
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Declarative Preferences in Reactive BDI Agents

Mohajeri Parizi, M.; Sileno, G.; van Engers, T.
DOI
10.1007/978-3-030-69322-0_14
Publication date
2021
Document Version
Final published version
Published in
PRIMA 2020: Principles and Practice of Multi-Agent Systems
License
Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):
Mohajeri Parizi, M., Sileno, G., & van Engers, T. (2021). Declarative Preferences in Reactive
BDI Agents. In T. Uchiya, Q. Bai, & I. Marsá Maestre (Eds.), PRIMA 2020: Principles and
Practice of Multi-Agent Systems: 23rd International Conference, Nagoya, Japan, November
18–20, 2020 : proceedings (pp. 215-230). (Lecture Notes in Computer Science; Vol. 12568), (
Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-030-69322-
0_14

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://doi.org/10.1007/978-3-030-69322-0_14
https://dare.uva.nl/personal/pure/en/publications/declarative-preferences-in-reactive-bdi-agents(19e8d7e2-3980-433e-bbbf-86687e985b8d).html
https://doi.org/10.1007/978-3-030-69322-0_14
https://doi.org/10.1007/978-3-030-69322-0_14

Declarative Preferences in Reactive BDI Agents

Mostafa Mohajeri Parizi(B), Giovanni Sileno, and Tom van Engers

Complex Cyber Infrastructure, Informatics Institute, University of Amsterdam,
Amsterdam, The Netherlands

{m.mohajeriparizi,g.sileno,vanengers}@uva.nl

Abstract. Current agent architectures implementing the belief-desire-intention
(BDI) model consider agents which respond reactively to internal and external
events by selecting the first-available plan. Priority between plans is hard-coded
in the program, and so the reasons why a certain plan is preferred remain in the
programmer’s mind. Recent works that attempt to include explicit preferences in
BDI agents treat preferences essentially as a rationale for planning tasks to be
performed at run-time, thus disrupting the reactive nature of agents. In this paper
we propose a method to include declarative preferences (i.e. concerning states of
affairs) in the agent program, and to use them in a manner that preserves reactiv-
ity. To achieve this, the plan prioritization step is performed offline, by (a) gen-
erating all possible outcomes of situated plan executions, (b) selecting a relevant
subset of situation/outcomes couplings as representative summary for each plan,
(c) sorting the plans by evaluating summaries through the agent’s preferences.
The task of generating outcomes in several conditions is performed by translat-
ing the agent’s procedural knowledge to an ASP program using discrete-event
calculus.

Keywords: BDI agents · CP-nets · Preferences · Belief-desire-intention ·
Answer set programming

1 Introduction

In the last decades several attempts have been made to move from machine-oriented
views of programming towards concepts and abstractions that more closely reflect
the way in which humans conceive the world. In particular, the belief-desire-intention
framework (BDI) [30], building upon a theory of mind [5], has been introduced to
provide a basis for the implementation of computational agents that exhibit rational
behaviour, using the same representations that we typically use to address human
behaviour. In the decision-making literature, instead, particular attention is given to
the role of preferences: any model of agency involving decision-making is deemed to
abide the agent’s preferences [28]. This does not imply that any model of agency will
rely on explicit preferences, rather it affirms the general principle that when there are
multiple goals that should be achieved (or multiple ways to achieve a certain goal or
even multiple sets of states that can be reached) the best course of action is the one that
abides the most to the agent’s preferences [28]. In practice, preferences can vary from

c© Springer Nature Switzerland AG 2021
T. Uchiya et al. (Eds.): PRIMA 2020, LNAI 12568, pp. 215–230, 2021.
https://doi.org/10.1007/978-3-030-69322-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69322-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-69322-0_14

216 M. M. Parizi et al.

the implicit “maximize utility” of optimizing agents [27] to explicit preferences spec-
ified in a preference representation language [7,34]. Unexpectedly, none of the main
BDI languages presented in the literature support explicit preferences.

The present work proposes an approach for adding explicit declarative preferences
(i.e. preferences about states of affairs possibly holding in the world) into BDI agent
scripts. The novel contribution consists in presenting an offline method aiming to pre-
serve the reactive executable nature of BDI agents. Declarative preferences are compiled
together with the procedural knowledge and knowledge about primitive actions speci-
fied in the program into prioritized procedural knowledge. The resulting script is usable
by any (AgentSpeak(L)-like) BDI interpreter such as Jason [3] or AgentScriptCC [25]
without any modification to the reasoning cycle. The compilation approach has been
selected to provide programmers with a higher abstraction model without compromis-
ing performance in execution. Indeed, our target use case is to embed purpose and con-
straints to programs—using intentional agents as controllers of given programs—for
applications running on data-sharing infrastructures.

The paper is structured as follows. Section 2 provides an overview on related litera-
ture. Section 3 contains the proposed approach as the core of our contribution. Section 4
presents an illustrative example of application. Finally Sect. 5 contains the discussion
and a note on future developments.

2 Background

BDI Agents. Agents specified following a BDI framework are represented by three
mental attitudes. Beliefs are facts that the agent believes to be true. Desires capture
the motivational dimension of the agent, typically conflated with the more concrete
form of goals, representing procedures/states that the agent wants to perform/achieve.
Intentions are selected conducts (or plans) that the agent commits to (in order to advance
its desires).

Since their origin [30], the essential feature associated to BDI architectures is the
ability to instantiate abstract plans that can (a) react to specific situations, and (b)
be invoked based on their purpose. Consequently, the BDI execution model naturally
relies on a reactive model of computation, usually in the form of some type of event-
condition-action (ECA) rules often referred to as goal-plan rules. Goal-plan rules are
uninstantiated specifications of the means (in terms of course of actions, or plan) for
achieving a certain goal [30]. These constructs represent essentially the procedural
knowledge (how-to) of the agent.

