
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Persistent Asynchronous Adaptive Specialization for Generic Array
Programming

Grelck, C.; Wiesinger, H.
DOI
10.1007/s10766-018-0567-9
Publication date
2019
Document Version
Final published version
Published in
International Journal of Parallel Programming
License
CC BY

Link to publication

Citation for published version (APA):
Grelck, C., & Wiesinger, H. (2019). Persistent Asynchronous Adaptive Specialization for
Generic Array Programming. International Journal of Parallel Programming, 47(2), 164-183.
https://doi.org/10.1007/s10766-018-0567-9

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://doi.org/10.1007/s10766-018-0567-9
https://dare.uva.nl/personal/pure/en/publications/persistent-asynchronous-adaptive-specialization-for-generic-array-programming(3ac0d66d-e047-4e02-99fc-0efa83a69020).html
https://doi.org/10.1007/s10766-018-0567-9


Int J Parallel Prog (2019) 47:164–183
https://doi.org/10.1007/s10766-018-0567-9

Persistent Asynchronous Adaptive Specialization for
Generic Array Programming

Clemens Grelck1 · Heinrich Wiesinger1

Received: 1 August 2017 / Accepted: 26 March 2018 / Published online: 11 April 2018
© The Author(s) 2018

Abstract Generic array programming systematically abstracts from structural array
properties such as shape and rank. As usual, generic programming comes at the price
of lower runtime performance. The idea of asynchronous adaptive specialization is to
exploit parallel computing facilities to reconcile these conflicting objectives through
the continuous adaptation of running applications to the ranks and shapes of their
arrays. A key parameter for the effectiveness of our approach is the time it takes from
requesting a certain specialization until its availability to the running application. We
describe the ins and outs of a persistence layer that keeps specialized variants in a
repository for future use and thus effectively reduces the average waiting time for
re-compilation to nearly zero. A number of critical issues that, among others, stem
from the interplay between function specialization and function overloading catch
our special attention. We describe the solutions adopted and illustrate the benefits of
persistent asynchronous adaptive specialization by a series of experiments.

Keywords Generic programming · Array programming · Dynamic compilation ·
Multi-core computing · Single Assignment C · Persistence

1 Introduction

Software engineering is concernedwith the fundamental trade-off between abstraction
and performance. In array programming this trade-off is between abstracting from

B Clemens Grelck
c.grelck@uva.nl

Heinrich Wiesinger
h.m.wiesinger@student.uva.nl

1 University of Amsterdam, Amsterdam, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-018-0567-9&domain=pdf
http://orcid.org/0000-0003-3003-1388


Int J Parallel Prog (2019) 47:164–183 165

ranks and shapes of arrays in source code and the ability to determine actual ranks and
shapes through compilation technology as a prerequisite for high runtimeperformance.
However, concrete rank and shape information as a matter of fact is regularly not
available before application runtime. For example, data may be read from a file or
may be produced by external library code. In these cases the effect of compile time
specialization is very limited.

Such scenarios motivate our current research in the context of the purely func-
tional, data-parallel array language SaC (Single Assignment C) [1,2]. SaC features
immutable, homogeneous, multi-dimensional arrays and supports both shape- and
rank-generic programming: SaC functions may not only abstract from the concrete
shapes of argument and result arrays, but likewise from their ranks (i.e. number of
axes).

In comparison to non-generic code the runtime performance of equivalent opera-
tions is substantially lower for shape-generic code and even more so for rank-generic
code. Apart from the obvious reason that generic code maintains more information in
runtime data structures, the crucial issue are the SaC compiler’s advanced optimiza-
tions [3] that are not as effective on generic code as they are on shape-specific code.
This is amatter of principle and not owed to implementation deficiencies. For example,
in automatically parallelized code [4–6] many organizational decisions must be post-
poned until runtime, and synchronization and communication overhead is generally
higher.

Our asynchronous adaptive specialization framework [7] builds on today’s ubiq-
uity ofmulti-core processor architectures. Asynchronouswith the execution of generic
code, be it sequential or automatically parallelized, a specialization controller gener-
ates an appropriately specialized and highly optimized binary clone of some generic
function, all while the application continues running the original generic code. Eli-
gible functions are indirectly dispatched such that if the same function is repeatedly
called with arguments of the same shapes, its fast clone is used as soon as it becomes
available. All this is entirely compiler-directed and completely transparent to the pro-
grammer/user.

The effectiveness of our approach critically depends on making specialized binary
clones available as quickly as possible. This would normally call for a fast and
light-weight just-in-time compiler. Unfortunately, the SaC compiler is everything but
light-weight. Rewriting it in a more light-weight style would not only incur a gigan-
tic engineering effort, but making the compiler faster would inevitably come at the
expense of reducing its aggressive optimization capabilities. Obviously, this would be
adverse to our central goal of high performance.

In our original approach [7] specializations are accumulated during one execution
of an application and are automatically removed upon the application’s termination.
Consequently, any subsequent run of the same application starts specializing again
from scratch. Of course, the next run may use arrays of different ranks and shapes, but
in many real world scenarios it is quite likely that a similar set of shapes will prevail
again. The same holds across different applications since SaC programs make heavy
use of our comprehensive standard library of rank-generic array operations.

We first proposed the idea of a persistence layer that could in practice reduce the
overhead to near-zero in [8]. For many application scenarios we would envision a

123



166 Int J Parallel Prog (2019) 47:164–183

training phase, after which most required specializations have been generated, and the
whole dynamic specialization machinery would only become active again when the
user re-runs an application on array shapes not previously encountered.

As a concrete scenario consider an image filter pipeline. Image filters can typically
be applied to images of any size. In practice, however, a fairly small number of different
image formats prevails, i.e. those produced by the available cameras. Still, the concrete
image formats are unknown at compile time of the image processing application. So,
our approach would effectively train the application to the image formats of interest.
Purchasing a new camera may introduce new image formats and thus would lead to a
short re-training phase.

