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Abstract: Photonic nanostructures with gain and loss
have long been of interest in the context of diverse scat-
tering anomalies and light-shaping phenomena. Here, we
investigate the scattering coefficients of simple gain-doped
diffractive metasurfaces, revealing pairs of scattering
anomalies surrounded by phase vortices in frequency–
momentum space. These result from an interplay between
resonant gain, radiative loss, and interference effects in the
vicinity of Rayleigh anomalies.We find similar vortices and
singular points of giant amplification in angle-resolved
reflectivity spectra of prism-coupled gain slabs. Our find-
ings could be of interest for gain-induced wavefront
shaping by all-dielectricmetasurfaces, possibly employing
gain coefficients as low as ∼50 cm−1.

Keywords: active nanophotonics; dielectric nanoparticles;
metasurfaces; nanoparticle arrays; phase singularities.

1 Introduction

Electromagnetic metasurfaces are two-dimensional (2D) ar-
rays of scatterers used to control amplitude, phase, and
polarization of reflected, transmitted, and diffracted elec-
tromagnetic waves [1–4]. Recently, extensive research has
been devoted to combining metasurfaces with gain media,
with the main focus on distributed feedback lasing and dif-
fractive outcoupling in plasmonic and dielectric nano-
particle arrays [5]. These studies largely relate to thenotionof
combining gain with surface lattice resonances [6], in which
Rayleigh anomalies and plasmon particle resonances

hybridize [7]. Recent theoretical works suggest that, apart
from lasing, the role of gain could be far more nontrivial. For
instance, properly engineered gain and loss could overcome
efficiency barriers of metasurfaces for wavefront trans-
formation imposed by impedance mismatch [8, 9], mitigate
constraints on electric and magnetic optical response of
matter [10, 11], and control the scattering by small ensembles
of nano-objects [12, 13]. The interplay between gain and loss
gives rise to many scattering anomalies [14], such as unidi-
rectional invisibility, coherent perfect absorber-lasers, as
well as manifestations of parity–time (PT) symmetry [15–17],
offering a platform for active control of light propagation
[18–20] and for enhanced light-matter interactions [21–23].

In this work, we theoretically demonstrate the existence
of scattering anomalies embedded in the band structure of
simple diffractive arrays of identical dielectric nanoparticles
(Figure 1, left) that are intrinsically weakly scattering, but
imbued with a weak frequency-dependent gain. We study
this system using a Green function method [24–28], which
includes the coherent retarded electrodynamic coupling be-
tween all particles, and radiative damping as the essential
ingredient. Contrary to our previous findings on arrays of
plasmonic nanoparticles with a shell of gain [29], the scat-
terers considered here are not resonant bymeans of localized
plasmon or Mie resonances [30] but only due to a spectrally
dependent gainmedium.While evenwith gain, each particle
is a weak scatterer with response dominated by radiative
loss, and their optical response is significantly modified in
arrays, where the interplay of gain, loss, and interference
gives rise to scattering anomalies. These anomalies resemble
sharp resonances associated with lasing thresholds, studied
over the past decades in various gain-doped dielectric
structures [31–41]. In contrast to these reports, the anomalies
discussed in thiswork result from interference effects caused
by gain-inducedphase alteration, leading to trapping of light
inside the gain medium. Furthermore, by considering the
case of a resonant gain, we show that these anomalies must
always emerge in pairs, and each of them is surrounded by a
phase vortex, producing a scattered field of diverging
amplitude and undefined phase, which makes them analo-
gous to phase singularities observed in perfectly absorbing
structures [42]. We find that similar anomalies already occur
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in the reflectivity of a prism-coupled gain medium slab,
where the incident light couples evanescently to guided
modes in a traditional attenuated total reflection setup
(Figure 1, right). This divergent coupling to amplified weakly
guided slab modes provides an explanation for the meta-
surface behavior. Similar guided modes are supported by
metasurfaces, even composed of weakly polarizable scat-
terers. Due to periodicity, these are coupled to free space,
leading to the observed singularities.

