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Abstract

The assignment problem is one of the most well-
studied settings in social choice, matching, and dis-
crete allocation. We consider this problem with the
additional feature that agents’ preferences involve
uncertainty. The setting with uncertainty leads to a
number of interesting questions including the fol-
lowing ones. How to compute an assignment with
the highest probability of being Pareto optimal?
What is the complexity of computing the proba-
bility that a given assignment is Pareto optimal?
Does there exist an assignment that is Pareto opti-
mal with probability one? We consider these prob-
lems under two natural uncertainty models: (1) the
lottery model in which each agent has an inde-
pendent probability distribution over linear orders
and (2) the joint probability model that involves a
joint probability distribution over preference pro-
files. For both of these models, we present a num-
ber of algorithmic and complexity results highlight-
ing the difference and similarities in the complexity
of the two models.

1 Introduction
Multi-agent resource allocation and dealing with uncertainty
are two big topics in AI. In this paper we examine optimal
allocation of resources under uncertain preferences.

When preferences of agents are aggregated to identify a
desirable social outcome, Pareto optimality is a minimal re-
quirement. Pareto optimality stipulates that there should not
be another outcome that is at least as good for all agents
and better for at least one agent. We take Pareto optimal-
ity as a central concern and consider a richer version of the
classical assignment problem where the twist is that agents
may express uncertainty in their preferences. The assign-
ment problem is a fundamental setting in which n agents
express preferences over n items and each agent is to be
allocated one item. The setting is a classical one in dis-
crete allocation. Its axiomatic and computational aspects
have been well-studied [Abdulkadiroğlu and Sönmez, 1999;
Abraham et al., 2005; Aziz et al., 2015; 2016b; Bogomol-
naia and Moulin, 2001; Gärdenfors, 1973; Svensson, 1994;

1999]. Our motivation for studying assignment with un-
certain preferences is that agents’ preferences may not be
completely known because of lack of information or com-
munication. In some settings, eliciting preferences from
agents may be costly, so a central planner may want to
only obtain, and provide a recommendation based on, a sub-
set of the complete orders [Rastegari et al., 2013; 2014;
Drummond and Boutilier, 2014]. Another possible motiva-
tion is that agents are in fact virtual or ‘bidding’ agents who
are each representing a group of real agents and the virtual
agent’s probabilistic preferences simply represent the com-
position of preferences of the real agents it represents.

Our work is inspired by the recent work of Aziz et
al. [2016a] who examined the stable marriage problem un-
der uncertain preferences. Uncertainty in preferences has al-
ready been studied in voting [Hazon et al., 2012]. Similarly,
in auction theory, it is standard to examine Bayesian settings
in which there is probability distribution over the types of
the agents. Although computational aspects of Pareto opti-
mal outcomes have been intensely studied in various settings
such as assignment, matching, housing markets, and commit-
tee voting [Abraham et al., 2005; Aziz and de Keijzer, 2012;
Aziz et al., 2015; 2016c; Erdil and Ergin, 2015; Krysta et al.,
2014; Manlove, 2013; Saban and Sethuraman, 2013], there
has not been much work on Pareto optimality under uncer-
tain preferences. In the presence of uncertainty, one can relax
the goal of computing a Pareto optimal outcome and focus on
computing outcomes that have the highest probability of be-
ing Pareto optimal. We will abbreviate Pareto optimal as PO.
If an assignment is Pareto optimal with probability one, we
will call it certainly PO.

We consider the following uncertainty models:

• Lottery Model: For each agent, we are given a proba-
bility distribution over linear preferences.

• Joint Probability Model: A probability distribution
over linear preference profiles∗ is specified.

The most natural computational problems that we will con-
sider are as follows.

• PO-Probability: what is the probability that a given as-
signment is PO?

∗A preference profile specifies (deterministic) preferences of
each agent over items.
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• AssignmentWithHighestPO-Probability: compute an
assignment with the highest probability of being PO.

