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Abstract: In this work we present a simple transfer-matrix
based modeling tool for arbitrarily layered stacks of reso-
nant plasmonic metasurfaces interspersed with dielectric
andmetallicmultilayers.We present the application of this
model by analyzing three seminal problems in nano-
photonics. These are the scenario of perfect absorption in
plasmonic Salisbury screens, strong coupling of micro-
cavity resonances with the resonance of plasmon nano-
antenna metasurfaces, and the hybridization of cavities,
excitons and metasurface resonances.

Keywords:metasurfaces; microcavity etalons; plasmonics;
strong coupling; transfer-matrix model.

1 Introduction

Since almost a decade metasurfaces have emerged as a
very fast growing field of research in nanophotonics [1–3].
In contrast to the notion of metamaterials that were
designed to realize 3D bulk materials with peculiar
designer permittivity and permeability, the notion of met-
asurfaces is that they shape waves by scattering off of an
abrupt designer boundary condition with a completely
controlled and locally varying amplitude and phase. This
boundary condition is realized by engineering sub-
diffractive arrays of building blocks that are arrayed in a 2D
sheet. This notion revitalized a venerable history in grating
science, particularly the notion of echelette gratings to
shape diffraction [4]. Recent demonstrations of meta-
surfaces include a large variety of flat optics components,
such as lenses [5–8], waveplates and polarization optics

[9–11], as well as holograms [9–11], diffusers [12], and even
computational metasurfaces that are designed to perform
simple linear mathematical operations on incident wave-
fronts [13–15]. In this work we focus on 2D arrays where the
constituents are strong, resonant scatterers with a dipolar
plasmonic resonance, as opposed to dielectric meta-
surfaces [3, 16].

Understanding the physics of layered systems inwhich
metasurfaces are stacked in succession, or interspersed
with normal metal and dielectric layers, is of large rele-
vance from several viewpoints. First, if one considers
metasurfaces as objects that transform incident wavefronts
according to designed mathematical functions in the
context of signal processing and computation [13–15], an
important question is how you can concatenate optical
functions stacking metasurfaces. Second, seminal early
examples of metasurfaces use stacking to design function.
An important family of examples is that of perfect ab-
sorbers like Salisbury screens, and patch-antenna reflec-
tivemetasurfaces, inwhich arrays of resonant antennas are
placed in front of a reflector [3, 17–26]. Such structures
control reflected waves in amplitude, phase and polariza-
tion through constructive and destructive interference of
scattering contributions from a ground plane and a scat-
terer array [3, 27]. These structures essentially constitute a
metasurface etalon, where both the round trip phase,
controlled by separation, and the reflection phase of the
metasurface reflector, control response [21, 23, 26, 28].
Beyond applications as antireflection devices, absorption
enhancers in photodetection scenarios, and as metasur-
face pixels from which to build metasurface devices, these
metasurface etalons also have been proposed for plas-
monic color printing and polarizationmultiplexing therein
[29–33]. Expanding on this idea of metasurface etalons in
which one reflector is a metasurface with engineered
reflectivity, one can also envision more complex resonant
structures, such as Fabry–Pérot resonators in which met-
asurfaces are inserted inside the cavity mode. These were
proposed by Ameling et al. [34–38] as high-Q plasmonic
structures for sensing, in which classical analogs of vac-
uum Rabi splitting occurs [39], a hallmark of strong
coupling. These types of structures are currently under
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intense scrutiny in the field of plasmon strong coupling
and polaritonic chemistry [40–47], wherein researchers
construct plasmonic–photonic resonators that are in their
turn coupled to excitonic media. The relevance of that field
lies in the pursuit of collective light–matter interaction
phenomena at room temperature, such as exciton–polar-
iton physics, condensation and lasing, and in the pursuit of
controlling chemical reaction pathways and transport
properties by shifting of energy levels through vacuum
Rabi splitting [40, 41, 48].

Full-wave simulation of stratified systems that
include metasurfaces quickly becomes infeasible with
increasing complexity, owing to the large overall struc-
tural dimensions of stacks, yet the nanoscale detail
needed to resolve metasurface building blocks. Also, it
would be inefficient to do full-wave calculations for each
envisioned stack if instead there would be a simple
modeling strategy in which a library of simulations for a
basic set ofmetasurfaces could be re-usedwhen layers are
rearranged and reordered, without having to start nu-
merical analysis from scratch. Here we present a simple
modeling approach based in the standard transfer matrix
method for stratified systems [49, 50], yet capable to
include also metasurfaces. To this end we rearrange the
scattering S-matrices of metasurfaces, i.e., the input–
output relations that can be extracted from any other
suited and dedicated simulation tool, into transfer matrix
method form. This approach is similar to the work of
Menzel et al. and Sperrhake et al., who developed
S-matrix based models to analyze the polarimetric
behavior of metasurface stacks [51, 52].

This paper is structured as follows. We first present an
overview of how to extend the simple transfer matrix
method to include metasurfaces, and indicate how one
should extract relevant observables from it. Next we show
that this simple model gives surprising new insights in
Salisbury screens for perfect absorption [3, 17–26], as well
as in the problem of strong coupling of microcavity modes
with metasurface resonances [34–38]. Finally, we discuss
the application of our modeling approach to strong
coupling of metasurface etalons with excitonic media
[47, 53].

2 Transfer matrix model for
multilayer stack with
interspersed metasurfaces

Figure 1 shows a sketch of the family of systems that we
model in this work, which consists of an arbitrary stack of

layers with parallel interfaces. The layers can be either
standard homogeneous dielectric or metallic materials, or
instead metasurfaces embedded inside a dielectric layer.
For completeness, we first briefly introduce the standard
transfer matrix method for layered systems, as is described
at length in the seminal paper by Yeh, Yariv and Hong
[49, 50].

2.1 Transfer matrix method for a standard
homogeneous stack of layers

The optical properties of each layer are specified by its
thickness d and refractive index n � �

ε
√

. While our work is
easily generalized to arbitrary incidence angle, here we
deal with normal incidence only. At the heart of the
transfer matrix method is the notion that one can relate
the parallel field components Ex and Hy at the front side
(z = 0) and the back side (z = d) of a slab by matrix
multiplication

( Ex(d)
Hy(d)) � M(kd,  d)( Ex(0)

Hy(0)) (1)

whereM (kd, d) is the transfer matrix. For a single slab the
transfer matrix M is easily derived through the uses as
auxiliary variables of forward and backward propagating
fields in the slab, which are written as Ex(z) = Ef e

ikz + Eb e
−ikz

(suppressing time dependence e−iωt). The auxiliary field Hy

is proportional to the magnetic field, with multiplicative
factor iω suppressed throughout, since it is common to all
H-fields independent of layer. The transfer matrix now
follows by calculatingHy from Ex, and evaluating the fields

Figure 1: Schematic of an arbitrary 1D stack of materials, infinitely
extending in x and y, including nonresonant metal and dielectric
layers as well as resonant metasurfaces. Stack properties may be
specified either by refractive index n and thickness d for normal
material layers, or by metasurface reflection and transmission
coefficients ra and ta. The highlighted slab shows right at its
interfaces the electric and magnetic field orientations and k-vectors
of an incoming and outgoing wave (beam path indicated in red) at
z = 0 and z = d, which are related via the transfer matrix in Eq. (1).
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at z = 0 and z = d. From the resulting equations one elim-
inates the auxiliary field Ef,b, to obtain

M(kd,  d) � ⎛⎜⎜⎜⎜⎝ cos(kdd) 1
k
sin(kdd)

−k sin(kdd) cos(kdd)
⎞⎟⎟⎟⎟⎠ (2)

in which kd is the wave vector nω/c in the slab with thick-
ness d and refractive index n.

The strength of the transfer matrix method is that the
transfer matrix of an arbitrary stack of layers is obtained
simply as the matrix product of all the single layer transfer
matrices. This fact hinges on the fact that the boundary
equations for electric and magnetic fields require both Ex
andHy to be continuous across interfaces, so that the fields
at the back of a stack can be simply obtained from the field
at the front by multiplying with each of the single layer
transfer matrices in turn. The field behind the stack of
thickness dst is thus constructed from the product of
transfer matrices and the field in front of the stack using

( Ex(dst)
Hy(dst)) � Mst( Ex(0)

Hy(0))
      � MN ⋅MN−1  …  M2 ⋅M1( Ex(0)

Hy(0)) (3)

Fromhere on,wewill denotewithMst the transfermatrix of
a full stack, which we assume to be composed of layers
m = 1, 2, … N, with transfer matrix Mm.

Once the transfer matrix of an arbitrary stack has been
constructed, it is straightforward to calculate the complex
reflection and transmission coefficients r and t by inserting
as field at the front of the stack (subscript L for ‘left hand
side of the slab’ or z < 0).

EL(z) � E(eikz + re−ikz) z < 0 (4)

and at the back of the stack (R for right hand side)

ER(z) � E(teik(z−dst)) z > dst. (5)

This Ansatz specifies that the stack is illuminated only from
the left (z < 0), and that at the other side, beyond the total
thickness dst of the stack, only a single outgoing wave
exists. Evaluating these Ansatz fields at zfront = 0 and
zbehind = dst, and noting that these must be related through
the stack transfer matrix, we obtain,

( t
ik t) � Mst( 1 + r

ik (1 − r)) . (6)

This equation results in explicit expressions for the com-
plex reflection and transmission coefficients r and t of the
entire stack in terms of the stack transfer matrix Mst.

2.2 Metasurface transfer matrix

Having revisited the standard transfer matrix for layered
optical systems [49, 50], we now introduce the transfer
matrix of a metasurface. Metasurfaces generally provide
a very large, resonant, optical response that cannot be
cast in a combination of a material thickness and
refractive index. Instead, a metasurface is more naturally
thought of as an infinitely thin sheet with a specified
complex reflection and transmission coefficient ra, ta. We
assume that these reflection and transmission co-
efficients for the metasurface in a homogeneous dielec-
tric remain valid also when the metasurface is embedded
in a thin dielectric slab of the same index, but inserted in
a complex stack. The coefficients can thus be calculated
by separate means, to serve as input for constructing a
transfer matrix. In principle any full-wave method could
be used. For our work we use a semi-analytical approach
that constructs the response of a metasurface on the
basis of scatterer polarizability, and using Ewald lattice
summation to account for all the interactions in the
lattice [28, 54, 55].