In fact, the proposed persistence layer requires more radical changes to the dynamic
specialization framework than initially anticipated. The contributions of this paper are

– to describe persistent asynchronous adaptive specialization in detail;
– to identify and solve a number of non-trivial technical issues;
– to illustrate the performance gains achieved by the persistence layer through a
series of experiments.

The remainder of the paper is organized as follows. Sections 2 and 3 provide back-
ground information on SaC and its runtime specialization framework, respectively.
We describe the proposed persistence layer in Sect. 4. The following two Sects. 5 and
6 deal with the particular challenges we encountered, before Sect. 7 reports on our
experimental evaluation. Finally, we sketch out some related work in Sect. 8 and draw
conclusions in Sect. 9.

2 SAC—Single Assignment C

As the name suggests,SaC leaves the beaten track of functional languages and adopts a
C-like syntax: we interpret assignment sequences as nested let-expressions, branching
constructs as conditional expressions and loops as syntactic sugar for tail-recursive
functions. For any details regarding language design we refer the interested reader to
[1,2].

Following the example of interpreted array languages, such as Apl or J, an array
value in SaC is characterized by a triple (r, s,d). The rank r ∈ N defines the number
of dimensions (or axes) of the array. The shape vector s ∈ N

r yields the number of
elements along each of the r dimensions. The data vector d ∈ T

∏
s contains the array

elements, the so-called ravel, where T denotes the element type. Rank and shape vector
can be queried by built-in functions. Selection of array elements is done through index
vectors. This is owed to the support for rank-generic code that requires an indexing
facilities for statically unknown numbers of dimensions and thus indices.

The type system of SaC is monomorphic in the element type but polymorphic in
the rank and shape of arrays. As illustrated in Fig. 1, each type induces a three-layer
array type hierarchy. On the lowest level we find non-generic types that define arrays
of fixed shape. On the intermediate level we see arrays of fixed rank. And, on the top
of the hierarchy we find arrays of any rank (and thus any shape). The hierarchy of
array types induces a subtype relationship (with function overloading) and leads to
three different runtime representations of arrays.

123



Int J Parallel Prog (2019) 47:164–183 167

...

... ... ......int int[1] int[42]

int[.]

int[  ]

int[.,.]

int[1,1] int[3,7]

rank: dynamic
AUD Class:

shape: static

shape: dynamic

AKD Class:
rank: static
shape: dynamic

AKS Class:
rank: static

*

Fig. 1 Three-level hierarchy of array types: arrays of unknown dimensionality (AUD), arrays of known
dimensionality (AKD) and arrays of known shape (AKS)

For AKS arrays both rank and shape are compile time constants and, thus, only
the data vector is carried around at runtime. For AKD arrays the rank is a compile
time constant, but the shape vector is fully dynamic and, hence, must be maintained
alongside the data vector. For AUD arrays both shape vector and rank are statically
unknown and, thus, must dynamically be maintained through appropriate runtime
data structures. The absence of static rank information here means that the length of
the shape vector is not known and, therefore, the shape vector must dynamically be
allocated and de-allocated, which incurs relevant cost.

We illustrate the use of SaC by the rank-generic convolution kernel shown in
Fig. 2, which will serve as a running example throughout this paper. Following the
import of functions convolution_step and is_convergent from the mod-
ule ConvolutionAuxiliaries, we define the function convolution that is
parameterized over the to be convolved array of any rank and shape A and the conver-
gence threshold eps; it yields the convolved array. The do-while loop is syntactic
sugar for tail-recursion. Note that the statement A_old = A; does not copy the
array, as for instance in superficially similar Fortran-90 code, but merely creates a new
lambda-binding to an existing (array) value. For a complete discussion of the example
we refer the interested reader to [8], for a thorough introduction of SaC to [2].

import ConvolutionAuxiliaries : { convolution_step , is_convergent};

double [*] convolution (double [*] A, double eps )
{

do {
A_old = A;
A = convolution_step( A_old );

}
while (! is_convergent( A, A_old , eps ));

return A;
}

Fig. 2 Rank-generic convolution kernel with convergence test in SaC

123



168 Int J Parallel Prog (2019) 47:164–183

3 Asynchronous Adaptive Specialization

The idea of asynchronous adaptive specialization is to postpone specialization if nec-
essary until application runtime, when structural information is always available. A
generic SaC function is compiled into two binary functions: the usual generic imple-
mentation and a small proxy function that is actually called from outside. When
executed, the proxy function first checks whether a previously specialized function
instance for the concrete argument ranks and shapes already exists. If so, it dispatches
to that fast clone. Otherwise, the proxy function files a specialization request con-
sisting of the function identifier and the concrete argument shapes before calling the
generic implementation.

Concurrent with the running application, specialization controllers take care of
specialization requests. They run the fully-fledged SaC compiler on an intermediate
representation of the function to be specialized and the corresponding specialization
parameters. Eventually, they link the resulting binary code into the running application
and update the proxy function accordingly.

The effectiveness of asynchronous adaptive specialization depends on howoften the
dynamically specialized variant of some function is actually run instead of the original
generic version. This depends on two connected but distinguishable properties. First,
the application itself must apply an eligible function repeatedly to arguments with
the same shape. Second, the specialized variant must become available sufficiently
quickly to have a relevant impact on application performance. In other words, the
application must run considerably longer than the compiler needs to generate binary
code for specialized functions.

The first condition relates to a property of the application. Many applications in
array processing do expose this property, but obviously not all. We can only deal with
unsuitable applications by dynamically analyzing an application’s properties and by
stopping the creation of further specializations at some point.

The second condition sets the execution time of application code in relation to
the execution time of the compiler. In array programming, however, the former often
depends on the size of the arrays being processed, whereas the latter depends on the
size and structure of the (intermediate) code. Obviously, execution time and compile
time of any code are unrelated with each other, and, consequently, many scenarios are
possible.