2 Results and discussion

2.1 Scattering by a single nonlasing active
nanoparticle

Weconsider lattices of small spherical nanoparticles (radius
ρ=80nm) that in the absence of gain have a refractive index
ng = 1.55, so that they are almost index matched with the
passive host medium of index nd = 1.5. In addition, the
particles are assumed to have a Lorentzian gain [12] with
peak at ℏωg = 2.25 eV, bandwidth ℏγg = 0.025 eV, and

maximum material gain gmax = 300 cm−1. The relative
permittivity εg of such a gain medium is governed by

εg � n2g(1 + gmax k
−1
g

γg
ωg − ω + iγg

) (1)

where kg � ngωg/c is the wave number in the gain medium
at the gain peak. In the static limit, the polarizability of this
nanoparticle can be expressed as

αstat � 3V
4π

εg − εd
εg + 2εd

I (2)

where εd � n2
d is the relative permittivity of the surrounding

medium, V � 4πρ3/3 is the nanoparticle’s volume, and I is

the identity operator. The choice of units in Eq. (2) is the
same as in the study by Sersic et al. [10]. Due to the small
particle size and low index contrast (Δn = 0.05), we can
safely neglect magnetic, magnetoelectric, and nondipolar
effects. The scattering of light is determined by the nano-
particle’s dynamic polarizability αdyn, which is obtained
from αstat by adding radiation loss [10, 43, 44]:

α−1
dyn � α−1

stat −
2i
3
k3I (3)

where k = ndω/c is the wave number in the dielectric
environment. The spectral dependence of εg, αstat, and αdyn

(scalar values on the tensor diagonal) is plotted in Figure 2a
and b, respectively.

Previous studies on gain-doped spherical scatterers
focused mainly on high-Δn and/or high-gain scenarios,
often predicting huge amplification at discrete wave-
lengths and incidence angles [31, 33] already for single
particles. In these cases, extreme optical responses could
be attributed to narrowing of the particle’s Mie resonances
in the vicinity of their lasing thresholds, i.e., near the
conditions of their radiative loss compensation [38, 41]. In
contrast, our nanoparticles by themselves are only very
weakly polarizable and operate in the Rayleigh limit,
i.e., away from any intrinsic particle resonances. They
cannot by themselves become a laser, as there is no reso-
nance to provide feedback, and furthermore, the assumed
gain is by far insufficient to compensate the radiative loss.
This is apparent from Figure 2c showing extinction and
scattering cross sections of this particle: σext � 4πk Im{αdyn}
and σscat � 8πk4

∣∣∣∣αdyn∣∣∣∣2/3, respectively. In the spectral range

of gain, 0 < σext < σscat,meaning thatwhile the nanoparticle
slightly attenuates the incoming wave, its total scattered
energy is slightly greater than the energy it takes from the
beam as extinction. In the next section, we explore the

Figure 1: Photonic structures discussed in
this work, featuring gain-induced phase
singularities in the frequency–momentum
space, accompanied by diverging ampli-
tude of the scattering observables.
Left: periodic array of weakly polarizable
gain medium nanoparticles has scattering
anomalies in transmission and reflection.
Right: prism-coupled gain medium layer
shows scattering anomalies in attenuated
total internal reflection.
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possibility of enhancing the weak individual response of
such nanoparticles by their periodic arrangement.

2.2 Scattering by an array of nanoparticles

For periodic arrays under plane wave illumination, Bloch
theorem allows to express the lattice-corrected response of
each nanoparticle using effective polarizability αeff [24–29]
which depends on the frequency ω and in-plane mo-
mentum k||:

p(ω,  k||) � αeff(ω,  k||)Einc(ω,  k||) (4)

wherep is the induced dipolemoment and E is the incident
field, whereas αeff is obtained from

α−1
eff(ω,  k||) � α−1

dyn(ω) − Glatt(ω,  k||) (5)

where Glatt is the lattice Green function which encodes the
electromagnetic interparticle couplings, and αdyn can be
calculated using Eqs. (1)–(3). Details on simulating the
optical properties of metasurfaces can be found in the
studies by Zou et al [24], de Abajo [25], Lunnemann et al
[26], Kwadrin and Koenderink [27], Lunnemann and
Koenderink [28], andKolkowski andKoenderink [29] and in
the Supplementary material S1.

