
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Simulation-efficient marginal posterior estimation with swyft
Stop wasting your precious time
Miller, B.K.; Cole, A.; Louppe, G.; Weniger, C.

Publication date
2020
Document Version
Author accepted manuscript

Link to publication

Citation for published version (APA):
Miller, B. K., Cole, A., Louppe, G., & Weniger, C. (2020). Simulation-efficient marginal
posterior estimation with swyft: Stop wasting your precious time. Paper presented at Third
Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver,
Canada. https://ml4physicalsciences.github.io/2020/files/NeurIPS_ML4PS_2020_106.pdf

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/simulationefficient-marginal-posterior-estimation-with-swyft(a101dca9-8669-4784-aca6-40f0feccbbed).html
https://ml4physicalsciences.github.io/2020/files/NeurIPS_ML4PS_2020_106.pdf

Simulation-efficient marginal posterior estimation
with swyft: stop wasting your precious time

Benjamin Kurt Miller
AMLab

Informatics Institute
Gravitation Astroparticle Physics Amsterdam (GRAPPA)

Institute for Theoretical Physics Amsterdam
University of Amsterdam, the Netherlands

b.k.miller@uva.nl

Alex Cole
Gravitation Astroparticle Physics Amsterdam (GRAPPA)

Institute for Theoretical Physics Amsterdam
University of Amsterdam, the Netherlands

a.e.cole@uva.nl

Gilles Louppe
Montefiore Institute

University of Liège, Belgium
g.louppe@uliege.be

Christoph Weniger
Gravitation Astroparticle Physics Amsterdam (GRAPPA)

Institute for Theoretical Physics Amsterdam
University of Amsterdam, The Netherlands

c.weniger@uva.nl

Abstract

We present algorithms (a) for nested neural likelihood-to-evidence ratio estimation,
and (b) for simulation reuse via an inhomogeneous Poisson point process cache of
parameters and corresponding simulations. Together, these algorithms enable auto-
matic and extremely simulator efficient estimation of marginal and joint posteriors.
The algorithms are applicable to a wide range of physics and astronomy problems
and typically offer an order of magnitude better simulator efficiency than traditional
likelihood-based sampling methods. Our approach is an example of likelihood-free
inference, thus it is also applicable to simulators which do not offer a tractable
likelihood function. Simulator runs are never rejected and can be automatically
reused in future analysis. As functional prototype implementation we provide the
open-source software package swyft1.

1 Introduction

Parametric stochastic simulators are ubiquitous in the physical sciences [1–3]. However, performing
parameter inference based on simulator runs using Markov chain Monte Carlo is inconvenient or
even impossible if the model parameter space is large or the likelihood function is intractable. This
problem is addressed by so-called likelihood-free inference [4] or simulation-based inference [5–
9] techniques. Among those, sequential neural ratio estimation based on amortized approximate
likelihood-to-evidence ratios (SNRE-AALR) [7] is closest to our method.

1swyft is located at https://github.com/undark-lab/swyft.

Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada.

https://github.com/undark-lab/swyft

We propose Nested Ratio Estimation (NRE), which approximates the likelihood-to-evidence ratio in a
sequence of rounds. Loosely inspired by the contour sorting method of nested sampling [10–12], the
scheme alternates between sampling from a constrained prior and estimating likelihood-to-evidence
ratios. It allows for efficient estimation of any marginal posteriors of interest. Furthermore, we
propose an algorithm that we call iP3 sample caching, which facilitates simulator efficiency by
automatizing the reuse of previous simulator runs through resampling of cached simulations.

The primary use case for these algorithms is the calculation of arbitrary, low-dimensional marginal
posteriors, typically in one or two dimensions. In physics and astronomy, such marginals serve as
the basis for scientific conclusions by constraining individual model parameters within uncertainty
bounds. We implement a multi-target training regime where all marginal posteriors of interest can
be learned simultaneously. We find that learning is simplified when one calculates each marginal
distribution directly rather than computing the full joint posterior and marginalizing numerically.
Furthermore, the method facilitates effortless marginalization over arbitrary numbers of nuisance
parameters, increasing its utility in high-dimensional parameter regimes–even to simulators with a
tractable, yet high-dimensional, likelihood [13].