We illustrate the effect of asynchronous adaptive specialization by the experiment
shown in Fig. 3. This experiment is based on a rank-generic convolution kernel with
convergence test, as shown in Fig. 2. In this code two functions are run alternately
for a number of iterations: a convolution step that computes a new array from an
existing one and a convergence test that checks whether the old and the new array are
sufficiently similar to stop the iteration. Both functions are defined in rank-generic
style and appropriate measures are put in place to prevent the SaC compiler from
statically specializing either function.

Figure 3 shows the dynamic behaviour of this rank-generic convolution kernel when
applied to a 3-dimensional array of 100 × 100 × 100 double precision floating point
numbers. The plot shows individual iterations on the x-axis and measured execution
time for each iteration on the y-axis. The two lines show measurements with runtime

123



Int J Parallel Prog (2019) 47:164–183 169

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  5  10  15  20  25  30  35  40  45  50

T
im

e 
in

 s
ec

on
ds

 p
er

 c
on

vo
lu

tio
n 

st
ep

Convolution steps

Experiment: 100x100x100 array
Runtime specialisation disabled
Runtime specialisation enabled

Fig. 3 Experiment: rank-generic convolution kernel on a 3-dimensional argument array of shape 100 ×
100 × 100 with and without asynchronous adaptive specialization (reproduced with permission from [7])

specialization disabled and enabled, respectively. One can easily identify two steps of
performance improvement when the specialized variants of the convolution step and
the convergence test successively become available to the running application.

This example demonstrates the tremendous effect that runtime specialization can
have on generic array code. The main reason for this considerable performance
improvement again is the effectiveness of optimizations that fuse consecutive array
operations and, thus, avoid the creation of intermediate arrays. A more detailed expla-
nation of this experiment as well as a number of further experiments can be found in
[7,8].

4 Persistent Asynchronous Adaptive Specialization

The idea of a persistence layer is as intriguing as simple, the latter at least at first
glance: Instead of discarding all generated specializations upon termination of each
execution of some program, we keep them in a repository for later use by the same
application or even by different applications.

Persistent dynamic specialization is a win-only approach. If a required specializa-
tion has already been generated by a previous run of the same application or likewise
by a previous run of some other application, it can be linked into the running applica-
tionwithout any delay, and the costly dynamic compilation process is entirely avoided.
This scenario not only makes the fast non-generic clone of some function immediately

123



170 Int J Parallel Prog (2019) 47:164–183

available to the running application, but also saves the hardware that would otherwise
be utilized for recompilation. This either saves energy through partial shut-down of
computing resources or makes more resources available to the parallel execution of
the application itself thus resulting in higher execution performance.

The file system is the place to keep specialization repositories. To avoid issues with
write privileges in shared file systems we refrain from sharing specializations between
multiple users.While itwould appear attractive to do so, in particular for functions from
the usually centrally stored SaC standard library, the system administration concerns
of running SaC applications in privileged mode can hardly be overcome in practice.
Consequently, we store specialized function instances in the user’s file system space.
A subdirectory .sac2c in the user’s home directory appears to be a suitable default
location.

Each specialized function instance is stored in a separate dynamic library. In order
to store and later retrieve specializationswe reuse an already existingmechanism in the
SaC compiler: to disambiguate overloaded function instances, and likewise compiler-
generated specializations, in compiled code we employ a scheme that constructs a
unique function name out of module name, function name and argument type specifi-
cations.We adapt this scheme by replacing the original separator token by a slash. As a
consequence, we end up with a potentially complex directory structure that effectively
implements a search tree and thus allows us to locate existing specializations and to
identify missing specializations equally efficiently.

There is, however, one pitfall: a module name in SaC is not necessarily unique in a
file system. Likemany other compilers the SaC compiler allows users to specify direc-
tory paths to locate modules. Changing the path specification may effect the semantics
of a program. For our purpose this means that instead of the pure module name we
need to use a fully qualified path name to uniquely identify a module definition.

Figure 4 illustrates the proposed solution with a small example file system layout
based on the implementation of the rank-generic convolution kernel with convergence
test introduced in Sect. 2. In the example of Fig. 4 we can easily identify two variants
of the module ConvolutionAuxiliaries, one in a subdirectory mylibs and
the other in a subdirectory myalternativelibs. Which of these two implemen-
tations of the module would be used by a SaC application solely depends on the SaC
compiler’s path configurations and the command line arguments given and, thus, are
orthogonal to the semantics of the language.

In the file system snapshot of Fig. 4 we can further observe the base type encoding
of the functionsconvolution_step and is_convergent. In the code sketched
out in Fig. 2 they are defined for one double precision floating point argument and
for three double precision floating point arguments, respectively. To illustrate the
potential of different overloaded argument base types we also consider a version of
the convergence check for single precision floating point numbers.

On the level of individual dynamic libraries we can see the encoding of the exact
ranks and shapes of existing dynamic specializations: for the first implementation of
ourmodulewe can see two specializations, one for a 2-dimensional case (1000×1000)
and one for a 3-dimensional case (100 × 100 × 100). For the alternative imple-
mentation we can identify a 1-dimensional specialization (1,000,000) and again the
same 3-dimensional specialization as before. The third argument of our function

123



Int J Parallel Prog (2019) 47:164–183 171

$HOME
.sac2c

rtspec
sac

mylibs
ConvolutionAuxiliaries

convolution step
double

2-1000-1000.so
3-100-100-100.so

is convergent
double-double-double

2-1000-1000-2-1000-1000-0.so
3-100-100-100-3-100-100-100-0.so

float-float-float
myalternativelibs

ConvolutionAuxiliaries
convolution step

double
1-1000000.so
3-100-100-100.so

is convergent
double-double-double

1-1000000-1-1000000-0.so
3-100-100-100-3-100-100-100-0.so

float-float-float

Fig. 4 Example file system layout with multiple variants of a SaC module

is_convergent is a double scalar, the convergence threshold. This incurs the
trailing zero in all corresponding file names: the rank of the 3rd argument.