In order to construct a metasurface transfer matrix we
specify the fields on both the left and right hand side of a
metasurface of thickness 0 placed at z = 0 in terms of its
complex-valued reflection and transmission coefficients.
We suppose that the metasurface is simultaneously illu-
minated from the left by a field propagating towards the
right (E→e

ikz for z < 0) and by a field impinging on it from the
right, hence propagating towards the left (E←e

−ikz for z > 0).
Accounting for the complex-valued reflection and trans-
mission amplitudes yields the total electric field on the left
EL and right ER.

EL(z) � E→(eikz + rae−ikz) + E←tae−ikz z < 0

ER(z) � E→taeikz + E←(e−ikz + raeikz) z > 0 .
(7)

Herewehave employed the constraint that themetasurface
is assumed to be embedded inside a layer with the same
refractive index on either side of the metasurface, so that
both ra and ta are independent of the incidence side. To
obtain the transfer matrix, once calculates from EL, ER also
the magnetic counterparts, and relates the fields at z = 0,
evaluated on the left and right of the metasurface, by
eliminating the auxiliary fields E→,←. In matrix form this
yields

( EL

HL
) � ( 1 + ra ta

ik(1 − ra) −ikta
)(E→

E←
) (8)

and
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( ER

HR
) � ( ta 1 + ra

ikta −ik(1 − ra))(E→
E←
) (9)

so that the metasurface transfer matrix that satisfies
(ER,  HR)T � Mmeta(ra,  ta)(EL,  HL)T reads

Mmeta(ra,  ta) � ( ta 1 + ra
ikta ik(−1 + ra))( 1 + ra ta

ik(1 − ra) −ikta
)−1

 .

For ametasurface in a homogeneousmedium that ismirror
symmetric in the z =0 plane, it is necessary that ta = 1+ ra. It
is important to note that this does not derive from energy
conservation, but only from assumed mirror symmetry in
the plane of the 2D lattice [56]. With this requirement, the
metasurface transfer matrix becomes:

Mmeta(ra) � ⎛⎜⎜⎜⎜⎝ 1 0

2ikra
1 + ra

1
⎞⎟⎟⎟⎟⎠. (10)

In essence this construction can be viewed as casting the
S-matrix of a metasurface (relating outgoing to incident
fields) into a transfermatrix (relating fields on either side of
the interface to each other. This approach is hence strongly
related to the metasurface S-matrix formalism of Menzel
and Sperrhake et al. [51, 52].

2.3 An analytical model for the response of a
simple resonant particle array

In principle, the metasurface transfer matrix Mmeta (ra, ta)
allows to insert the reflection and transmission of a meta-
surface as calculated by any modeling approach. In this
work we focus for demonstration purposes on behavior of
metasurface etalons in which the metasurface is simply a
non-diffractive sheet of resonant nanoscale polarizabilities
placed in a lattice, as for instance obtained by making
sufficiently dense arrays of plasmon antenna particles [28,
54, 55]. Tomodel reflection and transmission of such a layer
onemustfirst specify the polarizability of a single scatterer,
then include its radiative damping to obtain a self-
consistent t-matrix, and finally account for all the near-
field and far-field multiple scattering interactions with its
neighbors in the lattice. A didactic introduction is provided
by de Abajo [54], while implementation details for arbitary
lattice symmetries and polarizability tensors are listed in
[28, 55]. In this work we assume that the polarizability is
scalar, purely electric (p � 4πεαE) andwe use a unit system
in which polarizability αE has units of volume. The elec-
trostatic polarizability α0 of a single plasmonic particle as a
function of frequency can be parametrized as [57]

α0(ω) � Vω2
0

ω2
0 − ω2 − iωγ

(11)

with V a measure of scattering strength with units of vol-
ume, ω0 a resonance frequency and γ an Ohmic damping
rate. This expression is exact for metallic spheres with a
dielectric constant specified by a Drude model, where γ is
the Ohmic damping rate and V is proportional to the
scatterer physical volume. Radiative losses can be taken
self-consistently into account for a single scatterer by
implementing a radiation damping term [54, 57]

αdyn(ω) � 1

1/α0 − i 23k
3  . (12)

The resulting polarizability is known as dynamic polar-
izability, or alternatively as t-matrix of the point scatterer
[54, 57]. This t-matrix results in self-consistent extinc-
tion, scattering and absorption cross sections that for a
Drude sphere match the dipolar contribution in its Mie
expansion.

Following de Abajo [54], in order to find the effective
polarizability of an array of particles one needs to
incorporate an Ewald lattice summation technique to
account for all the near- and far-field interaction be-
tween antenna particles. Accordingly, under normal
incidence, the induced dipole moment in each scatterer
reads,

αlat(ω) � 1
1/αdyn − G  . (13)

The term G represents a lattice Green function, i.e., a
summation over the free space Green function that is
generally dependent on incidence angle, lattice pitch,
lattice symmetry, and polarization. While this expression
thus can encode the full band structure and diffraction
physics of plasmon antenna arrays [54, 55], here we focus
onmetasurfaces under normal incidence, that are so dense
that there are no propagating grating diffraction orders. In
this limit, the real part of the lattice Green function only
induces a shift in resonance frequency that we incorporate
into ω0, while the imaginary part adds radiative damping
according to,

ImG ≈
2πk
A −

2
3
k3

whereA is the unit cell area [54]. It should be noted that the
single-particle radiation damping is exactly canceled by
the lattice sum, and replaced by a term that takes into
account the super radiant collective damping that in-
creases with antenna density. Following de Abajo [54], the
lattice reflectivity is,
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ra(ω) � 2πik
A αlat(ω) � 2πik

A
1

1/α0(ω) − 2πik
A

 , (14)

while the lattice transmission is ta = 1 + ra. Note that the
lattice reflectivity converges to a perfect reflector ra = −1 in
the limit of very strong and dense scatterers (large V and
small A).

2.4 Extracting local fields, induced dipole
moments and dissipated power in a
layer

The framework as described so far allows to calculate the
complex-valued reflection and transmission of arbitrary
multilayer stacks in which metasurfaces can be inter-
spersed with dielectric and metallic planar layers, with the
understanding that the two layers directly adjacent to a
metasurface are chosen to have identical refractive index.
One can obtain not only far field reflection and trans-
mission but also the field inside any layer in the stack. To
this end, the formalism stipulates that one must first solve
for the reflection rst and transmission tst of the stack using
the full stack transfer matrix Mst. Next, one can calculate
the field at the front side of a layer m (normalized to
a unit strength incident field offered to the stack as
illumination) by multiplying the field on the incident

side (1 + rst,  ik (1 − rst))T with the partial stack matrix
Mm−1⋅Mm−2 … M2⋅M1 that accounts for all layers up to m.

Given the fields (Ex(zm),  Hy(zm)T ) at the front of the mth
slab, the electric field inside it simply reads

E(z) � Ef,meik(z−zm) + Eb,me−ik(z−zm) (i.e., sumof forward and
backward traveling waves, defined at Eqs. (1) and (2), with

( Ef,m

Eb,m
) � ( 1 1

ik −ik)−1( Ex(zm)
Hy(zm)) . (15)

Local absorption directly follows from the field inside a
layer. The absorption in layer m [energy per unit of time
and unit of area lost in layer m is given by

∫
slab m

1
2
ωϵ0Im[ϵ]∣∣∣∣E(z)∣∣∣∣2dz � 1

2
ωϵ0Im[ϵ]{ 1

2k″
[∣∣∣∣Ef,m

∣∣∣∣2
×(1 − e−2dmk

″)+∣∣∣∣Eb,m

∣∣∣∣2(e2dmk″− 1)]
+ 1
k′
∣∣∣∣Ef,m

∣∣∣∣∣∣∣∣Eb,m

∣∣∣∣[sin(2k′dm + δm)
− sinδm]}

(16)

where δm is the phase difference between the complex
numbers Ef,m and Eb,m andwhere k′ and k″ are resp. the real
and imaginary part of the wavenumber k in layer m. The

first two terms can be interpreted as the incoherent sum of
contributions of the forward and backward propagating
waves, which are exponentially damped due to absorption.
The last term arises from interference, i.e., standing wave
effects in the slab. For reference, the assumed input
intensity is 1

2 cϵ0n0|E|
2 with n0 the z < 0 refractive index,

and |E| = 1 V/m the incident field strength.
In a similar vein, one can also determine the induced

dipole moments in any metasurface inside the complex
stack. Supposing that the metasurface is situated imme-
diately after layer m in the stack, one can simply calculate
the field at the front side of the metasurface by multiplying

the field on the incident side (1 + rst,  ik(1 − rst))T (with rst
the full stack reflectivity already solved for) with the partial
stack matrixMm⋅Mm−1 …M2⋅M1 that accounts for all layers
up to the metasurface. Immediately to the left of the met-
asurface the field reads

( EL

HL
) � [Mm ⋅Mm−1  …  M2 ⋅M1]  ⋅ ( 1 + rst

ik0(1 − rst)) . (17)

Inverting Eq. (8) immediately yields the impinging fields
driving the metasurface, i.e.,(E→,  E←)T . The induced
dipolemoment permetasurface scatterer is simply givenby
p � αlat(E→ + E←). The power absorbed by the antenna
array per unit of area follows by determining the deficit
between the Poynting fluxes immediately to the left and
right of the metasurface

P � 1
2
cϵ0nm[(∣∣∣∣E→

∣∣∣∣2 + ∣∣∣∣E←)
∣∣∣∣2)(1 − ∣∣∣∣ra∣∣∣∣2 − ∣∣∣∣ta∣∣∣∣2)

−4Re(rata∗)Re(E→E ←
∗ )] (18)

The first terms in this sum reports the absorbed power if the
waves driving the metasurface from the left and right
would be added incoherently. The last term accounts for
interference.