We also consider problems simpler than PO-Probability:

• IsPO-ProbabilityNon-Zero: for a given assignment, is
its probability of being PO non-zero?

• IsPO-ProbabilityOne: for a given assignment, is its
probability of being PO one?

We also consider a problem connected to AssignmentWith-
HighestPO-Probability: ExistsCertainlyPO-Assignment
asks whether there exists an assignment that is PO with
probability one. Note that ExistsPossiblyPO-Assignment—
the problem of checking whether there exists some PO
assignment with non-zero probability—is trivial for all
uncertainty models in which the induced certainly preferred
relation is acyclic. An agent certainly prefers an item to
another if the preference is with probability 1. The reason
for the triviality is that the certainly preferred relation can be
completed in a way so that it is transitive, and then for the
completed deterministic preferences there exists at least one
PO assignment.

Note that the product of the independent uncertain prefer-
ences in the lottery model results in a probability distribution
over preference profiles and hence can be represented in the
joint probability model. However, the change in representa-
tion can result in a blowup. Thus whereas the joint probability
model is more general than the lottery model, it is not as com-
pact. In view of this, complexity results for one model do not
directly carry over to results for the other model.

We say that a given uncertainty model is independent if
any uncertain preference profile L under the model can be
written as a product of uncertain preferences La for all agents
a, where all La’s are independent [Aziz et al., 2016a]. Note
that the lottery model is independent but the joint probability
model is not.

Contributions We initiate the first study of computational
aspects of Pareto optimal allocation under uncertain prefer-
ences. We show that for both the lottery model and the joint
probability model, ExistsCertainlyPO-Assignment is NP-
complete. We also prove that AssignmentWithHighestPO-
Probability is NP-hard for both models. In view of these
results, we see that as we move from deterministic prefer-
ences to uncertain preferences, the complexity of comput-
ing Pareto optimal assignments jumps significantly. On the
other hand, we show that for a general class of independent
uncertainty models, both problems IsPO-ProbabilityNon-
Zero and IsPO-ProbabilityOne can be solved in linear time.
Whereas PO-Probability is polynomial-time solvable for the
joint probability model, we prove that the problem is #P-
complete for the lottery model. This problem becomes
polynomial-time solvable for the lottery model if there is a
constant number of uncertain agents. Moreover, we show
that the problem PO-Probability for the lottery model can be
solved in fixed-parameter tractable time when parameterized
by the number of uncertain agents. Our results are summa-
rized in Table 1.

2 Preliminaries
The setting we consider is the assignment problem which is
a triple (N,O,�) where N is the set of n agents {1, . . . , n},
O = {o1, . . . , on} is the set of n items, and �= (�1, . . . ,�n) is
a preference profile that specifies complete, asymmetric, and
transitive preferences �i of each agent i over O. We write
o %i o′ if o �i o′ or o′ = o. We will denote by R(O) the set of
all complete and transitive relations over the set of items O.
We will denote by �S the preference profile of agents in the
set S ⊂ N.

An assignment is an allocation of items to agents, repre-
sented as an n × n matrix [p(i)(o j)]1≤i≤n,1≤ j≤n such that for all
i ∈ N, and o j ∈ O, p(i)(o j) ∈ {0, 1}; for all i ∈ {1, . . . , n},∑

j∈N p(i)(o j) = 1 ; and for all j ∈ {1, . . . , n},
∑

i∈N p(i)(o j) =
1. The aforementioned constraints ensure that each item is al-
located wholly (items are indivisible), each agent is allocated
exactly one item, and each item is allocated to exactly one
agent. An agent i gets item o j if and only if p(i)(o j) = 1.
Each row p(i) = (p(i)(o1), . . . , p(i)(on)) represents the alloca-
tion of agent i. With an abuse of notation we write p(i) = o j
if p(i)(o j) = 1 for some item o j, and p(i) = ∅ otherwise. We
always assume that every agent prefers any item to ∅, i.e. to
being allocated no item.