For the time beingwe prefer clarity and readability over obfuscation and intellectual
property protection. The literal encoding of argument types and shapes can easily be
replaced by one that discloses less information about the (source) code in line with
user demands.

5 Persistent Specialization versus Function Overloading

As usual, the devil is in the detail, and so we discovered a number of issues that make
the actual implementation of persistent asynchronous adaptive specialization much
more challenging than originally anticipated. Our first issue originates from SaC’s
support for function overloading in conjunction with our aim to share specializations
between multiple applications. The combination of overloading and specialization
raises the question how to correctly dispatch function applications between different
function definitions bearing the same name. In Fig. 5 we show an example of five
overloaded definitions of the function foo alongside the compiler-generated dispatch
code. We dispatch on parameter types from left to right and for each parameter first
on rank and then on shape. The type system ensures that the dispatch is unambiguous.

123



172 Int J Parallel Prog (2019) 47:164–183

int[*] foo( int[*] a, int[*] b);
int[*] foo( int[.] a, int[.] b);
int[*] foo( int[7] a, int[8] b);
int[*] foo( int[.,.] a, int[42] b);
int[*] foo( int[2,2] a, int[99] b);

int[*] foo_dispatch( int[*] a,
int[*] b)

{
if (dim(a) == 1) {

if (shape(a) == [7]) {
if (dim(b) == 1) {

if (shape(b) == [8]) {
c = foo_3( a, b);

}
else {

c = foo_2( a, b);
}

}
else {

c = foo_1( a, b);
}

}
else {

if (dim(b) == 1) {
c = foo_2( a, b);

}
else {

c = foo_1( a, b);
}

}
}

...

...

else if (dim(a) == 2) {
if (shape(a) == [2,2]) {

if (dim(b) == 1) {
if (shape(b) == [99]) {

c = foo_5( a, b);
}
else if (shape(b) == [42]) {

c = foo_4( a, b);
}
else {

c = foo_1( a, b);
}

}
else {

c = foo_1( a, b);
}

}
else {

if (shape(b) == [42]) {
c = foo_4( a, b);

}
else {

c = foo_1( a, b);
}

}
}
else {

c = foo_1( a, b);
}

return c;
}

Fig. 5 Example of shapely function overloading and resulting dispatch function

For the construction of the dispatch tree it is irrelevant whether some instance of
a function is original code or a compiler-generated specialization. There is, however,
a significant semantic difference: while we aim at dispatching to the most specific
compiler-generated specialization for performance reasons, we must dispatch to the
best matching user-defined instance no matter what. To achieve this our original asyn-
chronous adaptive specialization framework exploits an interesting feature of our
module system, which allows us to import possibly overloaded instances of some
function and to again overload those instances with further instances in the importing
module. This feature allows us to incrementally add further instances to a function.

On every module level that adds further instances we generate a new dispatch
function similar to that in Fig. 5. This implements the dispatch over all visible instances
regardless of where exactly these instances are actually defined. We take advantage of
this design for implementing asynchronous adaptive specialization as follows: each
time we generate a new specialization at application runtime we effectively construct
a new module that imports all existing instances of the to be specialized function
and then adds one more specialization to the module, the one matching the current
function application. Without further ado the SaC compiler in addition to the new
executable function instance also generates a new dispatch function that dispatches
over all previously existing instances plus the newly generated instance. All we need
to do at runtime then is to replace the old dispatch function by the new one.

123



Int J Parallel Prog (2019) 47:164–183 173

At first glance, it looks as if we could continue with this scheme, and whenever
we add a specialization to the repository, we simply replace the dispatch function
in the repository by the new one. Unfortunately, carrying over this concept from a
single application run to all application runs in the history of the computing system
installation would violate overloading semantics.

The issue here is the coexistence of semantically equivalent specializations and pos-
sibly semantically different overloadings of function instances. One dispatch function
in the specialization repository is not good enough because any program (or mod-
ule) may well contribute further overloadings. This may semantically shadow certain
specializations in the repository and at the same time require the generation of new
specializations that are semantically different from the ones in the repository, despite
sharing the same function name.

A simple example illustrates the issue: let us assume a module A that exports a
functionfoowith, for simplicity, a single argument of typeint[∗].Again, the element
type int is irrelevant. Now, some application(s) using module A may have created
specializations in the repository for shapes [42], [42,42] and [42,42,42].
One may think that the repository could also simply contain a dispatch function that
dispatches between all repository instances, but this is not an option for several reasons.

Firstly, the repository instances are created incrementally, possibly by multiple
applications using A::foo. New dispatch functions could only be created during a
dynamic compilation process. For that the compiler would need to know all exist-
ing specializations in the repository in order to create the new dispatch function for
these and the one new specialization. Trouble is that multiple dynamic compilations
may happen simultaneously, which immediately creates a mutual exclusion problem
on the repository and would require a lock for the repository. This lock would be
needed throughout the whole dynamic compilation process. Thus, significant delays
in completing asynchronous adaptive specializations could be expected.

Secondly, with substantial repository sizes, dynamic dispatch over many instances
in the style of Fig. 5 becomes increasingly inefficient because most applications may
effectively only ever make use of a small fraction of the instances accumulated in the
repository after some time.

Thirdly, imagine a program that itself has an overloading of function foo for 42-
element vectors. This program would have to internally dispatch to its own instance of
foo(int[42]). At the same time it could still make beneficial use the repository
instances of foo(int[42,42]) and foo(int[42,42,42]), and it may even
create a new repository instance for, say, foo([int[21]).

From the above scenarios it becomes clear that for the persistence layer we need a
two-level dispatch. First, we dispatch within the running application through a con-
ventional dispatch function, as illustrated in Fig. 5. If this dispatches to a rank- or
shape-generic instance, we interfere and determine whether or not a suitable special-
ization already exists in the specialization repository. For this purpose module name,
function name and the sequence of argument types with full shape information (as
always available at application runtime) suffice to identify the corresponding shared
library in the file system.

