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Abstract

The advancement of ischaemic stroke treatment relies on resource-intensive experi-
ments and clinical trials. In order to improve ischaemic stroke treatments, such as throm-
bolysis and thrombectomy, we target the development of computational tools for in silico
trials which can partially replace these animal and human experiments with fast simu-
lations. This study proposes a model that will serve as part of a predictive unit within
an in silico clinical trial estimating patient outcome as a function of treatment. In par-
ticular, the present work aims at the development and evaluation of an organ-scale mi-
crocirculation model of the human brain for perfusion prediction. The model relies on
a three-compartment porous continuum approach. Firstly, a fast and robust method is
established to compute the anisotropic permeability tensors representing arterioles and
venules. Secondly, vessel encoded arterial spin labelling magnetic resonance imaging and
clustering are employed to create an anatomically accurate mapping between the micro-
circulation and large arteries by identifying superficial perfusion territories. Thirdly, the
parameter space of the problem is reduced by analysing the governing equations and ex-
perimental data. Fourthly, a parameter optimisation is conducted. Finally, simulations are
performed with the tuned model to obtain perfusion maps corresponding to an open and
an occluded (ischaemic stroke) scenario. The perfusion map in the occluded vessel sce-
nario shows promising qualitative agreement with CT images of a patient with ischaemic
stroke caused by large vessel occlusion. The results highlight that in the case of vessel
occlusion (i) identifying perfusion territories is essential to capture the location and ex-
tent of underperfused regions and (ii) anisotropic permeability tensors are required to give
quantitatively realistic estimation of perfusion change. In the future, the model will be
thoroughly validated against experiments.

∗Corresponding author: Tamás István Józsa, tamas.jozsa@eng.ox.ac.uk
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1 Introduction

In recent decades, ischaemic stroke treatment has been revolutionised by thrombolysis (the
dissolving of blood clot) [1] and thrombectomy (the mechanical removal of clot) [2, 3]. Con-
sequently, the functional outcome and survival rate of ischaemic stroke patients has increased
[4, 5]. When successful, both thrombolysis and thrombectomy restore blood flow in the previ-
ously blocked vessels (recanalisation). However, it has been reported that even after recanalisa-
tion, blood flow to the tissue downstream to the occluded artery (perfusion) is often not or only
partially recovered and hence brain tissue loss continues [1, 6]. The post-treatment mortality
rate of patients who suffered from an ischaemic stroke is still relatively high [7]. In addition, a
substantial proportion of the survivors (25–74%) suffer from a severe loss of congnitive function
[8]. Taking care of functionally dependent patients imposes a heavy burden on society, both
economically and mentally [7].

Regarding the poor outcome of ischaemic stroke patients, it is recognised that certain mech-
anisms can limit perfusion restoration. For instance, recanalisation techniques are accompanied
by the risk of thrombus fragmentation leading to downstream occlsusions [9]. It has been
hypothesised that when emboli reach the microcirculation, they cause micro-occlusions, and
hence prevent reperfusion [10]. Another important mechanism is cerebral oedema, during which
swelling of the brain deforms the tissue and alters blood pressure [11]. In order to maximise the
positive outcome of treatments, such hypotheses have to be carefully investigated and coun-
teracting interventions have to be worked out. The advancement and further development of
related drugs and devices rely on resource-intensive and time-consuming pre-clinical animal
experiments and clinical studies. Unfortunately, the success rate of treatment that passes pre-
clinical testing is low because the human brain behaves very differently from cell cultures or
animal brains [12].

The INSIST (IN Silico clinical trials for treatment of acute Ischaemic STroke) consortium
(www.insist-h2020.eu) set out to accelerate the advancement of human ischaemic stroke treat-
ments by introducing in silico clinical trials which mitigate the need for resource-intensive ex-
periments [13]. INSIST promotes the application of computational methods for pharmacology
and medical device development, which aligns with the ambitions of the Virtual Physiological
Human (VPH) initiative [14]. This study contributes to INSIST and the VPH by developing a
cerebral microcirculation model for the entire human brain, which is capable of predicting perfu-
sion before and after an ischaemic stroke. This model will be coupled to a one-dimensional blood
flow simulator governing blood flow in arteries supplying blood to the pial surface [15, 16]. The
role of the resulting organ-scale cerebral blood flow model in the in silico clinical trial will be to
evaluate the impact of stroke treatment (thrombectomy or thrombolysis) on tissue perfusion.
Furthermore, the model will provide input to other models which describe oxygen transport
and infarct progression in the brain. The envisioned software suite will predict the outcome of
ischaemic stroke treatment on a population level, provide guidance for objective clinical decision
making, and lead to further drug and medical device development.

Progress in the mathematical and computational modelling of the cerebral circulation is
complicated by the multi-scale nature of the flow and related transport processes. The diame-
ter of blood vessels stretches from approximately 5 millimetres to 5 microns, being characteristic
of the internal carotid artery and the capillaries, depicted in Figures 1(a) and (b) respectively.
Cortical columns (with volumes of a few cubic millimetres) have been modelled by treating the
capillary bed as a porous medium [17] and representing the connecting arterioles and venules
as a one-dimensional vessel network [18, 19]. Scaling such models to the entire brain is compu-
tationally resource intensive, because it requires capturing the flow in the corresponding large
networks of arterioles and venules. Nevertheless, with simplifications regarding the vessel net-
works, this approach has been successfully employed to investigate the temperature regulation
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Figure 1: Structure of the brain vasculature: (a) schematic drawing of the large arteries including
the Internal Carotid Artery (ICA) and the Middle Cerebral Artery (MCA). Adapted from the
work of Iadecola [25]. (b) structure of the human cerebral mircovasculature visualised with
india ink under confocal laser microscopy. Modified with permission from Iadecola [25] (a) and
Cassot et al. [26] (b). The reference coordinate system (ξ, η, ζ) is shown in (b).

of the human brain [20]. To overcome difficulties originating from the large networks, a two-
compartment porous continuum model has been implemented for the human brain [21] where
the arteriole and venule compartments include the majority of the small vessels. These models
are reminiscent of heart perfusion models [22, 23, 24].

