
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Fairness-Aware Instrumentation of Preprocessing Pipelines for Machine
Learning

Yang, K.; Huang, B.; Stoyanovich, J.; Schelter, S.

Publication date
2020
Document Version
Final published version
Published in
HILDA 2020

Link to publication

Citation for published version (APA):
Yang, K., Huang, B., Stoyanovich, J., & Schelter, S. (2020). Fairness-Aware Instrumentation
of Preprocessing Pipelines for Machine Learning. In HILDA 2020: Workshop on Human-In-
the-Loop Data Analytics : co-located with SIGMOD 2020 : 19 June 2020, Portland, OR, USA
[9] HILDA. https://ssc.io/publication/fairness-aware-instrumentation-of-preprocessing-
pipelines-forml-hilda20/

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/fairnessaware-instrumentation-of-preprocessing-pipelines-for-machine-learning(4fd0b3d5-941e-47ec-9563-11ef9c563d2c).html
https://ssc.io/publication/fairness-aware-instrumentation-of-preprocessing-pipelines-forml-hilda20/
https://ssc.io/publication/fairness-aware-instrumentation-of-preprocessing-pipelines-forml-hilda20/

Fairness-Aware Instrumentation of
Preprocessing Pipelines for Machine Learning∗

Ke Yang, Biao Huang
New York University

ky630,bh1918@nyu.edu

Julia Stoyanovich
New York University
stoyanovich@nyu.edu

Sebastian Schelter
University of Amsterdam

s.schelter@uva.nl

ABSTRACT
Surfacing and mitigating bias in ML pipelines is a complex
topic, with a dire need to provide system-level support to
data scientists. Humans should be empowered to debug these
pipelines, in order to control for bias and to improve data
quality and representativeness.
We propose fair-DAGs, an open-source library that ex-

tracts directed acyclic graph (DAG) representations of the
data flow in preprocessing pipelines for ML. The library
subsequently instruments the pipelines with tracing and vi-
sualization code to capture changes in data distributions and
identify distortions with respect to protected group member-
ship as the data travels through the pipeline. We illustrate the
utility of fair-DAGs with experiments on publicly available
ML pipelines.
ACM Reference Format:
Ke Yang, Biao Huang, Julia Stoyanovich, Sebastian Schelter. 2020.
Fairness-Aware Instrumentation of Preprocessing Pipelines for Ma-
chine Learning. In Workshop on Human-In-the-Loop Data Analytics
(HILDA’20), June 14–19, 2020, Portland, OR, USA. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3398730.3399194

1 INTRODUCTION
Software systems that learn from data to automate decisions
are being deployed in increasing numbers in public and pri-
vate sector application scenarios. In recent years, various is-
sueswith respect to fairness, accountability and transparency
in such systems have been raised [2, 9]. In contrast to text-
book machine learning (ML) scenarios—building a classifier
over a clean and static numeric input dataset—real-world
∗This work was supported in part by NSF Grants No. 1926250 and 1934464,
and by the Moore-Sloan Data Science Environment at New York University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HILDA’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8022-5/20/06. . . $15.00
https://doi.org/10.1145/3398730.3399194

end-to-end ML applications are often very complex [10], es-
pecially in terms of the preprocessing operations applied to
the training data [14]. These pipelines often integrate data
from multiple input sources, subsequently apply data cleaning
operations such asmissing value imputation and filtering, and
encode the raw data as features using various techniques. This
paper focuses on surfacing bias in such complex pipelines.

Data preprocessing operations can introduce bias in subtle
ways: (𝑖) Filters and joins can reduce the number of records
in the data and thereby distort the proportion of protected
(minority or historically disadvantaged) groups even if they
do not directly use the protected attribute as a join key or
target predicate. (𝑖𝑖) Simple methods for missing value impu-
tation may also also distort protected group proportions. For
example, consider an application that gives users a binary
choice of gender and also allows to leave gender unspecified.
Then, the gender column will have missing values, which
a data scientist may attempt to fill in using mode imputa-
tion, thus setting all unspecified gender values to either male
or female, depending on the most frequent demographic in
the data. (𝑖𝑖𝑖) More generally, multi-class classification for
missing value imputation typically only uses the most fre-
quent classes as target variables [3], leading to a distortion
for small protected groups, because membership in these
groups will never be imputed. (𝑖𝑣) Another source of bias
could be the usage of pretrained word embeddings. For ex-
ample, a pipeline may replace a textual name attribute with
the corresponding vector from a word embedding that is
missing for rare, non-western names. If we then filter out
records for which no embedding was found, this filter may
disproportionately remove members of protected groups.