2 Proposed methods

Nested Ratio Estimation (NRE). We operate in the context of simulation-based inference where
our simulator g is a nonlinear function mapping a vector of parameters θ = (θ1, . . . , θd) ∈ Rd
and a stochastic latent state z to an observation x = g(θ, z). The likelihood function is therefore
p(x|θ) =

∫
δ(x − g(θ, z)) p(z|θ) dz, with δ(·) denoting the Dirac delta. Consider a factored

prior p(θ) = p1(θ1) · · · pd(θd) over the parameters, the joint posterior is given via Bayes’ rule as
p(θ|x) = p(x|θ)p(θ)/p(x), where p(x) is the evidence.

Our goal is to compute the marginal posterior, p(ϑ|x), where ϑ are the parameters of interest. We
denote all other parameters by η, such that θ = (ϑ,η). The marginal posterior is obtained from the
joint distribution p(ϑ,η|x) ≡ p(θ|x) by integrating over all components of η,

p(ϑ|x) ≡
∫
p(ϑ,η|x)dη =

∫
p(x|ϑ,η)

p(x)
p(θ)dη =

p(x|ϑ)

p(x)
p(ϑ) , (1)

where we used Bayes’ rule and defined the marginal likelihood p(x|ϑ) in the last step.

Just like in SNRE-AALR, we focus on a specific observation of interest, x0. Only parameter values
θ that could have plausibly generated observation x0 will significantly contribute to the integrals in
Eq. (1). For implausible values the likelihood p(x0|θ) will be negligible. We denote priors that are
suitably constrained to plausible parameter values by p̃(θ1, . . . , θd). Similarly, �̃ indicates quantities
� that are calculated using the constrained prior. Therefore, a judiciously chosen constrained prior,
accurately approximates the marginal posterior in place of our true prior beliefs,

p(ϑ|x0) =
p(x0|ϑ)

p(x0)
p(ϑ) ' p̃(x0|ϑ)

p̃(x0)
p̃(ϑ) . (2)

The increased probability that constrained priors assign to the plausible parameter region cancels
when dividing by the constrained evidence p̃(x). We define the marginal likelihood-to-evidence ratio

r̃(x,ϑ) ≡ p̃(x|ϑ)

p̃(x)
=

p̃(x,ϑ)

p̃(x)p̃(ϑ)
=
p̃(ϑ|x)

p̃(ϑ)
, (3)

which is sufficient to evaluate the marginal posterior in Eq. (1), and which we will now estimate. Under
the assumption of equal class population, it is known [7, 14] that one can recover density ratios using
binary classification to distinguish between samples from two distributions. Our binary classification
problem is to distinguish positive samples, (x,ϑ) ∼ p̃(x,ϑ) = p(x|ϑ)p̃(ϑ), drawn jointly, and
negative samples, (x,ϑ) ∼ p̃(x)p̃(ϑ), drawn marginally. The binary classifier σ(fφ(x,ϑ)) performs
optimally when fφ(x,ϑ) = log r̃(x,ϑ), where σ(·) is the sigmoid function and fφ is a neural
network parameterized by φ. The associated binary cross-entropy loss function [7] used to train the
ratio r̃(ϑ,x0) via stochastic gradient descent is given by

` = −
∫

[p̃(x|ϑ)p̃(ϑ) lnσ(fφ(x,ϑ)) + p̃(x)p̃(ϑ) lnσ(−fφ(x,ϑ))] dx dϑ . (4)

2

We propose to iteratively improve marginal posterior estimates in R rounds by employing posterior
estimates from previous rounds to define constrained priors. In each round r, we estimate all 1-dim
marginal posteriors, using d instances of the above marginal likelihood-to-evidence ratio estimation
in parallel by setting ϑ = (θi) for i = 1, . . . , d. To this end, we utilize the factorized constrained
prior, p̃(r)(θ) = p̃

(r)
1 (θ1) · · · p̃(r)d (θd), which is defined recursively by a cutoff criterion,

p̃
(r)
i (θi) ∝ pi(θi)ΘH

[
r̃
(r−1)
i (x, θi)

maxθi r̃
(r−1)
i (x, θi)

− ε

]
, (5)

where ΘH denotes the Heaviside step function and ε denotes the minimum likelihood-ratio which
passes through the threshold. We use p̃(1)(θ) = p(θ) as an initial prior in the iterative scheme.