An assignment p is Pareto optimal if there does not exist
another assignment q such that q(i) %i p(i) for all i ∈ N and
q(i) �i p(i) for some i ∈ N. If such an assignment q exists,
then we say that q Pareto dominates p.

We first note a couple of well-known characterisations of
Pareto optimal assignments. The characterisations give rise to
linear-time algorithms for computing and verifying Pareto op-
timal assignments in settings with deterministic preferences.

An assignment p admits a trading cycle
〈o0, i0, o1, i1, . . . , ok−1, ik−1, o0〉 if for all j ∈ {0, . . . , k − 1} we
have p(i j)(o j) = 1 and o j+1 mod k �i j o j. Intuitively, each
agent i j in the trading cycle prefers the next item o j+1 (o0 if
j = k − 1) to his assigned item o j. Thus, the existence of
a trading cycle implies that there is a set of agents who all
benefit from trading their assigned items among themselves.

Fact 1 (Folklore) An assignment is Pareto optimal if and
only if it does not admit a trading cycle.

We will also use the following characterization of Pareto
optimal discrete assignments [Abdulkadiroğlu and Sönmez,
1998] that is defined with respect to outcomes of serial dic-
tatorship. Serial dictatorship is a straightforward greedy as-
signment mechanism that is specified with respect to a per-
mutation π over N. The mechanism takes each agent in turn,
according to the permutation π, and allocates him the most
preferred item on his preference list that has not been allo-
cated yet. We will denote by S D(N,O,�, π) the outcome
of applying serial dictatorship with respect to permutation π
over assignment problem (N,O,�).

Fact 2 (Abdulkadiroğlu and Sönmez [1998]) An assign-
ment is Pareto optimal if and only if it is an outcome of serial
dictatorship.
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Lottery Joint Probability
Model Model

Problems

PO-Probability
#P-complete (Thm 8)
but in FPT w.r.t. parameter: in P (Thm 2)
# uncertain agents (Thm 9)

IsPO-ProbabilityNon-Zero in P (Thm 5) in P (Thm 2)
IsPO-ProbabilityOne in P (Thm 4) in P (Thm 2)

ExistsPossiblyPO-Assignment in P (trivially) in P (trivially)

ExistsCertainlyPO-Assignment NP-complete (Thm 6) NP-complete (Thm 3)

AssignmentWithHighestPO-Prob NP-hard (Cor 3) NP-hard (Cor 2)

Table 1: Summary of results.

Fact 2 also follows from Proposition 1 of Brams and
King [2005]. The facts above show that when preferences are
deterministic, a Pareto optimal assignment can be computed
and verified easily [Abraham et al., 2005]. In this paper we
focus on finding and verifying Pareto optimal assignments in
settings where agents have uncertain preferences.

Example 1 Consider the following assignment problem in
which agent 1 has uncertain preferences in the lottery model.

1 : a, b, c (0.6) 2 : b, a, c
b, a, c (0.4) 3 : c, b, a

The same uncertain preferences can be also represented
in the joint probability model with a probability distribution
over two preference profiles.

Consider the assignment q in which 1 gets a, 2 gets b, and
3 gets c. The probability of this assignment being PO is 1.
This can be verified by considering each of the two possi-
ble preference profiles, and testing that no other assignment
Pareto dominates q under either of them. On the other hand,
the assignment p in which 1 gets b, 2 gets a, and 3 gets c
has 0.4 probability of being PO. This is because p is not PO
if the first possible preference list of agent 1 is realized, i.e.,
if a �1 b �1 c. To see this, notice that p admits a trading
cycle 〈b, 1, a, 2, b〉, implying that 1 and 2 prefer to trade their
items and be both better off. If 1 and 2 trade their assigned
items, we get assignment q. Assignment q Pareto dominates
assignment p when the first possible preference list of agent
1 is realized.