3 Salisbury screen as a
metasurface etalon

3.1 Perfect absorption in metasurface
etalons

In the remainder of this paper, we illustrate the power of the
simple transfer matrix method to predict and understand the
physics of simple metasurface stacks that are of large rele-
vance in current research. The first example that we consider
is that of a Salisbury screen, consisting of a simple metal
mirror, a dielectric spacer and a resonant metasurface mirror
[3, 17–26]. This structure can also be viewed as an etalon [23,

A. Berkhout and A.F. Koenderink: A simple metasurface-multilayer model 3989



26, 28] inwhich the back reflector (metalmirror) is thick,while
the front reflector is the metasurface which depending on
density and frequency can range from semi-transparent to
strongly reflective, and furthermore has a peculiar phase
response. According to literature over the past decade, Salis-
bury screens can show perfect absorption in the metasurface
antennas at particular resonance conditions, even if by
themselves the particle arrays are only weakly absorptive. A
schematic view is presented in Figure 2 as sketches on the far
left. This figure presents both the response of just particle
arrays, and of envisioned Salisbury screens, as function of
frequencyω (vertical axis on colorplots) andetalon spacingd,
for different antennaarraydensities.We choose each scatterer

to have the properties V = 6.9 ⋅ 10−23 m3, ω0 � 2.4 ⋅ 1015  rad/s,
γ � 9.3 ⋅ 1013  Hz. This corresponds with the scattering prop-
erties of antennas in our previously reported experiment in
which we used gold nanorod antennas [26], as verified by
matching the resonance frequency, Ohmic damping, and

extinction cross section (σext � 4πkImαdyn ≈ 0.088 μm2) to
finite element modeling of Au nanorods in glass (circa
100 × 50 × 40 nm length, width and height). We assume the
scatterers to be in a square lattice of pitch a, with a increasing
from 100, 200, 350, 433 to 500 nm. The medium on the
incoming side and in betweenmirror andmetasurface is glass
(nglass = 1.45),whilewe assumeas back reflector 50 nmof gold
(nAu = 0.25 + 4.5i, taken frequency independent). The fre-
quency window in our plots corresponds to ca. 650–900 nm
vacuum wavelength.

Figure 2a–e shows that for just a singleparticlearraywith
noback reflector, the reflectivitynot only strengthens, but also
significantly broadens with antenna density. This is a signa-
ture of collective effects in antenna arrays, whereby super
radiant line width broadening causes the lattice polarizability
αlat to be significantly different from the particle response for
dense lattices. For the bare particle arrays, the maximum
achievable absorption is fundamentally limited by symmetry
to 50%, which is reached on particle resonance near 300 nm
pitch [56]. Absorptiondrops for larger pitchas themetasurface
becomes less strongly populatedandhencemore transparent,
and conversely also drops for smaller pitch as themetasurface
becomes more reflective. For the etalon-geometry the reflec-
tivity maps as function of frequency ω and mirror–metasur-
face spacing d are significantly different (Figure 2f–j). At the
highest antenna density, the metasurface is practically a
mirror across the entire frequency range, giving rise to etalon
resonances, evident as pockets of absorption close to hyper-
bolas (contours of constant kd) in Figure 2f. The main signa-
ture indicating that themetasurface is not a regularmirror but
a dispersive reflector is that the etalon resonances show as
asymmetric spectra, and with signature vanishing right at

particle resonance (2.4 ⋅ 1015 rad/s). This can be traced to the
metasurface reflection phase. With decreasing antenna den-
sity the response evolves from a Fabry–Pérot-like response at
large antenna density, to that of an isolated mirror with just
isolatedpockets of reduced reflectionnear antenna resonance
(panel 2g). These appear only when the particle array is not in
a node of the field reflected from the back mirror, i.e., in be-
tween the etalon resonances of panel Figure 2f.

Looking more closely at the low reflectivity areas in
Figure 2f–i we find that there are points of identically zero
reflection and hence perfect absorption. This is the well-
knownphenomenon of perfect absorption [3, 17–26], which
in literature has been described as a condition of critical
coupling between radiative andnonradiative loss channels
of a single-port resonance. More surprising is that corre-
sponding phase plots (Panels k–n, phase referenced to the
back-reflector in absence of the particles) show singular
points in theωd-parameter space, around which the phase
circulates and in which the phase is not defined. These
points evidence the truly vanishing reflection observed in
the corresponding amplitude plots. Moreover, it is evident
that these singular points do not come alone but in fact
appear as a countably finite numbers of pairs of opposite
topological charge, with each pair contained between two
perfect-etalon conditions (hyperbolas kd � mπ,m integer).
For dense arrays, these singularities are located very close
to the resonance condition for a standard etalon, though at
frequency detuning that is far from the bare particle reso-
nance. For larger pitch and hence diluted lattices,
(Figure 2m and n), the singular points move away from the
etalon condition, and towards the points in parameter
space that are centered on the bare lattice resonance fre-
quency ω0, and on spacer thicknesses exactly in between
the etalon condition. Here the lattice is placed not at half-
integer wavelengths from the back reflector, but is a
quarter-wave offset, so as to be in an antinode of the
standing wave generated by the back reflector. At pitches
above circa 500 nm, the phase singularities annihilate, and
absorption in the particles is no longer perfect (Figure 2j
and o). These findings thus reproduce the well-known
appearance of conditions of perfect absorption in Salisbury
screens in amodel that is a simple transfermatrixmodel. At
the same time it provides insights that go beyond the
simple coupled mode analysis in literature [17–24] that
neither foresees perfect absorption points to come in pairs,
nor suggests singular phase response in parameter space.
The topological nature of the phase singularities in
parameter space might lead one to suspect that there is an
underlying anomaly in the etalon eigen mode structure, as
it is well known that, for instance, exceptional points and
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bound states in the continuumhave topological properties.
Following the general classification by Krasnok et al. [58],
we assert that such physics is not at play here. According to
Krasnok et al., eigen modes correspond to complex-
frequency poles of the S-matrix, while the zero reflection
in the system that we describe is a zero of the S-matrix on
the real axis. If one analyzes the S-matrix for this system
(see Eq. (19) for a simplified model) at the etalon thickness
where the antenna is right in the mirrors standing wave
antinode, the S-matrix is found to carry a single pole in the
complex frequency plane that is accompanied by a single
nearby zero. For low antenna density (no singular
response), the zero is in the same half-plane as the S-matrix
pole. As the antenna density is tuned, the zero reaches the
real frequency axis, at which point perfect absorption ap-
pears. For larger antenna strength the zero has crossed the
real frequency axis. At this point the structure does not
provide its zero in reflection for the exact thickness where
the antennas sit in the standing wave antinode, with
reflection zeroes instead happening at adjacent spacing,
i.e., in the pairs of points evident in Figure 2. It should be
noted that throughout, the S-matrix pole has multiplicity
one. We refer the reader to Ref. [26] for experimental

evidence for the proposed appearance and annihilation of
pairs of phase singularities in these structures, as function
of density and in the parameter spaced spanned by fre-
quency and etalon spacing.

3.2 Metasurface etalons with near
transparent mirrors

A particular advantage of the matrix method in which one
can intersperse arbitrary homogeneous layers and meta-
surfaces, is that one can easily explore a variety of sce-
narios with realistic experimental conditions that are not
accessible in evenmore simplifiedmodels, e.g., taking into
account realistic refractive indices or layer thicknesses,
e.g., ones that correspond to highly ‘imperfect’ Salisbury
screens. Figure 2 showed that for a near-perfect back
reflector, a Salisbury screen shows phase singularities and
points of perfect absorption on the proviso that the meta-
surface in itself is sufficiently strongly scattering. Figure 2,
however, also showed that a poor meta-mirror (antenna
array oscillator strength below a certain threshold) causes
the singularities to disappear. This raises the question

Figure2: Calculated responseof Salisbury screens in reflection. From left to right the columnsdisplaymetasurfaces consisting of scatterers in
a square geometry with a pitch increasing from 100 to 550 nm and with fixed antenna parameters V = 6.9⋅10−23 m3, ω0 � 2.4 ⋅ 1015  rad/s and
γ � 9.3 ⋅ 1013  Hz. Top row (a–e): amplitude response of the particle arrays as a function of frequency in absence of the backingmirror, showing
a Lorentzian response around the resonance frequencyω0. Center (f–j) and bottom (k–o) rows show the full etalon response in amplitude and
phase respectively, as a function of frequency and metasurface–mirror spacing d, employing a 50 nm Au back reflector. Reflection phase is
referenced to that in absence of the array.
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whether the use of a similarly poor back mirror could
retrieve these points of singular reflectivity. Qualitatively
one might argue that if perfect cancellation of reflection is
due tomatching of the metasurface reflection constant and
that of the back reflection, then the singular response
should re-appear for dilute metasurfaces, if one concomi-
tantly reduces also the back reflector reflection constant.
Figure 3a exemplifies exactly this point, for the least dense
array considered in Figure 2j. While for the near perfect
back reflector there are no singular points, once the mirror
is replaced by one of just 5 nm thickness (partial reflec-
tance), the pairs of points of zero reflection return, as
shown in Figure 3a). These are again accompanied by
phase singularities in parameter space (shown in
Figure 3b), and a concomitant 2π phase swing for ω, d
combinations boxed in by the singularities. A subtle point
is that in this case zero reflection does not imply perfect
absorption, as there is also a transmitted channel.