Here, we consider the same nanoparticles as in the
previous section, arranged into a square array of pitch
a = 250 nm. Figure 3 shows the transmissivity and reflec-
tivity of this array under s- and p-polarized illumination
(Ts, Tp, Rs, and Rp) as a function of ω and k||. Since the
individual nanoparticles are weakly polarizable, the
overall optical response of the array is rather weak, with
some enhancement near the Rayleigh anomalies, one of
which is highlighted by the green dashed line. In the next
section, we will show that there are actually hidden sin-
gular points of extreme T and R, which are not resolved in
Figure 3, but canbe revealed by propermagnification of the
parameter space.

2.3 Diverging lattice polarizability near the
Rayleigh anomaly

Figure 4a–d shows a magnification of Figure 3 around the
intersection between the gain band, visible as blue color in
Figure 3a and b, and the (1, 0)-Rayleigh anomaly high-
lighted by the green dashed line. Here, the parameter space
is tilted by substituting kxa/π on the horizontal axis by
(kx + k)a/π − 2, enforcing the alignment of the vertical
frequency axis with the (1, 0)-Rayleigh anomaly, and
enabling exploration of its closest vicinity. This approach

Figure 2: (a) Electric permittivity εg of a gain mediumwith refractive
index ng = 1.55, gain bandwidth ℏγg = 0.025 eV, and peak gain
coefficient gmax = 300 cm−1 at ℏωg = 2.25 eV: real part – red,
imaginary part – blue. (b) Scalar polarizabilities α of a gain medium
nanoparticle of radius ρ = 80 nm embedded in a dielectric
environment of refractive index nd = 1.5: static polarizability – solid
lines, dynamic polarizability – dashed lines, real part – red,
imaginary part – blue. (c) Optical cross sections σ of the same
nanoparticle: scattering cross section– solid green, extinction cross
section – dashed black.
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reveals a narrow lattice resonance that is excited under
both s and p incident polarizations. As seen from
Figure 4a–d, this mode “hybridizes” with the frequency-
dependent material gain, leading to T and R of at least 103,
revealed by further zoom into the singularities, presented
in the insets. We will prove that T and R are divergent at
these points and are associated with a phase singularity in
the response.

An effective analysis method of the lattice response is
to note that the response tensor for the lattice defined by
Eq. (5) can be diagonalized to find eigenvalues (eigenpo-
larizabilities) and eigenvectors (eigenilluminations).

Moreover, the inverse lattice polarizability α−1
eff generally

shares its eigenvectors with αeff , while the eigenvalues are
just the inverse eigenpolarizabilities. Therefore, if just one

eigenvalue of α−1
eff tends to 0 + 0i, then at least one eigen-

value of αeff becomes divergent. This is clearly the case in
Figure 4e–g, which shows that the second and the third
inverse eigenpolarizability, corresponding to the y-ori-
ented (in plane, transverse to k||) and the z-oriented (out of
plane) dipoles, must both have at least two complex zeros.
This is evident from the sign-change contours in the real
and imaginary parts. The real part is frequency and mo-
mentum dependent, while the imaginary part is mostly
frequency dependent but with negligible variation along
the momentum axis over the magnified range. Hence, the
intersection of these contours cannot be avoided. The

distribution of Re{α−1
eff} originates from the resonant char-

acter of scattering in the vicinity of Rayleigh anomalies,
showing de facto a dispersive (frequency- and momentum-
dependent) lattice mode, which appears inside the light
cone due to band folding of the weakly guidedmetasurface
mode. Due to low index contrast, radiative damping has

only a moderate contribution to Im{α−1
eff} in the absence of

the first-order diffraction (that is, on the left-hand side of
the Rayleigh anomaly in Figure 4), and therefore, it is
entirely dominated by the frequency-dependent gain band
of the nanoparticles material, which does not depend on
the in-planemomentum.As seen in Figure 4, this particular
distribution leads to diverging T and R at the k||–ω points
where the incoming light couples to the corresponding
divergent eigenpolarizabities.