Assignment p is PO if the second possible preference list
of agent 2 is realized, i.e., if b �1 a �1 c. Note that p is
the outcome of applying serial dictatorship with respect to
permutation π = 1, 2, 3: (1) the first agent in the permutation,
agent 1, is allocated his most preferred item, item b, (2) agent
2 is allocated his most proffered available item, that is a, as
b has been already allocated to 1, (3) agent 3 is allocated his
most preferred available item, that is c.

3 Joint Probability Model
We first observe that PO-Probability can be solved easily for
the joint probability model.

Theorem 2 For the joint probability model, PO-Probability
can be solved in polynomial time.

Proof: The probability that a given assignment p is PO is
equivalent to the total probability weight of the preference
profiles for which p is PO. This can be calculated as fol-
lows. For each preference profile, we test (in polynomial
time) whether p is PO. We then add the probabilities of those
profiles for which p is PO. The sum of the probabilities is the
probability that the assignment p is PO. �

Corollary 1 For the joint probability model, IsPO-Proba-
bilityNon-Zero and IsPO-ProbabilityOne can be solved in
polynomial time.

What about ExistsCertainlyPO-Assignment? This prob-
lem is equivalent to checking whether the sets of PO assign-
ments associated with each possible preference profile have
a non-empty intersection. We show that this problem is NP-
complete even when the probability distribution is over two
linear preference profiles.

We reduce from the NP-complete problem Serial-
DictatorshipFeasibility that is defined as follows: check
whether there exists a permutation of agents for which se-
rial dictatorship gives a particular item o to a particular
agent i [Saban and Sethuraman, 2015].

For linear preference profiles, the set of Pareto optimal al-
locations are characterized by those that can be achieved via
some serial dictatorship. Thus it follows that the following
problem is also NP-complete: check whether there exists a
Pareto optimal allocation in which a specified agent i gets a
specified item o.

Theorem 3 For the joint probability model, Exists-
CertainlyPO-Assignment is NP-complete even when the
probability distribution is over two linear preference profiles.

Proof: ExistsCertainlyPO-Assignment is in NP because it
can be checked in polynomial time whether a given assign-
ment is certainly PO or not (Theorem 2).

To prove NP-hardness, we reduce from SerialDictator-
shipFeasibility problem. Let (N,O,�, i, o) be an instance of
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this problem. We construct a joint probability over two pref-
erence profiles. One of the profiles is the same as �. In the
other preference profile �′, agent i has o as the most preferred
item and has the same order of preference over all other items
as in �i. Each agent j ∈ N \ {i}, on the other hand, has o as
the least preferred item and has the same order of preference
over all other items as in � j.

Our first observation is that an assignment is PO under
profile �′ only if i receives o in it (Observation 1). We
now prove that we have a yes instance of SerialDictator-
shipFeasibility if and only if our constructed joint probabil-
ity instance admits a certainly PO assignment. Since Serial-
DictatorshipFeasibility is NP-complete, this will entail that
ExistsCertainlyPO-Assignment is NP-complete.

Assume that there exists a certainly PO assignment p.
Then, p must be PO under �′ implying that, by Observation
1, i receives o in p. Assignment p must also be PO under pro-
file � which implies that there exists an assignment (i.e. p)
that is PO under profile � and in which i receives o. In light
of Fact 2, this implies that there exists a serial dictatorship the
outcome of which under profile � is p. Hence, we have a yes
instance of SerialDictatorshipFeasibility.

Now consider the case when we have a yes instance of Se-
rialDictatorshipFeasibility. This means that there is a per-
mutation π under which i gets o when serial dictatorship is
run. Let us call this assignment by p. Due to Fact 2, p is PO
under preference profile �. So it only remains to show that p
is PO under �′. Due to Fact 2, it is sufficient to prove that for
profile �′, there exists a corresponding permutation of agents
under which the outcome of serial dictatorship is p.