An a posteriori understanding of this re-appearance of
points of zero reflection and phase singular appearance
can be constructed from a simple two-layer Fabry–Pérot
model wherein the reflectivity of an etalon reads [26, 56]

rFPI � ra + rm(1 + 2ra)e2iknd
1 − rarme2iknd

(19)

with ra the metasurface reflectivity, rm the back reflector
reflectivity and n the etalon spacer index. This expression
implies rFPI = 0 for the condition that

rme2inkd � −ra(ω)
1 + 2ra(ω)  . (20)

This essentially prescribes a matching condition on the
metasurface reflectivity ra(ω) relative to the backreflector
and etalon spacing. At the points of matching, reflection
vanishes andmoreover since rFPI is a meromorphic function
of ω and d, a phase singularity in ω − d parameter space
accompanies each zero by the Cauchy argument principle.
The left hand side rme

2inkd circumscribes a circle of radius |rm|
centered on the origin in the complex plane as one sweeps
frequency. Instead, the right hand side for a metasurface
with a Lorentzian resonance circumscribes a circle exactly
touching the origin in the complex plane, displaced along
the real axis, and with a diameter that increases with
increasing antenna oscillator strength and density. On this
circle, frequencies far from resonance are close to the origin,
while the resonance frequency corresponds to the point on
the circle furthest from the origin. Figure 3c illustrates this
behavior for a strong back reflector (|rm|=0.95, as in the case
of the 50nmthickmirror inFigure 2) yet a dilutemetasurface
(550 nm pitch). For these parameters, themetasurface is not
sufficiently strongly scattering (i.e., orange circle is small)

for crossings between −ra/1 + 2ra and rme
2iknd to occur. One

route to obtain crossings is to increase antenna density or
oscillator strength, which increases the orange circle (−ra/
1 + 2ra) in size. This explains the emergence of pairs of sin-
gularities and perfect absorption above a threshold antenna
density in Figure 2. Another route instead, is to reduce the
back reflector reflectivity (radius of the circle rme

2iknd) to
match themetasurface response. This is shown in Figure 3d)
where rm has been decreased to match the reflectivity of a
5 nm Au mirror. Crossings denoted by stars show that the
condition in Eq. (20) is met and that, for the dilute meta-
surface that does not show any singular response when
combined with a strong back reflector, zero reflection and
phase singularities in reflection now must occur.

3.3 Birefringent Salisbury screens

In the analysis of the Salisbury screen we have so far
considered polarization exactly along the main axis of the

Figure 3: Calculated amplitude (a) and phase (b) response for the
Salisbury screen in Figure 2j and o), in which the reflectivity rm of the
back reflector has been decreased to match the reflectivity of the
weakly scattering array, such that singular points in reflection are
retrieved. (c and d) Graphical construction of Eq. (20) in the complex
plane, showing the trajectories that the right-hand and left-hand
side (gray and orange respectively) of the equation trace out as a
function of frequency. (c) When a weakly scattering metasurface
(pitch 550 nm) is combinedwith a highly reflective back reflector, the
circles traced out by rme

inkd (gray) and −ra(ω)/(1 + 2ra(ω)) (orange)
do not intersect. (d) Reducing the back mirror reflectivity to that of a
5 nm Au layer results in crossing of the circles and retrieval of the
singular points shown in (a) and (b).
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nanorod antennas. For rectangular array metasurfaces
with plasmonic resonators that have their principal axis
aligned with the array symmetry axis, it is straightforward
to also analyze polarimetric responses, as one can sepa-
rately calculate the polarization dependent responses rx
and ry for the two principal axes from two scalar calcula-
tions. The total response to any incoming polarization can
then be constructed by decomposing the input polarization
in two orthogonal linear components, and coherent addi-
tion of the corresponding reflected fields. By way of
example we examine the response of nanorod-array Sal-
isbury screens, for which the strong phase and amplitude
response for the polarization channel of the nanorod
resonance should induce a strong linear dichroism (dif-
ferential absorption between linear polarization compo-
nents) and a strong linear birefringence (differential
retardance). The following example highlights the poten-
tial of our transfer matrix method for the rapid analysis of
metasurface-etalon based polarimetric components [9–11,
29–33, 51, 52].

We choose nanorod antennas to be resonant with x-
polarization, such that rx is the response previously shown
(Figure 2).We assume the orthogonal antenna resonance to
lie far outside the frequency window of interest so that we
can model ry as the response in absence of the antenna
array (i.e., a plain mirror). We report the amplitude and
phase response in the co-polarized reflection channel in
panels Figure 4a, c, e, g (amplitude) and Figure 4b, d, f, h
(phase) for horizontal, vertical, diagonal linear, and cir-
cular polarization. When illuminating with polarization
along one of the principal axes of the system, one simply
obtains a flat response for the vertical y-polarization for
which the metasurface is assumed transparent, and
instead the resonance with strong phase features for the
horizontal x-polarization already reported in Figure 2g and
l. With rotation of the polarization from horizontal to di-
agonal (see Figure 4c and e), the points of zero reflection
disappear. This is intuitively expected since the y-polari-
zation component is still fully reflected, irrespective of
whether the x-component experiences a strong phase and
amplitude effect. At the same time it is at first sight
remarkable that for a band in parameter space in between
the two x-polarization singular points the reflection is well
below that in both the x and y channel. This is due to the
fact that the x and y reflections are not in phase, leading to
destructive interference. It is easy to show that the co- and
cross-polarized reflectivity signature is strictly identical for

diagonal and circular polarization, equaling 1
2 [rx ± ry] for

co-resp. cross-polarization.

The linear dichroism and birefringence of nanorod-
array Salisbury screens become evident when analyzing
polarization conversion.We quantify the polarization state
of reflected light upon diagonal and RHC polarized illu-
mination through the polarization ellipticity ϵ and polari-
zation ellipse major axis orientation α that fully
characterize the ellipse that the electric field vector traces
as a function of time. The ellipticity ϵ takes values be-
tween −1 and 1, such that ϵ is 0 for a linearly polarized field
and +1 or −1 for right resp. left handed (RHC, LHC) circular
polarisation. The parameter α represents the orientation
angle of themajor axis of the polarization ellipse, and takes
values from −π/2 to π/2, where 0 encodes for horizontal
orientation (along x). These parameters can be directly
calculated from a field vector (Ex, Ey) as

ε � 2Im[E∗
xEy]∣∣∣∣Ex

∣∣∣∣2 + ∣∣∣∣Ey

∣∣∣∣2 + ∣∣∣∣∣E2
x + E2

y

∣∣∣∣∣  ,
α � 1

2
arg[∣∣∣∣Ex

∣∣∣∣2 − ∣∣∣∣Ey

∣∣∣∣2 + 2iRe(E∗
xEy)] .

Figure 4i and k shows that the nanorod-based Salisbury
screens strongly transform polarization, with ellipticity
parameters that strongly depend on frequency and that can
strongly differ from the input ellipticity. Figure 4i shows
that at diagonal, yet linear incoming polarization (zero
ellipticity in input), the reflected polarization state is
strongly elliptical except at the bands of near-unit reflec-
tion of x-polarized etalon resonances (color white for zero
helicity). At this feature the reflected polarization is linear
and diagonal. The ellipticity is reversed above and below
this feature, with ellipticity close to ±1 (nearing circular
polarization, strong red resp. blue color). The feature of
zero helicity pinpoints the locus in parameter space where
rx (phase plot in Figure 4d) in goes through a π phase shift.
Similarly strong polarization conversion effects occur for
circular input polarization (Figure 4k and l). For fre-
quencies well above and well below the range of perfect
absorption features, the reflected polarization helicity is
essentially conserved (red coloring). However, strong hel-
icity conversion occurs atω, d parameters that are boxed in
between pairs of the x-polarization perfect absorption
points. In these pockets incoming RHC illumination
(ϵ � +1) is reflected into the orthogonal LHC channel
(ϵ � −1). The loci of zero helicity (ϵ ∼ 0, white color in
Figure 4k) correspond to the loci where rx crosses through
±π/2 phase shift. The linear polarization that is reflected at
these angles is diagonal, with the orientation angle α (±π/4
(green, purple) for diagonal polarization) changing sign
when crossing the antenna resonance.
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To conclude, nanorod–antenna based mirror–meta-
mirror etalons not only show pairs of perfect absorption
and phase singularity points in their principal orientation
axis, but also show a rich polarization behavior. In
particular, they show very strong polarization rotation
behavior due to a combination of linear dichroism and
linear birefringence. This may have uses for realizing
(lossy) quarter-wave and half-wave plate reflectors at
specific operation points. Also since the polarimetric
signature is directly related to the singular phase behavior
for x-polarization, polarimetry could be used instead of
interferometry to understand the phase response in x-po-
larization that accompanies perfect absorption. Our anal-
ysis method contributes to diversifying plasmonic color
printing strategies to encode information in polarization
degrees of freedom [9–11, 29–33, 51, 52]. Finally we note
that the structures at handmight be an interesting venue to
realize so-called Voigt exceptional points [59]. These
correspond to singular polarimetric response and chiral
eigen modes of etalons with broken cylindrical symmetry,
for instance containing a birefringent medium. While in
this work we discuss driven responses only, and not eigen
modes, combined frequency and angle-resolved polarim-
etry would give access to eigen modes [59, 60].

4 Strong coupling in mirror–metamirror–
mirror sandwiches

In the remainder of this paper we analyze the physics of a
second highly pertinent example of a stratified metasurface

stack problem. This is the physic of strong coupling between
the resonances of a microcavity spanned by two mirrors,
anda resonant objectplaced inside its field. This is a seminal
problem in quantum optics [39, 61, 62] as strong coupling of
a single two-level system and a high Q cavity underlies
cavity QED. Also classical, and collective strong coupling is
a topic of large past and current interest [39–45, 53,63–65].
Already Ameling et al. [34–37] suggested that Fabry–Pérot
resonatorswith plasmon antenna arrays inside them should
display strong coupling, and should have hybrid photonic–
plasmonic resonances that have high Q, yet may have
locally enhanced fields. Currently groups are exploring the
combination of metasurfaces and excitonic layers inside
microcavity resonators [47].

