the spin-orbit term was not taken into account in Ref. [95] and in the subsequent work of
Ref. [53].

In presence of spin-orbit coupling, Λ ceases to be a good quantum number because
Ĥe + ĤSO doesn’t commute with Lz. Instead, it commutes with Lz + Sz and accordingly the
projection Ω = Λ + Σ of the total (spin+orbital) electronic angular momentum ~P = ~L + ~S
onto the internuclear axis is a good quantum number for the electronic Hamiltonian. Owing
to the strong coupling of ~P to the internuclear axis, it is best to use molecule-fixed coordi-
nates for both ~L and ~S for electronically-excited RbSr states. The partial operators defined
by Equation 2.18 must rotate the nuclei without affecting the electronic molecule-fixed coor-
dinates, and are therefore modified by replacing Lx,y,z by Px,y,z = Lx,y,z + Sx,y,z respectively,
so that both electronic positions and spin orientations are left unchanged in the molecular
frame. The total angular momentum (exclusive of nuclear spin) ~J = ~N + ~S then replaces
the total angular momentum exclusive of spin ~N, and takes the same form as ~N does in
absence of electronic spin — see Equation 2.20. In this manner, the total rotation of the

3Spin-rotation takes the form γ(R)~N.~S, where two physical effects contribute to γ(R): the small magnetic
moment that arises from the rotation of the nuclei and couples to the electronic spin, and a cross-term between
spin-orbit coupling and rotational kinetic energy. The second contribution is typically much larger than the first
one, except for very light molecules such as H2 [57]. The interested reader is referred to the discussions of Hund’s
case (b) in Ref. [58] and to the analysis of the CN radical in Ref. [57], where spin-rotation in the context of electronic
2Σ+ terms is discussed.

4An extra corrective term −Dν N4 contributes to the energy of rotating molecular states. The corresponding
constant Dν is referred to as the centrifugal distortion constant of the vibrational state of quantum number ν. The
total rotational plus fine structure Hamiltonian therefore takes the form Hr f s = Bν N2 − Dν N4 + γ~N.~S, where Bν is
the rotational constant of the considered vibrational state [24].
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FIGURE 4.1: The RbSr potential energy curves, taking into account spin-orbit
coupling, kinetic and electrostatic terms. They are calculated using the EOM-
CCSD and FCI/ECP+CPP methods for all states correlating to the experimen-
tally relevant asymptotes. From Ref. [95].

molecule including electronic spins ~J2 doesn’t affect the electronic molecule-fixed coordi-
nates and

[
(Ĥe + ĤSO), ~J2

]
= 0. Replacing ~N by ~J, the decoupling of the rotational motion

from the {electronic+radial} degrees of freedom, Equations 2.34 and 2.38, is thus also ob-
tained in presence of spin coupling to the internuclear axis. The rotational eigenfunctions
|J mJ Ω〉 of ~J2 have the same properties as those given in Equation 2.24, again replacing
N, mN and Λ by J, mJ and Ω respectively5. The nuclear Hamiltonian, Equation 2.25, takes
the form

T̂N = − h̄2

2µR2
∂

∂R
R2 ∂

∂R︸ ︷︷ ︸
Ĥvibration

+
~J2

2µR2︸ ︷︷ ︸
Ĥrotation

+
~J2 − 2~J · ~P

2µR2︸ ︷︷ ︸
ĤCoriolis

.
(4.2)

5The eigenbasis obtained by diagonalizing Ĥe without including ĤSO, Equation 2.27, and by using ~J is the
Hund’s case (a) eigenbasis |Λ S ν J mJ〉. It is well suited to the description of molecules where spin-orbit coupling
is present but is less strong than the electrostatic interactions. In this case, spin-orbit coupling can be treated as a
perturbation. The eigenbasis obtained by diagonalizing Ĥe + ĤSO, Equation 4.1, is the Hund’s case (c) eigenbasis
|Ω S ν J mJ〉. It is well suited to the description of molecules where spin-orbit coupling is stronger than the electro-
static interactions. In this case, Ω is a good quantum number, but Λ is not. This is the case of the RbSr excited states
presented here and accordingly, the term symbol 2S+1|Ω|± is preferred to the 2S+1|Λ|±Ω molecular term symbol
common in literature.
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Therefore, the total separated Hamiltonian (neglecting hyperfine structure) takes the same
form as in Equation 2.25, i.e.

Ĥ = Ĥvibration + Ĥrotation + ĤCoriolis + T̂mass pol. + (Ĥe + ĤSO) . (4.3)

The adiabatic approximation, Equation 2.33, is excellent for the electronic ground state 2Σ+

due to its large separation in energy with respect to the other electronic states, but is much
less good for the excited RbSr states where several PECs are very close in energy. Large non-
adiabatic contributions are expected to couple these PECs, especially for bound states that
have a large interradial probability density |χvib

v (R)|2 (defined as the probability density of
finding the two nuclei at the distance R from one another) close to the avoided crossings.
The interplay between the electronic/vibrational/rotational structure with the hyperfine in-
teractions induced by the presence of nuclear spins ~IRb and ~ISr is also a non-trivial matter6.
The RbSr spectra that we obtained near the 1S0 – 3P1 intercombination line of Sr are subject
to an ongoing theoretical analysis.

6In this thesis, The electronic and nuclear spins ~S and ~I are denoted as~s and~i respectively. It is customary to
use uppercase letters for the quantum numbers of a molecule, and lowercase letters for those of an atom.
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4.2 Photoassociation and one-colour spectroscopy of RbSr:

the principles

Photoassociation is the process through which an electronically-excited molecule is created
from a pair of free atoms, following the absorption of a photon. In a photoassociation exper-
iment, a gas of atoms is irradiated with light, and molecules are formed when the frequency
of the light is such that the relative kinetic energy E = h̄2k2

2µ of an atom pair and the energy
h × νlight of one photon add up to the energy Emol of an excited molecular state. Photoas-
sociation is therefore a resonant process, and photoassociation resonances are also referred
to as optical Feshbach resonances7. The free atom pair state is said to belong to the open
channel, and the electronically-excited state to the closed channel. Complete introductions
to photoassociation and optical Feshbach resonances are given in Refs. [63] and [123].

The electronically-excited PECs of RbSr, presented in Figure 4.1, can be investigated ex-
perimentally in photoassociation experiments. This technique is known as one-colour (one-
photon) spectroscopy. In such experiments, an ultracold gas of Rb-Sr atoms is produced
and irradiated with laser light8, which produces electronically-excited RbSr molecules at the
resonant laser frequency. The corresponding photoassociation reaction is

Rb + Sr + γ→ RbSr∗, (4.4)

where γ is the photoassociation or free-bound (FB) laser photon9, and RbSr∗ denotes the
electronically-excited RbSr molecule that has been photoassociated. The energy h × νFB of
the photoassociation photon γ is set by the frequency νFB of the photoassociation laser.

In the one-colour spectroscopy experiments that we performed to probe the electronically-
excited PECs of RbSr, the laser LFB has a frequency close to that of the 1S0 – 3P1 intercom-
bination line of Sr, of wavelength λ = 689 nm. It irradiates a µK-cold sample of about 105

Rb atoms and 106 Sr atoms for a time Tpulse, and its frequency is scanned in view of finding
a resonance frequency at which Rb-Sr pairs are photoassociated into molecules. An experi-
mental run of RbSr one-colour spectroscopy is performed as follows. Copropagating atomic
beams of Rb and Sr are produced by two independent ovens, heated to about TSr = 530 ◦C

7We discuss magnetic Feshbach resonances in depth in Chapter 5. Most of the conceptual tools used in the
context of magnetic Feshbach resonance apply to optical Feshbach resonances as well. One important difference is
that the Breit-Wigner energy width of a magnetic Feshbach resonance cannot be tuned with the magnetic field. The
width of an optical Feshbach resonance, on the other hand, depends linearly on the electric field intensity.

8While photoassociation can be performed with non-laser light sources, laser light is an ideal tool for pho-
toassociation. Its spatial coherence allows to focus high amounts of optical power onto the atomic cloud, hence
maximising the probability of absorption, and its temporal coherence permits to excite molecular states with very
high selectivity thanks to the narrow electric field linewidth.

9This notation should not be confused with the notation γ denoting the spontaneous decay rate γ/2π of an
excited atom or molecule.



4.2. Photoassociation and one-colour spectroscopy of RbSr: the principles 107

and TRb = 200 ◦C respectively. The beams are slowed down by a common Zeeman slower,
and captured in independent MOTs. The Sr atoms are then cooled down to about 1 µK
using the narrow 1S0 – 3P1 intercombination line of Sr. The Rb atoms are prepared in the
f = 1 hyperfine manifold using optical pumping and are sympathetically cooled to µK-cold
temperatures through elastic collisions with Sr. Then, both species are loaded in a crossed-
beam optical dipole trap with a depth of a few ten kB × µK. The production of such Rb-Sr
mixtures takes 10 to 25 seconds in our photoassociation experiments10. The resulting Rb-Sr
photoassociation sample consists of a few 105 Rb atoms and a few 106 Sr atoms, trapped in a
crossed-beam optical dipole trap at a temperature of a few µK. The Rb atoms are prepared in
the f = 1 hyperfine manifold, using optical pumping, and all three m f = 0,±1 states are al-
most equally populated11. Further details on the Rb-Sr sample are given in Subsection 4.3.2.

Once the Rb-Sr sample is ready, an homogeneous magnetic field of magnitude B is ap-
plied, and the photoassociation laser beam is shone onto the atoms for a time Tpulse. The
application of a magnetic field of a few G permits to increase dramatically the photoassoci-
ation detection sensitivity, as explained in Subsection 4.3.3 below, and the direction of this
field sets the m f -state quantization axis for the photoassociation process. If the frequency
νFB matches a photoassociation resonance frequency, it couples an initial atom pair state of
collisional energy E ∼ kB × 1.0 µK to an electronically-excited state of energy Emol,2 close
to the Rb (2S1/2) + Sr (3P1) dissociation asymptote. Rb-Sr pairs are then photoassociated
into RbSr∗ molecules. If the laser LFB is instead off-resonant, no molecule is formed. At
the end of the laser pulse, the population in each m f -state of Rb is measured by switching
off the dipole trap and letting the atoms fall in presence of a magnetic field gradient. After
typically 7 ms of time of flight, Rb atoms in different m f states are Stern-Gerlach separated,
and undergo another 7 ms of free fall in absence of a gradient. They are then imaged us-
ing standard laser absorption imaging on the D2 line of Rb, and the corresponding atom
numbers are recorded12. The photoassociated RbSr∗ atoms do not appear on the absorption

10This timescale is set by the natural abundance of the Sr isotope investigated in the one-colour experiment,
which defines the flux of Sr atoms coming from the oven and captured in the MOT. The lower the abundance,
the more one needs to accumulate Sr atoms in the 1D2 magnetic reservoir during the first-stage cooling cycle — see
Refs. [103, 124], and is described in Refs. [52, 103] and in our publications presented in Chapter 3 and 6. The natural
abundances of the 84Sr, 86Sr, 87Sr and 88Sr isotopes are 0.56, 9.86, 7.00 and 82.58% respectively [124]. It is therefore
much faster to prepare a Rb- 88Sr sample (less than 10 s) than a Rb- 84Sr (up to 25 s).

11In absence of polarization that favors any projection with respect to a given quantization axis, the Rb ensemble
is a statistical mixture of all possible F projections along any axis.

12We also image Sr using absorption imaging, but we do not perform Stern-Gerlach separation. The bosonic
isotopes of Sr, 84Sr, 86Sr and 88Sr, have neither electronic nor nuclear spin and thus are insensitive to Stern-Gerlach
separation. The fermionic isotope of Sr, 87Sr, has a nuclear spin but we do not resolve the corresponding Stern-
Gerlach separation, owing to the very small gyromagnetic ratio of 87Sr — see Chapter 5, Equations 5.46. Note that
optical Stern-Gerlach separation is in principle possible with this isotope [125].
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pictures13, therefore a decrease of the Rb atom number is observed in the m f states subject
to photoassociation, as compared to the off-resonant case — see Figure 4.2. Such decrease
in the Rb atom number indicates that the frequency νFB is resonant, and that an excited
molecular state has been detected. Conversely, no photoassociation-induced loss indicates
off-resonant laser light. The Rb-Sr sample is lost at the end of each experimental sequence,
which ends with atom absorption imaging. A new experimental cycle then begins: a new
Rb-Sr sample is created, the frequency of the photoassociation laser νFB is changed, and an-
other photoassociation sequence is performed14. The frequency νFB is changed in steps from
one experimental shot to the other, with a resolution of up to 1 MHz for coarse scans, and
down to a few kHz for the investigation of narrow spectroscopic features. Due to the Rb-Sr
sample preparation time, typically a 1 GHz-wide spectroscopic search with MHz resolution
will last several hours.

In the one-colour spectroscopy work presented in this chapter, we produced molecules
with an excitation energy close to the excitation energy of the 1S0 – 3P1 intercombination
line of Sr, of which the wavelength is 689 nm and the natural linewidth is γ/2π = 7.5 kHz.
The optical frequency of reference for the one-colour spectroscopy presented in this chap-
ter is thus the frequency of the 1S0 – 3P1 electronic transition of Sr. The frequency of the
photoassociation light is detuned by an amount ∆ compared to this atomic reference fre-
quency, as shown in Figure 4.2. In a one-colour spectroscopy scan, this detuning is changed
in steps from one experimental shot to the other. The spectroscopy laser system and the
methods used to produce this detuning ∆ are detailed in Subsection 4.3.1.The one-colour
spectroscopy spectra are produced by reporting the Rb population p(m f ) in each m f -state
as a function of the detuning ∆ — Subsection 4.4, Figure 4.3.

13The RbSr∗ molecules will typically decay very fast to the electronic ground state after emission of a photon
(see Chapter 1, Subsection 1.4.3), populating molecular states that are not resonantly coupled to the atomic imaging
laser beams.

14This process is quite different from that of MOT or atomic beam spectroscopy, where the photoassociation
laser is continuously irradiating the sample. In that case the frequency of the laser is changed continuously over
time, and the change of recorded fluorescence at the correct laser frequency indicates that a molecular state has
been detected.
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FIGURE 4.2: Principle of an ultracold Rb-Sr photoassociation experiment
close to the 1S0 – 3P1 intercombination line of Sr. The laser LFB irradiates
the Rb-Sr sample for a time Tpulse and its frequency νFB is changed from
one experimental shot to the other, with the goal of finding a resonance fre-
quency at which Rb losses occur. The insets show absorption images of Stern-
Gerlach-separated Rb atoms, where the direction of gravity is indicated with
a white arrow (Rb time of flight = 14 ms). Left panel: laser LFB off-resonant.
There is no photoassociation-induced loss, therefore the imaged Rb atom
number is almost the same in each m f state, as is the case in absence of LFB.
Left panel: laser LFB resonant. Excited RbSr molecules are photoassociated,
which decreases the number of Rb atoms imaged in the m f -state(s) coupled
to the excited state (here m f = 0). Note that the depicted pictures are sim-
plified, because three different PECs correlate to the Rb (2S1/2) + Sr (3P1)
asymptote (two |Ω| = 1/2 and one |Ω| = 3/2 PEC — see Figure 4.1.
Furthermore, the other PECs correlating to the Rb (2S1/2) + Sr (3P0, 2) and
Rb (2P1/2, 3/2) + Sr (1S0) asymptotes lie reasonably close in energy to the
Rb (2S1/2) + Sr (3P1) asymptote Therefore, a given excited molecular state
may arise from the mixing of different PECs.
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4.3 Laser system and experimental conditions for one-colour

spectroscopy

4.3.1 The laser system: frequency tuning close to the 1S0 – 3P1 intercom-
bination line of Sr

The optical frequency of reference for the RbSr one-colour spectroscopy presented in this
chapter is the frequency of the 1S0 – 3P1 electronic transition of Sr. We use the same transi-
tion to laser cool Sr atoms to µK temperatures. Therefore, the cooling laser system and the
photoassociation laser system can share the same master laser. This master laser is a 689-nm
Toptica DLpro with an intrinsic linewidth of about 1 MHz, locked to a high-finesse optical
cavity to reduce its short-term linewidth to a few kHz. The master laser frequency is actively
stabilized onto the 1S0 – 3P1 absorption signal of a Sr spectroscopy cell, which provides the
absolute frequency reference ν1S0 – 3P1, 88Sr for long-term frequency stability15. The transition
of 88Sr is used for long-term stabilization, since it is by far the most abundant isotope of Sr
and thus gives the strongest absorption signal for modulation transfer spectroscopy. In the
next paragraphs, the photoassociation laser system is described, whereas further details of
the laser cooling system are given in Ref. [124].

The photoassociation laser light must be frequency-shifted with respect to the master
light, for two reasons. First, the absolute frequency of the 1S0 – 3P1 transition of Sr de-
pends on the considered isotope, and we investigated all stable isotopes of Sr in our Rb-Sr
photoassociation experiments. Therefore, the isotopic shifts of the 1S0 – 3P1 transitions of
84Sr, 86Sr and 87Sr compared to 88Sr have to be compensated. The shift in frequency of the
1S0 – 3P1 transitions of 84Sr and 86Sr compared to the 88Sr transition are −351.49 MHz and
−163.81 MHz respectively. The fermionic isotope 87Sr has non-zero nuclear spin, therefore
the hyperfine structure of its 3P1 manifold has to be taken into account (the 1S0 ground state
has only one manifold: f = i = 9/2). The shifts are 1352.0, 221.7 and −1241.4 MHz for
the hyperfine manifolds f = 7/2, 9/2 and 11/2 respectively [124]. Second, the photoas-
sociation frequency νFB must be detuned by an amount ∆ with respect to the frequency of
the 1S0 – 3P1 transition of the chosen isotope of Sr, as is clear from Figure 4.2. We use two
(complementary) methods to achieve this frequency tuning, as described below.

In the first years of the experiment, we used acousto-optic modulators (AOMs), of which
the input frequencies are produced by direct digital synthesizers (DDS). The frequency of
the photoassociation laser, shifted from the source frequency by a single AOM is given by
νFB = ν1S0 – 3P1, 88Sr + n× fAOM, where n is the AOM diffraction order that we use (typically

15The master light is actually stabilized with an AOM-generated 80-MHz offset compared to the atomic transi-
tion, for practical reasons (see Ref. [124]).
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±1 or ±2, the diffraction efficiency dropping dramatically for the higher diffraction orders)
and fAOM the RF input of the AOM. Obviously, it is possible to use several AOMs in series to
shift the laser frequency further than allowed by the bandwidth of an individual AOM. The
frequency of the photoassociation laser is then νFB = ν1S0 – 3P1, 88Sr + ∑ i ni × fAOM i , where
the sum is taken over all AOMs. However, this method comes with severe drawbacks. The
cost of the system increases rapidly with the number of AOMs, which are costly devices
(about 2000e per AOM), and the total output power available for photoassociation is dimin-
ished by each of the AOMs in the optical path due to their limited diffraction efficiency16.
Furthermore, and even more importantly, the experimental setup has to be rearranged once
the available range of binding energies allowed by the bandwidth of the AOMs (typically
a few ten or hundred MHz per AOM) is reached, which prohibits long and uninterrupted
spectroscopic searches.

In order to perform the GHz-wide spectroscopic scans that are presented in Subsec-
tion 4.4 of this chapter, we used tunable frequency offset locking [126] instead of AOM
chains. The output light of the photoassociation laser, a DL100 Toptica laser, is superim-
posed with the master laser light (frequency-shifted by AOMs if necessary) on an home-built
photodiode. The beat signal between the photoassociation and master laser is recorded, and
the resulting beat frequency ∆ν = |νFB − νmaster| is compared with an external local oscilla-
tor (LO) produced by a DDS. An error signal is produced from this beat signal, as explained
in Refs. [51, 126], and is fed back to the photoassociation laser using a Toptica FALC 110
proportional–integral–derivative controller (PID). In this scheme, the locking point that sets
νFB is tuned by varying the DDS frequency fLO, within the 500 MHz range allowed by our
DDSs. In order to extend this range even further, we use a fiber-coupled electro-optic modu-
lator (EOM)17 that produces sibebands in the spectrum of the master light, allowing to shift
the master laser frequency by several GHz. The frequency of the master laser light is then
given by νmaster = ν1S0 – 3P1, 88Sr + ∑ i ni × fAOM i + m × fEOM, where m denotes the order
of the sideband produced by the EOM18, and the frequency of the photoassociation laser is
νFB = νmaster ± fLO + foffset, where foffset = 12.05(5)MHz is an electronic offset inherent to
the locking scheme, set by the polarity of the PID19. A schematic of the laser setup can be

16We often overcome our limited resources in 689-nm optical power by injection-locking DL100 Toptica lasers
with the seeding light of the reference laser. The injection-locked lasers then act as a optical amplifiers. This process
fully conserves the coherence of the reference laser, and we use it extensively for out 689-nm MOT beams and our
photoassociation beams. When more than 30 mW of optical power are needed, a tapered amplifier can be used.

17The fiber-coupled EOM that we use is a lithium niobate phase modulator, model PM-0K5-10-PFU-PFU-830
produced by EOSpace, with a 3 dB bandwidth of about 12 GHz. We drive it with a Rhode and Schwartz SMB100A
9 kHz – 3.2 GHz frequency generator.

18We can use up to the third sideband to lock our system, corresponding to m = ±3 where the + and - signs
indicate the blue and red sidebands respectively. Sideband generation is very inefficient for the sidebands of higher
orders, leading to error signals too small to be used with our available RF amplifying systems.

19The sign of ± fLO is chosen by locking on the error signal produced by the condition νFB > νmaster or νFB <
νmaster respectively.
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found in Ref. [51]. This technique allowed us to apply detunings ∆ of up to h × 10 GHz
compared to the 1S0 – 3P1 transition frequency of Sr — see Subsection 4.4.

4.3.2 The Rb-Sr photoassociation sample: densities, temperature, inter-
nal states

The Rb-Sr photoassociation sample consists of a few 105 Rb atoms and a few 106 Sr atoms,
trapped in a crossed-beam optical dipole trap at a temperature of a few µK. The crossed-
beam dipole trap, or "science trap", is based on laser beams of wavelength 1064 nm and
(optionally) 532 nm. This trap is described in our publications presented in Chapter 3 and
Chapter 6, and it is subject to regular adjustments of beam waists, intensity, geometry, ... to
match the desired experimental conditions. The general principles underlying the produc-
tion of µK-cold Rb-Sr samples are not specific to photoassociation experiments, and they are
described in Refs. [52, 103] and in Chapter 3 and 6. The actual densities and temperatures
that we used for the one-colour spectroscopy presented in this chapter are given at the end
of this subsection, for each Rb-Sr isotopologue that we investigated. In the next paragraphs,
we discuss the photoassociation-specific choices that we made to optimize the probability of
observing Rb-Sr photoassociation events.

The first thing that has to be considered is the appropriate choice of atomic densities and
temperatures. The goal is to maximise the amount of Rb atoms lost per unit time due to
photoassociation, so that a large loss signal can be detected. Over the course of a photoas-
sociation pulse, the evolution of the Rb atom number NRb (and the Sr atom number NSr) is
given by

d
dt

NRb = −KPA(Ip) ηPA(T) NRbNSr

d
dt

NSr = −KPA(Ip) ηPA(T) NRbNSr ,
(4.5)

where only photoassociation-induced losses are taken into account. The local and peak pho-
toassociation rates KPA(I(~r))and KPA(Ip) do not depend on the Rb-Sr conditions of den-
sity and temperatures, and we discuss these terms in Subsection 4.4. The quantity ηPA(T)
parametrizes the overlap of the Rb and Sr clouds with each other and with the photoassoci-
ation beam. It is given by ηPA(T) = (NRbNSr × Ip)−1

∫
nRb(T,~r)× nSr(T,~r)× I(~r) d~r, where

nRb(T,~r) and nSr(T,~r) are the local temperature-dependent Rb and Sr densities, and I(~r) and
Ip = 2P/πω2 are the local and peak intensities of the photoassociation laser beam respec-
tively. The quantity ηPA(T) is independent of the atom numbers NRb and NSr. However, it
depends on T, because the Rb and Sr density distributions are Boltzmann distributions that
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depend on the temperature (and on the trapping potential) — see Ref. [127], Equation (33).
From Equations 4.5, the strategy is clear: to maximise the loss of Rb atoms, one needs to
maximise NSr and ηPA(T)20. In other words, one needs to maximise the spatial overlap of
the Rb and Sr clouds (and align properly the photoassociation beam onto these clouds) and
the amount of Sr atoms. That is the strategy we adopted. We typically load just enough
Rb to get a clear absorption signal for each m f -state, and load as much Sr as possible in the
crossed-beam dipole trap. The resulting sample contains a few 104 Rb atoms in each m f

state, and at least a few 106 Sr atoms. As for the overlap, the gravitational sags of both Rb
and Sr is negligible at the trap depths that we use, and the clouds are thus centered onto one
another. They do not overlap perfectly though, since Rb and Sr experience different trap-
ping potential, and thus different density profiles, due to their different polarisabilities α(λ)

at the wavelength(s) of the laser beams of the crossed-beam dipole trap (see Appendix A for
a discussion of optical dipole traps in the context of RbSr). However, they largely overlap at
the center of the trap, where the trap potential is the strongest.

As for the temperature, we chose to work at the µK-temperatures that we obtain from
laser cooling on the 1S0 – 3P1 transition of Sr, and subsequent thermalization with Rb. How-
ever, one can also perform photoassociation at lower or higher temperature. On the lower-
temperature side, we could in principle perform evaporation of the Rb and Sr gases. Over
the course of the evaporation process, the peak atomic density increases with decreasing
atom number and decreasing temperature, ultimately forming Bose-Einstein condensates
(or a Fermi sea in the case of fermionic 87Sr). This is a technique that we use routinely in
the laboratory. Such quantum-degenerate gases are denser than the µK-cold gases that we
use for photoassociation, and thus provide in principle a better Rb-Sr photoassociation sam-
ple21. However, evaporation to quantum degeneracy takes between 5 and 10 s typically in

20Note that one could also detect the photoassociation-induced losses of Sr, instead of Rb. From Equations 4.5,
one should then maximise NRb , i.e. load as much Rb as possible in the crossed-beam dipole trap. There are two
important drawbacks to this approach. First, m f -state renormalization is not possible in Sr, which limits severely the
achievable detection sensitivity. Second, the frequency of the photoassociation beam is close to that of the 1S0 – 3P1
atomic transition of Sr. This leads to loss of Sr by off-resonant scattering, especially for small ∆, as discussed in
Subsection 4.3.4 (this can be taken explicitly into account by adding the corresponding loss rate to the evolution
of the Sr atom number over the course of the photoassociation pulse). Therefore, the Sr atom number varies with
∆, which makes it very inconvenient to use it as a probe of photoassociation events (Rb is not affected by this off-
resonant scattering, and thus provides a stable baseline). To perform Rb-Sr photoassociation spectroscopy close to
the D1 line of Rb instead, where off-resonant scattering affects Rb but not Sr, it might be better to use Sr as a probe
and to load as much Rb as possible into the trap. In this case, the dipole selection rules for the D1 transition might
provide good guidelines for the choice of magnetic field, light polarization and atomic polarization (i.e. Rb m f -state
preparation).

21At the end of evaporation, the dipole trap potential is very shallow (the trap depth in the gravity direction
is of order h × 100 kHz for Sr, after evaporation to BEC) and the gravitational sags of the Rb and Sr gases are
significant, which compromises their overlap. Furthermore, they quantum-degenerate gases might not be miscible,
depending on their interspecies scattering length depending on the interspecies scattering length of the chosen
Rb-Sr isotopologue. The gravitational sags can be canceled by ramping up the potential depth after evaporation.
Furthermore, the immiscibility of the two gases can be avoided by matching exactly the trap frequencies of Rb and
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our experiments, and for a 1 GHz spectroscopy scan at MHz resolution (i.e., 1000 experimen-
tal cycles) this amounts to a few extra hours of scan, compared to without evaporation. We
prefer to avoid loosing that much time, given that these spectroscopy scans are already very
time-consuming. On the higher-temperature side, we could choose to work with samples
at a few ten or hundred µK. This permits the thermal broadening of the photoassociation
lines, a technique which is useful to create broad loss features out of narrow resonances.
The detection of RbSr magnetic Feshbach resonances, for instance, was facilitated by the
thermal broadening of our Rb-Sr sample — see our publication presented in chapter 6. The
thermal width of a given resonance feature is of the order of the temperature, which ac-
cording to kB × 1.0 µK= h× 20.8365 kHz leads to a broadening of about 20 kHz at 1 µK and
2 MHz at 100 µK. The main drawback of this method is that the photoassociation signal is
weaker for larger thermal broadening. Indeed, within the Rb-Sr atom pair thermal distribu-
tion of collisional energies, the proportion of atom pairs that are resonantly coupled to the
electronically-excited molecular state at a given photoassociation frequency νFB decreases as
the distribution gets larger. We chose not to compromise signal strength for increased broad-
ening, and thus worked at µK temperatures. The typical ∼ h× MHz molecular linewidths
that we observed are anyway naturally rather broad, compared to the narrow linewidth of
the 1S0 – 3P1 intercombination line of Sr22 — see Tables B.1 and B.2.

Another important aspect of the preparation of the Rb-Sr photoassociation sample is the
choice of the internal states of both Rb and Sr. As for 87Rb, it is produced in its hyperfine
ground state f = 1 using optical pumping, with each one of the m f -states m f = 0,±1 equally
populated. In the first stage of the experimental sequence, the strong magnetic field gradi-
ent of the 461-nm Sr MOT quadrupole field (55 G.cm−1 in the axial direction) depletes the
m f = +1 high-field-seeking state of Rb, and favors the retention of the low-field-seeking
m f = −1 during the experimental sequence. This results in a strong imbalance in the
m f -state distribution. To compensate for that, we "scramble" the m f -states by performing
several non-adiabatic RF sweeps across the m f = 0 – m f = −1 and mF = 0 – m f = +1
transitions23. We made attempts at spectroscopy scans with a Rb sample prepared in the
f = 2 manifold, but we couldn’t observe any photoassociation lines in the 87Rb-87Sr mixture
over a few hundred MHz, in a range of detunings ∆ where loss features could be observed
in the f = 1 manifold24. As for Sr, the bosonic Sr isotopes 84,86,88Sr have no nuclear spin

Sr, which we can do by using a bichromatic 1064/532 nm optical dipole trap. The reader interested in these matters
is referred to Ref. [52].

22In the case of very narrow molecular lines, the thermal spread can easily dominate. This is the case in Sr2 for
instance, in which typical linewidths are of the order of a few ten kHz only close to the 3P1 dissociation asymp-
tote [128].

23The Rb absorption pictures shown in Figure 4.2 were taken without such compensation, hence the clear im-
balance in the m f -state populations.