In fact, we show that S D(N,O,�′, π) = p. That is, the
outcome of applying serial dictatorship with permutation π is
p even if the preference profile is �′ instead of �. This proof
is by induction on the rounds of serial dictatorship and by
showing that at the end of any given round, all agents whose
turn has already come up are assigned the same items as in p.
Detailed proof is removed due to shortage of space. Thus p
is PO under both possibly realizable preference profiles. �

Corollary 2 For the joint probability model, Assignment-
WithHighestPO-Prob is NP-hard.

Proof: We show that an algorithm to solve Assignment-
WithHighestPO-Prob can be used to solve the NP-complete
problem ExistsCertainlyPO-Assignment with only a poly-
nomial increase in the running time. An algorithm for
AssignmentWithHighestPO-Prob can compute an assign-
ment p with the highest probability of being PO. By Corol-
lary 1, it can be checked in polynomial time whether p is
PO with probability one or not. If p is PO with proba-
bility one, then we know that we have a yes instance of
ExistsCertainlyPO-Assignment. Otherwise, we have a no in-
stance of ExistsCertainlyPO-Assignment. �

4 Lottery Model
Recall that a given uncertainty model is independent if any
uncertain preference profile L under the model can be writ-

ten as a product of uncertain preferences La for all agents a,
where all La’s are independent.

We first define the certainly preferred relation �certain
i for

agent i. We write b �certain
i c if and only if agent i prefers b

over c with probability 1.

Theorem 4 For any independent uncertainty model, IsPO-
ProbabilityOne can be solved in polynomial time.

Proof sketch: Given an assignment p, we create a trading cy-
cle graph G with agents and items as vertices. Each item
points to its owner agent and each agent i points to any item o
such that p(i) �certain

i o. We show that p is PO with probability
one if and only if G does not contain a cycle. �

Since the lottery model is an independent uncertainty
model, Theorem 4 applies to it. Next we prove that for the
lottery uncertainty model, IsPO-ProbabilityNon-Zero can be
solved in polynomial time.

Theorem 5 For the lottery model, IsPO-ProbabilityNon-
Zero can be solved in polynomial time.

Proof: Consider an assignment p for which we want to check
whether it is PO with non-zero probability. We use the fol-
lowing algorithm that builds a permutation of agents π such
that serial dictatorship produces p given π, if and only if p
is PO with non-zero probability. To start with, we initialize
the set of remaining items to O, the remaining agents to N,
and the permutation of the agents π to an empty list. We then
repeat the following procedure until no more items are left, or
the procedure returns no.

• Check if there exists some agent i such that p(i) is the
most preferred available item of i in at least one of his
preference lists.

• If no such agent exists, return no. Otherwise, if such an i
exists, give agent i item p(i), append i to the permutation
π, remove i from the set of remaining agents, and remove
p(i) from the set of available items. Let �i denote the
preference of agent i that has p(i) as the most preferred
remaining item (if more than one of such preferences
exists, select one arbitrarily).

It is easy to verify that if the algorithm returns π, then
S D(N,O,�, π) = p. It remains to show that if the algorithm
returns no, then p is PO with zero probability. Consider the
first point in the algorithm where for no agent i we have p(i)
as the most preferred available item of i in at least one of his
preference lists. This means that no remaining agent gets his
most preferred item (for any preference list) among the avail-
able items. Therefore, for each realization of the preference
profiles, each of the remaining agents is interested in, and
points to, another item held by another agent among the re-
maining agents. This implies the existence of a trading cycle
for each realization of the preference profiles, where some re-
maining agents can exchange items among themselves to get
a more preferred item than in p. Thus p is PO with probability
zero. �
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In contrast to the positive results above, the problem of
checking whether there exists an assignment that is PO with
probability one is NP-complete. The proof is very similar to
the proof of Theorem 3 and is hence removed. Note that The-
orem 3 does not directly imply the following claim and an
independent argument, albeit similar one, is required.