To explore the physics of such systemswe examine the
response of symmetric stacks where we take the scattering
particle arrays from the previous section, yet now sand-
wiched between thicknesses d/2 of glass and 20 nm Au
reflectors, effectively forming a Fabry–Pérot cavity with a
metasurface in the middle. We chose the mirror thickness
to tune the etalon finesse. Figure 5 plots the calculated
complex reflectivity r and transmission t in amplitude, and
plots the induced dipole moment at the particles. We pro-
vide both the induced dipole moment normalized to the
peak dipole moment p(ω0) achieved in absence of the
mirrors and on antenna resonance, and the induced dipole
moment normalized to the dipole moment p(ω) achieved
at the same frequency, in absence of the mirrors. Finally,
the left column (panels Figure 5a and f) plots the response
of the stack in absence of the scatterers, simply displaying
the well-known Fabry–Pérot modes in reflection and

Figure 4: (a–h) Polarization dependent amplitude and phase response of Salisbury screens in reflection, for a lattice of pitch 200 nm (other
antenna parameters taken the same as in Figure 2) and a back reflector of thickness 50 nm. The top right arrows denote the input polarization,
and results shown are for the co-polarized detection channel. (a and b) polarization orthogonal to the antenna resonance axis, (c and d)
polarization aligned with antenna resonance axis (i.e., plots identical to Figure 2g and l), (e and f) diagonal and (g and h) right handed circular
(RHC) polarization. (i–l) Ellipticity parameters ϵ and α, ameasure of circular polarization and orientation respectively, for the cases of diagonal
and RHC input polarization. Diagonal and RHC plots are equivalent in amplitude and phase (e–h) for the co-polarized reflected channel, but
entirely distinct in ellipticity (i–l).
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transmission, of which the width is determined by the
quality factor of the etalon through the reflectivity of the
mirrors.

Once one introduces a resonant metasurface, where we
vary the pitch to vary the strength of the inserted perturba-
tion, anticrossings appear around the resonance frequency
of the scattering array (Figure 5b and g). As also observed in
full-wave simulations by Ameling [34–47], these anticross-
ings only appear for the symmetric modes, which have a
maximum at d/2. The anti-symmetric modes have no field
overlap with the particles and hence show no crossing.
Increasing the density from 550 nmpitch further to 350, 200
and 100 nm pitch (Figure 5c–e and h–j), the crossings

become increasingly pronounced and it becomes apparent
that branches on either side of an unperturbed mode bend
towards one another and merge. Qualitatively, these results
match the simulationsbyAmeling [36, 37]. Themagnitudeof
the induced dipole moment in the scattering array, nor-
malised to the dipole moment that would be induced in the
samescattering layer for the same incidentfield, butwithout
the cavity is significantly enhanced only for a large array
pitch (very low density) and for large detuning from particle
resonance (intrinsically small response per antenna). The
enhancement arises as a consequence of the fact that the
bare etalon enhances the circulatingpower in the cavity, but
is counteracted by collective scattering effects for dense

Figure 5: Calculated response of scattering nanoparticle arrays sandwiched between 20 nm Au mirrors, as a function of cavity length and
frequency. Nanoparticle parameters are taken the sameas in Figure 2. Columns from left to right: no array, pitch 550, 350, 200 and 100nm. The
first two rows plot reflection (panels a–e) and transmission amplitude (panels f–j). Panel (g) is overplot with Fabry–Pérot resonance lines (dark
blue dashed) and a line indicating the scatterer resonance frequency ω0 (yellow dashed). We take cross cuts (bright blue solid) through their
points of intersection for the first and third order mode to estimate the mode splitting due to the presence of the array (see also Figure 6). The
third row (panels k–n) plots the dipole moment |p| of the array, referenced by the maximum dipole moment in the bare array. The bottom row
(panels o–r) plots |p| referenced by the frequency dependent

∣∣∣p(ω)∣∣∣ of the bare array. The bottom two rows are both plot between 0 and 4 for
comparison.
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arrays and small detunings. Indeed for dense arrays, and
near resonance, the net dipole moment is comparable to, or
even reduced, compared to that achievable with just the
array alone. This is a direct indication that collective effects
put a limit on the achievable polarization in a sheet on basis
of flux arguments: the total flux that the polarized sheet
radiates and/or absorbs can never exceed the flux of the
input field. This should be contrasted to reports for cavity–
antenna hybrids with single antennas [66–68], and to the
notion of Ameling et al. that plasmon array etalons allow to
boost the sensitivity of, e.g., refractive index sensors, by
combining high Q with enhanced fields [34–37]. It is only
true for weakly scattering antennas that plasmon antenna
enhancement and microcavity field enhancement effects
add. For strongly scattering antennas collective effects,
i.e., radiation damping limit the enhancement.

4.1 Rabi splitting

The analysis presented so far in essence reproduces the
full-wave simulation results of Ameling for similar struc-
tures [34–37]. The advantage of our matrix method is that
parameters can be explored with ease, for instance to map
the strong coupling as function of metasurface scattering
strength quantitatively. A first order approach to quantify
the strong coupling strength is to establish the (classical
vacuum) Rabi splitting from response function spectra

taken at etalon thicknesses d at which the bare etalon has
its resonance frequency coincident with the particle reso-
nanceω0 [69]. An example spectrum is shown in Figure 6a.
While one could attempt to fit a full model to the trans-
mission line shape, we take the splitting simply as the
frequency difference Δω between the two maxima. This
difference is plotted in Figure 6b as a function of scatterer
volume V for pitches 200, 350 and 550 nm. A square root
dependence on the scattering V is qualitatively apparent,
and more clearly exemplified by Figure 6c that shows a

linear behavior ofΔω as a function of
��
V

√
. Qualitatively this

square-root behavior is consistent with common knowl-
edge for cavities filled with polarizable media that state
that the Rabi-splitting should scale with the square of the
oscillator strength of atoms in the medium [39–41].

Accordingly, one would also expect the splitting to in-
crease with the square root of particle density, meaning an

overall scaling Δω∝ V/a2 (where a is lattice pitch). This
expectation is verified in Figure 6d which shows that for each
givenmodeorder, the splittingsas functionofV/a2 all collapse
on a straight line. For higher order modes, the crossing re-
duces, as expected due to the more extended spatial mode
(wider etalon) yetfixedamountofpolarizablematterplaced in
it. The scaling of Rabi-splitting with the square root of plas-
mon antenna density was in fact observed in Ref. [47], where
Rabi-splitting was observed in etalons with square lattices of
disk-like plasmon particles at three different densities.

Figure 6: (a) Spectrum at the first order bare-
etalon resonant thickness indicated as a
vertical line in Figure 5g) (antenna array
properties: pitch 550 nm, and
V = 6.9⋅10−23 m3, ω0 � 2.4 ⋅ 1015  rad/s,
γ � 9.3 ⋅ 1013  Hz as in Figure 2). Maxima
denoted by blue dots are used to estimate
the Rabi splitting Δω that measures the
coupling strength between lattice and cav-
ity mode. (b) Calculated splitting Δω as a
function of scatterer volume V, for pitches
200, 350 and 550 nm. The blue dot corre-
sponds to Δω from (a). (c) By plotting Δω as
function of

��
V

√
, the expected scaling with

the square root of oscillator strength is
evident. (d) Δω as function of

�����
V /a2

√
shows

that a given mode splitting is proportional
to the square root of density and oscillator
strength, with a proportionality constant
dependent on the mode order (shown for
first and third mode). In (b, c, and d), the
lines serve as a guide to the eye.
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4.2 A metasurface is different from a
dispersive medium in a cavity

At first sight, the physics of strong coupling between
Fabry–Pérot modes and a particle array resonance may
appear to be almost trivially identical to the signature of
classical vacuum Rabi splitting obtained with linear
dispersivemedia inserted in a cavity, as was first discussed
in the seminal paper by Zhu et al. [39]. Indeed, the scaling

Δω∝
��
ρf

√
where f is a measure for oscillator strength per

scatterer and ρ for number density, is identical to that ex-
pected for an atomic gas filling an etalon (Figure 7a). That
this analogy is nonetheless not straightforward is obvious
firstly from the fact that the physics of a thin metasurface
cannot be cast in terms of an assigned dispersive refractive
index, and second from the fact that for a metasurface it
would not be clear which polarizability [α0, αlat, αdyn]
should be relevant to determine the anticrossing.

When inserting a linear dispersive medium into a cavity
(mirror spacingd, see Figure 7a), aRabi splitting comes about
because the optical round trip path length 2n(ω)d allows
matching of the resonance condition more than once for the
same mode order when n(ω) is dispersive. Usually this oc-
curs in media in which only a small variation in refractive
index occurs due to anatomic or excitonic resonance.A small
index variation nonetheless translates to a significant phase
increment due to propagation over the full thickness of the
excitonic medium. For a regular dispersive medium, one can
imagine a number density ρ of atoms with polarizability α
filling a slab of width da, so that the round trip path length

reads 2n(ω)d ≈ 2(d − da) + 2daRe[(1 + 1
2 ρα)]. This is an

approximate result that uses the fact that n2 � ϵ � 1 + ρα can

be approximated to n � 1 + 1
2 ρα for excitonic media where

ρα≪ 1. The seminal work of Zhu [37] applies this with da = d.
The linear contribution of α to the propagation delay ulti-
mately guarantees the square root scaling of splitting with
density and oscillator strength, under the assumption of a
Lorentzian polarizability of the same form as chosen in Eq.
(11). One could attempt to cast the physics of a thin meta-
surface into that of a linear dispersive medium by assuming
the metasurface to also be a slab of thickness da filled with
polarizable medium and inserted into the cavity, and calcu-
lating the propagation delay over its thickness. This is the
approach suggested by Ameling [37]. Since for a metasurface
the behavior is conceptually that of an infinitely thin polar-
izable sheet, one should then take a limit where da is taken to
zero yet the integrated polarizability is kept constant
(Figure 7b and c). In fact this limiting procedure cannot be
consistently done. The round trip path length over just the
hypothetically inserted slab is 2n(ω)da � 2daRe[

�����
1 + ρα

√ ].
Since for a metasurface the polarizability is bunched
in a small thickness with one object per 2D unit cell
area A (see sketch in Figure 7b) one has

2n(ω)da � 2daRe[ ������
1 + α

Ada

√ ] ≈ 2
���������
Re[dα/A]√

in the limit

da → 0, since now the polarizable matter term dominates.
This immediately leads to an inconsistent scaling of Rabi
splittingwith polarizability atfixed smallda, and furthermore
is demonstrably inconsistent since in the limit of vanishing
da, the resultant splitting is not independent of da. This ap-
pears to have been overlooked by Ameling et al. [37].