24This could indicate broadening of the photoassociation lines, due to predissociation of the electronically-
excited state into lower-lying hyperfine manifolds.



4.3. Laser system and experimental conditions for one-colour spectroscopy 115

(i = 0), which results in only one, non-magnetic mi = 0 state in the electronic ground state
1S0. The fermionic 87Sr isotope, on the other hand, has a nuclear magnetic moment i = 9/2
and is prepared in its stretched state mi = −9/2 via optical pumping, where mi is the pro-
jection of the nuclear spin i onto the quantization axis provided by the external magnetic
field [125]. This preparation in a stretched nuclear spin state proved essential to observe
87Rb-87Sr photoassociation-induced losses, as discussed in Subsection 4.3.3.

Temperature and densities Rb-Sr samples used in one-colour spectroscopy

The bosonic isotopologue mixtures 87Rb-84,86,88Sr have a temperature of 1.0(1) µK, with aver-
age densities of 0.3 – 4× 1012 cm−3 for Sr and 2 – 7× 1012 cm−3 for Rb (summing over all Rb
m f -states). The (angular) trap frequencies {ωx, ωy, ωz} are 2π × {66(6), 57(6), 560(50)} Hz
for Sr and 2π × {110(10), 95(9), 950(80)} Hz for Rb. Here z is the direction of gravity and y
the propagation direction of the horizontal optical dipole trap, which provides the restoring
force against gravity. The fermionic isotopologue mixture 87Rb-87Sr has a temperature of
1.5(1) µK, average densities of 2 – 6 × 1011 cm−3 for Sr and 0.8 – 3 × 1012 cm−3. The trap fre-
quencies are 2π×{76(6), 65(8), 612(25)}Hz for Sr and 2π×{125(17), 110(13), 874(51)}Hz
for Rb.

4.3.3 The photoassociation magnetic field and light polarization

At the time of the photoassociation pulse, an homogeneous magnetic field B is applied onto
the Rb-Sr samples. This field is set to B = 2.15 G for 87Rb-84Sr, B = 4.61 G for 87Rb-86,88Sr,
and B = 2.15 – 2.73 G for 87Rb-87Sr in the experiments presented in this chapter. The pho-
toassociation laser light propagates colinearly to the applied magnetic field B and it is left-
circularly polarized with respect to the magnetic field direction. In the next two paragraphs,
we indicate the reasons for these experimental choices.

The application of a magnetic field during photoassociation serves two purposes. First, it
lifts the degeneracy of the m f states of both the initial scattering Rb-Sr state and the detected
RbSr∗ molecule. At magnetic fields of a few G, the Zeeman energy associated with a single
Rb atom in a given m f state of the f = 1 manifold is Em f (B) = g f m f µB B, where µB = h×
1.3996 MHz/G is the Bohr magneton and g f ' −1/2 is the f = 1 low-field g-factor of 87Rb
— see [50] and Chapter 5, Figure 5.8. This energy defines the internal energy of the initial Rb-
Sr pair, because the ground-state Sr magnetic sensitivity is almost null25. The RbSr∗ detected
state is associated with the effective Fexc-number26, and the associated Zeeman energies are

25Only the fermionic isotopes 87Sr has a magnetic sensitivity, due to its non-zero nuclear spin, and it is very
small compared to that of Rb — see Chapter 5, Equations 5.46.

26It is customary to use uppercase letters to denote the quantum numbers F and mF of a molecule, and lowercase
letters for the quantum numbers f and m f of an atom.
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Emol, mFexc
= Emol(0 G) + g mFexc µB B, where g is the g-factor of the excited molecule and

mFexc can take the values mFexc = −Fexc,−Fexc + 1, ..., Fexc. The g-factor is unknown prior to
the detection and characterization of the excited molecular state (see Appendix B, Table B.3
in which the results of such a characterization is presented), and in general both Fexc and
g are different from the f and g f of the Rb-Sr atom pair state. Therefore in presence of
the magnetic field, the Rb loss features induced by the detection of a given molecular state
occur at different detunings ∆ for different m f states. Only a few G of magnetic field are
necessary to shift these transitions by a few MHz from one another. We exploit this to cancel
the detrimental effect of the overall Rb atom number fluctuations from one experimental run
to the other. Instead of analysing the raw atom number Nm f of each m f state, subject to shot-
to-shot fluctuation, we instead analyse the relative population p(m f ) in each state, defined
as the atom number in the m f -state of interested divided by the sum of all other Rb atoms.
The loss features are then resolved independently for each m f -state. This renormalization,
permitted by the combination of the Stern-Gerlach separation and of the applied magnetic
field B at the time of photoassociation, improves dramatically the one-colour spectroscopy
signal-to-noise, hence improving the detection sensitivity. This technique proved crucial to
detect very weak photoassociation signals.

The second purpose of the magnetic field is to define a quantization axis for the pho-
toassociation transitions, with respect to which the laser light polarization has to be set
such that it maximises the probability of photon absorption. The dipole selection rules
for electronic transitions of atoms gives guidelines for the choice of polarization and mag-
netic field axis, although they might not always apply to photoassociation transitions27.
Since the photoassociation laser has its frequency close to the excitation frequency of the
1S0 – 3P1 atomic transition of Sr, we use the selection rules for this transition as guide-
lines. This is in general not a correct molecular spectroscopy approach, because the mix-
ing of atomic orbitals in electronically-excited molecular states may modify these selec-
tion rules. However, it constitutes a good starting point, and we could detect many RbSr
one-colour resonances based on these guidelines. They proved very important to detect
87Rb87Sr resonances, where the non-zero nuclear spin of 87Sr imposes constraints on the
polarization of the light (see the following lines) and on the polarization of the Sr atoms
(see Subsection 4.3.2). In our experiments, the photoassociation laser light propagates co-
linearly to the applied magnetic field B and is left-circularly polarized with respect to the
magnetic field direction. Therefore, in terms of single-atom electronic transitions, it max-
imises the absorption cross-section of the σ− |1S0, mJ = 0〉 – |3P1, mJ = −1〉 transition of

27The simple parity selection rules that apply to electronic states of atoms can get more complicated when
it comes to molecules with a vibrational and rotational structure, which couples to the electronic and hyperfine
degrees of freedom.
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Sr28. For the bosonic isotopes 88Sr, 86Sr and 84Sr, the π, σ− and σ+ transitions have the
same strength, and therefore any choice of polarization/quantization axis is as good as the
others, as far as maximising the absorption cross-section goes. However, the definition of
the quantization axis by the magnetic field is critical in the case of the fermionic isotope
87Sr, which has a nuclear spin i = 9/2. This is because, in 87Sr, the only fully-closed tran-
sitions are the σ− |1S0, i = 9/2, mi = −9/2〉 – |3P1, f = 11/2, m f = −11/2〉 transition and
the σ+ |1S0, i = 9/2, mi = +9/2〉 – |3P1, f = 11/2, m f = +11/2〉 transition . Therefore, only
these two transitions display a Clebsch-Gordan coefficient CG = 1 maximising the absorp-
tion cross-section29. All other transitions, including all transitions involving a non-stretched
mi = −7/2,−5/2, ...,+7/2 initial state have CG < 1 due to the possibility for the excited
atom to decay back into a different mi state than the initial one. Therefore, for these transi-
tions the absorption cross-section is suppressed. The polarization of our 87Sr sample in the
stretched m f = −9/2 state of the 1S0 manifold was of critical importance to observe 87Rb87Sr
resonances, as well as the choice of left-circularly polarized photoassociation light to drive
"σ−-like" molecular transitions30. We couldn’t observe any photoassociation-induced loss
signal during our first attempts at photoassociating 87Rb and 87Sr using an unpolarized 87Sr
sample and arbitrary light polarization.

4.3.4 The lifetime of the Rb-Sr sample and the choice of pulse time and
laser intensity

The irradiation time Tpulse and the intensity of the photoassociation laser should always
be maximised in order to maximise the probability of observing photoassociation events.
However, the limited lifetime of the Rb-Sr sample also has to be considered in order to make
the proper choices, as we explain in the next paragraphs.

28We refer here to the angular contribution of the cross-section, which sets the selection rules for dipolar elec-
tronic transitions. According to these rules the polarization of light has to be linear and parallel to the quantization
axis of the magnetic field to drive π transitions with a Clebsch-Gordan coefficient CG = 1, and left/right circular
and perpendicular to the quantization axis to drive σ−/σ+ transitions with CG = 1.

29We remind the reader that the electronically-excited 3P1 manifold of Sr is associated with the orbital electronic
angular momentum L = 1, the total electronic spin S = 1 and the total electronic angular momentum J = 1. The
fermionic isotope has a nuclear spin i = 9/2, in contrast to the bosonic isotopes, which results in the splitting of
the 3P1 manifold into three f = 7/2, 9/2 and 11/2 hyperfine manifolds. See Subsection 2.1.5 for a presentation of
atomic and molecular term symbols.

30We could achieve similar results with the mi = +9/2 state of the 1S0 manifold, using right-circularly po-
larized photoassociation light. Note that the CG = 1 condition cannot be achieved for the excited |3P1, f = 9/2〉
and |3P1, f = 7/2〉 atomic manifolds, irrespective of light and atomic polarization conditions. Furthermore, a 87Sr
ground-state Sr atom polarized in mi = −9/2 cannot be coupled to these manifolds through a σ− transition (there
is no m f = −11/2 state in any of these two manifolds). This might contribute to explain the relative weakness of
the photoassociation signals that we observed below these asymptotes compared to the |3P1, f = 11/2〉 manifold.
Additionally, the molecular states that lie above the |3P1, f = 11/2〉 asymptote might predissociate quickly into the
corresponding continuum of excited atom pairs, leading to a broadening of the molecular transition and therefore
to a dilution of the signal strength.



118
Chapter 4. The potential energy curves of electronically-excited RbSr:

theory and experiments

The lifetime of the atomic sample is limited by two factors. The first one is the loss of Rb
and Sr atoms by inelastic three-body losses, where the collision of three atoms leads to the
formation of a diatomic molecule and to the transfer of the corresponding binding energy
to the molecule and to the third atom in the form of kinetic energy. The energy released
is typically much higher than the trap depth, and leads to the loss of both molecule and
atom from the trap. The three-body loss coefficient scales as K3 ∝ a4

s where as is the s-wave
scattering length [129]31. Correspondingly, we observe strong three-body losses in the 87Rb-
87Sr mixture, which has a very large interspecies scattering length (as = 1421(98) a0, as
shown in Table 1.1). This limits the lifetime of the 87Rb-87Sr sample to a few hundred ms,
and we do no observe any photoassociation events after about 400 ms of laser irradiation,
because the Sr atom number NSr becomes too small. In the mixtures 87Rb-84,86,88Sr, the Rb-Sr
s-wave scattering length is more reasonable and leads to negligible three-body losses over
several seconds, at least at the densities we use for photoassociation. Accordingly, we set
Tpulse to 400 ms for 87Rb-87Sr and to several seconds for the 87Rb-84,86,88Sr mixtures.

The second factor that limits the Rb-Sr sample lifetime is the loss of Sr atoms due to
off-resonant absorption of photons from the photoassociation beam. The photon scattering
rate of Sr is γ

2
s

1+s+4(∆/γ)2 where s = I/Isat is the saturation parameter, Isat = 3.0 µW.cm−2

the saturation intensity, γ = 2π × 7.50 kHz the linewidth of the 1S0 – 3P1 transition and
∆ = ν1S0 – 3P1

− νFB the detuning of the photoassociation laser frequency from the frequency
of the 1S0 – 3P1 Sr transition. Each absorption event leads to a momentum kick in the di-
rection of propagation of the photoassociation beam. The corresponding recoil energy is
Er = h̄2k2/2mSr = h× 4.8− 5 kHz, where mSr is the mass of the Sr atom (which is slightly
different for each Sr isotope) and k = 2π/λ, with λ = 689 nm the wavevector magnitude
of the photoassociation light. When the energy accumulated by a Sr atom due to successive
absorption events becomes comparable with the trap depth, the atom leaves the trap and is
lost. At our typical trap depths of h × 100 – 500 kHz, this corresponds to the scattering of
a few ten photons32. We set the intensity such that the remaining Sr atom number seen on
absorption pictures after the photoassociation pulse is within 10 – 30 % of the initial atom
number. We leave this residual atom number to verify that we didn’t loose the capability
of producing a Sr sample, due to experimental issues33, while the typically hours-long spec-
troscopy scan was executed. The peak intensity I0 = 2P/πω2 of the photoassociation beam,

31Taking into account the actual molecular structure, corrections can be made to this scaling. In particular,
the s-wave scattering length for which three-body losses are maximally suppressed is not exactly as = 0 — see
Equation (7.6) and its discussion in Ref. [129]. They result in a shift of the maximum of losses with respect to the
scattering length and are irrelevant to our discussion.

32The photoassociation beam propagates in the horizontal plane, where the dipole trap confinement is the weak-
est.

33Typically including laser delocks, electronics failures, broken shutters blocking laser cooling light, ...
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set by its total optical power P and its Gaussian beam waist ω = 110(10) µm34, is adapted
accordingly by using low intensities in the scan regions of small ∆ and large intensities in
the regions of large ∆. In deep regions of the target potential, where ∆ is very large, the off-
resonant scattering is negligible and it is best to use maximum optical intensity to maximise
the coupling between atom pair and molecular state. The laser intensities that we used are in
the range 0.01 – 100 W.cm−2 and in the regions of large ∆ they were limited by the available
optical power of our photoassociation laser.

34The waist of the photoassociation beam has been chosen such that it overlaps largely with the Rb cloud, which
is more compressed than the Sr cloud in the 1064− 1070 nm optical dipole traps.
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4.4 The experimental data and their analysis

The Rb-Sr photoassociation spectra obtained closed to the 1S0 – 3P1 asymptote of Sr are pre-
sented in Figure 4.3 and in Tables B.1 and B.2 of Appendix B, for all four isotopologues
that we investigated: 87Rb84Sr, 87Rb86Sr, 87Rb87Sr and 87Rb88Sr. These spectra were obtained
using the methods described in the previous sections35. The gap in the 87Rb86Sr spectrum
is due to the presence of a strong Sr2 resonance at ∆ = 3.15(20)GHz, which depletes the
Sr cloud and prevents Rb-Sr photoassociation. The gap in the 87Rb84Sr was scanned using
the same Rb-Sr sample as discussed previously, but with different laser irradiation condi-
tions, and no loss signal was observed in that range. For each isotopologue, the zero of
the frequency axis is the zero-magnetic-field resonance frequency of the atomic 1S0 – 3P1

transition of Sr, which we measure experimentally for each isotope of Sr. In order to cancel
thermal broadening, which would otherwise limit the accuracy of this reference, the transi-
tion frequency is measured in a Sr BEC for all bosonic isotopes of Sr, and in a very cold gas of
a very hundred nK for the fermionic isotope 87Sr. These measurements are performed at ex-
tremely low laser intensities to avoid any power-broadening36. The 1S0 – 3P1 transition has
a linewidth of γ/2π = 7.5 kHz, and we measure this transition frequency with an accuracy
of about 30 kHz (this number was most likely limited by magnetic and/or laser frequency
noise at the time of data taking). The molecular structure properties that we extracted from
the one-colour RbSr spectra are presented and discussed below.

Three parameters are especially important in view of understanding the excited molec-
ular potentials probed by one-colour spectroscopy: the resonance positions ∆PA — where
the subscript PA stands for photoassociation, and the position is given with respect to the
Rb (1S0)+Sr (3P1) dissociation asymptote, as shown in Figure 4.237 — , the spontaneous de-
cay rate γ/2π of the detected molecular states and the number of Zeeman sublevels of the
detected states and the associated g-factors. In the following paragraphs we explain how to
extract each one of these parameters from the experimental spectra.

The resonance positions of the photoassociation lines ∆PA are obtained by fitting the Rb
loss features observed in the spectra with Lorentzian fit functions. A magnetic field of a

35We remind the reader that the Rb sample is prepared in the f = 1 manifold, with all three m f = 0,±1-states
almost equally populated. The bosonic 84Sr, 86Sr and 88Sr atom have i = f = 0 in the ground state 1S0. The
fermionic isotope 87Sr has i = f = 9/2 in 1S0, and it is prepared in the stretched state mi = −9/2.

36The saturation intensity of the 1S0 – 3P1 transition of Sr is Isat = 3.0 µW.cm−2, and the peak laser intensity
is I0 = 2P/πω2, where ω is the waist of the laser beam and P the optical power. This means that with the beam
waist ω = 110(10) µm of our photoassociation beam, optical powers of less than 1 nW have to be used to avoid
power-broadening.

37The fermionic isotope 87Sr has a nuclear spin i = 9/2, which splits the 3P1 fine-structure manifold into three
f = 7/2, 9/2 and 11/2 non-degenerate hyperfine manifolds. The corresponding resonance positions are given with
respect to the f = 7/2 threshold, which has the highest energy.
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FIGURE 4.3: Results of the RbSr one-colour spectroscopy searches for the
87Rb87Sr, 87Rb88Sr, 87Rb86Sr and 87Rb84Sr isotopologues. The Rb population
in the states f = 1, m f = −1 (black squares), m f = 0 (red circles), and
m f = +1 (blue triangles) are displayed as a function of the detuning ∆ of
the photoassociation laser frequency with respect to the Sr 1S0 – 3P1 atomic
transition. The zero of the frequency axis is the zero-field 1S0 – 3P1 transition
of Sr. The three hyperfine manifolds associated with 3P1 in 87Sr (not to be
confused with the f = 1 manifold of Rb) are indicated in red letter, and the
associated atomic transitions are marked by red lines. For this isotope the
zero of the frequency axis is the (1S0, i = 9/2) – (3P1, f = 7/2) transition.
Data taken by V. Barbé and A. Ciamei, figure created by A. Ciamei.
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few G is applied during the photoassociation pulse, which enhances dramatically the de-
tection sensitivity of the one-colour spectroscopy scans, as explained in Subsection 4.3.3.
However, we are interested in the zero-magnetic-field resonance positions. We used two
methods to extract them. The first is to locate the resonance detected during the one-colour
spectroscopy scan, in presence of the magnetic field, and then to measure each one of these
resonances again at zero magnetic field (i.e. B < 30 mG, which is the best precision we
achieved on the magnetic field magnitude at the time of data taking). The raw atom number
Nm f is then used for fitting the loss features, instead of the populations p(m f ). The detec-
tion sensitivity is of course degraded in absence of m f -state renormalization, but since the
resonance has been detected already it is not a problem. The second method is to measure
the resonances corresponding to one given molecular state at several values of the magnetic
field, and then extrapolate the zero-field resonance position from the observed magnetic
behaviour. Such measurements are shown in Ref. [52], Figure 5.7, in the context of Rb-Sr
photoassociation also. Both methods are time-consuming, especially the second one. All
resonances positions reported for the bosonic isotopologues, Table B.1, correspond to the ex-
tracted zero-magnetic-field positions. The resonance positions of the 87Rb-87Sr fermionic iso-
topologue, on the other hand, were not extracted at zero magnetic field. There are so many
of such resonances that it would have been extremely time-consuming to do so, and we
didn’t have a good reason to perform this characterization. We instead estimated the 87Rb-
87Sr zero-magnetic-field resonance positions, and the corresponding error bars, based on the
value of the magnetic field during photoassociation and the average magnetic moment that
we measured for all 87Rb87Sr molecular states that we characterized (see Table B.3). These
resonance positions are reported in Table B.2.

The spontaneous decay rates γ/2π of the detected molecular states are obtained by fit-
ting the Rb loss features with a model fit function more specific to photoassociation pro-
cesses, Equation 4.8 given below. The measured decay rates are typically of order MHz, as
reported in Table B.338. To construct the fit function, we assume that the loss of Rb atoms

38We didn’t expect such broad linewidths, owing to the narrow γ/2π = 7.5 kHz linewidth of the Sr 1S0 – 3P1
atomic transition. This might be caused by the mixing of the excited potentials correlating to 3P1 with the ones
correlating to the Rb asymptotes — the D1 and D2 lines of Rb have respectively γ/2π = 5.746(8) MHz and γ/2π =
6.065(9) MHz [50] —, or to predissociation of the atom pair into the 3P0 continuum of scattering states Rb (2S1/2) +
Sr (3P0).
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over the course of the photoassociation pulse is dominated by two mechanisms: Rb-Sr pho-
toassociation and three-body losses39. Furthermore, we assume for simplicity that the three-
body losses are induced by Sr-Sr-Rb collisions40. The temporal evolution of the Rb atom
number NRb is then

d
dt

NRb = −KPA(Ip) ηPA(T) NRbNSr − K3 η3(T) NRbN2
Sr . (4.6)

The K3 coefficient is the three-body Sr-Sr-Rb loss coefficient41. The quantities η3(T) and
ηPA(T) parametrize the overlap of the Rb and Sr clouds with each other and with the pho-
toassociation beam, for three-body loss and photoassociation-induced loss processes respec-
tively. The former is given by η3(T) = (NRbN2

Sr)
−1
∫

nRb(T,~r)× n2
Sr(T,~r) d~r, where nRb(T,~r)

and nSr(T,~r) are the local temperature-dependent Rb and Sr densities. The latter is given by
ηPA(T) = (NRbNSr × Ip)−1

∫
nRb(T,~r)× nSr(T,~r)× I(~r) d~r, with I(~r) and Ip = 2P/πω2 the

local and peak intensities of the photoassociation laser beam respectively. Both η3(T) and
ηPA(T) are independent of the atom numbers NRb and NSr. However, they depend on the
temperature T, because the Rb and Sr density distributions are Boltzmann distributions that
depend on the temperature (and on the trapping potential) — see Ref. [127], Equation (32).
The local and peak photoassociation rates KPA(I(~r)) and KPA(I) have a Lorentzian lineshape,
given by

KPA(I(~r)) = c1 ×
γ

(γ/2)2 + (∆− ∆PA)2 ×
I(~r)
Ip

, (4.7)

where c1 is a constant, which carries the information about the transition dipole moment
induced between the scattering and molecular states by the photoassociation light — see

39The rate of collisions of Rb atoms with particles from the background gas of the vacuum chamber depends
quality of the vacuum. Our vacuum-limited lifetime is τ ∼ 30 s, as measured from the 1/e lifetime of a Sr BEC in
an optical dipole trap. It is therefore much larger than the photoassociation pulse time Tpulse, which is 400 ms for
87Rb-87Sr and a few seconds for the other isotopic mixtures — see Subsection 4.3.4. Collisions with the background
gas and the associated one-body losses can thus be safely neglected over the course of the photoassociation pulse.

40At the densities we use for photoassociation, we observe no Rb atom loss over the course of several seconds,
if only Rb is in the trap. Therefore Rb-Rb-Rb collisions can be neglected here. In the case of the fermionic mixture
87Rb-87Sr, on the other hand, the very large s-wave interspecies scattering length (as = 1421(98) a0) leads to strong
three-body losses and a rapid decrease of the Rb atom number. These losses are induced by either Rb-Rb-Sr or
Rb-Sr-Sr collisions, which we cannot distinguish experimentally here. The three-body losses give rise to only small
corrections of the fitted spontaneous decay rates γ/2π, therefore it was chosen to consider only Sr-Sr-Rb events for
simplicity. This choice simplifies the expression of the Rb atom number, Equation 4.8, which we use for fitting the
loss features.

41See for instance Ref. [130] for rate equations analogous to Equation 4.6, in the context of a Rb three-body loss
study.
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Ref. [53], Equation (4.25) and Ref. [123]. This constant is therefore sensitive to the polar-
ization of the light, as discussed in Subsection 4.3.3. We further assume that the tempera-
ture of the atoms doesn’t change during the photoassociation pulse42, and that NSr is not
affected by photoassociation events43. Setting c2 =

∫ Tpulse
0 c1 KPA(Ip) ηPA(T) NSr dt and

c3 =
∫ Tpulse

0 K3 η3(T) N2
Sr dt44, the Rb atom number is then

NRb(t) = NRb(0)× exp
(
−c2

γ

(γ/2)2 + (∆− ∆PA)2 − c3

)
, (4.8)

which is the model fit function we used to fit the experimental loss features and extract γ.
Complementary information about this fitting procedure can be found in Ref. [51]. Impor-
tantly, the measured γ and ∆PA are different from their "bare" values, due to the photoasso-
ciation light. The spontaneous decay rate γ/2π is broadened due to the stimulated emission
width, and ∆PA is subject to a light shift45, as is clear from Equation (4.25) of Ref. [53]. We
investigated these effects on the resonances from which γ/2π was extracted, by measuring
the corresponding loss features as a function of laser power, and concluded that they are not
broadened under our experimental conditions. We also measured the light shift of several
resonances with the same method, and these shifts were of 100 kHz at most at our laser in-
tensities. Note that the full width at half maximum of the Lorentzian fit used to extract ∆PA

slightly overestimates γ, as shown in Tables B.1 and B.2.
The number of Zeeman sublevels and the associated g-factor are obtained by measur-

ing ∆PA at several values of the magnetic field B, for a given excited molecular state. At
zero magnetic field, all resonances induced by the presence of the detected molecular state
are degenerate. At B > 0 G, however, the Zeeman sublevels split according to ∆E(B) =

E(0 G) + µexc B = E(0 G) + g mFexc µB B, where µB = h× 1.3996 MHz/G is the Bohr magne-
ton, µexc the magnetic moment of the excited molecular state, mFexc the projection of its total
angular momentum Fexc along the B-field axis and g the associated g-factor46. Since we have

42This is in general not true. Photoassociation is stronger where the Rb and Sr densities are the largest, which
is at the center of the optical dipole trap. Atoms in this region have less potential energy than the atoms at the
edges of the trap, therefore their depletion leads to anti-evaporation and to heating of the gas. However we do not
measure huge changes in the temperature of the clouds on absorption pictures, and we dismissed such effects from
the fitting procedure. The absolute values of c2 and c3 are anyway irrelevant to the extraction of γ.

43This is a legitimate assumption, since we typically load about ten times more Sr atoms than Rb atoms into the
optical dipole trap (see Subsection 4.3.2).

44Note that NSr depends on t due to the Sr off-resonant scattering of photons over the course of the photoasso-
ciation pulse (see Subsection 4.3.2). However, the knowledge of the temporal evolution of NSr is not needed here,
since the absolute values of c2 and c3 are irrelevant to the extraction of γ.

45This shift of the optical Feshbach resonance is completely analogous to the shift of magnetic Feshbach reso-
nances — see Chapter 5, Equation 5.8.

46Note that the magnetic behaviour, which does not always lead to energy shifts that scale linearly with the
magnetic field, is not fully captured by the g-factor in all cases. In particular, states with only one Zeeman sublevel,
i.e. mFexc = 0, can exhibit a non-zero magnetic moment. See for instance the 87Rb84Sr molecular state detected at
∆PA = 173.50 MHz, Table B.3.
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full knowledge of the magnetic moment of the initial scattering state (see Subsection 2.2.1 in
this chapter), it is possible to "track" the mFexc states of the excited molecular state with the
magnetic field, and to see them merge at zero magnetic field. This magnetic characterization
method is beautifully explained in the PhD thesis of my predecessor Alex Bayerle, where
examples of measured RbSr Zeeman diagrams are presented — see Ref. [52], Figure 5.9. The
number of Zeeman levels of the detected molecular states, their magnetic moment µexc and
the associated g-factor are presented in Table B.347.

47We only report the g-factor of the states for which there is no uncertainty on the total number of Zeeman
sublevels and for which there is more than one sublevel.
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Chapter 5

Magnetic Feshbach Resonances in
RbSr

The first experimental observation of Feshbach resonances between alkali and closed-shell
atoms, Rb and Sr respectively in our experiment, is to be considered one of the major results
of this PhD thesis. In Section 5.1, we present the general physics of magnetic Feshbach res-
onances and show how such resonances can be used to magnetoassociate atom pairs into
weakly-bound molecules in an optical lattice. The reference review of Feshbach resonances
in ultracold atom experiments is given in Ref. [131], and the reader is encouraged to read it
in complement to this chapter. Section 5.2 is dedicated to the physics of magnetic Feshbach
resonances in bi-alkali systems, owing to their importance in the ultracold atom community.
Special attention is given to Rb2, which is of relevance for RbSr experiments. Sections 5.3, 5.4
and 5.5 are dedicated to the physics of RbSr Feshbach resonances, which arise from coupling
mechanisms that are much weaker than the ones found in bi-alkali systems1. Mechanisms I
and II, which lead to the strongest RbSr Feshbach resonances, are presented in Sections 5.3
and 5.4 respectively. Our theory collaborators were the first to predict the existence of such
resonances [25, 26], and we were the first experimental group to observe them. This dis-
covery led to the publication presented in Chapter 6. Section 5.5 is dedicated to extremely
narrow RbSr Feshbach resonances, induced by mechanism III, which we discovered experi-
mentally and which triggered a subsequently-published theoretical work [132].

1As should be clear from the reading of this chapter, the broad magnetic resonances that involve the exchange
interaction between the two valence electrons in bi-alkali systems are simply absent in pairs of an alkali and a
closed-shell atom, because they exhibit only one valence electron (the one of the alkali atom). Similarly, electronic
spin-spin dipole interactions that give rise to narrow resonances in bi-alkali systems are absent. However, there exist
anisotropic resonances that arise from nuclear and electronic spin dipole interactions, and are conceptually very
similar to the electronic spin-spin interactions of bi-alkali systems. This type of extremely narrow RbSr resonances,
that we discovered experimentally, is the subject of Section 5.5.
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5.1 Magnetic Feshbach resonances and ultracold molecules:

a general perspective

Feshbach resonances, or Fano-Feshbach resonances, arise when a continuum of scattering
states couples resonantly to a discrete bound state. The resonant coupling results in a rapid
change of the long-range phase of the scattering states across the resonance, and conse-
quently to drastic changes in both elastic and inelastic scattering cross-sections.

The original work of Fano was performed in the context of helium autoionization in elec-
tron scattering experiments [133]. The highly asymmetric lineshapes obtained in Helium
experiments were successfully explained by Fano, who indicated it to be the result of the
coupling of the electronically doubly excited state of helium 2s2p, with binding energy Eb ∼
60 eV, to the continuum of 2s ionized helium scattering states above the first-ionization en-
ergy of ∼ 24 eV. The characteristic lineshape associated with this process was named "Fano
profile" after him. The RbSr photoassociation spectra that we obtained and that are pre-
sented in Section 4.2 and Figure 4.2 provide another example of Feshbach resonances: a
discrete, electronically excited RbSr molecular state is resonantly coupled to the continuum
of Rb-Sr atom pair scattering states in the RbSr electronic ground state by a laser photon.
Such resonances are referred to as optical Feshbach resonances and are reviewed in Ref. [63].

In this chapter we focus on the case of magnetic Feshbach resonances, for which the reso-
nance condition between continuum and molecular state is achieved through the application
of an external magnetic field.