Figure 4i–l shows the phase response in reflection and
transmission near the points of singular response. Clearly,
phase vortices of opposite topological charge appear for
the pairs of these points. Here, we define the topological
charge as an integral over phase (modulo 2π) along a
closed path surrounding a given point in the frequency–
momentumplane. The insets in Figure 4i–l show that upon
clockwise encirclement of the lower frequency singularity,
one would acquire a full 2π phase jump. Encircling the
other singularity (the one at higher frequency) would result
in a phase jump of −2π. This is a direct consequence of the
fact that the eigenpolarizabilities in Figure 4e–h are

Figure 3: Zero-order transmission and
reflection from a square lattice (pitch
a = 250 nm, background index nd = 1.5) of
spherical nanoparticles with gain
(parameters as in Figure 2), as a function of
frequency ω and in-plane momentum kx
(for ky � 0): (a, b) transmissivity T, (c, d)
reflectivity R, for (a, c) s-polarized (TE), and
(b, d) p-polarized (TM) incident light. Green
dashed lines mark the (1, 0)-Rayleigh
anomaly.

4276 R. Kolkowski and A.F. Koenderink: Scattering anomalies of diffractive metasurfaces



complex functions that show pairs of simple zeros. The
scattering phase inside each vortex is undefined, and the
vortices can be regarded as counterpart to the singular
phase at scattering zeros in perfectly absorbing systems
[42]. It is the Lorentzian resonant frequency dependence of

the gain that causes the topological charge of each vortex
to be ±1 and whereby the singularities must always emerge
in oppositely charged pairs (one singularity per each side
of the gain band). The singularities annihilate each other
once the gain is reduced below a certain threshold. This is

Figure 4: Magnification of Figure 3, with the momentum axis corrected to match with the (1, 0)-Rayleigh anomaly, which now appears vertical
and is marked by the green dashed line.
(a, b) Transmissivity, (c, d) reflectivity, for (a, c) s-polarized, and (b, d) p-polarized incident light. (e, f) Real part, and (g, h) imaginary part of (e, g) the
second and (f, h) the third eigenvalue of the inverse effective polarizability α−1

eff . Positive-zero-negative values are encoded in the red-white-blue color
scale. For both eigenvalues, the real part crosses zero along the in-plane momentum axis, whereas the imaginary part crosses zero twice along the
frequency axis. The intersectionsbetween the real and the imaginary sign-change contoursproducepairs of phase vorticeswith topological charge±1,
whichare visible in thephaseplots in (i–l), calculatedas theargumentof thecomplex transmission/reflection coefficient tand r corresponding to (a–d)
(R � |r|2, T � |t|2). The insets show furthermagnification of the singularities (the ones at lowerω) and their coincidencewith centers of phase vortices.
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demonstrated in Figure 5a,whereR is plotted versusk|| and
gmax at a fixed ω = ωg, with a sequence of k||–ω plots for
various gmax in Figure 5b. For the p-polarized reflected
light, we find a threshold of around 56 cm−1, which is
significantly lower than for the s-polarized light
(∼255 cm−1). This can be explained by noting that in-plane
and out-of-plane electric dipoles at the given k|| (corre-
sponding to the incidence angle ∼27.9°) have significantly
different radiative loss rates.

All singularities discussed above have been presented
as pairs of isolated points in the kx–ω plane. However, if
one considers the entire frequency–momentum space (kx,
ky, ω), these singularities would appear as continuous
lines, following the edges of Rayleigh anomalies (which
have conical shapes in this parameter space). In terms of
phase distribution, these pairs of lines would be topolog-
ically similar to pairs of screw dislocations of opposite
handedness. To better illustrate the true shape of these
contours, in the Supplementary material S2 we present T

and R in a fixed-frequency crosscut of momentum space (a
Fourier image) and an example k||–ω crosscut analogous to
Figure 4, but not aligned with kx. It shows that the singu-
larities may persist in different k-space regions, as long as
the gain is sufficient to compensate the radiative losses.
However, since the radiative damping is momentum
dependent, these contours may merge together and anni-
hilate each other at certain points inside the light cone if
the gain becomes too small to compensate the loss.
Furthermore, a singularity line may also be terminated by
simply decoupling from the far field due to symmetry.