4.2.1 Meta-mirror in the middle model

Instead of treating the particle array layer as a dispersive
slab that modifies phase through propagation delay, we
argue that it should be viewed as a strongly dispersive
reflective boundary condition in the middle of a Fabry–
Pérot resonator (Figure 7c) which induces no propagation
delay but a strong phase pickup upon reflection/trans-
mission. As approximate model, we evaluate the “mem-
brane in themiddle” toymodel proposed by Jayich et al. for
cavity optomechanics [70]. This model assumes a Fabry–
Pérot cavity with outer mirror amplitude transmission and
reflection constant r, t and membrane reflection and
transmission constant ra, ta. Solving in the specific case of a
metasurface placed in themiddle leads to the transmission

tstack � −
(ra + 1) − t2eikd

r2(2ra + 1)e2ikd + 2rraeikd − 1
(22)

Figure 7: (a) Sketch of an etalon entirely filled with a dispersive
medium with refractive index n(ω). (b) Etalon in which all
polarizable material from (a) is bunched into a slab of thickness da.
(c) Etalon in which the perturbation is viewed as a strongly
dispersive reflector, essentially transforming the system into two
coupled cavities coupled through a partially transparent membrane
in the middle. A metasurface is a strongly dispersive membrane. td
(rd) and t (r) are transmission (reflection) coefficients of the center
mirror and the outer mirrors respectively. Importantly, both case
(b) and (c) show strong coupling, but (c) cannot be described as the
limit da → 0 of panel (b), i.e., a metasurface cannot be consistently
viewed as the limit of an increasingly thin but polarizable slab.
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where we have already used ta = 1 + ra. In the limit of zero
metasurface reflectivity this expression reverts to that for
an etalon of thickness d, while for near unity reflection
resonances characteristic for etalons of length d/2 appear.
To analyze the appearance of strong coupling, one can use
the method proposed by Zhu et al. [39]. For near-perfect
end-reflectors the denominator is of the form −1 + Aeiφ,
showing resonances when φ � 0mod2π. Therefore, one
can analyze φ, which for the ‘empty’ etalon simply traces
the roundtrip phase 2nkd, showing a linear behavior versus
frequency crossing zero modulo 2π at each resonance. If
the cavity is filled with a traditional linear dispersive me-
dium one sets k � ωn(ω)/c, yet rd = 0 (no metasurface),
reproducing exactly the model of Ref. [39]. Instead one can
treat also the case of a metasurface-in-the-middle (set
k � ω/c, yet ra as in Eq. (14)).

Figure 8a–f plot reflection, transmission and the phase
φ obtained from Eq. (22) for both a traditional dispersive
medium filling the cavity, and for a metasurface. As pa-
rameters we use (r, t) = (−0.92, 0.34) (equivalent to 11.5%
transmission and 4% absorption) for the reflectors. For
panels (a–c) we assume a dispersive atomic gas of refrac-

tive index n(ω) � 1 + 1
2 ρα0(ω) with ω0 � 2.4 ⋅ 1015  rad/s,

γ � 4 ⋅ 1013  s−1 andVatom = 8 ⋅ 10−27 m3 inserted in α0 (Eq. (11)),
at density ρ � (10nm)−3 so that the maximum change in
refractive Δn 0.12. For the metasurface we use ra given by
Eq. (14) with identical resonance frequency and damping
as for the atomic gas, but with V = 4.8 ⋅ 10−24 m3 and
A = (200 nm)2 (extinction circa 50%, lattice and gas chosen
to result in the same Rabi splitting). In Figure 8a–c, the
dispersive medium causes strong coupling for etalon
modes of all orders. For themetasurface case such splitting
is only observed for modes with a central anti-node in the
cavity, commensurate with Figure 5. The phase increment
φ for a bare etalon simply shows hyperbolic equiphase
lines (constant kd). For a dispersive atomic gas filling the
cavity, a dispersive feature around the material resonance
becomes apparent, which essentially reports the disper-
sive, real part of refractive index n. For the assumed met-
asurface, however, the dispersive feature has a markedly
different shape, with very sharp variations, and phase
singularities.

Following Zhu [39], one finds the Rabi splitting by
identifying the zero-crossing of φ in spectra taken at con-
stant thickness taken right at the resonant thickness for
zero detuning, i.e., taking vertical cross cuts through
Figure 8c and f at d � mπcn/ω0 (m the mode order).
Figure 9a and b shows as example φ for the first symmetric
cavity mode for both the case of a linear dispersive ho-
mogeneous medium and a metamirror in the cavity. The

phase evolves from a straight line in absence of polarizing
material (V = 0), to a curve with additional zero crossings
symmetrically placed around the resonance frequency ω0,
and increasingly moving away fromω0 when the oscillator
strength is increased. For an excitonic medium this exactly
reproduces the work in Ref. [39], wherein the dispersive
feature causes a modest phase advance and delay, in
proportion to the small dispersive real part of the Lorentz

line contribution to the refractive index (12 Reρα). Linear
increments in oscillator strength and density ρVatom cause
the phase variation away from the V = 0-line at any given
frequency to vary proportionally. The concomitant mode
splitting then traces the well-known square root behavior
with increasing ρVatom. For the metasurface (Figure 9b) the
phase behavior is shown for densities and linearly
increasing particle oscillator strengthsV that correspond to
identical Rabi splittings as for the atomic gas example. The
phase profiles are nonetheless quite different since the
phase variation near zero detuning is very large already for
modestmetasurface characteristics, and crosses throughπ.
Thereby the dispersive correction to the bare etalon line is
replaced by a monotonic behavior, i.e., an S-curve with a
full 2π phase swing. Even if for frequencies in between the
zero crossings the phase swing is large and no longer lin-
early proportional to V, the location of the zero crossings
nonetheless still scales with the square root of oscillator
strength V.

4.3 Splitting in the limit of weak
polarizability

In the limit of a weakly reflective metasurface, for
which rd � 2πik/Aα≪ 1, and as long as splittings remain
small compared to the resonance frequency ω0, and for
electrostatic Lorentzian polarizabilities of the form

α0 ≈ ω2
0V/(ω2

0 − ω2 − iωγ) one can analytically derive the
location of the zero crossings of φ. In the limit of zero
damping, they read for a metasurface

ω± � ω0(1 ± ����
2πV
AL

√ ) , (23)

and for a dispersive atomic gas filling the complete cavity

ω± � ω0(1 ± ������
ρVatom

4

√ ) . (24)

Although the underlying variation of φ is quite different,
the splitting follows a very similar scaling at small polar-
izability, namely a proportionality to the square root of
oscillator strength and the number of oscillators placed in
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the mode. An apparent difference is that for a metasurface
the splittingwill reducewith etalon length L (i.e., for higher
order modes), while for a cavity completely filled with an
excitonic medium, the splitting is instead constant. This is
due to the fact that in the excitonic case a longer cavity also
contains more oscillators, whereas for a metasurface the
number of oscillators is fixed with varying L. Figure 10
shows color plots of the (full, unapproximated)

∣∣∣∣φ∣∣∣∣ as
function of frequency and oscillator strength. The zero
crossings can be traced as the contour of zero

∣∣∣∣φ∣∣∣∣
(darkblue), and correspond well with the approximate
expressions Eqs. (23) and (24) over a large range of oscil-
lator strengths.

4.4 Splitting at strong polarizability

A remarkable finding in Figure 10 is that the approximate
expressions for the Rabi splitting versus oscillator strength
even hold for very large oscillator strength. For the meta-
surface this is especially surprising, since one can askwhich
polarizability is actually a physical attribute of a scatterer.
The polarizability that one would derive from a scattering or
extinction measurement on a single scatterer, or instead
from numerical full wave simulation [71], is the dynamic
polarizability αdyn, and not the static polarizability α0. The
polarizability that one would measure for an antenna in a
lattice is in fact different from both, as the lattice polariz-
ability αlatt is modified by super radiant, i.e., collective,

radiative damping. The on-resonance lattice polarizability is
smaller than the static polarizability by a factor:

αlatt
α0 ω�ω0

� 1

1 + 2πk0V
A

.

∣∣∣∣∣∣∣∣∣∣∣ (25)

As the dashed and dotted curves in Figure 10b show, if
one would assume the on-resonance dynamic or lattice
polarizability to determine the Rabi splitting instead of
just V, Rabi splittings would be up to a factor 2 smaller.
Thus Figure 10 demonstrates that even though the
evaluation of the metasurface-in-the-middle model
actually uses the lattice polarizability, the Rabi splitting
finally traces out Eq. (23) which only contains the elec-
trostatic oscillator strength V without the dynamic,
i.e., k-dependent correction factor for the lattice. This is a
remarkable finding, since the electrostatic polarizability
is not actually an observable in any optical scattering
experiment or full wave calculation. Our remarkable
finding can be rationalized by noting that the usual
statement that the on-resonance polarizability de-
termines the magnitude of the Rabi splitting does not
hold. The radiative correction is very large on resonance,
but actually it is small far away from particle resonance.
This makes the dynamic and lattice polarizability
strongly non-Lorentzian. At the frequencies of the zero-
crossings of φ the lattice polarizability is actually very
close to the electrostatic polarizability at the same fre-
quency, even though on resonance the difference is
large.

Figure 8: Reflection, transmission, and phase
analysis of the meta-membrane in the mid-
dle model. Top row: the cavity contains a
dispersive atomic medium, but no metasur-
face. The reflection and transmission show
strong coupling for all modes. Analyzing the
argument φ when identifying the denomi-
nator of Eq. (22) with −1 + Aeiφ shows the
dispersive medium determining the propa-
gation phase. According to Ref. [39], etalon
resonances occur as zero crossing of φ,
when taking vertical cross cuts at bare-
etalon resonant thicknesses. Bottom row:
same for a metasurface, and no atomic me-
dium. Only every other (symmetric) mode
splits. Theφ-landscape ismarkedly different
from the top row. We assume a dispersive
atomic medium with ω0 � 2.4 ⋅ 1015  rad/s,
γ � 4 ⋅ 1013  s−1 and Vatom = 8⋅10−27

m
3
inser-

ted in α0, at density ρ � (10nm)−3. The
metasurface has identical resonance fre-
quency and damping as the atomic gas, but
with V = 4.8⋅10−24 m3 and A = (200 nm)2.
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5 Excitonic materials combined
with resonant metasurfaces in
etalons

There is currently a large interest in strong coupling of
Fabry–Pérot resonators with excitons in 2D transition
metal dichalcogenide (TMDC) materials, large oscillator

strength organic systems like J-aggregates, as well as
various types of 2D and 3D semiconductors [39–45, 53, 63–
65]. The rationale is that strong coupling gives access to, for
instance, strongly nonlinear photonics via excitonic non-
linearities, which in turn gives rise to exciting opportu-
nities for bistable optical devices, nonlinear sensing, and
classical and quantum hardware optical Ising simulators
[72, 73]. Recent experimental reports include strong
coupling of microcavities and plasmonic arrays with
organic dye molecules [40, 41, 43, 44], extremely dense
organic molecular ensembles that form J-aggregates [45],
and for instance 2D transition metal dichalcogenide flakes
[42, 65]. These recent reports in fact build on experiments
pioneered by Weisbuch [63] (III–V microcavities and
quantumwells) and Lidzey [64] (microcavitieswith organic
excitonic layers).