5.1.1 Magnetic Feshbach resonances

Magnetic Feshbach resonances, which are the subject of this chapter, arise when a molecular
state of magnetic moment µmol and of internal energy Emol is set close in energy to an atom
pair scattering state of magnetic moment µE and of collisional energy E = h̄2k2/2µ (where µ

is the reduced mass of the pair) upon application of an external magnetic field.
The channel to which the scattering state |E〉 of interest belongs is referred to as channel 1,

also referred to as open channel2 or background channel. It is defined by a potential energy
curve (PEC)3 and by a set of hyperfine quantum numbers that we will make explicit in the

2The terminology "open" and "closed" indicates the respective positions of the zero-collisional energy thresh-
olds of the channels 1 and 2 with respect to the collisional energy of interest E. The threshold of the closed channel 2
lies higher in energy than |E〉, therefore it is energetically inaccessible — see Figure 5.1. On the other hand, the

molecular states |ψ(1)
mol〉 and the scattering states |E′〉 with E′ < E of the open-channel PEC can be reached from |E〉

by releasing internal energy from the system. This situation arises for instance when three-body losses occur in the
gas; the internal energy is then transferred to center-of-mass kinetic energy.

3An introduction to the concept of PEC and to the associated scattering and molecular eigenstates is given in
Subsections 2.1.5 and 2.1.6, in the context of RbSr.
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FIGURE 5.1: Magnetic Feshbach resonance. Upon application of an exter-
nal magnetic field of magnitude B, a molecular state belonging to the closed
channel (2) is brought close to degeneracy with a scattering state of collisional
energy E belonging to the open channel (1) scattering threshold. At the reso-
nance position both channels get mixed and the scattering phase of the open
channel state is modified by the admixture with the closed channel.

cases of Rb2 and RbSr in the next sections. The channel to which the resonant molecular
state |ψ(2)

mol〉 of energy Emol,2 belongs is referred to as channel 2, or closed channel. The zero
of energy of the system is defined to be the zero-collisional energy threshold k = 0 of the
open channel, and therefore depends on the external magnetic field4.

In the ultracold limit, the scattering states are predominantly s-wave (see Figure 2.5),
corresponding to N = 0 in Equation 2.41 and are characterized by a collisional energy
E = h̄2k2/2µ and by a radial scattering wavefunction χscat

k,N (R). Importantly, while for molec-
ular states χvib

ν,N(R) → 0 for R → ∞ and thus unit-normalization 〈χvib
ν,N(R)|χvib

ν,N(R)〉=1 is
possible, in absence of external confinement the scattering wavefunctions are not square-
integrable and must be energy-normalized according to 〈E|E′〉 = δ(E− E′). We go back to
this point in Subsection 5.1.2. The s-wave (i.e. N = 0) scattering radial wavefunctions have
the asymptotic behaviour

χscat
k,N=0(R) −−−→

R→∞

√
2µ

πk
sin(kR + δbg) , (5.1)

4The magnetic moment of the open channel is "absorbed" in this definition: the energy of the open channel re-
duces to the collisional energy, and the magnetic energy of the closed channel state is given by the relative magnetic
moment δµ = µmol,2 − µE.
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where the asymptotic phase shift δbg is a property of the open-channel PEC [56]. It defines
the background s-wave scattering length abg (typically expressed in units of the Bohr ra-
dius5) and thus the elastic s-wave collision cross-section σ = 4πa2 through6

− kabg = tan(δbg) . (5.2)

The existence of a coupling term V̂12 between the closed and open channels admixes |ψ(2)
mol〉

with the scattering states of the open channel. As a result of this coupling, a scattering state
|E〉 is transformed into the state of same energy E according to7

|E〉 −→ sin(δres)
1

π 〈E| V̂12 |ψ
(2)
mol〉

(
|ψ(2)

mol〉+ P
∫ ∞

0

〈E′| V̂12 |ψ
(2)
mol〉

E− E′
|E′〉 dE′

)
− cos(δres) |E〉 ,

(5.3)
where the term in parenthesis is the molecular state |ψ(2)

mol〉 modified by the admixture with
the scattering states of the open channel [56, 133]. The Cauchy principal value symbol P
indicates that the integral is taken over all energies E′ with the exception of E′ = E. The
asymptotic behavior of this modified scattering state is

χscat
k,N=0(R) −−−→

R→∞

√
2µ

πk
sin(kR + δbg + δres) , (5.4)

where it is seen that the interaction with the molecular state |ψ(2)
mol〉 of channel 2 results in a

change of the asymptotic phase shift of the scattering states |E〉 of channel 1. The asymptotic
phase shift modified by this interaction is

δres = − tan−1
(

1
2

Γ12(E)
E− Eres

)
. (5.5)

Accordingly, the s-wave scattering length a becomes, owing to −ka = tan(δbg + δres),

a(E) = abg +
1
k

Γ12(E)/2
E− Eres

. (5.6)

The Breit-Wigner energy width of the Feshbach resonance is given by

5The Bohr radius is a0 = 4πε0 h̄2

m e2 = 0.529177210 Å, where m and e are the mass and charge of the electron
respectively.

6The expression σ = 4πa2 for s-wave collisions (N = 0) is valid for distinguishable particles, such as Rb-Sr or
for identical bosons in different | f , m f 〉 states, such as two Rb atoms. For identical bosons in the same quantum
state, such as two 84Sr atoms, it is σ = 8πa2. For identical fermions in the same quantum state, such as two 87Sr
atoms in the same |I, mI〉 state s-wave collisions are prohibited by Pauli principle.

7Due to the sin(δres) dependence, the relative contribution of the molecular state to the coupled scattering state
is not symmetric across δres = 0. This asymmetry is characteristic of the Fano profile.
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Γ12(E) = 2π| 〈E| V̂12 |ψ
(2)
mol〉 |

2 , (5.7)

and the position of the resonance is

Eres = Emol,2 + Eshift,12 with Eshift,12 = P
∫ ∞

0

| 〈E′| V̂12 |ψ
(2)
mol〉 |

2

E− E′
dE′ . (5.8)

These two parameters (Breit-Wigner width and position) are the most important quantities
that characterize the Feshbach resonance. The Breit-Wigner width quantifies the range of
collisional energies E for which the continuum is strongly coupled to |ψ(2)

mol〉, across the po-
sition Eres — see Figure 5.1. The position Eres is shifted compared to the energy of the "bare"
molecular state Emol,2, owing to its admixtures with the other scattering states |E′〉 6= |E〉 of
the open channel, as seen from Equation 5.3.

At the position E = Eres, the s-wave scattering length diverges and so does the elastic
s-wave collision cross section. The gas is strongly interacting, with an enormous amount
of scattering events per unit time. In this regime, typically not only the elastic s-wave
cross-section but also inelastic losses and three-body recombination rates are dramatically
enhanced8. This is for us experimentalists both a blessing and a curse. A blessing, because
it allows to perform Feshbach spectroscopy by inferring in a simple manner the binding
energy of molecular bound states from the positions where inelastic losses occur — see
Chapter 6. A curse, because close to the crossing point the gas might get destroyed before
molecule association could be achieved.

Importantly, for low-energy scattering states with E→ 0 and thus k→ 0, the E-dependence
of the Breit-Wigner width, Equation 5.7, follows the Wigner threshold law

Γ12(E) ∝
√

E

Γ12(E) ∝ k .
(5.9)

Therefore, the Breit-Wigner width can be expressed conveniently as Γ12(E) k→0−−→ 2kabgΓ 0
12,

where Γ0
12 is an energy-independent constant [131, 134]. The s-wave scattering length is thus

a(E) = abg

(
1 +

Γ 0
12

E− Eres

)
. (5.10)

8Far from any resonance, two-body collisions (elastic and inelastic) dominate in the low-density gases of our
experiments — see Chapter 1, Section 1.1. Two-body inelastic collisions (aka, spin-exchange collisions) are com-
pletely absent in ground-state Sr but are present in 87Rb. The corresponding spin-exchange rates are very low, as
discussed in Subsection 5.2.2, but can be greatly enhanced close to a Feshbach resonance.
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FIGURE 5.2: Scattering phase and s-wave scattering length near a magnetic
Feshbach resonance. Left panel: Variation of the scattering phase shift across
the B0 = 1311 G 87Rb84Sr s-wave Feshbach resonance. Across the resonance
position, the phase shift varies rapidly between +π/2 and −π/2, and at the
zero crossing the scattering phase shift cancels out due to the interference of
the resonant and background scattering waves. Right panel: corresponding
change in s-wave background scattering length in Bohr radius (a0) units. At
the resonance position the diverging scattering cross-section leads to three-
body losses that are observable experimentally. The plotted s-wave scattering
state has E = h̄2k2

2µ = kB × 1.0 µK, and the parameters of the resonance are

abg = 93 a0, ∆B = 0.27 mG, δµ/h = 2.15 MHz/G and Γ0
12 = ∆B/δµ =

h× 0.58 kHz.
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In the context of magnetic Feshbach resonances, both |E〉 and |ψ(2)
mol〉 have a magnetic mo-

ment and their relative energy can be tuned by applying an external magnetic field B. The
magnetic moments µE(B) and µmol,2(B) are in general B-field dependent themselves, in par-
ticular in the important case of hyperfine states | f , m f 〉 of alkali atoms9. Equation 5.10 then
becomes

a(B) = abg

(
1 +

∆B
B− B0

)
with

B0 = Bc + δB

∆B ∝ Γ 0
12

, (5.11)

which is the celebrated expression for the B-field dependent s-wave scattering near a mag-
netic Feshbach resonance. Bc is the magnetic field at which the molecular state would enter
the continuum in absence of coupling between closed and open channel. The magnetic res-
onance shift δB can be reduced to the simple expression given in Equation 5.13, and is very
small for resonances with small ∆B, such as RbSr resonances. ∆B quantifies the magnetic-
field separation between the pole a(B) → ±∞ and the zero crossing a(B) = 0, as shown in
Figure 5.2. However, the physical quantity that is really of interest to quantify the strength
of the molecule-continuum coupling is the Breit-Wigner width, not ∆B10. In particular, we
require the Breit-Wigner width to be large for magnetoassociation purposes — see Subsec-
tion 5.1.2.

Magnetic Feshbach resonances thus arise under two conditions. First, that a molecular
state |ψ(2)

mol〉 can be set close to resonance with an atom pair scattering state |E〉 upon appli-
cation of an external magnetic field11. Second, that a coupling term V̂12 exists between the
open and closed channel and gives a non-zero value to the Breit-Wigner width, Equation 5.7.

Feshbach resonance shifts in RbSr

The initial treatment of Fano didn’t include the interaction of the bound state |ψ(2)
mol〉with the

bound states of the open channel, only its interaction with the continuum. In ultracold atom
experiments, it can happen that a molecular bound state in the open channel lies close in

9The 87Rb84Sr resonance located at B = 1311 G involves the crossing of the 87Rb84Sr |ν = −4, N = 0〉 vibrational
state, which belongs to the closed channel | f , m f 〉 = |2,+1〉 and has a magnetic moment µmol,2 given by µmol,2/h =

1.075 MHz/G at B = 1311 G, and of the atom pair state which belongs to the open channel | f , m f 〉 = |1,+1〉 and
has a magnetic moment µE given by µE/h = −1.077 MHz/G at B = 1311 G.

10As is clear from the relation Γ12(E) k→0−−→ 2kabgΓ 0
12, for s-wave scattering the product abg∆B is a good estimator

of the strength of a Feshbach resonance. Therefore, ∆B can be used to compare the strength of resonances occurring
in the same open channel PEC, since in that case the background s-wave scattering length abg is uniquely defined.
This is for instance the case of the 87Rb2 resonances reported in Figure 5.6, taken from Ref. [135]. All resonances
reported in the right table occur in the same open channel: same Rb atoms, same partial wave (s-wave) and same
hyperfine states. Therefore, their relative strength can be compared by comparing their ∆B.

11That requires, in all cases known to the author, the set of hyperfine quantum numbers of the open and closed
channel to be different. This is necessary for the magnetic moments of the two channels to differ.
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energy to the resonance and shifts the resonance position12. This is simply taken into account
by adding the interaction of the resonant molecular state |ψ(2)

mol〉with the open channel |ψ(1)
mol〉

bound states to the expression of the shift. This leads to

E(E,2)
shift =

∫ ∞

0

| 〈E′| V̂12 |ψ
(2)
mol〉 |

2

E− E′
dE′ + ∑

| 〈ψ(1)
mol| V̂12 |ψ

(2)
mol〉 |

2

E− Emol,1
, (5.12)

where the sum is taken over all open-channel bound states |ψ(1)
mol〉, and only bound states

close to the resonance contribute significantly to the shift. Remarkably, it has been shown
that in the limit where the Wigner-threshold law applies, the magnetic shift is

δB =
rbg(1− rbg)

1 + (1− rbg)2 ∆B , (5.13)

where rbg = abg/a is the dimensionless background scattering length, renormalized by
the mean scattering length a = 0.477989(2µC6/h̄2)1/4 as defined by Gribakin and Flam-
baum [109, 136].

The strongest shifts we expect for the s-wave RbSr Feshbach resonances data presented
in Chapter 6 occur in the 87Rb87Sr mixture, for which the last vibrational state has a very
small binding energy Eb < 40kHz. Consequently, this mixture exhibits a very large s-wave
background scattering length abg = 1421(98) a0 where a0 is the Bohr radius. Given the C6

coefficient of RbSr in its electronic ground state (1.784(15)× 107 Å6 cm−1, see Chapter 3), the
mean 87Rb87Sr scattering length is a ' 74 a0

13. For the resonance with the largest ∆B that we
observed (3.5 mG, see Table 6.1 in Chapter 6), this corresponds to a shift of less than 5 mG.
Such shifts are well below the experimental resolution of our Feshbach spectroscopy (the
experimental three-body loss width is for instance δ = 366(3)mG for the same resonance,
owing to thermal broadening), and thus was not taken into account in our analysis for the
fit of the ground-state PEC of RbSr.

5.1.2 Magnetoassociation in an optical lattice

Magnetic Feshbach resonances have been widely used in the cold atom community to pro-
duce ultracold molecules. Trapping the atoms in an optical lattice prior to molecule forma-
tion has several advantages: the suppressed center-of-mass motion prevents the molecules
from chemically reacting with one another, since they are "pinned" on individual lattice sites,

12An extreme example of this is presented in Ref. [131], Figure 13. A molecular state of the closed channel
crosses a weakly-bound open-channel molecular, at a slightly lower magnetic field than the field at which it crosses
the zero-energy open-channel threshold. This creates an avoiding crossing and the open-channel bound state,
"dressed" with the closed-channel molecular state is pushed towards the threshold where it creates a Feshbach
resonance.

13This estimation is made using a0 ' 0.53 Å and 1 cm−1 = h× 30 GHz.
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and the compression of the relative motion radial wavefunction of the atom pair increases
the strength of the atom to molecule coupling compared to untrapped atoms. The original
theoretical paper that investigated molecule formation using Feshbach resonances in an op-
tical lattice is Ref. [136], and an excellent discussion of heteronuclear molecules in optical
lattices can be found in Ref. [137].

The confining potential of the optical lattice site has to be added to the diatomic Hamil-
tonian14, Equation 2.3, which leads to

Ĥ = Ĥrel + T̂c + ∆̂trap (5.14)

Ĥrel = Ĥvibration + Ĥrotation + ĤCoriolis + T̂e−N + Ĥe +
1
2

µωrel
2R2 (5.15)

T̂c = −
h̄2

2M
~∇2

c +
1
2

MωC
2RC

2 (5.16)

∆̂trap = V̂anharm( ~RC, ~R) + µ∆ω
2 ~RC · ~R . (5.17)

The terms in blue refer to the effect of the trapping potential, and the harmonic angular

frequencies for the relative and center-of-mass motion are ωrel =
√

MAωB2+MBωA
2

MA+MB
and ωC =√

MAωA
2+MBωB2

MA+MB
respectively [56]. The trapping potential is thus decomposed into the sum

of two harmonic terms, and of the corrections ∆̂trap. The first of these corrections accounts
for the non-harmonicity of the trapping potential, and the second for the differences ∆ω2 =

|ωA
2 − ωB

2| in angular trap frequencies between the two atoms A and B on a lattice site15.
These trap frequencies are set by the lattice depth s experienced by the particles A and B,
which is defined as the ratio of the dipolar potential created by the lattice beams divided by
the recoil energy of the particle at the lattice wavelength — see Section A.2 of the appendix.
In our experiments, A and B are Rb and Sr and the lattice wavelength is 1064 nm. The lattice
depth s depends linearly on the lattice beams intensity. Rb and Sr have almost the same
mass, therefore their recoil energies are almost identical (see Equations A.11). However,
they have different polarisabilities α(λ) at the wavelength λ = 1064 nm. The ratio of their
polarisabilities is αRb(1064 nm)/αSr(1064 nm) = 3.2 (see Equations A.5). Therefore, at a given
optical intensity the lattice depth s is about three times as high for Rb as it is for Sr, and the
corresponding trap frequencies ω ∝

√
s are about 1.8 times larger for Rb than for Sr16.

14We remind the reader that the diatomic Hamiltonian is the sum of the center-of-mass motion and of the relative
motion, as shown in Equation 2.26.

15Angular trap frequencies and Gaussian waists of laser beams are denoted by the same symbol ω in this thesis.
That’s how these two quantities are usually referred to in the literature.

16The approximation ω ∝
√

s is valid for large lattice depth, and is typically very accurate for s > 20.
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FIGURE 5.3: Free-space (black line) and optical lattice (blue line) situations
for the relative motion of an atom pair of 87Rb and 84Sr. In the free space
case, the s-wave scattering eigenstates are energy-normalized and constitute
a continuum of positive collisional energy E above the dissociation thresh-
old. In the optical lattice case, here displayed for a perfectly harmonic 3D
isotropic lattice with ωrel = 2π × 50 kHz, the atom pair eigenstates are unit-
normalized and constitute a discrete set of energies E = (3/2 + n)h̄ωrel and
of relative spacing h̄ωrel, proportional to

√
I(x, y, z) where I(x, y, z) is the lo-

cal lattice intensity. On-site interaction corrections are of order ∼ h×kHz for
87Rb-84Sr and are not depicted here. The harmonic oscillator length aHO is
set by ωrel and is much larger than the 87Rb-84Sr s-wave scattering length
aS = 49 Å (93 a0). Therefore, the coupling between center-of-mass and rela-
tive motions induced by the difference in trap frequencies of 87Rb and 84Sr at
ωrel = 2π × 50 kHz is very small.
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The corrective terms ∆̂trap couple the center-of-mass and relative motions17. In particular,
the molecular vibration gets coupled to the lattice motion. This effect can in principle induce
the decay of weakly-bound states (in particular our target molecular state for Feshbach as-
sociation) to deeper-bound molecular states, accompanied with release of energy towards
motional lattice states [J. Hutson, private communication]. We argue in the next paragraph
that the anharmonic term V̂anharm( ~RC, ~R) is small in the ground state of the center-of-mass
motion. The second term µ∆ω

2 ~RC · ~R is non-zero in our case, because Rb and Sr have dif-
ferent polarisabilities at λ = 1064 nm and thus have different trap frequencies in our optical
lattice — see Equation A.5. According to Ref. [56], this term is weak for as/aHO � 1, where
as is the s-wave scattering length for the atom pair and aHO =

√
h̄

µωrel
is the harmonic oscil-

lator length of the relative motion as defined by the trapping potential18. The largest lattice
depths we ever reached in our experiments are approximately s = 260 for Sr and s = 863
for Rb, which correspond to ωSr = 2π × 66 kHz and ωRb = 2π × 117 kHz respectively. This
leads to ωrel = 2π × 94 kHz in a 3D isotropic lattice. The associated harmonic oscillator
length, aHO = 948 a0, is much larger than the s-wave scattering length as = 92.7(2) a0 of
87Rb-84Sr, even in this very deep lattice regime. Therefore, the effect of this second term
should also be small in the context of our 87Rb84Sr association experiments19. We neglect
∆̂trap in the following, which leads to a separation of the center-of-mass and relative mo-
tions. The eigenstates of the diatomic system then read |ψtot〉 = |ψC〉 |ψrel〉.

The center-of-mass harmonic motion is quantized according to the 3D harmonic oscilla-
tor energy structure EC = ( 3

2 + NC)h̄ωC, where NC is a positive integer. In the regime where
the lattice is present but the on-site atomic tunneling rates to other lattice sites are signifi-
cant (i.e., below the Mott insulator transition or for NC > 0), the harmonic approximation
is poor and the motion of the particles is better described using the band index nband and
the pseudo-momenta q of the center of mass20. For very deep lattices though, where tunnel-
ing is suppressed, the motion is almost perfectly harmonic in the ground state NC = 0 and
V̂anharm( ~RC, ~R) can be neglected21.

17Center-of-mass and relative motion are uncoupled in the case of perfectly harmonic motion. This ideal be-
haviour is reached in two extreme limits: in total absence of external confinement, and in a perfectly harmonic trap
where both atoms experience the same trapping potential.

18Note that when the two masses are almost identical, as is the case of 87Rb and 84Sr, the harmonic frequencies
of the center-of-mass and relative motions are also almost identical.

19It was advised to us to decrease the lattice depth in case we couldn’t observe molecule formation, in order to
be in a regime where aHO is not close to as [G. Shlyapnikov, private communication]. According to this estimation,
we should be safe in this respect.

20A good estimator of the quality of the harmonic approximation in a given band is the band width, which is
the spread in energy of all quasi-momentum states of the band. In the perfectly harmonic case this spread is null,
i.e. EC(q) = EC(0), independently of the value of the quasi-momentum q. The tunneling rates J, set by the depth of
the lattice, are proportional to the energy width of the band.

21In other words: in the very high lattice intensity limit, the Wannier function for the ground-state of center-of-
mass motion is well approximated by the Gaussian ground-state wavefunction of a perfect harmonic oscillator. In
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The relative motion wavefunctions, Equation 2.38, are changed due to the presence of
the trapping potential. This change is qualitatively different for molecular bound states and
for positive-energy atom pair states. The molecular bound states are mostly defined by the
PEC of the system, and stand almost unaffected by the trapping potential. This is due to
the very different ranges of the molecular and trapping potentials, evident from Figure 5.3.
The atom pair states, on the contrary, are strongly altered. In field-free space, the potential
energy of the relative motion becomes constant at large distances, thus the radial scattering
wavefunctions χscat

k,N (R) have a constant amplitude for R → +∞. They are therefore not
square-integrable and must be energy-normalized according to 〈E|E′〉 = δ(E − E′)22. On
one site of an optical lattice, on the other hand, the continuum of scattering states |E; k〉with
collisional energy E = h̄2k2/2µ is replaced by a quantized set of trap states |E; n〉, where n
denote the quantum numbers appropriate to the description of the states. These states have a
vanishing amplitude at large internuclear distances, and are thus unit-normalized according
to 〈E; n|E; n〉=1. For a perfectly harmonic potential, Equation 5.15, they exhibit the harmonic
energy structure E = ( 3

2 + n)h̄ωrel up to small corrections related to the molecular poten-
tial23, where n = 2M + N is a positive integer (M also) and N is the considered partial
wave Ref. [56]24. Therefore the ground state of relative motion is isotropic, with N = 0
and n = 0 and an energy of E = 3

2 h̄ωrel, while the next trap state has N = 1 with energy
E = 5

2 h̄ωrel. The subsequent states n > 1 of energies E = 7
2 h̄ωrel, 9

2 h̄ωrel, ... exhibit degenera-
cies, with even (odd) n corresponding to even (odd) partial waves sets N respectively. The
corresponding eigenfunctions are the well-known eigenfunctions for a quantum harmonic
oscillator. Dismissing on-site interaction corrections, the radial ground-state wavefunction
is

χ
trap
n,N=0(R) =

2
π1/4 (µωrel/h̄)3/4 exp

(
−µωrel

2h̄
R2
)

. (5.18)

In an optical lattice, a Feshbach resonance induces an avoided crossing at the crossing point
between an atom trap state and a molecular state. This situation is pictured in Figure 5.4. At

this regime the energy of the lowest band of the lattice is "flat", in the sense that it doesn’t depend on the quasi-
momentum q. The energy of the system is completely dominated by the potential of the lattice and the kinetic
energy doesn’t contribute. Therefore, the band width is very small and the tunneling rates are suppressed. The
harmonic approximation gets worse with increasing NC , for which the Wannier functions have a non-negligible
overlap with neighbouring lattice sites.

22This is of course an idealization. In a real experiment, the particles are always subject to a repulsive potential
of some sort, be it the walls of our our glass cell or other. However the range of such confinement is orders of
magnitude larger than chemical and scattering length scales, hence the quantization of the continuum plays no
role.

23The most important of these corrections is the on-site interaction energy of the pair of atoms onto the lattice
site. It is the lattice counterpart to the phase shit δbg = tan−1(kabg) for untrapped states (see Equation 5.1) and lies
in the h× kHz range for 87Rb84Sr at our typical trap frequencies.

24Note that the quantum number n quantifies the relative motion: it is not the band index nband that quantifies
the center-of-mass motion.
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the position of the resonance, which is shifted according to Equation 5.12, where the integral
is replaced by a sum over all discrete trap states of the open channel, an energy gap opens.
The width of this gap is h̄|Ω|, where Ω is set by the off-diagonal coupling matrix element
given by25,26

h̄Ω
2

= 〈E; n| V̂12 |ψ
(2)
mol〉 . (5.19)

Close to the resonance, the atom-pair trap state of the open channel 1 is admixed with the
molecular state of the closed channel 2 according to

|ψrel〉 = α |E; n〉+ β

[
|ψ(2)

mol〉+ ∑
n′ 6=n

an′ ,mol 2 |E; n′〉+ ∑ amol 1,mol 2 |ψ
(1)
mol〉

]
, (5.20)

which is the discrete counterpart of the free-space Equation 5.3, with unit-normalization
〈ψrel|ψrel〉 = 1. The sums are taken over all eigenstates |E; n〉 and |ψ(1)

mol〉 of the background

open channel, and account for the modification of the "bare" molecular state |ψ(2)
mol〉 due its

admixing with the background channel. Accordingly, they induce a shift of the position of
the avoided crossing. This shift is typically very close to the free-space shift δB given in
Equation 5.13, and as such is negligible for the RbSr resonances with very small ∆B. Note
that while the molecular states are barely affected by the trapping potential, the energy of
the trap pair states varies with ωrel ∝

√
I(x, y, z), where I(x, y, z) is the local lattice beam

intensity — see Appendix A, Equation A.13. Accordingly, the magnetic field at which the
avoided crossing occurs depends on the optical lattice intensity. In the situation where the
coupled states |E; n〉 and |ψ(2)

mol〉 are well-separated in energy compared to the coupling terms

〈E; n′| V̂12 |ψ
(2)
mol〉 and 〈ψ(1)

mol| V̂12 |ψ
(2)
mol〉, Equation 5.20 reduces to the two-level admixing of

the pure trap and molecular states. It is then

|ψrel〉 = α |E; n〉+ β |ψ(2)
mol〉 , (5.21)

and in that case |α|2 + |β|2 = 1. Starting from an atom pair in the |E; n = 0〉 ground state
of relative motion of the lattice, the molecular state component β can be changed from 0 to
unity by ramping down the external magnetic field B from above the Feshbach resonance
— see Figure 5.4. Molecules are then produced very efficiently from the trapped atom pairs.

25We dismiss the rotational quantum number N in |E; n, N〉 in the following equations for ease of reading. It is
zero in the ground state of the lattice.

26The off-diagonal matrix element is typically expressed in terms of the Rabi frequency Ω (expressed in rad.s−1

or rad.Hz), which is convenient to work with energies expressed in frequency units. We follow this convention
here. The off-diagonal matrix element is then h̄ Ω

2 and the energy gap at the position of the avoided crossing is h̄Ω.
Ω can be either positive or negative, but this is irrelevant to the present discussion.
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FIGURE 5.4: Magnetoassociation in a 3D isotropic optical lattice, using the
87Rb84Sr Feshbach resonance at B = 1311 G. Left panel: Principle of a mag-
netoassociation ramp. Starting from an atom pair (α = 1) in the ground state
of relative motion n = 0, the B-field is ramped adiabatically across the lowest
avoided crossing. The probability density is thus entirely transferred to the
molecular state (β = 1), transforming the atom pair into a Feshbach molecule.
The black (red dashed) lines indicate the energy eigenvalues of the molecular
closed-channel state and of the open-channel trap states in presence (absence)
of coupling V̂12 between the two channels. Mechanism I, which produces the
RbSr Feshbach resonance, is isotropic and thus couples the |ν = −4, N = 0〉
resonant molecular state to trap states of even parity n only — see Section 5.3.
Therefore, the states of odd n do not lead to avoided crossings. Right panel:
Avoided crossing between the 87Rb-84Sr open-channel | f , m f 〉 = |1,+1〉 trap
state |E; n = 0〉 and the closed-channel | f , m f 〉 = |2,+1〉 molecular state
|ν = −4, N = 0〉 at B = 1311 G. The gap at the position of the avoided cross-
ing is estimated to be |Ω|/2π ' 2 kHz at ωrel = 2π × 60 kHz [P. Żuchowski,
private communication].

This process is known as magnetoassociation (in an optical lattice) and in the next three para-
graphs, we discuss the requirements for near-unity magnetoassociation. We give particular
attention to the case of 87Rb84Sr, which is the molecule we aim to produce in the laboratory.

First, to perform magnetoassociation as depicted in Figure 5.4, it is necessary to load
atom pairs in the ground state of relative and center-of-mass motion of the optical lattice27.
The beauty of cold atom experiments is that one can produce a Bose-Einstein condensate
(BEC) — or two, in the case of heteronuclear bosonic systems such as 87Rb84Sr — in the
ground state of both relative and center-of-mass motions using standard laser and evapo-
rative cooling techniques. The BECs constitute macroscopic ensembles of cold atoms in a
well-defined state of relative motion, which is the state of zero relative momentum h̄k = 0.

27The lattice ground state in which the atoms are loaded has NC = 0 and n = 0, corresponding to a total energy
of EC + E = 3

2 h̄(ωC + ωrel) (neglecting the on-site interaction corrections to the relative energy.)
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These ensembles are then loaded adiabatically into the ground state of relative and center-
of-mass motion of the optical lattice28, by gradually ramping up the lattice light intensity.
The atoms undergo the superfluid-to-Mott insulator transition upon increase of the lattice
depth, and the double BEC is transformed adiabatically into a double Mott insulator. This
double Mott insulator is characterized by a very low tunneling rate across the lattice, and
by the suppression of atom number fluctuation on the lattice sites. Ideally, as many lattice
sites as possible should be filled with exactly one Rb and one Sr atom in the ground state of
relative and center-of-mass motion, in order to maximise the amount of molecules that can
be produced. The preparation of such a double Mott insulator is essential to the success of
RbSr magnetoassociation.