2.4 Singular response of simple weakly
amplifying slab waveguides in total
reflection

Here, we show that the gain-induced anomalies that we
report can even be realized in a system without periodic

Figure 5: Reflection from a metasurface with either gain or loss.
(a) Dependence of the reflectivity Rs, p and the reflected phase arg(rs,  p) on the in-planemomentum kx (horizontal axis) and on the gain coefficient
gmax (vertical axis) at a fixed photon energy 2.25 eV. Negative gmax means an effective loss. (b) Frequency–momentum distributions of Rs, p and
arg(rs,  p) at various gmax, showing the birth of singularities at ∼255 cm−1 for the s-polarized light and ∼56 cm−1 for the p-polarized light.

4278 R. Kolkowski and A.F. Koenderink: Scattering anomalies of diffractive metasurfaces



structuring, namely, in a prism-coupled weakly wave-
guiding layer with a small amount of optical gain. In the
past, there have been several proposals of slab amplifiers
[35–37], relying on the interaction of amplified leakymodes
with free-space radiation. In contrast, our structure is
based on evanescent coupling to a waveguide with gain in
attenuated total reflection. This evanescent coupling
makes the scenario similar to evanescent lasers [45–49],
except that it avoids the branch cut ambiguity [50] by
confining the gain medium to a layer of limited thickness.
(In our case, the calculated results are independent on the
branch cut choice.)

To find parameters that would make a homogeneous
gainmedium layer similar to themetasurface studied in the
previous section, onewould need to assign a thickness and
a slab dielectric constant according to a homogenization
procedure [51]. One approach is to estimate the permittivity
εl from the particle polarizability and for an assumed slab
thickness h according to Clausius–Mossotti relation:

εl − εd
εl + 2εd

� 4πεd
3

Nαstat (6)

where N � 1/(ha2) is the number density of the nano-
particles. The magnitude of εl and its spectral variation de-
pends on the assumed layer thickness h, with exact
coincidence between the values of εl and εg at
h � εdV/a2 ≈ 77.2 nm (coincidentally very close to
ρ = 80 nm). Inspired by this reasonable correspondence, we
calculate the complex-valued effectivemode index neff of an
isolated gain medium layer (in the absence of a prism
coupler, in a homogeneous medium of n � 1.5) using a
transfer matrix approach [52], which is briefly presented in
the Supplementary material S3. Figure 6a shows the
dispersion of Re{neff} for the Transverse Electric (TE) and
Transverse Magnetic (TM) guided modes (corresponding to
the s and p polarizations, respectively) assuming h = 80 nm,
and taking εl as per the homogenization approach. The
modal gain coefficientgmod � 2k0Im{neff} is encoded in color.
Evidently, we are dealing with a very weakly waveguiding
slab (mode index of order 1.5015, relative to cladding
n � 1.5), with a weak modal gain (15 cm−1). Figure 6b shows
that the magnitude of neff depends somewhat on the choice
of h, indicating that a 2D array of polarizable particles cannot
be strictly homogenized as a dielectric slab. Furthermore,
our metasurface does not qualify for the effective medium
approximation, since its lattice period is not significantly
smaller than the spatial variation of the incident field due to
k||. However,we emphasize that thepurposeof introducinga
gainmedium slab in thiswork is not becausewe claim that it
can closely approximate the metasurface but rather it is to
present a simpler system of similar material parameters

whichexhibits the samekindof singular scattering response.
We note that this kind of response occurs irrespective of the
precise choice of h used in the homogenization.

Next, we consider coupling of incident light to the
envisioned weakly amplifying waveguide by a prism
coupler. To this end, we add another interface with a high-
index prism medium (n � 1.75), spaced from the amplifying
slab by a layer of thickness d and index 1.5. As in the pre-
vious calculation, the amplifying layer has a thickness
h � 80 nm and εl ≈ εg and is covered by an n � 1.5 cladding.
We calculate R for the plane waves incident from the high-
index prism, expecting to see total internal reflection (R = 1)
except when matching the waveguide mode in wave vector
and frequency. The evanescent coupling introduces a
leakage loss to the waveguide mode which depends on the
distance d between the prism and the layer. At d � 2 μm, we
discover points of huge amplification in the regime of total
internal reflection just above the critical angle θcr, shown in