The present study sets out to investigate the capabilities of porous continuum models in
terms of estimating the perfusion changes in various brain territories as a result of a large
intracranial vessel occlusion. To this end, we aim to improve the recently introduced organ-
scale cerebral microcirculation models [20, 21]. As shown in Figures 1(a) and (b), the descending
arterioles (and ascending venules) originating from the pial vessels are oriented perpendicularly
to the cortical surface. The continuum representation of such networks requires anisotropic
permeability fields [22, 23, 24] which have been disregarded in previous studies for simplicity
[20, 27, 21]. It has been demonstrated that capturing such spatial variation in the properties of
the continuum models plays an important role in the description of organ-scale physiological
processes [28, 29].

Firstly, a robust algorithm will be presented which accounts for the anisotropy of the human
microcirculation due to penetrating vessels. Thanks to brain atlases [30] and medical imaging
technologies, such as Vessel Encoded Arterial Spin Labelling Magnetic Resonance Imaging
(VE-ASL MRI) [31, 32], it is now well-known that large vessels supply specific brain regions.
Modelling the connections between large vessels and their corresponding territories is crucial to
predict the brain regions that are influenced by large vessel occlusion. In former studies [20, 21],
the volume sources that coupled the one-dimensional networks and the porous continuum were
not designed to incorporate these features. Secondly, a mapping will be introduced between
the micro and macro scales based on VE-ASL MRI. Thirdly, we will parametrise the resulting
porous continuum model and conduct optimisation to determine the unknown parameters.
Finally, for the first time, simulations will be reported which are capable of producing realistic
perfusion maps in healthy and occluded (ischaemic stroke) scenarios.
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Figure 2: Computational domain and mesh: (a) the pial surface; (b) ventricles (red) and the
cut-plane of the brainstem (green); subdomains including grey and white matters visualised
along a coronal, a sagittal and a transverse plane.

2 Methods

When considering organ-scale perfusion models, it is becoming common practice to use one-
dimensional network models (for instance, [33, 34, 35, 36, 37]) for large arteries and multi-
compartment porous continuum models for the microcirculation [20, 21, 22, 23, 24]. The mi-
crocirculation model proposed here builds on the same principles.

2.1 Computational domain and mesh

The computational domain (Ω) is a patient-specific human brain utilised in multiple recent
studies [29, 38, 39]. The bounding surface regions (∂Ω) include a transverse cut-plane of the
brainstem ΓBS, the ventricles ΓV and the pial surface ΓP so that ∂Ω = ΓBS ∪ ΓV ∪ ΓP . These
surface regions are depicted in Figures 2(a) and (b). Grey matter (ΩG) and white matter (ΩW )
are visible along a transverse, a coronal and a sagittal plane in Figure 2(c). Our investigations
are restricted to these two subdomains, therefore Ω = ΩG ∪ ΩW . The geometry is discretised
on a tetrahedral mesh using Tetgen [40]. The mesh depicted in Figure 2 includes 1,042,301
elements.

The boundary region associated with the pial surface (Figure 2(a)) is subdivided into eight
perfusion territories corresponding to major feeding arteries which have been identified with
VE-ASL MRI [31, 32, 41, 42, 43]. To this end, the same clustering algorithm is used as in our
preliminary study [44] as detailed in [15, 16]. In the future, subdividing the pial surface into
more sections will enable us to establish a feedback between the porous microcirculation model
and a one-dimensional network model [15, 16] by the repeated refreshment of the boundary
conditions. Each perfusion territory corresponds to a major feeding artery of the brain. These
territories are identified based on VE-ASL MRI images [43]. Thereafter, the surface region that
is perfused, for instance, by the Right Middle Cerebral Artery (R-MCA) is denoted as ΓR-MCA.
This approach leads to an anatomically accurate coupling by ensuring that blood arrives to the
brain tissue through specific cortical surface regions as shown in Figures 3(a), (b) and (c).
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Figure 3: Superficial perfusion territories of large arteries projected onto the brain surface
using the algorithm presented in [15, 16] and VE-ASL MRI images [43]: (a) transverse view;
(b) sagittal view; (c) coronal view. Territories corresponding to the Left and Right (L & R)
hemispheres are labelled separately. Surface regions are coloured based on the feeding arteries
using the following acronyms: Anterior Cerebral Artery (ACA), Middle Cerebral Artery (MCA),
Posterior Cerebral Artery (PCA).

2.2 Governing equations and boundary conditions

The governing equations describing three porous compartments [22, 23, 24] are

∇ · (Ka∇pa)− βac(pa − pc) = 0; (1a)

∇ · (Kc∇pc) + βac(pa − pc)− βcv(pc − pv) = 0; (1b)

∇ · (Kv∇pv) + βcv(pc − pv) = 0. (1c)

Here, pa, pc and pv are the Darcy pressures corresponding to the arteriole, capillary and
venule compartments respectively. Ki is the permeability tensor of compartment i, whereas
βij denotes the coupling coefficients between compartments i and j. It is worth mentioning
that a similar two-compartment (arteriole and venule) brain perfusion model has been reported
recently [21]. Here, a three-compartment model is proposed because some relevant physiological
and biochemical processes are restricted to certain length scales. For instance, oxygen exchange
through the blood brain barrier is most intensive in the capillary compartment. Furthermore,
cerebral autoregulation mechanisms are different in arterioles and capillaries and seem to be
absent in venules [45, 46, 47].

