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ABSTRACT

Context. The Event Horizon Telescope recently observed the first shadow of a black hole. Images like this can potentially be used to
test or constrain theories of gravity and deepen the understanding in plasma physics at event horizon scales, which requires accurate
parameter estimations.
Aims. In this work, we present Deep Horizon, two convolutional deep neural networks that recover the physical parameters from
images of black hole shadows. We investigate the effects of a limited telescope resolution and observations at higher frequencies.
Methods. We trained two convolutional deep neural networks on a large image library of simulated mock data. The first network is
a Bayesian deep neural regression network and is used to recover the viewing angle i, and position angle, mass accretion rate Ṁ,
electron heating prescription Rhigh and the black hole mass MBH. The second network is a classification network that recovers the
black hole spin a.
Results. We find that with the current resolution of the Event Horizon Telescope, it is only possible to accurately recover a limited
number of parameters of a static image, namely the mass and mass accretion rate. Since potential future space-based observing
missions will operate at frequencies above 230 GHz, we also investigated the applicability of our network at a frequency of 690 GHz.
The expected resolution of space-based missions is higher than the current resolution of the Event Horizon Telescope, and we show
that Deep Horizon can accurately recover the parameters of simulated observations with a comparable resolution to such missions.

Key words. accretion, accretion disks – black hole physics – radiative transfer – methods: data analysis

1. Introduction

In April 2019, the Event Horizon Telescope (EHT) collaboration
released the first image of the shadow of a black hole (Event
Horizon Telescope Collaboration 2019a,b,c,d,e,f). This image is
direct evidence of the existence of black holes, a fundamental
prediction of the general theory of relativity (GR; Schwarzschild
1916; Kerr 1963).

In GR, astrophysical black holes are characterized by their
mass, MBH, and their spin, a = Jc/GM2

BH. In this equation, J
is the angular momentum of the black hole, G is the gravita-
tional constant, and c is the speed of light. The size of the black
hole is set by its event horizon, Rh = (1 +

√
1 − a2) Rg, where

Rg ≡ GMBH/c2 is the gravitational radius. The event horizon
defines a surface from within nothing can escape. The event hori-
zon is gravitationally lensed, resulting in an effective angular size
of θ = 2

√
27 Rg/D for a = 0, where D is the distance to the

black hole. This lensed image is known as the shadow (Falcke
et al. 2000). Although the scale of the observed shadow is on
the order θ, the exact size depends on both the emission model
and GR effects, such as spacetime rotation. Therefore, models
of the accretion flow around black holes are needed to interpret
the results of the EHT (Event Horizon Telescope Collaboration
2019e).

The EHT array consists of eight telescopes positioned
all around the globe, resulting in an effective resolution of
∼20 microarcseconds (µas) when operating at 1.3 mm (Event
Horizon Telescope Collaboration 2019b). With this effective
resolution, the EHT resolved the shadow of the black hole M 87∗,
that is, a supermassive black hole (SMBH) in the nucleus of
Messier 87. The distance to this SMBH is 16.8± 0.8 Mpc (Bird
et al. 2010; Cantiello et al. 2018) and the mass is 6.5±0.7×109 M�
(Event Horizon Telescope Collaboration 2019f). This mass esti-
mate is computed from the observed angular size on the sky of
42± 3 µas (Event Horizon Telescope Collaboration 2019a).

The size of the Earth limits the resolution of the EHT.
Furthermore, the EHT only sparsely samples the Fourier
domain of the image (uv-plane) (Event Horizon Telescope
Collaboration 2019b), owing to the limited amount of
suitable millimeter Very Long Baseline Interferometry (VLBI)
telescope sites. Increasing the amount of coverage in the uv-
plane increases the quality of the image. Both of these limita-
tions are mitigated by switching to space-based VLBI (SVLBI).
Furthermore, SVLBI would remove atmospheric corruption and
allow for longer baselines and higher frequencies. Therefore,
SVLBI allows for higher resolutions and improved image qual-
ity, compared to ground-based VLBI. There are several studies
of future SVLBI missions that observe the shadow of a black
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hole (Palumbo et al. 2018; Fish et al. 2020; Roelofs et al. 2019).
Roelofs et al. (2019) report simulations of future SVLBI mea-
surements of the black hole shadow of Sagittarius A∗, the SMBH
in our galaxy, up to a frequency of 690 GHz. Their setup has
baselines up to 60 Gλ, resulting in a resolution of 4 µas after sev-
eral months of observations. Density fluctuations in the interstel-
lar medium electrons cause phase fluctuations in the incoming
plane wave, resulting in scattering of the radio wave (Narayan &
Goodman 1989; Goodman & Narayan 1989; Johnson & Gwinn
2015). At a frequency of 690 GHz, there is less interstellar scat-
tering (Bower et al. 2006; Roelofs et al. 2019), and the measured
emission originates from closer to the event horizon as compared
to the EHT observations.