If the required specialization does already exist, we directly link this instance into
the running application and call it. Now, we need a second-level dispatch mechanism

123



174 Int J Parallel Prog (2019) 47:164–183

that keeps track of all dynamically linked instances. A classical dispatch function, as
used so far, is not an option. We deliberately avoided dynamic compilation to reduce
overhead, and so compiling a new dispatch function would be counter-productive.
Instead, we use a dynamic data structure to store function pointers for dynamically
loaded instances with the function name and parameter types and shapes serving as
search keys. For now, we use a simple search tree in our concrete implementation, but
this could easily be replaced by a more sophisticated mechanism in the future.

If the required specialization does not yet exist, we file the corresponding special-
ization request as before and call the generic function instance instead. However, more
changes are needed in this case as well. When the dynamic compilation process com-
pletes, we do no longer link the new binary version of the additional instance into the
running application. After all, it is pure speculation that this application will ever call
it. Instead, we create the corresponding shared library in the specialization repository
for future use by this and possibly other applications. Should the running application
ever need this specific instance (again), it will load the instance from the specialization
repository, just as described in the previous paragraph.

6 Semantic Revision Control

Consider once more the scenario of a function foo(int[∗]) and a specializa-
tion repository that contains three specializations for shapes [42], [42,42] and
[42,42,42]. Furthermore, let us assume a program overloads foo with another
generic instance foo([int[.,.]). If this program calls foo with a 42-element
vector, we can load the corresponding previously specialized instance and benefit from
high performance. However, if this program calls foowith a 42×42-element matrix,
wemust not load the corresponding instance from the repository because that is derived
from foo(int[∗]). Instead, overloading semantics require us to use the local instance
foo(int[.,.]) as basis for futher specialization. Since that is a generic function
as well, we want to use our asynchronous adaptive specialization mechanism once
more. That inevitably leads to two non-identical and potentially demantically diverg-
ing instances foo(int[42,42]) in the repository, one derived from foo(int[∗])
and one derived from foo(int[.,.]).

This scenario exemplifies a dilemma that has another variant. A developer could
simply come up with the idea to change the implementation of function foo(int[∗])
in module A. This somewhat invalidates certain existing specializations in the repos-
itory, but this invalidation only becomes effective after the application itself is
recompiled. Consequently, we face the situation where some applications “see” dif-
ferent specializations of the same function for identical type and shape than other
applications.

To solve both issues at once we need a mechanism that keeps track of what exact
generic code any instance in the repository is derived from. Therefore, we must incor-
porate the entire definition of a generic function into the identifier of a specialization.
For this purposewe linearize the intermediate code of a generic function definition into
textual form and compute a suitable hash when generating a dynamic specialization.
This hash is then used as the lowest directory level when storing new specializations

123



Int J Parallel Prog (2019) 47:164–183 175

. . .
mylibs

ConvolutionAuxiliaries
convolution step

double
2-1000-1000

dcc0e68deb5ffd37f4ab45e30e13c8.so
f9783fc9338fda9f48f4b79335479e.so

3-100-100-100
dcc0e68deb5ffd37f4ab45e30e13c8.so
f9783fc9338fda9f48f4b79335479e.so

is convergent
double-double-double

2-1000-1000-2-1000-1000-0
db60c387568b3665c5b099a8d3d675.so
e5219fecc5606c6f3a47c2411efb1c.so

3-100-100-100-3-100-100-100-0
db60c387568b3665c5b099a8d3d675.so
e5219fecc5606c6f3a47c2411efb1c.so

Fig. 6 Refinement of the file system layout shown in Fig. 4 considering multiple semantic variants of the
same SaCmodule, distinguished by unique hashes of the intermediate code representation (shortened to fit
horizontally)

in the file system. Upon retrieving a specialization from the file system repository
a running application again generates a hash of a linearization of the intermediate
code of its own generic definition. This is used to determine whether or not a suit-
able specialization exists in the repository and to locate the correct one. With this
non-trivial solution we effectively ensure that we never accidentally run an outdated
specialization.

Figure 6 illustrates this solution for our running example of the rank-generic con-
volution kernel. Compared with the file system layout in Fig. 4 the shape encoding
has now become yet another level in the file system hierarchy while the actual binary
code resides in a collection of dynamic libraries whose names are hash sums of their
intermediate representations.

7 Experimental Evaluation

In our experimental evaluation of persistent asynchronous adaptive specialization,
we repeat a series of experiments initially reported on in [8]. These involve three
different benchmarks: generic multi-dimensional convolution with periodic boundary
conditions and convergence test, as illustrated in Fig. 2, repeated matrix multiplication
and n-body simulation. The test system for all three case studies is a 48-core SMP
machine with 4 AMD Opteron 6172 Magny-Cours processors running at 2.1 GHz
and a total of 128 GB of DRAM. Each core has 64 KB L1 instruction cache, 64 KB
L1 data cache and 512 KB unified L2 cache. Each group of 6 cores shares a unified

123



176 Int J Parallel Prog (2019) 47:164–183

L3 cache of 6 MB. The system runs Linux kernel 2.6.18 with Glibc 2.5. All reported
figures are best of five independent runs.

In [8] we explicitly discussed the combination of automatically parallelized appli-
cations withmultiple concurrent specialization controllers. In the followingwe restrict
ourselves to sequential program execution and a single specialization controller to iso-
late the effect of the proposed persistence layer, which is the novel contribution of this
paper.

One may say that the variants that employ adaptive specialization effectively use
more resources than the ones without, more precisely two cores instead of one, and
that this constitutes an unfair comparison.We do not subscribe to this point of view for
the following reasons. Firstly, on the 48-core machine used we would need to compare
using all 48 cores for parallel execution of the application with only using 47 cores for
the application and one for asynchronous adaptive specialization. Even with (unlikely)
perfect linear scaling of the application, the performance difference between using
47 cores and using 48 cores would be marginal. Secondly, faster execution of the
application due to parallelization would indeed change the speed ratio between the
application and the compiler. However, this would not be different from increasing or
decreasing the problem size, that we rather arbitrarily chose with the purpose of best
possible illustration.