The boundary conditions imposed with equation (1) are as follows. Flow through the trans-
verse cut-plane of the brainstem and the ventricles is zero in every compartment. Using n as
the outward-pointing normal unit vector corresponding to the boundary surface, this Neumann
boundary condition reads as

Ki∇pi · n = 0 on ΓBS and ΓV . (2)

Flow through the pial surface in the capillary compartment is zero:

Kc∇pc · n = 0 on ΓP . (3)

The zero level of pressure can be selected freely because of the incompressible fluid flow model.
By setting the zero level of pressure on the pial surface in the venous compartment, the value
of the venous pressure is eliminated from the model:

pv = 0 on ΓP . (4)
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In the healthy scenario, the pressure on the pial surface in the arteriole compartment is the
diastolic pressure (pdia):

pa = pdia on ΓP . (5)

To account for totally occluded scenarios, blood flow through the perfusion territory of an
occluded vessel is set to zero whereas surface pressure is assumed to remain constant in other
regions. Accordingly, the mixed boundary conditions corresponding, for instance, to a R-MCA
occlusion become

∂pa
∂n

= 0 on ΓR-MCA, and (6a)

pa = pdia on ΓP \ ΓR-MCA. (6b)

2.3 Model parameters

The haemodynamics model governed by equation (1) includes thirty-one parameters: the cou-
pling coefficients in grey (βGac & βGcv) and white matters (βWac & βWcv ), and the twenty-seven
components of the permeability tensors of each compartment (Ka, Kc, Kv). The permeability
tensors and the coupling coefficients of the porous model need to represent the complex structure
of the microvasculture with strong preferences regarding arteriole and venule vessel orientation
as shown in Figure 1. Therefore, the components of Ka, and Kv are space-dependent func-
tions. However, as the structure of the microvasculature in the mammalian brain changes with
increasing cortical depth [48] and it is likely to exhibit territorial dependence, these properties
are neglected here due to the lack of data. Characterising such spatial variations remains an
outstanding challange for the modelling and the experimental communities.

Penetrating vessels, including Descending Arterioles (DAs) and Ascending Veins (AVs), in
the cortex tend to be aligned normal to the pial surface. Consequently, the permeability tensors
of the arteriole and venule compartments are similar but anisotropic and inhomogeneous. On
the contrary, it has been reported that the permeability tensor of the capillary compartment is
approximately isotropic [17, 49, 50]. Based on statistically accurate capillary network simula-
tions [17, 51], the capillary permeability in the grey matter can be described by a single scalar:
kc = 4.28× 10−4 [mm3 s kg−1]. For simplicity we use some assumptions first proposed by [21]:
(i) the permeabilities are the same in grey and white matters; and (ii) Kv = 2Ka. In addition,
(iii) the ratio of the grey and white matter coupling coefficients is assumed to be constant:

Cβ =
βG

βW
=
βGac
βWac

=
βGcv
βWcv

. (7)

Thereafter, the model is determined by twelve parameters: βGac, β
G
cv, Cβ, and Ka.

2.3.1 Permeability tensors

Permeabilities are characterised in a reference Cartesian coordinate system defined by ξ, η,
ζ corresponding to a cortical column as shown in Figure 1(b). The eref = [0, 0, 1] unit vector
defined in the reference coordinate system is parallel to the axes of the penetrating vessels (Fig-
ure 1(b)). The arteriole and the venule compartments encapsulate the zeroth order penetrating
vessel branches. These major penetrating branches in a cortical column can be imagined as a
“vessel bundle” supporting flow only in the ζ direction. For this reason, we assume that the
arteriole and venule permeabilities in the reference coordinate system are

Kref
a =

0 0 0
0 0 0
0 0 ka

 , and Kref
v =

0 0 0
0 0 0
0 0 kv

 . (8)
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Figure 4: Tangent lines of the elocal vector field representing the local characteristic direction
of the penetrating vessels (a). The first diagonal component of the arteriole or the venule
permeability tensor adjusted using the elocal field (b).

In this formulation, every higher order arteriole and venule side branch is lumped into a con-
ductance represented by the coupling coefficients.

This approach includes numerous simplifications but it has three advantages. Firstly, the
permeability of a “vessel bundle” with laminar flow within (kvb) can be estimated as

ka ≈ kvb =
nvD

4π

128µbAref

. (9)

Here, D is the characteristic diameter of the vessels and nv is the number of vessels corre-
sponding to a reference cortical surface area Aref. The in vitro dynamic viscosity of blood (µb)
depends on the diameter and the haematocrit as described in [52]. Assuming a constant dis-
charge haematocrit of 45%, a mean diameter in the range of D = 50− 90 microns [49, 53] with
nv = 8 PAs per Aref = 1 mm2 [54, 18], the arterial permeability can be estimated from Equation
(9) resulting in ka/kc = 1000 − 10000. The final value of ka is optimised with an initial guess
within this range. This optimisation is presented in Section 3.1.