Theorem 6 For the lottery model, ExistsCertainlyPO-
Assignment is NP-complete.

Corollary 3 For the lottery model, AssignmentWith-
HighestPO-Prob is NP-hard.

We now turn to the problem of computing the probability
that a given assignment is PO. We first present a polynomial-
time solution for a restricted setting, and then show that PO-
Probability is #P-complete for the lottery model in general.

Theorem 7 For the lottery model, if the number of uncertain
agents is constant, then PO-Probability is polynomial-time
solvable.

Proof: Let p be a given assignment. Let constant k denote
the number of uncertain agents, and let the maximum num-
ber of preferences for any uncertain agent be `. Therefore, the
maximum number of preference profiles that are realizable is
`k which is still polynomial in the input since k = O(1). For
each possible preference profile �, it is easy to compute the
probability that � occurs by simply computing the product of
the probabilities of the preferences chosen for the uncertain
agents. In this way, we can reduce PO-Probability for the lot-
tery model to PO-Probability for the joint probability model
which can be solved in polynomial time (Theorem 2). �

Theorem 8 For the lottery model, PO-Probability is #P-
complete, even when restricted to the case where each agent
has at most two possible preferences.

Proof sketch: It is straightforward to show that PO-
Probability is in #P. We show #P-hardness by reducing from
the #P-complete problem Monotone-#2SAT that is defined
as follows: count the number of satisfying assignments for
a 2CNF formula that contains no negation [Valiant, 1979].

Let ϕ be a monotone 2CNF formula with clauses c1, . . . , cm
and variables x1, . . . , xn. We construct an instance of PO-
Probability as follows. Consider agents 1, . . . , n and items
o1, . . . , on, and take the assignment p where p(i) = oi.

We construct the preferences of the agents as follows. Take
an arbitrary agent i. Consider the set { j1, . . . , ju} of indices j
such that the clause (xi ∨ x j) occurs in ϕ. (W.l.o.g. this set
{ j1, . . . , ju} is non-empty.) Suppose that j1 < j2 < · · · < ju,
in order to fix an (arbitrary) order over these indices. With
probability 1

2 , agent i has oi at the top of his preference list,
followed by the rest of the items in arbitrary order. With prob-
ability 1

2 , agent i has the following preference: o j1 �i · · · �i
o ju �i oi �i · · · , where the remaining items appear in arbi-
trary order after oi.

This way, the possible preference profiles correspond one-
to-one to the possible truth assignments over x1, . . . , xn.

Namely, taking the preference oi �i · · · for agent i corre-
sponds to setting xi to 1, and taking the other preference for
agent i corresponds to setting xi to 0. Moreover, each possible
preference profile occurs with probability 1/2n.

We show that the number of satisfying assignments for ϕ
is equal to the number of preference profiles under which p
is Pareto optimal. In particular, we can show that p is PO
under a preference profile if and only if the corresponding
truth assignment T satisfies ϕ.

The number of satisfying truth assignments of ϕ is then ex-
actly equal to 2n times the probability that assignment p is
Pareto optimal. Thus, PO-Probability is #P-hard, even when
restricted to the case where each agent has at most two possi-
ble preferences. �

We showed that when there are only a constant number of
uncertain agents, we can compute the PO probability in poly-
nomial time for the lottery model (Theorem 7). However, the
order of the polynomial that upper bounds the running time
of our proposed algorithm grows with the number of uncer-
tain agents. In particular, when k is the number of uncertain
agents, and ` is the maximum number of possible preference
lists for these uncertain agents, the running time of the al-
gorithm outlined in the proof of Theorem 7 is Ω(`k). We
improve on this result by showing that there exists a fixed-
parameter tractable algorithm that computes the PO probabil-
ity for the lottery model. That is, we provide an algorithm
that runs in time f (k)nc for some computable function f and
some fixed constant c independent of k, where n denotes the
input size. In other words, we show that the parameterized
problem k-PO-Probability, where the parameter is the num-
ber of uncertain agents, is fixed-parameter tractable for the
lottery model.