Second, it is essential that the two-level approach of Equation 5.21 is valid. Otherwise,
the undesired mixing of the target molecular state with adjacent open- and closed-channel
states makes unit-probability transfer much harder or even impossible. The Feshbach reso-
nance we want to use to magnetoassociate 87Rb84Sr is located at B = 1311 G, and gives rise
to an avoided crossing between the 87Rb-84Sr ground state of relative motion of our optical
lattice (n = 0), belonging to the open channel | f , m f 〉 = |1,+1〉, and the molecular state
|ν = −4, N = 0〉, belonging to the closed channel | f , m f 〉 = |2,+1〉. This avoided crossing
is correctly described as a two-level process, as we argue in the next lines. This resonance
is induced by mechanism I, which is produced by the perturbation V̂12 given in Section 5.3,
Equation 5.55. This mechanism is isotropic and therefore couples atom pair states to states
of the same rotational quantum number N only. Thus, at the position of the avoided cross-
ing, the closest open-channel states that are coupled to |ψ(2)

mol〉 = |ν = −4, N = 0〉 |2,+1〉 by
mechanism I are the trap states n = 2 of energy 7

2 h̄ωrel
29, which are separated by more than

h× 40 kHz from the ground state at our typical trap frequencies ωrel > 2π×20 kHz. Since the
coupling matrix element is 〈E; n = 0| 〈1,+1| V̂12 |ν = −4, N = 0〉 |2,+1〉 ∼ h× 1 kHz [P. Żu-
chowski, private communication], and gets smaller at higher n30, these open-channel states
can be considered decoupled from the two-level system. The closest open-channel molecular
state that is coupled to |ψ(2)

mol〉 by mechansim I is the |ν = −1, N = 0〉 state, which has a bind-
ing energy of Eb = h× 29 MHz. Since 〈ν = −4, N = 0| 〈2,+1| V̂12 |ν = −1, N = 0〉 |1,+1〉 '
h × 200 kHz [M. Frye, private communication], the separation of energies is also legiti-
mate for this closed-channel state. Therefore, the 87Rb84Sr Feshbach resonance crossing at
B = 1311 G is correctly described as a two-level process.

Third, and last, the energy gap h̄Ω at the position of the avoided crossing sets limits on

28Provided that the BECs are void of any center-of-mass excitations prior to loading, which requires careful
alignment of the optical dipole trap, in which the initial BECs are located, and of the lattice beams.

29Note that a total of 6 states have n = 2: five (N = 2, M = 0) states and one (N = 0, M = 1) state. Only the
latter is coupled to the incoming N = 0 by mechanism I.

30This is due to the radial overlap integral, Equation 5.62, which gets smaller for higher-n trap states.
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the speed at which the magnetoassociation ramp can be performed31 and on the stability of
the magnetic field. The fraction η of the ensemble that has been transferred to the bound
state at the end of the ramp is simply given by the two-level Landau Zener probability

η = 1− exp

[
−2π

(h̄Ω/2)2

h̄δµ dB
dt

]
, (5.22)

where δµ is the relative magnetic moment between the atom pair and molecular states. The
larger |Ω|, the faster one can transfer the atoms into the molecular state. Any effect that
leads to either loss of the created molecules (i.e. scattering of photons from the lattice light,
decay to deeper-bound molecular states through uncontrolled molecular effects,...) or de-
coherence of the superposition 5.21 (induced by fluctuations of the magnetic field B most
importantly, but also intensity fluctuations in the lattice beams that lead to changes of ωrel

and thus to changes of the atom pair state relative energy E = 3
2 h̄ωrel) lead to decrease

of the transfer efficiency η. The 87Rb84Sr avoided crossing located at B = 1311 G exhibits
δµ/h = 2.153 MHz/G (1 G = 10−4 T), with a gap of |Ω|/2π ' 2 kHz at ωrel = 2π× 60 kHz [P.
Żuchowski, private communication]. The strength of the coupling goes as Ω ∝ ω3/4

rel [132][M.
Frye & P. Żuchowski, private communication] and our current lattice beams allow us to
reach ωrel = 2π× 44 kHz, which therefore corresponds to |Ω|/2π = 1.6 kHz 32. Transferring
more than 99% of the atoms into the molecular state requires η > 0.99, hence dB

dt < 2.5 G/s.
For instance, a sweep ∆B = 100 mG spanning h × 215 kHz in energy across the resonance
requires a minimum of Tsweep = 40 ms. During these 40 ms the external B-field (as well as the
ambiant B-field and the intensities of the lattice beams) has to be stabilized to a level com-
parable to the magnetic coupling width h̄|Ω|/δµ = 0.8 mG, which requires a 10−6 relative
precision at B = 1311 G. Challenge accepted.

31Note that this is a more severe requirement than it looks. If a ramp of a few hundred ms is required, then all
processes that lead to the loss of molecules must happen on a longer timescale. Otherwise, one cannot observe the
molecules even if they are formed. The smoking-gun measurement used to prove the formation of molecules in
all experiments similar to ours consists in performing two consecutive ramps of the magnetic field. The first ramp,
from above to below the resonance position, forms the molecules. The absorption imaging signal of the atoms then
decreases, because the formed molecules are not imaged by the imaging beams — this negative signal can indicate
molecule formation, but also loss induced by undesired processes. The second ramp is performed from below to
above the resonance position, and dissociates the molecules back into atom pairs. The atom pairs contribute to the
imaging signal, leading to an increase in the absorption signal compared to the end of the first ramp. This positive
signal is a definitive proof of the formation of molecule. See Ref. [138], Figure 4 in which KRb formation is observed
using this method.

32The maximum depth that we can achieve for Sr is s = 60. For our optical lattice wavelength of 1064 nm, this
corresponds to a depth of s = 196 for Rb (see Equations A.5 and A.11 in the appendix). The corresponding (angular)
trap frequencies are ωSr = 2π × 30.2 kHz and ωRb = 2π × 54.7 kHz.
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The case of a non-isotropic lattice

As we have shown, in the 3D isotropic case the relative motion energy eigenvalues are given
by E = ( 3

2 + n)h̄ωrel and are proportional to
√

I(x, y, z) where I(x, y, z) is the local optical
lattice intensity — see Appendix A, Equation A.13. If the three lattice beams have different
intensities, then these eigenvalues are replaced by E = ∑ ( 1

2 + ni)h̄ωi
rel, where the sum

runs over the three orthogonal directions of the lattice beams i ∈ {x, y, z} and ni are positive
integers. Therefore, while the excited states ni > 0 exhibit lifting of degeneracies, the ground
state of the relative motion is still uniquely defined with nx = ny = nz = 0, associated with
the energy E = 1

2 h̄(ωx + ωy + ωz). In the context of magnetoassociation, the separation of
energy between the open- and closed-channel states involved in the avoided crossing and
the other open channel states holds under the same conditions as discussed previously in
this subsection.
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5.2 Magnetic Feshbach resonances in Rb2 and in other bi-

alkali systems

At the heart of the physics of Feshbach resonances in bi-alkali systems lies the interplay
between two physical mechanisms: the exchange interaction and the hyperfine interactions.
In this section we present the molecular physics that underlies these phenomena, and give
examples of both broad and narrow Feshbach resonances in the Rb2 case of interest for RbSr.

The Hamiltonian describing the collision of an alkali atom 1 with another alkali atom 2
in their electronic ground-state is

Ĥ =
1

2µ

[
−h̄2 d2

dR2 +
N̂2

R2

]
+ V̂PEC(R) + Ĥ1 + Ĥ2 , (5.23)

using the same notation as introduced in Chapter 2. It is the sum of the molecular Hamil-
tonian, as obtained in Equation 2.43 within the adiabatic approximation (the ground-state
PEC V̂g of RbSr has been replaced by the appropriate bi-alkali PEC(s)), and of the single-
atom Hamiltonians Ĥ1 and Ĥ2. The single-atom Hamiltonians are

Ĥ1 = ζ1 î1 · ŝ1 −
(
γi,1 î1,z + γS ŝ1,z

)
B

Ĥ2 = ζ2 î2 · ŝ2 −
(
γi,2 î2,z + γS ŝ2,z

)
B ,

(5.24)

where γS/2π = h × −2.8025 MHz/G is the electron gyromagnetic ratio (divided by 2π),
and γi,1 and γi,2 are the gyromagnetic ratios of the nuclear spins of the nuclei 1 and 2 — see
Equation 5.46 for the corresponding values in Rb. The electronic and nuclear spin operators
are denoted as ŝ1, ŝ2 and î1, î2 respectively, and the associated projection operators are de-
noted as ŝ1,z, ŝ2,z, î1,z and î2,z. The projection is taken along the quantization axis z defined
by the direction of the applied magnetic field B. The eigenstates of the single-atom Hami-
tonians Ĥ1 and Ĥ2 are the (B-field dependent) hyperfine coupled-basis states | f1, m f1〉 and
| f2, m f2〉 respectively. Therefore Ĥ1 + Ĥ2 is diagonal in the hyperfine basis | f1, m f1〉 | f2, m f2〉
of the atom pair. A complete introduction to the physics of the ground-state Rb hyperfine
Hamiltonian is given in Subsection 5.3.1 in the context of RbSr Feshbach resonances.

In bi-alkali systems two PECs correlate to the electronic ground-state dissociation limit
2S1/2 +

2S1/2, in contrast with RbSr for which the electronic ground state is uniquely de-
fined by the single PEC of molecular term 2Σ+. These two PECs are associated with the two
possible values of the total electronic spin S = 0 and S = 1 obtained from the combination
~S =~s1 +~s2 of the individual spins s1 = s2 = 1/2 of each atom of the pair. The total electronic
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spin is a good quantum number of the molecule if the hyperfine structure Ĥ1, Ĥ2 is not in-
cluded, and the molecular eigenfunctions ψel

n (~r, R) and the two PECs Un(R) obtained in the
cases S = 0 and S = 1 in the electronic ground state are very different — see Equation 2.27
and Figure 5.5. In particular, they support different sets of vibrational and rotational molec-
ular states, and different s-wave scattering lengths33. The molecular terms corresponding to
the singlet and triplet PECs are 1Σ+ and 3Σ+ respectively34, associated with the singlet and
triplet potentials V1Σ+(R) and V3Σ+(R). Accordingly, the total Hamiltonian is

Ĥ =
1

2µ

[
−h̄2 d2

dR2 +
N̂2

R2

]
+ ∑

S
V̂S(R) |S〉 〈S|+ Ĥ1 + Ĥ2 . (5.25)

where |S〉 〈S| are the projectors onto the subspaces of total value S of the Hilbert space, with
VS=0(R) = V1Σ+(R) and VS=1(R) = V3Σ+(R). The individual atomic spins s1 = s2 = 1/2
are always good quantum numbers such that 〈~s1/2

2〉 = (1/2)(1/2 + 1)h̄2 = 3h̄2/4 for any
state of motion. Therefore, using the relations S2 |S, mS〉 = S(S + 1)h̄2 |S, mS〉35 and ~S2 =

~s1
2 + ~s2

2 + 2~s1 ·~s2 = 3h̄2/2 + 2 ~s1 · ~s2, the total spin projection operators can be written as

|0〉 〈0| = 1
4
− 1

2h̄2 ~s1 · ~s2

|1〉 〈1| = 3
4
+

1
2h̄2 ~s1 · ~s2 ,

(5.26)

The total Hamiltonian then reads

Ĥ =
1

2µ

[
−h̄2 d2

dR2 +
N̂2

R2

]
+ V̂D(R) + V̂E(R)

~s1 ·~s2

h̄2 + Ĥ1 + Ĥ2 , (5.27)

where VD and VE(R) are the direct and exchange potentials36, respectively [140]. They are
defined as

VD(R) =
1
4
[V1Σ+(R) + 3V3Σ+(R)]

VE(R) =
1
2
[V3Σ+(R)−V1Σ+(R)] .

(5.28)

33The 87Rb atom is exceptional in this respect, because its singlet and triplet s-wave scattering lengths aS=0 =
90 a0 and aS=1 = 99 a0 are almost identical [118]. The spin-exchange rates are therefore very low — see Ref. [139]
and Subsection 5.2.2.

34In the case of identical boson pairs, such as 87Rb2, the valence electron of the single-atom ground state term
lies in an s orbital, which implies a gerade symmetry for the singlet term, and an ungerade symmetry for the triplet
term [57]. The corresponding molecular terms are denoted as 1Σ+

g and 3Σ+
u .

35The hats of the ~̂s1 and ~̂s2 operators are omitted for ease of reading.
36Note that these potentials are not PECs in the chemical sense of the term.
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FIGURE 5.5: Singlet and Triplet interaction potentials of a pair of ground-state
Rb atoms. Owing to the very large exchange energy, the singlet PEC is much
deeper than the triplet PEC. The hyperfine structure of a 87Rb-87Rb atom pair
of collisional energy E, as defined by the single-atom Hamiltonians Ĥ1 and
Ĥ2 in absence of magnetic field (single-atom Zeeman splittings at B > 0 G are
shown in Figure 5.8) is displayed on a different (much smaller) energy scale.
Note that for non-identical alkali atoms the hyperfine constants ζ1 and ζ2 are
different, giving rise to four non-degenerate manifolds instead of three. The
exchange interaction doesn’t alter the hyperfine structure of the scattering
states, but perturbs it significantly in the case of weakly-bound molecular
states — see Figure 5.6.

The asymptotic behaviour of these potentials is

VD(R) −−−→
R→∞

−C6

R6 −
C8

R8 −
C10

R10 − ...

VE(R) −−−→
R→∞

−a(R) exp (−bR) ,
(5.29)

where a is an algebraic function of R and b a positive constant [118, 141]. The direct poten-
tial is independent of spin and defines the dispersive tail of the potential, as discussed in
Subsection 2.1.7 in the context of RbSr, and the spin-dependent exchange potential falls off
rapidly at large internuclear distances.
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Importantly, the spin operator~s1 ·~s2 of the exchange interaction is not diagonal in the hyper-
fine basis | f1, m f1〉 | f2, m f2〉 of the two alkali atoms. In other words, Ĥ1 + Ĥ2 and~s1 ·~s2 do not
commute. The competition between the hyperfine interaction and the exchange interaction
leads to the broadest Feshbach resonances in bi-alkali systems, as we show below.

5.2.1 Broad resonances: competition between the exchange and hyperfine
interactions

The total Hamiltonian, Equation 5.27, can be decomposed into two parts. The first part
encompasses the hyperfine structure and defines the open and closed channel. It is

ĤD =
1

2µ

[
−h̄2 d2

dR2 +
N̂2

R2

]
+ V̂D(R) + Ĥ1 + Ĥ2 . (5.30)

The second part is the exchange part, which acts as a coupling term between the two chan-
nels. It is

V̂12 = V̂E(R)
~s1 ·~s2

h̄2 . (5.31)

The open-channel scattering eigenstates of the Hamiltonian defined by Equation 5.30 are
of the form |E〉 = |χscat

k,N (R)〉 |N, mN〉 | f1, m f1 , f2, m f2〉, as given in Equation 2.41. They are
defined by their collisional energy E = h̄2k2/2µ, their rotational quantum numbers N, mN

and their hyperfine contribution | f1, m f1 , f2, m f2〉. The closed-channel molecular eigenstates
are of the form |ψmol〉 = |χvib

ν,N′(R)〉 |N′, mN′〉 | f ′1, m f ′1
, f ′2, m f ′2

〉 and are defined similarly, with
the vibrational quantum number ν replacing the collisional energy defined by k.

In that picture the open and closed channel differ only by their respective hyperfine
contributions | f1, m f1 , f2, m f2〉

37. These contributions differ depending on whether the two
atoms are identical bosons, identical fermions, or distinguishable particles [141]. They are
given by

| f1, m f1 , f2, m f2〉 =


c
[
| f1, m f1〉 | f2, m f2〉+ (−1)N | f2, m f2〉 | f1, m f1〉

]
bosons

c
[
| f1, m f1〉 | f2, m f2〉+ (−1)N+1 | f2, m f2〉 | f1, m f1〉

]
fermions

| f1, m f1〉 | f2, m f2〉 distinguishable particles ,
(5.32)

where | f1, m f1〉 and | f2, m f2〉 are the single-atom contributions upon which the operators

~s1, ~s2,~i1,~i2, ... act, with c =
√

1
2 or c = 1

2 in the cases | f1, m f1〉 6= | f2, m f2〉 and | f1, m f1〉 =
37That is not the case if one defines the open and closed channel as the singlet and triplet PECs respectively, for

in that case also the vibrational and rotational contributions differ.
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| f2, m f2〉 respectively. From that symmetrization it is clear that identical bosons (fermions) in
identical | f , m f 〉 states only collide through N = 0, 2, 4, ... (N = 1, 3, 5, ...) partial waves. The
same applies to the corresponding molecular states.

The exchange interaction V̂12 = h̄−2 × V̂E(R) ~s1 ·~s2 is not diagonal in the eigenbasis
of ĤD. The spin operator ~s1 ·~s2 is off-diagonal with respect to the hyperfine basis de-
fined by Equation 5.32, and the radial operator V̂E(R) is off-diagonal with respect to the
vibrational/rotational basis of ĤD. Therefore, the exchange interaction introduces large off-
diagonal coupling terms between molecular states and between scattering and molecular
states38. The Breit-Wigner width of a Feshbach resonance at the crossing of an open-channel
scattering state |E〉 with a closed-channel molecular state |ψ(2)

mol〉 is

Γ12(E) = 2π| 〈E| V̂12 |ψ
(2)
mol〉 |

2 , (5.33)

as given previously in Equation 5.7. The coupling matrix element introduced by the ex-
change interaction is

〈E| V̂12 |ψ
(2)
mol〉 = Iradial Ispin(B) δN,N′ δmN ,mN′ , (5.34)

where the associated radial and spin overlap integrals are39

Iradial = 〈χscat
k,N (R)| V̂E(R) |χvib

ν,N′(R)〉

Ispin(B) = h̄−2 × 〈 f1, m f1 , f2, m f2 |~s1 ·~s2 | f ′1, m f ′1
, f ′2, m f ′2

〉 .
(5.35)

The value of the radial integral is set by the difference between triplet and singlet potentials
and can be very large — see Equation 5.28 and Figure 5.5. Furthermore, it gets larger for
molecular states of higher vibrational quantum number ν, because such states display larger
interradial probability density |χvib

ν,N(R)|2 in regions of smaller R and thus larger VE(R). This
coupling mechanism is fully isotropic, because VE(R) does not depend on the angular ori-
entation (θ, φ) of the molecule. Therefore, it cannot couple scattering and molecular states
with different rotational quantum numbers N, N′. In the ultracold limit, where the scatter-
ing partial waves N = 0 dominate (for bosons and distinguishable particles), the largest
observable Feshbach resonances are thus induced by N = 0, non-rotating molecular states
— see the table of Figure 5.6, where l indicates N and v indicates the vibrational quantum

38It also adds diagonal corrections 〈ψmol| V̂12 |ψmol〉 to the binding energies of the molecular states. These
corrections are quite large even for weakly-bound states, far from any molecule/molecule or scattering thresh-
old/molecule crossing — this is clear from Figure 5.6. We do not discuss this matter here since we are primarily
interested in the off-diagonal couplings responsible for Feshbach resonances.

39The notation Ispin(B) is a reminder that the | f , m f 〉 states are B-field dependent — see Subsection 5.3.1. We do
not discuss this dependence here, but it is crucial in the context of RbSr Feshbach resonances.
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FIGURE 5.6: Magnetic Feshbach resonances in 87Rb. Left panel: 87Rb2 Fesh-
bach resonances (black spots) arising at the crossing between s-wave scatter-
ing states (dashed lines) and N = 0 molecular states (solid lines). The scat-
tering hyperfine sublevels are indicated on the graph as (min

f1
,min

f2
) and the

hyperfine ( f1, f2) manifolds of the molecular states, within which lifting of
degeneracies induced by the exchange energy occur, are indicated on the left
together with their vibrational quantum number ν. Right panel: Selection of
experimentally-observed 87Rb2 Feshbach resonances, occurring in the s-wave
| f1, m f1

〉 | f2, m f2 〉 = |1,+1〉 |1,+1〉 open channel. The indicated quantum
numbers are those of the resonant molecular states that produce the Feshbach
resonances. The rotational number l is denoted as N in this thesis. The broad-
est resonances are provoked by N = 0 molecular states through the isotropic
exchange interaction, and the narrow ones are produced by N = 2 states due
to the weaker and anisotropic spin-spin dipole interaction and second-order
spin-orbit interaction. From Ref. [135].

numbers ν. The spin integral defines the selection rules for the existence of resonances.
The operator ~s1 ·~s2 = ŝ1,z ŝ2,z +

ŝ1,+ ŝ2,−+ŝ1,− ŝ2,+
2 does not change the total spin projection

mS = ms1 + ms2 along the B-field axis, therefore it also leaves the total electronic+nuclear
spin projection m f1 + m f2 = ms1 + ms2 + mi1 + mi2 unchanged40. Feshbach resonances thus
arise only at the crossings between scattering and molecular states with identical total pro-
jections m f 1 + m f2 = m f ′1

+ m f ′2
.

The physics we have presented here is universal in bi-alkalis and leads to the largest
Feshbach resonances in these systems, with a qualitatively different situation for relatively

40The electronic spin raising and lowering operators ŝ1,± = ŝ1,x ± i ŝ1,y and ŝ2,± = ŝ2,x ± i ŝ2,y ful-

fill the standard angular momentum properties ŝ1,± |s1 ms1 〉 =
√

s1(s1 + 1)−ms1 (ms1 ± 1)h̄ |s1 (ms1 + 1)〉 and

ŝ2,± |s2 ms2 〉 =
√

s2(s2 + 1)−ms2 (ms2 ± 1)h̄ |s2 (ms2 + 1)〉 respectively. They are designed to act on the
|s1, s2, ms1 , ms2 〉 |i1, i2, mi1 , mi2 〉 spin basis in which all angular momenta are explicitly decoupled. Note that each
hyperfine-basis state | f1, m f1 〉 | f2, m f2 〉, and each state of the basis |S, mS, s1, s2〉 |i1, mi1 , i2, mi2 〉 that couples the two
electronic spins can be written as a linear combination of |s1, s2, ms1 , ms2 〉 |i1, i2, mi1 , mi2 〉 states.
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heavy and light species. For heavy species such as Rb2 [135] or RbCs [142], the typical vi-
brational spacing close to threshold is smaller than the hyperfine splittings41. Therefore, the
weakly-bound molecular states of such dimers are approximately well described in the spin
basis | f1, m f1〉 | f2, m f2〉 of the atomic hyperfine f1 and f2 quantum numbers — the exchange
V̂12 = h̄−2 × V̂E(R) ~s1 ·~s2 plays the role of a perturbation in the structure ĤD defined by
Equation 5.30. For light species such as H2 or Li2, the vibrational spacing is much larger
than the hyperfine splittings42, therefore the molecular states of the closed channel typi-
cally have very strong singlet or triplet character, and are much better described in terms
of the |S, mS, s1, s2〉 |i1, mi1 , i2, mi2〉 spin basis in which the exchange ~s1.~s2 is diagonal43. The
hyperfine Hamiltonian then acts as the perturbation V̂12 = Ĥ1 + Ĥ2 of the main structure
ĤE defined by the exchange interaction. This conceptually symmetric approach is taken in
Refs. [144] and [140] in the context of 6Li2 and 6Li40K respectively.

5.2.2 Narrow resonances: spin-spin dipole interaction and second-order
spin-orbit interaction

Feshbach resonances in bi-alkali systems are also mediated by weak additional terms in
the Hamiltonian given in Equation 5.27. Two of them have received special attention in
theoretical and experimental literature: the magnetic dipole-dipole interaction Ĥss between
the two electronic spins ~s1 and ~s2, and second-order spin-orbit coupling. The former takes
the general form of the interaction between two magnetic momenta [145, 146]. It is

Ĥss = −
µ0γs1 γs2

4π R3 T2(C) · T2(~s1, ~s2)

= −µ0γs1γs2

4π R3

√
4π

5

+2

∑
q=−2

(−1)q Y−q
2 (θ, φ) T̂ q

2 (~s1, ~s2) ,
(5.36)

where γs1 = γs2 = γS is the electronic spin gyromagnetic ratio, of which the value is

41In Rb2 the single-atom hyperfine splitting between the F = 1 and the F = 2 manifolds is h× 6.835 GHz, while
the binding energy of the first vibrational state ν = −1 is Eb < h× 100 MHz, and the ν = −2 and ν = −3 states
have Eb ' h× 600 MHz and Eb ' h× 2.2 GHz respectively — see Figure 5.6.

42In 6Li2 the single-atom hyperfine splitting between the F = 1/2 and the F = 3/2 manifold is h ×
228 MHz [143], while the binding energy of the first vibrational state ν = −1 is Eb ' h × 1.38 GHz in the sin-
glet potential S = 0, and Eb ' h × 24 GHz in the triplet potential S = 1 [131]. In 2H2 the triplet potential is so
shallow that it doesn’t support any bound state.

43In this basis the electronic spins s1 = 1/2 and s2 = 1/2 are coupled to obtain the total electronic spin S, with
S = 0 or 1 — see Subsection 5.2.2.
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γS/2π = h×−2.8025 MHz/G — see Equation 5.4644. The spin-spin dipole interaction in-
volves the dot product of the two rank-2 tensors T2(C) and T2(~s1, ~s2)

45 and is therefore some-
times referred to as a "tensor interaction". The components of the angular tensor T2(C) are
the renormalized spherical harmonics T̂ q

2 =
√

4π/5 (Y q
2 (θ, φ))∗ = (−1)q√4π/5 Y−q

2 (θ, φ).
Consequently, Ĥss is anisotropic and can couple different partial waves N, N′. The com-
ponents of the tensor T2(~s1, ~s2) are the operators T̂ q

2 (~s1, ~s2) and act on the electronic spins
according to

T̂ 0
2 = 2 s1,zs2,z − (s1,−s2,+ + s1,+s2,−)/2

T̂±1
2 = ∓

√
3
2
(s1,±s2,z + s1,zs2,±)

T̂±2
2 =

√
3
2

s1,±s2,± .

(5.37)

All components of T2(~s1, ~s2) are off-diagonal in the hyperfine basis | f1, m f1〉 | f2, m f2〉
46. Ap-

proximating the open-channel scattering states and the resonant closed-channel state by the
eigenstates of the Hamiltonian defined by Equation 5.30 — i.e., neglecting the exchange in-
teraction —, the coupling matrix element that gives rise to Feshbach resonances is of the
form

〈E| V̂12 |ψ
(2)
mol〉 = Iradial Ispin+rotation(B) , (5.38)

where the overlap integrals are

Iradial = −
µ0γs1γs2

4π
〈χscat

k,N (R)| R−3 |χvib
ν,N′(R)〉

Ispin+rotation(B) =

√
4π

5

+2

∑
q=−2

[
(−1)q 〈N, mN |Y

−q
2 (θ, φ) |N′, mN′〉

× 〈 f1, m f1 , f2, m f2 | T̂
q

2 | f
′
1, m f ′1

, f ′2, m f ′2
〉
]

.

(5.39)

44In atomic units, the prefactor µ0γs1γs2
4π reduces to α2 where α ' 1

137 is the fine structure constant.
45We adopt the notation of Ref. [132].
46Note that T̂ 0

2 is diagonal in the |S, mS, s1, s2〉 |i1, mi1 , i2, mi2 〉 basis in which the exchange interaction is diagonal.
The corresponding eigenvalues are T̂ 0

2 |S, mS, s1, s2〉 = 1
2 (3mS

2 − S(S + 1)) |S, mS, s1, s2〉, as can easily be checked
using Equation 5.37 and the decomposition |S, mS〉 = ∑ c |ms1 , ms2 〉 with |0, 0〉 = (|1/2,−1/2〉 − |−1/2, 1/2〉)/

√
2,

|1, 0〉 = (|1/2,−1/2〉 + |−1/2, 1/2〉)/
√

2 and |1,±1〉 = |±1/2,±1/2〉, where |S, mS, s1, s2〉 ≡ |S, mS〉 and
|s1, s2, ms1 , ms2 〉 ≡ |ms1 , ms2 〉 are the coupled and uncoupled basis for the electronic spins. This diagonal, or di-
rect contribution to the spin-spin dipole interaction is sometimes referred to as the spin-spin dipole interaction itself
in the literature.



152 Chapter 5. Magnetic Feshbach Resonances in RbSr

The angular integrals 〈N, mN |Y
−q
2 (θ, φ) |N′, mN′〉 are integrals over the three spherical har-

monics YmN ∗
N = (−1)mN Y−mN

N , Y−q
2 and YmN′

N′ . They are therefore proportional to the corre-
sponding 3j symbols, i.e.

〈N, mN |Y
−q
2 (θ, φ) |N′, mN′〉 ∝

(
N 2 N′

−mN −q mN′

)
. (5.40)

These 3j symbols are null if the triangle inequality |N − 2| ≤ N′ ≤ |N + 2| doesn’t hold,
therefore only d-wave (N′ = 2) molecular states can be coupled to incoming N = 0 scattering
states through the spin-spin dipole interaction47. Many resonances of this kind are reported
in Ref. [135], as shown in Figure 5.6, and we observed many of them in our own experiments
with 87Rb48.

The second type of small, anisotropic Feshbach resonances arises from the spin-orbit
coupling ĤSO. As discussed in Section 4.1, diagonal spin-orbit coupling is always null for
a Σ electronic term, such as the 3Σ+ and 1Σ+ triplet and singlet terms of the bi-alkali PECs.
However the off-diagonal contributions, which are taken into account only in second (and
higher) order in perturbation theory, couple these terms to the 1Π, 3Π, 5Π and 3Σ+ higher-
excited electronic terms. As is clear from Equation 5.37, the spin-spin dipole interaction only
couples the initial state to states with ∆S = −1, 0 or +1. Remarkably, second-order spin-orbit
coupling can be formalized as an effective spin-spin dipole interaction of the same form as
given in Equation 5.36, where the R-dependence depends on the details of the coupling ma-
trix elements [139]. Therefore, it is subject to the same selection rules and produces Feshbach
resonances by admixing d-wave molecular states with s-wave scattering states. These two
mechanisms are not distinguishable in experimental data such as the ones presented in the
table of Figure 5.6.

These two effects, spin-spin dipole interaction and second-order spin-orbit coupling, are
also responsible for a very important phenomenon in ultracold atom gases: dipolar relax-
ation. For 87Rb the spin exchange rates are very low49. Accordingly we simply refer the

47While the exchange interaction, Equation 5.31, admixes different hyperfine states in dependence of their de-
composition onto the |S, mS, s1, s2〉 |i1, mi1 , i2, mi2 〉 basis, it doesn’t change this selection rule because the triangle
condition imposed by the rank 2 of the tensor T̂ q

2 is independent of q. Therefore only N = 2 molecular states can
be coupled to s-wave scattering states, in heavy and light bi-alkali systems alike.