Figure 6: (a) Complex effective mode index neff calculated using
transfer matrix method, for the s- and p-polarized fundamental
guided modes of a gain-doped layer that imitates the nanoparticle
array from Section 2.3. The layer has permittivity εl ≈ εg and thick-
ness h=80 nmand is surrounded by amediumof index nd = 1.5. The
gray dashed line marks ℏω = 2.25 eV. (b) Dependence of neff on the
assumed h at a fixed photon energy equal to ℏωg = 2.25 eV, with εl
governed by Eq. (6). The gray dashed line marks h = 80 nm. In both
(a) and (b), modal gain coefficient gmod � 2k0Im{neff} is encoded in
the color.
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Figure 7a and b for both s and p incident polarization,
resulting from the intersections of the real and the imaginary
sign-change contours in r−1 shown in Figure 7c–f. The dis-
tribution of the complex-valued reflection coefficient r
around these points features pairs of phase vortices, shown
in Figure 7g and h, similar to the vortices observed in
Figure 4e–h. In the full frequency–momentum space
(kx–ky–ω), each of these singularies would appear as a ring
due to full rotational invariance of the slab, as opposed to
periodic metasurfaces, where the singularities are aligned
with the edges of Rayleigh anomalies. Furthermore, as

opposed to simplemetasurfaces in a symmetric host [53], the
proposed asymmetric multilayer geometry can also support
phase singularities in the lossy regime, which is shown in
Figure 8 (analogous to Figure 5). In case of a lossy wave-
guide, phase singularities become points of perfect ab-
sorption (zero in R, and lack of T due to evanescence),
similar to those reported in the study by Berkhout and
Koenderink [42].

From the above results, we conclude that the singular
scattering response of weakly scattering and amplifying
metasurfaces is not due to their periodic patterning per se.

Figure 7: Results of the transfer matrix
calculations, showing the amplified
reflection just above the critical angle
(θcr = 59.00°) resulting from evanescent
coupling of incident light to the guided
modes supported by the gain-doped layer as
a function of the incidence angle θ and fre-
quency ω, assuming h = 80 nm (εl ≈ εg),
prism index of 1.75, and prism-to-slab dis-
tance of 2000 nm. (a, b) Reflectivity R for the
s- and p-polarized incident light. (c–f) Dis-
tribution of the real and the imaginary part of
r−1 (inverse of the reflection coefficient). The
intersections of the real and the imaginary
zeros create pairs of singularities, similar to
those observed in Figure 4. (g, h) Pairs of
phase vortices with topological charge ±1
coincide with the singularities in (a, b), just
like in Figure 4.
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In a gain-dopedmetasurface, the role of periodicity is to act
as a grating coupler, folding the guided modes into the
light cone and opening a radiative decay channel, which is
associatedwith loss that contributes to the effect of gain on
the amplitude and phase of light, leading to the observed
anomalies.

2.5 Classification of the scattering
anomalies

Forbetterunderstandingof the anomalies reportedhere, it is
useful to place them among the known scattering phe-
nomena. Krasnok et al. [14] have recently provided a thor-
ough classification of diverse scattering anomalies on the
basis of zeros and poles in the S-matrix Hamiltonians and
scattering coefficients, using the notion of complex eigen-
frequencies rather than complex eigenpolarizabilities. The
divergence of scattering coefficients presented in our work

corresponds exactly to the scenario in which a pole in the
scattering coefficient intersects with the real frequency axis
due to the balance between the gain of the system’s eigen-
mode and its outcoupling loss. Figure 9 presents the tra-
jectories of such poles obtained using transfer matrix
method for the same type of geometry as considered in
Section 2.4 – that is, a gain medium slab with and without
the coupling prism – taking complex-valued frequencies
and real-valued parallel momenta as an input. An isolated
gain medium layer supports fundamental TE (s) and TM
(p) guidedmodes with negative imaginary eigenfrequencies
(i.e. with net gain). The presence of a coupling prism in-
troduces additional losses, pulling the imaginary eigen-
frequencies toward positive values and forcing them to cross
zero at singular points in the k|| − Re{ω} plane (black circles
in Figure 9). Similar behavior can be shown for the eigen-
frequencies of a gain medium metasurface discussed in
Sections 2.2 and 2.3. To avoid issues with the lattice
Green function method (Ewald summations at complex