7.1 Rank-Generic Convolution with Convergence Test

For thorough discussions of our first benchmark regarding both general language
design and asynchronous adaptive specialization we refer the interested reader to
[2,8], respectively. In essence, the benchmark alternately computes one convolution
step and the convergence check. Both functions, hereafter named step and check
for brevity, are defined in a rank-invariant style, i.e. they can be applied to argument
arrays of any rank and shape. The step function uses a star-shaped neighbourhood.
For a 2-dimensional argument array this results in a 5-point stencil, for a 3-dimensional
argument array in a 7-point stencil, etc. Figure 7 shows the outcome of our experiments
for a case of 3-dimensional convolutionwith 100×100×100 double precision floating
point numbers. On the x-axis we show 29 iterations and on the y-axis the execution
time for each iteration as measured by a high precision clock.

Without runtime specialization, i.e. when continuously running fully rank-generic
code, each iteration takes about 4.4 s. The computation is completely uniform across
iterations. Thus, the small variations in the execution time are purely caused by (neg-
ligible) operating system and other activities on the system and the corresponding
measurement inaccuracies.

With runtime specialization enabled and an empty (or cold) specialization reposi-
tory the first four iterations take 5.2 s each. During this time the concurrently running
specialization controller generates an optimized variant of the convolution step func-
tion, as this is the first of the two relevant functions to be applied. A shape-specialized
version of the convolution, while still running the rank-generic convergence check,
brings the average execution time per iteration down to about 0.65 s.

123



Int J Parallel Prog (2019) 47:164–183 177

Fig. 7 Performance impact of the persistence layer for the generic convolution kernel with convergence
check on a 100 × 100 × 100 array of double precision floating point numbers

After 13 further iterations the specialization controller has additionally generated
a shape-specialized version of the convergence check, which brings down the average
execution time per iteration to approximately 0.28 s. Since the actually running code
is now fully shape-specific, no further changes in the execution time can be expected.

The third line in Fig. 7 shows the runtime behaviour if the needed specialization of
the convolution step already exists in the specialization repository. If so, per iteration
execution time is 0.65 s from the first iteration on.

In this scenario we immediately start the specialization of the convergence check,
which becomes available after 19 iterations, further reducing the per iteration execution
time to the optimal value of 0.28 s. Note that the absolute performance is considerably
better than in the previous scenario as 19 iterations are much earlier reached than the
17 iterations that led to optimal performance in the previous scenario.

The fourth line in Fig. 7 shows the inverse case where the specialization repository
contains the required version of the convergence check but not that of the convolution
step. Since the performance impact of the convolution step is far greater than that
of the convergence check, we observe a moderate performance improvement for the
first four iterations. If both required specializations are already present in repository
at program startup, all iterations execute in about 0.28 s from the very beginning

These observations can be considered representative. Using different problem sizes
changes the ratio between dynamic re-compilation times and application execution
times in the foreseeable way. We thus do not report on further problem sizes and refer
the interested reader to [7] for a detailed discussion and further experimental data.

7.2 Repeated Matrix Multiplication

Repeatedmatrixmultiplication is a benchmark that we adopt from [8] as well. Here,
we apply a shape-generic matrix multiplication function to two argument matrices of

123



178 Int J Parallel Prog (2019) 47:164–183

Fig. 8 Impact of the persistence layer on runtime performance for the repeated matrix multiplication
benchmark for the concrete problem size 1000 × 1000

1000 × 1000 double precision floating point numbers. Then we repeatedly multiply
the resulting temporary matrix with the second argument matrix for a given number
of times, see [8] for the complete source code. In this case we have only one function
relevant for dynamic specialization: matmul. Figure 8 shows the outcome of our
experiment. We essentially observe a similar runtime behaviour as in the case of the
rank-generic convolution kernel, but only one step of performance improvement.

Comparing our latest findings with Fig. 8 in [8] we can see that the additional
overhead due to the persistence layer is below measurement accuracy: We essentially
observe the same overhead as in our previous experiments. If the right variant of the
matmul function can directly be retrieved from the persistent specialization repos-
itory, we immediately obtain the best possible performance from the first iteration
onwards.

7.3 N-Body Simulation

N-body simulation is our third benchmark adopted from [8]. A comprehensive account
of n-body simulation in SaC can be found in [9]. Here, we again have two different
generic functions:advance for computing one simulation step and energy to assess
the overall energy in the simulated system. Compared with the convolution kernel an
important difference in code structure is that the energy function is called exactly
twice: once before and once after the time iteration. In practice, the energy function’s
impact on overall performance depends on the number of time steps simulated and
usually becomes irrelevant at some level. Nonetheless, our compiler specializes it. We
illustrate the outcome in Fig. 9.

Since the energy function is the first of the two relevant functions to be applied, it
will also be specializedfirst. This occupies the specialization controller for a substantial

123



Int J Parallel Prog (2019) 47:164–183 179

Fig. 9 Performance impact of persistence layer in n-body simulation

application specialization
runtime runtime

no runtime specialization 75.75s 0.00s
cold repository 63.19s 38.77s
repository with energy function 50.36s 23.43s
repository with advance function 35.00s 15.21s
repository with both functions 34.96s 0.00s

Fig. 10 Complete application runtimes (core 1) and compiler runtimes (core 2) without and with runtime
specialization as well as for different initial states of the persistent specialization repository

amount of time and, thus, delays themuchmore important runtime specialization of the
advance function. Although the energy function is not really performance-critical,
having the right variant in the persistent specialization repository has a disproportional
positive performance impact as the specialization controller can now immediately start
to generate the appropriate specialization of the more important advance function.