The image of a black hole shadow can be used to test and con-
strain theories of gravity (Johannsen & Psaltis 2010; Psaltis et al.
2015; Goddi et al. 2017; Event Horizon Telescope Collaboration
2019f; Mizuno et al. 2018), but this requires accurate param-
eter estimations. Previous studies of M 87∗ often use general
relativistic magnetohydrodynamical (GRMHD) simulations to
model the accretion flow (Dexter et al. 2012; Mościbrodzka et al.
2016, 2017; Ryan et al. 2018; Davelaar et al. 2018, 2019; Chael
et al. 2019a). These studies fit their models to the observed spec-
tra, resulting in constraints on the model parameters. In Event
Horizon Telescope Collaboration (2019e,f), the model parame-
ters are constrained by fitting GRMHD models to the image of
M 87∗. The appearance of the black hole shadow in the image
is determined by the parameters and can, therefore, be recove-
red directly from the image. In the case of EHT (Event
Horizon Telescope Collaboration 2019e,f), GRMHD models
were compared with the data. The models are either MAD or
SANE, and include five spin values. The image library was then
constructed based on these GRMHD models by performing gen-
eral relativistic ray-tracing (GRRT) simulation for six values of
the temperature ratio of electrons to protons inside the accretion
disk, parametrized by Rhigh (Mościbrodzka et al. 2016, 2017),
one mass, and two inclinations. The images were scaled in post-
processing to test for other masses as well (e.g., not gener-
ated directly with ray-tracing codes). The current scoring of the
GRMHD/GRRT images is conducted either via the single snap-
shot method (SSM; in Event Horizon Telescope Collaboration
2019e) or via the average image scoring (AIS; in Event Horizon
Telescope Collaboration 2019f). Both approaches are performed
in Fourier space, and a χ2 between the data and the model is
computed using the visibility amplitude and closure phase. Dur-
ing the fitting, the model images are rescaled (in flux density),
rotated, and stretched (changing the mass to distance ratio). Cur-
rently, two pipelines– THEMIS using Markov chain Monte Carlo
(MCMC; Broderick et al. 2020) and GENA, using evolutionary
algorithms (Fromm et al. 2019) –are used to perform the fitting of
the GRRT images. These pipelines require either MCMC steps,
in the case of THEMIS, or generations, in the case of GENA, to
provide matching between the data and the images. The results
from this comparison, however, show that comparing images to
the data results in almost all models fitting the EHT 2017 data
(see Table 2, Col. 4 in Event Horizon Telescope Collaboration
2019e); models are mainly rejected based on uncertain measure-
ments of the jet power of M 87 at larger wavelengths (and scales).
To both improve the extracting of black hole parameters and
to decrease computational needs, we performed a proof of con-
cept to use machine learning for this vital task. In recent years,
machine learning algorithms have shown to be efficient and accu-
rate in various fields of astrophysics, including in galaxy classi-
fication (Odewahn et al. 1992; Weir et al. 1995; Suchkov et al.
2005; Ball et al. 2006; Vasconcellos et al. 2011; Fadely et al.

2012; Sevilla-Noarbe & Etayo-Sotos 2015; Kim et al. 2015; Kim
& Brunner 2017; Lukic & Brüggen 2017), gravitational wave
parameter analysis (George & Huerta 2018; Shen et al. 2019; Fan
et al. 2019), asteroseismology (Bellinger et al. 2016; Hon et al.
2017; Hendriks & Aerts 2019), and gravitational lensing effects
(Hezaveh et al. 2017; Perreault Levasseur et al. 2017; Petrillo
et al. 2017; Jacobs et al. 2017).

In this paper, we present Deep Horizon, two Bayesian con-
volutional deep neural networks that can accurately recover the
input parameters of an image of the shadow of an accreting
black hole. This network was constructed as a proof of con-
cept to investigate if deep neural networks are capable of obtain-
ing black hole models parameters from horizon scale images. In
this proof of concept, we focus on six parameters: the viewing
angle with respect to the black hole spin axis, i, mass accre-
tion rate, Ṁ, temperature ratio of electrons to protons inside
the accretion disk, mass of the black hole, MBH, position angle
(PA), and spin of the black hole, a. Our neural network also
returns a Bayesian motivated uncertainty on the parameter esti-
mations of the first five parameters mentioned above. We use
synthetic images to train and test our neural network, and we
restrict ourselves to a single SMBH, M 87∗, for which we adopt
a distance D = 16.4 Mpc; this is slightly smaller (by 2%)
than the value used in Event Horizon Telescope Collaboration
(2019e), but since it is a general scale factor for the total emis-
sion recorded it does not affect the results of this proof of
concept. The data are generated at two frequencies, 230 GHz
(EHT) and 690 GHz (SVLBI). Furthermore, we investigate the
effects of convolving our images with a Gaussian beam as an
approximation of a limited telescope resolution (Event Horizon
Telescope Collaboration 2019e).

We organize the paper as follows: in Sect. 2 we describe
our synthetic data generation and the machine learning meth-
ods. In Sect. 3 we show the performance of Deep Horizon on
mock observations. In Sect. 4 we discuss our results and future
improvements. In Sect. 5 we summarize our results.

2. Methods

Machine learning is a data-driven approach that requires suf-
ficiently large data sets to train the algorithm. In the problem
treated in this paper, observational data are limited. Hence, we
have to rely on current simulations to generate mock observa-
tions of the environment near a black hole.