In current BDI implementations, preferences between these optional conducts are
specified through a static ordering assigned by the programmer, typically via the order-
ing of rules in the code: the higher a rule is in the script, the more priority the associated
plan has. This explains why most current frameworks including Jason [3], 2APL [8],
AgentScriptCC [25], etc. are genuinely reactive: the scripts are interpreted without the
need for any additional introspection/deliberation steps. However, these frameworks
also expose functions that can be modified to implement alternative mechanism for
goal-plan rule selection during the deliberation cycle. The latter option has been taken
by almost all works adding explicit preferences to BDI agents [7,27,34]: the selection

Declarative Preferences in Reactive BDI Agents 217

of the most preferred alternative is taken as a reflective process, where preferences pro-
vide a rationale to be applied online during the agent’s deliberation cycle. The idea of
relying on an offline step is instead proposed also in [24], but they only focused on
procedural preferences (“I prefer to be doing ai rather than doing aj”), which have a
different level of abstraction w.r.t. to declarative preferences (“I prefer being in state si
rather than being in state sj”).

Preference Languages. Several models of preferences have been presented in the
decision-making and planning literature, with various levels of granularity and expres-
siveness (see e.g. [11]). The most straightforward quantitative approaches are based
upon utility theory and related forms of decision theory. In [6] one can find some exam-
ples of integration of these types of preferences in a BDI architecture.

Although quantitative approaches bring clear computational advantages, they also
suffer from the non-trivial issue of translating users’ preferences into utility functions.
This explains the existence of a family of qualitative or hybrid solutions, as LPP [1] and
PDDL3 [16]. Proposals exist for integrating LPP in BDI agents [34]. Other preference
models, as CP-nets (qualitative) [4] and GAI networks (quantitative) [17], have been
specifically introduced for taking into account dependencies and conditions between
preferences via compact representations [28], highly relevant in domains with a large
number of features. In the present work we will focus on CP-Nets because they rely
on weaker assumptions, and exhibit primarily a qualitative nature. To our knowledge,
[24] was the first attempt to introduce this type of representational models in a BDI
architecture, although focusing only on procedural preferences.

More in detail, conditional ceteris paribus preferences networks (CP-nets) are a
compact representation of preferences in domains with finite attributes of interest [4].
An attribute of interest is an attribute in the world (e.g. weather) that the agent has some
sort of preference over its possible values (e.g. sunny and rainy). CP-nets build upon
the idea that most of the preferences people make explicit are expressed jointly with
an implicit ceteris paribus (“all things being equal”) assumption. For instance, when
players say “I prefer victory over loss”, they do not mean at all costs and situations,
but that they prefer victory, all other things being equal. An example of conditional
preference could be “If I’m losing a game, I prefer to enjoy myself”.

From Agent Scripts to Logic Programs. Reasoning about the effects of actions/plans
in different contexts is a step necessary to decide their conditional, relative preferabil-
ity. To implement a proof of concept for the proposed off-line approach, we relied here
on the translation of agent scripts to ASP programs, but other choices would have also
been possible. In the literature there are a fewworks that link BDI programs to logic pro-
grams [2], but, for the present work, we take inspiration from [10], which presents a for-
mal method for translating a HTN planning domain to logic programs. This choice was
motivated by the close connection between BDI programs and HTN planning domains,
which has been explored extensively in the literature [23,33].

Answer set programming (ASP) is a knowledge representation and reasoning
(KRR) paradigm, based on the stable-model semantics [15], oriented towards difficult
(NP-hard) search problems. ASP is used successfully in a variety of applications in both

218 M. M. Parizi et al.

academia and industry. In ASP, similarly to Prolog, the programmer models a problem
in terms of rules and facts, rather than specifying an algorithm. The resulting code is
given as input to a solver, which returns multiple answer sets or stable models that
satisfy the problem.

Discrete Event Calculus. Modeling and reasoning with effects of actions efficiently is
still an open question in AI and logic; however, focusing on logic programming, most
solutions build upon situation calculus [22] and event calculus [18,32]. For our proof
of concept we will consider discrete event calculus (DEC) [26]. By translating the agent
script into a DEC compatible ASP program and solving this program with DEC axioms
we are able to evaluate the execution outcome of the translated program.

Fig. 1. Comparison of different approaches towards preferences in BDI agents.

3 Method

The approach proposed here aims to integrate (embed or internalize) preferences into
BDI scripts without modifying the BDI deliberation cycle as it is normally implemented
in current BDI agent platforms. For doing so, we extend agent programs with two addi-
tional knowledge components: (1) declarative preferences (i.e. about states of affairs),
and (2) expectations about the effects of primitive actions. Such enriched script is not
directly used for execution (i.e. fed to the BDI interpreter). We proceed instead with an
off-line method that compiles this script into a new one:

(a) by using the expectations about primitive actions, we create a set of contextualized
outcomes for each goal-plan rule;

(b) for each possible context condition, goal-plan rules are ordered from best to worst,
based on their outcome according to the preference specifications;

(c) the script is rewritten but this time the placement of each goal-plan rule follows its
position in the ordering obtained at step (b).

Note that both preferences and primitive actions specifications are omitted from the
newly generated script, which is now executable by BDI interpreters/compilers such
as Jason [3] or AgentScriptCC [25]. This contrasts other approaches that extend BDI
frameworks with preference checking at run-time as a rationale for plan selection (e.g.
[34]). Figure 1 schematizes the differences between approaches.