Figure 8: Total internal reflection with evanescent coupling to a thin layer with either gain or loss. (a) Dependence of the reflectivity Rs, p and
the reflected phase arg(rs,  p) on the incidence angle θ (horizontal axis) and on the gain coefficient gmax (vertical axis) at a fixed photon energy
of 2.25 eV. Negative gmax means an effective loss. (b) Frequency–momentum distributions of Rs, p and arg(rs,  p) at various gmax, showing the
birth of singularities in the regime of both gain (divergent amplification) and loss (perfect absorption).
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frequency), we turn to the commercial full-wave finite-
element software COMSOL Multiphysics. COMSOL allows
finding the complex eigenfrequencies of our metasurface at
real parallel momentum defined by Floquet periodic bound-
ary conditions (see Supplementary material S4 for more de-
tails on simulation and the required boundary conditions).
Results of these simulations are presented in Figure 10. These
results show excellent agreement with Figure 4, confirming
the coincidence between the singularities and the in-
tersections of eigenfrequency trajectorieswith the realω axis.
Moreover, these results are very similar to the results shown
in Figure 9, which is another piece of strong evidence that the
gain medium metasurface is indeed analogous to the prism-
coupledgainmediumslab, and their scatteringanomaliesare
manifestations of the same physical mechanism stemming
from the interplay between the eigenmode’s gain and the
outcoupling loss. According to Krasnok et al [14], this sce-
nario corresponds to the scattering behavior of a laser with
anomaly occurring at the lasing threshold. Certainly, the role
of resonant outcoupling loss in photonic structures discussed
in our work is reminiscent of the proposal of Nechepurenko
[54] which addresses the emergence of lasing induced by
resonant loss in a system with gain.

Nonetheless, there is a remarkable difference between
the usual lasing threshold anomalies and the anomalies
discussed in our work. In the usual laser, the light is already
trapped inside a cavity, such that the net amplification will

always diverge (up to gain saturation) above the lasing
threshold, as a result of gain accumulated during multiple
round trips. In our case, the trapping of light is caused by the
gain (or by loss) itself and there is no cavity or distributed
feedback. Both gain and loss contribute to the phase ac-
quired by light, and this additional phase leads to interfer-
ence that can store the light inside the gainmedium for a very
long time. During such extended scattering event, the con-
stant leakage of light is perfectly balanced by the amplifi-
cation, such that the total amount of energy carried away by
the reflected or transmitted light becomes divergent. A
similar mechanism is realized in the evanescently coupled
lossy waveguide, where a certain amount of loss leads to
coherent trapping of light, which leads to what is known as
coherent perfect absorption [55, 56]. In contrast to the usual
physics of a laser, excessive gain (or excessive loss) disturbs
the scattered phase, such that the divergence is removed.
Indeed, the amplification (extinction) at frequencies in be-
tween the singularities is significantly weaker, in spite of
higher gain (higher loss) in this range. Similar behavior has
been achieved by active systems with exceptional points
(EPs) [57, 58]; however, in our case, it is shown in much
simpler systems, without any use of PT symmetry physics.

Finally, we would like to emphasize that the scattering
anomalies presented in this work are not EPs, as the latter
ones require at least two complex eigenmodes that are
coupled together and form two phases (PT symmetric and