We generated two data sets, each consisting of 100.000
images. Only the frequency varies between the two sets. The
images are computed by post-processing five different GRMHD
simulations. The GRMHD data are generated with the Black
Hole Accretion Code (BHAC; Porth et al. 2017, 2019; Olivares
et al. 2019)1, and the post-processing is done via the GRRT code
RAPTOR (Bronzwaer et al. 2018)2.

2.1. GRMHD simulations

The two relevant physical parameters of a GRMHD simulation
are the spin a and the absolute magnetic flux Φ through the

horizon often used in the dimensionless form φ = Φ/
√

ṀR2
gc

(Tchekhovskoy et al. 2011; Porth et al. 2019). In this paper, we
only consider standard and normal evolution (SANE; Narayan
et al. 2012) models with φ ∼ 1, and we use models with a

1 Publicly availble at https://bhac.science
2 Publicly availble at https://github.com/tbronzwaer/raptor
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spin of a = 0, ±0.5 and ±0.9375. These simulations are part
of the simulation library that is used in Event Horizon Telescope
Collaboration (2019e) and are initialized with a weakly magne-
tized Fishbone-Moncrief torus (Fishbone & Moncrief 1976) in
orbit around the black hole. The thermal pressure is perturbed
with white noise to initialize the magnetorotational instability
(MRI). The MRI causes angular momentum to be transported,
triggering accretion onto the black hole. The differential rotation
of the spacetime and magnetic field lines causes a magnetized
jet to launch.

2.2. GRRT simulations

To calculate mock observations, we post-processed the GRMHD
data with the GRRT code RAPTOR. This code calculates the flux
density map at a given frequency by computing null geodesics,
starting from a virtual camera, and simultaneously performing
radiative transport calculations. We used emission and absorp-
tion coefficients for thermal synchrotron emission. The RAPTOR
code used the “fast light” paradigm, where the simulation is
frozen with respect to the elapsed photon time, which is equiva-
lent to infinite light speed. We computed images at 230 GHz and
690 GHz. We used a camera with a field of view of (0.1 × 0.1)
milli-arcsec2 and generated images at (128 × 128) pixels.

The GRMHD simulations are scale-free. Therefore, we had
to convert the GRMHD variables from code units to centimeter-
gram-second (cgs) units. This is done by defining the simula-
tion length unit L = Rg, the simulation time unit T = Rg/c,
and the simulation mass unit M, where M sets the density in
the accretion flow. The dimensionless accretion rate Ṁsim can be
converted into the accretion rate in cgs units by Ṁ = ṀsimM/T .
The variables MBH and Ṁ are varied in our data generation.

The GRMHD simulation does not evolve the radia-
tively important electrons. We used a parametrization for the
plasma variables, which is based on the assumption that the
proton-to-electron coupling depends on plasma magnetization
(Mościbrodzka et al. 2016, 2017; Davelaar et al. 2018, 2019;
Event Horizon Telescope Collaboration 2019e). This coupling is
described by the following formula:

Tp

Te
= Rlow

1
1 + β2 + Rhigh

β2

1 + β2 , (1)

where β =
Pgas

Pmag
is the ratio of the gas pressure, Pgas, to the mag-

netic field pressure, Pmag = B2/2, where B is the magnetic field
strength. In the limit of β � 1, the temperature ratio asymptot-
ically approaches TP/Te → Rlow, while in the limit of β � 1
the temperature ratio asymptotically approaches TP/Te → Rhigh.
We set Rlow to 1 and we vary Rhigh. We varied the viewing angle,
which is defined as the angle between the observer and the black
hole spin axis. Finally, we overlaid our images with a circular
mask and rotated them to change the PA, the projected angle
between the image plane, and the black hole spin axis.

The GRMHD simulations were run up to tfinal = 10.000 T
consisting of 1.000 snapshots with an interval of 10 T . The cor-
relation time of the image is ∼50 T . In our data set, we used
the last 100 snapshots of every spin value to capture the time
evolution of the accretion flow. In these snapshots, the system is
well evolved and the accretion flow has reached a quasi-steady
state. We prevented our network from overfitting to single snap-
shots by randomly selecting ten snapshots as a validation set and
training on the other snapshots. For each of these snapshots, we
computed 200 images. Except for the spin, all parameters are

Table 1. Model parameters.

Parameter Range

i [15◦, 25◦]
Ṁ [2 × 10−6 M� yr−1, 0.01 M� yr−1]
Rhigh [1, 100]
M [2× 109 M�, 8× 109 M�]
PA [0◦, 360◦]
a 0, ±0.5, ±0.9375

Notes. The parameter ranges used during data generation. The first five
parameters are simulated continuously within the given range. The spin
parameter a is only simulated at five values.

randomly picked from a uniform distribution between the param-
eter ranges given in Table 1. This ensures that there is no overlap
between the training and validation sets. The mass prior is set
such that it includes the one sigma range of the reported mass
values of 3.5+0.9

−0.7 × 109 M� and 6.6 ± 0.4 × 109 M� by Gebhardt
et al. (2011) and Walsh et al. (2013).