48Note that in non-alkali systems with valence electrons, but no nuclear spin, the spin-spin dipole interaction is
the primary source of Feshbach resonances. That is the case of bosonic Cr, which has i1 = i2 = 0 and s1 = s2 = 3
in the electronic ground state, leading to seven PECs 1Σ+,3 Σ+, ...,13 Σ+ corresponding to S = 0, 1, ..., 6 respectively
but no hyperfine interaction [147].

49This is the reason why one can produce a BEC in an arbitrary state of 87Rb, including the hyperfine states
of the f = 2 manifold. Spin exchange collisions induce changes of the | f , m f 〉 states of the two colliding atoms.
The difference in internal energy between the initial pair | f1, m f1 〉 | f2, m f2 〉 and the final pair | f ′1, m f ′1

〉 | f ′2, m f ′2
〉 is

transferred into relative kinetic energy and leads to two-body loss from the trap. In 133Cs where the spin-exchange
rates are high, BECs are typically produced in the lowest-lying hyperfine state | f , m f 〉 = |3,+3〉 where no release
of internal energy is possible.
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interested reader to the beautiful work of Ref. [139], where these rates are estimated theoret-
ically.
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5.3 Magnetic Feshbach resonances in RbSr: mechanism I

The strongest interaction term that couples Rb-Sr atom pairs to RbSr molecular states is the
perturbation of the Rb hyperfine structure due to the presence of Sr. It is referred to as
"mechanism I" in our publication presented in Chapter 6, and in the subsequently published
Ref. [27]. In the next subsections we remind the reader about the physics underlying the
hyperfine structure of Rb, and show in which conditions its perturbation in presence of Sr
leads to Feshbach resonances.

The Hamiltonian describing the collision of an alkali atom a and a closed-shell atom b in
their electronic ground state is

Ĥ =
1

2µ

[
−h̄2 d2

dR2 +
N̂2

R2

]
+ V̂g(R) + Ĥa + Ĥb , (5.41)

using the same notation as introduced in Chapter 2. It is the sum of the molecular Hamil-
tonian, as obtained in Equation 2.43 within the adiabatic approximation, and of the single-
atom Hamiltonians Ĥa and Ĥb. The single-atom Hamiltonians are

Ĥa = ζa îa · ŝ−
(
γi,a îa,z + γS ŝz

)
B (5.42)

Ĥb = −γi,b îb,zB , (5.43)

where the electronic and nuclear spin operators are denoted as ŝ and îa, îb respectively, and
the associated projection operators are denoted as ŝz, îa,z and îb,z. The projection is taken
along the quantization axis z defined by the direction of the applied magnetic field B. We
follow the notation of Ref. [26], where the indices a and b represent the Rb and Sr atoms
respectively, as indicated below.

a = Rb b = Sr (5.44)

The term ζa îa · ŝ is the scalar or Fermi contact hyperfine interaction between the electronic and
nuclear spins of Rb50. The hyperfine constants for the two naturally-occurring isotopes of
Rb are [50, 148]

ζ87Rb = h× 3.41734130545 GHz

ζ85Rb = h× 1.0119108 GHz .
(5.45)

50The other relevant type of hyperfine interaction is the dipolar hyperfine interaction, discussed in Section 5.5.
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The terms −
(
γi,a îa,z + γS ŝz

)
B and −γi,b îb,zB define the Zeeman Hamiltonian in presence of

an external magnetic field of magnitude B. They are induced by the interactions−~µ ·~B of the
magnetic moments of each particle (electrons and nuclei) with the field. The corresponding
gyromagnetic ratios are51

γS/2π = h×−2.8025 MHz/G

γi,87Rb/2π = h×+1.39282 kHz/G

γi,85Rb/2π = h×+0.410985 kHz/G

γi,87Sr/2π = h×−0.183999 kHz/G .

(5.46)

Note that of the four naturally-occurring stable isotopes of Sr, only 87Sr has a non-zero nu-
clear spin iSr = 9/2 and it has a very small, but non-zero gyromagnetic ratio. From these
values it is clear that the dominating contribution to the Zeeman shifts stems from the spin
of the valence electron of Rb. As shown in Figure 5.8, the relative contribution of a state of
given spin projection mS to a given | f , m f 〉 eigenstate of Ĥa changes with the value of the
applied magnetic field B. Therefore the magnetic moment of a Rb atom, and of a Rb-Sr pair,
depends on the value of B. Furthermore, in Rb-87Sr the Zeeman energy is set mostly by the
| f , m f 〉 state of Rb, not by the |i, mi〉 state of the Sr atom which has a very small magnetic
sensitivity.

In the case of bosonic Sr we have ib = ib,z = 0, therefore the contribution of the single-
atom Hamiltonians reduces to the Rb Hamiltonian Ĥa.

5.3.1 The Rb Hamiltonian in absence and in presence of an external mag-
netic field

Rb has one valence electron with spin s = 1/2 and a nuclear spin iRb = 3/2 for 87Rb and
iRb = 5/2 for 85Rb, which leads to two hyperfine manifolds f = iRb − s and f = iRb + s. The
total angular momentum ~f , sum of the electronic and nuclear spin is52

~f =~s +~i . (5.47)

51In the convention adopted in Refs. [50, 148], the g-factors of the electron and of the nuclei i are defined by
γS = −µBgS/h̄ and γi = −µBgi/h̄ respectively, where µB = h × 1.3996 MHz/G is the Bohr magneton. In this
convention the electron g-factor gl = 2.00231930436 is thus positive. The CODATA recommendation is to define
it negative instead. Note that the electron orbital gl factor (irrelevant to the electronic ground state of alkali and
closed-shell atoms) is gl ' 1 and corresponds to γl/2π ' −1.40 MHz/G, half the electronic spin gyromagnetic
ratio.

52In the general case the total angular momentum is ~f = ~l +~s +~i, where~l is the orbital electronic momentum.
In the ground state 2S1/2 of the Rb atom, there is no orbital electronic excitation therefore~l =~0.
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The quantum numbers s, i, f and m f define a complete basis of states for the Rb atom, known
as the coupled basis53, and fulfill the angular momentum properties

~̂f 2 |si f , m f 〉 = f ( f + 1) h̄2 |s i f , m f 〉

f̂z |s i f , m f 〉 = m f h̄ |s i f , m f 〉 .
(5.48)

The hyperfine interaction ζa îa · ŝ is diagonal in the coupled basis. This is clear from the
identity ~f 2 = (~i +~s)2 =~i 2 +~s 2 + 2~i ·~s, which implies

~i ·~s |s i f m f 〉 =
~f 2 −~s 2 −~i 2

2
|s i f , m f 〉

=
f ( f + 1)− s(s + 1)− i(i + 1)

2
|s i f , m f 〉 .

(5.49)

In absence of an external magnetic field, B = 0 G, only the hyperfine interaction con-
tributes to the internal energy of the Rb atom and the Rb Hamiltonian is fully diagonal in the
coupled basis. This is expressed by the commutation relations [Ĥa, ~̂f 2] = ζa × [îa · ŝ, ~̂f 2] = 0
and [Ĥa, f̂z] = ζa× [îa · ŝ, f̂z] = 0. Therefore, f and m f are good quantum numbers in absence
of magnetic field.

In presence of an external magnetic field, B 6= 0 G, the Zeeman energies of the electron
and of the nucleus are added to the hyperfine interaction — see Equation 5.42. The eigen-
states of the system are then not anymore eigenstates of ~̂f 2, but are still eigenstates of f̂z

54.
This is expressed by the (non-)commutation relations

[Ĥa, ~f 2] = [ζa~i ·~s, ~f 2] + [
(
γi,a îz + γS ŝz

)
B, ~f 2]

= 0 + [
(
γi,a îz + γS ŝz

)
B,~i 2 +~s 2 + 2~i ·~s]

= γi,aB ih̄
(
îy ŝx − îx ŝy

)
+ γSB ih̄

(
îx ŝy − îy ŝx

)
6= 0

(5.50)

and
53This name indicates the vectorial coupling of ~s and ~i by the hyperfine interaction. Note that s and i fulfill

the properties ~̂s 2 |s i f , m f 〉 = s(s + 1) h̄2 |s i f , m f 〉 and ~̂i 2 |s i f , m f 〉 = i(i + 1) h̄2 |s i f , m f 〉, and are always good

quantum numbers since [Ĥa,~̂s2] = [Ĥa,~̂i2] = 0 for any value of the magnetic field.
54Equations 5.50 and 5.51 are obtained using the standard angular momentum equalities for the electron spin

[~s2, si ] = 0 and [si , sj] = ih̄εi,j,k sk and their nuclear spin counterparts. The indices denote Cartesian coordinates
i, j, k ∈ {x, y, z} and εi,j,k = −1/+1 for odd/even permutations of x, y, z respectively. We denote the nuclear spin of
Rb îa ≡ î and omit the hats of vectorial operators for ease of reading.
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[Ĥa, f̂z] = [ζa~i ·~s +
(
γi,a îz + γS ŝz

)
B, f̂z]

= [ζa (~̂f 2 −~̂s 2 −~̂i 2)/2, f̂z] + [
(
γi,a îa,z + γS ŝz

)
B, îz + ŝz]

= ζa ([ ~̂f 2, f̂z]− [~̂s 2, îz + ŝz]− [~̂i 2, îz + ŝz])/2 + 0

= 0 ,

(5.51)

respectively. The total projection of the angular momentum m f = ms +mi onto the magnetic
field axis is therefore always a good quantum number, whereas f is a good quantum number
only in absence of magnetic field. The convention adopted in the literature is to label the
eigenstates of the system as |s i f , m f 〉 ≡ | f , m f 〉 even in presence of a magnetic field, because
denoting an eigenstate by the hyperfine manifold f to which it correlates at B = 0 G and
by its projection m f is unambiguous. Using this convention, the eigenstates of the system
| f , m f 〉 fulfill Equations 5.48 and 5.49 only at B = 0 G, whereas for increasing values of
magnetic field the hyperfine interaction ζa îa · ŝ becomes increasingly off-diagonal in this
basis55. This competition between the Zeeman energy and the hyperfine interaction is at the
core of mechanism I, leading to Feshbach resonances in RbSr.

5.3.2 The perturbation of the Rb hyperfine structure due to the presence
of Sr (mechanism I)

In this subsection, we discuss how the Rb hyperfine structure is perturbed by Sr and under
which conditions this may lead to RbSr Feshbach resonances. The strength of the scalar
hyperfine interaction in the electronic ground state of Rb, the first term of Equation 5.42, is
set by the electronic density |ψe(0)|2 (i.e. the probability of presence per unit volume) of the
Rb valence electron at the position of the nucleus. This term is also referred to as the Fermi
contact interaction, and the corresponding Hamiltonian is

55In the low magnetic-field limit, the hyperfine interaction dominates and the Zeeman Hamiltonian can be
treated as a perturbation of the hyperfine Hamiltonian. That is how the g f -factors describing the low magnetic field
behaviour of the | f , m f 〉-states are derived. In the high-field limit, on the contrary, the Zeeman energy dominates
and the best basis to describe the system is the uncoupled basis |s ms i mi〉 that accounts for the individual interaction
of the angular momenta i and s with the magnetic field. In between these two limits, the interplay between the
hyperfine and Zeeman interactions leads to the "bending" of the energy curves of several | f , m f 〉 states, due to the
very strong repulsion of levels with same m f projections but belonging to different f manifolds — see Figure 5.7.
The change of magnetic moment of the Rb eigenstates with changing magnetic field is due to the change of the
relative contribution of each uncoupled state |s ms i mi〉 to the coupled states | f , m f 〉 that diagonalize Ĥa.
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FIGURE 5.7: Zeeman diagrams of the single-atom 87Rb and 85Rb Hamiltoni-
ans, associated with the hyperfine constants of Equation 5.45, which define
the zero-field splitting, and the gyromagnetic ratios of Equation 5.46, which
define the Zeeman energy in presence of the magnetic field B. The f quantum
number is a good number only at B = 0 G, while its projection m f along the
axis of the magnetic field is always a good quantum number. The bending of
the Zeeman curves indicates that the Zeeman energy becomes comparable or
larger than the hyperfine energy.
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FIGURE 5.8: Single-atom eigenstates of 87Rb as a function of the external
magnetic field B. The | f , m f 〉 eigenstates are decomposed into the uncoupled-
basis states |s, ms, i, mi〉 of the individual electronic spin and nuclear angular
momenta, which define the magnetic behaviour of the atom. The relative con-
tribution of each of the uncoupled states to a given | f , m f 〉-state varies with
B, due to the changing contribution of the Zeeman energy to the total energy
of the system. Accordingly, the magnetic moment of a given | f , m f 〉-state is a
function of B. The limiting behaviour is sin α, sin β, sin γ → 0 at B → ∞ and
sin2 α, sin2 β, sin2 γ → 3/4, 2/4, 1/4 at B → 0 [146]. The hyperfine operator
ζa îa · ŝ is only diagonal in the | f , m f 〉 eigenbasis at B = 0 G. This is essential
to mechanism I, which leads to RbSr Feshbach resonances.
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ĤFermi = ζa îa · ŝ

=
2
3
|ψe(0)|2|γS|γi,a × îa · ŝ ,

(5.52)

where γS and γi,a are the gyromagnetic ratios of the electron spin and of the nuclear spin of
a respectively — see Subsection 5.3.1. The value of γi,a depends on the nucleus considered
and its sign defines the sign of the hyperfine coupling constant ζa. The physical meaning of
Equation 5.52 is clear: the larger the overlap between the electronic and nuclear wavefunc-
tions, the stronger the interaction between the nuclear spin and electronic spin.

In presence of a Sr atom at a given internuclear distance R from Rb, the Coulomb repul-
sion between the electronic cloud of Sr and the valence electron of Rb leads to a decrease of
the electronic density |ψe(0)|2 at the position of the nucleus, which can be modelled by an
R-dependent Rb hyperfine constant. The modified hyperfine constant is

ζa(R) = ζa + ∆ζa(R) . (5.53)

The Hamiltonian of the system may therefore be written as the sum of a zeroth-order term
Ĥ0, which contains the Rb and Sr single-atom Hamiltonians given in Equations 5.42 and
5.43, and of the perturbation Ĥ′ introduced by the R-dependence of the hyperfine constant.
It reads

Ĥ0 =
1

2µ

[
−h̄2 d2

dR2 +
N̂2

R2

]
+ V̂g(R) + ζa îa · ŝ−

(
γi,a îa,z + γS ŝz

)
B (5.54)

Ĥ′ = ∆ζa(R)îa · ŝ . (5.55)

The unperturbed Hamiltonian, Equation 5.54, is the sum of the molecular Hamiltonian and
the Rb single-atom Hamiltonian, given in Equations 2.43 and 5.42 respectively. It supports
molecular bound states as well as atom pair scattering states. The corresponding molecular
eigenstates have radial nuclear wavefunctions χvib

ν,N(R)/R that are set by Vg(R) and denoted
by the vibrational quantum number ν, and their rotational nuclear motion and hyperfine
contribution are described by the basis sets |N, mN〉 ≡ Yrot

N (θ, φ) and | f , m f 〉 respectively
— see Equations 2.39 and 5.3.1. In absence of external confinement, the scattering eigen-
states have energy-normalized radial internuclear wavefunctions |χscat

k,N (R)〉 ≡ χscat
k,N (R)/R,

of which the asymptotic behaviour is given by Equation 5.1, and their rotational nuclear
motion and hyperfine contribution are described by the same basis sets |N, mN〉 and | f , m f 〉
as the molecular states. Importantly, the eigenstates of Ĥ0 are by definition orthogonal with
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FIGURE 5.9: Variation of the hyperfine constant of 87Rb as a function of the in-
ternuclear distance between Rb and Sr. This variation defines the strength of
the radial coupling between atom pair states and molecular states in the con-
text of mechanism I, which leads to RbSr Feshbach resonances. The single-
atom 87Rb hyperfine constant itself is ζ87Rb = h× 3.417... GHz, therefore this
relatively small R-dependent variation can be treated as a perturbation. Cal-
culated by Piotr Żuchowski.

respect to one another. In particular, scattering states |E; k, N〉 = |χscat
k,N (R)〉 |N, mN〉 | f , m f 〉

and molecular states |ψmol〉 = |χvib
ν,N′(R)〉 |N′, mN′〉 | f ′, m f ′〉 are orthogonal56, as expressed

by

〈E; k, N|ψmol〉 = 〈χscat
k,N (R)|χvib

ν,N′(R)〉 〈N, mN |N′, mN′〉 〈 f , m f | f ′, m f ′〉

= 0 .
(5.56)

Furthermore, the eigenstates are subject to the orthogonality relations57,58

56|E; k, N〉 denotes the scattering state of collisional energy E = h̄2k2/2µ and of rotational quantum number N
— see Subsection 5.1.1. In the ultracold limit, the scattering cross-section is largely dominated by s-wave scattering
states (N = 0). An interesting exception to that is the 87Rb88Sr mixture for which the p-wave (N = 1) scattering
cross-section is enhanced by a virtual molecular state close to the zero-energy p-wave threshold — see Chapter 3.

57The spherical harmonics |N, mN〉 are joint, normalized eigenstates of N̂2 and N̂z and as such fulfill the prop-
erties N̂2 |N, mN〉 = N(N + 1)h̄2 |N, mN〉, N̂z |N, mN〉 = mN h̄ |N, mN〉 and 〈N, mN |N′, mN′ 〉 = δN,N′ δmN ,mN′ — see
Subsection 2.1.6.

58Note that in general 〈χscat
k,N (R)|χvib

ν,N′ (R)〉 6= 0 for N 6= N′. Indeed, in that case the radial contributions |χscat
k,N (R)〉

and |χvib
ν,N(R)〉 are eigenfunctions of different radial equations, as defined by Equation 2.42. The corresponding

molecular and scattering states are still orthogonal, but the orthogonality condition is provided by the orthogonality
of the rotational contributions, Equation 5.58.
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〈χscat
k,N (R)|χvib

ν,N′(R)〉 =
∫ ∞

0
R−2 χscat

k,N (R)χvib
ν,N′(R)R2dR

= 0 for N = N′
(5.57)

〈N, mN |N′, mN′〉 =
∫ 2π

φ=0

∫ π

θ=0
(Yrot

N (θ, φ))∗ Yrot
N′ (θ, φ) sin(θ)dθdφ

= δN,N′ δmN ,mN′

(5.58)

〈 f , m f | f ′, m f ′〉 = δ f , f ′ δm f ,m f ′ . (5.59)

The perturbation of the Rb hyperfine structure, Equation 5.55, breaks this orthogonal-
ity, thereby producing Feshbach resonances by inducing coupling between specific sets of
free atom states and molecular states. The R-dependent hyperfine constant mixes the radial
nuclear wavefunctions of these eigenstates, while the îa · ŝ operator mixes their hyperfine
contributions. The matrix elements associated with this mixing are

〈E; k, N| Ĥ′ |ψmol〉 = 〈χscat
k,N (R)|∆ζa(R) |χvib

ν,N′(R)〉 〈N, mN |N′, mN′〉 〈 f , m f | îa · ŝ | f ′, m f ′〉

= Iradial Ispin(B) δN,N′ δmN ,mN′ ,

(5.60)

and the Feshbach resonance Breit-Wigner width, Equation 5.7, associated with the mixing of
one atom pair state with a molecular state is

Γ12(E) = 2π| 〈E; k, N| Ĥ′ |ψmol〉 |2 . (5.61)

Importantly, the perturbation of Equation 5.55 does not couple different partial waves |N, mN〉
and |N′, mN′〉, for it is isotropic and therefore doesn’t act on the angular degrees of freedom
(θ, φ). The radial overlap integral Iradial depends on the magnitude of the change of the hy-
perfine structure with the internuclear distance R, and on the shape of the radial atomic and
molecular nuclear wavefunctions. It reads

Iradial = 〈χscat
k,N (R)|∆ζa(R) |χvib

ν,N′(R)〉

=
∫ ∞

0
χscat

k,N (R)∆ζa(R)χvib
ν,N′(R)dR .

(5.62)
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The spin integral Ispin(B) is a purely atomic quantity. It depends on the value of the ex-
ternal magnetic field B, for the | f , m f 〉-states themselves are B-dependent, as explained in
Subsection 5.3.1. More precisely, this integral depends on the value of the Rb nuclear and
electronic spin projection mi,a and ms onto the magnetic field axis. Thus, since the contribu-
tion of a given uncoupled state |s, ms, i, mi〉 to a given | f , m f 〉-state is a function of B — see
Figure 5.8 —, so is Ispin(B). This spin integral quantifies the off-diagonal nature of the hy-
perfine interaction in the | f , m f 〉 basis, induced by its competition with the Zeeman energy.
It is non-zero only in presence of an external magnetic field, as shown in Figure 5.10, and
only in the case ∆m f = m f ′ −m f = 0. The latter property is readily understood by writing

the hyperfine operator as îa · ŝ = îa,z ŝz +
îa,+ ŝ−+îa,− ŝ+

2 , where îa,+ and îa,− are the nuclear spin
projection raising and lowering operators respectively, and ŝ+ and ŝ− their electronic spin
counterparts59. The operator îa · ŝ produces either ∆mi,a = ∆ms = 0 or ∆mi,a = +1/ − 1
and ∆ms = −1/ + 1, leaving the total projection m f = mi,a + ms unchanged60. The selection
rules associated with the spin integral are thus

Ispin(B) = 〈 f , m f | îa · ŝ | f ′, m f ′〉 6= 0 ⇐⇒ B > 0 G and ∆m f = 0 . (5.63)

The perturbation of the Rb hyperfine structure therefore produces Feshbach resonances at
the crossing of molecular and atom pair states with identical quantum numbers N and m f .
Since an atom pair state and a weakly-bound molecular state with identical hyperfine con-
tribution | f , m f 〉 have the same magnetic moment61 and therefore cannot cross, this situa-
tion arises only when an atom pair state crosses a molecular state belonging to a different
f manifold. There are not so many of such crossings. In the 87Rb-84Sr mixture, which is
of interest to us because we can produce double BECs of 87Rb-84Sr, there is only one reso-
nance arising in the range 0− 2000 G62. It involves the crossing of an atom pair state in the

59The nuclear and electronic spin raising and lowering operators î± = îx ± i îy and ŝ± = ŝx ± i ŝy are designed
to act on the uncoupled basis and fulfill the properties î± |s, ms, i, mi〉 =

√
i(i + 1)−mi(mi ± 1)h̄ |s, ms, i, (mi + 1)〉

and ŝ± |s, ms, i, mi〉 =
√

s(s + 1)−ms(ms ± 1)h̄ |s, (ms + 1), i, mi〉.
60The sum of the projections of all angular momenta of an isolated quantum system along a given axis is always

conserved. That is simply one of the many consequences of momentum conservation. In the present case only
the nuclear spin and the electronic spin are involved, therefore the sum of their projection must be conserved. In
the context of mechanism III that is anisotropic and thus can couple states of different rotational momentum N and
projection mN , the sum of mN and of the projection of all nuclear and electronic spins is conserved — see Section 5.5,
Equation 5.76.

61The molecular correction to the hyperfine structure ∆ζa(R) actually leads to a very small differential magnetic
moment between molecular and atom states with same | f , m f 〉. However, this correction is orders of magnitude
too small to allow the crossing of such states at experimentally achievable magnetic fields.

62We remind the reader that in the ultracold limit, the scattering cross-section is largely dominated by s-wave
scattering. Therefore, the open channel states that we consider here are s-wave atom pair states (N = 0).
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open channel | f , m f 〉 = |1,+1〉 with the molecular state |ν = −4, n = 0〉 in the closed chan-
nel | f , m f 〉 = |2,+1〉, at a field of B = 1311 G. The binding energy of this molecular state
is Eb = 9239(3)MHz. This is the Feshbach resonance we are currently investigating for the
magnetoassociation of 87Rb84Sr.

In our 1064 nm optical lattice, the spin integral is left unchanged but the radial integral is
modified compared to the free-space case — see Subsection 5.1.2. The Breit-Wigner width is
replaced by the energy gap h̄|Ω|, associated with the coupling matrix element defined as

h̄Ω
2

= 〈E; n, N| Ĥ′ |ψmol〉

= Iradial Ispin(B) δN,N′ δmN ,mN′ .
(5.64)

This coupling matrix element is related to the Landau-Zener molecule formation efficiency
η as in Equation 5.22. The larger |Ω|, the faster and easier magnetoassociation is. The spin
and angular integrals are the same as in Equation 5.61, but the radial integral now reads

Iradial = 〈χ
trap
n,N (R)|∆ζa(R) |χvib

ν,N′(R)〉 ∝ ω3/4
rel for N = N′ = 0 . (5.65)

We aim at using the 87Rb84Sr Feshbach resonance arising at B = 1311 G for magnetoas-
sociation, as mentioned in Subsection 5.1.2. The gap associated with the coupling matrix
element, Equation 5.64, is estimated to be |Ω|/2π ' 2 kHz at ωrel = 2π× 60 kHz for this res-
onance [P. Żuchowski, private communication]. Furthermore, the strength of the coupling
goes as Ω ∝ ω3/4

rel in the ground state n = N = 0 of the lattice [132][M. Frye & P. Żuchowski,
private communication]. Our current lattice beams allow to reach ωrel = 2π× 44 kHz, bring-
ing us to a maximum of |Ω|/2π = 1.6 kHz. The relative magnetic moment δµ of the atom
pair and molecular states is given by δµ/h = 2.153 MHz/G at B = 1311 G. This corresponds
to a magnetic window of h̄|Ω|/δµ = 0.8 mG within which the two states are strongly mixed.
This 0.8 mG window defines the level at which we need to stabilize the B = 1311 G magnetic
field to perform efficient magnetoassociation.

There are two more 87Rb84Sr Feshbach resonances induced by the |ν = −4, N = 0〉molec-
ular state. They are located at B = 2217 G and B = 3749 G, in the open channels | f , m f 〉 =
|1, 0〉 and |1,−1〉 respectively, and it is worth checking whether they might prove easier to
use for magnetoassociation. The radial integral is the same for these resonances and for the
B = 1311 G resonance, because they involve the same vibrational state. However, their spin
integral differ, as well as the relative moment of the atom pair and molecular states at the
position of the crossing. The corresponding values are
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FIGURE 5.10: Non-zero spin integrals of 87Rb and 85Rb as a function of the
magnetic field B. Together with the radial overlap integral, these spin in-
tegrals define the coupling strength of mechanism I, which produces RbSr
Feshbach resonances. Calculated by the author.

Ispin(B) = 〈1,+1| îa · ŝ |2,+1〉 = 0.34 with δµ/h = 2.15 MHz/G at B = 1311 G

Ispin(B) = 〈1,+0| îa · ŝ |2,+0〉 = 0.67 with δµ/h = 1.89 MHz/G at B = 2217 G

Ispin(B) = 〈1,−1| îa · ŝ |2,−1〉 = 0.99 with δµ/h = 2.15 MHz/G at B = 3749 G .

(5.66)

At ωrel = 2π× 43.4 kHz, this results in magnetic windows of h̄|Ω|/δµ = 0.8, 1.7 and 2.2 mG
at B = 1311, 2217 and 3749 G respectively. The technological requirements to stabilize B
at the mG level are more demanding at 2217 G and 3749 G than they are at 1311 G, and
such a slight increase of the coupling width does not justifies using either of these two extra
resonances for magnetoassociation.
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5.4 Magnetic Feshbach resonances in RbSr: mechanism II

The second interaction term that couples Rb-Sr atom pairs to RbSr molecular states is the
scalar hyperfine interaction that couples the nuclear spin of fermionic 87Sr to the electronic
spin of Rb. It is referred to as mechanism II in our publication presented in Chapter 6, and
in the subsequently published Ref. [27]. This mechanism doesn’t exist for bosonic isotopes
of Sr for which the nuclear spin is zero.

In presence of a Rb atom at a given internuclear distance R from Sr, the nuclear spin ~ib
of 87Sr couples to the electronic spin ~s of the valence electron of Rb, inducing an effective
hyperfine structure in the Sr atom. This effect is isotropic and is stronger for smaller inter-
nuclear distances R, for which the electronic density of Rb is larger at the position of the Sr
nucleus. Therefore, it can be modelled as an R-dependent 87Sr hyperfine constant, in full
analogy with Equation 5.9. The Sr hyperfine constant, induced by the valence electron of
Rb, is

ζb(R) = ∆ζb(R) . (5.67)

The Hamiltonian describing the collision of the Rb atom a and the 87Sr atom b in their elec-
tronic ground state may therefore be written as the sum of a zeroth-order term Ĥ0, which
contains the Rb and Sr single-atom Hamiltonians given in Equations 5.42 and 5.43, and of
the perturbation Ĥ′ defined by the hyperfine interaction between the Sr nuclear spin and the
Rb electronic spin. It reads

Ĥ0 =
1

2µ

[
−h̄2 d2

dR2 +
N̂2

R2

]
+ V̂g(R) + Ĥa + Ĥb (5.68)

Ĥ′ = ∆ζb(R)îb · ŝ . (5.69)

The scattering states and molecular eigenstates supported by Ĥ0 (in absence of external
confinement) may be written |E; k, N〉 = |χscat

k,N (R)〉 |N, mN〉 | f , m f 〉 |ib, mib〉 and |ψmol〉 =

|χvib
ν,N(R)〉 |N′, mN′〉 | f ′, m f ′〉 |i′b, m′ib〉 respectively, where the | f , m f 〉 hyperfine contribution of

Rb and the |ib, mib〉 nuclear spin contribution of 87Sr factor out as a product of states. These
eigenstates are by definition orthogonal to one another, i.e. 〈E; k, N|ψmol〉 = 0. The perturba-
tion induced by the valence electron of the Rb atom, Equation 5.69, breaks this orthogonality,
thereby producing Feshbach resonances by inducing coupling between specific sets of free
atoms states and molecular states. The R-dependent hyperfine constant mixes the radial nu-
clear wavefunctions of these eigenstates, while the îb · ŝ operator mixes their hyperfine and
nuclear contributions. The matrix elements associated with this mixing are
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FIGURE 5.11: Variation of the hyperfine constant quantifying the interaction
between the 87Rb electronic spin and the 87Sr nuclear spin, as a function of the
internuclear distance between Rb and Sr. This variation defines the strength
of the radial coupling between atom pair states and molecular states in the
context of mechanism II, which produces RbSr Feshbach resonances. This
coupling is weaker than its mechanism I counterpart. Calculated by Piotr
Żuchowski.