According to a classification of bias in computer systems [7],
points (𝑖)- (𝑖𝑣) illustrate technical bias that arises due to the
design of data cleaning methods. Further, these systems are
subject to preexisting bias “that exists independently, and
usually prior to the creation of the system” [7]. An example
is that survey data collected from ethnic minorities may con-
tain more missing values and it may be noisier than data col-
lected from the majority ethnic group [8]. To make matters
even more challenging, we are often interested in quantify-
ing and mitigating bias with respect to multiple protected
groups, such as gender and ethnicity, either independently

https://doi.org/10.1145/3398730.3399194
https://doi.org/10.1145/3398730.3399194

HILDA’20, June 14–19, 2020, Portland, OR, USA Yang et al.

or in combination. The latter is important because discrimi-
natory effects may be amplified for individuals who belong
to multiple disadvantaged groups — a phenomenon known
as intersectionality in the social sciences [5].

To identify the introduction of such bias, we propose fair-
DAGs, an open-source library that empowers data scientists
to inspect and debug ML preprocessing pipelines, in order
to control for bias and to improve data quality and represen-
tativeness. We make the following contributions.
• We propose the fair-DAGs library, which integrates into
existing ML applications and extracts a directed acyclic
graph (DAG) representation of the preprocessing opera-
tions and the flow of data.

• We discuss how to instrument the pipeline with tracing
code (based on the DAG representation) to capture data
distributions and identify distortions with respect to pro-
tected groups as the data flows through the pipeline.

• We illustrate the utility of fair-DAGs with experiments on
publicly available preprocessing pipelines.
The fair-DAGs library is available at https://github.com/

DataResponsibly/fairDAGs, and the Web UI can be accessed
at https://dataresponsibly.github.io/tools.

2 APPROACH
Our approach is based on the idea of leveraging a logical
representation of the operators and the data flow in a prepro-
cessing pipeline for ML. Such a representation allows us to
automatically reason about programs (similar to query plans
for relational databases), and enable automated tracing by
instrumenting the code to record changes in the proportion
of records from protected groups. We instrument operators
such as joins, filters and missing value imputers that may
change these proportions.
Pipeline representation. We focus on ML pipelines that
apply common declarative abstractions [13] such as pan-
das data slicing operations or scikit-learn’s ColumnTrans-
former1 to define feature transformations. These pipelines
have a natural representation as directed acyclic graphs
(DAGs) [13]. Our library extracts a DAG, in which vertices
represent operations such as filters and joins, and edges de-
note the flow of data in the pipeline. In our case, the data
sources hold relational data, while the data flowing through
the DAG either comprises of collections of relational tuples
or tensors. We support relational operators including join,
selection, and projection (consuming and producing rela-
tional data), standard feature encoders like one-hot-encoders
(consuming relational data and outputting matrices), and ML
preprocessing operations like standardization (consuming
and producing matrices).
1https://scikit-learn.org/stable/modules/generated/sklearn.compose.
ColumnTransformer.html

Implementation. Our fair-DAGs library takes a Python
script that implements an ML pipeline as input, along with
user-defined annotations that denote the target variable of
the ML model, and the categorical attributes that label mem-
bers of legally protected groups. In this work, we target linear
ML pipelines without control flow that leverage pandas and
scikit-learn for data preprocessing. As observed in [11], such
linear code accounts for more than 87% of all cells in data
science notebooks, and our chosen libraries occur in 30% to
50% of notebooks. We derive the DAG representation by in-
specting the Abstract Syntax Trees (AST) of the Python code
of the preprocessing pipeline, where we identify common op-
erations from pandas such as data loading via pd.read_csv,
relational joins via pd.join, or scikit-learn’s Pipeline data
structure. We apply code instrumentation for tracing the
data at runtime via the inspect module2, by profiling the
input and output data of selected operators.
Example. Figure 1 illustrates our approach. Its left side
shows Python code for an ML pipeline that prepares data
for a credit assessment model. It reads historical financial
performance data of the applicants and their demographics,
imputes missing values, performs feature encoding and trans-
formation, and finally trains a logistic regression model to
estimate credit worthiness. The right side of Figure 1 shows
our extracted DAG representation, which allows us to iden-
tify operators that potentially modify the proportions of pro-
tected groups in the data and thus may introduce bias (circled
in purple). The fair-DAGs library subsequently instruments
the pipeline with tracing code, based on our extracted repre-
sentation. In the example in Figure 1, we trace the categorical
attributes gender and age (the latter stands for “age group”),
present the corresponding data distributions, and show the
proportion of positively classified instances for each value of
these attributes. When a data scientist executes the pipeline,
the system stores the intermediate data generated after each
operation and records the changes in the target feature for
all sensitive attribute groups. This information is then pre-
sented to the data scientist, empowering her to understand
the impact of individual operations on the performance for
different demographic groups, and react to problems.