Declarative Preferences in Reactive BDI Agents 219

3.1 Components of Extended Agent Programs

Our approach requires three components for specifying agent programs: goal-plan rules,
expectations about primitive actions, and preferential structures based on CP-nets.

Goal-Plan Rules. A goal-plan rule pr is a tuple 〈e, c, p〉, where: e is a triggering event,
addressing an invocation condition e.g., adoption/failure of an unistantiated goal, asser-
tion/retraction of a belief; c, the context condition, is a first-order formula over the
agent’s belief base, that, if true, makes the rule applicable; p, the plan body, consists of
a finite sequence of steps [a1, a2, ..., an] where each ai is either a goal (i.e. an invoca-
tion attempting to trigger a goal-plan rule), or a primitive action. A goal-plan rule pri is
then an option or a possibility for achieving a goal g, if the invocation condition of pri
matches with g, and the context condition of pri matches the current state of the world,
as perceived or encoded in the agent’s beliefs.

We will refer here to a syntax close to that of AgentSpeak(L) [29], although with
slightly different semantics. Unlike AgentSpeak(L), which does not primarily support
declarative goals [8], !g will denote here an achievement goal. This means that g is
a state or condition in the world that can hold or not hold (cases denoted respectively
as g or ~g). Positive and negative achievement goals, e.g. concerning the production
and removal of a condition g, will be denoted respectively as !g and !~g. A primi-
tive action named a will be denoted as #a. Then, for any condition g, +!g denotes a
goal-invocation (possible triggering event of goal-plan rule). As an example of a script,
consider:

+!g : c <= !a.
+!g <= !~b.

This code means that if the triggering event +!g occurs, if c holds, the agent commits
to achieve a, otherwise (that is, c does not hold) the agent commits to achieve ~b,
or equivalently, to escape b. The backward sense of the arrow “<=” highlights the
derivation due to instrumental reasoning (plans as a mean to reach the goal).

The standard AgentSpeak(L) syntax provides no unique identifier to distinguish
goal-plan rules (although Jason offers some labeling construct). There is also no stan-
dard way to have direct access to the plan of a rule. A possible solution to identify
a specific plan without explicit labeling is to refer to the invocation condition of the
associated rule alongside its position, e.g. with respect to other rules with the same
invocation condition. Thus, the two plans in the code excerpt above about achieving g
via achieving a and escaping b will be respectively denoted as !g[0] and !g[1].

Primitive Actions. Primitive actions are the lowest-level actions that can be used in
the procedural knowledge of an agent; they are the actual means for the agent to change
the environment (or itself). As a matter of fact, BDI agents rely on goal-plan rules as an
abstract task decomposition tool, mapping high-level recipes to an appropriate sequence
of primitive actions to be performed in the environment.

Several approaches to specify expectations about primitive actions are available in
the literature, especially in the AI planning field (e.g. operators for works derived from

220 M. M. Parizi et al.

STRIPS [13], primitive tasks for works based on HTNs [12]), but they are not common
in the BDI literature. This is because, in contrast to a common assumption in planning,
BDI agents are deemed to interact with a non-deterministic environment; even more,
as it is stated in [8], the effects of external (primitive) actions are “actually” deter-
mined by the environment and might be not known or incorrectly known by the agents
beforehand. While this is true at run-time, it is also reasonable to consider that an agent
can have some expectations about the effects of its (primitive) actions beforehand. For
instance, when an agent buys a train ticket it may encounter many problems and not
receive a ticket, but it is fair to assume that the agent knows that “if I buy a train ticket,
then I will have a ticket”.

Because the preference compilation method proposed here occurs off-line, our work
can be associated to a certain extent to the planning domain–although here agents do
not create new plans but deal only with the given procedural knowledge. In STRIPS
primitive actions are specified with the description of their effects, and of the condi-
tions under which they are applicable, while in HTN primitive actions are only spec-
ified by their effects (delegating the precondition to methods). To take advantage of
the complementary aspects of STRIPS and HTN approaches to primitive actions (more
expressiveness and more control for the designer), we consider the hybrid solution pro-
posed in [20]: “omitting strict action preconditions, assuming instead that actions leave
the state unchanged if their preconditions are not met”. This means that, although pre-
conditions are part of action specification, they do not determine the applicability of the
action, but they merely put conditions over the effects. A very similar approach is taken
in the agent language 2APL [8] for belief update actions.

More formally, a primitive action a is specified as a tuple 〈h,Δ〉, where h is the
head or name of the action and Δ is the set of conditional effects of the action. Each
δ ∈ Δ is a combination of effects, captured as 〈c, e〉, in which c is a logical expression
modeling the condition necessary for that combination to occur, and e is a list of effects
each having a modifier + or - and a propositional atom t. If the expression c is true
when the action occurs, then, after action completion, atoms with the + modifier are
expected to hold and atoms with the - are expected to not hold. In case multiple more
that one condition holds, all applicable effects are expected to happen and if there are
conflicts the precedence goes to the effect described later. A simple syntax is used to
represent the primitive action effects in the forms of #h{LCE}, where h is the head of
action, and LCE is a dot separated list of condition-effects CE in the form of c => e
and where c is the is a propositional expression representing the condition e is a comma
(,) separated list of positive (initialization) or negative (termination) effects. Consider
for instance the following statement:

#a { c1 => +p,-q. c2 => +q. }

The forward sense of the arrow “=>” highlights the production nature of CE compo-
nents (action in conditions produces effects). The previous formula means that (the
agent expects that) if the primitive action a occurs, if c1 holds, then p will become
true, if c2 holds, then q will become true. It can also happen that both c1 and c2
hold which results in a contradiction between +q and -q in the post-condition. As this
approach utilises an ASP solver (Sect. 3.2) a contradiction stops the answer branch. We
introduce specific axioms to raise a warning in this case.