Secondly, in the reference coordinate system the arteriole and venule permeability tensors
have only one constant non-zero element (instead of space-dependent functions). Thirdly, once
a permeability tensor is determined in a reference coordinate system (Kref

i ) with a given refer-
ence direction (eref), the permeability tensor (function) Ki can be computed. The corresponding
transformation detailed in Appendix A requires a unit vector representing the local character-
istic direction (elocal). To date, studies on porous modelling of the human brain [20, 27, 21]
assumed isotropic and homogeneous permeabilities because elocal could not be obtained. To
overcome this problem, a computational approach is proposed that relies solely on the geome-
try of the domain of interest.

The local brain tissue thickness is the length of a curve connecting a point on the ventricular
surface (ΓV ) to a point on the pial surface (ΓP ). The normalised thickness (t) increases from zero
to one as a point moves from ΓV to ΓP along the curve defining the thickness. The normalised
thickness can be computed by solving the Poisson equation

∇2t = 0, (10)
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with t = 0 on ΓV , t = 1 on ΓP , and ∇t ·n = 0 on ΓBS. Assuming that penetrating vessels grow
from the pial surface by following the fastest descent thorugh the brain tissue, the unit vector
corresponding to their local characteristic direction is given as

elocal = ∇t/|∇t|. (11)

In Figure 4(a) the elocal vector field is visualised by the corresponding tangent lines equiv-
alent of the curves defining brain tissue thickness. It is hypothesised that vessels follow these
curves which highlight the least resistant path through the brain tissue without being entan-
gled. This assumption overlaps with microscopical observations of the human microcirculation
about arterioles and venules penetrating perpendicularly to the cortical surface [49, 26]. The
permeability tensors of the arteriole and venule compartments are rotated to support blood flow
only parallel to elocal. The first diagonal component of the normalised arteriole permeability
tensor is depicted in Figure 4(b). High values of K11 indicate regions where blood flow in the
arterioles and the venules is supported primarily in the lateral direction. Where K11 is relatively
low, blood flow occurs mostly along the distal-proximal and the anterior-posterior directions.

2.3.2 Coupling coefficients

The coupling coefficients are tuned to account for the side branches of the penetrating arterioles
and venules. These side branches are referred to as PreCapillaries (PrC) and PostCapillaries
(PoC) associated with βac and βcv respectively. In order to estimate these parameters, the
volume-averaged pressure fields are linked to the coupling coefficients.

Integrating equations (1a)-(1c) over ΩG, applying the divergence theorem, and dividing by
the total volume of the grey matter (VG) leads to the following algebraic equation set.

−Q
G
a

VG
− βGac(〈pa〉G − 〈pc〉G) = 0; (12a)

−Q
G
c

VG
+ βGac(〈pa〉G − 〈pc〉G)− βGcv(〈pc〉G − 〈pv〉G) = 0; (12b)

−Q
G
v

VG
+ βGcv(〈pc〉 − 〈pv〉G) = 0. (12c)

Here, the angle brackets denote volume-averaged quantities so that 〈pi〉G is the average Darcy
pressures in the grey matter in compartment i. Furthermore, QG

i is the volumetric flow rate
through the surface bounding the grey matter in compartment i, defined as

QG
i = −

∫∫
ΓG

Ki∇pi · dA. (13)

In the above expression ΓG and A symbolise the surface bounding the grey matter and the
corresponding area vector respectively.

Given that ka/kc = 1000−10000, as estimated in Section 2.3.1,QG
c /VG is negligible compared

to QG
a /VG and QG

v /VG. According to the imposed boundary conditions, equations (2) and
(3), QG

c /VG ≈ 0 can be assumed which indicates that blood flow in the capillaries through
the interface of grey and white matter is comparatively low. This assumption has been used
previously in blood flow simulations of cortical columns [17, 19]. Based on equation (12), it
thus follows that grey matter perfusion is

FG = −Q
G
a

VG
= βGac(〈pa〉G − 〈pc〉G) = βGcv(〈pc〉G − 〈pv〉G). (14)
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Figure 5: Normalised pressure as a function of the vessel diameter in the grey matter of the rat
brain (a). The diastolic pressure is used for normalisation. The dotted lines represent theoretical
boundaries between the Pial Arteries (PA), Descending Arterioles (DA), PreCapillaries (PrC),
Capillaries (C), PostCapillaries (PoC), Ascending Venules (AV), and Pial Veins (PV). The
dashed lines represent the hypothetical average pressure values in each compartment. Average
pressure in the arteriole, capillary and the venule compartments in the grey matter of the rat
brain and the present virtual human brain (b).

In addition, it can be concluded that the ratio of the arteriole-capillary (βac) and the capillary-
venule (βcv) coupling coefficients is related to the volume-averaged pressure drops as

βGac
βGcv

=
〈pc〉G − 〈pv〉G
〈pa〉G − 〈pc〉G

. (15)

Therefore, the average perfusion and inter-compartment pressure drops in the grey matter
uniquely determine the coupling coefficients βGac and βGcv.

In order to calculate the coupling coefficient in the grey matter, perfusion is calculated
from cerebral blood flow set to Qbrain = 600 [ml/min] [55]. The total volume of the brain
model is Vbrain = 1390 [ml] which leads to a physiologically realistic brain perfusion F brain ≈
43 [(ml blood)/min/(100 ml tissue)]. The mean ratio of grey and white matter perfusion is
FG/FW = 2.7 [56]. With the grey and white matter volumes given (V G = 894 and V W =
496 [ml]), grey and white matter perfusion values are FG ≈ 56 and FW ≈ 21 [ml/min/(100 ml)]
respectively. The brain volume [57] and perfusion values [32, 42, 56] are in good agreement with
the literature.