For decades, the transfer matrix has been used to
predict classical strong coupling in microcavities filled
with J-aggregates, quantum wells, or other excitonic ma-
terials [39–41, 63, 64]. As model for the dielectric constant
of such layers we use

ϵpolaritonic � n2
bg + 2Δn

ω0, pγ0, p
ω2

0, p − ω2 − iωγ0, p
 ,

The model accounts for a background refractive index nbg,
and reparametrizes oscillator strength such that Δn is

Figure 9: The argument φ when viewing the resonant denominator
of Eq. (22) as −1 + Aeiφ as function of frequency, and at the etalon
opening where the bare etalon has its resonance frequency at the
resonance ω0 � 2.4 ⋅ 1015  s−1 of the inserted species. According to
Ref. [39] zero-crossings correspond to the Rabi-split normal mode
frequencies. Panel (a) is for a homogeneous atomic gas, and panel
(b) for a dispersive metasurface. Different line colors vary oscillator
strength and density in linear increments. Note how the zero
crossingsmove away fromω0 in proportion to the square root of the
oscillator strength. Finally, we have taken oscillator strengths that
correspond to identical location of the zero crossing in (a) and (b).
Nonetheless, the phase variation for frequencies between the
crossings is strongly different. Parameters as in Figure 8, with
oscillator strength V varied as indicated in the legend.

Figure 10: Color plots of
∣∣∣∣φ∣∣∣∣ with φ defined from equating the

resonant denominator of Eq. (22) to −1 + Aeiφ, as a function of
oscillator strength and frequency, for fixed etalon opening chosen
such that the bare etalon has its resonance frequency at the
resonance ω0 � 2.4 ⋅ 1015  s−1 of the inserted dispersive medium
(panel a) resp. metasurface (panel b). The white parabola in (a) over
plots Eq. (24). Also for the resonant metasurface case, the splitting
traces a parabola (white continuous line, Eq. (23). This is surprising,
as this prediction takes the static polarizability as input, whereas
the dynamic and lattice polarizabilities that determine the single-
particle resp. collective antenna scattering strength are strongly
different. Dashed and dotted lines show the Rabi splitting if one
would have to correct V in Eq. (23) with the on-resonance dynamical
resp. lattice radiative correction factor (see Eq. (25)). Parameters as
in Figure 8.
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approximately the magnitude of the complex refractive in-
dex change on resonance. Figure 11 shows example etalon
transmission for J-aggregates (Δn � 0.8,ω0, p � 2.4 ⋅ 1015  s−1,
γ0, p � 1.7 ⋅ 1014 s−1 and background index nbg = 1.55, (values
commensurate with Ref. [45] for TDBC in a PVA, with
adjusted resonance frequency to match the plasmon an-
tennas assumed throughout in this work) and forWS2 flakes
(Δn � 4,ω0,p � 2.4 ⋅ 1015 s−1, γ0, p � 6.25 ⋅ 1013  s−1, consistent
with Ref. [42]). Strong coupling is predicted in both systems
at sufficient layer thickness, where the stronger exciton line
of WS2 means that a smaller thickness is required. The
J-aggregate system with these parameters suffers from sig-
nificant loss (broadening of bands obscures anticrossing).
Peculiar to the WS2 system is the fact that the very large
constant background index of the semiconductor signifi-
cantly changes the mode frequencies even in absence of the
excitonic line (due to nbg only). For small thickness the
antisymmetric modes (node at the excitonic layer) hardly
shift, but the resonance conditions for even ones are
dramatically changed. This re-orders the modes at modest
thickness (100 nm), and modifies the mode spacing for full
filling.

Given that excitonic matter can strongly couple to
resonances of metasurface arrays, there is interest in un-
derstanding what the optical signatures are when etalons
are constructed that contain both excitonic media and
plasmon particle arrays. Bisht et al. [47] recently reported
measurements of Rabi splitting in cavities with simulta-
neously plasmonic and excitonicmaterials loaded in them,
reporting observation of a joint Rabi splitting even
exceeding the summed Rabi splitting from just particles,
and just excitonic material alone. We present absorption
calculations, as absorption partitioned over its plasmonic
and excitonic contribution also report on the degree to
which each type of polariton contributes to the hybrid
plasmonic–excitonic polariton. As parameters we assume
a material similar to the J-aggregate (200 nm slab), and a
metasurface array with antennas also as before, at a pitch
350 nm. We take the mirrors to be non-absorbing (setting
ϵ � −22 for gold purely negative) so that absorption cal-
culations strictly trace plasmonic and excitonic loss
channels. Figure 12a shows that if the etalon, which we
take to have lossless mirrors, is filled with just a plasmon
particle array, then absorption as function of frequency
and etalon spacing simply traces the dispersion of the
anticrossing even etalon modes (mode maximum at the
etalon center). The odd modes are absent in absorption,
even if they do appear as transmission resonances, as they
have an antinode at the absorbing particles. If instead a
slab of excitonic material is placed in the middle of the
etalon, both the even and odd modes show in absorption

(Figure 12b) since the slab thickness required for strong
coupling means that also the anti-symmetric etalon modes
have overlap with it. Finally, the absorption spectrum of
the joint system is shown in Figure 12c. Evidently, the even
modes now show a wider anticrossing then is the case for
either excitonic, or plasmonic system alone. This is quali-
tatively consistent with the experimental report of Bisht
[47].

To more quantitatively assess the anticrossing, we
examine absorption spectra at the first-order bare-etalon
resonant thickness in Figure 13, where we furthermore
separate out absorption in themetasurface (panel a) and in
the excitonic material (panel b). For reference also the
absorption is shown for either of the layers alone, in
presence and in absence of surrounding mirrors. The ab-
sorption spectrumof the individual plasmonic and exitonic
layer is a single peak, though not Lorentzian in shape as at
the assumed oscillator strength extinction is strong. Upon
introduction of the mirrors, the peak in both cases splits,
indicating that strong coupling occurs for the case of etalon
and metasurface, and for the case of etalon and excitonic
material (orange curves). Coincidental to the choice of
parameters is that the splitting in both systems is similar in
magnitude. In the joint plasmonic–excitonic system the
apparent Rabi splitting is larger than in either system
separately, but not larger than the sum of Rabi splittings.
Moreover, it is noteworthy that in both subsystems the
absorption maxima occur at the same frequencies, indi-
cating that these are the eigenfrequencies of the tripartite
hybrid modes. A first order approximation to the Rabi
splitting Ωmeta+exciton predicted by the membrane-in-the-
middle model is

Ωmeta+exciton �
������������
Ω2

meta + Ω2
exciton

√
(26)

in terms of the Rabi splittings Ωmeta and Ωexciton of the
etalon with just the metasurface alone, and with just the
excitonicmaterial. Thus it appears that as reported byBisht
et al. [47] a large Rabi splitting is indeed easier to achieve
by combining excitonic and plasmonic constituents in an
etalon, even if in distinction to [47] the joint Rabi splitting
cannot exceed the sum of Rabi splittings. Unfortunately,
this larger splitting would not necessarily be of help for
envisioned scenarios in cavity exciton–polariton physics,
where one usually seeks to imbue photons with non-
linearities by casting a significant fraction of the excitation
into the intrinsically nonlinear exciton. Figure 13b reveals
that in the tripartite system the absorption in the upper and
lower plasmon–exciton–polariton branch is not larger
than that in case of the exciton-only etalon. An interesting
question outside the scope of our transfer matrix model is
in how far near-field enhancement, which is poorly
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represented in our model, contributes to further enlarged
Rabi splitting and the exciton fraction, as is suggested by
the work of Bisht [47].

6 Domain of validity and
benchmark

While the metasurface multilayer transfer model as we
sketched it already applies tomany interesting problems, it
is important to demarcate its validity and provide a
benchmark. The model as we sketched it is specific to
normal incidence, and, as it is scalar, does not include
polarization effects. This is only a valid approach in case all

the plasmon arrays in the stack have the same principal
polarization axis, and in case the stack as a whole is
interrogated with a polarization coincident with such a
principal axis. As we showed for the particular case of the
birefringent Salisbury screen, in case the antennas are, for
instance, rectangular and alignedwith the principal axis of
rectangular arrays, one can trivially extend the formalism
to dealwith polarization-dependent scattering phenomena
by decomposing the incident polarization in the two prin-
cipal polarization components, for which separately the
formalism applies. The model can also be easily extended
to more complicated scenarios, such as off-normal inci-
dence, metasurfaces with intrinsically magneto-electric or
chiral unit cells [28, 55, 74], or when metasurfaces are
stacked in a twisted manner. Since one must then account
for two polarizations, this requires a 4×4 transfer matrix
approach to allow for the polarization cross coupling ef-
fects. This would bring the proposed method on par with
the S-matrix multilayer approach for metasurface stacks
developed by Menzel and Sperrhake et al., who focused
specifically on polarimetric applications [51, 52]. A more
fundamental limitation of our approach is that it cannot
deal with propagating and evanescent diffraction orders.
This implies, firstly, that grating diffraction phenomena,
such as surface lattice resonances and waveguide lattice
resonances that are reliant on grating diffraction orders
that are propagative in at least one of the layers are beyond
the scope of our model. Evanescent diffraction orders are
required to describe near-field hybridization effects, which
become relevant when particle arrays come to within a
fraction of a wavelength (∼λ/2π) from interfaces or other
metasurfaces [26]. Herewe discern two distinct cases. First,
many metasurface realizations deposit scatterers on a

Figure 11: Calculated reflection and transmission for Fabry–Pérot etalons with an increasing thickness dexc of excitonic material placed in its
center (from left to right: 5, 25, 100 nm and completely filled), as a function of total etalon width d and frequency ω. The top row is for
J-aggregates (values from Ref. [45]) while the bottom row is for WS2 (values from model reported in Ref. [42]). For the first three panels only
d > dexc should be considered.