Each parameter affects the image morphology differently.
The viewing angle and PA influence the position of the jet and
the asymmetry in the image. The density of the accretion flow
determines the observed integrated flux and is related to the mass
accretion rate Ṁ. The size of the shadow is predominantly deter-
mined by the black hole mass MBH. The value of Rhigh is related
to the region the emission originates from, where a low value
of Rhigh corresponds to a high concentration of emission in the
disk and a high value corresponds to emission that predomi-
nantly originates from the jet. The black hole spin influences
the geometry around the black hole and therefore the shape of
the shadow and the asymmetry of the image. We show these
effects in Sect. 3.1. A more detailed discussion of the effects of
these parameters on the images can be found in Event Horizon
Telescope Collaboration (2019e).

The viewing angle is sampled between 15◦ and 25◦ (Walker
et al. 2018), the PA between 0◦ and 360◦, Rhigh between 1 and
100, and MBH between 2 × 109 M� and 8 × 109 M� (Gebhardt
et al. 2011; Walsh et al. 2013). The mass accretion rate depends
on the black hole mass, Ṁ ∝ M/MBH. To determine the prior
of the mass accretion rate Ṁ for a fixed Mbh = 6.5 × 109 M�,
we manually fit to 1 Jy (Akiyama et al. 2015) at 230 GHz for
Rhigh = 1 and Rhigh = 100 for every spin case at a mass of
M = 6.5×109 M�. The resulting range of priors is then extended
with one order of magnitude to increase the scope of the train-
ing data and ensure the inclusion of the M 87* flux measure-
ment. The resulting range of Ṁ is between 2×10−6 solar masses
per year (M� yr−1) and 0.01 M� yr−13. These parameter ranges
are summarized in Table 1. We sampled all parameters linearly,
except Ṁ, which is sampled logarithmically because it covers
a large range over multiple orders of magnitude. We predicted
log(Ṁ) and converted this back to the original value after train-
ing in order to prevent from biasing our machine learning net-
work. We applied a min-max normalization to all parameters.
Finally, we convolved our images at 230 GHz with Gaussian
beams of 5, 10, and 20 µas. The latter is the current nomi-
nal resolution of the EHT; future arrays might correspond to
higher resolutions when either 345 GHz is added to the array
or large baselines are realized. This is done as an approximation
of a limited telescope resolution. In this work, we ignored other

3 Or between 1.5 × 10−8 ṀEdd and 7.3 × 10−5 ṀEdd, where ṀEdd is the
Eddington accretion rate for a black hole with mass M = 6.5 × 109 M�.
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telescope or measurement effects such as limited uv-coverage.
The expected SVLBI resolution is sufficiently high that we do
not convolve the images generated at 690 GHz; we assumed res-
olution as achieved by a set of telescopes in low Earth orbits,
which are capable of obtaining resolutions of approximately
3 µas (for more information see Roelofs et al. 2019). As a
result, we have five image libraries: one at 690 GHz and four
at 230 GHz.

2.3. Neural networks

Recent technological developments led to advancements in the
fields of deep learning and computer vision (Krizhevsky et al.
2012; Zeiler & Fergus 2014; Simonyan & Zisserman 2014;
Szegedy et al. 2015; He et al. 2015). Computer vision using neu-
ral networks is typically done by training convolutional neural
networks (CNNs; Lecun et al. 1998; Krizhevsky et al. 2012).
We trained two CNNs in this work: a Bayesian regression neural
network and a classification neural network.

Bayesian neural networks (BNNs) return a parameter estima-
tion and a Bayesian motivated uncertainty (MacKay 1992; Gal
2016; Kendall & Gal 2017). A BNN predicts two types of uncer-
tainties: the aleatoric and the epistemic uncertainty (Kiureghian
& Ditlevsen 2009; Kendall & Gal 2017). The aleatoric uncer-
tainty is associated with corruption in the data, for example
due to a limited resolution, whereas the epistemic uncertainty
is related to uncertainty in the model parameters, for example
due to an insufficient amount of data or training. Although there
are many types of uncertainties, they are generally categorized
as either aleatoric or epistemic (Kiureghian & Ditlevsen 2009).
Recent works have developed a fast and efficient method of
approximating these uncertainties in machine learning (Gal &
Ghahramani 2015a,b; Kendall & Gal 2017). A neural network
is trained by optimizing a loss function. By choosing a Gaus-
sian log-likelihood loss function, the network is also able to pre-
dict the aleatoric uncertainty. We split the final network layer,
so it returns both a prediction and an aleatoric uncertainty. The
epistemic uncertainty is obtained by using variational inference
with a method called Monte Carlo dropout (MCD). In MCD,
dropout layers (Srivastava et al. 2014) are included after every
weighted layer in the network. These layers have a fixed proba-
bility, the dropout rate, to turn off individual neurons for a sin-
gle forward pass of the data through the network. The dropout
rate is tuned such that the fraction of validation examples that
lay within a certain confidence interval correspond to those of
a normal distribution (Perreault Levasseur et al. 2017). Dropout
layers add a random component to the network, which results
in repeated predictions of the same image giving varying out-
comes. The collection of repeated predictions is used to sample
the posterior probability distribution, and the variance of this dis-
tribution gives the epistemic uncertainty. The uncertainty can be
combined by adding the epistemic variance to the mean aleatoric
variance. By sampling the posterior with N predictions, the com-
bined uncertainty σ is obtained by the following formula:

σ2 =
1
N

N∑
i=1

ŷ2
i −

 1
N

N∑
i=1

ŷi


2

+
1
N

N∑
i=1

σ2
i,al, (2)

where ŷ is the network prediction and σal is the aleatoric uncer-
tainty. For more details on this method, we refer to Kendall &
Gal (2017) or Perreault Levasseur et al. (2017).