Pressure measurements in the human microcirculation are not available but experiments
have been reported in the rat brain [58, 59]. Based on the summary of these experiments
provided by Schmid et al. [48], some normalised experimental results are shown in Figure 5(a).
βcv/βac = 3.5 is infered from the ratio of the average pressure drop in each compartment of the
rat brain. It is worth mentioning that simulations of the rat brain indicate significant variation
of the pressure ratios in different cortical layers [48]. Finally, the diastolic pressure in the human
brain is set to pdia = 75 mmHg ≈ 104 Pa. (This value is relative to the venous pressure selected
as the zero level of the pressure.) According to the calculated grey matter perfusion, the pressure
ratios visualised in Figure 5(a) and the diastolic pressure value, the coupling coefficients in grey
matter are βGac = 1.326·10−6 and βGcv = 4.641·10−6 [1/Pa/s]. Figure 5(b) demonstrates that with
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these coupling coefficients, the normalised inter-compartment pressure drop of the human brain
model is similar to that of the rat brain. Finally, Cβ = βG/βW can be estimated analytically by
rewriting equation (14) for the white matter and assuming that the inter-compartment pressure
drop in white matter is the same as in grey matter: FG/FW = βG/βW = 2.7.

2.4 Numerical procedure

It has been demonstrated that the finite element method can be utilised efficiently to model
complex physical problems in human organs [28, 60, 61, 62, 63, 64], including fluid flow and
solid deformation in the human brain [11]. For this reason, the governing partial differential
equations are solved numerically using Python with a high performance open source finite
element library, FEniCS [65, 66]. The weak form of equation (1) is available in [22] and in
Appendix B. The equation set is solved in a mixed space covering the full system. The pressure
in each compartment (pi) is discretised using piecewise linear Lagrange (P1) elements. (The
“periodic table” of finite elements can be found in [67].) The permeabilities (Ki) and the
coupling coefficients (βij) are represented in (discontinous) piecewise constant (dP0) tensor
and scalar function spaces respectively. This helps to capture the sharp change in the model
parameters between the grey and white matters.

The a scalar in the Poisson equation (10) is stored in second-order piecewise polynomial
Lagrange (P2) elements. Therefore, elocal in equation (11) has to be projected from P1 to dP0

elements before it is used for the coordinate transformation of Kref
i . Finally, tissue perfusion

F = βac(pa− pc) is computed in dP0 elements. The resulting linear equation systems are solved
iteratively using the BiCojungate Gradient STABilised method (BiCGSTAB) [68]. Pressure
field computation is speeded up with an Algebraic MultiGrid (AMG) preconditioner [69]. Ad-
justing the permeability field and computing the pressure and perfusion fields for the healthy
and occluded scenarios take approximately 5 minutes using a single core on a modern desktop
equipped with an Intel Xeon E-2146G processor. Exploiting the native Massage Passing Inter-
face (MPI) implementation of FEniCS and running the simulations with two and four cores
reduce the wall time to approximately 3 and 2 minutes respectively.

3 Results and discussion

3.1 Parameter optimisation

It turns out that without the simplifications listed in Section 2, it is challenging to pose an
optimisation problem with well-distinguished global or local minimum for the complete set of
thirty-one parameters. For this reason, the parameter space of the imposed problem is reduced
significantly according to Sections 2.3.1 and 2.3.2 and the remaining parameters are optimised.

The optimisation goal is to obtain physiologically accurate average perfusion values for the
grey and white matters, hence the cost function (J) to be minimised is

J = (FG − FG
target)

2 + (FW − FW
target)

2 + Jpenalty. (16)

The target values are calculated as detailed in Section 2.3.2 and set to FG
target ≈ 56 and FW

target ≈
21 [(ml blood)/min/(100 ml tissue)]. Furthermore, a penalty term (Jpenalty) has been added to
restrict the minimum and maximum perfusion values:

Jpenalty =H(Fmin,target − Fmin) · (Fmin − Fmin,target)
2+

H(Fmax − Fmax,target) · (Fmax − Fmax,target)
2. (17)

Here, H is the Heaviside function resulting in a non-zero Jpenalty only if the extrema are out of
the Fmin,target = 10 and the Fmax,target = 80 [(ml blood)/min/(100 ml tissue)] range.
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Parameter Value Unit

ka 1.234 mm3 s kg−1

kc [17] 4.28× 10−4 mm3 s kg−1

kv 2.468 mm3 s kg−1

βGac 1.326× 10−6 Pa−1s−1

βGcv 4.641× 10−6 Pa−1s−1

βWac 5.22× 10−7 Pa−1s−1

βWcv 1.828× 10−6 Pa−1s−1

pv 0 Pa
pdia 104 (75) Pa (mmHg)

Table 1: List of the model parameters.

The two remaining parameters are defined as

ka/kc = 10p and Cβ = βG/βW = 10q, (18)

to restrict the search for positive values. Finally, the two-dimensional optimisation problem can
be phrased as

min [J(p, q)] in p ∈ [−∞,∞] and q ∈ [−∞,∞]. (19)

The parameters are initialised randomly within the p ∈ [3, 4] and q ∈ [0, 1] intervalls. The
bounding values are estimated according to Sections 2.3.1 and 2.3.2. To find the global minimum
of J , the BFGS [70] and the Nelder-Mead [71] methods are employed. Whereas BFGS method
relies on computing the derivatives of the cost function, the Nelder-Mead algorithm is gradient-
free.