Declarative Preferences in Reactive BDI Agents 221

CP-Nets for Declarative Preferences. Constraining our attention on declarative goals,
the preferences we target are about the presence or absence of certain conditions, here
captured respectively by positive or negative literals. In this frame, the attributes of
interests for the CP-net concern possible conditions that might occur in the world.

In behavioural terms, each attribute has two possible values: (1) achieving or main-
taining the condition g, here denoted with the goal name !g, (2) avoiding or escaping
the condition g, denoted as !~g. Following a syntax similar to the one used for pro-
cedural preferences in [24], we denote the preference for achieving/maintaining the
condition g over avoiding/escaping it in condition c as:

!g > !~g : c.

In general, cmight be an higher priority preferential attribute, a contextual condition or
a logical true in the case of an unconditional preference.

3.2 Transformation to Logic Program

In order to evaluate plans in terms of their preferability, we need to infer the contextu-
alized outcomes associated to each goal-plan rule. A possible solution for this task is to
translate the initial BDI script with the added knowledge of primitive action specifica-
tions to a discrete event calculus (DEC)-based ASP program, so that each answer set of
the program is a contextualized outcome for a goal-plan rule. The following section
describes the translation method we followed. Other discrete simulation techniques
(possibly more efficient) are indeed possible, but such difference in implementation
would not functionally change the present proposal.

An agent program is a tuple 〈S,A, P,G〉, where S is a set of propositions repre-
senting all possible beliefs about the world that can be true or false at each time; A is
a set of primitive actions, each formalized as 〈h,Δ〉; P is a set of goal-plan rules, each
formalized as 〈e, c, p〉; G is a set of (achievement) goals derived from the goal-plan rule
heads. The following properties and relations can be identified:

1. For each goal g ∈ G, g ∈ S.
2. For each goal-plan rule pr = 〈e, c, p〉 ∈ P , the atoms used in the expression c are

propositions in S.
3. The effects of each primitive action α ∈ P is denoted as 〈c, add, del〉. The atoms of

the expression c and the atoms present in add and del are all propositions in S.
4. Each step of the plan body of each goal-plan rule is either a primitive action #a or

a sub-goal !g. In the former case there is a primitive action α ∈ A that α = 〈a,Δ〉
and in the latter case there is a g ∈ G.

5. All proposition s ∈ S falls at least under one of the sets relevant for properties 1, 2,
and 3.

Thus, for each proposition s ∈ S, a predicate fluent(s) is added to the logic pro-
gram, expressing that s is a fluent of DEC. The state of a proposition s at each time t is
captured by the predicate holdsAt(s, t). For each primitive action αi = 〈ai,Δi〉 a pred-
icate event(ai). is added to the logic program expressing that ai is an event of DEC.
For each goal g ∈ G a predicate goal(g) and for each goal-plan rule gi = 〈g, c, p〉 ∈ P ,
a predicate plan(gi, g) is added to the program. Note that only primitive actions and

222 M. M. Parizi et al.

propositions are translated into DEC predicates, whereas goal-plans and goals are only
means to guide primitive actions.

Following DEC axioms, the execution of an action (event) a at time t is represented
with the predicate happens(a, t). In our translation we use a predicate doAction/3
that contains also the goal-plan rule of which this action is part of. Their relationship is
captured as follows:

happens(A, T) ← doAction(A,P, T), event(A), time(T). (1)

The conditional effects of primitive actions to the program are expressed by the
DEC predicates initiates/3 and terminates/3. For each the primitive action α =
〈a,Δ〉, for each effect δ = 〈c, e〉 ∈ Δ, for each conditional effect of initiating a proposi-
tion swith modifiers + or - under condition c, a logical rule in form of respectively rules
(2) and (3) is added to the program. In the most general case, the condition expression c
is a logical formula C(T), translated respectively by the predicates holdsAt(ci, T) and
not holdsAt(ci, T).

initiates(a, s, T) ← time(T), C(T). (2)

terminates(a, s, T) ← time(T), C(T). (3)

To represent the adoption, completion and selection of goals or sub-goals by the
agent, we introduce the predicates adoptGoal/4, complGoalAt/3, selP lan/3. An
instantiation adoptGoal(g, p, t′, t) states that goal g ∈ G is adopted by the agent at
time t, as a sub-goal of plan p that started at t′; complGoalAt(g, t, t′) conveys that the
goal g–adopted at time t–is completed at time t′; selP lan(gi, g, t) means that the plan
gi is instantiated to achieve goal g at time t.

The first step for mapping the goal-plan rules concerns the context condition. We
introduce the predicate applP lan(P, T), meaning that goal-plan rule P is applicable
at time T . For each goal-plan rule gi = 〈g, c, p〉 we add the following rule (c is again
translated to C(T) by using predicate holdsAt/2):

applP lan(gi, T) ← time(T), plan(gi, G), C(T). (4)

Next, we connect triggering events to plan bodies while also taking into account the
applicability of the goal-plan rules. Axiom (5) makes sure that when a goal is adopted,
for each answer set exactly one of its applicable plans are selected:

{selP lan(P ′, G, T) : applP lan(P ′, T), plan(P ′, G)} = 1 ← adoptGoal(G,P, T ′, T).
(5)

Mapping the sequence of actions (steps) specified in a plan is less direct. Following
the method presented in [10], we consider that the selection of the plan at a time t only
triggers the first step of the plan at time t + 1, and from then on the completion of each
step at a time t triggers the next step at time t + 1, save for the final step of the plan
that triggers the completion of the plan at time t + 1. The reason behind this method is
that each step of a plan can be either a sub-goal or a primitive action; if we can fairly
assume a primitive action takes exactly one time-step to execute, the same can not be

Declarative Preferences in Reactive BDI Agents 223

said for sub-goals (as, depending on their refinements, they can take several time-steps
to complete).