In every round, each 1-dim posterior approximates a marginalization of the same underlying
constrained posterior, allowing us to effectively reuse training data and train efficiently in a
multi-target regime. The inference network is therefore divided into a featurizer F(x) with
shared parameters and a set of d independent Multi-layer Perceptons {MLPi(·, ·)}di=1 which es-
timate individual 1-dim marginal posterior-to-prior ratios and do not share parameters, such that
fφ,i(x, θi) = MLPi(F(x), θi). We estimate every 1-dim marginal simultaneously by concatenating
the output of the classifiers such that fφ = (fφ,1, . . . , fφ,d).

This technique is valid as long as the excluded prior regions do not significantly affect the integrals
in Eq. (1). For uncorrelated parameters, a sufficient criterion is that the impact on the marginal
posteriors is small, which we guarantee through the iteration criterion Eq. (5). In the case of a very
large number of strongly correlated parameters the algorithm can inadvertently cut away tails of the
marginal posteriors. Decreasing ε mitigates this effect. Discussion is left for future study.

With this design, the posteriors from the final round can be used as an approximation of the true
1-dim marginal posteriors, p̃(R)(θi|x0) ≈ p(θi|x0), while previous rounds were used to iteratively
focus on relevant parts of the parameter space. The key result and value of NRE lies in the utility
of our constrained prior from round R. The final constrained prior, p̃(R)(θ), along with previously
generated and cached samples, allows for estimation of any higher dimensional marginal posterior
p̃(R)(ϑ|x0) ≈ p(ϑ|x0) of interest by doing likelihood-to-evidence ratio estimation. The NRE
algorithm is detailed in the supplementary material.

Inhomogeneous Poisson Point Process (iP3) Sample Caching. Simulating (x,θ) ∼ p(x|θ)p(θ)
can be extremely expensive. We develop a scheme to systematically reuse appropriate subsets of
previous simulator runs. Our method samples N ∼ Pois(N̂) parameter vectors from an arbitrary
distribution p(θ), where N̂ is the expected number of samples. Taking N samples from p(θ) is
equivalent to drawing a single sample Θ ≡ {θ(n)}Nn=1 from an inhomogenous Poisson point process
(PPP) with intensity function λ(θ) = N̂p(θ). In this context, Θ is known as a set of points. This
formulation provides convenient mathematical properties [15], at the low price of introducing variance
in the number of samples drawn. The precise number of samples does not matter as long as N ≈ N̂ ,
which is true in our regime of order ≥ 1000.

We will need two properties of PPPs. Superposition: Given two independent PPPs with intensity
functions λ1(θ) and λ2(θ), the sum yields another PPP with intensity function λ(θ) = λ1(θ)+λ2(θ).
The union of two sets of points Θ = Θ1 ∪ Θ2 from the individual PPPs is equivalent to a single
set of points from the combined PPP. Thinning: Consider a PPP with intensity function λ(θ), and
an arbitrary function q(θ) : Rd → [0, 1]. If we are interested in drawing from a PPP with intensity
function λq(θ) = q(θ)λ(θ), we can achieve this by drawing a set of points Θ distributed like λ(θ)

and then rejecting individual points θ(n) with probability 1− q(θ(n)).

We define a parameter cache by a set of points Θsc drawn from a PPP with intensity function λsc(θ).
For every point θ ∈ Θsc, a corresponding observation x is stored in an observation cache Xsc. Our
iP3 cache sampling algorithm that is responsible for maintaining the caches and sampling from a
PPP with target intensity function λt(θ) = N̂p(θ) is written out in the supplementary material. It
is summarized in two steps: First, consider all points θ ∈ Θsc from the cache and accept them
with probability min(1, λt(θ)/λsc(θ)). The thinning operation yields a sample Θ1 from a PPP with
intensity function λ1(θ) = min(λt(θ), λsc(θ)). Second, draw a new set of points Θp from λt(θ),
and accept each θ ∈ Θp with probability max(0, 1− λsc(θ)/λt(θ)). This yields a sample Θ2 from