We used the regression BNN, hereafter network I, to predict
the viewing angle i, mass accretion rate Ṁ, plasma parameter
Rhigh, black hole mass MBH and t PA. We used the classifica-

tion network, hereafter network II, to predict the black hole spin
a. We chose a classification network for this parameter because
we only have five distinct values in the training sets. Network I
is trained with a negative Gaussian log-likelihood loss function,
described by

−L =
∑

i

1
2σ̂2

i,al

∣∣∣yn,i − ŷn,i

∣∣∣2 +
1
2

log σ̂2
i,al, (3)

where yn,k is the true value of the k′th parameter in the n′th
image. Network II predicts the black hole spin a. We train this
parameter with a categorical cross-entropy loss function (Hastie
et al. 2001), described by

L = −

C∑
i

yo,i log po,i, (4)

where C is the number of classes, in our case five different spin
values, yo,i is a binary indicator whether the class label i is the
correct classification for observation o and po,i is the predicted
probability.

The architecture of networks I and II can be found in Fig. 1.
Network I and II have a similar architecture, except for the out-
put layers, where we differentiate between the classification net-
work and the regression network. The latter network has a further
differentiation between the network prediction and the aleatoric
uncertainty prediction. We split our image libraries into a train-
ing set consisting of 90 000 images and a validation set consist-
ing of the remaining 10 000 images to prevent the network from
overfitting on features in the training set. In all but the output
layers, we used a rectified linear unit (ReLU) activation func-
tion, described by f (x) = max(0, x) (Nair & Hinton 2010). We
tuned the dropout rate as described in Sect. 2.3 and find 0.01 as
our best value. The network is trained with the Adam optimizer
(Kingma & Ba 2014) with Keras version 2.2.4 (Chollet 2015)
and TensorFlow version 1.11.0 (Abadi et al. 2015). We set the
initial learning rate on 0.001 and decreased it by a factor of 2 if
the validation loss did not improve in two consecutive passes of
the data through the network. We used a batch size of 32 dur-
ing training. We used a random seed in TensorFlow of 1 to train
our network, but we validated that our network can be trained
independently of the chosen random seed.

3. Results

3.1. Image libraries

In Figs. 2–4, we show example images of the image libraries.
Every image is generated by running RAPTOR with a unique
set of parameters. The images show a central flux depression
where the black hole is located, surrounded by a bright ring
that coincides with the lensed emission ring (Falcke et al. 2000;
Gralla et al. 2019; Johnson et al. 2020; Narayan et al. 2019).
This ring scales with the black hole mass. Models with low
values of Rhigh show extended emission features that originate
from the accretion disk of the black holes. Many of the small-
scale features are lost when the Gaussian beam is applied.
With our network, we investigate what minimal resolution is
required to make reliable parameter estimations by varying the
Gaussian beam widths. We demand that false predictions are
reflected by smaller network confidence through larger uncer-
tainties on the prediction. These results can be seen in Sect. 3.2.
The effective size of the EHT array is limited by the size
of the Earth. Therefore, large improvements in the resolution
require higher frequencies. Planned extensions of the EHT to
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Fig. 1. Network architecture. After the flatten layer, network I branch out into a dense network per parameter, resulting in five unique network arms,
which allow for parameter-specific learning. The next time the arms branch out into a network prediction and an aleatoric uncertainty prediction.
To capture the epistemic error of network I, we make N predictions on the same image to sample the network posterior. Both networks have ReLU
activation functions unless stated otherwise.

345 GHz would improve the resolution by ∼40% (Event Horizon
Telescope Collaboration 2019b). Further large improvements
can be gained by switching to SVLBI. In Sect. 3.3, we show how
our network performs at an SVLBI frequency of 690 GHz. The
resolution of SVLBI experiments is expected to be sufficiently
good enough to compare these experiments to the simulations
without convolving them with a Gaussian beam.

3.2. Event Horizon Telescope

We plot the network I predictions of the 230 GHz image libraries
as a function of the true values in Fig. 5. For each prediction,
we determine the deviation for the correct prediction and weigh
it with the uncertainty σ. This allows us to define how many
points are predicted correctly within 1, 2, and 3σ, which corre-
sponds to approximately 68%, 95%, and 99%. Without a Gaus-
sian beam, the network can reliably predict the black hole param-
eters. A large scatter on the prediction indicates that the network
is less confident, which is further reflected by a larger (mean)

uncertainty. We show this uncertainty as a function of the devi-
ation in Fig. 6. The horizontal line in this figure indicates the
mean uncertainty. The values of the mean uncertainties can also be
found in Table 2. With an increasing beam width, the scatter in the
uncertainty and the mean value of the uncertainty increase.