In Fig. 10 we look at the same experimental data from a different perspective. We
showwhole program runtimes for different initial states of the persistent specialization
repository as well as for runtime specialization disabled for the same 100 iterations
as before. In other words, the numbers refer to the integrals below the lines in Fig. 9.
Additionally, we show accumulated runtimes of the specialization controller. Even for
a cold specialization repository we achieve better results as without dynamic adap-
tation. These numbers would quickly move further in favour of our technique as we
run more iterations of the n-body simulation. Likewise, we can see that almost all
remaining overhead can be avoided by means of the persistence techniques proposed
in this paper.

123



180 Int J Parallel Prog (2019) 47:164–183

8 Related Work

Our approach is related to a plethora of work in the area of just-in-time compilation;
for a survey see [10]. Here, the general idea lies in the identification of hot spots in
interpreted (byte) code during program execution. This is a common implementation
strategy inmanymain-stream languages such as Java, C# or Python. Performance ben-
efits mainly stem from running native machine code that avoids interpretive overhead
and simplifying control structures. An extreme example is tracing jit compilation [11].

None of the major Java virtual machine implementations makes use of persistent
compiled code repositories. The main arguments brought forward are that redoing the
jit-compilation could even be faster than loading pre-generated code from disc and
that disambiguating previously compiled code is a difficult semantic problem [12].

Sambamba [13] is an LLVM-based system that generates parallel executable bina-
ries from sequential source code through runtime analysis of data dependencies.While
this is conceptually similar to our system, the focus of Sambamba is on optimizing
towards the runtime platform and not towards the data that is being worked with.
Furthermore, the functional semantics of SaC statically solves many of the cases that
Sambamba aims at with runtime compilation.

We shall also mention COBRA [14] (Continuous Binary Re-Adaptation). COBRA
collects hardware usage information during application execution and adapts the run-
ning code to select appropriate prefetch hints related to coherent memory accesses
as well as reduce prefetching to avoid system bus contention. The use of a controller
thread managing optimization potential and a separate optimization thread applying
the selected optimizations bears similarities with the organization of our adaptive spe-
cialization framework.One of themain differences betweenCOBRAand our approach
is that COBRA relies on information from hardware performance counters to trigger
optimizations, whereas our approach triggers optimizations based on data format dif-
ferences. Another difference is that COBRA, as the name suggests, works on binary
executable code as input data, whereas we base our work on richly compiler-decorated
intermediate code that gives us optimization opportunities on a much higher level of
abstraction. Conversely, we are restricted to SaC as development platform, whereas
COBRA works on any binary.

Another related project is Jikes RVM [15], an adaptive optimization system that
monitors the execution of an application for methods that can likely improve appli-
cation performance if further optimized. These candidates for optimization are put
into a priority queue, which in turn is monitored by a controller thread. The controller
dequeues the optimization request, forwards it to a recompilation threadwhich invokes
the compiler and installs the resulting optimized method into the virtual machine.
While this architecture matches our framework quite closely, the optimizations per-
formed are entirely platform oriented, and not application or data oriented. Other
similar systems include ADAPT [16], a system that uses a domain specific language
to specify optimization hints that can be made use of at runtime, and ADORE [17], a
predecessor of COBRA for single threaded applications.

More recently, Lutz and Grover [18] use just-in-time compilation in the context of
C++ to dynamically optimize lambda functions used in STL algorithms. Very much
like the SaC module system does, they store an internal representation of such func-

123



Int J Parallel Prog (2019) 47:164–183 181

tions in the compiled binary from where it is retrieved by the runtime system for
optimization. Again in the context of C++, Haidl et al. [19] use dynamic compilation
to generate both host and device code for GPU computing from a single C++ source.
Neither of these approaches appears to include persistent storage of binary clones
though.

In contrast to all the abovementioned approaches, we adapt the intermediate code to
properties of the (array) data it operates on, namely rank and shape.Our starting point is
native binary code, not interpreted (byte) code. Last not least, the specific contribution
of this paper, the persistence layer, appears to conquer mostly unchartered territory,
and we have found rather little directly related work as far as persistence is concerned.

9 Conclusions and Future Work

Asynchronous adaptive specialization is a viable approach to reconcile the demand
for generic program specifications in (functional) array programming with the need
to achieve competitive runtime performance when compile time information about
array ranks and shapes lacks. Beyond potential obfuscation of shape relationships in
user code, data structures may be read from files or functional array code could be
called from less information-rich environments in multi-language applications. Fur-
thermore, the scenario is bound to become reality whenever application programmer
and application user are not identical, which rather is the norm than the exception in
(professional) software engineering.

With our proposed persistence layer we demonstrate how asynchronous adaptive
specialization overhead can drastically be reduced in practice. Following some training
phase the vast majority of required specializations have already been generated in pre-
ceding runs of the same application or even independent applications with overlapping
code base. If successful, pre-generated specializations merely need to be loaded from
a specialization repository into a running application on demand. In practice the pro-
posed persistence layer may effectively reduce the average overhead of asynchronous
adaptive specialization to near nothing.

What appeared to be very attractive but mainly an engineering task at first glance,
has proven to be fairly tricky froma conceptual perspective. In this paperwe identified a
number of issues related to correct function dispatch in the presence of specialization
and overloading, use of the file system as code data base, revision control in the
potential presence of semantically different function definitions. We sketched out our
solutions found for each of these issues and thus have come up with a fairly complete
account of the ins and outs of persistent asynchronous adaptive specialization for
generic array programming in SaC.

It is noteworthy that while we explore our dynamic compilation approach in the
context of SaC, our work is by no means entirely specific to SaC. In fact, much could
be carried over to any context of data-parallel array processing. Interpreted array
languages such as APL, J or MatLab are obvious candidates to look at, but we are not
aware of any approaches similar to our’s in these domains.