3

a PPP with intensity function λ2(θ) = max(0, λt(θ)− λsc(θ)). Thanks to superposition, the union
Θ1∪Θ2 = Θt yields a sample from the PPP with intensity function λt(θ)–the sample we were looking
for. We only need to run simulations on points from Θ1. Points in Θ2 already have corresponding
observations in Xsc which we can reuse. Finally, the new parameters are appended to the set of
points in the parameter cache, Θsc → Θsc ∪Θ2. Similar for Xsc. On the basis of the superposition
principle, the intensity function of the Θsc cache is updated λsc(θ)→ max(λsc(θ), λt(θ)).

Storing and updating the parameter cache’s intensity function λsc(θ) can pose challenges when
it is complex and high-dimensional. Our NRE implementation overcomes these challenges by
learning marginal 1-dim posteriors, guaranteeing that the relevant target intensities always factorize,
λt(θ) = λt(θ1) · · ·λt(θd). Storage of and calculation with factorizable functions simplifies matters.

3 Experiments and discussion

Although NRE is applicable to scenarios where the likelihood is intractable, we focus on examples
with tractable likelihoods in order to compare our results with the ground truth obtained by sampling
techniques. In this case, ground truth results are provided by MultiNest [11, 16], a nested sampling
tool widely used in the physics and astronomy community. Examples are of illustrative nature, a
quantitative comparison between methods will be left for future study.

Experiments. Consider a simulator g(θ, z) = (θ0,
√

(θ0 − 0.6)2 + (θ1 − 0.8)2, θ2) + n, where
n is drawn from a zero-mean multivariate Gaussian distribution with a diagonal covariance matrix,
Σ = diag(0.03, 0.005, 0.2). The first task was to infer θ for synthetic data generated by ground truth
parameters θ = (0.57, 0.8, 1.0). In our reported estimates, as seen in Fig. 1, MultiNest required
160722 simulations, while NRE obtained comparable marginal posteriors after only 20011 simulations
divided across four rounds. A visualization of the cache Θsc, utilized in NRE over four rounds, is
presented in the supplementary material (see Fig. 3). The second task was to infer new parameters
θ = (0.55, 0.8, 1.0) with the same simulator. MultiNest required 171209 new simulator runs while
iP3 sample caching reduced the number of additionally required simulator runs to only 3668 when
performing NRE. NRE is efficient initially and enables hyper-efficient follow up studies.

In our second experiment, the simulator gives rise to an “eggbox” posterior, with modes at θi =
0.5 ± 0.25, i = 0, . . . d − 1. The simulation model is gi(θ, z) = sin(θi · π) + ni, where n is a
zero-mean Gaussian noise with standard deviation 0.1. For this model, the number of modes grows
exponentially with the dimension of θ as 2d. As such, the number of samples required for MultiNest
scales exponentially with the dimension and quickly becomes infeasible, see Fig. 2. At d = 20
there are over 106 modes and MultiNest cannot solve the problem before memory constraints take
over. We find that, with standard settings, MultiNest requires at least 107 samples for d = 14 to give
reasonable results (which corresponds to ∼ 103 samples per mode). On the other hand, our proposed
method directly estimates marginal posteriors at almost constant simulator cost, with 2×104 samples
sufficient even for d = 20 (much less than one sample per mode). Since we focus with NRE directly
on marginal posteriors, resolving the exponentially large number of modes becomes unnecessary.

NRE/iP3 MultiNest
Run 1 20011 160722
Run 2 3668 171209

Table 1: Numbers of samples required by NRE/iP3 and
MultiNest for first experiment. We infer posteriors for two
instances of the problem. In the second instance, NRE/iP3
benefits from sample reuse while MultiNest cannot reuse
any parameters or simulations.