Theorem 9 For the lottery model, k-PO-Probability can be
solved in fixed-parameter tractable time.

Proof: Take an arbitrary instance of the problem k-PO-
Probability, consisting of agents 1, . . . , n, items o1, . . . , on,
and an assignment σ. W.l.o.g. assume that the assignment
gives each agent i item oi, and that the uncertain agents are
agents 1, . . . , k. For each uncertain agent i, let �i,1, . . . ,�i,ui

denote the different possible preferences for agent i. Ad-
ditionally, assume w.l.o.g. that for each of the uncertain
agents 1, . . . , k, each of the possible preferences for these
agents occurs with probability `/d where the numerator ` can
vary between different agents and different possible prefer-
ences, but where the denominator d is common among all
agents and all possible preferences. In other words, all prob-
abilities mentioned in the instance are rational numbers that
share a common denominator d. If this were not the case, we
could straightforwardly transform the instance in polynomial
time to an equivalent instance that does satisfy this property.
Also, assume w.l.o.g. that σ admits no trading cycle that in-
volves only certain agents. If this were the case, then σ is
PO with probability zero, and we can filter out such trivial
instances using the result of Theorem 5.

We now show how to compute the probability that σ is
PO in fixed-parameter tractable time. Our computation will
proceed in three stages:

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

81



(1) We construct a directed graph G with O(ku2k2
) vertices,

where the edges are weighted. Here u denotes the max-
imum number of possible preferences for any uncertain
agent.

(2) We count the number of homomorphisms f of a directed
path P2k+2 of length 2k + 2 to this graph G, where each
homomorphism is counted multiple times according to
(the product of) the weights on the edges in f (P2k+2).
This can be done in polynomial time using an extension
of a known algorithm [Flum and Grohe, 2004; 2006].

(3) We divide the weighted total number of homomorphisms
of P2k+2 to G by the number dk to obtain the probability
that the given assignment σ is PO.

We begin with stage (1), and we construct the weighted, di-
rected graph G. Let Π = {o1, . . . , ok}

2 be the set of all possible
pairs (oi, o j) of items among o1, . . . , ok. We define the set V of
vertices of G as follows. First, we define an auxiliary set V ′:
V ′ = {1, . . . , k + 1} ∪ {(i,�i, j) | i ∈ [k], j ∈ [ui]}. Then, we de-
fine the set V of vertices as follows: V = {s, t}∪ {(v′,Π′) | v′ ∈
V ′,Π′ ⊆ Π}. That is, the graph G has vertices s and t, and 2k2

copies of each element in V ′ (one for each Π′ ⊆ Π). Intu-
itively, the vertices s and t will act as source and target for
each homomorphism of P2k+2 to G.

The sets Π′ ⊆ Π will be intuitively used to memorize the
‘trading paths’ (i.e., paths in the trading cycle graph) that re-
sult from particular choices of the preference lists �i, j cho-
sen for the agents 1, . . . , k. That is, each (oi, o j) ∈ Π′ cor-
responds to a path from oi to o j in the directed graph with
vertices o1, . . . , on where there is an edge from oi′ to oi′′ if
and only if agent i′ prefers item oi′′ to item oi′ .

We construct the set E of (weighted and directed) edges as
follows.
• We add an edge with weight 1 from s to (1, ∅).
• For each i ∈ [k], j ∈ [ui], and Π′ ⊆ Π, we add an edge

from (i,Π′) to (i,�i, j,Π
′). This edge has weight `, where

the possible preference list �i, j for agent i occurs with
probability `/d.