Both algorithms are run three times so that the optimisation problem is solved six times
in total to ensure that the obtained parameters are independent of the initial guesses. Every
run leads to the same values (with a relatively small tolerance) independently from the ini-
tialisation. The cost function and the perfusion values during typical executions are shown in
Figures 6(a), (b) and (c). The methods converge to J ≈ 0.2 within 60 simulations with the
minimum, maximum and mean perfusion values reasonably close to the target values. The his-
tory of parameters throughout the optimisation can be seen in Figure 7. The final values of the
simulation parameters are summarised in Table 1.

3.2 Pressure and perfusion field analysis

Simulations are next performed to model a healthy scenario and a R-MCA occlusion. In order
to evaluate the effects of anisotropic arterial and venule permeabilities, simulations are con-
ducted for isotropic and anisotropic cases. The isotropic permeability tensors are set so that
their Frobenius norms are equal to the norms of the anisotropic tensors resulting from the op-
timisation described in Section 3.1. The pressure field corresponding to the healhty anisotropic
scenario is displayed in Figure 8. A high pressure drop can be observed in the vicinity of the
cortical surface in the arteriole compartment which decreases rapidly as white matter is reached.
The majority of the pressure drop takes place in the arteriole compartment and between the
arteriole and the capillary compartments. The pressure change within the capillary and the
venule compartments are relatively small. The volume-averaged pressure values listed in Ta-
ble 2 suggest that the pressure fields predicted by simulations with isotropic and anisotropic
permeabilities are statistically similar.

The volume-averaged perfusion values are listed in Table 2. Thanks to the optimisation, the
basic statistics extracted from the obtained perfusion field are in good agreement with ASL MRI
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Figure 8: Pressure distribution corresponding to simulation with anisotropic permeabilities
along the coronal plane shown in Figure 2(c): (a) arteriole, (b) capillary, (c) venule compart-
ment.

data [32, 56]. Since it has been recognised that obtaining the absolute value of perfusion from
ASL MRI is cumbersome, we also considered PET measurements [42]. Perfusion values in the
healthy scenario are relatively low and hence the simulation is representative of an elderly male
patient. Table 2 suggests that the proposed optimisation method is suitable to determine model
parameters so that the resulting perfusion is physiologically realistic compared to measurements
in the healthy human brain. The simulation with isotropic permeability fields is statistically
very similar to the anisotropic case.

The perfusion distribution within the brain in the healthy anisotropic scenario is visualised in
Figure 9. Perfusion distributions within the grey and white matters are approximately uniform
as indicated by the standard deviation values in Table 2. The standard deviation of perfusion
within the brain is somewhat higher than the reference values. The difference is probably due
to the fact that the simulation values correspond to a spatial integration whereas the standard
deviation of experimental values quantify the difference between patients. It is important to
emphasise that the model is steady state. For this reason, spatial variations typical of the grey
matter due to time-dependent activations are not visible.

Variable
Healthy Healthy reference

isotropic anisotropic Female Male

〈pa〉 9035 9242 6335 [59]
〈pc〉 2383 2348 1564 [58]
〈pv〉 483 379 179 [58]
F brain 42± 18 43± 18 62± 7 [56] 53± 10 [56]
FG 55± 7 56± 7 68± 10 [56] 58± 13 [56]
FW 19± 2 21± 3 25± 5 [56] 23± 3 [56]

Table 2: Comparison of integral variables with literature data in the healthy scenario. The units
of pressure and perfusion values are Pa and (ml blood)/min/(100 ml tissue) respectively. Ref-
erence pressure is calculated from experimental data on the rat brain as presented in Figure 5.
Perfusion is listed as mean ± standard deviation. Standard deviation computed for the simula-
tions describe spatial variation within the virtual brain. The standard deviations corresponding
to the reference values represent variations between individuals.

Tissue perfusion is analysed following the occlusion of the M1-segment of the right middle
cerebral artery because it accounts for more than 60% of ischaemic stroke cases [3, 72]. Perfusion
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change is defined as

Perfusion change = 100%

(
Foccluded − Fhealthy

Fhealty

)
, (20)

so that 0% stands for unchanged perfusion and -100% highlights regions with zero perfusion.
Recently, computed tomography perfusion imaging has been used to estimate ischaemic regions
based on a perfusion change threshold of -70% [73, 74]. (It is worth noting that it has been
reported that this approach overestimates the ischaemic region compared to diffusion-weighted
magnetic resonance imaging [75].) The occluded scenario is modelled by setting blood flow to
zero through the pial surface region corresponding to the right middle cerebral artery (∂pa/∂n =
0 at ΓR-MCA). The modified boundary conditions are governed by equation (6). In order to
evaluate the effects of anisotropic permeability fields, simulations have been conducted with
isotropic and anisotropic permeabilities.

Figure 9: Perfusion distribution corresponding to simulation with anisotropic permeabilities
along the transverse (a), sagittal (b), and coronal (c) planes shown in Figure 2(c). The solid
lines show the location of the slices.

An underperfused region predicted by the isotropic and anisotropic models covering a sig-
nificant part of the right hemisphere can be seen in Figures 10 (a)-(c) and (d)-(f), respectively.
The perfusion lesion in both cases diffuses towards deeper cerebral regions from ΓR-MCA because
blood flow rate is set to zero through this territory. This feature underlines the importance of
perfusion territory mapping based on VE ASL MRI and the role of model parameter optimi-
sation, which uniquely determine the origin and the extent of the lesion, respectively. Blood
flow in the left hemisphere and the cerebellum are not influenced because these regions are
perfused by different arteries. Although the human vasculature has compensatory mechanisms
and structures to improve survival chance in the case of stroke, for example collateral arteries,
it should be noted that these are not included in the model. Therefore, the simulations are
capable of predicting only worse case scenarios for now. Collateral flow is often associated with
leptomeningeal arteries with relatively large diameters, therefore this feature could be included
in the network model encapsulating the large arteries [15, 16], even though the details of these
vessels remain to be explored.