Discussion. NRE with iP3 sample caching is meant as a significantly more flexible, and simulator
efficient, alternative to the likelihood-based sampling tools commonly used in physics. In the above
experiment we show that – without much tuning – our algorithms achieved similar accuracy to the
widely used nested sampler MultiNest while reducing simulator calls by an order of magnitude.
Furthermore, analysis of similar inference problems with usual sampling tools, like MultiNest, must
start from scratch and redo many simulations; however, NRE with iP3 sample caching allows us to
reuse simulator runs from previous analyses to further reduce simulation costs. NRE is applicable to
simulators which do not have a tractable likelihood, significantly broadening the set of use-cases.

In our reference implementation of NRE with iP3 sample caching, the initial rounds are based on
simultaneous learning of one dimensional marginal posteriors, implemented efficiently via multi-

4

0 = 0.58+0.02
0.01

0.74

0.76

0.78

0.80

0.82

0.84

0.86

1

1 = 0.80+0.02
0.02

0.550 0.575 0.600 0.625 0.650

0

0.0

0.2

0.4

0.6

0.8

1.0

2

0.750 0.775 0.800 0.825 0.850

1
0.0 0.2 0.4 0.6 0.8 1.0

2

2 = 0.86+0.10
0.14

0 = 0.58+0.03
0.01

0.7
50

0.7
75

0.8
00

0.8
25

0.8
50

1

1 = 0.80+0.03
0.03

0.5
50

0.5
75

0.6
00

0.6
25

0.6
50

0

0.2

0.4

0.6

0.8

1.0

2

0.7
50

0.7
75

0.8
00

0.8
25

0.8
50

1

0.2 0.4 0.6 0.8 1.0

2

2 = 0.87+0.09
0.15

Figure 1: Marginal posteriors produced by NRE/iP3 (left) and MultiNest (right) for Run 1 of our
example. The contours for 68%, 95%, and 99.7% credible regions are shown.

101 102 103 104 105 106

Number of modes

102

103

104

105

106

107

S
am

pl
es

Samples required for eggbox problem

modes

MultiNest

swyft

0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

1

Figure 2: Left: scaling of simulator cost with respect to number of modes for the eggbox problem.
For MultiNest, each mode must be sampled, leading to a rapid increase in simulator cost as a function
of problem dimension. On the other hand, by directly evaluating the marginal posteriors, the proposed
method is able to solve the problem at almost constant computational cost. Right: posteriors computed
via a network for d = 20 trained on 2× 104 samples. For ease of visualization, we show only the
set of 1- and 2-dimensional marginal posteriors truncated to θ0, θ1; marginal posteriors for all other
parameter pairs look similar.

target training. Once converged, higher-dimensional marginals can be scrutinized in the relevant
region after training a new likelihood ratio estimator on already-collected data. Empirically, using low
dimensional marginals and constraining the prior to relevant regions of parameter space reduces the
difficulty of the learning problem such that relatively simple neural networks are sufficient to estimate
satisfactory marginal posteriors. In future work we will consider how to further capitalize on this
learning problem simplification by using higher dimensional marginal priors and posteriors during
the training rounds of NRE. The aim is to improve prediction across highly correlated parameters. As
a product of these efforts, we offer an open source Python package which implements NRE and iP3
sample caching called swyft. It has a convenient API for use by machine learning non-specialists.

5

Broader Impact

The proposed algorithms aim at facilitating solutions to the "inverse problem" for simulator-based
modeling in the limit of expensive simulator runs. Although we have physics and astronomy
applications in mind, the underlying problem is rather common in the quantitative sciences. For
example, benchmark problems include the Lotka–Volterra predator-prey model and the m/d/1 queue
problems. Therefore, the breadth use cases must be considered and the software may be used to make
modeling decisions which affect the lives of humans. We do not anticipate specific cases of misuse of
the methods, but emphasize that the inference method is only as good as the simulator, and limited
simulation models can lead to false conclusions. A problematic failure mode would be to choose
a simulator which reinforces already held biases. Our method does not absolve the scientist of the
responsibility on the choice of simulator. However, our algorithms do not directly penalize model
complexity, and hence allow and encourage the construction of more realistic models.

Acknowledgments and Disclosure of Funding

This work uses numpy [17], scipy [18], matplotlib [19], pytorch [20], and jupyter [21]. Ben-
jamin Kurt Miller is funded by the University of Amsterdam Faculty of Science (FNWI), Informatics
Institute (IvI), and the Institute of Physics (IoP). This work is part of a project that has received
funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (Grant agreement No. 864035 – UnDark).