〈E; k, N| Ĥ′ |ψmol〉 = 〈χscat
k,N (R)|∆ζb(R) |χvib

ν,N′(R)〉 〈N, mN |N′, mN′〉

× 〈ib, mib | 〈 f , m f | îb · ŝ | f ′, m f ′〉 |i′b, m′ib〉

= Iradial Ispin(B) δN,N′ δmN ,mN′ ,

(5.70)

and the Feshbach resonance Breit-Wigner width associated with the mixing of one atom pair
state with a molecular state is

Γ12(E) = 2π| 〈E; k, N| Ĥ′ |ψmol〉 |2 . (5.71)

As with mechanism I, the perturbation Ĥ′ does not couple different partial waves |N, mN〉
and |N′, mN′〉, for it is isotropic and therefore doesn’t act on the angular degrees of freedom
(θ, φ). The radial overlap integral Iradial depends on the magnitude of the Sr hyperfine con-
stant ζb(R) as a function of R, Equation 5.67, and on the shape of the radial atomic and
molecular nuclear wavefunctions. It reads
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Iradial = 〈χscat
k,N (R)|∆ζb(R) |χvib

ν,N′(R)〉

=
∫ ∞

0
χscat

k,N (R)∆ζb(R)χvib
ν,N′(R)dR .

(5.72)

The spin integral Ispin(B) is a purely atomic quantity. It depends on the value of the external
magnetic field B, for the | f , m f 〉 states themselves are B-dependent, as explained in Subsec-
tion 5.3.1. More precisely, this integral doesn’t depend on the value of the Rb nuclear spin
projection mi,a onto the magnetic field axis, since only the Rb electronic spin s is involved
in the coupling. Thus, since the contribution of a given uncoupled state |s, ms, i, mi〉 to a
given | f , m f 〉 state is a function of B — see Figure 5.8 —, so is Ispin(B). Writing the hyperfine

coupling operator as îb · ŝ = îb,z ŝz +
îb,+ ŝ−+îb,− ŝ+

2 , where îb,+, îb,−, ŝ+ and ŝ− are the Sr nuclear
spin projection raising and lowering operators, and the corresponding Rb electronic spin op-
erators respectively, one sees that it can produce either ∆mi,b = ∆ms = 0 or ∆mi,b = +1/− 1
and ∆ms = −1/ + 1. Therefore, the total Rb spin projection m f = ms + mi,a may change as
∆m f = 0 or ∆m f = −1/ + 1, leaving the total projection ms + mi,a + mi,b unchanged. The
selection rules associated with the spin integral are thus

Ispin(B) = 〈ib, mib | 〈 f , m f | îb · ŝ | f ′, m f ′〉 |i′b, m′ib〉 6= 0 ⇐⇒ ∆m f = 0,−1 or + 1 . (5.73)

These conditions are much less stringent than the ∆m f = 0 condition required to observe
Feshbach resonances induced by mechanism I. Accordingly, we observed many more reso-
nances in the fermionic 87Rb-87Sr mixture than in the bosonic ones63, which made Feshbach
spectroscopy of the 87Rb-87Sr mixture an invaluable probe of the RbSr ground state poten-
tial. Note that at ∆m f = ∆N = 0 crossings both mechanism I and II produce Feshbach
resonances.

Importantly, Ispin(B) 6= 0 even at B = 0 G in the case of mechanism II. Indeed, the
hyperfine coupling operator îb · ŝ is off-diagonal in the |ib, mi,b〉 | f , m f 〉 basis even in absence
of magnetic field, whereas in the case of mechanism I the hyperfine coupling operator îa · ŝ is
diagonal in the | f , m f 〉 basis at B = 0 G. This stems from the different physical mechanism at
play in these two coupling schemes. Indeed, while mechanism II requires the coupling of the
Rb electronic spin s to the Sr nuclear spin ib, which is present even in absence of magnetic

63We measured one resonance in the 87Rb-84Sr mixture, and two in the 87Rb-88Sr mixture. According to our
model of the RbSr ground state PEC, these are the only resonances available in the range 0− 1500 G (at least for
s-wave atom pair states; more resonances might be observed in entrance channels of higher N, as discussed in
Subsection 2.2.2). We observed seven resonances induced by mechanism II (one of them, the largest, overlapping
with a mechanism I resonance) in the narrower 0− 550 G range in the 87Rb-87Sr mixture, and more are predicted to
arise at higher fields.
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field — in complete analogy with the hyperfine structure of Rb —, mechanism I requires
the disruption of the Rb hyperfine structure by the Zeeman energy, which is achieved only
in presence of a magnetic field. An interesting consequence of the îb · ŝ coupling at play
in mechanism II is that the degeneracy of the | f , m f 〉-states of a given f manifold of Rb
is lifted in presence of Sr, even at B = 0 G. We tried to observe this effect by measuring the
binding energy of the |v = 66, N = 0, f = 1〉 87Rb87Sr molecular state64, using the two-colour
spectroscopy method presented in 2.2, in the cases m f = m f ′ = 0 and m f = m f ′ = −1 close
to B = 0 G. The lifting of degeneracy, which we expected from theoretical considerations to
be of the order of h × 30 kHz, proved too small to be reliably measured with this method.
Such a shift should be very easily measurable using molecular states that are much more
bound and for which the shift is expected to be in the MHz or tens of MHz range.

64This state is bound by h× 287.27(18)MHz — see Chapter 3.
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5.5 RbSr resonances induced by anisotropic terms: mecha-

nism III

While investigating magnetic Feshbach resonances in the fermionic 87Rb-87Sr mixture, we
were surprised to discover extremely weak loss features, strikingly narrower than we ex-
pected from thermal broadening at the temperature of the RbSr sample (a few µK). These
features didn’t seem to be artifacts, since they were obtained at magnetic fields matching
exactly the binding energy of a molecular state that we detected previously through two-
colour spectroscopy. Based on our understanding of the ground-state PEC of RbSr at the
time, we attributed this resonance to a rotating N = 2 state, for which neither mechanism I
nor mechanism II predicts any coupling to atom pair scattering states in the s-wave (N = 0)
regime.

The theoretical explanation of these features was given to us by Piotr Żuchowski in a pri-
vate communication. The dipolar hyperfine interaction between the Rb electronic spin~s and
the nuclear spin ~ib of 87Sr leads to an anisotropic coupling between s-wave scattering states
and N = 2 molecular states65. This dipolar coupling is of the same form as the dipolar elec-
tronic spin-spin interaction, Equation 5.36, where the rank-2 tensors T2(~s1, ~s2) are replaced
by their hyperfine counterpart T2(~s,~ib). It reads

Ĥ′ = tSr(R)
√

6 T2(C) · T2(~s,~ib) , (5.74)

where the radial prefactor tSr(R) is the product of two terms. The first is the classical dipole-
dipole 1/R3 term, given in Equation 5.36. The second term is an extra R-dependent term,
that largely dominates the radial integral Iradial and quantifies the anisotropic distortion of
the Rb electronic cloud as Sr is approaching — much analogously to its isotropic counterpart
∆ζb(R)66. The spin tensor T2(~s,~ib) is defined as in Equation 5.37, i.e

T̂ 0
2 = 2 szib,z − (s−ib,+ + s+ib,−)/2

T̂±1
2 = ∓

√
3
2
(s±ib,z + szib,±)

T̂±2
2 =

√
3
2

s±ib,± .

(5.75)

65The total hyperfine interaction is in general the sum of the contact interaction and the dipolar hyperfine inter-
actions [146]. At long internuclear distances the contact interaction largely dominates the hyperfine shift.

66Note that this phenomenon likely has its counterpart in bi-alkali mixtures, although it is not discussed in the
literature known to the author.
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The rank-2 tensorial nature of this interaction imposes the selection rule |N − 2| ≤ N′ ≤
|N + 2|, owing to Equation 5.40. Thus, in the s-wave regime it leads to Feshbach resonances
only at the crossing with N = 2 molecular states. Furthermore, the spin+rotation operator
T2(C) · T2(~s,~ib) imposes the projection of the total angular momentum along the quantiza-
tion axis, m f + mib + mN , to be conserved. The selection rules associated with this dipolar
hyperfine interaction are thus

Ispin+rotation(B) = 〈N, nN | 〈ib, mib | 〈 f , m f | T2(C) · T2(~s,~ib) | f ′, m f ′〉 |i′b, m′ib〉 |N
′, nN′〉 6= 0

⇐⇒ ∆(m f + mib + mN = 0) and N′ = 2 (for N = 0) .

(5.76)

Interestingly, many resonances may arise from open-channel states defined by the same
hyperfine contribution | f , m f 〉 but different Sr nuclear spin contribution |ib, mib〉. Accord-
ingly, P. Żuchowski predicted that in our unpolarized sample of 87Sr containing all 10 mib =

−9/2,−7/2, ...,+9/2 spin projections, we should observe several resonances, spaced in
magnetic field according to the projection mib of the scattering incoming state. We investi-
gated the loss features further and could indeed measure "bunches" of resonances as shown
in Chapter 6 (green loss features), spaced by a few ten h× kHz as expected from the small
87Sr nuclear spin gyromagnetic γi,87Sr/2π = h×−0.183999 kHz/G — see Equations 5.46 —
around the resonant fields B = 278.2 G and B = 295.1 G. This coupling mechanism, together
with the dipolar interaction between the Rb electronic spin and the Sr nuclear spin (much
smaller than the one previously discussed), was called mechanism III. Note that mechanism
II, presented in Section 5.4, also leads to multiple loss features. However, we couldn’t re-
solve them in that case, due to the large thermally-broadened loss profiles. The features
induced by this anisotropic mechanism, though, were surprisingly narrow and we could re-
solve them67. The narrowness of the loss features, expected by us to be as broad as the other
RbSr Feshbach resonances due to thermal broadening, remains a mystery.

The discovery of these resonances triggered theoretical work, published in Ref. [132]. In
this work many additional small coupling terms are included and analyzed in the context
of CsYb68. Among them, the abovementioned dipolar coupling between the Rb electronic
and nuclear spin (dipolar counterpart to the Rb contact hyperfine interaction), the interac-
tion between the nuclear electric quadrupole tensors and the distance-dependent electric

67The B = 420.9 G resonance is induced by mechanism III but is not narrow. One reason could be that the
coupling strength for this resonance is much larger than the B = 278.2 G and B = 295.1 G resonances — these
two resonances involve a different radial overlap integral than the one at B = 420.9 G because they involve the
vibrational ν = −2 and the ν = −4 vibrational states respectively.

68The CsYb molecule, composed of an alkali (Cs) and a closed-shell atom (Yb), is a heavy open-shell, dipolar
molecule similar to RbSr.
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gradient tensor at the nuclei due to the electrons, and the spin to molecular rotation cou-
pling discussed in Chapter 4, Subsection 4.1. This was a time of great scientific effervescence
and expansion of knowledge, with theoretical predictions leading to new measurements and
new measurements leading to new predictions.

If anything should be retained from this chapter, it is that the RbSr experiment would
not stand where it stands now without the constant work and support of Piotr Żuchowski,
Jeremy Hutson, Matthew Frye and their collaborators. Many thanks to them, we hope to
keep working together in the future.
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Vincent Barbé1,4, Alessio Ciamei1,4, Benjamin Pasquiou1, Lukas Reichsöllner1,
Florian Schreck1,*, Piotr. S. Żuchowski2 and Jeremy M. Hutson3

Magnetic Feshbach resonances allow control of the interactions between ultracold atoms
[131]. They are an invaluable tool in studies of few-body and many-body physics [149,
150], and can be used to convert pairs of atoms into molecules [151, 152] by ramping an
applied magnetic field across a resonance. Molecules formed from pairs of alkali atoms
have been transferred to low-lying states, producing dipolar quantum gases [153]. There
is great interest in making molecules formed from an alkali atom and a closed-shell atom
such as ground-state Sr or Yb. Such molecules have both a strong electric dipole and
an electron spin; they will open up new possibilities for designing quantum many-body
systems [32, 71] and for tests of fundamental symmetries [154]. The crucial first step is
to observe Feshbach resonances in the corresponding atomic mixtures. Very narrow reso-
nances have been predicted theoretically [25, 26, 111], but until now have eluded observa-
tion. Here we present the observation of magnetic Feshbach resonances of this type, for
an alkali atom, Rb, interacting with ground-state Sr.
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closed-shell atoms

A magnetic Feshbach resonance arises when a pair of ultracold atoms couples to a near-
threshold molecular state that is tuned to be close in energy by an applied magnetic field.
Magnetoassociation at such a resonance coherently transfers the atoms into the molecular
state [155, 156]. In a few cases, near-threshold molecules formed in this way have been
transferred to their absolute ground states [9, 11, 157], allowing exploration of quantum
gases with strong dipolar interactions [153]. However, this has so far been achieved only for
molecules formed from pairs of alkali atoms.

Mixtures of closed-shell alkaline-earth atoms with open-shell alkali atoms have been
studied in several laboratories [87, 158–161]. No strong coupling mechanism between atomic
and molecular states exists in systems of this type, but theoretical work has identified weak
coupling mechanisms that should lead to narrow Feshbach resonances, suitable for magne-
toassociation [25, 26, 111]. In this letter we describe the detection of Feshbach resonances
in mixtures of 87Sr or 88Sr with 87Rb. The coupling between atomic and molecular states
arises from two mechanisms previously predicted [25, 26, 111] and an additional, weaker
mechanism that we identify here.

The experimental signature of a Feshbach resonance is field-dependent loss of Rb atoms.
This may arise from either 3-body recombination or inelastic collisions, both of which are
enhanced near a resonance. We perform loss spectroscopy using an ultracold Rb-Sr mixture,
typically consisting of 5× 104 Rb atoms mixed with 106 87Sr or 107 88Sr atoms at a tempera-
ture of 2 to 5 µK (see Methods). Figure 6.1 shows the observed loss features, eleven arising
in the 87Rb -87Sr Bose-Fermi mixture and one in the 87Rb -88Sr Bose-Bose mixture. Ten loss
features consist of a single, slightly asymmetrical dip with FWHM between 200 and 400 mG.
The loss features labelled [1,0]a and [1,1]a each consist of several dips with a width of 20 to
60 mG at a spacing of 80 mG. We fit each dip with a Gaussian and give the resulting positions
and widths in Table 6.1. None of these Rb loss features arises in the absence of Sr, proving
that they depend on Rb-Sr interactions.

Both the atomic and molecular states are described by the total angular momentum of
the Rb atom, f , and its projection m f onto the magnetic field. Where necessary, atomic and
molecular quantum numbers are distinguished with subscripts at and mol. In addition,
the molecule has a vibrational quantum number n, counted down from n = −1 for the
uppermost level, and a rotational quantum number L, with projection ML. 88Sr has nuclear
spin iSr = 0, whereas 87Sr has iSr = 9/2 and a corresponding projection mi,Sr.

The Rb-Sr atom-pair states and the near-threshold molecular states lie almost parallel
to the Rb atomic states as a function of magnetic field — see Supplementary Information.
We can therefore use the Breit-Rabi formula of Rb for both the atom-pair states and the
molecular states. This allows us to extract zero-field binding energies Eb of the molecular
states responsible for the resonances, giving the values in Table 6.2. The crossing atomic and
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FIGURE 6.1: Detection of Rb-Sr Feshbach resonances by field-dependent
loss of Rb. The fraction of Rb atoms remaining in state ( f , m f ) after loss
at each observed Feshbach resonance, normalised to unity far from the loss
feature. Eleven loss features are observed in 87Rb -87Sr mixtures and one in
87Rb -88Sr (lower right panel). The loss features are labelled by [ f ,m f ]j, where
j ∈{a,b,c} is an index used when losses due to several molecular states are ob-
served at the same atomic threshold. Most loss features show a single dip in
the atom number, whereas [1,0]a and [1,1]a show several. Each dip is fit by
a Gaussian (black line), with results shown in Table 6.1. The color and shape
of symbols indicates the coupling mechanism for the Feshbach resonance:
mechanism I (orange triangles), II (blue circles), or III (green squares). The
resonance near 521 G also has a contribution from mechanism II. The mag-
netic field uncertainty is 0.4 G and the noise is less than 40 mG. Error bars
represent the standard error of three or more data points.

molecular levels are shown in Figures 6.2 and 6.3, with filled symbols where we observe loss
features.

To verify the bound-state energies and validate our model of Feshbach resonances, we
use two-photon photoassociation (PA) spectroscopy. We detect the two n = −2 states (with
L = 0 and 2) below the lower ( f = 1) threshold of 87Rb-87Sr (states E and F in Table 6.2) at
almost exactly the energies deduced from the resonance positions. All the states observed
through Feshbach resonances (B to F) also arise to within 2 MHz in a more complete model
of the Rb-Sr interaction potential, as described below.

Three different coupling mechanisms are responsible for the observed loss features. The
first mechanism was proposed in Ref. [25] and relies on the change of the Rb hyperfine
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FIGURE 6.2: Origin of the 87Rb -87Sr Feshbach resonances. Energies of
atomic (red) and molecular (orange) states as functions of magnetic field,
shown with respect to the zero-field f = 1 atomic level. Molecular states
are labelled as in Table 6.2 and shown dashed if rotationally excited (L = 2).
Observed Feshbach resonances are labelled as in Figure 6.1 and marked by
filled symbols (orange triangles, blue circles or green squares for coupling
mechanism I, II or III, respectively). Hollow symbols mark further, weak
resonances predicted by our model, which could not be observed under our
measurement conditions — see Supplementary Information.

splitting when the Rb electron distribution is perturbed by an approaching Sr atom. Its
coupling strength is proportional to the magnetic field in the field region explored here [26].
The coupling conserves m f and L and there are no crossings between atomic and molecular
states with the same f and m f . This mechanism therefore produces Feshbach resonances
only at crossings between atomic states with Rb in f = 1 and molecular states with f = 2.
We observe one such resonance for each of 87Sr and 88Sr.

The second mechanism involves hyperfine coupling of the Sr nucleus to the valence elec-
tron of Rb and was first proposed in Ref. [111]. Since only fermionic 87Sr has a nuclear
magnetic moment, this can occur only in Rb -87Sr collisions. This coupling conserves L and
m f + mi,Sr, with the selection rule m f ,at − m f ,mol = 0,±1. Crossings that fulfil these condi-
tions occur also for molecular states with the same f value as the atomic state, which makes
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FIGURE 6.3: Origin of the 87Rb -88Sr Feshbach resonance. Energies of
atomic (red) and molecular (orange) states as functions of magnetic field,
shown with respect to the zero-field f = 1 atomic level. Only one Feshbach
resonance has been observed, produced by coupling mechanism I. Since 88Sr
has zero nuclear spin, mechanism II is absent.

them much more abundant than crossings obeying the selection rules of the first mecha-
nism. Feshbach resonances belonging to different mi,Sr are slightly shifted with respect to
one another because of the weak Zeeman effect on the Sr nucleus and the weak Sr hyperfine
splitting. However, since the shift is only 10 mG for neighboring mi,Sr, much smaller than
the width of the loss features of typically 300 mG, we do not resolve this splitting.

The third mechanism is the anisotropic interaction of the electron spin with the nucleus
of either Rb or fermionic Sr. This mechanism can couple the s-wave atomic state to molecules
with rotational quantum number L = 2. As usual, the total angular momentum projection
(now m f +mi,Sr + ML) is conserved. If the Sr nucleus is involved, an additional selection rule
is ∆m f = ±1. By contrast, if the Rb nucleus is involved, the selection rule is ∆m f = −∆ML.
These loss features are made up of many (m f , ML) components, split by several hyperfine
terms [24]; in some cases the components separate into groups for different values of ML.
Three loss features are attributed to this mechanism and two of them ([1,1]a and [1,0]a)
indeed show a structure of two or three dips.

To create a model of the Rb-Sr Feshbach resonance locations we start with a RbSr ground-
state potential that we have previously determined by electronic structure calculations [95].
This will be described in detail in a future publication [110]4. We carry out a three-parameter
fit to adapt the model potential to match the molecular binding energies determined by two-
photon photoassociation in three Rb-Sr mixtures (87Rb -84,87,88Sr), supplemented by binding
energies determined from the Feshbach resonance positions. The parameters adjusted are
two long-range coefficients, C6 and C8, and a short-range well depth. The molecular bound

4A/N: this work has been published in 2018, following the publication of the present article.
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TABLE 6.1: Properties of observed Feshbach resonances. For resonances
with many components, the theoretical width is the largest calculated value.

[ f , m f ]j (mol. state, B δ ∆ cpl.
m f , ML) (G) (mG) (mG) mech.

87Rb87Sr

[2,+1] (B, +2, 0) 474.9(4) 373(7) 0.095 II
[2,0] (B, +1, 0) 435.9(4) 378(7) 0.14 II

[2,−1] (B, 0, 0) 400.0(4) 247(4) 0.14 II
[2,−2] (B, −1, 0) 367.1(4) 260(5) 0.095 II

[1,−1]a (D, −2, 0) 295.4(4) 372(10) 0.73 II
[1,−1]b (C, −2, mix) 420.9(4) 386(11) 0.025 III
[1,−1]c (D, −1, 0) 521.5(4) 366(3) 3.5 I,II
[1,0]a (E, −1, −1) B1 = 278.2(4) 30(3) 0.0012 III

(E, −1, −2) B1 + 0.081(2) 58(4) 0.0015 III
[1,0]b (F, −1, 0) 397.3(4) 207(4) 0.048 II

[1,+1]a (E, 0, 0) B2 = 295.0(4) 24(3) 0.0002 III
(E, 0, −1) B2 + 0.083(2) 35(3) 0.0014 III
(E, 0, −2) B2 + 0.162(2) 30(1) 0.0016 III

[1,+1]b (F, 0, 0) 432.5(4) 213(6) 0.048 II
87Rb88Sr

[1,+1] (G, +1, 0) 365.8(4) 105(2) 0.05 I

TABLE 6.2: Molecular states responsible for Feshbach resonances. Binding
energies obtained from observed Feshbach resonances, EFR

b , and from two-
photon photoassociation, EPA

b . The experimental uncertainties in EFR
b arise

principally from the magnetic field measurement.

label n F L EFR
b /h EPA

b /h
(MHz) (MHz)

87Rb -87Sr

A −2 2 2 - -
B −2 2 0 288.2(4) -
C −4 2 2 5992(1) -
D −4 2 0 6234(1) -
E −2 1 2 200.0(3) 200.0(3)
F −2 1 0 287.3(3) 287.3(2)

87Rb -88Sr

G −4 2 0 7401.0(7) -
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states obtained from the model are within 2 MHz of the measured values, and the resonance
positions are within 2 G. Scattering calculations on this potential give interspecies scattering
lengths a87,87 = 1600(+600,−450) a0 and a87,88 = 170(20) a0 for 87Rb -87Sr and 87Rb -88Sr,
where a0 is the Bohr radius. Our model also predicts the background scattering lengths
and Feshbach resonance positions for all other isotopic Rb-Sr mixtures. For example, we
predicted the position of the 87Rb -88Sr resonance after initially fitting the model only on
photoassociation results for three isotopic mixtures and 87Rb -87Sr Feshbach resonances. This
resonance was subsequently observed within 10 G of the prediction.

An understanding of resonance widths is crucial to molecule formation. However, the
widths δ of the experimental loss features are dominated by thermal broadening, with rela-
tively little contribution from the true resonance widths ∆. We obtain theoretical widths ∆
from the Golden Rule approximation [26] and include them in Table 6.1. ∆ depends on the
amplitude of the atomic scattering function at short range; it is largest when the background
scattering length a is large, and is proportional to a in this regime [26]. This effect enhances
all the resonance widths for 87Rb -87Sr.

In summary, we have observed Feshbach resonances in mixtures of Rb alkali and Sr
alkaline-earth atoms. Similar resonances will be ubiquitous in mixtures of alkali atoms with
closed-shell atoms, particularly when the closed-shell atom has a nuclear spin. Magnetoas-
sociation using resonances of this type should be feasible — see Supplementary Information
— and offers a path towards a new class of ultracold molecules, with electron spin and
strong electric dipole moment. These molecules are expected to have important applications
in quantum computation, many-body physics and tests of fundamental symmetries.
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Supplementary Information

A magnetic Feshbach resonance arises when a pair of ultracold atoms couples to a near-
threshold molecular state. All magnetic Feshbach resonances observed before our work
occur for atomic pairs that interact to form multiple electronic states. This occurs if both
atoms have electron spin or at least one of them is orbitally degenerate. Examples are alkali
pairs [131] and mixtures of electronically excited (open-shell) Yb with either Li [162, 163] or
ground-state Yb [164, 165]. Strong Feshbach resonances occur in these systems because the
atom-pair state and the molecular state are different superpositions of the electronic states.
By contrast the Rb-Sr system has only one relevant electronic state. There is also no mag-
netic dipole interaction, which can cause additional weak resonances between atoms such
as alkalis, Cr [147], Er [166], and Dy [167]. The usual mechanisms that give rise to magnetic
Feshbach resonances are therefore absent in Rb-Sr. Our work shows that all the same mag-
netic Feshbach resonances do occur. In the following we first discuss the unusual coupling
mechanisms that give rise to these resonances. We then give details of our ground-state
potential model, which fits the locations of the observed Feshbach resonances and predicts
further resonances in all isotopic Rb-Sr mixtures. Finally we discuss the suitability of Fesh-
bach resonances in Rb-Sr for magnetoassociation of atom pairs into molecules.

Coupling mechanisms and resonance widths

The Hamiltonian for the interaction of Rb and Sr atoms may be written

Ĥ = − h̄2

2µR2

[
d2

dR2 −
L̂2

R2

]
+ Ĥasym + Û(R), (6.1)

where R is the internuclear distance, µ is the reduced mass, and L̂2 is the operator for end-
over-end rotation of the two atoms about one another. Ĥasym is the asymptotic hyperfine
Hamiltonian5,

Ĥasym = ζRb îRb · ŝ + (gRbµN îz,Rb + gSrµN îz,Sr + geµB ŝz)B. (6.2)

The operator Û(R) includes all R-dependent interactions,

Û(R) = ∆ζRb(R)îRb · ŝ + ∆ζSr(R)îSr · ŝtRb(R)
√

6 T2(s, iRb) · T2(C)

+ tSr(R)
√

6 T2(s, iSr) · T2(C) + V(R),
(6.3)

5AN: vector operators are written in bold letter in this section.
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where T2 indicates a spherical tensor of rank 2. T2(C) has components C2
q(θ, φ), where C

is a renormalised spherical harmonic and θ, φ are the polar coordinates of the internuclear
vector. In Eq. (6.3) the first and second terms represent interaction-induced change of the
scalar hyperfine coupling of the nuclear spins of Rb and Sr with the electron spin, the third
and fourth terms represent the dipolar interaction between the electron spin and the nuclear
spins of 87Rb and 87Sr, and the last term is the Born-Oppenheimer electronic interaction po-
tential. The first two terms correspond to coupling mechanisms I and II discussed in the
paper. The third and fourth terms correspond to mechanism III, though for RbSr the dipolar
coupling involving the 87Rb nucleus is very weak and the resonances due to this mecha-
nism alone have not been observed. Note that iSr = 0 for bosonic Sr isotopes (84,86,88Sr),
so that mechanism II is absent in Rb-Sr mixtures containing these isotopes. The couplings
responsible for all three mechanisms were obtained from density-functional calculations of
the molecular electronic structure using the same methods as in Ref. [168].

The scattering length a(B) around a narrow Feshbach resonance is described by

a(B) = abg

(
1− ∆

B− Bres

)
, (6.4)

where abg is the background scattering length, Bres is the resonance position and ∆ is its
width (in magnetic field). The width ∆ is related to the width Γ(k) (in the energy domain) of
the state above threshold,

∆ = lim
k→0

Γ(k)
2kabgδµres

, (6.5)

where k =
√

2µEcoll/h̄2 is the wavevector and δµres is the difference between the magnetic
moments of the atomic pair and the bound state. In the present work we obtain the width
Γ(k), from Fermi’s Golden Rule,

Γ(k) = 2π|〈α′n|ωi(R)Ω̂i|αk〉|2, (6.6)

where ωi(R)Ω̂i is the coupling corresponding to one of mechanisms I to III, α and α′ label
eigenstates of Hasym and |αk〉 and |α′n〉 are the scattering and bound-state wavefunctions,
respectively. Equation 6.6 factorizes into spin-dependent and radial parts [26],

Γ(k) = 2π Iα,α′(B)2 I2
k,n, (6.7)

where
Iα,α′(B) = 〈α′|Ω̂i|α〉; (6.8)



Chapter 6. Publication: Observation of Feshbach resonances between alkali and
closed-shell atoms

183

and
Ik,n =

∫ ∞

0
ψn(R)ωi(R)ψk(R)dR. (6.9)

The values of Iα,α′(B) are obtained here as the off-diagonal matrix elements of the opera-
tors îRb · ŝ, îSr · ŝ and T2(îSr, ŝ), transformed to the basis set of asymptotic eigenfunctions of
Hasym, while Ik,n was evaluated numerically for limitingly small values of k.

Predicted Feshbach resonances

Our model predicts further Feshbach resonances, in addition to the ones we have observed,
in all isotopic Rb-Sr mixtures [110]. A few additional 87Rb -87Sr resonances occur in the
magnetic field accessible to us (< 550 G), as indicated by hollow symbols in Figure 6.2. We
searched for loss features corresponding to those resonances, but found that they are not
observable under our experimental conditions. The L = 2 Feshbach resonances in Rb f = 2
are quite weak and hard to observe for two reasons. First, they coincide with broad, known
Rb Feshbach resonances [135]. Secondly, our Rb f = 2 samples have a lower atom number
per m f state and a shorter lifetime than f = 1 samples. The Rb f = 1 resonance at 130 G is
predicted to be two orders of magnitude narrower than the broadest coupling mechanism
III resonance observed.

In addition, the large positive scattering length for 87Rb -87Sr will produce a least-bound
molecular state with binding energy h× 25(15) kHz, which leads to Feshbach resonances at
low magnetic field. However, bound states very near dissociation exist mostly at long range,
and produce resonances with widths proportional to |Eb|2/3 [26]. The widths of resonances
due to the least-bound states are expected to be at least two orders of magnitude narrower
than those due to deeper states. Therefore we do not expect to observe loss features corre-
sponding to these resonances.

Prospect for magnetoassociation

Magnetoassociation uses magnetic Feshbach resonances to form molecules from pairs of
atoms [131]. At a Feshbach resonance the atom-pair state |a〉 and the molecular state |m〉
couple, producing an avoided crossing. The strength of this crossing depends on the product
abg∆. A common way to perform magnetoassociation is to ramp the magnetic field across
the resonances such that |a〉 evolves adiabatically into |m〉. Even quite weak resonances,
comparable in coupling strength to the strongest Rb-Sr resonances, have been used for mag-
netoassociation, starting from a BEC [169] or atom pairs on the sites of a lattice [170]. Our
Rb-Sr Feshbach resonance model identifies several promising paths to form RbSr molecules
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from atoms, either in free space or in an optical lattice. We have already created a Mott insu-
lator with 3× 104 sites occupied by one atom of each, 87Rb and 84Sr [52]. Our model predicts
suitable resonances in this and several other isotopic mixtures.