In Fig. 7, we show a confusion matrix of the network II pre-
dictions. The neural network outputs a probability that an image
belongs to a certain class and selects the class with the high-
est probability as network prediction. Without a Gaussian beam,
the network has an accuracy of 95.9%, where most of the false
classifications are either one spin value higher or lower than
the correct value. The five classes are equally represented, and
the entire validation set we show in this work contains 10 000
images. Up to a Gaussian beam of 10 µas, the network can dis-
criminate between the different spin values, resulting in high
accuracy and minor deviations between the different classes. At
20 µas beam width, this is no longer true, and this results in many
more than half of the predictions being bad and larger discrepan-
cies between the classes. We further investigate the predictions
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Fig. 2. Single snapshot synthetic images. From left to right: 2.0 × 109, 5.0 × 109, and 8.0 × 109 M�. From top to bottom: 230 and 690 GHz. Images
shown are representative images with a fixed flux of F230 GHz = 0.5 Jy for model parameters a = −1/2, i = 20◦, Rhigh = 50.0, Ṁ = 10−4 M� yr−1.
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Fig. 3. Single snapshot synthetic images at 230 GHz. From left to right: spin values of −0.9375, 0, and 0.9375. From top to bottom: Rhigh values of
1, 50, and 100. Images shown are representative images with a fixed flux of F230 GHz = 0.5 Jy for model parameters i = 20◦ and M = 6.5× 109 M�.
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identical to the bottom right model in Fig. 3, with model parameters a = 0.9375, Rhigh = 100, i = 20◦ and M = 6.5 × 109 M�.

by plotting the receiver operating characteristic (ROC) curves
and the corresponding area under the curves (AUCs). In a ROC
plot, the true positive rate (TPR) is plotted versus the false posi-
tive rate (FPR) as a function of the classification threshold. These
quantities are given in Eq. (5), where tp stands for the number
of true positives (prediction and truth are both true), p stands for
the number of true values in the data set, and fn stands for the
number of false negatives (prediction is false, while truth is true),
as follows:

TPR = TP/P FPR = FN/P. (5)

The classification threshold is a minimal network probability
that is required to belong to a certain class: with a threshold of
zero, all spin values are compatible, whereas, with a threshold
of one, only a perfect prediction is accepted. The AUC can be
quantified with the integral defined as

AUC =

∫ 1

0
TPR(FPR−1(x))dx. (6)

In an accurate classifier, there is a high TPR at low FPR,
which results in an AUC of 1. However, if the classifier cannot
discriminate between the classes, they all are assigned approx-
imately equal probabilities. Therefore, increasing the classifica-
tion thresholds results in equally many true positives as false
positives being accepted, which results in an AUC of 0.5. The
ROC curves and the corresponding AUCs can be found in Fig. 8.

Up to a Gaussian beam width of 10 µas, Deep Horizon reli-
ably predicts the parameters of this study. With larger beams, the
images are more alike and, therefore, harder to distinguish. This
results in larger (mean) uncertainties and lower AUCs. Some
parameters are heavily affected by this (e.g., the viewing angle
and Rhigh), whereas the parameters that predominantly affect
large-scale features such as Ṁ (total flux) and MBH (size of the
shadow) are less affected by the Gaussian beam. For the viewing
angle, i the addition of a 20 µas blur results in almost all predic-
tions of the network to be close to the mean of the training data
(for i at 20◦). This is also reflected by the high uncertainty for all
values, as can be seen in Fig. 6. The samples that result in net-
work predictions, which are above the mean, show a majority of
models with small black holes masses, high mass accretion rates,
large Rhigh values, and larger viewing angles. These models have
in common that they have a jet feature that potentially helps the
network give a slight advantage to larger inclinations angles.

3.3. Space VLBI

We show the predictions of network I in Fig. 9, of network II
in Fig. 10, and the mean uncertainty per parameter in Table 2.
The performance at 690 GHz is comparable to 230 GHz with-
out a Gaussian beam. The mass accretion rate, black hole mass,

and PA have a relatively low amount of scattering in the network
predictions, which is reflected by the relatively low mean uncer-
tainties. The average accuracy over all spin values of network II
is 98.1%.

The expected data quality of SVLBI experiments allows for a
direct comparison to mock data without convolving the images.
We find that we can accurately recover all the parameters con-
sidered in this study. Therefore, future SVLBI missions would
allow for more detailed measurements of SMBH systems.