We pursue various directions of future work beyond the obvious: gaining more
experience with our approach in practice. One such direction is the exploitation of

123



182 Int J Parallel Prog (2019) 47:164–183

platform-specific code generation opportunities that would adapt the running code not
only to rank and shape of arrays, but at the same time to the exact processor, chip
set and cache hierarchy of the machine. This was not the primary motivation of our
work, but is likely to harness additional performance gains while technology-wise it
would rather be a fairly simple by-product of our existing implementation. On the
more technical side we work on controlling the size of our specialization repositories,
which obviously cannot grow forever and for the time being require manual cleanup.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Grelck, C., Scholz, S.B.: SAC: a functional array language for efficient multithreaded execution. Int.
J. Parallel Prog. 34, 383–427 (2006)

2. Grelck, C.: Single Assignment C (SAC): high productivity meets high performance. In: Zsók, V.,
Horváth, Z., Plasmeijer, R. (eds.) 4th Central European Functional Programming Summer School
(CEFP’11), Budapest, Hungary. Volume 7241 of Lecture Notes in Computer Science, pp. 207–278.
Springer, New York (2012)

3. Grelck, C., Scholz, S.B.: Merging compositions of array skeletons in SAC. J. Parallel Comput. 32,
507–522 (2006)

4. Grelck, C.: Shared memory multiprocessor support for functional array processing in SAC. J. Funct.
Program. 15, 353–401 (2005)

5. Guo, J., Thiyagalingam, J., Scholz, S.B.: Breaking the GPU programming barrier with the auto-
parallelising SAC compiler. In: 6th Workshop on Declarative Aspects of Multicore Programming
(DAMP’11), Austin, USA, pp. 15–24. ACM (2011)

6. Diogo, M., Grelck, C.: Towards heterogeneous computing without heterogeneous programming. In:
Hammond, K., Loidl, H. (eds.) Trends in Functional Programming, 13th Symposium, TFP 2012, St.
Andrews, UK. Volume 7829 of Lecture Notes in Computer Science, pp. 279–294. Springer, New York
(2013)

7. Grelck, C., van Deurzen, T., Herhut, S., Scholz, S.B.: Asynchronous adaptive optimisation for generic
data-parallel array programming. Concurr. Comput. Pract. Exp. 24, 499–516 (2012)

8. Grelck, C., Wiesinger, H.: Next generation asynchronous adaptive specialization for data-parallel
functional array processing in SAC. In: Implementation and Application of Functional Languages,
25th International Symposium, IFL 2013, Nijmegen, Netherlands, Revised Selected Papers, pp. 117–
128. ACM (2014)

9. Šinkarovs, A., Scholz, S., Bernecky, R., Douma, R., Grelck, C.: SAC/C formulations of the all-pairs
N-body problem and their performance on SMPs and GPGPUs. Concurr. Comput. Pract. Exp. 26,
952–971 (2014). https://doi.org/10.1002/cpe.3078

10. Aycock, J.: A brief history of just-in-time. ACM Comput. Surv. 35, 97–113 (2003)
11. Bolz, C., Cuni, A., Fijalkowski, M., Rigo, A.: Tracing the meta-level: PyPy’s tracing JIT Compiler. In:

4th Workshop on the Implementation, Compilation, Optimization of Object-Oriented Languages and
Programming Systems (ICOOOLPS’09), Genova, Italy, pp. 18–25. ACM (2009)

12. JavaLobby: Why aren’t JIT optimizations saved? http://www.javalobby.org/forums/thread.jspa?
threadID=15812 (2004)

13. Streit, K., Hammacher, C., Zeller, A., Hack, S.: Sambamba: a runtime system for online adaptive
parallelization. In: Compiler Construction, 21st International Conference, CC 2012, Tallinn, Estonia.
Volume 7210 of LNCS, pp. 240–243. Springer (2012)

14. Kim, J., Hsu, W.C., Yew, P.C.: COBRA: an adaptive runtime binary optimization framework for
multithreaded applications. In: International Conference on Parallel Processing (ICPP 2007), Xian,
China. IEEE (2007)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/cpe.3078
http://www.javalobby.org/forums/thread.jspa?threadID=15812
http://www.javalobby.org/forums/thread.jspa?threadID=15812


Int J Parallel Prog (2019) 47:164–183 183

15. Arnold, M., Fink, S., Grove, D., Hind, M., Sweeney, P.F.: Adaptive optimization in the Jalapeño
JVM. In: ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’00), Minneapolis, USA. ACM (2000)

16. Voss, M., Eigenmann, R.: High-level adaptive program optimization with ADAPT. In: 8th ACM Sym-
posium on Principles and Practice of Parallel Programming (PPoPP’01), Snowbird, USA, pp. 93–102.
ACM (2001)

17. Lu, J., Chen, H., Fu, R., Hsu, W.C., Othmer, B., Yew, P.C., Chen, D.Y.: The performance of runtime
data cache prefetching in a dynamic optimization system. In: 36th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO–36), San Diego, USA. IEEE (2003)

18. Lutz, T., Grover, V.: LambdaJIT: a dynamic compiler for heterogeneous optimizations of STL algo-
rithms. In: 3rd ACM SIGPLAN Workshop on Functional High-performance Computing (FHPC’14),
Gothenburg, Sweden, pp. 99–108. ACM (2014)

19. Haidl, M., Steuwer, M., Humernbrum, T., Gorlatch, S.: Multi-stage programming for GPUs in C++
using PACXX. In: 9th Annual Workshop on General Purpose Processing using Graphics Processing
Unit (GPGPU’16), Barcelona, Spain, pp. 32–41. ACM (2016)

123


	Persistent Asynchronous Adaptive Specialization for Generic Array Programming
	Abstract
	1 Introduction
	2 SAC—Single Assignment C
	3 Asynchronous Adaptive Specialization
	4 Persistent Asynchronous Adaptive Specialization
	5 Persistent Specialization versus Function Overloading
	6 Semantic Revision Control
	7 Experimental Evaluation
	7.1 Rank-Generic Convolution with Convergence Test
	7.2 Repeated Matrix Multiplication
	7.3 N-Body Simulation

	8 Related Work
	9 Conclusions and Future Work
	References