• For each i ∈ [k], j ∈ [ui], and Π′ ⊆ Π, we add an edge
with weight 1 from (i,�i, j,Π

′) to the vertex (i + 1,Π′′),
where the set Π′′ (with Π′ ⊆ Π′′ ⊆ Π) consists of all
pairs (oi′ , oi′′ ) for which there is a path from oi′ to oi′′ in
the ‘trading cycle graph,’ constructed using �i, j and Π′.
To construct Π′′, consider the following graph GΠ′,�i, j .
The vertices of this graph are o1, . . . , on. For each
pair (oi′ , oi′′ ) of vertices among ok+1, . . . , on, there is an
edge from oi′ to oi′′ if and only if agent j prefers item oi′′

to item oi′ . Moreover, for each (oi′ , oi′′ ) ∈ Π′, we
add an edge from oi′ to oi′′ . Finally, for each agent oi′

among ok+1, . . . , on, we add an edge from oi to oi′ if and
only if oi′ �i, j oi. We then let Π′′ ⊆ Π be the set of
all pairs (oi′ , oi′′ ) such that there is a path from oi′ to oi′′

in GΠ′,�i, j . Clearly, Π′ ⊆ Π′′ ⊆ Π.
• For each Π′ ⊆ Π such that (oi, oi) < Π′ for all i ∈ [k], we

add an edge with weight 1 from (k + 1,Π′) to t.
Using this construction, we can show that the choices �1, j1

, . . . ,�k, jk of preferences for the agents 1, . . . , k that make the

assignment Pareto optimal are in one-to-one correspondence
with the homomorphisms f from P2k+2 to G. (Due to space
reasons, we omit a formal proof of this claim.)

We count each such homomorphism f in a weighted fash-
ion as follows—this is phase (2). Take a homomorphism f
from P2k+2 to G. Its weight in the grand total is the prod-
uct of the weights for each edge in f (P2k+2). The only
edges in f (P2k+2) that have weight > 1 are edges from (i,Π′)
to (i,�i, j,Π

′). Such an edge has weight `, where the probabil-
ity that �i, j occurs is `/d. Then, the total weighted sum of all
homomorphisms is equal to p · dk, where p is the probability
that the given assignment is Pareto optimal. Therefore, in or-
der to compute p, we only need to take the weighted sum of
all homomorphisms, and divide it by dk—this is phase (3).

All that remains is to argue how we can compute the
weighted sum of all homomorphisms f from P2k+2 to G in
polynomial time. We can do this by extending a known
polynomial-time algorithm to count the number of homomor-
phisms of a graph whose treewidth is bounded by a fixed
constant into another graph [Flum and Grohe, 2006, Theo-
rem 14.7]. Since paths have treewidth 1, counting the num-
ber of homomorphisms from a path to another graph can be
done in polynomial time using this algorithm. This algorithm
uses a dynamic programming approach to count the number
of homomorphisms. This dynamic programming technique
can straightforwardly be extended to take into account the
weights of the homomorphisms. (We omit a detailed descrip-
tion of the extended algorithm.)

This concludes our description of the fixed-parameter
tractable algorithm that solves k-PO-Probability for the lot-
tery model. �

An additional interesting problem that one might consider
is to decide, given two assignments, which one has a higher
probability of being PO. We conjecture that this problem is
PP-complete for the lottery model.

5 Conclusions
Computing Pareto optimal outcomes is an active line of re-
search in economics and computer science. We see that as
we move from deterministic preferences to uncertain prefer-
ences, the complexity of computing Pareto optimal outcomes
jumps significantly even though the input for problems we
study may not be compact. The computational hardness re-
sults carry over to more complex models in which there may
be more items than agents, agents may have capacities, and
items may have copies. For future work, we have started
looking into other uncertainty models of compact indifference
and pairwise [Aziz et al., 2016a]. An orthogonal but equally
interesting direction will be to consider other fairness, stabil-
ity, or efficiency desiderata.
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