The first step (k = 0) of the plan gi associated to a goal g is encoded in rule (6) or
(7) if the first step respectively is a primitive action a or adoption of a sub-goal g′.

doAction(a, gi, T + 1) ← selP lan(gi, g, T). (6)

adoptGoal(g′, gi, T, T + 1) ← selP lan(gi, g, T). (7)

From the second step on (k ≥ 1), the kth step is encoded to happen at time t′ + 1
if t′ is the time of completion of k − 1th step, as shown in rule (8) if the kth step is the
execution of a primitive action a, rule (9) if the kth step is the adoption of a sub-goal g′

or rule (10) if k − 1th is the final step of plan gi:

doAction(a, gi, T
′ + 1) ← ∗. (8)

adoptGoal(g′, gi, T, T ′ + 1) ← ∗. (9)

complGoal(g, T, T ′ + 1) ← ∗. (10)

The right side of these rules (∗) has to be replaced with right side of rules (11) or (12)
if k − 1th step is respectively a primitive action a′ or the adoption of sub-goal g′′.

∗∗ ← selP lan(gi, g, T), doAction(a′, gi, T ′), T ′ > T. (11)

∗ ← selP lan(gi, g, T), adoptGoal(g′′, gi, T, T ′′),
complGoal(g′′, T ′′, T ′), T ′ > T ′′ (12)

The following axiom is added to reflect the achievement nature of goals. When a
goal !g completes at time T ′, then g is a state in the world that holds at time T ′:

holdsAt(G,T ′) ← goal(G), complGoal(G,T, T ′) (13)

We use the following axiom to let the ASP grounder create time-steps as it goes; i.e.
t + 1 is a time step if t is a time-step and there is a step scheduled for t:

time(T + 1) ← time(T),
(selP lan(..., T); doAction(..., T);
adoptGoal(..., T); complGoal(..., T)). (14)

After translating the script into an ASP program we need to find all the traces (i.e.
outcomes of execution paths) of the script for all possible entry points (i.e. context
conditions). Here, there is no assumption of a single entry point for the script and, based
on internal or external events, any goal could in principle be adopted in any condition.
Axiom (15) is used to force the solver to adopt exactly one goal as entry point in each
answer set:

{adoptGoal(G, init, 0, 1) : goal(G)} = 1. (15)

The answer sets of this program, denoted as R, will contain all the hypothetical paths
that the agent script can start and run, including all the different refinements, i.e. all
different initial states that may be at the starting point.

224 M. M. Parizi et al.

3.3 Plan Priority Extraction and Script Rewriting

Prioritizing plans is needed only if there is more than one plan for achieving a goal;
therefore, for the rest of this section when we refer to all goals, we refer to all goals that
have more than one plan associated to them.

As a first step we need to find all the conditions for which a plan gi can be instanti-
ated, here denoted as a multi-set C(gi). To do this, for each trace r ∈ R, for each k-th
occurrence of predicate selP lan(gi, g, t) ∈ r, we create a set c(gi, r)[k] (for simplicity
denoted as c(gi, r), assuming there is only one occurrence). Then c(gi, r) is represen-
tative of a state for which plan gi is instantiated in the trace. Using the trace r, and
assuming selP lan(gi, g, t) ∈ r, c(gi, r) is constructed by the following elements:

1. Motivational Context: all the goals g′ whose decomposition in r contain the plan
gi, i.e. all the goals that are adopted before but not completed at t; formally, all g′

such that (adoptGoal(g′, P, T, t′)∧ complGoalAt(g′, t′, t′′)) ∈ r with t′ ≤ t ≤ t′′;
2. Propositions: all positive (resp. negative) fluent f of the program which is in the

trace r as holdsAt(f, t) (resp. not holdsAt(f, t));
3. Achieved Goals: all the goals g′′ that are achieved as part a motivational context of

the plan gi prior to t; based on axiom (13), a completed goal g is present in the trace
as holdsAt(g, t).

An outcome of a trace r is a propositional state of the final time-step of the trace,
denoted as Γ (r), and includes all the (declarative) goals achieved in r plus the state of
all the fluents at the final time-step.

Under the condition of consistency of the preferential structure and the preferential
comparison algorithm presented in [4], there is a (possibly strict) order between out-
comes, and we say an outcome Γ (r) is preferred to outcome Γ (r′) and denote it as
Γ (r)
 Γ (r′). Each C(gi) is a multi-set, meaning that for different traces r, r′ ∈ R,
we often have c(gi, r) = c(gi, r′) but Γ (r) �= Γ (r′). This informally means that, in the
same conditions, selecting a plan can have multiple different reachable outcomes. An
outcome is called reachable for a plan gi if all refinements of gi will result in that out-
come . However, as observed in [21], this approach starts from a very pessimistic view,
ignoring the fact that the agent itself (not an adversary) chooses which refinements to
make in the future, so instead of thinking what it might bring about in all refinements,
we are interested in what is the best outcome that can happen under some refinement
(the best outcome here indicates the optimal outcome according to the preferences spec-
ified in the CP-net).