References
[1] Nilanjan Banik, Gianfranco Bertone, Jo Bovy, and Nassim Bozorgnia. Probing the nature of

dark matter particles with stellar streams. Journal of Cosmology and Astroparticle Physics,
2018(07):061–061, Jul 2018.

[2] Richard Bartels, Suraj Krishnamurthy, and Christoph Weniger. Strong support for the mil-
lisecond pulsar origin of the galactic center gev excess. Physical Review Letters, 116(5), Feb
2016.

[3] Aldo Rodríguez-Puebla, Peter Behroozi, Joel Primack, Anatoly Klypin, Christoph Lee, and
Doug Hellinger. Halo and subhalo demographics with planck cosmological parameters: Bol-
shoi–planck and multidark–planck simulations. Monthly Notices of the Royal Astronomical
Society, 462(1):893–916, Jul 2016.

[4] Scott A Sisson, Yanan Fan, and Mark Beaumont. Handbook of approximate Bayesian computa-
tion. CRC Press, 2018.

[5] George Papamakarios, David Sterratt, and Iain Murray. Sequential neural likelihood: Fast
likelihood-free inference with autoregressive flows. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 837–848. PMLR, 2019.

[6] David Greenberg, Marcel Nonnenmacher, and Jakob Macke. Automatic posterior transformation
for likelihood-free inference. In Proceedings of the 36th International Conference on Machine
Learning, 2019.

[7] Joeri Hermans, Volodimir Begy, and Gilles Louppe. Likelihood-free mcmc with amortized
approximate ratio estimators. arXiv preprint arXiv:1903.04057, 2019.

[8] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 2020.

[9] Conor Durkan, Iain Murray, and George Papamakarios. On contrastive learning for likelihood-
free inference. arXiv preprint arXiv:2002.03712, 2020.

[10] John Skilling. Nested sampling for general bayesian computation. Bayesian Anal., 1(4):833–859,
December 2006.

6

[11] F Feroz, M P Hobson, and M Bridges. MultiNest: an efficient and robust bayesian inference
tool for cosmology and particle physics. Mon. Not. Roy. Astron. Soc. 398: 1601-1614,2009,
September 2008.

[12] W J Handley, M P Hobson, and A N Lasenby. polychord : next-generation nested sampling.
Mon. Not. R. Astron. Soc., 453(4):4384–4398, September 2015.

[13] Adam Coogan, Konstantin Karchev, and Christoph Weniger. Targeted likelihood-free inference
of dark matter substructure in strongly-lensed galaxies. arXiv preprint arXiv:2010.07032, 2020.

[14] Kyle Cranmer, Juan Pavez, and Gilles Louppe. Approximating likelihood ratios with calibrated
discriminative classifiers. arXiv preprint arXiv:1506.02169, 2015.

[15] J. F. C. Kingman. Poisson Processes. Oxford University Press, 1993.

[16] Buchner, J., Georgakakis, A., Nandra, K., Hsu, L., Rangel, C., Brightman, M., Merloni, A.,
Salvato, M., Donley, J., and Kocevski, D. X-ray spectral modelling of the agn obscuring region
in the cdfs: Bayesian model selection and catalogue. A&A, 564:A125, 2014.

[17] Charles R. Harris, K. Jarrod Millman, St’efan J. van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert
Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fern’andez del R’ıo, Mark Wiebe, Pearu Peterson, Pierre G’erard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, September 2020.

[18] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020.

[19] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering,
9(3):90–95, 2007.

[20] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[21] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bussonnier,
Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov,
Damián Avila, Safia Abdalla, Carol Willing, and Jupyter development team. Jupyter notebooks -
a publishing format for reproducible computational workflows. In Fernando Loizides and Birgit
Scmidt, editors, Positioning and Power in Academic Publishing: Players, Agents and Agendas,
pages 87–90, Netherlands, 2016. IOS Press.