The experimental discovery of Feshbach resonances in Rb-Sr also validates the theory
predicting Feshbach resonances in other mixtures of closed-shell atoms with alkalis. Sev-
eral such mixtures are currently under experimental investigation, such as Li-Yb [158, 159],
Rb-Yb [87, 160], and Cs-Yb [171]. It should be possible to identify magnetic Feshbach res-
onances in these mixtures using two-photon photoassociation and Feshbach spectroscopy.
Identifying these resonances would give further opportunities to create molecules with a
strong electric dipole and an electron spin.
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Outlook

The production of ultracold RbSr molecules in the rovibronic ground state is the primary
goal of the RbSr laboratory. For the first step, which consists in forming weakly-bound
molecules out of atom pairs, three experimental routes can be chosen: STIRAP, magnetoas-
sociation and photoassociation followed by spontaneous emission — see Chapter 1, Sec-
tion 1.4. The route that was chosen before this PhD work was STIRAP, using an electronically-
excited molecular state of energy close to the Rb (2S1/2) + Sr (3P1) dissociation asymptote.
We temporarily abandoned this line of research after the results of the one-colour spec-
troscopy, for the reasons exposed in Section 1.4. We are focussing now on magnetoasso-
ciation, rendered possible by the detection of a suitable magnetic Feshbach resonance in
87Rb84Sr at B = 1311 G. Two experimental requirements have to be met to magnetoassociate
RbSr molecules in an optical lattice: a low-entropy double Mott insulator, i.e. an optical lat-
tice filled with many Rb-Sr atom pairs, and a ppm-level magnetic field stability at B = 1311 G
— see Chapter 5, Section 5.1.2. Our attempts at magnetoassociation have been unsuccessful
to this date. To maximise our chances to succeed in the near future, we chose to improve
both the optical lattice and magnetic field setups. The related progress that we made and
the preliminary results that we obtained are presented succinctly in Sections 7.1 and 7.2 re-
spectively. Our prospects of performing one-colour RbSr spectroscopy close to the D1 line
of Rb, necessary in view of performing STIRAP transfer to the rovibronic ground state after
weakly-bound molecule association, are discussed in Section 7.3. In this last section we also
mention the molecule association scheme based on photoassociation followed by sponta-
neous emission, which is an alternative route for weakly-bound molecule formation. This is
a promising line of research, which needs to be explored and for which the laser system is
ready.
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7.1 Double Mott insulator production

The production of a double Mott insulator requires careful design of the optical lattice sys-
tem. The number of Rb-Sr atom pairs that we obtain in the double Mott insulator should
be maximised, so as to produce as many molecules as possible. This number is the result
of the balance between the external confinement of the dipole traps and lattice beams — see
Appendix A, Equation A.15 —, and the on-site interaction energies of Rb-Rb, Rb-Sr and Sr-
Sr atom pairs. The on-site interaction energies are set by the intraspecies and interspecies s-
wave scattering lengths of Rb and Sr, which are discussed in Chapter 1, Subsection 1.2.3, and
by the local depth of the lattice site for each species. Therefore, they depend on the intensity
and on the wavelength λlattice of the lattice laser, because the depth felt by each atom depends
on its DC-polarisability α(λlattice) (see Appendix A). We chose to work at λlattice = 1064 nm,
wavelength at which one can buy very powerful and coherent laser sources. The external
confinement is set by the power, a wavelength and geometry of the dipole traps and of the
lattice beams. Accordingly, it can be modified by changing the waists of the corresponding
laser beams, thus changing the spatial geometry of the dipolar potential — see Equation A.1.
We use numerical simulations to infer how many Rb-Sr atom pairs we should expect to cre-
ate for given Rb and Sr atom numbers in the initial double BEC, and for given optical powers
and waists of the dipole traps and lattice beams.

Based on measurements performed before this PhD work, it was concluded that a dou-
ble Mott insulator filled with up to 3 × 104 87Rb-84Sr pairs had been obtained in the lab-
oratory [52]. The rather short, 130(30)ms lifetime of these Rb-Sr pairs was attributed to
the photoassociation of these pairs by the lattice light, leading to the formation and loss of
electronically-excited molecules. That could be true. However, it seemed to the author of
this thesis that three-body losses could explain these losses equally well, especially since the
loss timescale was comparable to that of the three-body Rb-Rb-Rb and Sr-Sr-Sr losses that
we observe in the lattice. To test this hypothesis, we adjusted the experimental loading con-
ditions and showed that it was possible to obtain a signal indicative of Rb-Sr pairs even after
a few seconds in the lattice. This results contradicted the former hypothesis of loss through
photoassociation. We also performed a new set of numerical simulations, spotted mistakes
in the previous ones, and concluded from the new measurements and the new simulations
that three-body losses were more likely than two-body photoassociation. We also concluded
that the optical lattice setup presented in Ref. [52] is far from optimal: the waists of both
dipole trap and lattice beams are too small to populate the lattice with more than 104 atom
pairs. Accordingly, we kept the overall design of the optical setup the same1, but changed

1In particular, we still use a combination of 532 nm and 1064 nm dipole traps to cancel the relative gravitational
sag of Rb and Sr, as exposed in Ref. [52].
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the beam waists of all lattice beams to about 400 µm each and expanded by a factor two the
waists of the elliptical dipole traps. The new 532 and 1064 dipole traps have a waist of about
40 µm in the vertical direction, and we kept the same ellipticity ratio as before (i.e. the ratio
of the horizontal and vertical waists are the same, which is about 17 for 1064 nm and 14 for
532 nm). According to our simulations2 — the new ones and the corrected previous simu-
lations —, this new lattice setup should be able to support up to 4.0 – 5.0× 104 Rb-Sr pairs
loaded in the ground state of relative motion of the optical lattice.

To estimate experimentally the number of Rb-Sr pairs that we actually produce in the
double Mott insulator, we use the same method as in Ref. [52]. Our preliminary results in-
dicate that we can produce up to 1.8× 104 long-lived Rb-Sr pairs. However, this statement
must be taken carefully. The method of Ref. [52] relies on the use of a Rb-Sr one-colour res-
onance close to the 1S0 – 3P1 transition of Sr, which produces photoassociation losses on
lattice sites occupied by Rb-Sr pairs. However, this technique is prone to create artifacts.
First, the photoassociation beam also induces losses on sites with more than two atoms. This
is not a huge problem, because these sites decay fast due to three-body losses anyway and
one can decouple the three- and two-body dynamics rather easily. Second, it can photoasso-
ciate atoms that have been incorrectly loaded into the lattice. Indeed, such atoms will occupy
excited bands, not the ground state of the lattice. Therefore, they can tunnel across lattice
sites, collide with other atoms and produce photoassociation signals that are not indicative
of ground-state Rb-Sr pairs. The RbSr photoassociation probe is thus a useful tool, but it has
limitations and doesn’t give a fully satisfactory proof that a Rb-Sr double Mott insulator has
been achieved. Another method for the estimation of Rb-Sr pairs produced in the ground
state of the lattice is lattice-depth modulation spectroscopy. In this method, the depth of the
lattice is modulated at the frequency corresponding to the on-site interaction energy of Rb-Sr,
creating particle-hole excitations and thus detectable heating — see Ref. [129], Figure (5.10).
However, we could never observe a signal indicative of the Rb-Sr on-site interaction energy
using this method. One reason might be that the expected heating at the correct modulation
frequency, which matches the Rb-Sr on-site interaction energy, could not be resolved due to
other forms of heating. Another issue is that the on-site interaction energies of 87Rb-84Sr and
84Sr-84Sr are almost identical at our lattice depths and wavelength, and thus can hardly be
distinguished.

In conclusion, we think that the current optical lattice system can support up to 1.8×
104 long-lived Rb-Sr pairs or more, which is supported by simulations and experimental
data, but more characterization is required. Furthermore, we have implemented recently an
intensity stabilization scheme, based on a digital PID loop, to actively stabilize the intensity

2These simulations assume an entropy-free sample, i.e. T = 0. This is close to what we achieve with our BECs
but a small residual thermal cloud always remains, with a temperature of a few ten nK typically.
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of the lattice beams. This will result in a minimization of lattice heating effects, and allow us
to optimize even further the loading of double BECs of 87Rb-84Sr in the optical lattice.

7.2 Magnetic field stabilization

Producing a B = 1311 G static magnetic field with mG stability is not a trivial task. We use
two sets of coils in Helmoltz configuration to produce a homogeneous magnetic field at the
position of the atoms, with a current-to-field characteristic of about 3.3 G/A. To this date, no
commercial power supply can produce the∼ 400 A that we require to reach B = 1311 G with
ppm-level current stability. Therefore, we built our own low-noise power supply with the
help of the electronics workshop of the University of Amsterdam and of the Dutch company
Ideetron. This power supply will be the object of a publication in the near future and we do
not describe it here. In the following paragraphs the performances that we could achieve
with this setup are discussed.

The best tool we have at hand to measure the stability of the magnetic field at the position
of the atoms is the ultracold atom sample itself. We start by creating a BEC of 87Rb atoms
in the |F, mF〉 = |1, 0〉 state. Then we ramp up the field to B = 1311 G, a field at which the
energy difference between the states |1, 0〉 and |1,−1〉 is about h× 920 MHz — see Figure 5.7.
Then, we irradiate the Rb cloud with RF radiation, of a frequency close to fRF = 920 MHz
in order to resonantly drive the |1, 0〉 – |1,−1〉 transition. At the end of the irradiation, we
separate the atoms remaining in |1, 0〉 from the atoms transferred to |1,−1〉 by Stern-Gerlach
separation, perform absorption imaging and infer the relative Rb population in each state
after the RF pulse. This detection technique is the same as the one described in Chapter 2,
Subsection 4.3.2, and presented in Figure 4.2 in the context of one-colour spectroscopy. The
outcome of such a measurement is shown on Figure 7.1, left panel. The relative population
as a function of the RF irradiation frequency is indicative of the magnetic field stability, and
two important informations can be extracted from it. First, the shifts in the central frequency
(i.e. the RF frequency at which the maximal transfer efficiency is observed) are indicative of
changes in the ambient magnetic field offset and/or changes in the power supply behaviour.
Second, the width of the transfer curve is indicative of the short-term noise of the field,
integrated over the RF pulse time TRF (a few ms to a few hundred ms in our case)3. From

3The effects that contribute to the observable width, aside from magnetic noise, are the natural linewidth of
the transition, differential BEC mean-field shifts, Doppler broadening, and the avoided-crossing gap 2ΩRF ∝

√
IRF

between the two coupled states, which is set by the intensity IRF of the RF pulse. The |1, 0〉 – |1,−1〉 transition
is essentially infinitely narrow (the |1,−1〉 never decays back to the |1, 0〉 through spontaneous emission of a RF
photon), therefore it doesn’t contribute to the width. Doppler broadening is almost absent in a BEC, and even in a
non-condensed thermal gas with a temperature of a few µK the Doppler effect leads to sub-Hz broadening. Indeed,
the first-order Doppler shift is ∆f = fRF × (v/c), where c = 299792458 m.s−1 is the speed of light in vacuum and v is
the speed of the considered atom. In an atom gas at thermal equilibrium, the most probable velocity v is given by
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FIGURE 7.1: Magnetic field stability and noise characterization. Left panel:
RF-spectroscopy of the Rb |1, 0〉 – |1,−1〉 transition at a magnetic field of B =
1311 G. The squares (circles) show the normalized population p in the state
|F, mF〉 = |1, 0〉 (|1,−1〉). The dashed (dash-dotted) line are Lorentzian fits
to the |1, 0〉 (|1,−1〉) data. From the FWHM value and the relative magnetic
moment of the two states, δµ = h× 604 kHz/G, we derive a magnetic field
stability of about 10 mG over more than half an hour. Right panel: Coherent
Rabi flops of Rb for the |1, 0〉 – |1,+1〉 transition at B = 127 G. The squares
(triangles) show the normalized population p in the state |F, mF〉 = |1, 0〉
(|1,+1〉). The dashed (short-dashed) line are exponentially decaying sine fits
to the |1, 0〉 (|1,+1〉) data. The fitted exponential time constant is 0.94 ms.

such measurement we could infer that, close to B = 1311 G, the magnetic field drifts by no
more than 25 mG over the course of several hours, with an 100 ms-integrated noise of about
10 mG. This is already an excellent result, but we want to push it further to ensure that we
can achieve 87Rb84Sr magnetoassociation.

The stability of the magnetic field over the course of the magnetoassociation process de-
termines the atom-to-molecule transfer efficiency. If the magnetic field fluctuates too much
during the B-field association ramp, the coherence of the atom-molecule superposition is
compromised and the transfer efficiency decreases — see Chapter 5, Subsection 5.1.2. Over-
all offsets in the magnetic field are in principle not detrimental, as long as the Feshbach

1
2 mv2 = kBT, i.e. a few tens of mm.s−1 only at a temperature of a few µK. This leads to Doppler of the order of a few
ten mHz. Differential BEC mean-field shifts are very small in 87Rb, because the difference between the 87Rb singlet
and triplet s-wave scattering length is very small. The RF intensity IFB defines the width of the feature in the limit
where the Rabi frequency ΩRF and |1,−1〉 states is larger than the other contributions to the width. We can reach
Rabi frequencies of the order of a few kHz (see Figure 7.1, right panel), comparable to magnetic noise, therefore
one has to be careful and work at relatively low intensity to perform measurements such as the one presented in
Figure 7.1, left panel. If that is the case, magnetic noise is the main contribution to the width of the experimental
feature and the measurement is meaningful.
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resonance position is captured by the magnetic field ramp, as depicted in Figure 5.4. We
believe that the short-term (∼ ms) stability of the magnetic field is better than 10 ppm, for
two reasons. First, we can reduce the width of the RF-spectroscopy features, such as the
one shown in the left panel of Figure 7.1, by reducing the amount of data points taken
during a spectroscopy scan and by decreasing TRF to 5 ms. In these conditions we fit a
FWHM of 1.0(2) kHz. Given the relative magnetic moment δµ = h × 604 kHz/G between
the |1,−1〉 and |1, 0〉 states at B = 1311 G, this corresponds to a 5 ms-integrated magnetic
noise of about 1.7(3) mG. However, by increasing the amount of data points taken we see
that after a few points the resonance shifts to a different central frequency, within a window
of 25 mG. Second, we can observe about five Rabi flops over the course of 2 ms, by driving
the |1, 0〉 – |1,+1〉 transition at B = 127 G and fRF = 88 MHz. This indicates that the overall
field offset is stable at B = 127 G, because the phase of the Rabi flops is conserved over many
measurements. For these reasons we do believe that the short-term noise at B = 1311 G is
better than 10 ppm, but that residual magnetization shifts create shot-to-shot drifts of the
magnitude of the magnetic field, artificially broadening the width of the spectroscopy fea-
tures and prohibiting the observation of Rabi flops at this field4. Indeed, in contrast to the
relatively small field of B = 127 G, the large field of B = 1311 G magnetizes objects and
materials around the vacuum chamber. We see this effect clearly from the regular shifts
of our Sr red MOT position, which are indicative of changes in the vertical magnetic field
offset (the coils that we use to create the homogeneous magnetic field for Feshbach associa-
tion produce a field oriented in the vertical direction) and which we monitor by monitoring
the Sr loading efficiency into our crossed-beam optical dipole trap of wavelength 1064 nm5.

4We observe Rabi-flopping for two to five measurements consecutively. Then the phase of the Rabi flops seems
to change, which is most likely due to a change of magnetization offset. This prohibits the observation of a complete
set of uninterrupted Rabi flops.

5We monitor these shifts as follows. In the last stages of laser cooling of Sr, down to a few µK, the quadrupole
gradient of the MOT is of few G.cm−1 only, and the red cooling light is very close to resonance and has very
low intensity (about 1 Isat, i.e. 3 µW.cm−2). In these conditions, the Sr MOT has a very small vertical radius of
about 200 µm (see Ref. [124], Figure (2.7)). Therefore, its vertical position, which is set by the vertical magnetic
field offset, has a large impact of the efficiency of the Sr loading into the crossed-beam dipole trap, because this
trap has a vertical waist of about 40 µm only. Even of few mG of change in the vertical magnetic field offset can
affect the number of atoms loaded into the trap. To monitor this vertical magnetic field offset, we use another
coil to produce a vertical homogeneous magnetic field offset (of which we know the value) at the position of the
atoms and check at which applied offset the loading efficiency is the best (i.e., at which offset the largest amount
of atoms are loaded into the trap). We monitor the value of this offset on a daily basis. Changes of this value are
indicative of a change of the vertical magnetic field offset by the corresponding amount. Using this method, we
can resolve shifts as small as 10 mG in the vertical magnetic field offset. From the day when we started to produce
homogeneous magnetic of a few hundred G for Feshbach spectroscopy (see chapter 6), at about 300 G, to the day
when we finished this spectroscopy, using fields up to 500 G, we could observe a total change of about 350 mG in
the vertical offset magnetic field, which we attribute almost entirely to magnetization induced by these large fields.
Since then we have since even more change due to our daily use of fields up to 1500 G. Note that magnetization
induced by our large homogeneous fields is the leading effect for such changes, but that also external sources (for
instance, large fields being produced in neighbouring laboratories) contribute. Nowadays, we apply a very large
field of B = 1500 G for a few hundred ms at the end of each experimental sequence, to fix the vertical magnetization
offset and avoid erratic loading of the Sr cloud from one experimental shot to the other. This compensates from the
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Therefore, it could be that the magnetic field is already suitable for 87Rb84Sr magnetoasso-
ciation with a magnetic coupling width of h × 2|Ω|/δµ = 0.8 mG, as discussed at the end
of Subsection 5.1.2. Furthermore, reaching ppm-level is required to achieve close-to-unity
transfer efficiency using an adiabatic transfer (see Equation 5.22), but even with a noise in
the ten-ppm range it should be possible to magnetoassociate about 50 % of the 87Rb-84Sr
pairs into molecules, using quick and incoherent magnetic sweeps across the Feshbach reso-
nance. However, we do not want to take any risk. We want to perform adiabatic association
ramps of a few ten or hundred ms, and from the measurements discussed above there is no
clear proof that the noise averaged over 10 or 100 ms is at the ppm level — it is for sure in the
10 ppm range, but that might still not be good enough for very efficient association. There-
fore, we are now implementing an active magnetic field stabilization system, with which we
can estimate the absolute field at the position of the atoms and cancel ambient offsets and
low-frequency noise, such as the 50 Hz noise of the power grid. Using this additional sta-
bilization system, we might be able to observe several consecutive Rabi flops at B = 1311 G
and prove that we reached ppm-level noise and accuracy.

7.3 One-colour spectroscopy close to the D1 line of Rb and

alternative method for molecule formation

Once weakly-bound molecules will have been formed by magnetoassociation or another
method, one needs to transfer them to the rovibronic ground state. In all bi-alkali, this is
done using STIRAP, and this know-how should translate very simply to RbSr. Devolder et
al. theoretically predicted the most promising STIRAP paths and the corresponding pump
and dump laser wavelengths in 87Rb84Sr — see Ref. [53], Table IV. The first STIRAP scheme
involves a pump laser at the wavelength λpump = 2.0 µm and a dump laser at λdump =

1.7 µm6, which are both quite far on the infrared side and are very inconvenient from the
technological point of view. The same is true of the second STIRAP scheme, which requires
λpump = 1.4 µm and λdump = 1.2 µm. The third, and last, proposed STIRAP scheme instead
involves the visible wavelength λpump = 860 nm and λpump = 809 nm. That’s the STIRAP
path we chose.

We built a 795-nm laser system to perform one-colour spectroscopy of RbSr close to the
D1 line, which is required to precisely measure the binding energies of the states we want
to exploit for the pump leg of STIRAP. This laser will also be used, after a slight change

small magnetization drifts induced by the 1311 G field that we use in each 87Rb-84Sr experimental run related to
Feshbach association.

6This is assuming we start with the weakly-bound ν = −4 molecular state, which is the target state of our
magnetoassociation scheme at B = 1311 G in 87Rb84Sr.
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of wavelength, as the dump laser for STIRAP. We also built a 860-nm laser system for the
pump leg of STIRAP. The 795-nm photoassociation laser is currently referenced to the D1
line through modulation transfer spectroscopy on a Rb spectroscopy cell, combined with
a tunable frequency offset locking technique and a fiber EOM. The setup is very similar
to the one described in Chapter 2, Subsection 4.3.1, which we used for one-colour RbSr
spectroscopy close to the 1S0 – 3P1 intercombination line of Sr. With this spectroscopy setup,
we can scan a few tens of GHz below the (2P1/2) + Sr (1S0) dissociation asymptote. Once
we will have detected the first molecular states, close to 795 nm, our colleagues of the group
of Olivier Dulieu should be able to accurately predict the binding energies of new molecular
states. We will then change the 795-nm laser wavelength, or use the 860-nm laser to detect
these new states, and through iterative steps find the suitable molecular state for the pump
leg of STIRAP at about 860 nm.

As a side benefit of performing this one-colour spectroscopy, we can use the molecular
lines detected close to the (2P1/2) + Sr (1S0) dissociation asymptote to form RbSr molecules
in the electronic ground state, using the method of photoassociation followed by sponta-
neous emission described in Ref. [53] and in Chapter 1, Subsection 1.4.3. An important asset
of this method is that it should allow us to produce molecules much faster than by using
magnetoassociation, at ms timescales [54]. Therefore, if the reason why we didn’t observe
molecules so far is that they get destroyed during the long magnetoassociation ramps7,8,
this technique might allow us to see molecules for the first time and to understand their loss
dynamics in the lattice.

7The magnetoassociation ramps are typically a few ten or hundred ms-long, because the small ∼kHz energy
gap at the resonance position imposes a slow ramp to maintain adiabaticity — see Chapter 5, Subsection 5.1.2.

8The molecules could for instance get photoassociated by the 1064 nm lattice light at ms timescales or below.
This is what our group experienced with Sr2 in a 532 nm optical lattice, where the molecules had sub-ms lifetimes.
Switching to a 1064 nm lattice, the molecules could live for a few minutes.
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Appendix A

Optical lattices and dipole traps for
RbSr: formulas

A.1 Optical dipole traps

In the following, the reader will find all equations that can be used to compute depth and
trap frequencies for Rb and Sr optical lattices and dipole traps, as well as alignment and
calibration procedures. The polarisabilities are given for the two wavelengths of interest of
our experiment, i.e. λ = 1064 nm and λ = 532 nm. All values are given in SI units1.

The intensity I(x, y, x) of a Gaussian laser beam is

I(x, y, z) =
2P

πwz(y)wx(y)
exp

[
−2

((
z

wz(y)

)2
+

(
x

wx(y)

)2
)]

, (A.1)

where P is total optical power in the beam (in Watts), y is the direction of propagation of the
light and x, z the transverse directions in which the electric field oscillates. The transverse
profile of the optical beam is related to the waists wx and wz, with wx = wz for a round-
shaped beam, and to the Rayleigh ranges zR,x and zR,z in the x and z directions through the
relations

wz(y) = wz

√
1 + (y/zR,z)2 with zR,z =

πwz(0)2

λ

wx(y) = wx

√
1 + (y/zR,x)2 with zR,x =

πwx(0)2

λ
.

(A.2)

The maximum intensity at the waist position z = 0 is found at x = y = 0 and is

1Polarisabilities are often written in atomic units in the literature. In this system of units h̄ = 4πε0 = m = e = 1,
where m and e are the electron mass and charge respectively. Therefore the appropriate unit of length in this system

is the Bohr radius a0 = 4πε0 h̄2

m e2 = 0.529177210 Å.
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I0 = I(0, 0, 0) =
2P

πwzwx
. (A.3)

Note that these formulas assume that the positions of both waists are the same: z = 0. This
is in general not true if the difference of dimensions between the two waists is produced by
a single cylindrical telescope, which is not perfectly afocal and thus produces astigmatism;
we are aware of such discrepancies in our experiments. The dipolar potential imposed on
the atoms by the laser beam is

U(x, y, z) = − 1
2ε0 c

α(λ)I(x, y, z) , (A.4)

where the polarisabilities of the atoms at the optical frequency λ are2

αSr(1064 nm) = 234× 4πε0 a−3
0 and αSr(532 nm) = 687× 4πε0 a−3

0

αRb(1064 nm) = 752.3× 4πε0 a−3
0 and αRb(532 nm)− 248.7× 4πε0 a−3

0 .
(A.5)

The dipolar potential is attractive for α(λ) > 0 (i.e. atoms are pushed towards the focus,
where the intensity is maximal), repulsive for α(λ) < 0 (the atoms are pushed away from
the focus).

The trap frequencies fx, fy, fz = (ωx, ωy, ωz)/2π in the x, y and z directions are harmonic
frequencies, and are computed assuming that close to the waist(s) the potential behaves as a
3D harmonic oscillator. They read

U(x, 0, 0) =
x→0

U0 +
1
2

mωx
2x2 with ωx =

√
−4U0

mw2
x

U(0, 0, z) =
z→0

U0 +
1
2

mωz
2z2 with ωz =

√
−4U0

mw2
z

U(0, y, 0) =
y→0

U0 +
1
2

mωy
2y2 with ωz =

√
−λ2U0

mπ2

[
1

w4
x
+

1
w4

z

]
,

(A.6)

where m is the mass of either Rb or Sr. The depth of the dipole trapping potential U0 is

U0 = U(0, 0, 0) = − 1
2ε0 c

α(λ)I0 . (A.7)

2The symbol a0 represents the Bohr radius, see previous footnote.
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Since U0 ∝ P, all trap frequencies should verify fi = ωi/2π ∝
√

P in the harmonic approx-
imation. The trap frequency in the propagation direction y is always much smaller than in
the other directions x, y and doesn’t provide much confinement3.

The expressions above are valid for the attractive case α(λ) > 0. In the anti-trapping case
each U0 +

1
2 mωi

2i2 is simply replaced by U0− 1
2 mωi

2i2, and U0 is replaced by−U0 in the ex-
pression of each of the corresponding angular frequencies ωi. The harmonic approximation
is very good for a BEC in the ground-state of a high-intensity optical trap. However when
the trapping potential is shallow (i.e. at low optical intensities), it competes with the gravita-
tional force pulling the BEC towards the ground: in that case deviations to harmonicity are
to be expected, with lower effective trap frequencies than expected from a purely harmonic
behavior.

Since we cannot install beam-imaging cameras in the vacuum of the glass cell where
the atoms lie, we measure the actual waists of our laser beams at the position of the atoms
via trap frequency measurements. One method, the most precise, consists in measuring the
center-of-mass oscillation of a BEC in one direction of the dipole trap after excitation4, using
standard absorption imaging to track the spatial displacements of the BEC. These oscillations
have the same frequency fi as the trapping potential, and this measurement method is valid
for a thermal gas of atoms5 as well as for a BEC. The second method consists in modulating
the trap intensity. In that case, one needs to distinguish between the case of a thermal gas
of atoms and a BEC. For a thermal gas of atoms, parametric oscillations lead to observable
losses at the modulation frequency 2 × fi, as is expected from classical physics. A BEC
will instead exhibit monopole, quadrupole, or higher order breathing oscillations at

√
X ×

3At least at our optical lattice working conditions, where the laser source is used to produce thousands of
trapping sites. In optical tweezers experiments, on the other hand, an enormous amount of laser power can be
focussed to produce a trap for a single atom. In that case, the trap frequency in the propagation direction of the
laser beam is not negligible.

4In the gravity direction, the excitation is provided by switching off the dipole trap for a short period (∼ms) to
provoke falling of the BEC, and then switch on the trap again to recapture the BEC. The momentum acquired by
the BEC during its fall makes it oscillate in the trap after recapture. Note that this is also possible in the non-vertical
directions, but it works only if the laser beam is slightly tilted with respect to the horizontal plane, which is not our
case because we carefully align the dipole beams as horizontally as possible. To measure the trap frequencies in
the non-vertical directions, there is a second, better method: a thermal gas of atoms is loaded "from the side" into
the dipole trap. The gas acquires momentum when it enters the trap because it is attracted towards the focus of the
laser beam. This produces center-of-mass oscillations in the direction where the gas was loaded from the side. A
third method is to modulate the intensity of the dipole trap with a frequency close to the trap frequency of interest.
Due to the slight fall of the BEC when the trap intensity decreases in a modulation cycle, the motion of the center
of mass of the BEC is resonantly excited. In my experience the first and second method are easier to use, and give
better results than the third.

5What we call a thermal gas of bosonic atoms is a gas of thermal energy much greater than the chemical po-
tential µ (not to be confused with µ, the reduced mass of an atom pair, introduced in Chapter 2), i.e. kBT � µ.
In this regime the effects of bosonic statistics are irrelevant, at least to the present discussion, and the gas may be
treated as a classical gas at thermal equilibrium. Expressions for the chemical potential of bosons in an optical
dipole trap are given in Ref. [124]. We typically have µ � 10− 100 nK in our 84Sr and 87Rb experiments, therefore
a gas with T ≥ 1.0 µK can be considered thermal gas. For a gas of identical fermions, such as spin-polarized 87Sr,
the temperature of the gas must be compared to the Fermi temperature instead.
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fi, where X is a rational number depending on the trap geometry [172, 173]. The waists
x, y are inferred from the measured optical power P, the frequencies are measured with
either method and Equations A.6. These methods are especially precise when measurements
are made at several optical powers P and the data subsequently fitted and compared with
Equations A.6.

For low optical intensities, gravity has to be taken into account. This is done very simply
by adding the gravitational potential energy E = mgu, where u is the direction of gravity,
to U(x, y, z) and by performing similar expansions as given in Equations A.6 around the
equilibrium position defined by both trapping and gravitational potentials. In the special
(and important) case where the beam propagates in the horizontal plane, perpendicular to
the direction u = z (with z chosen to be the direction of gravity), the effect of gravity is to
shift the equilibrium position from (0, 0, 0) to (0, 0, z = zeq). The shift zeq in equilibrium
position is called gravitational sag and is defined by

∂

∂z
(U(x, y, z) + mgz) = 0 at z = zeq . (A.8)

Accordingly, in the harmonic approximation A.6 the gravitational sag is

zeq =
g

ωz2 , (A.9)

where g = 9.81 m.s−2 is the gravitational constant. The trap frequencies in the horizontal
plane are then corrected by changing U(x, 0, 0) and U(0, y, 0) to U(x, 0, zeq) and U(0, y, zeq)

in Equation A.6. Note that any tilt in the propagation axis y of the trap will lead to coupling
of the propagation axis y to gravity, and induce a shift in position in the y directions analo-
gous to that of Equation A.9 — the BEC "falls" along the direction of the tilt. Furthermore,
these shifts in equilibrium position (gravitational sags+tilts) are different for Rb and Sr. This
is because they have different polarisabilities, as shown in Equations A.56. For theses rea-
sons loading a (double) BEC from a shallow dipole trap into an optical lattice requires very
careful optical alignment.