The next step of the algorithm is summarizing the outcomes of plans, which means
generating an optimal outcome for each plan gi of each goal g, under each different
unique condition. The optimal outcome is dependent on the conditions in which the
plan was selected. More formally, an outcome Γ (r) is optimal for the condition plan gi
under condition c(gi, r), if, for all other traces r′ such that c(gi, r) = c(gi, r′), we have
Γ (r)
 Γ (r′) or Γ (r′) � Γ (r). This optimal outcome of plan gi under condition of
c = c(gi, r) is referred to as γ(gi, c).

At this point, we need to find a best-to-worst ordering between the optimal outcomes
of plans of each goal g for each condition that g may be adopted. The conditions for
which a plan gi is instantiated are a subset of the conditions for which the goal g can be

Declarative Preferences in Reactive BDI Agents 225

adopted, which means C(gi) ⊆ C(g). Similarly, the conditions for which a goal may
be adopted is the union of the conditions for which all plans gi may be instantiated.

We say that a plan gi
 gj under condition c ∈ C(g) if one of the following is true:

1. we have c ∈ C(gi) but c /∈ C(gj)
2. we have both c ∈ C(gi) and c ∈ C(gj) and also γ(gi, c)
 γ(gj , c)

The first rule is trivial and means that under a certain condition a plan that can be
instantiated and has an outcome is preferred to one that even hypothetically does not
have any outcomes. The second rule means that under similar conditions, between two
plans, one that has the preferred optimistic outcome is always preferred. By running
this procedure on all goals we can produce an ordering between plans.

4 Application

Suppose that a player agent has three ways to play a match: playing for fun, do whatever
needed to win, or play conservative to avoid to lose. Suppose now that the player might
want e.g. to enjoy its game as much as winning, but it might also prefer to gain sup-
port from observers, unless its position in the ranking (captured by propositions first
and last—that can not be true at the same time) is really low. Let us start from the
following procedural knowledge:

+!match <= !enjoy. // match[0]
<= !win. // match[1]
<= !~lose. // match[2]

+!enjoy <= #funny_playing.
+!~lose <= #robust_playing.
+!win <= #opportunistic_playing.

And the following expectations about primitive actions:

#funny_playing { => +support, -win. }
#robust_playing { => +support, -enjoy. }
#opportunistic_playing { => -support, -lose }

We then specify our agent by the following preferences

!win > !~win : last.
!support > !~support : ~last.
!win > !~win : support, ~last.
!enjoy > !~enjoy : first.

By applying the method presented in 3.2 we obtain a logic program1. As an indica-
tive excerpt, we report the goal-plan rule for match[0]:

adopts_goal(enjoy, match_0, T, T+1)
:- selects_plan(match_0, match, T).

finished(match, match_0, T, T2+1) :-
selects_plan(match_0, match, T),
adopts_goal(enjoy, match_0, T, T2),
finished(enjoy, P, T2, T3), T3 > T2.

1 Source available at https://gitlab.com/Mohajeri/as2asp.

https://gitlab.com/Mohajeri/as2asp

226 M. M. Parizi et al.

By solving the program with clingo [14], we obtain 192 answer sets (|R| = 192).
The only goal in the program with alternative plans is !match and so only the answer
sets containing this goal are needed. Focusing on its three goal-plan rules we consider
36 answer sets from which we extract 6 unique outcomes for each plan. An example of
condition and outcome extracted from a trace r for plan gi = match[0] is:

condition c1: ~win,~support,~enjoy,~lose,first,~last
outcome o1: ~win,support,enjoy,~lose,first,~last

Relating to the formalization of previous part we can say that c(match[0], r) = c1

and Γ (r) = o1.
Each answer set is evaluated in terms of the given preferential structure, resulting

in a partial ordering between different outcomes of traces. For instance, the answer sets
with outcome o2 are preferred over the answer sets with outcome o3. The dominance
checking is done with the tool CRISNER [31]:

outcome o2: ~win,support,enjoy,~lose,first,~last
outcome o3: win,~support,~enjoy,~lose,first,~last

Following our formalization, if we take two answer sets (traces) r and r′ such that
Γ (r) = o2 and Γ (r′) = o3, according to the preferential structure we infer that
Γ (r)
 Γ (r′). Then, following the ranking, we can give contextualized priorities to
plans, observing that e.g. if we have a condition:

condition c2: ~win,~support,~enjoy,~lose,first,~last

the plan match[0] is preferred over plan match[1], whereas plan match[1] is pre-
ferred over match[2]. Formally this means that, under condition c2, we have

match[0]
 match[1]
 match[2]

Considering all existing plans, the initial procedural knowledge can be then pri-
oritized. For the 3 plans associated to +!match there are 6 possible orderings. The
following code provides an example of conditional ordering obtained via our method
(including a boolean simplification step for the pre-conditions):

+!match : (last | ~enjoy) & ~first
<= !~lose.
<= !win.
<= !enjoy.

+!match : (~last | lose) & (last | enjoy) & ~win
<= !enjoy.
<= !win.
<= !~lose.

5 Discussion and Further Developments

The strong support in the decision-making literature for compact representations of
verbalized preferences—as for instance those captured e.g. by CP-nets [4]—motivates
their use in computational agents, especially in applications in which agents are deemed

Declarative Preferences in Reactive BDI Agents 227

to reproduce human behaviour. Indeed, our more general research effort aims to capture
intentional characterizations of (computational) behaviour of computational agents in
data-sharing infrastructures in support of policy-making and regulation activities. Reg-
ulating data-sharing requires to reproduce to a certain extent constructs similar to those
observed in human institutions (e.g. For which purpose the agent is asking access to
the resource? On which basis the infrastructure is granting access?). For traceability
and explainability reasons, decisions concerning actions need to be processed by the
infrastructure as much as other relevant operational aspects.