7

Supplementary Material

Algorithm 1: Nested Ratio Estimation (NRE)
Input :Simulator p(x|θ), factorizable prior p(θ), real observation x0, parameter dimension d,

classifiers {fφ,i(x, θi)}di=1, rounds R, mean samples per round N̂ , likelihood cutoff ε.
Init: Constrained prior p(1)(θ) = p(θ), caches Xsc,Θsc = {}, intensity function λsc(θ) = 0.
for r = 1 to R do

Sample points using Algorithm 2, the iP3 sample caching algorithm,
{(x(n),θ(n))}N∼Pois(N̂)

n=1 , Xsc, Θsc, λsc(θ) = iP3 (p(x|θ), N̂ , p(r)(θ),Xsc,Θsc, λsc(θ)).
(Re-) initialize fφ = (fφ,i)

d
i=1.

while fφ not converged do
Extract mini-batch {(x(b),θ(b))}Bb=1 ⊂ {(x(n),θ(n))}N∼Pois(N̂)

n=1 , B ≡ 0 (mod 2).
Randomly pair up all samples from the mini-batch ((x(a,0),θ(a,0)), (x(a,1),θ(a,1)))
where a = 1, . . . , B/2.

Minimize
L(φ) = − 1

B

∑B/2
a=1

∑d
i=1

∑
j∈{0,1} σ(fφ,i(x

(a,j), θ
(a,j)
i)) + σ(−fφ,i(x(a,j), θ

(a,¬j)
i))

using stochastic gradient descent or a variant.
end
Constrain p(r+1)

i (θi) ∝ pi(θi) ΘH

[
exp(fφ,i(x0,θi))

maxθi exp(fφ,i(x0,θi))
− ε

]
in order to construct

constrained prior p(r+1)(θ) = p
(r+1)
1 (θ1) · · · p(r+1)

d (θd).
end

Algorithm 2: Inhomogeneous Poisson Point Process (iP3) Sample Caching

Input :Simulator p(x|θ), mean samples per round N̂ , constrained prior p(θ),
observation cache Xsc, parameter cache Θsc, intensity function λsc(θ).

Output :Samples {(x(n),θ(n)) : (x(n),θ(n)) ∼ p(x|θ)p(θ)∀n}N∼Pois(N̂)
n=1 ,

observation cache Xsc, parameter cache Θsc, parameter cache intensity function λsc(θ).
Init: Number of points N ∼ Pois(N̂), size of cache M = |Θsc| = |Xsc|, output set O = {},

target intensity function λt(θ) = N̂p(θ).
for m = 1 to M do

with probability min(1, λt(θ)/λsc(θ)) do
Get observation by index x(m) = X (m)

sc .
Get parameter vector by index θ(m) = Θ

(m)
sc .

Append sample to output set O = O ∪ {(x(m),θ(m))}.
end

end
for n = 1 to N do

Draw parameter sample θ(n) ∼ p(θ).
with probability max(0, 1− λsc(θ)/λt(θ)) do

Simulate x(n) ∼ p(x|θ(n)).
Append sample to output set O = O ∪ {(x(n),θ(n))}.

end
end
Update parameter cache Θsc = Θsc ∪ {θ(n)}|O|∼Pois(N̂)

n=1 .

Update observation cache Xsc = Xsc ∪ {x(n)}|O|∼Pois(N̂)
n=1 . (Note, both caches are sets indexed

by the order in which elements were added to them. Duplicate elements are ignored.)
Update intensity function of parameter cache λsc(θ) = max(λsc(θ), λt(θ)).
return O, Xsc, Θsc, λsc(θ).

8

0.0 0.2 0.4 0.6 0.8 1.0

0

0.0

0.2

0.4

0.6

0.8

1.0

1

Run 1
Run 2

0.0 0.2 0.4 0.6 0.8 1.0

1

0.0

0.2

0.4

0.6

0.8

1.0

2

Sample cache contents

0.0 0.2 0.4 0.6 0.8 1.0

0

0.0

0.2

0.4

0.6

0.8

1.0

2

Figure 3: Parameter cache Θsc contents for our first experiments. (See Table 1.) Samples added in
the first and second runs are shown in blue and orange, respectively. The second run reuses samples
computed during the first run. The evolution of the cache towards relevant parameter regimes is
visible.

9

	Introduction
	Proposed methods
	Experiments and discussion