A.2 Optical lattices

An optical lattice is obtained by retro-reflecting a laser beam onto itself, given that the co-
herence length of the laser is much larger than the relative optical path between the two
beams at the interfering point. The intensity pattern produced by the interference of the two
counterpropagating beams is

6The difference in mass also contributes to the difference in equilibrium positions, but 87Rb and 84Sr have very
similar masses.
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Ilattice(x, y, z) =
∣∣∣∣√I(x, y, z) exp (−iky + iφ) +

√
I(x, y, z)R exp (+iky + iφ + iδφ)

∣∣∣∣2
= 4R× I(x, y, z)× cos2(ky− iδφ/2) + (1− R)2 × I(x, y, z) ,

(A.10)

where y is the axis of propagation of the beams, k = 2π
λ the light wave vector magnitude

and I(x, y, z) the beam intensity given in Equation A.1 — it is assumed here that the two
beams have the same spatial geometry at the position of the atoms, which requires careful
optical design (the waists of both beams have to be at the same place). Furthermore, both
beams need to share the same linear polarization for Equation A.10 to be valid. The lattice
wells, defined by their position at the maxima (minima) of intensity for attractive (repulsive)
dipolar potentials (corresponding to a polarisability α > 0 (< 0) are evenly spaced by the
distance λ/2 along the propagation axis, corresponding to one well every 532 nm at λ =

1064 nm. The reflection coefficient 0 < R < 1 accounts for the intensity losses induced by
the glass cell and retroreflection mirrors on the retro-reflected beam. In our case all mirrors
have R ' 1 for λ = 1064 nm and R is limited by the losses on our uncoated glass cell
leading to R ' 0.85 (R ' 0.96 for a 1064 nm beam on a glass/air or air/glass interface
with angle of incidence θ ' 45◦, and each beam passes through such an interface four times
in our experiment, with its linear polarization oriented to maximises transmission ). The
global optical phase φ doesn’t contribute to the spatial structure of the potential. However
the phase difference δφ = k× n× δy, with n the optical index of the propagation medium
(vacuum and air in our case, so n ' 1) and δy twice the distance between the retroreflection
mirror and the interfering point, defines the position of the wells. We do not control this
phase difference actively in our experiments. Consequently, the lattice might "shake" if the
optical elements such as the retro-reflection mirror(s) or the glass cell walls are moving. It is
therefore advised to minimize the optical path difference between the two beams and, most
importantly, to ensure mechanical stability of the optical elements on the table.

The lattice depth s defines the band structure of the system7. It is is given by the prefactor
4R× I(x, y, z) of the lattice term in Equation A.10. The lattice depth is typically expressed in
units of recoil energy, which is the kinetic energy ER = h̄2k2

2m transferred to an atom of mass m
upon absorption of one lattice photon — in these units, the lattice physics is independent of
the mass of the considered atom and of the laser wavelength. The recoil energies of interest
for the (current) RbSr experiment are

7The band structure associated with the band index nband refers to center-of-mass degrees of freedom. In the
following we discuss the (angular) oscillation frequencies ω for a single atom of mass m. For an atom pair the
band structure refers to the center-of-mass of the atom pair and the harmonic oscillation frequencies ω are the ωC
frequencies of the center-of-mass harmonic motion on a lattice site, Equation 5.16.
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ER,84Sr = h× 2.10 kHz at λ = 1064 nm

ER,87Rb = h× 2.03 kHz at λ = 1064 nm

ER,84Sr = h× 8.40 kHz at λ = 532 nm

ER,87Rb = h× 8.11 kHz at λ = 532 nm .

(A.11)

Accordingly, the lattice depth is8

s(x, y, z) = Ulattice(x, y, z)/ER = − 1
2ε0 c

α(λ)× 4R× I(x, y, z)/ER . (A.12)

To compute the oscillation frequencies and tunneling rates of Rb or Sr on a lattice site, we
use a Mathematica code produced by Bruno Laburthe-Tolra of the Laboratoire de Physique
des Lasers (Université Paris 13, France). The oscillation frequencies define the center-of-
mass and relative motion (angular) oscillation frequencies ωC and ωrel for an atom pair
on the lattice site — see Subsection 5.1.2. Note that these on-site frequencies are not the
trap frequencies as defined by the external confinement potential of Equation A.6. They
correspond to the potential that confines particles to a single site, not to the overall potential
that pushes the particles towards the waist position(s) of the beam where the intensity is
maximal (for α > 0). For a lack of better notation we use the symbol ω for both. Above
s = 20 the oscillation frequencies follow approximately the behavior9

ω(q = 0) ∝
√

s(x, y, z) ∝
√

I(xy, z) , (A.13)

where h̄ω is estimated to be the energy h̄ω(q = 0) between the ground-state and the first
excited band at the quasi-momentum q = 0. In the very deep lattice regime, the energy and
thus ω are almost independent of q in the ground-state band because the motion is almost
perfectly harmonic, as explained in Subsection 5.1.2. Experimentally, we have two ways
of evaluating ω(q = 0). The first is to modulate the intensity of one of the lattice beams.
If the modulation frequency equals 2× ω(q = 0), atoms are parametrically excited10. On
resonance the kinetic energy of the atoms increases exponentially with time and atoms are

8Note that lattice depth and external confinement are the same in the ideal case R = 1.
9The trend s ∝

√
I is beautifully demonstrated in the Sr2 STIRAP paper [48] of our group, where light shifts

and lattice ground-state energy dependences on I are investigated experimentally.
10Also at sub-harmonic frequencies 2×ω(q = 0)/N, where N is integer, parametric resonances can be excited.
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heated out of the lattice, which results in observable losses [174]11,12. The second method
is to perform a Kapitza-Dirac pulse on a BEC with one lattice beam [175]. The evolution of
the atomic populations in the 0 h̄k,±2 h̄k,±4 h̄k, ... momentum states as a function of the
pulse time gives the depth s of the lattice at the position of the BEC, and thus ω, obtained by
comparison with the temporal evolution at a given depth s predicted by the Mathematica
code. This method is extremely sensitive and is also our method of choice for lattice beam
alignment: at a given lattice optical power, we minimize the pulse time for which we observe
the first minimum in the 0 h̄k population (clearly seen from fitting the diffraction patterns
obtained in absorption pictures) by adapting the pointing of the beam onto the BEC.

The intensity landscape (1 + R2 + 2R)× I(x, y, z) = (1 + R)2 × I(x, y, z) created by the
lattice beams at the positions of the lattice wells, for which cos (2ky− iδφ) = 1 (in the case of
an attractive lattice α > 0), defines the external confinement imposed by the lattice potential
onto the atoms. This external confinement defines the dipolar potential experienced by an
atom present on a given lattice site centered on (x, y, z). It is essentially a dipole trap roughly
four times as deep as its non-counterpropagating counterpart, and the associated potential
is

Uexternal confinement(x, y, z) = − 1
2ε0 c

α(λ)× (1 + R)2 × I(x, y, z) . (A.14)

The external confinement potential defines the local 3D chemical potential µ(x, y, z) in the
local density approximation (LDA), given by

µ(x, y, z)− µ(0, 0, 0) = −Uexternal confinement(x, y, z) , (A.15)

where µ(0, 0, 0) depends upon the number of atoms of the systems and on their interactions.
The local chemical potential and the on-site interaction energies (i.e. the interaction energy
due to the s-wave interaction of all atoms present on the lattice site) define how many lattice
sites will be filled with one, two, three, ... atoms in a deep 3D optical lattice. In other words,
they define the nature of the double Mott insulator and the amount of Rb-Sr pairs that we
can obtain at a given geometry Uexternal confinement(x, y, z), given atom numbers NRb, NSr

11In other words, the atoms are excited to the band n = 2, then n = 4, then n = 6, ... until they are not trapped
by the lattice anymore.

12A sinusoidal intensity drive can only couple bands of same parity nband, therefore the ground-state band
nband = 0 is not coupled to the nband = 1, 3, ... excited bands. If non-linearities are present in the drive (i.e., if it’s
not perfectly sinusoidal), losses or heating induced by the transition n = 0→ 1 can be observed though.
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and given (known) s-wave scattering lengths aRb,Rb (for the given | f , mF〉-state in which we
produce the Rb BEC), aRb,Sr and aSr,Sr.

We do not discuss here the physics of the superfluid to Mott insulator transition, which
is characterized by a sharp decline in the fluctuations of the number of atoms on each lattice
site — the atoms and atom pairs, initially prepared in a superfluid ensemble, get "frozen" on
the trapping sites when the lattice depth reaches a threshold value. This transition happens
around s(x, y, z) = 12 ER in a 3D lattice with filling fraction n = 1 atom per site. The reader
is referred to Refs. [52, 150] for discussions of the nature of this transition, its relation with
lattice dimensionality and for analytic formulas that can be compared to the lattice code we
are using.
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One-colour spectroscopy data
tables

The reader will find in Tables B.1 and B.2 of this appendix all the resonance positions that
we measured in the context of one-colour spectroscopy of Rb-Sr near the near the 1S0 – 3P1

electronic transition of Sr. The magnetic moments and, when extracted, the g-factor of the
detected molecular states are reported in Table B.3. These data are subject to an ongoing
theoretical analysis.

TABLE B.1: One-colour photoassociation spectrum and linewidths for the
fermionic 87Rb87Sr isotopologue. ∆PA is the resonance position at zero mag-
netic field, FWHM is the fitted Lorentzian full width at half maximum and
γ/2π is the fitted spontaneous decay rate of the detected molecular state. All
quantities are in units of MHz. Data taken by V. Barbé and A. Ciamei, table
created by A. Ciamei.

∆PA Error FWHM Error γ/2π Error

4.20 0.50 – – 1.80 0.5
15.84 0.32 4.50 1.00 3.30 0.70
65.22 3.50 – – – –
249.30 0.40 2.56 0.41 1.80 0.20
260.40 3.47 – – – –
275.00 3.63 – – – –
288.40 2.82 – – – –
458.00 3.01 – – – –
483.00 3.48 – – – –
509.90 0.50 9.10 1.30 8.00 1.00
573.90 2.87 – – – –
611.00 3.53 – – – –
622.00 3.59 – – – –
686.79 0.23 1.24 0.13 0.90 0.10
799.22 2.97 – – – –
829.22 3.64 – – – –
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1100.40 2.18 – – – –
1160.90 3.07 – – – –
1220.56 0.16 3.24 0.44 2.40 0.50
1492.90 3.00 – – – –
1534.22 3.69 – – – –
1569.00 3.41 – – – –
1581.50 2.30 8.00 1.00 6.30 0.70
1799.00 2.99 – – – –
1829.22 3.59 – – – –
1863.00 3.37 – – – –
1874.50 3.70 – – – –
1913.40 0.60 9.80 1.30 7.80 1.10
2219.90 2.84 – – – –
2270.90 3.53 – – – –
2282.00 3.03 – – – –
2335.40 0.60 10.80 1.40 8.0 00.80
3003.00 3.46 – – – –
3013.90 3.26 – – – –
3019.00 3.40 – – – –
3670.00 3.18 – – – –
3705.00 3.43 – – – –
3730.00 3.18 – – – –
3768.00 3.38 – – – –
3892.49 3.10 – – – –
3931.49 3.29 – – – –
4199.20 0.30 3.00 1.00 2.50 0.80
4241.49 3.57 – – – –
4385.49 3.49 – – – –
4484.00 3.13 – – – –
4625.49 3.06 – – – –
4776.49 3.43 – – – –
4850.49 3.05 – – – –
4914.20 0.30 3.00 1.00 2.50 0.80
5021.49 3.06 – – – –
5030.49 3.00 – – – –
5076.49 3.51 – – – –
5096.49 3.59 – – – –
5114.49 2.73 – – – –
5209.49 3.71 – – – –
5281.49 3.11 – – – –
5427.49 3.68 – – – –
5500.00 3.13 – – – –
5512.00 3.38 – – – –
5546.20 0.40 5.50 1.00 4.50 0.60
5564.00 3.45 – – – –
5653.22 3.48 – – – –
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5718.69 2.99 – – – –
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TABLE B.2: One-colour photoassociation spectrum and linewidths for the
bosonic 87Rb88Sr, 87Rb86Sr and 87Rb84Sr isotopologues. ∆PA is the resonance
position at zero magnetic field, FWHM is the fitted Lorentzian full width at
half maximum and γ/2π is the fitted spontaneous decay rate of the detected
molecular state. All quantities are in units of MHz. Data taken by V. Barbé
and A. Ciamei, figure created by A. Ciamei.

87Rb88Sr
∆PA Error FWHM Error γ/2π Error

20.70 1.80 – – – –
32.23 0.60 – – – –
36.26 0.50 – – – –
41.39 0.60 – – – –
52.54 0.30 – – – –
53.50 0.40 – – – –
260.54 0.05 1.33 0.17 0.77 0.10
265.58 0.05 1.57 0.61 – –
272.91 0.07 0.86 0.52 – –
326.93 0.04 1.80 0.20 1.10 0.12
329.34 0.03 1.37 0.19 – –
334.99 0.10 1.27 0.12 0.67 0.07
364.81 0.05 1.50 1.00 0.80 0.53
712.18 0.11 1.40 0.20 1.00 0.14
738.85 0.05 1.20 0.20 0.80 0.13
743.53 0.05 1.50 0.20 0.83 0.11
804.26 0.02 4.13 0.51 2.50 0.31
1461.09 0.13 16.50 3.50 12.00 2.55
1646.00 0.20 9.37 1.95 7.90 1.65
1680.23 0.20 6.55 1.35 5.00 1.03
1733.59 0.20 8.70 2.78 6.50 2.08
1810.81 0.20 14.10 2.00 7.80 1.11
1828.91 0.20 13.52 1.72 9.00 1.15
1855.00 0.20 4.70 0.70 3.20 0.48
1910.07 0.03 9.91 2.09 – –
1983.41 0.21 13.84 3.21 – –
2029.72 0.12 6.66 1.15 – –
2043.13 1.34 14.16 3.39 – –
2060.59 0.12 3.91 0.64 – –
2140.29 1.82 9.80 2.67 8.30 2.26
2198.35 0.20 14.81 3.82 9.30 2.40
2227.09 0.40 14.49 6.45 11.40 5.08
2265.70 1.00 7.50 2.00 6.60 1.76
2297.60 1.00 15.02 3.53 12.70 2.99
3454.60 1.00 >20.0 – – –
3566.50 1.00 >10.00 – – –
3691.40 1.00 >15.00 – – –
6137.02 0.29 5.10 1.00 3.70 0.73
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6154.32 0.09 6.60 1.00 4.10 0.62
6174.03 0.08 6.15 0.96 3.90 0.61
6297.79 0.28 8.50 2.00 6.10 1.44
6309.98 0.33 10.99 2.88 – –
6323.50 0.13 12.52 2.29 – –
6394.35 0.10 6.31 0.93 – –
7304.84 0.20 6.41 1.36 5.10 1.08
7352.34 0.24 7.32 0.98 5.50 0.73
8101.17 0.70 9.20 1.60 6.80 1.18
8229.85 0.39 6.09 1.62 4.70 1.25
8398.85 0.24 3.40 0.81 2.00 0.47
8411.47 0.18 4.45 1.16 3.20 0.83
8463.49 0.15 13.08 2.31 – –
8475.82 0.52 13.41 2.59 – –
8621.03 0.79 13.50 2.50 9.80 1.81
8774.85 0.54 11.74 2.01 8.80 1.51
8984.86 0.50 16.74 3.14 11.10 2.08

87Rb86Sr
∆PA Error FWHM Error γ/2π Error

18.44 00.08 0.79 0.07 0.40 0.03
87.80 1.00 0.79 0.19 0.64 0.15
100.20 1.00 1.10 0.17 0.89 0.14
124.70 1.00 1.10 0.12 0.70 0.07
137.13 0.08 1.72 0.35 1.40 0.29
746.96 0.13 3.49 0.46 2.10 0.27
1133.57 0.42 2.90 1.00 2.70 0.93
1195.08 0.87 >10 – – –
1272.73 0.32 5.70 1.40 4.10 1.01
1401.66 0.32 10.40 1.22 6.80 0.79
3277.09 0.33 4.67 1.18 4.20 1.07
3849.53 0.07 2.86 0.30 1.80 0.19
3922.59 0.07 2.98 0.25 1.80 0.15
3956.95 0.05 1.95 0.16 1.30 0.10
5273.00 10.00 >4 – – –

87Rb84Sr
∆PA Error FWHM Error γ/2π Error

11.74 0.60 – – 0.80 0.40
173.50 0.20 – – 0.35 0.10
387.40 0.50 – – 4.00 1.00
427.80 0.20 4.80 0.60 2.70 0.30
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1429.01 0.10 0.80 0.20 0.67 0.17
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TABLE B.3: Magnetic properties of the investigated one-colour photoassoci-
ation resonances of the 87Rb87Sr, 87Rb88Sr and 87Rb84Sr isotopologues. ∆PA
is the resonance position, as reported in Tables B.1 and B.2, # substates is the
number of observed Zeeman substates of the excited molecular state, µexc its
magnetic moment and g µB the derived g-factor times the Bohr magneton.
Data taken by A. Bayerle, B. Pasquiou, C.C. Chen, S. Tzanova, V. Barbé and
A. Ciamei, table created by A. Ciamei.

87Rb87Sr
∆PA (MHz) # substates µexc/h (MHz/G) g µB (MHz/G)

4.20 >1 −1.40(5) –
15.84 >1 −1.44(5) –
249.30 >1 −0.85(6) –
509.90 >1 −0.95(2) –
686.79 >1 −1.61(1) –
1220.56 >1 −1.91(4) –
1581.50 >1 −0.48(6) –
1913.40 >1 −0.72(2) –
2335.40 >1 −0.96(4) –
4199.20 >1 −0.54(2) –
4914.20 >1 −1.15(2) –
5546.20 >1 −1.80(5) –

87Rb88Sr
∆PA (MHz) # substates µexc/h (MHz/G) g µB/h (MHz/G)

20.70 >2 −0.99(15), 0, 0.99(15) –
32.23 1 0.42(5) –
36.26 5 −1.34(20), −0.67(10), 0, 0.67(10)

0.67(10), 1.34(20)
41.39 3 −0.7, 0.2, −1.10 0.90(20)
52.54 >4 −0.35, 0, 0.35, 0.6, 1.00 –
53.50 >3 −0.70, −0.45, 0, 0.45, 0.70 –
260.54 1 0.01(5) –
265.58 5 −0.48, −0.24, 0, 0.24, 0.48 0.24(7)
272.91 7 −0.84, −0.56, −0.28, 0, 0.28(8)

0.28, 0.56, 0.84
329.34 >1 0.52(4), −0.03(4) –
334.99 >2 0.70(1), 0.29(3), −0.04(4) –
364.81 >2 0.70(1), −0.12(5), −0.90(6) –
804.26 >2 −0.84(6), −0.37(8), 0.14(12) –
1733.59 >2 −0.61(13), 0.00(1), 0.61(20) –

87Rb84Sr
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∆PA (MHz) # substates µexc/h (MHz/G) g µB (MHz/G)

173.50 1 −0.05(4) –
387.40 3 – 0.47(17)
427.80 5 – 0.50(10)
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[25] P. Żuchowski, J. Aldegunde, and J. Hutson, “Ultracold RbSr Molecules Can Be Formed by Magnetoassociation”,
Phys. Rev. Lett. 105, 153201 (2010), DOI: 10.1103/PhysRevLett.105.153201.

[26] D. A. Brue and J. M. Hutson, “Prospects of forming ultracold molecules in 2Σ states by magnetoassociation of
alkali-metal atoms with Yb”, Phys. Rev. A 87, 052709 (2013), DOI: 10.1103/PhysRevA.87.052709.

[27] A. Green, H. Li, J. H. See Toh, X. Tang, K. C. McCormick, M. Li, E. Tiesinga, S. Kotochigova, and S. Gupta,
“Feshbach Resonances in p-Wave Three-Body Recombination within Fermi-Fermi Mixtures of Open-Shell 6Li and
Closed-Shell 173Yb Atoms”, Phys. Rev. X 10, 031037 (2020), DOI: 10.1103/PhysRevX.10.031037.

[28] S. Stellmer, R. Grimm, and F. Schreck, “Production of quantum-degenerate strontium gases”, Phys. Rev. A 87,
013611 (2013), DOI: 10.1103/PhysRevA.87.013611.

[29] S. Stellmer, F. Schreck, and T. C. Killian, “Degenerate quantum gases of Sr”, Annual Review of Cold Atoms
and Molecules, Chapter 1 (2014), DOI: 10.1142/9789814590174_0001.

[30] A. L. Marchant, S. Händel, S. A. Hopkins, T. P. Wiles, and S. L. Cornish, “Bose-Einstein condensation of 85Rb
by direct evaporation in an optical dipole trap”, Phys. Rev. A 85, 053647 (2012), DOI: 10.1103/PhysRevA.85.
053647.

https://doi.org/10.1103/PhysRevLett.116.205303
https://doi.org/10.1103/PhysRevLett.119.143001
https://doi.org/10.1103/PhysRevLett.125.083401
https://doi.org/10.1140/epjd/e2011-20048-9
https://doi.org/10.1103/PhysRevA.82.042508
https://doi.org/10.1103/PhysRevA.82.042508
https://doi.org/10.1103/PhysRevA.102.053316
https://doi.org/10.1103/PhysRevA.93.012704
https://doi.org/10.1103/PhysRevA.100.052703
https://doi.org/10.1103/PhysRevA.100.052703
https://doi.org/10.1103/PhysRevA.76.043604
https://doi.org/10.1038/nature12483
https://doi.org/10.1103/PhysRevA.97.042505
https://doi.org/10.1103/PhysRevLett.105.153201
https://doi.org/10.1103/PhysRevA.87.052709
https://doi.org/10.1103/PhysRevX.10.031037
https://doi.org/10.1103/PhysRevA.87.013611
https://doi.org/10.1142/9789814590174_0001
https://doi.org/10.1103/PhysRevA.85.053647
https://doi.org/10.1103/PhysRevA.85.053647


Bibliography 211

[31] J. L. Bohn, A. M. Rey, and J. Ye, “Cold molecules: Progress in quantum engineering of chemistry and quantum
matter”, Science 357, 1002 (2017), DOI: 10.1126/science.aam6299.

[32] A. Micheli, G. K. Brennen, and P. Zoller, “A toolbox for lattice-spin models with polar molecules”, Nat. Phys. 2,
341 (2006), DOI: 10.1038/nphys287.

[33] R. Sawant, J. Blackmore, P. Gregory, J. Mur-Petit, D. Jaksch, J. Aldegunde, J. Hutson, M. Tarbutt, and
S. Cornish, “Ultracold polar molecules as qudits”, New J. Phys. 22, 013027 (2020), DOI: 10 . 1088 / 1367 -
2630/ab60f4.

[34] W. Milner, J. Robinson, C. Kennedy, T. Bothwell, D. Kedar, D. Matei, T. Legero, U. Sterr, F. Riehle, H.
Leopardi, T. Fortier, J. Sherman, J. Levine, J. Yao, J. Ye, and E. Oelker, “Demonstration of a Timescale Based on
a Stable Optical Carrier”, Phys. Rev. Lett. 123, 173201 (2019), DOI: 10.1103/PhysRevLett.123.173201.

[35] S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “Gravitational wave detection
with atom interferometry”, Phys. Lett. B 678, 37 (2009), DOI: 10.1016/j.physletb.2009.06.011.

[36] P. W. Graham, J. M. Hogan, M. A. Kasevich, S. Rajendran, and R. W. Romani, “Mid-band gravitational wave
detection with precision atomic sensors”, arXiv (2017), arXiv: 1711.02225.

[37] M. Borkowski, “Optical Lattice Clocks with Weakly Bound Molecules”, Phys. Rev. Lett. 120, 083202 (2018), DOI:
10.1103/PhysRevLett.120.083202.

[38] V. Andreev, D. Ang, D. DeMille, J. Doyle, G. Gabrielse, J. Haefner, N. Hutzler, Z. Lasner, C. Meisenhelder,
B. O’Leary, C. Panda, A. West, E. West, and X. Wu, “Improved limit on the electric dipole moment of the electron”,
Nature 562, 355 (2018), DOI: 10.1038/s41586-018-0599-8.

[39] D. DeMille, Virtual AMO seminar, Standford University (2020).

[40] O. Dulieu and A. Osterwalder, “Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero”
(2018).

[41] V. Plomp, Z. Gao, T. Cremers, M. Besemer, and S. Y. T. van de Meerakker, “High-resolution imaging of
molecular collisions using a Zeeman decelerator”, J. Chem. Phys. 152, 091103 (2020), DOI: 10.1063/1.5142817.

[42] M.-G. Hu, Y. Liu, D. D. Grimes, Y.-W. Lin, A. H. Gheorghe, R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, T.
Rosenband, and K.-K. Ni, “Direct observation of bimolecular reactions of ultracold KRb molecules”, Science 366,
1111 (2019), DOI: 10.1126/science.aay9531.

[43] G. Valtolina, K. Matsuda, W. G. Tobias, J.-R. Li, L. D. Marco, and J. Ye, “Dipolar evaporation of reactive
molecules to below the Fermi temperature”, Nature 588, 239 (2020), DOI: 10.1038/s41586-020-2980-7.

[44] K. Matsuda, L. De Marco, J.-R. Li, W. G. Tobias, G. Valtolina, G. Quéméner, and J. Ye, “Resonant collisional
shielding of reactive molecules using electric fields”, Science 370, 1324 (2020), DOI: 10.1126/science.abe7370.

[45] N. Vitanov, A. Rangelov, B. Shore, and K. Bergmann, “Stimulated Raman adiabatic passage in physics, chem-
istry and beyond”, Rev. Mod. Phys. 89, 015006 (2016), DOI: 10.1103/RevModPhys.89.015006.

[46] K. Bergmann1, H.-C. Nägerl, C. Panda, G. Gabrielse, E. Miloglyadov, M. Quack, G. Seyfang, G. Wichmann,
S. Ospelkaus, and A. Kuhn, “Roadmap on STIRAP applications”, J. Phys. B 52, 202001 (2019), DOI: 10.1088/
1361-6455/ab3995.

[47] S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, “Creation of Ultracold Sr2 Molecules in the Electronic
Ground State”, Phys. Rev. Lett. 109, 115302 (2012), DOI: 10.1103/PhysRevLett.109.115302.

[48] A. Ciamei, A. Bayerle, C.-C. Chen, B. Pasquiou, and F. Schreck, “Efficient production of long-lived ultracold
Sr2 molecules”, Phys. Rev. A 96, 013406 (2017), DOI: 10.1103/PhysRevA.96.013406.

https://doi.org/10.1126/science.aam6299
https://doi.org/10.1038/nphys287
https://doi.org/10.1088/1367-2630/ab60f4
https://doi.org/10.1088/1367-2630/ab60f4
https://doi.org/10.1103/PhysRevLett.123.173201
https://doi.org/10.1016/j.physletb.2009.06.011
https://arxiv.org/abs/1711.02225
https://doi.org/10.1103/PhysRevLett.120.083202
https://doi.org/10.1038/s41586-018-0599-8
https://doi.org/10.1063/1.5142817
https://doi.org/10.1126/science.aay9531
https://doi.org/10.1038/s41586-020-2980-7
https://doi.org/10.1126/science.abe7370
https://doi.org/10.1103/RevModPhys.89.015006
https://doi.org/10.1088/1361-6455/ab3995
https://doi.org/10.1088/1361-6455/ab3995
https://doi.org/10.1103/PhysRevLett.109.115302
https://doi.org/10.1103/PhysRevA.96.013406


212 Bibliography

[49] A. Ciamei, A. Bayerle, B. Pasquiou, and F. Schreck, “Observation of Bose-enhanced photoassociation products”,
EPL 119, 46001 (2017), DOI: 10.1209/0295-5075/119/46001.

[50] D. A. Steck, “Rubidium 87 D Line Data”, available online at http://steck.us/alkalidata (Version 2.2.1, last
revised 21 November 2019).

[51] A. Ciamei, “Taming ultracold RbSr and Sr2”, PhD Thesis, Institute of Physics, University of Amsterdam, The
Netherlands (2018).

[52] A. Bayerle, “Ultracold strontium and rubidium: mixtures, quantum gases and molecules”, PhD thesis, Institute
of Physics, University of Amsterdam, The Netherlands (2017).

[53] A. Devolder, E. Luc-Koenig, O. Atabek, M. Desouter-Lecomte, and O. Dulieu, “Proposal for the formation
of ultracold deeply bound RbSr dipolar molecules by all-optical methods”, Phys. Rev. A 98, 053411 (2018), DOI:
10.1103/PhysRevA.98.053411.

[54] G. Reinaudi, C. B. Osborn, M. McDonald, S. Kotochigova, and T. Zelevinsky, “Optical Production of Stable
Ultracold 88Sr2 Molecules”, Phys. Rev. Lett. 109, 115303 (2012), DOI: 10.1103/PhysRevLett.109.115303.

[55] R. Vexiau, “Dynamique et contrôle optique des molécules froides”, PhD thesis, Université Paris Sud - Paris XI
(2012).

[56] A. Devolder, “Contrôle par laser de la formation de molécules polaires paramagnétiques ultra-froides”, PhD thesis,
Université Paris-Saclay (2019).

[57] J. M. Brown and A. Carrington, “Rotational Spectroscopy of Diatomic Molecules”, Cambridge Molecular Sci-
ence, Cambridge University Press, 2003, DOI: 10.1017/CBO9780511814808.

[58] G. Herzberg, “Molecular spectra and molecular structure. Vol.1: Spectra of diatomic molecules” (1950).

[59] B. Judd, “Angular Momentum Theory for Diatomic Molecules” (1975).

[60] J. V. Pototschnig, G. Krois, F. Lackner, and W. E. Ernst, “Ab initio study of the RbSr electronic structure:
Potential energy curves, transition dipole moments, and permanent electric dipole moments”, J. Chem. Phys. 141,
234309 (2014), DOI: 10.1063/1.4903791.

[61] R. J. Le Roy, “Long-Range Potential Coefficients From RKR Turning Points: C6 and C8 for B(3Π+
Ou)-state Cl2, Br2,

and I2”, Canadian Journal of Physics 52, 246 (1974), DOI: 10.1139/p74-035.

[62] J. C. Slater, “Atomic Radii in Crystals”, J. Chem. Phys. 41, 3199 (1964), DOI: 10.1063/1.1725697.

[63] K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range
molecules and atomic scattering”, Rev. Mod. Phys. 78, 483 (2006), DOI: 10.1103/RevModPhys.78.483.

[64] D. A. Steck, “Quantum and Atom Optics”, available online at http://steck.us/teaching (revision 0.13.4, 24
September 2020).

[65] G. Shlyapnikov, “Ultracold quantum Gases Part 1: Bose-condensed gases”, Undergraduate Physics course,
University of Amsterdam, Netherlands (2015 version).

[66] V. Barbé, A. Ciamei, B. Pasquiou, L. Reichsöllner, F. Schreck, P. S. Żuchowski, and J. Hutson, “Observation
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