Introducing explicit preferences in BDI scripts brings three advantages: (1) It
increases the representational depth, capturing what is the rationale behind the priority
in plan selection; (2) It makes agent models more readable and explainable, as choices
are in principle transparently derived from the preferential structure; (3) It makes the
programs more reusable: it is plausible that agents (e.g. representatives of organiza-
tions) in a certain domain might share the same procedural knowledge even when hav-
ing different preferences, as much as that agents might change their policy without
changing their procedural knowledge.

The connections between desires, preferences and goals requires further clarifica-
tion. In the current work we started from the AgentSpeak(L) view of desires, for which
“goals are viewed as adopted desires” and while this is mostly accepted by the BDI
community, it hints to a gap between goals and desires pointed out already almost
twenty years ago [9]. In this work we used preferences essentially to specify desires
(in the sense of soft goals) (e.g. “I want to enjoy the game” as “I prefer to enjoy the
game more than not enjoying the game”) and relative strength between desires (if not
losing, “I want to gain support more than winning” as “I prefer to gain support more
than winning”). The priority between plans is then selected so as to satisfy at best the
desires of the agent. Note that in general the literature suggests that preferences are
derived from desires [19]; for our purposes, however, we discovered that two could be
seen as functionally equivalent. Further investigation is needed to see the consequences
of this reduction.

The proposed method here is indeed a contribution towards enhancing BDI agent-
programming languages with syntactic and semantic facilities to support explicit pref-
erences, but, in contrast to other works, it also fulfills the aim of maintaining reactivity,
one of the core properties of BDI agents (see [35], or [3], referring to AgentSpeak(L)
agents as “reactive planning systems”). BDI agents are theoretically developed to act
in dynamic environments and an offline view on preferences may seem too limiting at
first, as preferences of a dynamic agent can change in a highly dynamic environment.
This might explain why so few authors chose this path. However, we will put forward
two reasons why this is still a relevant issue. First, agent programs, today, are static
in nature; any modification at run-time relies on implicit forms of meta-programming
whose general effects are difficult to be anticipated. For instance, preferences might be
incomplete and/or conflicting. By adding an additional compilation step, these issues
might be captured while rewriting the script, so the user can be required to take action
to settle them. Second, reactivity is a valuable property to enable computationally scal-
able implementations (cf. modern reactive programming). Indeed, the uses we are aim-
ing to (simulations in support of policy-making, applications running on data-sharing

228 M. M. Parizi et al.

infrastructures) would greatly benefit of this choice. If each agent had to repeat online
the full derivation from preferences to preferred plan, the computational overhead
would strongly negatively affect performance. Besides this, with our method, we can
still allow agents to re-adapt periodically: i.e. update their preferences based on some
criteria (e.g. mimicking more successful agents), then update and reload their run-time
script. This approach is also cognitively more realistic: we, as humans, do not deliberate
upon our preferences for each action we perform.

However, we also acknowledge that the exploration of all context conditions and
possible outcomes is in general an intractable problem, even if we rely on optimized
solvers. The proposal presented here has to be seen merely as a functional proof of
concept; for actual use additional heuristics need to be added to reduce the search space
to most relevant nodes, for instance exploiting weights in ASP resolution.

In general, preferences might be not only concerning desired states of affairs, but
also possible states of affairs, or expectations about primitive actions, thus determining
that certain contexts are more relevant than others. This part of the problem has also
connections with probabilistic logic programming and reasoning with uncertainties.

In terms of priority for future developments, however, we recognize the work pre-
sented in this paper has been limited to propositional logic; clearly, extending it to
consider first-order logic (FOL) descriptions of both agent scripts and preferences is
an important objective for actual applicability. Additionally, while plan selection is the
only component of the BDI execution model studied in this work, a similar approach
could also be taken for other components of the deliberation cycle, for which other
authors resorted to reflective methods, like intent selection and event selection [36].

Finally, although the logic of CP-nets is widely accepted in the literature, the pres-
ence in our research of sequential choices and different types of goals adds complexities
that the CP-net syntax is not adequate to address in its default form; we acknowledge
the need for a more principled extension or an exploration of other representational
models for preferences.

Acknowledgments. This paper results from work done within the NWO-funded project Data
Logistics for Logistics Data (DL4LD, https://www.dl4ld.net) in the Commit2Data program (grant
no: 628.001.001).

References

1. Bienvenu, M., Fritz, C., McIlraith, S.A.: Planning with qualitative temporal preferences. In:
Proceedings of the 10th International Conference on the Principles of Knowledge Represen-
tation and Reasoning (KR2006), pp. 134–144 (2006)

2. Blount, J., Gelfond, M., Balduccini, M.: A theory of intentions for intelligent agents. In:
Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp.
134–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23264-5 12

3. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the golden fleece of agent-oriented pro-
gramming. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-
Agent Programming. MSASSO, vol. 15, pp. 3–37. Springer, Boston, MA (2005). https://doi.
org/10.1007/0-387-26350-0 1

https://www.dl4ld.net
https://doi.org/10.1007/978-3-319-23264-5_12
https://doi.org/10.1007/0-387-26350-0_1
https://doi.org/10.1007/0-387-26350-0_1

Declarative Preferences in Reactive BDI Agents 229

4. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: a tool for repre-
senting and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell.
Res. 21, 135–191 (2004)

5. Bratman, M.E.: Intention, Plans, and Practical Reason, vol. 10. Harvard University Press,
Cambridge (1987)

6. Cranefield, S., Winikoff, M., Dignum, V., Dignum, F.: No pizza for you: value-based plan
selection in BDI agents. In: Proceedings of the 26th International Joint Conference on Arti-
ficial Intelligence (IJCAI2017), pp. 178–184 (2017)