Comparing Figures 10 (a)-(c) to (d)-(f) leads to the conclusion that using isotropic perme-
abilities underestimates perfusion drop caused by a major cerebral artery occlusion. The results
summarised in Table 3 further emphasise the differences between simulations with isotropic and
anisotropic permeability fields even though the two cases lead to statistically similar results in
the healthy case (Table 2). The isotropic model predicts that treatment is not required based
on the -70% perfusion change threshold [73, 74] because the isotropic permeability fields re-
distribute blood from other areas. By comparison, the same threshold leads to a lesion with
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Variable
R-MCA occlusion

isotropic anisotropic

〈pa〉 8263 7505
〈pc〉 2180 1907
〈pv〉 442 307
F brain 39± 18 35± 22
FG 50± 11 46± 21
FW 18± 4 17± 8

Table 3: Comparison of integral variables obtained with isotropic and anisotropic permeabil-
ities in the case of R-MCA occlusion. The units of pressure and perfusion values are Pa and
(ml blood)/min/(100 ml tissue) respectively. Standard deviation computed for the simulations
describe spatial variation within the virtual brain.

significantly lower perfusion when anisotropic permeabilities are used. The anisotropic result
suggests that the strongly interconnected capillary vessels cannot balance such a drastic loss of
blood inflow due to their high resistance. Therefore, a relatively larger pressure drop is mea-
sured in the arteriole compartment of the anisotropic model as shown in Tables 2 and 3. Since
perfusion is F = βac(pa − pc), this lower arterial pressure directly leads to decreased perfusion.

In Figures 10 (g)-(i), follow-up non-contrast CT scan images of a 76-year-old male patient
are presented one week after MCA stroke treatment. This patient have been selected for a
brief, demonstrative validation because the noise level of the CT scan is low and hence a severe
hypodensity of the right MCA territory associated with an acute infarct is clearly visible. Due
to the late treatment resulting in poor recanalisation (details in in Appendix C), it is reasonable
to assume that the location and the extent of the infarct correlate well with the initial perfusion
lesion. For simplicity, we follow the idea of perfusion-based ischaemic region estimation [73, 74]
and approximate the infarcted volume from simulations as the region where perfusion change
is below -70%. Bearing in mind that this is a preliminary solution applicable only for virtual
patients without or with unsuccessful treatment, the infarcted volume can be computed from
Figures 10 (d)-(f) and Figures 10 (d)-(f) and (g)-(i) can be compared.

Non-contrast CT scans similar to Figures 10 (g)-(i) are used regularly to estimate the
infarcted volume as an indicator of treatment outcome [76]. The infarcted volume measured for
this patient is 309 ml. The model with anisotropic permeabilities predicts an infarcted volume
of 238 ml based on the perfusion lesion. The simulation result is comparable to 134 ± 93 ml
[77] and 138± 106 ml [76] measured in acute ischaemic stroke patients. The hypodense region
in Figures 10 (g)-(i) is in satisfactory qualitative agreement with the low perfusion regions in
Figures 10 (d)-(f). The results suggest that produced virtual perfusion maps are qualitatively
and quantitatively realistic. Even though the formation and expansion of an infarction core is
clearly linked to the lack of perfusion, necrosis is driven by the lack of nutritions in general.
Tissue metabolism relies on oxygen and glucose, therefore it is essential to capture the advective-
diffusive transport of these substances when it comes to the accurate prediction of the infarct
volume. In order to provide estimation of ischaemic and infarcted regions, simulations similar
to the ones presented herein will be fed into oxygen-transport [78] and metabolism [79, 80]
models predicting permanent tissue damage.

3.3 Limitations

This subsection aims to summarise some factors which have been overlooked in the present
study. Firstly, fast, reliable and accurate automatised patient-specific mesh generation remains
a major challenge. For this reason, the present study is limited to a single patient-specific ge-
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ometry. Organ-scale models have a great potential to ease clinical decision making and improve
treatment but user-friendly and automatised pipelines need to be implemented. One of the
major stumbling block of automatisation is patient-specific mesh generation based on medical
images.

Figure 10: Relative change of perfusion as a result of a total blockage of the right middle
cerebral artery (R-MCA) based on simulations with isotropic (a)-(c) and anisotropic (d)-(f)
permeability fields. The grey solid lines show the location of the slices. The white isolines in
(d)-(f) correspond to -70% perfusion change. Non-contrast CT images of a patient showing an
infarct caused by R-MCA occlusion. Transverse (a)&(d)&(g), sagittal (b)&(e)&(h), and coronal
(c)&(f)&(i) planes.

Secondly, the presented multi-compartment porous model relies on multiple scale separa-
tion. It has been pointed out that the vessel diameter in the vasculature changes continously
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therefore the applicability of scale separation is questionable [19]. The present study demon-
strated promising but solely qualitative validation of this approach using medical images. The
next stage of validation is to conduct a large set of simulations and evaluate the accuracy of
predictions in comparison to medical images.