3 EVALUATION
In our experimental evaluation of fair-DAGs we pursue three
goals: (1) to ascertain the feasibility of extracting DAG-based
representations in ML pipelines created by practitioners;
(2) to explore how filtering and data cleaning might lead
to distortions with respect to protected group membership;
and (3) to compare performance of pipelines that process
the same datasets and have the same goal, but use different
preprocessing operations, for intersectional groups.
2https://docs.python.org/3/library/inspect.html

https://github.com/DataResponsibly/fairDAGs
https://github.com/DataResponsibly/fairDAGs
https://dataresponsibly.github.io/tools
https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html
https://docs.python.org/3/library/inspect.html

Fairness-Aware Instrumentation of ML Pipelines HILDA’20, June 14–19, 2020, Portland, OR, USA

load input data sources
accounts = pd.read_csv(…)
demographics = pd.read_csv(…)

combine input data to a single table
data = pd.concat([accounts, demographics], keys=['ssn'])

project data to subset of attributes
data = data[['num_children', 'education', 'income', 'gender', 'age']]
filter data
data = data[data.age >= 25]

define the target variable
data.label = data.placement == 'credit_worthy'

define the feature encoding of the data
one_hot_and_impute = Pipeline([
 ('imputer', SimpleImputer(strategy='most_frequent')),
 ('onehot', OneHotEncoder())])

featurizer = ColumnTransformer(transformers=[
 (one_hot_and_impute, ['education', 'gender']),
 (StandardScaler(), ['num_children', 'income', 'age']])

define the training pipeline for the model
pipeline = Pipeline([
 ('features', featurizer),
 ('learner', LogisticRegression())])

train-test split
train_data, test_data = train_test_split(data)
model training
model = pipeline.fit(train_data, train_data.label)
model evaluation
print(model.score(test_data, test_data.label))

Join
on ssn

Project
to [num_children, education,

income, gender, age]

Select
on age >= 21

Project
to gender

Project
to num_children

Project
to income

Mode Impute StandardizeStandardize

Concatenate

accounts
demo-

graphics

Project
to credit_worthy

Transform
to label

X, y

Project
to education

1-Hot Encode

Project
to age

Standardize

1-Hot Encode

trace attributes: gender, age

trace attributes: gender, age

trace attribute:
gender

trace attributes: gender, age

Mode Impute

Figure 1: Instrumentation of a pandas/scikit-learn based ML pipeline via a DAG representation of the data flow.

Experimental setup.We conduct experiments on two bench-
mark datasets that are frequently used in the algorithmic
fairness literature. Adult income3 contains information about
33,000 individuals from the 1994 U.S. census, with sensitive
attributes gender and race. The corresponding task is to
predict whether the annual income of an individual exceeds
$50,000. Gender bias has been reported for this task, with
males having a higher probability of the positive outcome
(income greater than $50,000). Pipeline 𝑃1 was used to pre-
process Adult income in [6, 12]:

1 raw_data = pd.read_csv(f_path , na_values='?')
2 data = raw_data.dropna()
3 labels = binarize(data['income -per -year'], [' >50K'])
4 feature_transformation = ColumnTransformer ([
5 ('cat', OneHotEncoder (), [’education’, ’workclass’]),
6 ('num', StandardScaler (), [’age’, ’hours-per-week’])])
7 income_pipeline = Pipeline ([
8 ('features ', feature_transformation),
9 (’classifier’, DecisionTreeClassifier())])

Note that 𝑃1 removes records with missing values in line 2.
Pipeline 𝑃2 denotes a modified pipeline on Adult income,
which imputes missing values rather than removing them:

1 categorical_feature_transformation = Pipeline ([
2 ('impute ', SimpleImputer(strategy='most_frequent ')),
3 ('encode ', OneHotEncoder(handle_unknown='ignore '))])

The COMPAS dataset contains information about 6,889
criminal defendants in Broward County, FL, along with pre-
dictions of their recidivism risk, as produced by a commercial
tool called COMPAS. The sensitive attributes include gender
and race. The task is to predict whether a defendant is likely
3http://archive.ics.uci.edu/ml/datasets/Adult

re-offend. Racial discrimination has been reported by ProP-
ublica [1], quantified as the disparity in false-positive rates
(FPR, higher for Blacks) and false-negative rates (FNR, higher
for Whites). Pipeline 𝑃3 on COMPAS filters data according
to the rules outlined in [1]:

1 df = pd.read_csv(f_path , na_values='N/A')
2 data = df[(df.days_b_screening_arrest <= 30)
3 & (df.days_b_screening_arrest >= -30) & (df.is_recid != -1)
4 & (df.c_charge_degree != 'O') & (df.score_text != 'N/A')]
5 data = data.replace('Medium ', 'Low')
6 labels = LabelEncoder ().fit_transform(data[’score_text’])
7 impute1_and_onehot = Pipeline ([
8 ('imputer1 ', SimpleImputer(strategy='most_frequent ')),
9 ('onehot ', OneHotEncoder ())])
10 impute2_and_bin = Pipeline ([
11 ('imputer2 ', SimpleImputer(strategy='mean')),
12 ('disc', KBinsDiscretizer(n_bins=4, enc='ordinal '))])
13 featurizer = ColumnTransformer ([
14 ('impute1_and_onehot ', impute1_and_onehot , [’is_recid’]),
15 ('impute2_and_bin ', impute2_and_bin , [’age’])])
16 pipeline = Pipeline ([
17 ('features ', featurizer),
18 (’classifier’, LogisticRegression())])

Extracted representations. Figures 2, 3, and 4 show the
DAGs of 𝑃1, 𝑃2 and 𝑃3 generated by fair-DAGs. For an op-
eration in a pipeline, a node is extracted and circled with a
color-coded boundary that corresponds to the color in the
code listing. Note that scikit-learn operations can be nested,
such as lines 4-5 in 3 and lines 5-8 in 3, and we only color
the corresponding attributes on which the operations focus.
Results. We execute the pipelines and leverage fair-DAGs to
automatically compute statistics about the distortion of the
data with respect to protected groups. fair-DAGs produced
detailed reports. We now discuss the main findings available
to data scientists from these reports.

HILDA’20, June 14–19, 2020, Portland, OR, USA Yang et al.