Figure 9: Results of the complex
eigenfrequency analysis using transfer
matrix method for the gain medium slab
waveguide – the same as in Section 2.4 –
with the coupling prism (opaque contours/
intense colors) and without the coupling
prism (semitransparent contours/faint
colors): trajectories of the poles of the
reflection coefficient as a function of the in-
plane momentum k||, or incidence angle
θ � arcsin(k||k−10 n−1p ), and complex-valued
frequency ω, corresponding to the TE
(s-polarized) and TM (p-polarized) guided
modes. Solid contours: gmax = 300 cm−1,
dashed contours: gmax = 0.(a) Dependence
of real eigenfrequencies on the incidence
angle, with the imaginary eigenfrequencies
encoded in the color (blue=gain, red= loss,
magenta = purely real eigenmode). (b) Pole
trajectories in the complex frequency plane,
with in-plane momentum encoded in the
color. In both (a) and (b), black circles mark
the intersections of pole trajectories with
the real frequency axis. These points corre-
spond to the singularities observed in
Figure 7.
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with broken PT symmetry) across the parameter space.
Generally catastrophic scattering anomalies do not require
two complex eigenmodes and hence are distinct from EPs
[14, 29]. EPs will only coincide with such anomalies in
highly accidental cases, i.e., when gain and loss of two
coupled eigenmodes are perfectly balanced in their
PT-symmetric phase. This kind of scenario leads to what is
referred to as “spectral singularities” [59] and “photonic
catastrophe” [60]. EPs may also exist without gain, leading
tomoderate scattering coefficients [61, 62]. Our gain-doped
metasurface cannot support EPs, at least in the k||–ω range
under consideration, as there is no coupling between the
existing eigenmodes (ensured by the assumption of
isotropic spherical scatterers, square lattice with one par-
ticle per unit cell, as well as the absence of magnetoelectric
or multipolar effects). On the other hand, our system could
exhibit EPs in other regions of thek||–ω space, for instance,
near the intersection of Rayleigh anomalies where two or
more copies of the same eigenmode could interact in a non-
Hermitian manner [19]. This is certainly an exciting target
for further exploration of such metasurfaces.

3 Conclusions and outlook

We have shown that periodic arrays of weakly polarizable
scatterers can support scattering anomalies accompanied
by phase vortices. The main challenge in observing

these singular features in experiments comes from the as-
sumptions that the array and the incident plane wave are
significantly extended in space and time, such that their
frequency–momentum distributions are nearly Dirac
deltas. In a real system, the singularities would be blurred
due to finite size of the illuminated area [37, 63], and due to
finite time duration of the scattering events, especially in a
pulsed pump-probe implementation [64, 65]. Large
amplification requires that each incoming photon is scat-
tered and amplified many times by many nanoparticles, in
a way resembling amplification in a resonant cavity [66],
which may take a long time to build up. In that context,
practical limitationsmay arise from the inherent properties
of real systems, with their transient dynamics, saturation,
optical breakdown, and spontaneous decay [21, 22].

Fortunately, many of these constraints can be relaxed
by developing new materials (gain media with slow pop-
ulation dynamics) and by design of the experiment,
including fabrication of large-area metasurfaces and
implementation of an appropriate time-resolved tech-
nique. Since the proposed metasurfaces are based on
nonresonant all-dielectric building blocks with moderate
material gain, their realization should be technically less
challenging compared to most of the proposed high-gain
resonant devices [67].

We believe that our theoretical predictions could be
useful for designing ultrathin amplifiers and light-emitting
devices operating close to the normal incidence, with

Figure 10: Results of the complex
eigenfrequency analysis using finite
element method (COMSOL) for periodic
metasurface of gainmediumnanoparticles–
the same as in Sections 2.2 and 2.3:
trajectories of the complex-valued eigen-
frequencies as a function of kx , correspond-
ing to the TE (s-polarized/in-plane-oriented
dipoles) and TM guidedmodes (p-polarized/
out-of-plane-oriented dipoles). Solid con-
tours: gmax = 300 cm−1, dashed contours:
gmax = 0. (a) Real eigenfrequencies as a
function of the in-plane momentum cor-
rected by the Rayleigh anomaly tilt (as in
Figure 4), with the imaginary eigen-
frequencies encoded in the color
(blue = gain, red = loss, magenta = purely
real eigenmode). (b) Eigenvalue trajectories
in the complex frequency plane, with in-
plane momentum encoded in the color. In
both (a) and (b), black circles mark the in-
tersections of eigenfrequencies with the real
frequency axis. These points correspond to
the singularities observed in Figure 4.
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particular interest in the dynamic control of the scattered
amplitude and phase, e.g., beam steering by metasurfaces
with nonuniform gain, or with operation principles similar
to the proposed active plasmonic devices [68]. Diverging
effective polarizability can also be used for enhancing
various light–matter interactions, such as spontaneous
emission (Purcell effect), back action, strong coupling, and
optical nonlinearities. A prism-coupled slab geometry
discussed in Section 2.4 could be an elegant starting point
for the experimental demonstration of the proposed
mechanisms.
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