Thirdly, estimating the parameters of human physiological models has always been a dif-
ficult task because of the lack of sufficient data. The present optimisation relies on numerous
simplifications listed in Section 2. These assumptions have been used previously [21] and are
sufficient to test models but they have not been thoroughly justified. Providing a more careful
evaluation of the permeabilies and coupling coefficients in the grey matter based on statistically
accurate network models of the microcirculation [51, 17, 53] is work in progress.

Finally, the following features have been neglected: cerebral autoregulation [47], cerebral
oedema [11], emboli advection and blockage of the microcirculation [9, 10], spreading of is-
chaemic tissue damage [79, 80], etc. These phenomena are time-dependent and often rely on
nonlinear processes. Modelling these features and capturing their interaction could provide
valuable new insights but due to their extreme complexity their description is beyond the scope
of the present study. Nevertheless, it is worth recognising that all of these features have a strong
connection to cerebral blood flow. Therefore, the authors hope that the work presented herein
will become a useful element of a comprehensive in silico human brain model that incorporates
these neglected mechanisms.

4 Conclusions

This study has investigated the capabilities of a three-compartment porous microcirculation
model for perfusion predictions in healthy humans as well as in ischaemic stroke patients.
The governing equations have been discretised and solved using an open source finite element
library, FEniCS [65, 66]. Inspired by advances in organ-scale human heart [28, 60, 61, 62] and
lung modelling [63, 64], we aimed to lay down the fundamentals of a software suite which
will facilitate a model environment for multi-scale and multi-physics simulations of the human
brain.

An anatomically accurate mapping between large arteries and microvessels has been in-
troduced. We have utilised vessel encoded arterial spin labelling magnetic resonance imaging
data and a novel clustering algorithm previously developed in our group to identify superficial
cortical perfusion territories. A robust approach has been proposed to account for anisotropy
in the microcirculation of the human brain using permeability tensors. To obtain the result-
ing parameters, optimisation has been combined with parameter space reduction based on the
analysis of the governing equations and experimental data.

For the first time, simulations have been conducted to predict perfusion in both healthy and
occluded scenarios. A right middle cerebral artery occlusion has been implemented for which
CT images of a patient with a proximal right MCA occlusion have also been presented. A
satisfactory qualitative agreement has been found between the infarcted region visible in the CT
images and the low perfusion region predicted by the simulations. Furthermore, the simulated
perfusion lesion volume is comparable to clinical infarcted volume measurements. Identifying
perfusion territories and obtaining anisotropic permeability fields appear to be crucial to provide
such realistic predictions. In summary, porous microcirculation models are promising candidates
to quantify the effects of stroke treatments on tissue perfusion and, with further extensions, on
tissue health.

In the future, the model will be coupled to a one-dimensional network model of the large
arteries [15, 16] to create a complete in silico cerebral circulation model. Thereafter, the model
will be validated using a large set of clinical data, such as CT perfusion images, which will also
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help to tune model parameters and improve accuracy. In order to predict infarct formation and
propagation during ischaemic stroke, metabolism-based dynamic models will be developed.
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A Transformation matrix calculation

The permeability Kref
a is given in the reference coordinate system defined by eref as detailed in

Section 2.3.1. Furthermore, elocal is a vector field computed according to equations (11) and (10).
The local permeability tensor is obtained from Ki = RKref

i RT. Here, R is the transformation
tensor which can be calculated as follows [81]. The unit vector defining the axis of rotation is

erot =
eref × elocal

|eref × elocal|
. (21)

The rotation angle θ can be calculated as cos−1(eref ·elocal) and the cross product matrix of erot

is defined as

[erot]× =

 0 −erot,3 erot,2

erot,3 0 −erot,1

−erot,2 erot,1 0

 . (22)

Here, erot,i is the ith component of erot. Finally, the transformation matrix can be expressed as

R = cos(θ)I + sin(θ) [erot]× + [1− cos(θ)] (erot ⊗ erot), (23)

where I denotes the identity matrix.

B Weak form of the governing equations

The governing equation set and the imposed boundary conditions are equations (1) and (2)–(6)
respectively. The weak form can be derived by taking the volume integral of equations (1a)–
(1b). Thereafter, integration by parts and the application of the divergence theorem result in
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∫
Ω

(Ka · ∇pa) · (∇va) dΩ = −
∫

Ω

βac(pa − pc)vadΩ; (24a)∫
Ω

(Kc · ∇pc) · (∇vc) dΩ =

∫
Ω

βac(pa − pc)vcdΩ−
∫

Ω

βcv(pc − pv)vcdΩ; (24b)∫
Ω

(Kv · ∇pv) · (∇vv) dΩ =

∫
Ω

βcv(pc − pv)vvdΩ. (24c)

In the above expression, vi denotes the test function of compartment i.

C The selected patient’s case description

The patient arrived at the hospital four hours after stroke symptom onset. The CT angiography
on hospital admission showed a proximal occlusion of the right M1-segment (mother branch)
of the MCA and poor collaterals (only very few vessels visible in the occluded vascular ter-
ritory compared to the asymptomatic contralateral hemisphere). The patient was diagnosed
with a severe stroke-related neurologic deficit according to the National Institutes of Health
Stroke scale. After diagnostic workup, the patient arrived at the angiosuite for thrombectomy
approximately five hours after stroke onset. The treatment resulted in poor recanalisation with
modified Thrombolysis in Cerebral Infarction (mTICI) score 1 meaning visible blood flow past
the initial occlusion but no distal filling of the MCA territory. The mTICI score ranges from
0 (no recanalisation) to 3 (complete recanalisation) and successful treatment is usually defined
as mTICI≥2B [82].
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