4. Discussion

4.1. Network and data quality

In a machine learning algorithm, the training data are con-
sidered to be the ground truth. Therefore, the quality of the
data set is important because any deviations of the simulation
with respect to reality result in an unquantifiable uncertainty
on the prediction. We have investigated the effects of increas-
ing or decreasing the amount of training data and find that
our algorithm is robust toward these changes. There are sev-
eral ways we can further expand our image library to include
more realistic mock observations. The first way is by includ-
ing more parameters. In this proof of concept, we limit our-
selves to SANE models for the accretion flow. However, the EHT
observations are also in agreement with magnetically arrested
disk (MAD; Bisnovatyi-Kogan & Ruzmaikin 1976; Narayan
et al. 2003) models for the accretion flow. We also only inves-
tigate emission models based on a thermal distribution function
for the electrons. Possible alternatives that relax the commonly
used thermal distribution functions are either κ-distribution func-
tion (Davelaar et al. 2019) or power-law models (Dexter et al.
2012). Also, the choice of electron heating prescription limits the
range of training data. Newly developed models include a sec-
ondary electron fluid that is evolved with the GRMHD simula-
tion (Ressler et al. 2015; Ryan et al. 2018; Chael et al. 2019b),
but these models highly depend on the choice for the underly-
ing heating mechanism. In this proof of concept, we chose to
use Rlow = 1; this choice is identical to Event Horizon Telescope
Collaboration (2019e). The value of Rlow could, however, be
smaller or lower than one, in general, the electron and proton fluid
does not have to be in exact equilibrium in the jet sheath since
electron heating in magnetized environments is shown to be more
efficient (Howes 2010; Chandra et al. 2015; Rowan et al. 2017).
To extend the predictive power of the network, a more diverse
set of electron temperature models should be considered, for
example, by including a larger range of Rlow values. Another
limitation of the training data can be found in the sampling
of the spin parameter. Currently, only five spin simulations are
present. The low sampling of the parameter space could result
in overfitting on these examples when a classical regression
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Fig. 5. Predictions of Network I at 230 GHz. The predictions of the 10 000 points in the validation set of network I at a frequency of 230 GHz with
various amounts of Gaussian beam widths. The color coding is based on the deviation of the network prediction with respect to the true value,
weighed by the network uncertainty. The red points indicate predictions that are correct within three or more σ. The units of the viewing angle
and PA are degrees (◦) of the mass accretion rate solar masses per year (M� yr−1) and the mass is expressed in solar masses (M�). Left to right:
no Gaussian beam and Gaussian beam widths of 5, 10, and 20 µas. Top to bottom: viewing angle, mass accretion rate, Rhigh, mass, and PA. The
sawtooth pattern in the PA at large Gaussian beams is discussed in Sect. 4.1.

network would be used. When applying our regression net-
work to spin, large uncertainties are obtained owing to a limited
amount of examples, which is expected for aleatoric uncertain-
ties. To be able to perform regression on the spin, the number of
values should be increased by at least a factor 2−4. Furthermore,
we could also include images that are generated with theories

beyond GR. Thereby, the algorithm could learn to recognize if an
image is compatible with GR or one of the alternatives (Mizuno
et al. 2018). Including these additional parameters is beyond the
scope of this proof of concept, but we would like to investigate
this in future studies. Another method to improve our data sets
is by including realistic telescope effects. In our data sets, we
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Fig. 6. Network I uncertanties at 230 GHz. The network uncertainties as a function of the deviation of the network prediction with respect to the
true value. The deviation is normalized to the parameter ranges, where a deviation of one corresponds to a maximally wrong network prediction.
The color coding, units, and order of the figure are similar to Fig. 5. The horizontal line indicates the mean predicted uncertainty.

approximate telescope resolution with a Gaussian beam but
ignore effects such as thermal noise or telescope systematics.
These effects are captured in SYMBA (Roelofs & Janssen, in
prep.) and the eht-imaging (Chael et al. 2018, 2019a) Python
package, which generate realistic synthetic data that can be
reconstructed with imaging techniques. Improvements of the
network could then go two ways, either by using reconstructed
images based on synthetic data generated with GRMHD mod-
els or directly training the network on the visibility quantities

in the synthetic data sets; these are two options that should be
compared in follow-up works. Finally, we also ignore vari-
ous constraints on the measurements such as spectral energy
distribution fitting, dynamical measurements, and polariza-
tion. Including this information in future studies could further
improve our network efficiency.

Figure 5 shows asymmetries in the network predictions of
the PA with a large Gaussian beam. Upon inspection of the data,
we see that in many of the inaccurately predicted points, the jet
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Table 2. Mean uncertainties of network I.

230 GHz 690 GHz
Beam width (µas) 0 5 10 20 0
i (◦) 1.0 1.6 2.3 2.9 1.0
Ṁ (M� yr−1) 1.8 × 10−4 2.9 × 10−4 3.6 × 10−4 6.4 × 10−4 2.4 × 10−4

Rhigh 8.9 14.8 18.7 24.9 11.5
MBH (M�) 1.6 × 108 2.1 × 108 2.7 × 108 5.0 × 108 1.5 × 108

PA (◦) 2.9 6.4 17.2 61.6 4.5

Notes. The individual predicted network uncertainties can be seen in Fig. 6. Left: 230 GHz. Right: same as left but at a frequency of 690 GHz.
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0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

No gaussian beam

average ROC curve (area = 1.00)
Spin -0.9375 (area = 1.00)
Spin -0.5 (area = 1.00)
Spin 0 (area = 1.00)
Spin 0.5 (area = 1.00)
Spin 0.9375 (area = 1.00)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

y

t

i

c

k

5 µas beam width

average ROC curve (area = 0.98)
Spin -0.9375 (area = 0.99)
Spin -0.5 (area = 0.98)
Spin 0 (area = 0.98)
Spin 0.5 (area = 0.98)
Spin 0.9375 (area = 0.99)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

y

t

i

c

k

10 µas beam width

average ROC curve (area = 0.92)
Spin -0.9375 (area = 0.93)
Spin -0.5 (area = 0.89)
Spin 0 (area = 0.94)
Spin 0.5 (area = 0.88)
Spin 0.9375 (area = 0.94)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

y

t

i

c

k

20 µas beam width

average ROC curve (area = 0.78)
Spin -0.9375 (area = 0.73)
Spin -0.5 (area = 0.78)
Spin 0 (area = 0.83)
Spin 0.5 (area = 0.68)
Spin 0.9375 (area = 0.86)