7. Dasgupta, A., Ghose, A.K.: Implementing reactive BDI agents with user-given constraints
and objectives. Int. J. Agent-Oriented Softw. Eng. 4(2), 141 (2010)

8. Dastani, M.: 2APL: a practical agent programming language. Auton. Agent. Multi-Agent
Syst. 16(3), 214–248 (2008). https://doi.org/10.1007/s10458-008-9036-y

9. Dignum, F., Kinny, D., Sonenberg, L.: From desires, obligations and norms to goals. Cogn.
Sci. Q. 2, 405–427 (2002)

10. Dix, J., Kuter, U., Nau, D.: Planning in answer set programming using ordered task decom-
position. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821,
pp. 490–504. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39451-8 36

11. Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in AI: an overview. Artif.
Intell. 175(7–8), 1037–1052 (2011)

12. Erol, K., Hendler, J., Nau, D.S.: HTN planning: complexity and expressivity. In: Proceedings
of the 12th AAAI Conference on Artificial Intelligence, pp. 1123–1129 (1994)

13. Fikes, R.E., Nilsson, N.J.: STRIPS: a new approach to the application of theorem proving to
problem solving. Artif. Intell. 2(3–4), 189–208 (1971)

14. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control: Preliminary
report. CoRR abs/1405.3694 (2014)

15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Pro-
ceedings of International Logic Programming Conference and Symposium, pp. 1070–1080
(1988)

16. Gerevini, A., Long, D.: Plan constraints and preferences in PDDL3. Technical report (2005)
17. Gonzales, C., Perny, P.: GAI networks for utility elicitation. In: Proceedings of the 9th

International Conference on the Principles of Knowledge Representation and Reasoning
(KR2004), pp. 224–233 (2004)

18. Kowalski, R., Sergot, M.: A logic-based calculus of events. N. Gener. Comput. 4(1), 67–95
(1986)

19. Lorini, E.: Logics for games, emotions and institutions. IfCoLog J. Log. Appli. 4(9), 3075–
3113 (2017)

20. Marthi, B., Russell, S., Wolfe, J.: Angelic Hierarchical Planning: Optimal and Online Algo-
rithms (Revised). Technical Report UCB/EECS-2008-150, pp. 1–22 (2008)

21. Marthi, B., Russell, S.J., Wolfe, J.: Angelic semantics for high-level actions. In: Proceedings
of the 17th International Conference on Automated Planning and Scheduling, pp. 232–239
(2007)

22. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial
intelligence. In: Machine Intelligence, pp. 1–51. Edinburgh University Press (1969)

23. Meneguzzi, F., De Silva, L.: Planning in BDI agents: a survey of the integration of planning
algorithms and agent reasoning. Knowl. Eng. Rev. 30(1), 1–44 (2013)

24. Mohajeri Parizi, M., Sileno, G., van Engers, T.: Integrating CP-nets in reactive BDI agents.
In: Baldoni, M., Dastani, M., Liao, B., Sakurai, Y., Zalila Wenkstern, R. (eds.) PRIMA 2019.
LNCS (LNAI), vol. 11873, pp. 305–320. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-33792-6 19

https://doi.org/10.1007/s10458-008-9036-y
https://doi.org/10.1007/978-3-540-39451-8_36
https://doi.org/10.1007/978-3-030-33792-6_19
https://doi.org/10.1007/978-3-030-33792-6_19

230 M. M. Parizi et al.

25. Mohajeri Parizi, M., Sileno, G., van Engers, T., Klous, S.: Run, agent, run! architecture and
benchmark of actor-based agents. In: Proceedings of Programming Based on Actors, Agents,
and Decentralized Control (AGERE20). ACM (2020)

26. Mueller, E.T.: Event calculus reasoning through satisfiability. J. Log. Comput. 14(5), 703–
730 (2004)

27. Nunes, I., Luck, M.: Softgoal-based plan selection in model-driven BDI agents. In: 13th
International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2014,
pp. 749–756 (2014)

28. Pigozzi, G., Tsoukiàs, A., Viappiani, P.: Preferences in artificial intelligence. Ann. Math.
Artif. Intell. 77(3–4), 361–401 (2016). https://doi.org/10.1007/s10472-015-9475-5

29. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Van
de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0031845

30. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceedings of the First
International Conference on Multi-Agent Systems (ICMAS1995), pp. 312–319 (1995)

31. Santhanam, G.R., Basu, S., Honavar, V.: Dominance testing via model checking. Proc. Natl.
Conf. Artif. Intell. 1, 357–362 (2010)

32. Shanahan, M.: The event calculus explained. In: Wooldridge, M.J., Veloso, M. (eds.) Artifi-
cial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48317-9 17

33. de Silva, L., Padgham, L., Sardina, S.: HTN-like solutions for classical planning problems:
an application to BDI agent systems. Theoret. Comput. Sci. 763, 12–37 (2019)

34. Visser, S., Thangarajah, J., Harland, J.: Reasoning about preferences in intelligent agent
systems. In: Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI2011), pp. 426–431 (2011)

35. Wooldridge, M.J., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev.
10(2), 115–152 (1995)

36. Yao, Y., Logan, B.: Action-level intention selection for BDI agents. In: Proceedings
of the 15th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS2016), pp. 1227–1236 (2016)

https://doi.org/10.1007/s10472-015-9475-5
https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/3-540-48317-9_17

	Declarative Preferences in Reactive BDI Agents
	1 Introduction
	2 Background
	3 Method
	3.1 Components of Extended Agent Programs
	3.2 Transformation to Logic Program
	3.3 Plan Priority Extraction and Script Rewriting

	4 Application
	5 Discussion and Further Developments
	References