Adult

income

Select
complete data

Project
to education

Project
to age

Project
to workclass to hours per week

Project

1-hot-encode

Model
Decision Tree

1-hot-encode Standardize Standardize

Figure 2: DAG of 𝑃1 on
Adult income

StandardizeStandardize1-hot-encode

Decision Tree
Model

1-hot-encode

Project
to hours per weekto workclass

Project
to age

Project
to education

Project

Adult

income

Mode imputeMode impute

Figure 3: DAG of 𝑃2
on Adult income

on score_text ! = 'N/A'
Select

on c_charge_degree ! = 'O'
Select

on is_recid ! = -1
Select

to is_recid, age,score_text
Project

BinarizeKBinsDiscretizer

Logistic Regression
Model

1-hot-encode

to age
Project

to score_text
Project

to is_recid
Project

Mean imputeMode impute

on days_b_screening_arrest > = -30
Select

on days_b_screening_arrest < = 30
Select

COMPAS

Figure 4: DAG of 𝑃3
on COMPAS

Impact of data cleaning. We evaluate how the data clean-
ing operation in 𝑃1 — removing all tuples with missing val-
ues, shown by the red node in Figure 2 and the red line in
the code listing, affect the distortions in sensitive attributes.
This cleaning operation removes 1,647 tuples, or 7.2% of the
dataset. 234 of these correspond to individuals who have an
annual income of > 50𝐾$ (i.e., about 4.3% of such individuals
are removed). We investigate the impact of data cleaning on
the sensitive attributes gender and race. We observe that
this cleaning operation removes two times more females (6%)
than males (3.9%) among the individuals with a positive label
(annual income > 50𝐾$) in the training data. fair-DAGs also
reports group specific classification metrics and allows us to
determine that the under-representation of females is accom-
panied by a higher FPR in the ML model learned from this
training set. We additionally find that non-White females
are removed in higher proportion than White females (e.g.,
17.1 % of low income females with Asian-Pac-Islander as
race vs. only 8.9% of low income White females), pointing
to an intersectional issue. Our library helps with identifying
such issues by visualising histograms of distortions for each
operation and histograms of performance measures (e.g. FPR
and selection rate) for the ML model in a pipeline.
Impact of filter operations. Another preprocessing opera-
tion that may introduce bias is filtering according to user-
determined rules. We now evaluate how the filtering op-
erations in pipeline 𝑃3 on COMPAS affect the distortions
in sensitive attributes. We investigate the changes of pre-
dicted risk score caused by filtering on the attribute days
before screening arrest, represented by the the red node

in Figure 4 and by red attributes in the code listing for 𝑃3.
fair-DAGs calculates the selection rate of being labeled high
risk (i.e., the probability to be predicted likely to recidivate
by the ML model from 𝑃3 on the test set). fair-DAGs allows
us to verify that the outlined filtering operation removes
data relatively evenly among gender groups, and among in-
tersectional groups on gender and race, even though males
(18.5%) are filtered somewhat more frequently than females
(16.7%) among defendants who have high risk scores.
Summary. We demonstrate the fair-DAGs can extract DAG
representations and instrument typical preprocessing pipelines
used in fairness research. Our library helps identify problem-
atic distortions in sensitive attributes and in classification
outcomes introduced by preprocessing operations, such as
the increased under-representation of females (and of Black
females) in Adult income, accompanied by a higher FPR.
FutureWork. In future work, we aim to extend fair-DAGs to
pipelines with control flow, support a larger set of preprocess-
ing frameworks (e.g., Tensorflow Transform4), reduce the
performance overhead of tracing, and integrate techniques
for automated model validation on data slices [4].

REFERENCES
[1] Julia Angwin et al. 2016. Machine bias: There’s software used across

the country to predict future criminals. And it’s biased against blacks.
ProPublica 23 (2016).

[2] Solon Barocas and Andrew D Selbst. 2016. Big data’s disparate impact.
Calif. L. Rev. 104 (2016), 671.

[3] Felix Biessmann et al. 2018. Deep Learning for Missing Value Imputa-
tion in Tables with Non-Numerical Data. CIKM (2018).

[4] Yeounoh Chung et al. 2018. Slice finder: Automated data slicing for
model interpretability. SysML Conference (2018).

[5] Kimberle Crenshaw. 1989. Demarginalizing the intersection of race and
sex: A black feminist critique of antidiscrimination doctrine, feminist
theory and antiracist politics. u. Chi. Legal f. (1989), 139.

[6] Sorelle A. Friedler et al. 2019. A Comparative Study of Fairness-
enhancing Interventions in Machine Learning. FAT* (2019).

[7] Batya Friedman and Helen Nissenbaum. [n. d.]. Bias in computer
systems. TOIS 14, 3 ([n. d.]), 330–347.

[8] Joost Kappelhof. 2017. Survey research and the quality of survey data
among ethnic minorities. Total survey error in practice (2017), 235–252.

[9] Cathy O’Neil. 2017.Weapons of math destruction: How big data increases
inequality and threatens democracy. Broadway Books.

[10] Neoklis Polyzotis et al. 2017. Data management challenges in produc-
tion machine learning. SIGMOD (2017), 1723–1726.

[11] Fotis Psallidas et al. 2019. Data Science through the looking glass and
what we found there. CoRR abs/1912.09536 (2019).

[12] Babak Salimi et al. 2019. Interventional Fairness: Causal Database
Repair for Algorithmic Fairness. SIGMOD (2019).

[13] Sebastian Schelter et al. 2017. Automatically tracking metadata and
provenance of machine learning experiments. Machine Learning Sys-
tems Workshop at NeurIPS (2017).

[14] Sebastian Schelter et al. 2020. FairPrep: Promoting Data to a First-Class
Citizen in Studies on Fairness-Enhancing Interventions. In EDBT.

4https://www.tensorflow.org/tfx/transform/

https://www.tensorflow.org/tfx/transform/

	Abstract
	1 Introduction
	2 Approach
	3 Evaluation
	References