Fig. 8. Receiver operating characteristic curve and AUCs at 230 GHz. The ROC curves and corresponding AUCs at a frequency of 230 GHz.
Accurate classifiers have an AUC of 1, whereas inaccurate classifiers have an AUC of 0.5. There are no large discrepancies between different spin
values.

is not visible owing to the Gaussian beam. Instead, the Gaussian
beam sometimes magnifies a local overabundance of plasma in
the disk, which then shows up as if the jet is pointing in that
direction. Furthermore, the loss function, as given in Eq. (3),
does not capture the cyclicity of the parameter. Therefore, we
introduce a bias in the PA that overestimates low PA values and
underestimates high PA values. This causes the sawtooth pattern
observed in Fig. 5. In future works, we want to investigate the
effects of modifying the loss function to remove this asymmetry.

4.2. Time evolution

The environment near a black hole is a dynamic system. In our
data generation, we use the last 100 snapshots of every spin value
to capture these dynamics and prevent our network from overfit-
ting on temporal features. We investigate the effects of the time
evolution on our network by generating a new data set that has

a sufficiently large temporal separation to be used as an inde-
pendent test. We find no large discrepancies between the inde-
pendent test set and our standard data sets, and therefore, con-
clude that our network is not overfitting the temporal correlations
within the data.

4.3. Comparison EHT

In Event Horizon Telescope Collaboration (2019f), three inde-
pendent algorithms are employed to quantify the size, orien-
tation, and shape of the asymmetric ring structure found in
the 2017 EHT observations. These three methods are geomet-
ric crescent model fitting, GRMHD model fitting, and image
domain feature extraction. In this paper, we present a fourth
independent method that can be used for parameter estimations.
In this subsection, we discuss the error budget obtained in the
EHT methods. We focus on the measurement of the angular size
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Fig. 9. Network I prediction at 690 GHz. The predictions of network I at a frequency of 690 GHz, no Gaussian beam applied. The color coding
and units are similar to Fig. 5. Left to right: viewing angle, mass accretion rate, Rhigh, mass, and PA.
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Fig. 10. Network II predictions at 690 GHz. Top: similar to Fig. 7 but at
a frequency of 690 GHz. Bottom: similar to Fig. 8 but now for 690 GHz.
For both panels, no Gaussian beam is applied.

corresponding to a gravitational radius, θg = Rg/D, which is
used to find the black hole mass by folding in a distance mea-
surement for M 87.

The EHT reports three sources of uncertainty: a statisti-
cal uncertainty that corresponds to the width of the posterior,
an observational uncertainty that corresponds to an incomplete
(u, v) coverage, and unmodeled systematics and a theoretical
uncertainty associated with the data being a single sample from a
dynamic system. Of these three components, theoretical uncer-
tainty is the largest component. Details on how the uncertain-
ties are calculated per method are provided in the appendices
of Event Horizon Telescope Collaboration (2019f). These indi-

vidual contributions are further classified as systematic uncer-
tainties due to the GRMHD calibration of the method and a
statistical uncertainty originating from the angular diameter
measurement. The average values over the different methods
after folding in the distance measurement areσsys = 0.7×109 M�
and σstat = 0.2 × 109 M�.

Although the same GRMHD simulations are used by the
EHT and in this work, these uncertainties do not describe the
same uncertainties as the uncertainties output by Deep Horizon
because the methods to obtain these uncertainties are very differ-
ent. Therefore, we cannot directly compare our network uncer-
tainty to the uncertainty found within Event Horizon Telescope
Collaboration (2019f). Furthermore, such a comparison would
be beyond the scope of this paper because we do not test our
network on the real image obtained by the EHT collaboration.
However, we note that the mean uncertainties on the mass in
Table 2 are of the same order of magnitude as the uncertainties
found by the EHT. Although our method looks promising, further
improvements and detailed method comparisons are required
before we can apply this to observed data. One such comparison
that requires further study is that, although our method differs
from those described by the EHT, systematic correlations may
remain as a result of the same underlying GRMHD simulations.

5. Conclusions

In this work, we present Deep Horizon, a combination of
two convolutional deep neural networks that can recover input
parameters of an image of an accreting SMBH. We create realis-
tic mock observations and use these to show that our network can
accurately recover the six parameters investigated in this study
if we ignore limited telescope resolutions. We show that the cur-
rent resolution of the Event Horizon Telescope is insufficient to
determine all parameters of this study accurately, but is still suffi-
cient to recover the mass and mass accretion rate accurately and
could, therefore, confirm the results found by the Event Horizon
Telescope collaboration. With future improvements to the reso-
lution of images of black hole shadows, Deep Horizon would
be able to recover more parameters. We investigated the case of
space-based VLBI, which resulted in highly accurate parameter
estimations.

Overall, the proof of concept presented in this paper shows
that machine learning is an interesting parameter extracting tool
for horizon scale observations that can be of great value for
future tests of GR.
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