Figure 12: Absorption as function of frequency and etalon spacing
for etalons in which either a plasmonic metasurface is placed (a),
assuming same antennas as in Figures 2–5, at pitch 350 nm), or
excitonic material (b), a 200 nm thick layer of J-aggregate), or both
(c). In the plasmonic case, only the symmetricmodes are visible, and
show strong coupling. In the tripartite case (c), the Rabi splitting for
those modes exceeds that achieved in either (a) or (b). Note that for
this example mirrors were chosen non-absorbing.
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dielectric interface, e.g., in air, but on a glass substrate. In
this case a practical approach is to model the antennas as
being positioned at the location of their center of mass
(slightly away from an interface), and adjusting the
polarizability V, ω0 and γ to match full wave calculations.
This applies because formoderate index contrasts between
either side of the interface, the presence of the interface
only slightly renormalizes the polarizability but without
changing the resonance character of the antennas. Instead,
as a second extreme one could consider the applicability of
our model to patch antenna arrays, i.e., antenna arrays at
deep subwavelength separation frommetal interfaces. The
strong near-field interaction then fundamentally changes
the resonance character of the antennas, and the model
does not apply. Even within the dipole approximation, our
model ignores near-field interactions with interfaces that

are encode in evanescent diffraction orders. In addition
near-fields calculated in this model are only of qualitative
use, as the model assumes dipolar scatterers instead of the
real particle geometry.

To illustrate some of these limitations, Figure 14 pro-
vides finite element, i.e., full-wave, simulations for select
examples from Figure 2 (Salisbury screen) and Figure 5
(strong coupling). These calculations use identical pa-
rameters for mirrors and glass layers as in the multilayer
transfer matrix approach, and as particles assume rectan-
gular nanorods (88 by 40nm,with a height of 20 nm), and a
Drudemodel for the antenna dielectric constant of the form

ϵ � ϵb − ω2
p/(ω(ω + iγ)) with ϵb � 9.54, ωp � 1.35 ⋅ 1016  s−1

and γ � 9.42 ⋅ 1013  s−1. The particle size was chosen to
match the bare lattice response at pitch of 450 nm in
COMSOL with that given by Eq. (14) (resonance frequency,
peak reflectivity, transmission and absorption). The
benchmark uses symmetry planes to simulate just one
quarter of the unit cell, and measures input/output
through ports located at either end of the stack (somewhat
away from the mirror interfaces). Figure 14 shows that the
full wave benchmark calculations confirm all our pre-
dictions regarding the peculiar amplitude and phase
response of Salisbury screens, the appearance and
magnitude of strong coupling in etalons, and the pro-
gression with antenna density. At the same time the
benchmark calculations provide instructive insights in the
limitations of the method, where there are three main ef-
fects at play. First, the resonance feature slightly blue shifts
with increasing lattice density, as a consequence of
dipole–dipole interactions between antennas (guides to
the eye to indicate bare lattice resonance incl. particle in-
teractions indicated by horizontal lines in graphs, labeled
I). These are in fact contained in the real part of the lattice
Green function in Eq. (14) which renormalizes the real part
of the resonance frequency. While for clarity of presenta-
tion we set this real part to zero for our illustration exam-
ples so as to be able to compare the salient features with
strictly aligned resonances, they in fact can be accounted
for in lattice sum theory. Second, at distances well below
100 nm between particles and mirror near-field in-
teractions set in that strongly red shift the antenna reso-
nance frequency (features labeled with letter “II” in
graphs). Description of this effect both requires evanescent
grating orders that are not contained in our model, and
would require to go beyond the dipole approximation.
Since neither evanescent grating orders nor microscopic
near-field detail is contained in the transfer matrix
approach, this highlights a limitation on the domain of
validity. Finally, the third effect is that for the lowest

Figure 13: Absorption spectra of (a) a plasmonic metasurface, resp.
(b) an excitonic medium (J-aggregate), considering them in isolation
(purple curves centered on the resonance ω0 � 2.4 ⋅ 1015  s−1),
inserted into an etalon (orange curves), resp. when in the tripartite
system of etalon, exciton, and plasmonic metasurface. Parameters
are as in Figure 12, with the etalon opening d fixed such that the first
order bare etalon resonance is at ω0.
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antenna density the large pitch allows launching of real
grating diffraction into glass, as well as grating-vector
assisted coupling into a variety of resonances that include
the symmetric and antisymmetric surface plasmon polar-
iton modes supported by the metal mirror, as well as
grazing angle etalon resonances in the spacer between
mirror and particles. This explains the sharp features that
occur for the largest pitch only (labeled with “III” in the
graphs). To include such grating diffraction in a dipole
antenna scattering model in stratified systems is possible,
but far from easy to implement [75]. Finally we note that
despite the fact that these are very small COMSOL models
(just of order 5⋅104 elements) that take just between 3 and
10 s to evaluate (Intel I7-6950X 10 cores, running at
3.3 GHz), the total evaluation time for Figure 14 is of order
18 h for the Salisbury screen case (leftmost three panels, ca.
6000 parameter combinations per panel), and over three
times that for the strong coupling. This should be con-
trasted to the multilayer approach, where it takes on order
of minutes to simulate the bare lattice reflectivity in COM-
SOL that is input in our model, and which suffices to
generate all the graphs.

7 Conclusion

To conclude, we have presented a simple yet powerful
transfer matrix model for analyzing arbitrary stacks of
dielectric and metallic layers combined with meta-
surfaces that can be inserted in any of the dielectric layers.
The power of this approach is that once a library of

metasurface reflection and transmission coefficients has
been calculated, complex structures can be analyzed
easily. We have demonstrated the power of this approach
to gain insight into topical nanophotonic problems on
basis of three examples. The first is the response of Sal-
isbury screens, i.e., etalons in which one mirror is
replaced by a resonant metasurface. The phenomenon of
perfect absorption in such Salisbury screens actually has
a deeper origin as a topological property in parameter
space that is evident as pairs of phase singularities. These
singularities in turn imply strong linear dichroism and
linear birefringence properties, if one elicits the Salisbury
screen response in just one resonant polarization axis.
The second example that we analyzed concerns strong
coupling between plasmonic metasurfaces and etalon
resonances. While scaling laws for the magnitude of the
splitting in function of oscillator strength and density are
similar to those for classical models of vacuum Rabi
splitting in a cavity filled with an excitonic medium, the
underlying physics is different. Indeed, in metasurface
etalons, themetasurface acts as a dispersive version of the
‘membrane in the middle’ problem with a strong phase
response due to its interface reflectivity and transmission
phase, and not due to accumulation of propagation
phase. Finally, we have explored the combination of
plasmonic and excitonic media in etalons, which provide
Rabi splittings beyond the values possible with just either
of the constituents.

The model that we proposed extends far beyond the
three simple examples that we analyzed. As already fore-
seen by Menzel and Sperrhake [51, 52] a rich variety of

Figure 14: COMSOL full wave simulation results to benchmark the transfermatrixmodel predictions for the Salisbury screen case (panels a–c,
reflection amplitude, d–f reflection phase) and strong coupling of etalon resonances with plasmon resonances (panels g–i resp. j–l for
reflection resp. transmission amplitude). The x-axes start at 24 nm gap resp. 48 nm for the single-mirror resp. doublemirror case. Parameters
have been chosen to best compare to Figure 2 resp. Figure 5. Letters “I” indicate the bare lattice resonance frequency, which depends on
density. At very small separations to the mirror, the resonances red shift due to near field coupling with the mirror, labeled as “II”. At the
largest pitches grating wave vector assisted coupling into guided modes and high wave vector etalon resonances can occur at the sharp
features labeled as “III”. Note that these themselves can show strong coupling with the etalon resonances in panel g).
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polarization conversion phenomena with twisted chiral
and achiral metasurfaces can be readily analyzed by a
simple expansion of our model. Also, one can envision the
analysis of stacks of metasurfaces in the context of
computational optics, where each metasurface may
execute a mathematical function. Of large importance for
this agenda is to deal with space-varying amplitude, phase
and polarization responses in the plane of each metasur-
face. In current state of the art metasurface design, space
varying metasurfaces are often built using fixed lattice
sites, but individually varying scatterers, chosen on basis
of library simulations for purely periodic systems. For
structures discussed here we anticipate that similarly our
results apply as a library to construct the space varying
response of space-varying metasurfaces if they would be
tessellated over tiles over ∼5 unit cells in size. In how far
this approach would hold also for vertically much more
extended structures (widely separated layers) is an open
question. Our model can also deal with a variety of light–
matter interaction scenarios in which stacks of meta-
surfaces interact with layers of excitonic media, of large
interest in the field of collective strong coupling of organic
molecules to metasurfaces and etalons. The approach can
be easily extended to off-normal propagation and
magneto-electric (chiral, non-reciprocal) scattering phe-
nomena, as well as inclusion of gain alongside loss. A
drawback of the model is the neglect of grating diffraction
orders, both of propagating and evanescent nature. This
implies that microscopic details on near-fields and near-
field hybridization between very close layers and interfaces
are neglected. Nonetheless our model can provide crucial
guidance to researchers, helping to delineate which
observed phenomena originate truly from hot spots and
near-field hybridization effects, and which observed phe-
nomena originate strictly from the zeroth-order phase and
amplitude response of metasurfaces, in their multiple
scattering interaction with dielectric stacks.
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